201
|
Thirunavukarasou A, Singh P, Govindarajalu G, Bandi V, Baluchamy S. E3 ubiquitin ligase Cullin4B mediated polyubiquitination of p53 for its degradation. Mol Cell Biochem 2014; 390:93-100. [PMID: 24452595 DOI: 10.1007/s11010-014-1960-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 01/10/2014] [Indexed: 01/29/2023]
Abstract
Controlled protein ubiquitination through E3 ubiquitin ligases and degradation via 26S proteasome machinery is required for orderly progression through cell cycle, chromatin remodeling, DNA repair, and development. Each cullin-dependent ubiquitin ligase (E3) complex can recruit various substrates for their degradation. Cullin 4A (CUL4A) and Cullin 4B (CUL4B) are members of cullin family proteins that mediate ubiquitin dependent proteolysis. Though, these two cul4 genes are functionally redundant, Cullin 4B is not a substitute for all the Cullin 4A functions. Published report has shown that CUL4A interacts with p53 and induces its decay. Although, CUL4A has been known to control several cellular processes, little is known about CUL4B functions. Therefore, in this study, we analyzed the role of CUL4B on p53 polyubiquitination. Our stable cell line and transient transfection studies show that CUL4B indeed interacts with p53 and induces its polyubiquitination. Importantly, both CUL4A and CUL4B overexpressing cells show almost equal levels of p53 polyubiquitination. Moreover, we observed an increased level of polyubiquitination on p53 in CUL4B overexpressing stable cell line upon treatment with siRNA specific for CUL4A indicating that CUL4B plays a vital role in p53 stability. In addition, we have observed the differential expression of CUL4B in various eukaryotic cell lines and mouse tissues suggesting the important role of CUL4B in various tissues. Together, these observations establish an important negative regulatory role of CUL4B on p53 stability.
Collapse
Affiliation(s)
- Anand Thirunavukarasou
- Stem Cell Laboratory, Department of Biotechnology, Pondicherry Central University, R. V. Nagar, Kalapet, 605014, Pondicherry, India
| | | | | | | | | |
Collapse
|
202
|
CRL4-like Clr4 complex in Schizosaccharomyces pombe depends on an exposed surface of Dos1 for heterochromatin silencing. Proc Natl Acad Sci U S A 2014; 111:1795-800. [PMID: 24449894 DOI: 10.1073/pnas.1313096111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Repressive histone H3 lysine 9 methylation (H3K9me) and its recognition by HP1 proteins are necessary for pericentromeric heterochromatin formation. In Schizosaccharomyces pombe, H3K9me deposition depends on the RNAi pathway. Cryptic loci regulator 4 (Clr4), the only known H3K9 methyltransferase in this organism, is a subunit of the Clr4 methyltransferase complex (CLRC), whose composition is reminiscent of a CRL4 type cullin-RING ubiquitin ligase (CRL) including its cullin Cul4, the RING-box protein Pip1, the DNA damage binding protein 1 homolog Rik1, and the DCAF-like protein delocalization of Swi6 1 (Dos1). Dos2 and Stc1 have been proposed to be part of the complex but do not bear similarity to canonical ubiquitin ligase components. CLRC is an active E3 ligase in vitro, and this activity is necessary for heterochromatin assembly in vivo. The similarity between CLRC and the CRLs suggests that the WD repeat protein Dos1 will act to mediate target recognition and substrate specificity for CLRC. Here, we present a pairwise interaction screen that confirms a CRL4-like subunit arrangement and further identifies Dos2 as a central component of the complex and recruiter of Stc1. We determined the crystal structure of the Dos1 WD repeat domain, revealing an eight-bladed β-propeller fold. Functional mapping of the putative target-binding surface of Dos1 identifies key residues required for heterochromatic silencing, consistent with Dos1's role as the specificity factor for the E3 ubiquitin ligase.
Collapse
|
203
|
Abstract
The COP9 signalosome (CSN) is an evolutionarily conserved protein complex that participates in the regulation of the ubiquitin/26S proteasome pathway by controlling the function of cullin-RING-ubiquitin ligases. Impressive progress has been made in deciphering its critical role in diverse cellular and developmental processes. However, little is known about the underlying regulatory principles that coordinate its function. Through biochemical and fluorescence microscopy analyses, we determined that the complex is localized in the cytoplasm, nucleoplasm, and chromatin-bound fractions, each differing in the composition of posttranslationally modified subunits, depending on its location within the cell. During the cell cycle, the segregation between subcellular localizations remains steady. However, upon UV damage, a dose-dependent temporal shuttling of the CSN complex into the nucleus was seen, accompanied by upregulation of specific phosphorylations within CSN1, CSN3, and CSN8. Taken together, our results suggest that the specific spatiotemporal composition of the CSN is highly controlled, enabling the complex to rapidly adapt and respond to DNA damage.
Collapse
|
204
|
He L, Wu WJ, Yang JK, Cheng H, Zuo XB, Lai W, Gao TW, Ma CL, Luo N, Huang JQ, Lu FY, Liu YQ, Huang YJ, Lu QJ, Zhang HL, Wang L, Wang WZ, Wang MM, Xiao SX, Sun Q, Li CY, Bai YP, Li H, Zhou ZC, Zhou FS, Chen G, Liang B, Qi J, Yang XY, Yang T, Zheng X, Sun LD, Zhang XJ, Zhang YP. Two new susceptibility loci 1q24.2 and 11p11.2 confer risk to severe acne. Nat Commun 2014; 5:2870. [DOI: 10.1038/ncomms3870] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 11/05/2013] [Indexed: 12/15/2022] Open
|
205
|
Yang JK, Wu WJ, He L, Zhang YP. Genotype-Phenotype Correlations in Severe Acne in a Han Chinese Population. Dermatology 2014; 229:210-4. [DOI: 10.1159/000363288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 04/28/2014] [Indexed: 11/19/2022] Open
|
206
|
Kim K, Lee B, Kim J, Choi J, Kim JM, Xiong Y, Roeder RG, An W. Linker Histone H1.2 cooperates with Cul4A and PAF1 to drive H4K31 ubiquitylation-mediated transactivation. Cell Rep 2013; 5:1690-703. [PMID: 24360965 DOI: 10.1016/j.celrep.2013.11.038] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 10/18/2013] [Accepted: 11/21/2013] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that linker histone H1 can influence distinct cellular processes by acting as a gene-specific regulator. However, the mechanistic basis underlying such H1 specificity and whether H1 acts in concert with other chromatin-altering activities remain unclear. Here, we show that one of the H1 subtypes, H1.2, stably interacts with Cul4A E3 ubiquitin ligase and PAF1 elongation complexes and that such interaction potentiates target gene transcription via induction of H4K31 ubiquitylation, H3K4me3, and H3K79me2. H1.2, Cul4A, and PAF1 are functionally cooperative because their individual knockdown results in the loss of the corresponding histone marks and the deficiency of target gene transcription. H1.2 interacts with the serine 2-phosphorylated form of RNAPII, and we argue that it recruits the Cul4A and PAF1 complexes to target genes by bridging the interaction between the Cul4A and PAF1 complexes. These data define an expanded role for H1 in regulating gene transcription and illustrate its dependence on the elongation competence of RNAPII.
Collapse
Affiliation(s)
- Kyunghwan Kim
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Bomi Lee
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jaehoon Kim
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Jongkyu Choi
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jin-Man Kim
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Yue Xiong
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Woojin An
- Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, University of Southern California, Keck School of Medicine, Los Angeles, CA 90089, USA.
| |
Collapse
|
207
|
CRL4B promotes tumorigenesis by coordinating with SUV39H1/HP1/DNMT3A in DNA methylation-based epigenetic silencing. Oncogene 2013; 34:104-18. [PMID: 24292684 DOI: 10.1038/onc.2013.522] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/16/2013] [Accepted: 10/18/2013] [Indexed: 12/16/2022]
Abstract
Cullin 4B (CUL4B) is a component of the Cullin4B-Ring E3 ligase complex (CRL4B) that functions in proteolysis and is implicated in tumorigenesis. Here, we report that CRL4B is associated with histone methyltransferase SUV39H1, heterochromatin protein 1 (HP1) and DNA methyltransferases 3A (DNMT3A). We showed that CRL4B, through catalyzing H2AK119 monoubiquitination, facilitates H3K9 tri-methylation and DNA methylation, two key epigenetic modifications involved in DNA methylation-based gene silencing. Depletion of CUL4B resulted in loss of not only H2AK119 monoubiquitination but also H3K9 trimethylation and DNA methylation, leading to derepression of a collection of genes, including the tumor suppressor IGFBP3. We demonstrated that CUL4B promotes cell proliferation and invasion, which are consistent with a tumorigenic phenotype, at least partially by repressing IGFBP3. We found that the expression of CUL4B is markedly upregulated in samples of human cervical carcinoma and is negatively correlated with the expression of IGFBP3. Our experiments unveiled a coordinated action between histone ubiquitination/methylation and DNA methylation in transcription repression, providing a mechanism for CUL4B in tumorigenesis.
Collapse
|
208
|
Cazzalini O, Perucca P, Mocchi R, Sommatis S, Prosperi E, Stivala LA. DDB2 association with PCNA is required for its degradation after UV-induced DNA damage. Cell Cycle 2013; 13:240-8. [PMID: 24200966 PMCID: PMC3906241 DOI: 10.4161/cc.26987] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 10/23/2013] [Accepted: 10/29/2013] [Indexed: 12/23/2022] Open
Abstract
DDB2 is a protein playing an essential role in the lesion recognition step of the global genome sub-pathway of nucleotide excision repair (GG-NER) process. Among the proteins involved in the DNA damage response, p21(CDKN1A) (p21) has been reported to participate in NER, but also to be removed by proteolytic degradation, thanks to its association with PCNA. DDB2 is involved in the CUL4-DDB1 complex mediating p21 degradation; however, the direct interaction between DDB2, p21 and PCNA has been never investigated. Here, we show that DDB2 co-localizes with PCNA and p21 at local UV-induced DNA-damage sites, and these proteins co-immunoprecipitate in the same complex. In addition, we provide evidence that p21 is not able to bind directly DDB2, but, to this end, the presence of PCNA is required. Direct physical association of recombinant DDB2 protein with PCNA is mediated by a conserved PIP-box present in the N-terminal region of DDB2. Mutation of the PIP-box resulted in the loss of protein interaction. Interestingly, the same mutation, or depletion of PCNA by RNA interference, greatly impaired DDB2 degradation induced by UV irradiation. These results indicate that DDB2 is a PCNA-binding protein, and that this association is required for DDB2 proteolytic degradation.
Collapse
Affiliation(s)
- Ornella Cazzalini
- Dipartimento di Medicina Molecolare; Unità di Immunologia e Patologia Generale; Università di Pavia; Pavia, Italy
| | - Paola Perucca
- Dipartimento di Medicina Molecolare; Unità di Immunologia e Patologia Generale; Università di Pavia; Pavia, Italy
| | - Roberto Mocchi
- Dipartimento di Medicina Molecolare; Unità di Immunologia e Patologia Generale; Università di Pavia; Pavia, Italy
| | - Sabrina Sommatis
- Dipartimento di Medicina Molecolare; Unità di Immunologia e Patologia Generale; Università di Pavia; Pavia, Italy
| | - Ennio Prosperi
- Istituto di Genetica Molecolare (IGM) del CNR; Pavia, Italy
| | - Lucia Anna Stivala
- Dipartimento di Medicina Molecolare; Unità di Immunologia e Patologia Generale; Università di Pavia; Pavia, Italy
| |
Collapse
|
209
|
Jung JH, Park JH, Lee S, To TK, Kim JM, Seki M, Park CM. The cold signaling attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 activates FLOWERING LOCUS C transcription via chromatin remodeling under short-term cold stress in Arabidopsis. THE PLANT CELL 2013; 25:4378-90. [PMID: 24220632 PMCID: PMC3875724 DOI: 10.1105/tpc.113.118364] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 09/07/2013] [Accepted: 10/16/2013] [Indexed: 05/19/2023]
Abstract
Exposure to short-term cold stress delays flowering by activating the floral repressor FLOWERING LOCUS C (FLC) in Arabidopsis thaliana. The cold signaling attenuator HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE1 (HOS1) negatively regulates cold responses. Notably, HOS1-deficient mutants exhibit early flowering, and FLC expression is suppressed in the mutants. However, it remains unknown how HOS1 regulates FLC expression. Here, we show that HOS1 induces FLC expression by antagonizing the actions of FVE and its interacting partner histone deacetylase 6 (HDA6) under short-term cold stress. HOS1 binds to FLC chromatin in an FVE-dependent manner, and FVE is essential for the HOS1-mediated activation of FLC transcription. HOS1 also interacts with HDA6 and inhibits the binding of HDA6 to FLC chromatin. Intermittent cold treatments induce FLC expression by activating HOS1, which attenuates the activity of HDA6 in silencing FLC chromatin, and the effects of intermittent cold are diminished in hos1 and fve mutants. These observations indicate that HOS1 acts as a chromatin remodeling factor for FLC regulation under short-term cold stress.
Collapse
Affiliation(s)
- Jae-Hoon Jung
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Ju-Hyung Park
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Sangmin Lee
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
| | - Taiko Kim To
- Plant Genomic Network Research Team, RIKEN, Yokohama 230-0045, Japan
| | - Jong-Myong Kim
- Plant Genomic Network Research Team, RIKEN, Yokohama 230-0045, Japan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN, Yokohama 230-0045, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama 236-0027, Japan, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul 151-742, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea
- Address correspondence to
| |
Collapse
|
210
|
Abstract
Nucleotide excision repair (NER) is the main pathway used by mammals to remove bulky DNA lesions such as those formed by UV light, environmental mutagens, and some cancer chemotherapeutic adducts from DNA. Deficiencies in NER are associated with the extremely skin cancer-prone inherited disorder xeroderma pigmentosum. Although the core NER reaction and the factors that execute it have been known for some years, recent studies have led to a much more detailed understanding of the NER mechanism, how NER operates in the context of chromatin, and how it is connected to other cellular processes such as DNA damage signaling and transcription. This review emphasizes biochemical, structural, cell biological, and genetic studies since 2005 that have shed light on many aspects of the NER pathway.
Collapse
Affiliation(s)
- Orlando D Schärer
- Department of Pharmacological Sciences and Department of Chemistry, Stony Brook University, Stony Brook, New York 11974-3400
| |
Collapse
|
211
|
Zhang Z, Jones A, Joo HY, Zhou D, Cao Y, Chen S, Erdjument-Bromage H, Renfrow M, He H, Tempst P, Townes TM, Giles KE, Ma L, Wang H. USP49 deubiquitinates histone H2B and regulates cotranscriptional pre-mRNA splicing. Genes Dev 2013; 27:1581-95. [PMID: 23824326 DOI: 10.1101/gad.211037.112] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Post-translational histone modifications play important roles in regulating chromatin structure and function. Histone H2B ubiquitination and deubiquitination have been implicated in transcriptional regulation, but the function of H2B deubiquitination is not well defined, particularly in higher eukaryotes. Here we report the purification of ubiquitin-specific peptidase 49 (USP49) as a histone H2B-specific deubiquitinase and demonstrate that H2B deubiquitination by USP49 is required for efficient cotranscriptional splicing of a large set of exons. USP49 forms a complex with RuvB-like1 (RVB1) and SUG1 and specifically deubiquitinates histone H2B in vitro and in vivo. USP49 knockdown results in small changes in gene expression but affects the abundance of >9000 isoforms. Exons down-regulated in USP49 knockdown cells show both elevated levels of alternative splicing and a general decrease in splicing efficiency. Importantly, USP49 is relatively enriched at this set of exons. USP49 knockdown increased H2B ubiquitination (uH2B) levels at these exons as well as upstream 3' and downstream 5' intronic splicing elements. Change in H2B ubiquitination level, as modulated by USP49, regulates U1A and U2B association with chromatin and binding to nascent pre-mRNA. Although H3 levels are relatively stable after USP49 depletion, H2B levels at these exons are dramatically increased, suggesting that uH2B may enhance nucleosome stability. Therefore, this study identifies USP49 as a histone H2B-specific deubiquitinase and uncovers a critical role for H2B deubiquitination in cotranscriptional pre-mRNA processing events.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
212
|
Yang X, Li L, Liang J, Shi L, Yang J, Yi X, Zhang D, Han X, Yu N, Shang Y. Histone acetyltransferase 1 promotes homologous recombination in DNA repair by facilitating histone turnover. J Biol Chem 2013; 288:18271-82. [PMID: 23653357 PMCID: PMC3689969 DOI: 10.1074/jbc.m113.473199] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/07/2013] [Indexed: 01/05/2023] Open
Abstract
Faithful repair of DNA double-strand breaks is vital to the maintenance of genome integrity and proper cell functions. Histone modifications, such as reversible acetylation, phosphorylation, methylation, and ubiquitination, which collectively contribute to the establishment of distinct chromatin states, play important roles in the recruitment of repair factors to the sites of double-strand breaks. Here we report that histone acetyltransferase 1 (HAT1), a classical B type histone acetyltransferase responsible for acetylating the N-terminal tail of newly synthesized histone H4 in the cytoplasm, is a key regulator of DNA repair by homologous recombination in the nucleus. We found that HAT1 is required for the incorporation of H4K5/K12-acetylated H3.3 at sites of double-strand breaks through its HIRA-dependent histone turnover activity. Incorporated histones with specific chemical modifications facilitate subsequent recruitment of RAD51, a key repair factor in mammalian cells, to promote efficient homologous recombination. Significantly, depletion of HAT1 sensitized cells to DNA damage compromised the global chromatin structure, inhibited cell proliferation, and induced cell apoptosis. Our experiments uncovered a role for HAT1 in DNA repair in higher eukaryotic organisms and provide a mechanistic insight into the regulation of histone dynamics by HAT1.
Collapse
Affiliation(s)
- Xiaohan Yang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China and
| | - Lei Li
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China and
| | - Jing Liang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China and
| | - Lei Shi
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| | - Jianguo Yang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China and
| | - Xia Yi
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China and
| | - Di Zhang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China and
| | - Xiao Han
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China and
| | - Na Yu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China and
| | - Yongfeng Shang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China and
- Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
213
|
Roy N, Elangovan I, Kopanja D, Bagchi S, Raychaudhuri P. Tumor regression by phenethyl isothiocyanate involves DDB2. Cancer Biol Ther 2013; 14:108-116. [PMID: 23114715 PMCID: PMC3571992 DOI: 10.4161/cbt.22631] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phenethyl isothiocyanate (PEITC) is a promising cancer chemopreventive agent commonly found in edible cruciferous vegetables. It has been implicated also for therapy, and is in clinical trial for lung cancer. Here, we provide evidence that the tumor suppressive effect of PEITC is related to its ability to induce expression of damaged DNA binding protein 2 (DDB2), a DNA repair protein involved also in apoptosis and premature senescence. DDB2 expression is attenuated in a wide variety of cancers including the aggressive colon cancers. We show that, in colon cancer cells, reactive oxygen species, which are induced by PEITC, augment expression of DDB2 through the p38MAPK/JNK pathway, independently of p53. PEITC-induced expression of DDB2 is critical for inhibition of tumor progression by PEITC. Tumors derived from DDB2-deficient colon cancer cells are refractory to PEITC-treatments, resulting from deficiencies in apoptosis and senescence. The DDB2-proficient tumors, on the other hand, respond effectively to PEITC. The results show that PEITC can be used to induce expression of DDB2, and that expression of DDB2 is critical for effective response of tumors to PEITC.
Collapse
Affiliation(s)
- Nilotpal Roy
- Department of Biochemistry and Molecular Genetics; Cancer Center; University of Illinois at Chicago; Chicago, IL USA
| | - Indira Elangovan
- Department of Biochemistry and Molecular Genetics; Cancer Center; University of Illinois at Chicago; Chicago, IL USA
| | - Dragana Kopanja
- Department of Biochemistry and Molecular Genetics; Cancer Center; University of Illinois at Chicago; Chicago, IL USA
| | - Srilata Bagchi
- Department of Medicine; University of Illinois at Chicago; Chicago, Il USA
- Center of Molecular Biology of Oral Diseases; College of Dentistry; Cancer Center; University of Illinois at Chicago; Chicago, IL USA
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics; Cancer Center; University of Illinois at Chicago; Chicago, IL USA
| |
Collapse
|
214
|
García MJ, Saucedo-Cuevas LP, Muñoz-Repeto I, Fernández V, Robles MJ, Domingo S, Palacios J, Aracil M, Nieto A, Tercero JC, Benítez J. Analysis of DNA repair-related genes in breast cancer reveals CUL4A ubiquitin ligase as a novel biomarker of trabectedin response. Mol Cancer Ther 2013; 12:530-41. [PMID: 23364677 DOI: 10.1158/1535-7163.mct-12-0768] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trabectedin is more active in nucleotide excision repair (NER)-efficient and homologous recombination repair (HRR)-deficient cells. As up to 25% of sporadic breast tumors present somatic inactivation of the HRR pathway (BRCAness phenotype), we sought to characterize trabectedin effect in BRCA1-proficient and BRCA1-null breast cancer cell lines. We evaluated whether HRR and NER gene expression correlates with trabectedin sensitivity and explored the response predictive value of the CUL4A ubiquitin ligase, which ubiquitinates NER pathway members. We characterized trabectedin cytotoxicity, cell-cycle effects, and BRCA1, BRCA2, XRCC3, XPG, ERCC1, and CUL4A expression in 10 breast cancer cell lines. Gene expression and trabectedin sensitivity association were determined in cell lines. Survival assays after trabectedin treatment were conducted in CUL4A-silenced BRCA1-proficient and -deficient cells. Because of limited phase II clinical trials evaluating trabectedin efficacy in patients with breast cancer, we assessed CUL4A immunohistochemical staining in a retrospective series of 118 sarcomas from trabectedin-treated patients to validate in vivo our in vitro observations. In cell lines, greater trabectedin sensitivity was associated with higher CUL4A expression and lower BRCA1/ERCC5, BRCA1/CUL4A, and XRCC3/CUL4A expression ratios. In agreement, BRCA1-deficient CUL4A-knockdown cells presented higher cell survival after trabectedin exposure than did scramble control cells. Lack of effect in BRCA1-proficient cells suggests that HRR impairment is key in CUL4A-mediated trabectedin sensitivity. High CUL4A expression in nontranslocation-related patients with sarcoma predicted improved progression-free survival [PFS; HR, 0.37; 95% confidence interval (CI), 0.20-0.68, P = 0.001] and overall survival (OS; HR, 0.44; 95% CI, 0.21-0.93, P = 0.026). Our observations support the notion of greater trabectedin activity in tumors exhibiting BRCAness and reveal CUL4A as a potential biomarker for definition of trabectedin target patients.
Collapse
Affiliation(s)
- María J García
- Group of Human Genetics, Human Cancer Genetics Program, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid 28029, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
He F, Lu D, Jiang B, Wang Y, Liu Q, Liu Q, Shao C, Li X, Gong Y. X-linked intellectual disability gene CUL4B targets Jab1/CSN5 for degradation and regulates bone morphogenetic protein signaling. Biochim Biophys Acta Mol Basis Dis 2013; 1832:595-605. [PMID: 23357576 DOI: 10.1016/j.bbadis.2013.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/31/2012] [Accepted: 01/18/2013] [Indexed: 01/29/2023]
Abstract
Cullin 4B (CUL4B) is a scaffold protein involved in the assembly of cullin-RING ubiquitin ligase (E3) complexes. Contemporary reports have identified multiple mutations of CUL4B gene as being causally associated with X-linked intellectual disability (XLID). Identifying the specific protein substrates will help to better understand the physiological functions of CUL4B. The current study identified Jun activation domain-binding protein (Jab1/CSN5) in the COP9 signalosome (CSN) complex as a novel proteolytic target for the CUL4B ubiquitin ligase complex. The impaired degradation of Jab1 was observed in cells after RNAi-mediated CUL4B depletion. Integrity of DDB1-CUL4B-ROC1 was further demonstrated to be indispensable for the degradation of Jab1. In addition, the degradation of Jab1 is independent of CUL4A, a cullin family member closely related to CUL4B. In vitro and in vivo ubiquitination assays revealed that CUL4B promoted the polyubiquitination of Jab1. Interestingly, CUL4B-silenced cells were shown to exhibit abnormal upregulation of bone morphogenetic protein (BMP) signaling. Furthermore, in vivo studies of embryonic fibroblasts in Cul4b-deficient mice demonstrated Jab1 accumulation and increased activation of the BMP signaling pathway. Together, the current findings demonstrate the CUL4B E3 ubiquitin ligase plays a key role in targeting Jab1 for degradation, potentially revealing a previously undocumented mechanism for regulation of the BMP signaling pathway involved with the CUL4B-based E3 complex. This observation may provide novel insights into the molecular mechanisms underlying CUL4B-associated XLID pathogenesis.
Collapse
Affiliation(s)
- Fengjuan He
- Institute of Medical Genetics, Shandong University School of Medicine, Jinan, Shandong, China
| | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Fiorentino FP, Marchesi I, Giordano A. On the role of retinoblastoma family proteins in the establishment and maintenance of the epigenetic landscape. J Cell Physiol 2013; 228:276-84. [PMID: 22718354 DOI: 10.1002/jcp.24141] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RB family members are negative regulators of the cell cycle, involved in numerous biological processes such as cellular senescence, development and differentiation. Disruption of RB family pathways are linked to loss of cell cycle control, cellular immortalization and cancer. RB family, and in particular the most studied member RB/p105, has been considered a tumor suppressor gene by more than three decades, and numerous efforts have been done to understand his molecular activity. However, the epigenetic mechanisms behind Rb-mediated tumor suppression have been uncovered only in recent years. In this review, the role of RB family members in cancer epigenetics will be discussed. We start with an introduction to epigenomes, chromatin modifications and cancer epigenetics. In order to provide a clear picture of the involvement of RB family in the epigenetic field, we describe the RB family role in the epigenetic landscape dynamics based on the heterochromatin variety involved, facultative or constitutive. We want to stress that, despite dissimilar modulations, RB family is involved in both mammalian varieties of heterochromatin establishment and maintenance and that disruption of RB family pathways drives to alterations of both heterochromatin structures, thus to the global epigenetic landscape.
Collapse
Affiliation(s)
- Francesco Paolo Fiorentino
- Department of Biology, Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | |
Collapse
|
217
|
Choi SY, Jang H, Roe JS, Kim ST, Cho EJ, Youn HD. Phosphorylation and ubiquitination-dependent degradation of CABIN1 releases p53 for transactivation upon genotoxic stress. Nucleic Acids Res 2013; 41:2180-90. [PMID: 23303793 PMCID: PMC3575827 DOI: 10.1093/nar/gks1319] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
CABIN1 acts as a negative regulator of p53 by keeping p53 in an inactive state on chromatin. Genotoxic stress causes rapid dissociation of CABIN1 and activation of p53. However, its molecular mechanism is still unknown. Here, we reveal the phosphorylation- and ubiquitination-dependent degradation of CABIN1 upon DNA damage, releasing p53 for transcriptional activation. The DNA-damage-signaling kinases, ATM and CHK2, phosphorylate CABIN1 and increase the degradation of CABIN1 protein. Knockdown or overexpression of these kinases influences the stability of CABIN1 protein showing that their activity is critical for degradation of CABIN1. Additionally, CABIN1 was found to undergo ubiquitin-dependent proteasomal degradation mediated by the CRL4DDB2 ubiquitin ligase complex. Both phosphorylation and ubiquitination of CABIN1 appear to be relevant for controlling the level of CABIN1 protein upon genotoxic stress.
Collapse
Affiliation(s)
- Soo-Youn Choi
- Department of Biomedical Sciences, Department of Biochemistry and Molecular Biology, National Creative Research Center for Epigenome Reprogramming Network, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
218
|
Kang X, Chen X, He Y, Guo D, Guo L, Zhong J, Shu HB. DDB1 is a cellular substrate of NS3/4A protease and required for hepatitis C virus replication. Virology 2013; 435:385-94. [DOI: 10.1016/j.virol.2012.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
|
219
|
Hou CC, Yang WX. New insights to the ubiquitin–proteasome pathway (UPP) mechanism during spermatogenesis. Mol Biol Rep 2012; 40:3213-30. [DOI: 10.1007/s11033-012-2397-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/17/2012] [Indexed: 12/12/2022]
|
220
|
Zhang L, Lubin A, Chen H, Sun Z, Gong F. The deubiquitinating protein USP24 interacts with DDB2 and regulates DDB2 stability. Cell Cycle 2012; 11:4378-84. [PMID: 23159851 PMCID: PMC3552920 DOI: 10.4161/cc.22688] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Damage-specific DNA-binding protein 2 (DDB2) was first isolated as a subunit of the UV-DDB heterodimeric complex that is involved in DNA damage recognition in the nucleotide excision repair pathway (NER). DDB2 is required for efficient repair of CPDs in chromatin and is a component of the CRL4DDB2 E3 ligase that targets XPC, histones and DDB2 itself for ubiquitination. In this study, a yeast two-hybrid screening of a human cDNA library was performed to identify potential DDB2 cellular partners. We identified a deubiquitinating enzyme, USP24, as a likely DDB2-interacting partner. Interaction between DDB2 and USP24 was confirmed by co-precipitation. Importantly, knockdown of USP24 in two human cell lines decreased the steady-state levels of DDB2, indicating that USP24-mediated DDB2 deubiquitination prevents DDB2 degradation. In addition, we demonstrated that USP24 can cleave an ubiquitinated form of DDB2 in vitro. Taken together, our results suggest that the ubiquitin-specific protease USP24 is a novel regulator of DDB2 stability.
Collapse
Affiliation(s)
- Ling Zhang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL USA
| | | | | | | | | |
Collapse
|
221
|
DDB2 is a novel AR interacting protein and mediates AR ubiquitination/degradation. Int J Biochem Cell Biol 2012; 44:1952-61. [DOI: 10.1016/j.biocel.2012.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/27/2012] [Accepted: 07/23/2012] [Indexed: 11/22/2022]
|
222
|
EZH2 generates a methyl degron that is recognized by the DCAF1/DDB1/CUL4 E3 ubiquitin ligase complex. Mol Cell 2012; 48:572-86. [PMID: 23063525 DOI: 10.1016/j.molcel.2012.09.004] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/14/2012] [Accepted: 09/06/2012] [Indexed: 12/22/2022]
Abstract
Ubiquitination plays a major role in protein degradation. Although phosphorylation-dependent ubiquitination is well known for the regulation of protein stability, methylation-dependent ubiquitination machinery has not been characterized. Here, we provide evidence that methylation-dependent ubiquitination is carried out by damage-specific DNA binding protein 1 (DDB1)/cullin4 (CUL4) E3 ubiquitin ligase complex and a DDB1-CUL4-associated factor 1 (DCAF1) adaptor, which recognizes monomethylated substrates. Molecular modeling and binding affinity studies reveal that the putative chromo domain of DCAF1 directly recognizes monomethylated substrates, whereas critical binding pocket mutations of the DCAF1 chromo domain ablated the binding from the monomethylated substrates. Further, we discovered that enhancer of zeste homolog 2 (EZH2) methyltransferase has distinct substrate specificities for histone H3K27 and nonhistones exemplified by an orphan nuclear receptor, RORα. We propose that EZH2-DCAF1/DDB1/CUL4 represents a previously unrecognized methylation-dependent ubiquitination machinery specifically recognizing "methyl degron"; through this, nonhistone protein stability can be dynamically regulated in a methylation-dependent manner.
Collapse
|
223
|
Pines A, Vrouwe MG, Marteijn JA, Typas D, Luijsterburg MS, Cansoy M, Hensbergen P, Deelder A, de Groot A, Matsumoto S, Sugasawa K, Thoma N, Vermeulen W, Vrieling H, Mullenders L. PARP1 promotes nucleotide excision repair through DDB2 stabilization and recruitment of ALC1. ACTA ACUST UNITED AC 2012; 199:235-49. [PMID: 23045548 PMCID: PMC3471223 DOI: 10.1083/jcb.201112132] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PARP1-mediated poly(ADP-ribosyl)ation of DDB2 prolongs its occupation on UV-damaged chromatin and promotes the recruitment of the chromatin remodeler ALC1. The WD40-repeat protein DDB2 is essential for efficient recognition and subsequent removal of ultraviolet (UV)-induced DNA lesions by nucleotide excision repair (NER). However, how DDB2 promotes NER in chromatin is poorly understood. Here, we identify poly(ADP-ribose) polymerase 1 (PARP1) as a novel DDB2-associated factor. We demonstrate that DDB2 facilitated poly(ADP-ribosyl)ation of UV-damaged chromatin through the activity of PARP1, resulting in the recruitment of the chromatin-remodeling enzyme ALC1. Depletion of ALC1 rendered cells sensitive to UV and impaired repair of UV-induced DNA lesions. Additionally, DDB2 itself was targeted by poly(ADP-ribosyl)ation, resulting in increased protein stability and a prolonged chromatin retention time. Our in vitro and in vivo data support a model in which poly(ADP-ribosyl)ation of DDB2 suppresses DDB2 ubiquitylation and outline a molecular mechanism for PARP1-mediated regulation of NER through DDB2 stabilization and recruitment of the chromatin remodeler ALC1.
Collapse
Affiliation(s)
- Alex Pines
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Ren S, Xu C, Cui Z, Yu Y, Xu W, Wang F, Lu J, Wei M, Lu X, Gao X, Liang Y, Mao JH, Sun Y. Oncogenic CUL4A determines the response to thalidomide treatment in prostate cancer. J Mol Med (Berl) 2012; 90:1121-1132. [PMID: 22422151 PMCID: PMC3650856 DOI: 10.1007/s00109-012-0885-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 12/23/2022]
Abstract
Thalidomide is experimentally used to treat various human cancers; however, clinical responses to thalidomide are sporadic. Here we demonstrate that CUL4A plays an oncogenic role in prostate cancer development and prostate cancer cells with higher level of CUL4A are particularly sensitive to thalidomide treatment. We show that CUL4A is frequently overexpressed in human primary prostate cancer and cell lines. Notably, subjects with tumors that highly expressed CUL4A had poor overall survival. CUL4A downregulation inhibited cell proliferation and induced apoptosis in vitro and in vivo, whereas CUL4A overexpression transformed human normal prostate epithelial cells and promoted invasion, which was attenuated by the extracellular signal-regulated kinase (ERK) inhibitor. We further show that the sensitivity to thalidomide is positively correlated with CUL4A expression in a panel of prostate cell lines. Ectopic CUL4A expression greatly enhanced sensitivity to thalidomide, while its downregulation conferred resistance to this drug. Mechanistically, thalidomide decreased CUL4A in a time- and dose-dependent manner, consequently leading to inaction of ERK pathway. Finally, we show that cereblon level is correlated with CUL4A expression and downregulated in thalidomide-resistant prostate cancer cell. Our results offer the first evidence that CUL4A is a potential therapeutic target for prostate cancer and may serve as a biomarker for assessing prognosis of human prostate cancer and response to thalidomide treatment.
Collapse
Affiliation(s)
- Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, No. 168, Changhai Rd, Yangpu District, Shanghai 200433, China
| | - Chuanliang Xu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, No. 168, Changhai Rd, Yangpu District, Shanghai 200433, China
| | - Zilian Cui
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, No. 168, Changhai Rd, Yangpu District, Shanghai 200433, China
| | - Yongwei Yu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, No. 168, Changhai Rd, Yangpu District, Shanghai 200433, China
| | - Weidong Xu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, No. 168, Changhai Rd, Yangpu District, Shanghai 200433, China
| | - Fubo Wang
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, No. 168, Changhai Rd, Yangpu District, Shanghai 200433, China
| | - Ji Lu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, No. 168, Changhai Rd, Yangpu District, Shanghai 200433, China
| | - Min Wei
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, No. 168, Changhai Rd, Yangpu District, Shanghai 200433, China
| | - Xin Lu
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, No. 168, Changhai Rd, Yangpu District, Shanghai 200433, China
| | - Xu Gao
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, No. 168, Changhai Rd, Yangpu District, Shanghai 200433, China
| | - You Liang
- Thoracic Oncology Laboratory, Department of Surgery, Comprehensive Cancer Center, University of California, San Francisco, CA 94143, USA
| | - Jian-Hua Mao
- Life Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Yinghao Sun
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, No. 168, Changhai Rd, Yangpu District, Shanghai 200433, China
| |
Collapse
|
225
|
Abstract
Histones are highly alkaline proteins that package and order the DNA into chromatin in eukaryotic cells. Nucleotide excision repair (NER) is a conserved multistep reaction that removes a wide range of generally bulky and/or helix-distorting DNA lesions. Although the core biochemical mechanism of NER is relatively well known, how cells detect and repair lesions in diverse chromatin environments is still under intensive research. As with all DNA-related processes, the NER machinery must deal with the presence of organized chromatin and the physical obstacles it presents. A huge catalogue of posttranslational histone modifications has been documented. Although a comprehensive understanding of most of these modifications is still lacking, they are believed to be important regulatory elements for many biological processes, including DNA replication and repair, transcription and cell cycle control. Some of these modifications, including acetylation, methylation, phosphorylation and ubiquitination on the four core histones (H2A, H2B, H3 and H4) or the histone H2A variant H2AX, have been found to be implicated in different stages of the NER process. This review will summarize our recent understanding in this area.
Collapse
|
226
|
The emerging roles of ATP-dependent chromatin remodeling enzymes in nucleotide excision repair. Int J Mol Sci 2012; 13:11954-11973. [PMID: 23109894 PMCID: PMC3472786 DOI: 10.3390/ijms130911954] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 12/14/2022] Open
Abstract
DNA repair in eukaryotic cells takes place in the context of chromatin, where DNA, including damaged DNA, is tightly packed into nucleosomes and higher order chromatin structures. Chromatin intrinsically restricts accessibility of DNA repair proteins to the damaged DNA and impacts upon the overall rate of DNA repair. Chromatin is highly responsive to DNA damage and undergoes specific remodeling to facilitate DNA repair. How damaged DNA is accessed, repaired and restored to the original chromatin state, and how chromatin remodeling coordinates these processes in vivo, remains largely unknown. ATP-dependent chromatin remodelers (ACRs) are the master regulators of chromatin structure and dynamics. Conserved from yeast to humans, ACRs utilize the energy of ATP to reorganize packing of chromatin and control DNA accessibility by sliding, ejecting or restructuring nucleosomes. Several studies have demonstrated that ATP-dependent remodeling activity of ACRs plays important roles in coordination of spatio-temporal steps of different DNA repair pathways in chromatin. This review focuses on the role of ACRs in regulation of various aspects of nucleotide excision repair (NER) in the context of chromatin. We discuss current understanding of ATP-dependent chromatin remodeling by various subfamilies of remodelers and regulation of the NER pathway in vivo.
Collapse
|
227
|
Liu HC, Enikolopov G, Chen Y. Cul4B regulates neural progenitor cell growth. BMC Neurosci 2012; 13:112. [PMID: 22992378 PMCID: PMC3506489 DOI: 10.1186/1471-2202-13-112] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 09/10/2012] [Indexed: 12/28/2022] Open
Abstract
Background Cullin ubiquitin ligases are activated via the covalent modification of Cullins by the small ubiquitin-like protein nedd8 in a process called neddylation. Genetic mutations of cullin-4b (cul4b) cause a prevalent type of X-linked intellectual disability (XLID) in males, but the physiological function of Cul4B in neuronal cells remains unclear. Results There are three major isoforms of Cul4B (1, 2, and 3) in human and rodent tissues. By examining the endogenous Cul4B isoforms in the brain, this study demonstrates that Cul4B-1 and Cul4B-2 isoforms are unneddylated and more abundant in the brain whereas the lesser species Cul4B-3 that misses the N-terminus present in the other two isoforms is neddylated. The data suggest that the N-terminus of Cul4B inhibits neddylation in the larger isoforms. Immunostaining of human NT-2 cells also shows that most Cul4B is unneddylated, especially when it is localized in the process in G0-synchronized cells. This study demonstrates that Cul4B accumulates during mitosis and downregulation of Cul4B arrests NPCs and NT-2 cells in the G2/M phase of the cell cycle. In both human and rodent brain tissues, Cul4B-positive cells accumulate β-catenin in the dentate subgranular zone and the subventricular zone. These Cul4B-positive cells also co-express the MPM-2 mitotic epitope, suggesting that Cul4B is also necessary for mitosis progression in vivo. Conclusions This study provides first evidence that unneddylated Cul4B isoforms exist in the brain and are necessary for mitosis progression in NPCs. The data suggest that unneddylated Cul4B isoforms specifically inhibits β-catenin degradation during mitosis. Furthermore, unneddylated Cul4B may play a role in addition to cell cycle since it is exclusively localized to the processes in starved NT-2 cells. Further analyses of the different isoforms of Cul4B will help understand the cognitive deficits in Cul4B-linked XLID and give insights into drug and biomarker discoveries.
Collapse
Affiliation(s)
- Helio C Liu
- Department of Geriatrics, University of Arkansas for Medical Sciences, Slot 807, Little Rock, AR 72205, USA
| | | | | |
Collapse
|
228
|
Hou X, Zhang W, Xiao Z, Gan H, Lin X, Liao S, Han C. Mining and characterization of ubiquitin E3 ligases expressed in the mouse testis. BMC Genomics 2012; 13:495. [PMID: 22992278 PMCID: PMC3460789 DOI: 10.1186/1471-2164-13-495] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/07/2012] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Ubiquitin-mediated protein modification and degradation are believed to play important roles in mammalian spermatogenesis. The catalogues of ubiquitin activating enzymes, conjugating enzymes, and ligases (E3s) have been known for mammals such as mice and humans. However, a systematic characterization of E3s expressed during spermatogenesis has not been carried out. RESULTS In present study, we set out to mine E3s from the mouse genome and to characterize their expression pattern, subcellular localization, and enzymatic activities based on microarray data and biochemical assays. We identified 398 putative E3s belonging to the RING, U-box, and HECT subfamilies and found that most genes were conserved between mice and humans. We discovered that 73 of them were highly or specifically expressed in the testes based on the microarray expression data. We selected 10 putative E3 genes to examine their mRNA expression pattern, and several genes to study their subcellular localization and E3 ligase activity. RT-PCR results showed that all the selected genes were predominately expressed in the testis. Some putative E3s were localized in the cytoplasm while others were in both the cytoplasm and the nucleus. Moreover, all the selected proteins were enzymatically active as demonstrated by in vitro and in vivo assays. CONCLUSIONS We have identified a large number of putative E3s that are expressed during mouse spermatogenesis. Among these, a significant portion is highly or specifically expressed in the testis. Subcellular localization and enzymatic activity assays suggested that these E3s might execute diverse functions in mammalian spermatogenesis. Our results may serve as an initial guide to the field for further functional analysis.
Collapse
Affiliation(s)
- Xiaojun Hou
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhenyu Xiao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Gan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiwen Lin
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shangying Liao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunsheng Han
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
229
|
Adam S, Polo SE. Chromatin dynamics during nucleotide excision repair: histones on the move. Int J Mol Sci 2012; 13:11895-11911. [PMID: 23109890 PMCID: PMC3472782 DOI: 10.3390/ijms130911895] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 12/16/2022] Open
Abstract
It has been a long-standing question how DNA damage repair proceeds in a nuclear environment where DNA is packaged into chromatin. Several decades of analysis combining in vitro and in vivo studies in various model organisms ranging from yeast to human have markedly increased our understanding of the mechanisms underlying chromatin disorganization upon damage detection and re-assembly after repair. Here, we review the methods that have been developed over the years to delineate chromatin alterations in response to DNA damage by focusing on the well-characterized Nucleotide Excision Repair (NER) pathway. We also highlight how these methods have provided key mechanistic insight into histone dynamics coupled to repair in mammals, raising new issues about the maintenance of chromatin integrity. In particular, we discuss how NER factors and central players in chromatin dynamics such as histone modifiers, nucleosome remodeling factors, and histone chaperones function to mobilize histones during repair.
Collapse
Affiliation(s)
- Salomé Adam
- Laboratory of Chromatin Dynamics, Curie Institute Research Centre, 75248 Paris Cedex 5, France; E-Mail:
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 218, 75248 Paris Cedex 5, France
| | - Sophie E. Polo
- Laboratory of Chromatin Dynamics, Curie Institute Research Centre, 75248 Paris Cedex 5, France; E-Mail:
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 218, 75248 Paris Cedex 5, France
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +33-1-5624-6721; Fax: +33-1-4633-3016
| |
Collapse
|
230
|
Roy N, Bagchi S, Raychaudhuri P. Damaged DNA binding protein 2 in reactive oxygen species (ROS) regulation and premature senescence. Int J Mol Sci 2012; 13:11012-11026. [PMID: 23109835 PMCID: PMC3472727 DOI: 10.3390/ijms130911012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 08/22/2012] [Accepted: 08/28/2012] [Indexed: 11/16/2022] Open
Abstract
Premature senescence induced by DNA damage or oncogene is a critical mechanism of tumor suppression. Reactive oxygen species (ROS) have been implicated in the induction of premature senescence response. Several pathological disorders such as cancer, aging and age related neurological abnormalities have been linked to ROS deregulation. Here, we discuss how Damaged DNA binding Protein-2 (DDB2), a nucleotide excision repair protein, plays an important role in ROS regulation by epigenetically repressing the antioxidant genes MnSOD and Catalase. We further revisit a model in which DDB2 plays an instrumental role in DNA damage induced ROS accumulation, ROS induced premature senescence and inhibition of skin tumorigenesis.
Collapse
Affiliation(s)
- Nilotpal Roy
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA; E-Mail:
| | - Srilata Bagchi
- Center of Molecular Biology of Oral Diseases (M/C 860), College of Dentistry, Cancer Center, University of Illinois at Chicago, 801 S. Paulina Ave, Chicago, IL 60612, USA; E-Mail:
| | - Pradip Raychaudhuri
- Department of Biochemistry and Molecular Genetics (M/C 669), University of Illinois at Chicago, 900 S. Ashland Ave, Chicago, IL 60607, USA; E-Mail:
| |
Collapse
|
231
|
Shen Z, Prasanth SG. Orc2 protects ORCA from ubiquitin-mediated degradation. Cell Cycle 2012; 11:3578-89. [PMID: 22935713 DOI: 10.4161/cc.21870] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Origin recognition complex (ORC) is highly dynamic, with several ORC subunits getting posttranslationally modified by phosphorylation or ubiquitination in a cell cycle-dependent manner. We have previously demonstrated that a WD repeat containing protein ORC-associated (ORCA/LRWD1) stabilizes the ORC on chromatin and facilitates pre-RC assembly. Further, ORCA levels are cell cycle-regulated, with highest levels during G(1), and progressively decreasing during S phase, but the mechanism remains to be elucidated. We now demonstrate that ORCA is polyubiquitinated in vivo, with elevated ubiquitination observed at the G(1)/S boundary. ORCA utilizes lysine-48 (K48) ubiquitin linkage, suggesting that ORCA ubiquitination mediates its regulated degradation. Ubiquitinated ORCA is re-localized in the form of nuclear aggregates and is predominantly associated with chromatin. We demonstrate that ORCA associates with the E3 ubiquitin ligase Cul4A-Ddb1. ORCA is ubiquitinated at the WD40 repeat domain, a region that is also recognized by Orc2. Furthermore, Orc2 associates only with the non-ubiquitinated form of ORCA, and Orc2 depletion results in the proteasome-mediated destabilization of ORCA. Based on the results, we suggest that Orc2 protects ORCA from ubiquitin-mediated degradation in vivo.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | |
Collapse
|
232
|
Wu Z, Chen Y, Yang T, Gao Q, Yuan M, Ma L. Targeted ubiquitination and degradation of G-protein-coupled receptor kinase 5 by the DDB1-CUL4 ubiquitin ligase complex. PLoS One 2012; 7:e43997. [PMID: 22952844 PMCID: PMC3428324 DOI: 10.1371/journal.pone.0043997] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Accepted: 07/26/2012] [Indexed: 11/18/2022] Open
Abstract
The G protein-coupled receptor kinases (GRKs) phosphorylate agonist occupied G protein-coupled receptors (GPCRs) and desensitize GPCR-mediated signaling. Recent studies indicate they also function non-catalytically via interaction with other proteins. In this study, a proteomic approach was used to screen interacting proteins of GRK5 in MDA-MB-231 cells and HUVEC cells. Mass spectrometry analysis reveals several proteins in the GRK5 immunocomplex including damaged DNA-binding protein 1 (DDB1), an adaptor subunit of the CUL4-ROC1 E3 ubiquitin ligase complex. Co-immunoprecipitation experiments confirmed the association of GRK5 with DDB1-CUL4 complex, and reveal that DDB1 acts as an adapter to link GRK5 to CUL4 to form the complex. Overexpression of DDB1 promoted, whereas knockdown of DDB1 inhibited the ubiquitination of GRK5, and the degradation of GRK5 was reduced in cells deficient of DDB1. Furthermore, the depletion of DDB1 decreased Hsp90 inhibitor-induced GRK5 destabilization and UV irradiation-induced GRK5 degradation. Thus, our study identified potential GRK5 interacting proteins, and reveals the association of GRK5 with DDB1 in cell and the regulation of GRK5 level by DDB1-CUL4 ubiquitin ligase complex-dependent proteolysis pathway.
Collapse
Affiliation(s)
- Ziyan Wu
- The State Key Laboratory of Medical Neurobiology and Pharmacology Research Center, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yuejun Chen
- The State Key Laboratory of Medical Neurobiology and Pharmacology Research Center, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, China
- * E-mail:
| | - Tong Yang
- The State Key Laboratory of Medical Neurobiology and Pharmacology Research Center, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Qinqin Gao
- The State Key Laboratory of Medical Neurobiology and Pharmacology Research Center, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Man Yuan
- The State Key Laboratory of Medical Neurobiology and Pharmacology Research Center, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lan Ma
- The State Key Laboratory of Medical Neurobiology and Pharmacology Research Center, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
233
|
Kamileri I, Karakasilioti I, Garinis GA. Nucleotide excision repair: new tricks with old bricks. Trends Genet 2012; 28:566-73. [PMID: 22824526 DOI: 10.1016/j.tig.2012.06.004] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 06/05/2012] [Accepted: 06/19/2012] [Indexed: 12/22/2022]
Abstract
Nucleotide excision repair (NER) is a major DNA repair pathway that ensures that the genome remains functionally intact and is faithfully transmitted to progeny. However, defects in NER lead, in addition to cancer and aging, to developmental abnormalities whose clinical heterogeneity and varying severity cannot be fully explained by the DNA repair deficiencies. Recent work has revealed that proteins in NER play distinct roles, including some that go well beyond DNA repair. NER factors are components of protein complexes known to be involved in nucleosome remodeling, histone ubiquitination, and transcriptional activation of genes involved in nuclear receptor signaling, stem cell reprogramming, and postnatal mammalian growth. Together, these findings add new pieces to the puzzle for understanding NER and the relevance of NER defects in development and disease.
Collapse
Affiliation(s)
- Irene Kamileri
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Nikolaou Plastira 100, 70013, Heraklion, Crete, Greece
| | | | | |
Collapse
|
234
|
Damaged DNA induced UV-damaged DNA-binding protein (UV-DDB) dimerization and its roles in chromatinized DNA repair. Proc Natl Acad Sci U S A 2012; 109:E2737-46. [PMID: 22822215 DOI: 10.1073/pnas.1110067109] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UV light-induced photoproducts are recognized and removed by the nucleotide-excision repair (NER) pathway. In humans, the UV-damaged DNA-binding protein (UV-DDB) is part of a ubiquitin E3 ligase complex (DDB1-CUL4A(DDB2)) that initiates NER by recognizing damaged chromatin with concomitant ubiquitination of core histones at the lesion. We report the X-ray crystal structure of the human UV-DDB in a complex with damaged DNA and show that the N-terminal domain of DDB2 makes critical contacts with two molecules of DNA, driving N-terminal-domain folding and promoting UV-DDB dimerization. The functional significance of the dimeric UV-DDB [(DDB1-DDB2)(2)], in a complex with damaged DNA, is validated by electron microscopy, atomic force microscopy, solution biophysical, and functional analyses. We propose that the binding of UV-damaged DNA results in conformational changes in the N-terminal domain of DDB2, inducing helical folding in the context of the bound DNA and inducing dimerization as a function of nucleotide binding. The temporal and spatial interplay between domain ordering and dimerization provides an elegant molecular rationale for the unprecedented binding affinities and selectivities exhibited by UV-DDB for UV-damaged DNA. Modeling the DDB1-CUL4A(DDB2) complex according to the dimeric UV-DDB-AP24 architecture results in a mechanistically consistent alignment of the E3 ligase bound to a nucleosome harboring damaged DNA. Our findings provide unique structural and conformational insights into the molecular architecture of the DDB1-CUL4A(DDB2) E3 ligase, with significant implications for the regulation and overall organization of the proteins responsible for initiation of NER in the context of chromatin and for the consequent maintenance of genomic integrity.
Collapse
|
235
|
Okino Y, Inayoshi Y, Kojima Y, Kidani S, Kaneoka H, Honkawa A, Higuchi H, Nishijima KI, Miyake K, Iijima S. Moloney murine leukemia virus integrase and reverse transcriptase interact with PML proteins. J Biochem 2012; 152:161-9. [PMID: 22685230 DOI: 10.1093/jb/mvs063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pull-down assay and co-immunoprecipitation of cell extracts in which the integrase or reverse transcriptase of Moloney murine leukemia virus was transiently expressed showed that both enzymes interacted with PML proteins. In infected cells, interaction between the integrase and PML was also observed. Transient expression of PIASy and SUMO proteins facilitated SUMOylation of the integrase but had no apparent effects on the interaction with PML. A FLAG-tagged integrase co-localized with PML protein possibly in the PML body. Knockdown of PML by small interfering RNA resulted in reduced viral cDNA levels and integration efficiency. This suggested that PML proteins activated reverse transcription.
Collapse
Affiliation(s)
- Yuuki Okino
- Department of Biotechnology, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya, 464-8603, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Cheng L, Chen Y, Chen L, Shen Y, Shen J, An R, Luo Q, Du J. Interactions between the ROP18 kinase and host cell proteins that aid in the parasitism of Toxoplasma gondii. Acta Trop 2012; 122:255-60. [PMID: 22365922 DOI: 10.1016/j.actatropica.2012.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/20/2012] [Accepted: 02/08/2012] [Indexed: 11/24/2022]
Abstract
Serine/threonine kinases secreted from rhoptry organelles are important virulence factors for Toxoplasma gondii. Among rhoptry proteins, the ROP18 kinase has been identified as a key virulence determinant mediating pathogenesis in T. gondii; however, the molecular mechanisms by which this kinase exerts its pathogenic action remain poorly understood. In this study, the interactions between the ROP18 kinase of Toxoplasma gondii and the host cell proteins were analyzed using a yeast two-hybrid technique. The cMyc-ROP18(25-251) fusion proteins expressed by pGBKT7 plasmids in AH109 yeast were bound to host cell proteins from a human fetal brain cDNA library transformed to AH109 yeast using a mating method. Using these selection procedures, we identified seven host proteins that had not previously been reported to interact with ROP18 such as DDB1, TOR1AIP1, integrin, SLC3A2, TPST2, DERL2 and OCIAD1. These host proteins are associated with DNA repair, transcriptional regulation, translation modification, protein degradation and cell adhesion. Our data strongly support the hypothesis that the secreted kinase ROP18 is involved in several complex cellular pathways for the invasion and commandeering of host functions.
Collapse
|
237
|
Luijsterburg MS, Lindh M, Acs K, Vrouwe MG, Pines A, van Attikum H, Mullenders LH, Dantuma NP. DDB2 promotes chromatin decondensation at UV-induced DNA damage. ACTA ACUST UNITED AC 2012; 197:267-81. [PMID: 22492724 PMCID: PMC3328393 DOI: 10.1083/jcb.201106074] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In addition to its role in DNA lesion recognition, the damaged DNA-binding protein DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Nucleotide excision repair (NER) is the principal pathway that removes helix-distorting deoxyribonucleic acid (DNA) damage from the mammalian genome. Recognition of DNA lesions by xeroderma pigmentosum group C (XPC) protein in chromatin is stimulated by the damaged DNA-binding protein 2 (DDB2), which is part of a CUL4A–RING ubiquitin ligase (CRL4) complex. In this paper, we report a new function of DDB2 in modulating chromatin structure at DNA lesions. We show that DDB2 elicits unfolding of large-scale chromatin structure independently of the CRL4 ubiquitin ligase complex. Our data reveal a marked adenosine triphosphate (ATP)–dependent reduction in the density of core histones in chromatin containing UV-induced DNA lesions, which strictly required functional DDB2 and involved the activity of poly(adenosine diphosphate [ADP]–ribose) polymerase 1. Finally, we show that lesion recognition by XPC, but not DDB2, was strongly reduced in ATP-depleted cells and was regulated by the steady-state levels of poly(ADP-ribose) chains.
Collapse
Affiliation(s)
- Martijn S Luijsterburg
- Department of Cell and Molecular Biology, Karolinska Institutet, S-17177 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Abstract
Cullin/RING ubiquitin ligases (CRL) comprise the largest subfamily of ubiquitin ligases. CRLs are involved in cell cycle regulation, DNA replication, DNA damage response (DDR), development, immune response, transcriptional regulation, circadian rhythm, viral infection, and protein quality control. One of the main functions of CRLs is to regulate the DDR, a fundamental signaling cascade that maintains genome integrity. In this review, we will discuss the regulation of CRL ubiquitin ligases and their roles in control of the DDR.
Collapse
Affiliation(s)
- Ju-Mei Li
- Department of Biochemistry and Molecular Biology, Medical School, The University of Texas Health Science Center at Houston Houston, TX, USA
| | | |
Collapse
|
239
|
Cao J, Yan Q. Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front Oncol 2012; 2:26. [PMID: 22649782 PMCID: PMC3355875 DOI: 10.3389/fonc.2012.00026] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/21/2012] [Indexed: 11/17/2022] Open
Abstract
Histone post-transcriptional modifications play essential roles in regulation of all DNA related processes. Among them, histone ubiquitination has been discovered for more than three decades. However, its functions are still less well understood than other histone modifications such as methylation and acetylation. In this review, we will summarize our current understanding of histone ubiquitination and deubiquitination. In particular, we will focus on how they are regulated by histone ubiquitin ligases and deubiquitinating enzymes. We will then discuss the roles of histone ubiquitination in transcription and DNA damage response and the crosstalk between histone ubiquitination and other histone modifications. Finally, we will review the important roles of histone ubiquitination in stem cell biology and cancer.
Collapse
Affiliation(s)
- Jian Cao
- Department of Pathology, Yale University School of MedicineNew Haven, CT, USA
| | - Qin Yan
- Department of Pathology, Yale University School of MedicineNew Haven, CT, USA
| |
Collapse
|
240
|
Lee J, Zhou P. Pathogenic Role of the CRL4 Ubiquitin Ligase in Human Disease. Front Oncol 2012; 2:21. [PMID: 22649780 PMCID: PMC3355902 DOI: 10.3389/fonc.2012.00021] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 02/17/2012] [Indexed: 11/29/2022] Open
Abstract
The cullin 4-RING ubiquitin ligase (CRL4) family employs multiple DDB1–CUL4 associated factors substrate receptors to direct the degradation of proteins involved in a wide spectrum of cellular functions. Aberrant expression of the cullin 4A (CUL4A) gene is found in many tumor types, while mutations of the cullin 4B (CUL4B) gene are causally associated with human X-linked mental retardation. This focused review will summarize our current knowledge of the two CUL4 family members in the pathogenesis of human malignancy and neuronal disease, and discuss their potential as new targets for cancer prevention and therapeutic intervention.
Collapse
Affiliation(s)
- Jennifer Lee
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College and Weill Graduate School of Medical Sciences of Cornell University New York, NY, USA
| | | |
Collapse
|
241
|
Saccharomyces cerevisiae Cmr1 protein preferentially binds to UV-damaged DNA in vitro. J Microbiol 2012; 50:112-8. [PMID: 22367945 DOI: 10.1007/s12275-012-1597-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 12/20/2011] [Indexed: 10/28/2022]
Abstract
DNA metabolic processes such as DNA replication, recombination, and repair are fundamentally important for the maintenance of genome integrity and cell viability. Although a large number of proteins involved in these pathways have been extensively studied, many proteins still remain to be identified. In this study, we isolated DNA-binding proteins from Saccharomyces cerevisiae using DNA-cellulose columns. By analyzing the proteins using mass spectrometry, an uncharacterized protein, Cmr1/YDL156W, was identified. Cmr1 showed sequence homology to human Damaged-DNA binding protein 2 in its C-terminal WD40 repeats. Consistent with this finding, the purified recombinant Cmr1 protein was found to be intrinsically associated with DNA-binding activity and exhibited higher affinity to UV-damaged DNA substrates. Chromatin isolation experiments revealed that Cmr1 localized in both the chromatin and supernatant fractions, and the level of Cmr1 in the chromatin fraction increased when yeast cells were irradiated with UV. These results suggest that Cmr1 may be involved in DNA-damage responses in yeast.
Collapse
|
242
|
Lan L, Nakajima S, Kapetanaki MG, Hsieh CL, Fagerburg M, Thickman K, Rodriguez-Collazo P, Leuba SH, Levine AS, Rapić-Otrin V. Monoubiquitinated histone H2A destabilizes photolesion-containing nucleosomes with concomitant release of UV-damaged DNA-binding protein E3 ligase. J Biol Chem 2012; 287:12036-49. [PMID: 22334663 PMCID: PMC3320950 DOI: 10.1074/jbc.m111.307058] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
How the nucleotide excision repair (NER) machinery gains access to damaged chromatinized DNA templates and how the chromatin structure is modified to promote efficient repair of the non-transcribed genome remain poorly understood. The UV-damaged DNA-binding protein complex (UV-DDB, consisting of DDB1 and DDB2, the latter of which is mutated in xeroderma pigmentosum group E patients, is a substrate-recruiting module of the cullin 4B-based E3 ligase complex, DDB1-CUL4BDDB2. We previously reported that the deficiency of UV-DDB E3 ligases in ubiquitinating histone H2A at UV-damaged DNA sites in the xeroderma pigmentosum group E cells contributes to the faulty NER in these skin cancer-prone patients. Here, we reveal the mechanism by which monoubiquitination of specific H2A lysine residues alters nucleosomal dynamics and subsequently initiates NER. We show that DDB1-CUL4BDDB2 E3 ligase specifically binds to mononucleosomes assembled with human recombinant histone octamers and nucleosome-positioning DNA containing cyclobutane pyrimidine dimers or 6-4 photoproducts photolesions. We demonstrate functionally that ubiquitination of H2A Lys-119/Lys-120 is necessary for destabilization of nucleosomes and concomitant release of DDB1-CUL4BDDB2 from photolesion-containing DNA. Nucleosomes in which these lysines are replaced with arginines are resistant to such structural changes, and arginine mutants prevent the eviction of H2A and dissociation of polyubiquitinated DDB2 from UV-damaged nucleosomes. The partial eviction of H3 from the nucleosomes is dependent on ubiquitinated H2A Lys-119/Lys-120. Our results provide mechanistic insight into how post-translational modification of H2A at the site of a photolesion initiates the repair process and directly affects the stability of the human genome.
Collapse
Affiliation(s)
- Li Lan
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Buscaino A, White SA, Houston DR, Lejeune E, Simmer F, de Lima Alves F, Diyora PT, Urano T, Bayne EH, Rappsilber J, Allshire RC. Raf1 Is a DCAF for the Rik1 DDB1-like protein and has separable roles in siRNA generation and chromatin modification. PLoS Genet 2012; 8:e1002499. [PMID: 22319459 PMCID: PMC3271066 DOI: 10.1371/journal.pgen.1002499] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 12/09/2011] [Indexed: 12/29/2022] Open
Abstract
Non-coding transcription can trigger histone post-translational modifications forming specialized chromatin. In fission yeast, heterochromatin formation requires RNAi and the histone H3K9 methyltransferase complex CLRC, composed of Clr4, Raf1, Raf2, Cul4, and Rik1. CLRC mediates H3K9 methylation and siRNA production; it also displays E3-ubiquitin ligase activity in vitro. DCAFs act as substrate receptors for E3 ligases and may couple ubiquitination with histone methylation. Here, structural alignment and mutation of signature WDxR motifs in Raf1 indicate that it is a DCAF for CLRC. We demonstrate that Raf1 promotes H3K9 methylation and siRNA amplification via two distinct, separable functions. The association of the DCAF Raf1 with Cul4-Rik1 is critical for H3K9 methylation, but dispensable for processing of centromeric transcripts into siRNAs. Thus the association of a DCAF, Raf1, with its adaptor, Rik1, is required for histone methylation and to allow RNAi to signal to chromatin.
Collapse
Affiliation(s)
- Alessia Buscaino
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Sharon A. White
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Douglas R. Houston
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Erwan Lejeune
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Femke Simmer
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Flavia de Lima Alves
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Piyush T. Diyora
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Takeshi Urano
- Department of Biochemistry, Shimane University Faculty of Medicine, Izumo, Japan
| | - Elizabeth H. Bayne
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Juri Rappsilber
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Robin C. Allshire
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
244
|
Lans H, Marteijn JA, Vermeulen W. ATP-dependent chromatin remodeling in the DNA-damage response. Epigenetics Chromatin 2012; 5:4. [PMID: 22289628 PMCID: PMC3275488 DOI: 10.1186/1756-8935-5-4] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/30/2012] [Indexed: 12/31/2022] Open
Abstract
The integrity of DNA is continuously challenged by metabolism-derived and environmental genotoxic agents that cause a variety of DNA lesions, including base alterations and breaks. DNA damage interferes with vital processes such as transcription and replication, and if not repaired properly, can ultimately lead to premature aging and cancer. Multiple DNA pathways signaling for DNA repair and DNA damage collectively safeguard the integrity of DNA. Chromatin plays a pivotal role in regulating DNA-associated processes, and is itself subject to regulation by the DNA-damage response. Chromatin influences access to DNA, and often serves as a docking or signaling site for repair and signaling proteins. Its structure can be adapted by post-translational histone modifications and nucleosome remodeling, catalyzed by the activity of ATP-dependent chromatin-remodeling complexes. In recent years, accumulating evidence has suggested that ATP-dependent chromatin-remodeling complexes play important, although poorly characterized, roles in facilitating the effectiveness of the DNA-damage response. In this review, we summarize the current knowledge on the involvement of ATP-dependent chromatin remodeling in three major DNA repair pathways: nucleotide excision repair, homologous recombination, and non-homologous end-joining. This shows that a surprisingly large number of different remodeling complexes display pleiotropic functions during different stages of the DNA-damage response. Moreover, several complexes seem to have multiple functions, and are implicated in various mechanistically distinct repair pathways.
Collapse
Affiliation(s)
- Hannes Lans
- Department of Genetics, Medical Genetics Center, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | |
Collapse
|
245
|
Fischer ES, Scrima A, Böhm K, Matsumoto S, Lingaraju GM, Faty M, Yasuda T, Cavadini S, Wakasugi M, Hanaoka F, Iwai S, Gut H, Sugasawa K, Thomä NH. The molecular basis of CRL4DDB2/CSA ubiquitin ligase architecture, targeting, and activation. Cell 2012; 147:1024-39. [PMID: 22118460 DOI: 10.1016/j.cell.2011.10.035] [Citation(s) in RCA: 365] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/12/2011] [Accepted: 10/16/2011] [Indexed: 01/23/2023]
Abstract
The DDB1-CUL4-RBX1 (CRL4) ubiquitin ligase family regulates a diverse set of cellular pathways through dedicated substrate receptors (DCAFs). The DCAF DDB2 detects UV-induced pyrimidine dimers in the genome and facilitates nucleotide excision repair. We provide the molecular basis for DDB2 receptor-mediated cyclobutane pyrimidine dimer recognition in chromatin. The structures of the fully assembled DDB1-DDB2-CUL4A/B-RBX1 (CRL4(DDB2)) ligases reveal that the mobility of the ligase arm creates a defined ubiquitination zone around the damage, which precludes direct ligase activation by DNA lesions. Instead, the COP9 signalosome (CSN) mediates the CRL4(DDB2) inhibition in a CSN5 independent, nonenzymatic, fashion. In turn, CSN inhibition is relieved upon DNA damage binding to the DDB2 module within CSN-CRL4(DDB2). The Cockayne syndrome A DCAF complex crystal structure shows that CRL4(DCAF(WD40)) ligases share common architectural features. Our data support a general mechanism of ligase activation, which is induced by CSN displacement from CRL4(DCAF) on substrate binding to the DCAF.
Collapse
Affiliation(s)
- Eric S Fischer
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Deem AK, Li X, Tyler JK. Epigenetic regulation of genomic integrity. Chromosoma 2012; 121:131-51. [PMID: 22249206 DOI: 10.1007/s00412-011-0358-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 10/14/2022]
Abstract
Inefficient and inaccurate repair of DNA damage is the principal cause of DNA mutations, chromosomal aberrations, and carcinogenesis. Numerous multiple-step DNA repair pathways exist whose deployment depends on the nature of the DNA lesion. Common to all eukaryotic DNA repair pathways is the need to unravel the compacted chromatin structure to facilitate access of the repair machinery to the DNA and restoration of the original chromatin state afterward. Accordingly, our cells utilize a plethora of coordinated mechanisms to locally open up the chromatin structure to reveal the underlying DNA sequence and to orchestrate the efficient and accurate repair of DNA lesions. Here we review changes to the chromatin structure that are intrinsic to the DNA damage response and the available mechanistic insight into how these chromatin changes facilitate distinct stages of the DNA damage repair pathways to maintain genomic stability.
Collapse
Affiliation(s)
- Angela K Deem
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
247
|
Kassmeier MD, Mondal K, Palmer VL, Raval P, Kumar S, Perry GA, Anderson DK, Ciborowski P, Jackson S, Xiong Y, Swanson PC. VprBP binds full-length RAG1 and is required for B-cell development and V(D)J recombination fidelity. EMBO J 2011; 31:945-58. [PMID: 22157821 DOI: 10.1038/emboj.2011.455] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 11/11/2011] [Indexed: 11/09/2022] Open
Abstract
The N-terminus of full-length RAG1, though dispensable for RAG1/2 cleavage activity, is required for efficient V(D)J recombination. This region supports RING E3 ubiquitin ligase activity in vitro, but whether full-length RAG1 functions as a single subunit or a multi-subunit E3 ligase in vivo is unclear. We show the multi-subunit cullin RING E3 ligase complex VprBP/DDB1/Cul4A/Roc1 associates with full-length RAG1 through VprBP. This complex is assembled into RAG protein-DNA complexes, and supports in-vitro ubiquitylation activity that is insensitive to RAG1 RING domain mutations. Conditional B lineage-specific VprBP disruption arrests B-cell development at the pro-B-to-pre-B cell transition, but this block is bypassed by expressing rearranged immunoglobulin transgenes. Mice with a conditional VprBP disruption show modest reduction of D-J(H) rearrangement, whereas V(H)-DJ(H) and V(κ)-J(κ) rearrangements are severely impaired. D-J(H) coding joints from VprBP-insufficent mice show longer junctional nucleotide insertions and a higher mutation frequency in D and J segments than normal. These data suggest full-length RAG1 recruits a cullin RING E3 ligase complex to ubiquitylate an unknown protein(s) to limit error-prone repair during V(D)J recombination.
Collapse
Affiliation(s)
- Michele D Kassmeier
- Department of Medical Microbiology and Immunology, Creighton University Medical Center, Omaha, NE, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
248
|
Li J, Bhat A, Xiao W. Regulation of nucleotide excision repair through ubiquitination. Acta Biochim Biophys Sin (Shanghai) 2011; 43:919-29. [PMID: 21986915 DOI: 10.1093/abbs/gmr088] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA-repair pathway in all organisms. While bacteria require only three proteins to complete the incision step of NER, eukaryotes employ about 30 proteins to complete the same step. Here we summarize recent studies demonstrating that ubiquitination, a post-translational modification, plays critical roles in regulating the NER activity either dependent on or independent of ubiquitin-proteolysis. Several NER components have been shown as targets of ubiquitination while others are actively involved in the ubiquitination process. We argue through this analysis that ubiquitination serves to coordinate various steps of NER and meanwhile connect NER with other related pathways to achieve the efficient global DNA-damage response.
Collapse
Affiliation(s)
- Jia Li
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | | | | |
Collapse
|
249
|
Yan Y, Zhang X, Legerski RJ. Artemis interacts with the Cul4A-DDB1DDB2 ubiquitin E3 ligase and regulates degradation of the CDK inhibitor p27. Cell Cycle 2011; 10:4098-109. [PMID: 22134138 DOI: 10.4161/cc.10.23.18227] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Artemis, a member of the SNM1 gene family, is a multifunctional phospho-protein that has been shown to have important roles in V(D)J recombination, DNA double strand break repair, and stress-induced cell-cycle checkpoint regulation. We show here that Artemis interacts with the Cul4A-DDB1 E3 ubiquitin ligase via a direct interaction with the substrate-specificity receptor DDB2. Furthermore, Artemis also interacts with the CDK inhibitor and tumor suppressor p27, a substrate of the Cul4A-DDB1 ligase, and both DDB2 and Artemis are required for the degradation of p27 mediated by this complex. We also show that the regulation of p27 by Artemis and DDB2 is important for cell cycle progression in normally proliferating cells and in response to serum deprivation. These findings thus define a function for Artemis as an effector of Cullin-based E3 ligase-mediated ubiquitylation, demonstrate a novel pathway for the regulation of p27, and show that Cul4A-DDB1(DDB2-Artemis) regulates G1 phase cell cycle progression in mammalian cells.
Collapse
Affiliation(s)
- Yiyi Yan
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
250
|
Cramers P, Filon AR, Pines A, Kleinjans JC, Mullenders LHF, van Zeeland AA. Enhanced nucleotide excision repair in human fibroblasts pre-exposed to ionizing radiation. Photochem Photobiol 2011; 88:147-53. [PMID: 22017241 DOI: 10.1111/j.1751-1097.2011.01019.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cellular protection against deleterious effects of DNA damaging agents requires an intricate network of defense mechanisms known as the DNA damage response (DDR). Ionizing radiation (IR) mediated activation of the DDR induces a transcriptional upregulation of genes that are also involved in nucleotide excision repair (NER). This suggests that pre-exposure to X-rays might stimulate NER in human cells. Here, we demonstrate in normal human fibroblasts that UV-induced NER is augmented by pre-exposure to IR and that this increased repair is accompanied by elevated mRNA and protein levels of the NER factors XPC and DDB2. Furthermore, when IR exposure precedes local UV irradiation, the presence of XPC and DDB2 at the sites of local UV damages is increased. This increase might be p53 dependent, but the mechanism of X-ray specific stabilization of p53 is unclear as both X-rays and UV stabilize p53.
Collapse
Affiliation(s)
- Patricia Cramers
- Department of Toxicogenetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|