201
|
Islam S, Abiko Y, Uehara O, Chiba I. Sirtuin 1 and oral cancer. Oncol Lett 2018; 17:729-738. [PMID: 30655824 DOI: 10.3892/ol.2018.9722] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/10/2018] [Indexed: 01/03/2023] Open
Abstract
The sirtuins (SIRTs) are a family of highly conserved histone deacetylases (HDACs) consisting of seven members (SIRT1-SIRT7). Over the past few decades, SIRT1 has been the most extensively studied and garnered tremendous attention in the scientific community due to its emerging role in cancer biology. However, its biological role in the regulation of oral cancer is not yet fully understood. Owing to contradictory findings regarding the role of SIRT1 in oral cancer, debate about it continues. The present study discusses the biological roles and potential therapeutic implications of SIRT1 in precancerous oral lesions and oral cancer.
Collapse
Affiliation(s)
- Shajedul Islam
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Yoshihiro Abiko
- Division of Oral Medicine and Pathology, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Osamu Uehara
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan.,Research Institute of Cancer Prevention, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| | - Itsuo Chiba
- Division of Disease Control and Molecular Epidemiology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Hokkaido 061-0293, Japan
| |
Collapse
|
202
|
Rifaï K, Idrissou M, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. Breaking down the Contradictory Roles of Histone Deacetylase SIRT1 in Human Breast Cancer. Cancers (Basel) 2018; 10:cancers10110409. [PMID: 30380732 PMCID: PMC6266715 DOI: 10.3390/cancers10110409] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 02/07/2023] Open
Abstract
Breast cancer (BC) is the most common type of cancer in women worldwide; it is a multifactorial genetic disease. Acetylation and deacetylation are major post-translational protein modifications that regulate gene expression and the activity of a myriad of oncoproteins. Aberrant deacetylase activity can promote or suppress tumorigenesis and cancer metastasis in different types of human cancers, including breast cancer. Sirtuin-1 (SIRT1) is a class-III histone deacetylase (HDAC) that deacetylates both histone and non-histone targets. The often-described ‘regulator of regulators’ is deeply implicated in apoptosis, gene regulation, genome maintenance, DNA repair, aging, and cancer development. However, despite the accumulated studies over the past decade, the role of SIRT1 in human breast cancer remains a subject of debate and controversy. The ambiguity surrounding the implications of SIRT1 in breast tumorigenesis stems from the discrepancy between studies, which have shown both tumor-suppressive and promoting functions of SIRT1. Furthermore, studies have shown that SIRT1 deficiency promotes or suppresses tumors in breast cancer, making it an attractive therapeutic target in cancer treatment. This review provides a comprehensive examination of the various implications of SIRT1 in breast cancer development and metastasis. We will also discuss the mechanisms underlying the conflicting roles of SIRT1, as well as its selective modulators, in breast carcinogenesis.
Collapse
Affiliation(s)
- Khaldoun Rifaï
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, 63001 Clermont-Ferrand, France.
- INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), 58 Rue Montalembert, 63005 Clermont-Ferrand, France.
| | - Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, 63001 Clermont-Ferrand, France.
- INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), 58 Rue Montalembert, 63005 Clermont-Ferrand, France.
| | - Frédérique Penault-Llorca
- INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), 58 Rue Montalembert, 63005 Clermont-Ferrand, France.
- Department of Biopathology, Centre Jean Perrin, 58 Rue Montalembert, 63011 Clermont-Ferrand, France.
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, 63001 Clermont-Ferrand, France.
- INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), 58 Rue Montalembert, 63005 Clermont-Ferrand, France.
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, 63001 Clermont-Ferrand, France.
- INSERM-UMR 1240-Imagerie Moléculaire et Stratégies Théranostiques (IMoST), 58 Rue Montalembert, 63005 Clermont-Ferrand, France.
| |
Collapse
|
203
|
An overview of Sirtuins as potential therapeutic target: Structure, function and modulators. Eur J Med Chem 2018; 161:48-77. [PMID: 30342425 DOI: 10.1016/j.ejmech.2018.10.028] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/11/2018] [Accepted: 10/11/2018] [Indexed: 02/05/2023]
Abstract
Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in the presence of nicotinamide adenine dinucleotide (NAD+), waves of research have assessed the potential of Sirtuin as a therapeutic target. The Sirtuin family, which is widely distributed throughout the nature, has been divided into seven human isoforms (Sirt1-Sirt7). They are thought to be closely related to some aging diseases such as cardiovascular disorders, neurodegeneration, and tumors. Herein, we present a comprehensive review of the structure, function and modulators of Sirtuins, which is expected to be beneficial to relevant studies.
Collapse
|
204
|
Gong YY, Luo JY, Wang L, Huang Y. MicroRNAs Regulating Reactive Oxygen Species in Cardiovascular Diseases. Antioxid Redox Signal 2018; 29:1092-1107. [PMID: 28969427 DOI: 10.1089/ars.2017.7328] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Oxidative stress caused by overproduction of reactive oxygen species (ROS) in cells is one of the most important contributors to the pathogenesis of cardiovascular and metabolic diseases such as hypertension and atherosclerosis. Excessive accumulation of ROS impairs, while limiting oxidative stress protects cardiovascular and metabolic function through various cellular mechanisms. Recent Advances: MicroRNAs (miRNAs) are novel regulators of oxidative stress in cardiovascular cells that modulate the expression of redox-related genes. This article summarizes recent advances in our understanding of how miRNAs target major ROS generators, antioxidant signaling pathways, and effectors in cells of the cardiovascular system. CRITICAL ISSUES The role of miRNAs in regulating ROS in cardiovascular cells is complicated because miRNAs can target multiple redox-related genes, act on redox regulatory pathways indirectly, and display context-dependent pro- or antioxidant effects. The complex regulatory network of ROS and the plethora of targets make it difficult to pin point the role of miRNAs and develop them as therapeutics. Therefore, these properties should be considered when designing strategies for therapeutic or diagnostic development. FUTURE DIRECTIONS Future studies can gain a better understanding of redox-related miRNAs by investigating their own regulatory mechanisms and the dual role of ROS in the cardiovascular systems. The combination of improved study design and technical advancements will reveal newer pathophysiological importance of redox-related miRNAs.
Collapse
Affiliation(s)
- Yao-Yu Gong
- 1 School of Life Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Jiang-Yun Luo
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Li Wang
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| | - Yu Huang
- 2 School of Biomedical Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China .,3 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
205
|
Mongelli A, Gaetano C. Controversial Impact of Sirtuins in Chronic Non-Transmissible Diseases and Rehabilitation Medicine. Int J Mol Sci 2018; 19:ijms19103080. [PMID: 30304806 PMCID: PMC6213918 DOI: 10.3390/ijms19103080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/29/2018] [Indexed: 12/15/2022] Open
Abstract
A large body of evidence reports about the positive effects of physical activity in pathophysiological conditions associated with aging. Physical exercise, alone or in combination with other medical therapies, unquestionably causes reduction of symptoms in chronic non-transmissible diseases often leading to significant amelioration or complete healing. The molecular basis of this exciting outcome—however, remain largely obscure. Epigenetics, exploring at the interface between environmental signals and the remodeling of chromatin structure, promises to shed light on this intriguing matter possibly contributing to the identification of novel therapeutic targets. In this review, we shall focalize on the role of sirtuins (Sirts) a class III histone deacetylases (HDACs), which function has been frequently associated, often with a controversial role, to the pathogenesis of aging-associated pathophysiological conditions, including cancer, cardiovascular, muscular, neurodegenerative, bones and respiratory diseases. Numerous studies, in fact, demonstrate that Sirt-dependent pathways are activated upon physical and cognitive exercises linking mitochondrial function, DNA structure remodeling and gene expression regulation to designed medical therapies leading to tangible beneficial outcomes. However, in similar conditions, other studies assign to sirtuins a negative pathophysiological role. In spite of this controversial effect, it is doubtless that studying sirtuins in chronic diseases might lead to an unprecedented improvement of life quality in the elderly.
Collapse
Affiliation(s)
| | - Carlo Gaetano
- ICS Maugeri S.p.A., SB, via Maugeri 10, 27100 Pavia, Italy.
| |
Collapse
|
206
|
Walport LJ, Hopkinson RJ, Chowdhury R, Zhang Y, Bonnici J, Schiller R, Kawamura A, Schofield CJ. Mechanistic and structural studies of KDM-catalysed demethylation of histone 1 isotype 4 at lysine 26. FEBS Lett 2018; 592:3264-3273. [PMID: 30156264 PMCID: PMC6220849 DOI: 10.1002/1873-3468.13231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 01/07/2023]
Abstract
N-Methylation of lysyl residues is widely observed on histone proteins. Using isolated enzymes, we report mechanistic and structural studies on histone lysine demethylase (KDM)-catalysed demethylation of Nε -methylated lysine 26 on histone 1 isotype 4 (H1.4). The results reveal that methylated H1.4K26 is a substrate for all members of the KDM4 subfamily and that KDM4A-catalysed demethylation of H1.4K26me3 peptide is similarly efficient to that of H3K9me3. Crystallographic studies of an H1.4K26me3:KDM4A complex reveal a conserved binding geometry to that of H3K9me3. In the light of the high activity of the KDM4s on this mark, our results suggest JmjC KDM-catalysed demethylation of H1.4K26 may be as prevalent as demethylation on the H3 tail and warrants further investigation in cells.
Collapse
Affiliation(s)
- Louise J. Walport
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordUK
| | - Richard J. Hopkinson
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordUK
- Leicester Institute of Structural and Chemical Biology and Department of ChemistryUniversity of LeicesterUK
| | | | - Yijia Zhang
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordUK
| | - Joanna Bonnici
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordUK
| | - Rachel Schiller
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordUK
| | - Akane Kawamura
- Department of ChemistryChemistry Research LaboratoryUniversity of OxfordUK
- Division of Cardiovascular MedicineRadcliffe Department of MedicineThe Wellcome Trust Centre for Human GeneticsOxfordUK
| | | |
Collapse
|
207
|
Kulikova VA, Gromyko DV, Nikiforov AA. The Regulatory Role of NAD in Human and Animal Cells. BIOCHEMISTRY (MOSCOW) 2018; 83:800-812. [PMID: 30200865 DOI: 10.1134/s0006297918070040] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) and its phosphorylated form NADP are the major coenzymes in the redox reactions of various essential metabolic pathways. NAD+ also serves as a substrate for several families of regulatory proteins, such as protein deacetylases (sirtuins), ADP-ribosyltransferases, and poly(ADP-ribose) polymerases, that control vital cell processes including gene expression, DNA repair, apoptosis, mitochondrial biogenesis, unfolded protein response, and many others. NAD+ is also a precursor for calcium-mobilizing secondary messengers. Proper regulation of these NAD-dependent metabolic and signaling pathways depends on how efficiently cells can maintain their NAD levels. Generally, mammalian cells regulate their NAD supply through biosynthesis from the precursors delivered with the diet: nicotinamide and nicotinic acid (vitamin B3), as well as nicotinamide riboside and nicotinic acid riboside. Administration of NAD precursors has been demonstrated to restore NAD levels in tissues (i.e., to produce beneficial therapeutic effects) in preclinical models of various diseases, such as neurodegenerative disorders, obesity, diabetes, and metabolic syndrome.
Collapse
Affiliation(s)
- V A Kulikova
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| | - D V Gromyko
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia
| | - A A Nikiforov
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia. .,Peter the Great St. Petersburg Polytechnic University, St. Petersburg, 195251, Russia
| |
Collapse
|
208
|
Mezquita-Pla J. Gordon H. Dixon's trace in my personal career and the quantic jump experienced in regulatory information. Syst Biol Reprod Med 2018; 64:448-468. [PMID: 30136864 DOI: 10.1080/19396368.2018.1503752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Even before Rosalin Franklin had discovered the DNA double helix, in her impressive X-ray diffraction image pattern, Erwin Schröedinger, described, in his excellent book, What is Life, how the finding of aperiodic crystals in biological systems surprised him (an aperiodic crystal, which, in my opinion is the material carrier of life). In the 21st century and still far from being able to define life, we are attending to a quick acceleration of knowledge on regulatory information. With the discovery of new codes and punctuation marks, we will greatly increase our understanding in front of an impressive avalanche of genomic sequences. Trifonov et al. defined a genetic code as a widespread DNA sequence pattern that carries a message with an impact on biology. These patterns are largely captured in transcribed messages that give meaning and identity to the particular cells. In this review, I will go through my personal career in and after my years of work in the laboratory of Gordon H. Dixon, extending toward the impressive acquisition of new knowledge on regulatory information and genetic codes provided by remarkable scientists in the field. Abbreviations: CA II: carbonic anhydridase II (chicken); Car2: carbonic anhydridase 2 (mouse); CpG islands: short (>0.5 kb) stretches of DNA with a G+C content ≥55%; DNMT1: DNA methyltransferases 1; DNMT3b: DNA methyltransferases 3B; DSB: double-strand DNA breaks; ERT: endogenous retrotransposon; ERV: endogenous retroviruses; ES cells: embryonic stem cells; GAPDH: glyceraldehide phosphate dehydrogenase; H1: histone H1; HATs: histone acetyltransferases; HDACs: histone deacetylases; H3K4me3: histone 3 trimethylated at lys 4; H3K79me2: histone 3 dimethylated at lys 79; HMG: high mobility group proteins; HMT: histone methyltransferase; HP1: heterochromatin protein 1; HR: homologous recombination; HSE: heat-shock element; ICRs: imprinted control regions; IRF: interferon regulatory factor; LDH-A/-B: lactate dehydrogenase A/B; LTR: long terminal repeats; MeCP2: methyl CpG binding protein 2; OCT4: octamer-binding transcription factor 4; PAF1: RNA Polymerase II associated factor 1; piRNA: PIWI-interacting RNA; poly(A) tails: poly-adenine tails; PRC2: polycomb repressive complex 2; PTMs: post-translational modifications; SIRT 1: sirtuin 1, silent information regulator; STAT3: signal transducer and activator of transcription; tRNAs: transfer RNA; tRFs: tRNA-derived fragments; TSS: transcription start site; TE: transposable elements; UB I: polyubiquitin I; UB II: polyubiquitin II; UBE 2N: ubiquitin conjugating enzyme E2N; 5'-UTR: 5'-untranslated sequences; 3'-UTR: 3'-untranslated sequences.
Collapse
Affiliation(s)
- Jovita Mezquita-Pla
- a Molecular Genetics and Control of Pluripotency Laboratory, Department of Biomedicine, IDIBAPS, Faculty of Medicine , University of Barcelona , Catalonia , Spain
| |
Collapse
|
209
|
Kumar A, Daitsh Y, Ben-Aderet L, Qiq O, Elayyan J, Batshon G, Reich E, Maatuf YH, Engel S, Dvir-Ginzberg M. A predicted unstructured C-terminal loop domain in SIRT1 is required for cathepsin B cleavage. J Cell Sci 2018; 131:jcs.214973. [PMID: 30054388 DOI: 10.1242/jcs.214973] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/28/2018] [Indexed: 12/12/2022] Open
Abstract
The C-terminus of SIRT1 can be cleaved by cathepsin B at amino acid H533 to generate a lower-functioning, N-terminally intact 75 kDa polypeptide (75SIRT1) that might be involved in age-related pathologies. However, the mechanisms underlying cathepsin B docking to and cleavage of SIRT1 are unclear. Here, we first identified several 75SIRT1 variants that are augmented with aging correlatively with increased cathepsin B levels in various mouse tissues, highlighting the possible role of this cleavage event in age-related pathologies. Then, based on H533 point mutation and structural modeling, we generated a functionally intact ΔSIRT1 mutant, lacking the internal amino acids 528-543 (a predicted C-terminus loop domain), which exhibits resistance to cathepsin B cleavage in vitro and in cell cultures. Finally, we showed that cells expressing ΔSIRT1 under pro-inflammatory stress are more likely to undergo caspase 9- dependent apoptosis than those expressing 75SIRT1. Thus, our data suggest that the 15-amino acid predicted loop motif embedded in the C-terminus of SIRT1 is susceptible to proteolytic cleavage by cathepsin B, leading to the formation of several N-terminally intact SIRT1 truncated variants in various aging mouse tissues.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Ashok Kumar
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| | - Yutti Daitsh
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| | - Louisa Ben-Aderet
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| | - Omar Qiq
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| | - Jinan Elayyan
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| | - George Batshon
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| | - Eli Reich
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| | - Yonatan Harel Maatuf
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| | - Stanislav Engel
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 8410501, Israel
| | - Mona Dvir-Ginzberg
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, POB 12272, Israel
| |
Collapse
|
210
|
Biswas S, Rao CM. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur J Pharmacol 2018; 837:8-24. [PMID: 30125562 DOI: 10.1016/j.ejphar.2018.08.021] [Citation(s) in RCA: 244] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/26/2018] [Accepted: 08/15/2018] [Indexed: 02/08/2023]
Abstract
Addition of chemical tags on the DNA and modification of histone proteins impart a distinct feature on chromatin architecture. With the advancement in scientific research, the key players underlying these changes have been identified as epigenetic modifiers of the chromatin. Indeed, the plethora of enzymes catalyzing these modifications, portray the diversity of epigenetic space and the intricacy in regulating gene expression. These epigenetic players are categorized as writers: that introduce various chemical modifications on DNA and histones, readers: the specialized domain containing proteins that identify and interpret those modifications and erasers: the dedicated group of enzymes proficient in removing these chemical tags. Research over the past few decades has established that these epigenetic tools are associated with numerous disease conditions especially cancer. Besides, with the involvement of epigenetics in cancer, these enzymes and protein domains provide new targets for cancer drug development. This is certain from the volume of epigenetic research conducted in universities and R&D sector of pharmaceutical industry. Here we have highlighted the different types of epigenetic enzymes and protein domains with an emphasis on methylation and acetylation. This review also deals with the recent developments in small molecule inhibitors as potential anti-cancer drugs targeting the epigenetic space.
Collapse
Affiliation(s)
- Subhankar Biswas
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - C Mallikarjuna Rao
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
211
|
Yang Q, Yang Y, Zhou N, Tang K, Lau WB, Lau B, Wang W, Xu L, Yang Z, Huang S, Wang X, Yi T, Zhao X, Wei Y, Wang H, Zhao L, Zhou S. Epigenetics in ovarian cancer: premise, properties, and perspectives. Mol Cancer 2018; 17:109. [PMID: 30064416 PMCID: PMC6069741 DOI: 10.1186/s12943-018-0855-4] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 07/11/2018] [Indexed: 01/04/2023] Open
Abstract
Malignant ovarian tumors bear the highest mortality rate among all gynecological cancers. Both late tumor diagnosis and tolerance to available chemical therapy increase patient mortality. Therefore, it is both urgent and important to identify biomarkers facilitating early identification and novel agents preventing recurrence. Accumulating evidence demonstrates that epigenetic aberrations (particularly histone modifications) are crucial in tumor initiation and development. Histone acetylation and methylation are respectively regulated by acetyltransferases-deacetylases and methyltransferases-demethylases, both of which are implicated in ovarian cancer pathogenesis. In this review, we summarize the most recent discoveries pertaining to ovarian cancer development arising from the imbalance of histone acetylation and methylation, and provide insight into novel therapeutic interventions for the treatment of ovarian carcinoma.
Collapse
Affiliation(s)
- Qilian Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Yuqing Yang
- Nanchang University, Nanchang, People's Republic of China
| | - Nianxin Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Kexin Tang
- Sichuan Normal University Affiliated Middle School, Chengdu, People's Republic of China
| | - Wayne Bond Lau
- Department of Emergency Medicine, Thomas Jefferson University Hospital, Philadelphia, USA
| | - Bonnie Lau
- Department of Surgery, Emergency Medicine, Kaiser Santa Clara Medical Center, Affiliate of Stanford University, Stanford, USA
| | - Wei Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Lian Xu
- Department of Pathology, West China Second University Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhengnan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Shuang Huang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Xin Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Tao Yi
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Xia Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Yuquan Wei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China
| | - Hongjing Wang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China.
| | - Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
212
|
Abstract
Mitochondria are sensitive to numerous environmental stresses, which can lead to activation of mitochondrial stress responses (MSRs). Of particular recent interest has been the mitochondrial unfolded protein response (UPRmt), activated to restore protein homeostasis (proteostasis) upon mitochondrial protein misfolding. Several axes of the UPRmt have been described, creating some confusion as to the nature of the different responses. While distinct molecularly, these different axes are likely mutually beneficial and activated in parallel. This review aims at describing and distinguishing the different mammalian MSR/UPRmt axes to define key processes and members and to examine the involvement of protein misfolding.
Collapse
Affiliation(s)
- Christian Münch
- Institute of Biochemistry II, Goethe University - Medical Faculty, University Hospital, Frankfurt am Main, Germany.
| |
Collapse
|
213
|
Rifaï K, Judes G, Idrissou M, Daures M, Bignon YJ, Penault-Llorca F, Bernard-Gallon D. SIRT1-dependent epigenetic regulation of H3 and H4 histone acetylation in human breast cancer. Oncotarget 2018; 9:30661-30678. [PMID: 30093977 PMCID: PMC6078139 DOI: 10.18632/oncotarget.25771] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Breast cancer is the most frequently diagnosed malignancy in women worldwide. It is well established that the complexity of carcinogenesis involves profound epigenetic deregulations that contribute to the tumorigenesis process. Deregulated H3 and H4 acetylated histone marks are amongst those alterations. Sirtuin-1 (SIRT1) is a class-III histone deacetylase deeply involved in apoptosis, genomic stability, gene expression regulation and breast tumorigenesis. However, the underlying molecular mechanism by which SIRT1 regulates H3 and H4 acetylated marks, and consequently cancer-related gene expression in breast cancer, remains uncharacterized. In this study, we elucidated SIRT1 epigenetic role and analyzed the link between the latter and histones H3 and H4 epigenetic marks in all 5 molecular subtypes of breast cancer. Using a cohort of 135 human breast tumors and their matched normal tissues, as well as 5 human-derived cell lines, we identified H3k4ac as a new prime target of SIRT1 in breast cancer. We also uncovered an inverse correlation between SIRT1 and the 3 epigenetic marks H3k4ac, H3k9ac and H4k16ac expression patterns. We showed that SIRT1 modulates the acetylation patterns of histones H3 and H4 in breast cancer. Moreover, SIRT1 regulates its H3 acetylated targets in a subtype-specific manner. Furthermore, SIRT1 siRNA-mediated knockdown increases histone acetylation levels at 6 breast cancer-related gene promoters: AR, BRCA1, ERS1, ERS2, EZH2 and EP300. In summary, this report characterizes for the first time the epigenetic behavior of SIRT1 in human breast carcinoma. These novel findings point to a potential use of SIRT1 as an epigenetic therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Khaldoun Rifaï
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand 63001, France.,INSERM, UMR 1240, IMoST Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand 63005, France
| | - Gaëlle Judes
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand 63001, France.,INSERM, UMR 1240, IMoST Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand 63005, France
| | - Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand 63001, France.,INSERM, UMR 1240, IMoST Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand 63005, France
| | - Marine Daures
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand 63001, France.,INSERM, UMR 1240, IMoST Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand 63005, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand 63001, France.,INSERM, UMR 1240, IMoST Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand 63005, France
| | - Frédérique Penault-Llorca
- INSERM, UMR 1240, IMoST Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand 63005, France.,Department of Biopathology, Centre Jean Perrin, Clermont-Ferrand 63011, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, Clermont-Ferrand 63001, France.,INSERM, UMR 1240, IMoST Imagerie Moléculaire et Stratégies Théranostiques, Clermont-Ferrand 63005, France
| |
Collapse
|
214
|
Khan RI, Nirzhor SSR, Akter R. A Review of the Recent Advances Made with SIRT6 and its Implications on Aging Related Processes, Major Human Diseases, and Possible Therapeutic Targets. Biomolecules 2018; 8:biom8030044. [PMID: 29966233 PMCID: PMC6164879 DOI: 10.3390/biom8030044] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 12/20/2022] Open
Abstract
Sirtuin 6 (SIRT6) is a nicotinamide adenine dinucleotide+ (NAD+) dependent enzyme and stress response protein that has sparked the curiosity of many researchers in different branches of the biomedical sciences. A unique member of the known Sirtuin family, SIRT6 has several different functions in multiple different molecular pathways related to DNA repair, glycolysis, gluconeogenesis, tumorigenesis, neurodegeneration, cardiac hypertrophic responses, and more. Only in recent times, however, did the potential usefulness of SIRT6 come to light as we learned more about its biochemical activity, regulation, biological roles, and structure Frye (2000). Even until very recently, SIRT6 was known more for chromatin signaling but, being a nascent topic of study, more information has been ascertained and its potential involvement in major human diseases including diabetes, cancer, neurodegenerative diseases, and heart disease. It is pivotal to explore the mechanistic workings of SIRT6 since future research may hold the key to engendering strategies involving SIRT6 that may have significant implications for human health and expand upon possible treatment options. In this review, we are primarily concerned with exploring the latest advances in understanding SIRT6 and how it can alter the course of several life-threatening diseases such as processes related to aging, cancer, neurodegenerative diseases, heart disease, and diabetes (SIRT6 has also shown to be involved in liver disease, inflammation, and bone-related issues) and any recent promising pharmacological investigations or potential therapeutics that are of interest.
Collapse
Affiliation(s)
| | | | - Raushanara Akter
- Department of Pharmacy, BRAC University, 1212 Dhaka, Bangladesh.
| |
Collapse
|
215
|
Murofushi T, Tsuda H, Mikami Y, Yamaguchi Y, Suzuki N. CAY10591, a SIRT1 activator, suppresses cell growth, invasion, and migration in gingival epithelial carcinoma cells. J Oral Sci 2018; 59:415-423. [PMID: 28904318 DOI: 10.2334/josnusd.16-0696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
SIRT1 is a NAD-dependent histone deacetylase that is important in a wide variety of physiological and pathophysiological processes. Although many studies have examined the relationship between SIRT1 and cancer, the role of SIRT1 in tumor malignancy is controversial. Here, we examined the effects of the SIRT1 activator CAY10591 in gingival epithelial carcinoma Ca9-22 cells. CAY10591 treatment dose- and time-dependently increased SIRT1 level and activity. The treatment decreased cell growth and induced cell-cycle repressor p21 levels. In addition, dimethyl sulfoxide significantly reduced cellular invasion and migration, and CAY10591 enhanced this decrease. Quantitative PCR analysis showed that CAY10591 decreased expression of several invasion/migration promoter genes and induced repressor genes. Our findings suggest that CAY10591 suppresses cell growth and invasion/migration activity in gingival squamous cell carcinoma Ca9-22 cells.
Collapse
Affiliation(s)
| | - Hiromasa Tsuda
- Department of Biochemistry, Nihon University School of Dentistry.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Yoshikazu Mikami
- Division of Microscopic Anatomy, Niigata University Graduate School of Medical and Dental Sciences
| | - Yoko Yamaguchi
- Department of Biochemistry, Nihon University School of Dentistry.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| | - Naoto Suzuki
- Department of Biochemistry, Nihon University School of Dentistry.,Division of Functional Morphology, Dental Research Center, Nihon University School of Dentistry
| |
Collapse
|
216
|
Duffney LJ, Valdez P, Tremblay MW, Cao X, Montgomery S, McConkie-Rosell A, Jiang YH. Epigenetics and autism spectrum disorder: A report of an autism case with mutation in H1 linker histone HIST1H1E and literature review. Am J Med Genet B Neuropsychiatr Genet 2018; 177:426-433. [PMID: 29704315 PMCID: PMC5980735 DOI: 10.1002/ajmg.b.32631] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/08/2018] [Accepted: 03/01/2018] [Indexed: 12/26/2022]
Abstract
Genetic mutations in genes encoding proteins involved in epigenetic machinery have been reported in individuals with autism spectrum disorder (ASD), intellectual disability, congenital heart disease, and other disorders. H1 histone linker protein, the basic component in nucleosome packaging and chromatin organization, has not been implicated in human disease until recently. We report a de novo deleterious mutation of histone cluster 1 H1 family member e (HIST1H1E; c.435dupC; p.Thr146Hisfs*50), encoding H1 histone linker protein H1.4, in a 10-year-old boy with autism and intellectual disability diagnosed through clinical whole exome sequencing. The c.435dupC at the 3' end of the mRNA leads to a frameshift and truncation of the positive charge in the carboxy-terminus of the protein. An expression study demonstrates the mutation leads to reduced protein expression, supporting haploinsufficiency of HIST1H1E protein and loss of function as an underlying mechanism of dysfunction in the brain. Taken together with other recent cases with mutations of HIST1H1E in intellectual disability, the evidence supporting the link to causality in disease is strong. Our finding implicates the deficiency of H1 linker histone protein in autism. The systematic review of candidate genes implicated in ASD revealed that 42 of 215 (19.5%) genes are directly involved in epigenetic regulations and the majority of these genes belong to histone writers, readers, and erasers. While the mechanism of how haploinsufficiency of HIST1H1E causes autism is entirely unknown, our report underscores the importance of further study of the function of this protein and other histone linker proteins in brain development.
Collapse
Affiliation(s)
- Lara J Duffney
- Department of Pediatrics, Duke University School of Medicine, Durham NC 27710 US
- Department of Neurobiology, Duke University School of Medicine Durham NC 27710 US
| | - Purnima Valdez
- Department of Pediatrics, Duke University School of Medicine, Durham NC 27710 US
| | - Martine W Tremblay
- Program in Genetics and Genomics, Duke University School of Medicine, Durham NC 27710 US
| | - Xinyu Cao
- Department of Pediatrics, Duke University School of Medicine, Durham NC 27710 US
| | - Sarah Montgomery
- Department of Pediatrics, Duke University School of Medicine, Durham NC 27710 US
| | | | - Yong-hui Jiang
- Department of Pediatrics, Duke University School of Medicine, Durham NC 27710 US
- Department of Neurobiology, Duke University School of Medicine Durham NC 27710 US
- Program in Genetics and Genomics, Duke University School of Medicine, Durham NC 27710 US
| |
Collapse
|
217
|
MLL4 Is Required to Maintain Broad H3K4me3 Peaks and Super-Enhancers at Tumor Suppressor Genes. Mol Cell 2018; 70:825-841.e6. [PMID: 29861161 DOI: 10.1016/j.molcel.2018.04.028] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/26/2018] [Accepted: 04/27/2018] [Indexed: 01/03/2023]
Abstract
Super-enhancers are large clusters of enhancers that activate gene expression. Broad trimethyl histone H3 lysine 4 (H3K4me3) often defines active tumor suppressor genes. However, how these epigenomic signatures are regulated for tumor suppression is little understood. Here we show that brain-specific knockout of the H3K4 methyltransferase MLL4 (a COMPASS-like enzyme, also known as KMT2D) in mice spontaneously induces medulloblastoma. Mll4 loss upregulates oncogenic Ras and Notch pathways while downregulating neuronal gene expression programs. MLL4 enhances DNMT3A-catalyzed DNA methylation and SIRT1/BCL6-mediated H4K16 deacetylation, which antagonize expression of Ras activators and Notch pathway components, respectively. Notably, Mll4 loss downregulates tumor suppressor genes (e.g., Dnmt3a and Bcl6) by diminishing broad H3K4me3 and super-enhancers and also causes widespread impairment of these epigenomic signatures during medulloblastoma genesis. These findings suggest an anti-tumor role for super-enhancers and provide a unique tumor-suppressive mechanism in which MLL4 is necessary to maintain broad H3K4me3 and super-enhancers at tumor suppressor genes.
Collapse
|
218
|
Kang JY, Kim JY, Kim KB, Park JW, Cho H, Hahm JY, Chae YC, Kim D, Kook H, Rhee S, Ha NC, Seo SB. KDM2B is a histone H3K79 demethylase and induces transcriptional repression via sirtuin-1-mediated chromatin silencing. FASEB J 2018; 32:5737-5750. [PMID: 29763382 DOI: 10.1096/fj.201800242r] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The methylation of histone H3 lysine 79 (H3K79) is an active chromatin marker and is prominent in actively transcribed regions of the genome; however, demethylase of H3K79 remains unknown despite intensive research. Here, we show that KDM2B, also known as FBXL10 and a member of the Jumonji C family of proteins known for its histone H3K36 demethylase activity, is a di- and trimethyl H3K79 demethylase. We demonstrate that KDM2B induces transcriptional repression of HOXA7 and MEIS1 via occupancy of promoters and demethylation of H3K79. Furthermore, genome-wide analysis suggests that H3K79 methylation levels increase when KDM2B is depleted, which indicates that KDM2B functions as an H3K79 demethylase in vivo. Finally, stable KDM2B-knockdown cell lines exhibit displacement of NAD+-dependent deacetylase sirtuin-1 (SIRT1) from chromatin, with concomitant increases in H3K79 methylation and H4K16 acetylation. Our findings identify KDM2B as an H3K79 demethylase and link its function to transcriptional repression via SIRT1-mediated chromatin silencing.-Kang, J.-Y., Kim, J.-Y., Kim, K.-B., Park, J. W., Cho, H., Hahm, J. Y., Chae, Y.-C., Kim, D., Kook, H., Rhee, S., Ha, N.-C., Seo, S.-B. KDM2B is a histone H3K79 demethylase and induces transcriptional repression via sirtuin-1-mediated chromatin silencing.
Collapse
Affiliation(s)
- Joo-Young Kang
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Ji-Young Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Kee-Beom Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Jin Woo Park
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Hana Cho
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Ja Young Hahm
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Yun-Cheol Chae
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Daehwan Kim
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Hyun Kook
- Department of Pharmacology, Medical Research Center for Gene Regulation, Chonnam National University, Gwangju, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Sangmyeong Rhee
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| | - Nam-Chul Ha
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
| | - Sang-Beom Seo
- Department of Life Science, College of Natural Sciences, Chung-Ang University, Seoul, South Korea
| |
Collapse
|
219
|
Lee M, Ban JJ, Chung JY, Im W, Kim M. Amelioration of Huntington's disease phenotypes by Beta-Lapachone is associated with increases in Sirt1 expression, CREB phosphorylation and PGC-1α deacetylation. PLoS One 2018; 13:e0195968. [PMID: 29742127 PMCID: PMC5942716 DOI: 10.1371/journal.pone.0195968] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
Huntington’s disease (HD) is one of the most devastating genetic neurodegenerative disorders with no effective medical therapy. β-Lapachone (βL) is a natural compound obtained from the bark of the Lapacho tree and has been reported to have beneficial effects on various diseases. Sirt1 is a deacetylase of the sirtuin family and deacetylates proteins including the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) which is associated with mitochondrial respiration and biogenesis. To examine the effectiveness of βL on HD, βL was orally applied to R6/2 HD mice and behavioral phenotypes associated with HD, such as impairment of rota-rod performance and increase of clasping behavior, as well as changes of Sirt1 expression, CREB phosphorylation and PGC-1α deacetylation were examined. Western blot results showed that Sirt1 and p-CREB levels were significantly increased in the brains of βL-treated R6/2 mice. An increase in deacetylation of PGC-1α, which is thought to increase its activity, was observed by oral administration of βL. In an in vitro HD model, βL treatment resulted in an attenuation of MitoSOX red fluorescence intensity, indicating an amelioration of mitochondrial reactive oxygen species by βL. Furthermore, improvements in the rota-rod performance and clasping score were observed in R6/2 HD mice after oral administration of βL compared to that of vehicle control-treated mice. Taken together, our data show that βL is a potential therapeutic candidate for the treatment of HD-associated phenotypes, and increases in Sirt1 level, CREB phosphorylation and PGC-103B1 deacetylation can be the possible underlying mechanism of the effects of βL.
Collapse
Affiliation(s)
- Mijung Lee
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Jae-Jun Ban
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
| | - Jin-Young Chung
- Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Gangwon, South Korea
| | - Wooseok Im
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- * E-mail: (WI); (MK)
| | - Manho Kim
- Department of Neurology, Seoul National University Hospital, Seoul, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, South Korea
- Protein Metabolism Medical Research Center, College of Medicine, Seoul National University, Seoul, South Korea
- * E-mail: (WI); (MK)
| |
Collapse
|
220
|
SIRT1 activation with neuroheal is neuroprotective but SIRT2 inhibition with AK7 is detrimental for disconnected motoneurons. Cell Death Dis 2018; 9:531. [PMID: 29748539 PMCID: PMC5945655 DOI: 10.1038/s41419-018-0553-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 03/24/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023]
Abstract
Sirtuin 1 (SIRT1) activity is neuroprotective, and we have recently demonstrated its role in the retrograde degenerative process in motoneurons (MNs) in the spinal cord of rats after peripheral nerve root avulsion (RA) injury. SIRT2 has been suggested to exert effects opposite those of SIRT1; however, its roles in neurodegeneration and neuron response after nerve injury remain unclear. Here we compared the neuroprotective potentials of SIRT1 activation and SIRT2 inhibition in a mouse model of hypoglossal nerve axotomy. This injury induced a reduction of around half MN population within the hypoglossal nucleus by a non-apoptotic neurodegenerative process triggered by endoplasmic reticulum (ER) stress that resulted in activation of the unfolded protein response mediated by IRE1α and XBP1 by 21 days post injury. Both SIRT1 activation with NeuroHeal and SIRT2 inhibition with AK7 protected NSC-34 motor neuron-like cells against ER stress in vitro. In agreement with the in vitro results, NeuroHeal treatment or SIRT1 overexpression was neuroprotective of axotomized hypoglossal MNs in a transgenic mouse model. In contrast, AK7 treatment or SIRT2 genetic depletion in mice inhibited damaged MN survival. To resolve the in vitro/in vivo discrepancies, we used an organotypic spinal cord culture system that preserves glial cells. In this system, AK7 treatment of ER-stressed organotypic cultures was detrimental for MNs and increased microglial nuclear factor-κB and the consequent transcription of cytotoxic pro-inflammatory factors similarly. The results highlight the importance of glial cells in determining the neuroprotective impact of any treatment.
Collapse
|
221
|
Ong AL, Ramasamy TS. Role of Sirtuin1-p53 regulatory axis in aging, cancer and cellular reprogramming. Ageing Res Rev 2018; 43:64-80. [PMID: 29476819 DOI: 10.1016/j.arr.2018.02.004] [Citation(s) in RCA: 206] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/23/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022]
Abstract
Regulatory role of Sirtuin 1 (SIRT1), one of the most extensively studied members of its kind in histone deacetylase family in governing multiple cellular fates, is predominantly linked to p53 activity. SIRT1 deacetylates p53 in a NAD+-dependent manner to inhibit transcription activity of p53, in turn modulate pathways that are implicated in regulation of tissue homoeostasis and many disease states. In this review, we discuss the role of SIRT1-p53 pathway and its regulatory axis in the cellular events which are implicated in cellular aging, cancer and reprogramming. It is noteworthy that these cellular events share few common regulatory pathways, including SIRT1-p53-LDHA-Myc, miR-34a,-Let7 regulatory network, which forms a positive feedback loop that controls cell cycle, metabolism, proliferation, differentiation, epigenetics and many others. In the context of aging, SIRT1 expression is reduced as a protective mechanism against oncogenesis and for maintenance of tissue homeostasis. Interestingly, its activation in aged cells is evidenced in response to DNA damage to protect the cells from p53-dependent apoptosis or senescence, predispose these cells to neoplastic transformation. Importantly, the dual roles of SIRT1-p53 axis in aging and tumourigenesis, either as tumour suppressor or tumour promoter are determined by SIRT1 localisation and type of cells. Conceptualising the distinct similarity between tumorigenesis and cellular reprogramming, this review provides a perspective discussion on involvement of SIRT1 in improving efficiency in the induction and maintenance of pluripotent state. Further research in understanding the role of SIRT1-p53 pathway and their associated regulators and strategies to manipulate this regulatory axis very likely foster the development of therapeutics and strategies for treating cancer and aging-associated degenerative diseases.
Collapse
|
222
|
Kimura T, Hino K, Kono T, Takano A, Nitta N, Ushio N, Hino S, Takase R, Kudo M, Daigo Y, Morita W, Nakao M, Nakatsukasa M, Tamagawa T, Rafiq AM, Matsumoto A, Otani H, Udagawa J. Maternal undernutrition during early pregnancy inhibits postnatal growth of the tibia in the female offspring of rats by alteration of chondrogenesis. Gen Comp Endocrinol 2018; 260:58-66. [PMID: 29277418 DOI: 10.1016/j.ygcen.2017.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 11/30/2017] [Accepted: 12/19/2017] [Indexed: 12/31/2022]
Abstract
Epidemiological research has suggested that birth weights are correlated with adult leg lengths. However, the relationship between prenatal undernutrition (UN) and postnatal leg growth remains controversial. We investigated the effects of UN during early pregnancy on postnatal hindlimb growth and determined whether early embryonic malnutrition affects the functions of postnatal chondrocytes in rats. Undernourished Wistar dams were fed 40% of the daily intake of rats in the control groups from gestational days 5.5-11.5, and femurs, tibias, and trunks or spinal columns were morphologically measured at birth and at 16 weeks of age in control and undernourished offspring of both sexes. We evaluated cell proliferation and differentiation of cultured chondrocytes derived from neonatal tibias of female offspring and determined chondrocyte-related gene expression levels in neonatal epiphysis and embryonic limb buds. Tibial lengths of undernourished female, but not male, offspring were longer at birth and shorter at 16 weeks of age (p < .05) compared with those of control rats. In chondrocyte culture studies, stimulating effects of IGF-1 on cell proliferation (p < .01) were significantly decreased and levels of type II collagen were lower in female undernourished offspring (p < .05). These phenomena were accompanied by decreased expression levels of Col2a1 and Igf1r and increased expression levels of Fgfr3 (p < .05), which might be attributable to the decreased expression of specificity protein 1 (p < .05), a key transactivator of Col2a1 and Igf1r. In conclusion, UN stress during early pregnancy reduces postnatal tibial growth in female offspring by altering the function of chondrocytes, likely reflecting altered expression of gene transactivators.
Collapse
Affiliation(s)
- Tomoko Kimura
- Department of Anatomy, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Kodai Hino
- Department of Anatomy, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Tadaaki Kono
- Department of Anatomy, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Atsushi Takano
- Department of Medical Oncology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Norihisa Nitta
- Department of Radiology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Noritoshi Ushio
- Department of Radiology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-8555, Japan
| | - Ryuta Takase
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-8555, Japan
| | - Motoi Kudo
- Department of Anatomy, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Yataro Daigo
- Department of Medical Oncology, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Wataru Morita
- Department of Oral Functional Anatomy, Faculty of Dental Medicine, Hokkaido University, Hokkaido 060-8586, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-8555, Japan
| | - Masato Nakatsukasa
- Laboratory of Physical Anthropology, Kyoto University Graduate School of Science, Kyoto 606-8502, Japan
| | - Toshihiro Tamagawa
- Department of Anatomy, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Ashiq Mahmood Rafiq
- Department of Anatomy, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan
| | - Akihiro Matsumoto
- Department of Anatomy, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan
| | - Hiroki Otani
- Department of Anatomy, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan
| | - Jun Udagawa
- Department of Anatomy, Shiga University of Medical Science, Shiga 520-2192, Japan.
| |
Collapse
|
223
|
Abstract
Sirtuins belong to an evolutionarily conserved family of NAD+-dependent deacetylases that share multiple cellular functions related to proliferation, DNA repair, mitochondrial energy homeostasis, and antioxidant activity. Mammalians express seven sirtuins (SIRT1-7) that are localized in different subcellular compartments. Changes in sirtuin expression are critical in several diseases, including metabolic syndrome, diabetes, cancer, and aging. In the kidney, the most widely studied sirtuin is SIRT1, which exerts cytoprotective effects by inhibiting cell apoptosis, inflammation, and fibrosis together with SIRT3, a crucial metabolic sensor that regulates ATP generation and mitochondrial adaptive response to stress. Here, we provide an overview of the biologic effects of sirtuins and the molecular targets thereof regulating renal physiology. This review also details progress made in understanding the effect of sirtuins in the pathophysiology of chronic and acute kidney diseases, highlighting the key role of SIRT1, SIRT3, and now SIRT6 as potential therapeutic targets. In this context, the current pharmacologic approaches to enhancing the activity of SIRT1 and SIRT3 will be discussed.
Collapse
Affiliation(s)
- Marina Morigi
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Bergamo, Italy
| | - Luca Perico
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Bergamo, Italy
| | - Ariela Benigni
- IRCCS - Istituto di Ricerche Farmacologiche Mario Negri, Centro Anna Maria Astori, Bergamo, Italy
| |
Collapse
|
224
|
Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur J Med Chem 2018; 150:9-29. [DOI: 10.1016/j.ejmech.2018.02.065] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 12/25/2022]
|
225
|
Magni M, Buscemi G, Zannini L. Cell cycle and apoptosis regulator 2 at the interface between DNA damage response and cell physiology. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:1-9. [DOI: 10.1016/j.mrrev.2018.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Accepted: 03/17/2018] [Indexed: 01/06/2023]
|
226
|
Shakespear MR, Iyer A, Cheng CY, Das Gupta K, Singhal A, Fairlie DP, Sweet MJ. Lysine Deacetylases and Regulated Glycolysis in Macrophages. Trends Immunol 2018; 39:473-488. [PMID: 29567326 DOI: 10.1016/j.it.2018.02.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/27/2022]
Abstract
Regulated cellular metabolism has emerged as a fundamental process controlling macrophage functions, but there is still much to uncover about the precise signaling mechanisms involved. Lysine acetylation regulates the activity, stability, and/or localization of metabolic enzymes, as well as inflammatory responses, in macrophages. Two protein families, the classical zinc-dependent histone deacetylases (HDACs) and the NAD-dependent HDACs (sirtuins, SIRTs), mediate lysine deacetylation. We describe here mechanisms by which classical HDACs and SIRTs directly regulate specific glycolytic enzymes, as well as evidence that links these protein deacetylases to the regulation of glycolysis-related genes. In these contexts, we discuss HDACs and SIRTs as key control points for regulating immunometabolism and inflammatory outputs from macrophages.
Collapse
Affiliation(s)
- Melanie R Shakespear
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Abishek Iyer
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Catherine Youting Cheng
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore
| | - Kaustav Das Gupta
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia
| | - Amit Singhal
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; Vaccine and Infectious Disease Research Centre (VIDRC), Translational Health Science and Technology Institute (THSTI), National Capital Region (NCR) Biotech Science Cluster, Faridabad 121001, Haryana, India
| | - David P Fairlie
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia; Australian Research Council (ARC) Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience (IMB), IMB Centre for Inflammation and Disease Research, and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
227
|
Khoury N, Koronowski KB, Young JI, Perez-Pinzon MA. The NAD +-Dependent Family of Sirtuins in Cerebral Ischemia and Preconditioning. Antioxid Redox Signal 2018; 28:691-710. [PMID: 28683567 PMCID: PMC5824497 DOI: 10.1089/ars.2017.7258] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Sirtuins are an evolutionarily conserved family of NAD+-dependent lysine deacylases and ADP ribosylases. Their requirement for NAD+ as a cosubstrate allows them to act as metabolic sensors that couple changes in the energy status of the cell to changes in cellular physiological processes. NAD+ levels are affected by several NAD+-producing and NAD+-consuming pathways as well as by cellular respiration. Thus their intracellular levels are highly dynamic and are misregulated in a spectrum of metabolic disorders including cerebral ischemia. This, in turn, compromises several NAD+-dependent processes that may ultimately lead to cell death. Recent Advances: A number of efforts have been made to replenish NAD+ in cerebral ischemic injuries as well as to understand the functions of one its important mediators, the sirtuin family of proteins through the use of pharmacological modulators or genetic manipulation approaches either before or after the insult. Critical Issues and Future Directions: The results of these studies have regarded the sirtuins as promising therapeutic targets for cerebral ischemia. Yet, additional efforts are needed to understand the role of some of the less characterized members and to address the sex-specific effects observed with some members. Sirtuins also exhibit cell-type-specific expression in the brain as well as distinct subcellular and regional localizations. As such, they are involved in diverse and sometimes opposing cellular processes that can either promote neuroprotection or further contribute to the injury; which also stresses the need for the development and use of sirtuin-specific pharmacological modulators. Antioxid. Redox Signal. 28, 691-710.
Collapse
Affiliation(s)
- Nathalie Khoury
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Kevin B. Koronowski
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Juan I. Young
- Dr. John T. Macdonald Foundation Department of Human Genetics; Hussman Institute for Human Genomics, and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| | - Miguel A. Perez-Pinzon
- Department of Neurology; Cerebral Vascular Research Laboratories; and Neuroscience Program, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
228
|
Ali I, Conrad RJ, Verdin E, Ott M. Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics. Chem Rev 2018; 118:1216-1252. [PMID: 29405707 PMCID: PMC6609103 DOI: 10.1021/acs.chemrev.7b00181] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, acetylation marks are now found on thousands of nonhistone proteins located in virtually every cellular compartment. Here we summarize key findings in the field of protein acetylation over the past 20 years with a focus on recent discoveries in nuclear, cytoplasmic, and mitochondrial compartments. Collectively, these findings have elevated protein acetylation as a major post-translational modification, underscoring its physiological relevance in gene regulation, cell signaling, metabolism, and disease.
Collapse
Affiliation(s)
- Ibraheem Ali
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Ryan J. Conrad
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, California 94945, United States
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, United States
- University of California, San Francisco, Department of Medicine, San Francisco, California 94158, United States
| |
Collapse
|
229
|
Tatone C, Di Emidio G, Barbonetti A, Carta G, Luciano AM, Falone S, Amicarelli F. Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility. Hum Reprod Update 2018; 24:267-289. [DOI: 10.1093/humupd/dmy003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | | | - Gaspare Carta
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | - Alberto M Luciano
- Department of Health, Animal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, 20133 Milan, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Institute of Translational Pharmacology (IFT), CNR, 67100 L’Aquila, Italy
| |
Collapse
|
230
|
Tanabe K, Liu J, Kato D, Kurumizaka H, Yamatsugu K, Kanai M, Kawashima SA. LC-MS/MS-based quantitative study of the acyl group- and site-selectivity of human sirtuins to acylated nucleosomes. Sci Rep 2018; 8:2656. [PMID: 29422688 PMCID: PMC5805777 DOI: 10.1038/s41598-018-21060-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Chromatin structure and gene expression are dynamically regulated by posttranslational modifications of histones. Recent advance in mass spectrometry has identified novel types of lysine acylations, such as butyrylation and malonylation, whose functions and regulations are likely different from those of acetylation. Sirtuins, nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, catalyze various deacylations. However, it is poorly understood how distinct sirtuins regulate the histone acylation states of nucleosomes that have many lysine residues. Here, we provide mass spectrometry-based quantitative information about the acyl group- and site-selectivity of all human sirtuins on acylated nucleosomes. The acyl group- and site-selectivity of each sirtuin is unique to its subtype. Sirt5 exclusively removes negatively-charged acyl groups, while Sirt1/2/3/6/7 preferentially remove hydrophobic acyl groups; Sirt1 and Sirt3 selectively remove acetyl group more than butyryl group, whereas Sirt2 and Sirt6 showed the opposite selectivity. Investigating site-selectivity for active sirtuins revealed acylated lysines on H4 tails to be poor substrates and acylated H3K18 to be a good substrate. Furthermore, we found Sirt7 to be a robust deacylase of H3K36/37, and its activity reliant on nucleosome-binding at its C-terminal basic region. All together, our quantitative dataset provides a useful resource in understanding chromatin regulations by histone acylations.
Collapse
Affiliation(s)
- Kana Tanabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Jiaan Liu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Daiki Kato
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | - Kenzo Yamatsugu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Shigehiro A Kawashima
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan. .,JST-ERATO, Kanai Life Science Catalysis Project, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
231
|
Neuroprotective Drug for Nerve Trauma Revealed Using Artificial Intelligence. Sci Rep 2018; 8:1879. [PMID: 29382857 PMCID: PMC5790005 DOI: 10.1038/s41598-018-19767-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
Here we used a systems biology approach and artificial intelligence to identify a neuroprotective agent for the treatment of peripheral nerve root avulsion. Based on accumulated knowledge of the neurodegenerative and neuroprotective processes that occur in motoneurons after root avulsion, we built up protein networks and converted them into mathematical models. Unbiased proteomic data from our preclinical models were used for machine learning algorithms and for restrictions to be imposed on mathematical solutions. Solutions allowed us to identify combinations of repurposed drugs as potential neuroprotective agents and we validated them in our preclinical models. The best one, NeuroHeal, neuroprotected motoneurons, exerted anti-inflammatory properties and promoted functional locomotor recovery. NeuroHeal endorsed the activation of Sirtuin 1, which was essential for its neuroprotective effect. These results support the value of network-centric approaches for drug discovery and demonstrate the efficacy of NeuroHeal as adjuvant treatment with surgical repair for nervous system trauma.
Collapse
|
232
|
Khosravi A, Alizadeh S, Jalili A, Shirzad R, Saki N. The impact of Mir-9 regulation in normal and malignant hematopoiesis. Oncol Rev 2018; 12:348. [PMID: 29774136 PMCID: PMC5939831 DOI: 10.4081/oncol.2018.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-9 (MiR-9) dysregulation has been observed in various cancers. Recently, MiR-9 is considered to have a part in hematopoiesis and hematologic malignancies. However, its importance in blood neoplasms is not yet well defined. Thus, this study was conducted in order to assess the significance of MiR-9 role in the development of hematologic neoplasia, prognosis, and treatment approaches. We have shown that a large number of MiR-9 targets (such as FOXOs, SIRT1, CCND1, ID2, CCNG1, Ets, and NFkB) play essential roles in leukemogenesis and that it is overexpressed in different leukemias. Our findings indicated MiR-9 downregulation in a majority of leukemias. However, its overexpression was reported in patients with dysregulated MiR-9 controlling factors (such as MLLr). Additionally, prognostic value of MiR-9 has been reported in some types of leukemia. This study generally emphasizes on the critical role of MiR-9 in hematologic malignancies as a prognostic factor and a therapeutic target.
Collapse
Affiliation(s)
- Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medi-cine, Tehran
| | - Shaban Alizadeh
- Hematology Department, Allied Medical School, Tehran University of Medical Sciences, Tehran
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology at Cell Science Re-search Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran
| | - Reza Shirzad
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jun-dishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
233
|
Spadari RC, Cavadas C, de Carvalho AETS, Ortolani D, de Moura AL, Vassalo PF. Role of Beta-adrenergic Receptors and Sirtuin Signaling in the Heart During Aging, Heart Failure, and Adaptation to Stress. Cell Mol Neurobiol 2018; 38:109-120. [PMID: 29063982 PMCID: PMC11482027 DOI: 10.1007/s10571-017-0557-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 10/06/2017] [Indexed: 01/03/2023]
Abstract
In the heart, catecholamine effects occur by activation of beta-adrenergic receptors (β-ARs), mainly the beta 1 (β1-AR) and beta 2 (β2-AR) subtypes, both of which couple to the Gs protein that activates the adenylyl cyclase signaling pathway. The β2-ARs can also couple to the Gi protein that counterbalances the effect of the Gs protein on cyclic adenosine monophosphate production and activates the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway. In several cardiovascular disorders, including heart failure, as well as in aging and in animal models of environmental stress, a reduction in the β1/β2-AR ratio and activation of the β2-AR-Gi-PI3K-Akt signaling pathway have been observed. Recent studies have shown that sirtuins modulate certain organic processes, including the cellular stress response, through activation of the PI3K-Akt signaling pathway and of downstream molecules such as p53, Akt, HIF1-α, and nuclear factor-kappa B. In the heart, SIRT1, SIRT3, and β2-ARs are crucial to the regulation of the cardiomyocyte energy metabolism, oxidative stress, reactive oxygen species production, and autophagy. SIRT1 and the β2-AR-Gi complex also control signaling pathways of cell survival and death. Here, we review the role played by β2-ARs and sirtuins during aging, heart failure, and adaptation to stress, focusing on the putative interplay between the two. That relationship, if proven, merits further investigation in the context of cardiac function and dysfunction.
Collapse
Affiliation(s)
- Regina Celia Spadari
- Laboratory of Stress Biology, Department of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil.
- Departamento de Biociências / Campus Baixada Santista, UNIFESP, Rua Silva Jardim 136, Santos, SP, 11015-020, Brazil.
| | - Claudia Cavadas
- Center for Neurosciences and Cell Biology (CNC) and School of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Ana Elisa T Saturi de Carvalho
- Laboratory of Stress Biology, Department of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| | - Daniela Ortolani
- Laboratory of Stress Biology, Department of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
- Department of Physiological Science, Universidade Federal Do Espírito Santo (HUCAM, UFES), Vitória, Brazil
| | - Andre Luiz de Moura
- Laboratory of Stress Biology, Department of Biosciences, Campus Baixada Santista, Universidade Federal de São Paulo (UNIFESP), Santos, Brazil
| | - Paula Frizera Vassalo
- Department of Physiological Science, Universidade Federal Do Espírito Santo (HUCAM, UFES), Vitória, Brazil
- University Hospital Cassiano Antônio de Moraes, Universidade Federal Do Espírito Santo (HUCAM, UFES), Vitória, Brazil
| |
Collapse
|
234
|
Bortell N, Basova L, Najera JA, Morsey B, Fox HS, Marcondes MCG. Sirtuin 1-Chromatin-Binding Dynamics Points to a Common Mechanism Regulating Inflammatory Targets in SIV Infection and in the Aging Brain. J Neuroimmune Pharmacol 2017; 13:163-178. [PMID: 29280055 DOI: 10.1007/s11481-017-9772-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/20/2017] [Indexed: 12/20/2022]
Abstract
Microglia and macrophages are the main non-neuronal subsets of myeloid origin in the brain, and are critical regulators in neurodegenerative disorders, where inflammation is a key factor. Since HIV infection results in neurological perturbations that are similar to those in aging, we examined microglial and infiltrating myeloid subsets in the search for changes that might resemble the ones in aging. For that, we used the SIV infection in rhesus macaques to model neuroAIDS. We found that Sirt-1, a molecule that impacts survival and health in many models, was decreased in cell preparations containing a majority of microglia and myeloid cells from the brain of infected macaques. The role of Sirt-1 in neuroAIDS is unknown. We hypothesized that Sirt-1 silencing functions are affected by SIV. Mapping of Sirt-1 binding patterns to chromatin revealed that the number of Sirt-1-bound genes was 29.6% increased in myeloid cells from infected animals with mild or no detectable neuropathology, but 51% was decreased in severe neuropathology, compared to controls. Importantly, Sirt-1-bound genes in controls largely participate in neuroinflammation. Promoters of type I IFN pathway genes IRF7, IRF1, IFIT1, and AIF1, showed Sirt-1 binding in controls, which was consistently lost after infection, together with higher transcription. Loss of Sirt-1 binding was also found in brains from old uninfected animals, suggesting a common regulation. The role of Sirt-1 in regulating these inflammatory markers was confirmed in two different in vitro models, where Sirt-1 blockage modulated IRF7, IRF1 and AIF1 levels both in human macrophage cell lines and in human blood-derived monocytes from various normal donors, stimulated with a TLR9 agonist. Our data suggests that Sirt-1-inflammatory gene silencing is disturbed by SIV infection, resembling aging in brains. These findings may impact our knowledge on the contribution of myeloid subsets to the neurological consequences of HIV infection, aggravated and overlapping with the aging process.
Collapse
Affiliation(s)
- Nikki Bortell
- Molecular and Cellular Neurosciences Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Liana Basova
- Molecular and Cellular Neurosciences Department, The Scripps Research Institute, La Jolla, CA, USA.,San Diego Biomedical Research Institute, 10865 Road to Cure, Suite 100, San Diego, CA, 92121, USA
| | - Julia A Najera
- Molecular and Cellular Neurosciences Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Brenda Morsey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5800, USA
| | - Maria Cecilia Garibaldi Marcondes
- Molecular and Cellular Neurosciences Department, The Scripps Research Institute, La Jolla, CA, USA. .,San Diego Biomedical Research Institute, 10865 Road to Cure, Suite 100, San Diego, CA, 92121, USA.
| |
Collapse
|
235
|
Izquierdo-Bouldstridge A, Bustillos A, Bonet-Costa C, Aribau-Miralbés P, García-Gomis D, Dabad M, Esteve-Codina A, Pascual-Reguant L, Peiró S, Esteller M, Murtha M, Millán-Ariño L, Jordan A. Histone H1 depletion triggers an interferon response in cancer cells via activation of heterochromatic repeats. Nucleic Acids Res 2017; 45:11622-11642. [PMID: 28977426 PMCID: PMC5714221 DOI: 10.1093/nar/gkx746] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022] Open
Abstract
Histone H1 has seven variants in human somatic cells and contributes to chromatin compaction and transcriptional regulation. Knock-down (KD) of each H1 variant in breast cancer cells results in altered gene expression and proliferation differently in a variant specific manner with H1.2 and H1.4 KDs being most deleterious. Here we show combined depletion of H1.2 and H1.4 has a strong deleterious effect resulting in a strong interferon (IFN) response, as evidenced by an up-regulation of many IFN-stimulated genes (ISGs) not seen in individual nor in other combinations of H1 variant KDs. Although H1 participates to repress ISG promoters, IFN activation upon H1.2 and H1.4 KD is mainly generated through the activation of the IFN response by cytosolic nucleic acid receptors and IFN synthesis, and without changes in histone modifications at induced ISG promoters. H1.2 and H1.4 co-KD also promotes the appearance of accessibility sites genome wide and, particularly, at satellites and other repeats. The IFN response may be triggered by the expression of noncoding RNA generated from heterochromatic repeats or endogenous retroviruses upon H1 KD. In conclusion, redundant H1-mediated silencing of heterochromatin is important to maintain cell homeostasis and to avoid an unspecific IFN response.
Collapse
Affiliation(s)
| | - Alberto Bustillos
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| | - Carles Bonet-Costa
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| | | | - Daniel García-Gomis
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia 08003, Spain
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia 08028, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Catalonia 08003, Spain
| | | | - Sandra Peiró
- Vall d'Hebron Institute of Oncology, Barcelona, Catalonia 08035, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia 08028, Spain.,Physiological Sciences Department, School of Medicine and Health Sciences, University of Barcelona (UB), Catalonia 08028, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia 08028, Spain
| | - Matthew Murtha
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet, Barcelona, Catalonia 08028, Spain
| | - Lluís Millán-Ariño
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| | - Albert Jordan
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Barcelona, Catalonia 08028, Spain
| |
Collapse
|
236
|
García-Vizcaíno EM, Liarte S, Alonso-Romero JL, Nicolás FJ. Sirt1 interaction with active Smad2 modulates transforming growth factor-β regulated transcription. Cell Commun Signal 2017; 15:50. [PMID: 29187201 PMCID: PMC5706420 DOI: 10.1186/s12964-017-0205-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 11/16/2017] [Indexed: 12/13/2022] Open
Abstract
Background The simplicity of Transforming Growth Factor ß (TGFβ) signaling pathway, linear and non-amplified, hardly sustains its variety of responses. This is often justified by the complex regulation showed by Smad proteins, TGFβ signaling intracellular transducers, object of post-translational modifications that modulate TGFβ-dependent transcription. Protein acetylation is emerging as a compelling mechanism affecting the activities of significant transcription factors, including p53, FOXO or NF-kB. Smad proteins might be controlled by this mechanism, implying that accessory factors capable of altering Smads-transcriptional complexes acetylation status and hence regulate TGFβ responses remain to be identified. Understanding this interaction may help in the assessment of TGFβ signaling outcomes, extending from healthy physiology to pathological conditions and cancer. Methods A two-hybrid chimera interacting system allowed to identify Sirt1, a NAD+ dependent type III histone deacetylase, as a novel Smad2 interactor. Several well stablished cellular models were applied to characterize this interaction by means of co-immunoprecipitation of tagged proteins and immuno-fluorescence staining. The occurrence of the interaction at Smad2 driven transcriptomic complexes was studied by means of DNA-pull-down and chromatin immunoprecipitation (ChIP), while its effects were assessed by protein over-expression and siRNA applied into a TGFβ-dependent reporter gene assay. Results The interaction was confirmed and observed to be enhanced upon Smad2 acetylation, a known feature of active and nuclear Smad2. However, Sirt1 did not play a major role in Smad2 deacetylation. Anti-Sirt1 ChIP showed increased recovery of promoter regions corresponding to Smad2-driven genes after TGFβ-stimulation, while its occurrence at Smad2-dependent transcriptomic complexes on DNA was found to effectively modulate gene expression. Conclusions Sirt1 presence on Smad2-driven TGFβ-dependent regulatory elements was detected and found to increase after TGFβ treatment. Moreover, Sirt1 overexpression resulted in a decrease of the activity of a Smad2-driven TGFβ-dependent reporter gene, while Sirt1 interference increased its activity. This would confirm the relevance of the discovered Sirt1-Smad2 interaction for the regulation of TGFβ-dependent gene transcription. Electronic supplementary material The online version of this article (10.1186/s12964-017-0205-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eva María García-Vizcaíno
- Laboratorio de Oncología Molecular y TGFβ, Instituto Murciano de Investigaciones Biosanitarias Arrixaca, El Palmar, Murcia, Spain
| | - Sergio Liarte
- Laboratorio de Oncología Molecular y TGFβ, Instituto Murciano de Investigaciones Biosanitarias Arrixaca, El Palmar, Murcia, Spain
| | - José Luis Alonso-Romero
- Servicio de Oncología, Hospital Clínico Universitario Virgen de la Arrixaca, El Palmar, Murcia, Spain
| | - Francisco José Nicolás
- Laboratorio de Oncología Molecular y TGFβ, Instituto Murciano de Investigaciones Biosanitarias Arrixaca, El Palmar, Murcia, Spain.
| |
Collapse
|
237
|
Lan X, Atanassov BS, Li W, Zhang Y, Florens L, Mohan RD, Galardy PJ, Washburn MP, Workman JL, Dent SYR. USP44 Is an Integral Component of N-CoR that Contributes to Gene Repression by Deubiquitinating Histone H2B. Cell Rep 2017; 17:2382-2393. [PMID: 27880911 DOI: 10.1016/j.celrep.2016.10.076] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/20/2016] [Accepted: 10/19/2016] [Indexed: 11/20/2022] Open
Abstract
Decreased expression of the USP44 deubiquitinase has been associated with global increases in H2Bub1 levels during mouse embryonic stem cell (mESC) differentiation. However, whether USP44 directly deubiquitinates histone H2B or how its activity is targeted to chromatin is not known. We identified USP44 as an integral subunit of the nuclear receptor co-repressor (N-CoR) complex. USP44 within N-CoR deubiquitinates H2B in vitro and in vivo, and ablation of USP44 impairs the repressive activity of the N-CoR complex. Chromatin immunoprecipitation (ChIP) experiments confirmed that USP44 recruitment reduces H2Bub1 levels at N-CoR target loci. Furthermore, high expression of USP44 correlates with reduced levels of H2Bub1 in the breast cancer cell line MDA-MB-231. Depletion of either USP44 or TBL1XR1 impairs the invasiveness of MDA-MB-231 cells in vitro and causes an increase of global H2Bub1 levels. Our findings indicate that USP44 contributes to N-CoR functions in regulating gene expression and is required for efficient invasiveness of triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Xianjiang Lan
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Boyko S Atanassov
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Wenqian Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Epigenetics and Molecular Carcinogenesis, Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Ying Zhang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ryan D Mohan
- University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Paul J Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA; Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
238
|
Kitada M, Ogura Y, Koya D. The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis. Aging (Albany NY) 2017; 8:2290-2307. [PMID: 27744418 PMCID: PMC5115889 DOI: 10.18632/aging.101068] [Citation(s) in RCA: 203] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 09/30/2016] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) due to atherosclerosis is the main cause of death in both the elderly and patients with metabolic diseases, including diabetes. Aging processes contribute to the pathogenesis of atherosclerosis. Calorie restriction (CR) is recognized as a dietary intervention for promoting longevity and delaying age-related diseases, including atherosclerosis. Sirt1, an NAD+-dependent deacetylase, is considered an anti-aging molecule and is induced during CR. Sirt1 deacetylates target proteins and is linked to cellular metabolism, the redox state and survival pathways. Sirt1 expression/activation is decreased in vascular tissue undergoing senescence. Sirt1 deficiency in endothelial cells (ECs), vascular smooth muscle cells (VSMCs) and monocytes/macrophages contributes to increased oxidative stress, inflammation, foam cell formation, senescences impaired nitric oxide production and autophagy, thereby promoting vascular aging and atherosclerosis. Endothelial dysfunction, activation of monocytes/macrophages, and the functional and phenotypical plasticity of VSMCs are critically implicated in the pathogenesis of atherosclerosis through multiple mechanisms. Therefore, the activation of Sirt1 in vascular tissue, which includes ECs, monocytes/macrophages and VSMCs, may be a new therapeutic strategy against atherosclerosis and the increasing resistance to the metabolic disorder-related causal factors of CVD. In this review, we discuss the protective role of Sirt1 in the pathophysiology of vascular aging and atherosclerosis.
Collapse
Affiliation(s)
- Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University. Uchinada, Ishikawa, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University. Uchinada, Ishikawa, Japan
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University. Uchinada, Ishikawa, Japan.,Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| |
Collapse
|
239
|
Yu A, Dang W. Regulation of stem cell aging by SIRT1 - Linking metabolic signaling to epigenetic modifications. Mol Cell Endocrinol 2017; 455:75-82. [PMID: 28392411 PMCID: PMC7951659 DOI: 10.1016/j.mce.2017.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 01/09/2017] [Accepted: 03/29/2017] [Indexed: 12/22/2022]
Abstract
In mammals, profound changes in the population and functions of adult stem cells occur with age and these changes are thought to underlie functional decline and pathophysiology at the tissue and organismal levels associated with aging. SIRT1, a member of the conserved sirtuin family, functions as an anti-aging regulator for adult stem cells. Mediated through its regulatory roles in AMPK and mTORC1 pathways as well as gene expression, SIRT1 modulate the activities of genes maintaining stem cell functions and delays cellular senescence. Further investigation of the cross-talk between SIRT1 and other longevity target genes under different physiological conditions of stem cells may help us better design intervention strategies to antagonize stem cells aging.
Collapse
Affiliation(s)
- An Yu
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weiwei Dang
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
240
|
Adamkova K, Yi YJ, Petr J, Zalmanova T, Hoskova K, Jelinkova P, Moravec J, Kralickova M, Sutovsky M, Sutovsky P, Nevoral J. SIRT1-dependent modulation of methylation and acetylation of histone H3 on lysine 9 (H3K9) in the zygotic pronuclei improves porcine embryo development. J Anim Sci Biotechnol 2017; 8:83. [PMID: 29118980 PMCID: PMC5664433 DOI: 10.1186/s40104-017-0214-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022] Open
Abstract
Background The histone code is an established epigenetic regulator of early embryonic development in mammals. The lysine residue K9 of histone H3 (H3K9) is a prime target of SIRT1, a member of NAD+-dependent histone deacetylase family of enzymes targeting both histone and non-histone substrates. At present, little is known about SIRT1-modulation of H3K9 in zygotic pronuclei and its association with the success of preimplantation embryo development. Therefore, we evaluated the effect of SIRT1 activity on H3K9 methylation and acetylation in porcine zygotes and the significance of H3K9 modifications for early embryonic development. Results Our results show that SIRT1 activators resveratrol and BML-278 increased H3K9 methylation and suppressed H3K9 acetylation in both the paternal and maternal pronucleus. Inversely, SIRT1 inhibitors nicotinamide and sirtinol suppressed methylation and increased acetylation of pronuclear H3K9. Evaluation of early embryonic development confirmed positive effect of selective SIRT1 activation on blastocyst formation rate (5.2 ± 2.9% versus 32.9 ± 8.1% in vehicle control and BML-278 group, respectively; P ≤ 0.05). Stimulation of SIRT1 activity coincided with fluorometric signal intensity of ooplasmic ubiquitin ligase MDM2, a known substrate of SIRT1 and known limiting factor of epigenome remodeling. Conclusions We conclude that SIRT1 modulates zygotic histone code, obviously through direct deacetylation and via non-histone targets resulting in increased H3K9me3. These changes in zygotes lead to more successful pre-implantation embryonic development and, indeed, the specific SIRT1 activation due to BML-278 is beneficial for in vitro embryo production and blastocyst achievement.
Collapse
Affiliation(s)
- Katerina Adamkova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic
| | - Young-Joo Yi
- Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Chonbuk National University, Iksan, 54596 South Korea
| | - Jaroslav Petr
- Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Tereza Zalmanova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic.,Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Kristyna Hoskova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic.,Institute of Animal Science, 10-Uhrineves, Prague, Czech Republic
| | - Pavla Jelinkova
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic
| | - Jiri Moravec
- Proteomic Laboratory, Biomedical Center of Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Milena Kralickova
- Laboratory of Reproductive Medicine of Biomedical Center, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Miriam Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO USA
| | - Peter Sutovsky
- Division of Animal Science, University of Missouri, Columbia, MO USA.,Departments of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO USA
| | - Jan Nevoral
- Department of Veterinary Sciences, Faculty of Agriculture, Food and Natural Resources, Czech University of Life Sciences Prague, 6-Suchdol, Prague, Czech Republic.,Laboratory of Reproductive Medicine of Biomedical Center, Charles University, Pilsen, Czech Republic.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
241
|
Sirtuins, epigenetics and longevity. Ageing Res Rev 2017; 40:11-19. [PMID: 28789901 DOI: 10.1016/j.arr.2017.08.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 07/26/2017] [Accepted: 08/02/2017] [Indexed: 12/31/2022]
Abstract
Aging of organisms begins from a single cell at the molecular level. It includes changes related to telomere shortening, cell senescence and epigenetic modifications. These processes accumulate over the lifespan. Research studies show that epigenetic signaling contributes to human disease, tumorigenesis and aging. Epigenetic DNA modifications involve changes in the gene activity but not in the DNA sequence. An epigenome consists of chemical modifications to the DNA and histone proteins without the changes in the DNA sequence. These modifications strongly depend on the environment, could be reversible and are potentially transmittable to daughter cells. Epigenetics includes DNA methylation, noncoding RNA interference, and modifications of histone proteins. Sirtuins, a family of nicotine adenine dinucleotide (NAD+)-dependent enzymes, are involved in the cell metabolism and can regulate many cellular functions including DNA repair, inflammatory response, cell cycle or apoptosis. Literature shows the strong interconnection between sirtuin expression and aging processes. However, the direct relationship is still unknown. Here, we would like to summarize the existing knowledge about epigenetic processes in aging, especially those related to sirtuin expression. Another objective is to explain why some negative correlations between sirtuin activity and the rate of aging can be assumed.
Collapse
|
242
|
Ampferl R, Rodemann HP, Mayer C, Höfling TTA, Dittmann K. Glucose starvation impairs DNA repair in tumour cells selectively by blocking histone acetylation. Radiother Oncol 2017; 126:465-470. [PMID: 29100699 DOI: 10.1016/j.radonc.2017.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Tumour cells are characterized by aerobic glycolysis and thus have high glucose consumption. Because repairing radiation-induced DNA damage is an energy-demanding process, we hypothesized that glucose starvation combined with radiotherapy could be an effective strategy to selectively target tumour cells. MATERIAL AND METHODS We glucose-starved tumour cells (A549, FaDu) in vitro and analysed their radiation-induced cell responses compared to normal fibroblasts (HSF7). RESULTS Irradiation depleted intracellular ATP levels preferentially in cancer cells. Consequently, glucose starvation impaired DNA double-strand break (DSB) repair and radiosensitized confluent tumour cells but not normal fibroblasts. In proliferating tumour cells glucose starvation resulted in a reduction of proliferation, but failed to radiosensitize cells. Glucose supply was indispensable during the late DSB repair in confluent tumour cells starting approximately 13 h after irradiation, and glucose starvation inhibited radiation-induced histone acetylation, which is essential for chromatin relaxation. Sirtinol - an inhibitor of histone deacetylases - reverted the effects of glucose depletion on histone acetylation and DNA DSB repair in tumour cells. Furthermore, a glucose concentration of 2.8 mmol/L was sufficient to impair DSB repair in tumour cells and reduced their clonogenic survival under a fractionated irradiation regimen. CONCLUSIONS In resting tumour cells, glucose starvation combined with irradiation resulted in the impairment of late DSB repair and the reduction of clonogenic survival, which was associated with disrupted radiation-induced histone acetylation. However, in normal cells, DNA repair and radiosensitivity were not affected by glucose depletion.
Collapse
Affiliation(s)
- Rena Ampferl
- Division of Radiation Biology & Molecular Environmental Research, Dept. of Radiation Oncology, University of Tuebingen, Germany; German Cancer Consortium (DKTK), partner site Tuebingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Hans Peter Rodemann
- Division of Radiation Biology & Molecular Environmental Research, Dept. of Radiation Oncology, University of Tuebingen, Germany; German Cancer Consortium (DKTK), partner site Tuebingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Claus Mayer
- Division of Radiation Biology & Molecular Environmental Research, Dept. of Radiation Oncology, University of Tuebingen, Germany; German Cancer Consortium (DKTK), partner site Tuebingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Tobias Tim Alexander Höfling
- Division of Clinical Psychology & Biological Psychology and Psychotherapy, Dept. of Otto-Selz-Institute of Applied Psychology, University of Mannheim, Germany; Division of Media Management & Advertising Psychology, Dept. of Economics & Law, University of Pforzheim, Germany
| | - Klaus Dittmann
- Division of Radiation Biology & Molecular Environmental Research, Dept. of Radiation Oncology, University of Tuebingen, Germany; German Cancer Consortium (DKTK), partner site Tuebingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany.
| |
Collapse
|
243
|
Tang S, Fang Y, Huang G, Xu X, Padilla-Banks E, Fan W, Xu Q, Sanderson SM, Foley JF, Dowdy S, McBurney MW, Fargo DC, Williams CJ, Locasale JW, Guan Z, Li X. Methionine metabolism is essential for SIRT1-regulated mouse embryonic stem cell maintenance and embryonic development. EMBO J 2017; 36:3175-3193. [PMID: 29021282 DOI: 10.15252/embj.201796708] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 09/05/2017] [Accepted: 09/08/2017] [Indexed: 12/19/2022] Open
Abstract
Methionine metabolism is critical for epigenetic maintenance, redox homeostasis, and animal development. However, the regulation of methionine metabolism remains unclear. Here, we provide evidence that SIRT1, the most conserved mammalian NAD+-dependent protein deacetylase, is critically involved in modulating methionine metabolism, thereby impacting maintenance of mouse embryonic stem cells (mESCs) and subsequent embryogenesis. We demonstrate that SIRT1-deficient mESCs are hypersensitive to methionine restriction/depletion-induced differentiation and apoptosis, primarily due to a reduced conversion of methionine to S-adenosylmethionine. This reduction markedly decreases methylation levels of histones, resulting in dramatic alterations in gene expression profiles. Mechanistically, we discover that the enzyme converting methionine to S-adenosylmethionine in mESCs, methionine adenosyltransferase 2a (MAT2a), is under control of Myc and SIRT1. Consistently, SIRT1 KO embryos display reduced Mat2a expression and histone methylation and are sensitive to maternal methionine restriction-induced lethality, whereas maternal methionine supplementation increases the survival of SIRT1 KO newborn mice. Our findings uncover a novel regulatory mechanism for methionine metabolism and highlight the importance of methionine metabolism in SIRT1-mediated mESC maintenance and embryonic development.
Collapse
Affiliation(s)
- Shuang Tang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Yi Fang
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Gang Huang
- Department of Nuclear Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiaojiang Xu
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Elizabeth Padilla-Banks
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Wei Fan
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Qing Xu
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sydney M Sanderson
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Julie F Foley
- Cellular and Molecular Pathology Branch and Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Scotty Dowdy
- Cellular and Molecular Pathology Branch and Comparative Medicine Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Michael W McBurney
- Program for Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - David C Fargo
- Integrative Bioinformatics, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Xiaoling Li
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
244
|
Emerging roles of linker histones in regulating chromatin structure and function. Nat Rev Mol Cell Biol 2017; 19:192-206. [PMID: 29018282 DOI: 10.1038/nrm.2017.94] [Citation(s) in RCA: 322] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Together with core histones, which make up the nucleosome, the linker histone (H1) is one of the five main histone protein families present in chromatin in eukaryotic cells. H1 binds to the nucleosome to form the next structural unit of metazoan chromatin, the chromatosome, which may help chromatin to fold into higher-order structures. Despite their important roles in regulating the structure and function of chromatin, linker histones have not been studied as extensively as core histones. Nevertheless, substantial progress has been made recently. The first near-atomic resolution crystal structure of a chromatosome core particle and an 11 Å resolution cryo-electron microscopy-derived structure of the 30 nm nucleosome array have been determined, revealing unprecedented details about how linker histones interact with the nucleosome and organize higher-order chromatin structures. Moreover, several new functions of linker histones have been discovered, including their roles in epigenetic regulation and the regulation of DNA replication, DNA repair and genome stability. Studies of the molecular mechanisms of H1 action in these processes suggest a new paradigm for linker histone function beyond its architectural roles in chromatin.
Collapse
|
245
|
Sirt7 promotes adipogenesis in the mouse by inhibiting autocatalytic activation of Sirt1. Proc Natl Acad Sci U S A 2017; 114:E8352-E8361. [PMID: 28923965 DOI: 10.1073/pnas.1706945114] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sirtuins (Sirt1-Sirt7) are NAD+-dependent protein deacetylases/ADP ribosyltransferases, which play decisive roles in chromatin silencing, cell cycle regulation, cellular differentiation, and metabolism. Different sirtuins control similar cellular processes, suggesting a coordinated mode of action but information about potential cross-regulatory interactions within the sirtuin family is still limited. Here, we demonstrate that Sirt1 requires autodeacetylation to efficiently deacetylate targets such as p53, H3K9, and H4K16. Sirt7 restricts Sirt1 activity by preventing Sirt1 autodeacetylation causing enhanced Sirt1 activity in Sirt7-/- mice. Increased Sirt1 activity in Sirt7-/- mice blocks PPARγ and adipocyte differentiation, thereby diminishing accumulation of white fat. Thus, reduction of Sirt1 activity restores adipogenesis in Sirt7-/- adipocytes in vitro and in vivo. We disclosed a principle controlling Sirt1 activity and uncovered an unexpected complexity in the crosstalk between two different sirtuins. We propose that antagonistic interactions between Sirt1 and Sirt7 are pivotal in controlling the signaling network required for maintenance of adipose tissue.
Collapse
|
246
|
Pande S, Kratasyuk VA, Medvedeva NN, Kolenchukova OA, Salmina AB. Nutritional biomarkers: Current view and future perspectives. Crit Rev Food Sci Nutr 2017; 58:3055-3069. [PMID: 28678523 DOI: 10.1080/10408398.2017.1350136] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a poor relationship between nutrient intake and existing nutritional biomarkers due to variety of factors affecting their sensitivity and specificity. To explore the impact of nutrients at molecular level and devising a sensitive biomarker, proteomics is a central technology with sirtuins as one of the most promising nutritional biomarker. Sirtuins (seven mammalian sirtuins reported so far) have been reported to perform protein deacetylases and ADP-ribosyltransferases activity. It is distributed in different cellular compartments thereby controlling several metabolic processes. Sirtuins are oxidized nicotinamide adenine dinucleotide dependent, which implicates a direct effect of the metabolic state of the cell on its activity. Calorie restriction upregulates the mammalian sirtuin protein levels in variety of tissues and organs where it acts upon both histone and nonhistone substrates. Sirtuin senses nutrient availability and impacts gluconeogenesis, glycolysis, and insulin sensitivity. It deacetylates and inhibits the nuclear receptor that activates fat synthesis and adipogenesis in the body, leading to fat loss and bringing favorable cellular and health changes. Sirtuins mediates intracellular response that promotes cell survival, DNA damage repair thereby increasing the cell longitivity. The activation of sirtuins brings a wide spectrum of other health benefits and its activity levels are indicative of nutritional status as well as disease progression in cancer, inflammation, obesity, cardiovascular diseases, and viral infections. There are several foods that activate sirtuin activity and offer significant health benefits by their consumption.
Collapse
Affiliation(s)
- Shubhra Pande
- a Laboratory of Bioluminescent Biotechnologies, Department of Biophysics , Institute of Fundamental Biology and Biotechnology, Siberian Federal University , Krasnoyarsk , Russia.,b Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky , Krasnoyarsk , Russia
| | - Valentina A Kratasyuk
- a Laboratory of Bioluminescent Biotechnologies, Department of Biophysics , Institute of Fundamental Biology and Biotechnology, Siberian Federal University , Krasnoyarsk , Russia.,c Federal State Budgetary Scientific Institution "Institute of Biophysics, Siberian Branch of RAS" , Krasnoyarsk , Russia
| | - Nadezhda N Medvedeva
- b Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky , Krasnoyarsk , Russia
| | - Oxana A Kolenchukova
- a Laboratory of Bioluminescent Biotechnologies, Department of Biophysics , Institute of Fundamental Biology and Biotechnology, Siberian Federal University , Krasnoyarsk , Russia.,d Federal State Budgetary Scientific Institution "Scientific Research Institute of medical problems of the North" , Krasnoyarsk , Russia
| | - Alla B Salmina
- b Krasnoyarsk State Medical University named after Prof. V.F. Voino-Yasenetsky , Krasnoyarsk , Russia
| |
Collapse
|
247
|
Ashapkin VV, Kutueva LI, Vanyushin BF. Aging as an Epigenetic Phenomenon. Curr Genomics 2017; 18:385-407. [PMID: 29081695 PMCID: PMC5635645 DOI: 10.2174/1389202918666170412112130] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/17/2016] [Accepted: 02/09/2016] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION Hypermethylation of genes associated with promoter CpG islands, and hypomethylation of CpG poor genes, repeat sequences, transposable elements and intergenic genome sections occur during aging in mammals. Methylation levels of certain CpG sites display strict correlation to age and could be used as "epigenetic clock" to predict biological age. Multi-substrate deacetylases SIRT1 and SIRT6 affect aging via locus-specific modulations of chromatin structure and activity of multiple regulatory proteins involved in aging. Random errors in DNA methylation and other epigenetic marks during aging increase the transcriptional noise, and thus lead to enhanced phenotypic variation between cells of the same tissue. Such variation could cause progressive organ dysfunction observed in aged individuals. Multiple experimental data show that induction of NF-κB regulated gene sets occurs in various tissues of aged mammals. Upregulation of multiple miRNAs occurs at mid age leading to downregulation of enzymes and regulatory proteins involved in basic cellular functions, such as DNA repair, oxidative phosphorylation, intermediate metabolism, and others. CONCLUSION Strong evidence shows that all epigenetic systems contribute to the lifespan control in various organisms. Similar to other cell systems, epigenome is prone to gradual degradation due to the genome damage, stressful agents, and other aging factors. But unlike mutations and other kinds of the genome damage, age-related epigenetic changes could be fully or partially reversed to a "young" state.
Collapse
Affiliation(s)
- Vasily V Ashapkin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Lyudmila I Kutueva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Boris F Vanyushin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
248
|
SIRT6 regulated nucleosomal occupancy affects Hexokinase 2 expression. Exp Cell Res 2017; 357:98-106. [DOI: 10.1016/j.yexcr.2017.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 11/20/2022]
|
249
|
Mellini P, Itoh Y, Tsumoto H, Li Y, Suzuki M, Tokuda N, Kakizawa T, Miura Y, Takeuchi J, Lahtela-Kakkonen M, Suzuki T. Potent mechanism-based sirtuin-2-selective inhibition by an in situ-generated occupant of the substrate-binding site, "selectivity pocket" and NAD +-binding site. Chem Sci 2017; 8:6400-6408. [PMID: 28989670 PMCID: PMC5628579 DOI: 10.1039/c7sc02738a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/14/2017] [Indexed: 12/19/2022] Open
Abstract
Sirtuin 2 (SIRT2), a member of the NAD+-dependent histone deacetylase family, has recently received increasing attention due to its potential involvement in neurodegenerative diseases and the progression of cancer. Potent and selective SIRT2 inhibitors thus represent desirable biological probes. Based on the X-ray crystal structure of SIRT2 in complex with a previously reported weak inhibitor (6), we identified in this study the potent mechanism-based inactivator KPM-2 (36), which is selective toward SIRT2. Compound 36 engages in a nucleophilic attack toward NAD+ at the active site of SIRT2, which affords a stable 36-ADP-ribose conjugate that simultaneously occupies the substrate-binding site, the "selectivity pocket" and the NAD+-binding site. Moreover, 36 exhibits antiproliferative activity in cancer cells and remarkable neurite outgrowth activity. This strategy for the selective inhibition of SIRT2 should allow further probing of the biology of SIRT2, and promote the development of new disease treatment strategies.
Collapse
Affiliation(s)
- Paolo Mellini
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho, Sakyo-ku , Kyoto 606-0823 , Japan .
| | - Yukihiro Itoh
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho, Sakyo-ku , Kyoto 606-0823 , Japan .
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging , Tokyo Metropolitan Institute of Gerontology , 35-2 Sakae-cho, Itabashi-ku , Tokyo , 173-0015 , Japan
| | - Ying Li
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho, Sakyo-ku , Kyoto 606-0823 , Japan .
| | - Miki Suzuki
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho, Sakyo-ku , Kyoto 606-0823 , Japan .
| | - Natsuko Tokuda
- Minase Research Institute , Ono Pharmaceutical Co., Ltd. , 3-1-1 Sakurai Shimamoto-Cho, Mishima-Gun , Osaka 618-8585 , Japan
| | - Taeko Kakizawa
- Department of Chemistry and Biochemistry , School of Advanced Science and Engineering , Waseda University , Shinjuku , Tokyo 169-8555 , Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging , Tokyo Metropolitan Institute of Gerontology , 35-2 Sakae-cho, Itabashi-ku , Tokyo , 173-0015 , Japan
| | - Jun Takeuchi
- Minase Research Institute , Ono Pharmaceutical Co., Ltd. , 3-1-1 Sakurai Shimamoto-Cho, Mishima-Gun , Osaka 618-8585 , Japan
| | - Maija Lahtela-Kakkonen
- School of Pharmacy , University of Eastern Finland , P.O. Box 1627 , 70211 Kuopio , Finland
| | - Takayoshi Suzuki
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho, Sakyo-ku , Kyoto 606-0823 , Japan . .,CREST , Japan Science and Technology Agency (JST) , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| |
Collapse
|
250
|
Zhai Z, Tang M, Yang Y, Lu M, Zhu WG, Li T. Identifying Human SIRT1 Substrates by Integrating Heterogeneous Information from Various Sources. Sci Rep 2017; 7:4614. [PMID: 28676654 PMCID: PMC5496887 DOI: 10.1038/s41598-017-04847-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
Most proteins undergo different kinds of modification after translation. Protein acetylation is one of the most crucial post-translational modifications, which causes direct or indirect impact on various biological activities in vivo. As a member of Class III HDACs, SIRT1 was the closest one to the yeast sir2 and drew most attention, while a small number of known SIRT1 substrates caused difficulties to clarify its function. In this work, we designed a novel computational method to screen SIRT1 substrates based on manually collected data and Support Vector Machines (SVMs). Unlike other approaches, we took both primary sequence and protein functional features into consideration. Through integrating functional features, the Matthews correlation coefficient (MCC) for the prediction increased from 0.10 to 0.65. The prediction results were verified by independent dataset and biological experiments. The validation results demostrated that our classifier could effectively identify SIRT1 substrates and filter appropriate candidates for further research. Furthermore, we provide online tool to support SIRT1 substrates prediction, which is freely available at http://bioinfo.bjmu.edu.cn/huac/.
Collapse
Affiliation(s)
- Zichao Zhai
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ming Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); State Key Laboratory of Natural and Biomimetic Drugs; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yue Yang
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ming Lu
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education); State Key Laboratory of Natural and Biomimetic Drugs; Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China. .,Peking-Tsinghua University Center for Life Science; Peking University, Beijing, 100191, China. .,School of Medicine; Shenzhen University, Shenzhen, 518060, China.
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China. .,Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|