201
|
Gonzalez-Cordero A, West EL, Pearson RA, Duran Y, Carvalho LS, Chu CJ, Naeem A, Blackford SJI, Georgiadis A, Lakowski J, Hubank M, Smith AJ, Bainbridge JWB, Sowden JC, Ali RR. Photoreceptor precursors derived from three-dimensional embryonic stem cell cultures integrate and mature within adult degenerate retina. Nat Biotechnol 2013. [PMID: 23873086 DOI: 10.1038/nbt.2643].] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Irreversible blindness caused by loss of photoreceptors may be amenable to cell therapy. We previously demonstrated retinal repair and restoration of vision through transplantation of photoreceptor precursors obtained from postnatal retinas into visually impaired adult mice. Considerable progress has been made in differentiating embryonic stem cells (ESCs) in vitro toward photoreceptor lineages. However, the capability of ESC-derived photoreceptors to integrate after transplantation has not been demonstrated unequivocally. Here, to isolate photoreceptor precursors fit for transplantation, we adapted a recently reported three-dimensional (3D) differentiation protocol that generates neuroretina from mouse ESCs. We show that rod precursors derived by this protocol and selected via a GFP reporter under the control of a Rhodopsin promoter integrate within degenerate retinas of adult mice and mature into outer segment-bearing photoreceptors. Notably, ESC-derived precursors at a developmental stage similar to postnatal days 4-8 integrate more efficiently compared with cells at other stages. This study shows conclusively that ESCs can provide a source of photoreceptors for retinal cell transplantation.
Collapse
Affiliation(s)
- Anai Gonzalez-Cordero
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Emma L West
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Rachael A Pearson
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Yanai Duran
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Livia S Carvalho
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Colin J Chu
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Arifa Naeem
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Samuel J I Blackford
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Anastasios Georgiadis
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Jorn Lakowski
- Developmental Biology Unit, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Mike Hubank
- UCL Genomics, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Alexander J Smith
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - James W B Bainbridge
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK
| | - Jane C Sowden
- Developmental Biology Unit, University College London, 30 Guilford Street, London, WC1N 1EH UK
| | - Robin R Ali
- Department of Genetics, UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL UK.,Molecular Immunology Unit, Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH UK
| |
Collapse
|
202
|
Reynolds J, Lamba DA. Human embryonic stem cell applications for retinal degenerations. Exp Eye Res 2013; 123:151-60. [PMID: 23880530 DOI: 10.1016/j.exer.2013.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/27/2013] [Accepted: 07/08/2013] [Indexed: 12/12/2022]
Abstract
Loss of vision in severe retinal degenerations often is a result of photoreceptor cell or retinal pigment epithelial cell death or dysfunction. Cell replacement therapy has the potential to restore useful vision for these individuals especially after they have lost most or all of their light-sensing cells in the eye. A reliable, well-characterized source of retinal cells will be needed for replacement purposes. Human embryonic stem cells (ES cells) can provide an unlimited source of replacement retinal cells to take over the function of lost cells in the eye. The author's intent for this review is to provide an historical overview of the field of embryonic stem cells with relation to the retina. The review will provide a quick primer on key pathways involved in the development of the neural retina and RPE followed by a discussion of the various protocols out in the literature for generating these cells from non-human and human embryonic stem cells and end with in vivo application of ES cell-derived photoreceptors and RPE cells.
Collapse
Affiliation(s)
- Joseph Reynolds
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA
| | - Deepak A Lamba
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945, USA.
| |
Collapse
|
203
|
Boucherie C, Mukherjee S, Henckaerts E, Thrasher AJ, Sowden JC, Ali RR. Brief report: self-organizing neuroepithelium from human pluripotent stem cells facilitates derivation of photoreceptors. Stem Cells 2013; 31:408-14. [PMID: 23132794 DOI: 10.1002/stem.1268] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/11/2012] [Indexed: 01/10/2023]
Abstract
Retinitis pigmentosa, other inherited retinal diseases, and age-related macular degeneration lead to untreatable blindness because of the loss of photoreceptors. We have recently shown that transplantation of mouse photoreceptors can result in improved vision. It is therefore timely to develop protocols for efficient derivation of photoreceptors from human pluripotent stem (hPS) cells. Current methods for photoreceptor derivation from hPS cells require long periods of culture and are rather inefficient. Here, we report that formation of a transient self-organized neuroepithelium from human embryonic stem cells cultured together with extracellular matrix is sufficient to induce a rapid conversion into retinal progenitors in 5 days. These retinal progenitors have the ability to differentiate very efficiently into Crx(+) photoreceptor precursors after only 10 days and subsequently acquire rod photoreceptor identity within 4 weeks. Directed differentiation into photoreceptors using this protocol is also possible with human-induced pluripotent stem (hiPS) cells, facilitating the use of patient-specific hiPS cell lines for regenerative medicine and disease modeling.
Collapse
Affiliation(s)
- Cédric Boucherie
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
204
|
Meng F, Wang X, Gu P, Wang Z, Guo W. Induction of retinal ganglion-like cells from fibroblasts by adenoviral gene delivery. Neuroscience 2013; 250:381-93. [PMID: 23856066 DOI: 10.1016/j.neuroscience.2013.07.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 06/30/2013] [Accepted: 07/01/2013] [Indexed: 12/29/2022]
Abstract
Central nervous system neurons fail to regenerate after birth, which greatly hampers the effective treatment of many neurodegenerative diseases. Neurons differentiated from induced pluripotent stem cells have been considered a possible option for cell-based therapies. Recent discoveries have revealed that fibroblasts can be directly converted into neurons without a transition through a pluripotent state. This approach might serve as a more efficient and convenient method for the cellular therapy of neurodegenerative diseases. Currently, several types of neurons have been directly generated from fibroblasts, including dopamine neurons, motor neurons and neural progenitor cells. In our study, by screening a series of candidate genes, we found that the adenovirus-mediated transduction of Ascl1, Brn3b and Ngn2 can directly convert mouse fibroblasts to retinal ganglion-like cells. The induced retinal ganglion-like cells co-express multiple retinal ganglion cell markers, and exhibit membrane properties of functional neurons. The reprogramming mediated by adenoviruses occurs much sooner than that mediated by lentiviruses. Furthermore, the induced retinal ganglion-like cells that are produced via adenoviral gene delivery are free of exogenous gene integration. Retinal ganglion-like cells that are induced by adenoviruses demonstrate great potential applicability in clinical therapy and provide a novel platform for the research of retinal degenerative diseases.
Collapse
Affiliation(s)
- F Meng
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
205
|
Lignin Induces ES Cells to Differentiate into Neuroectodermal Cells through Mediation of the Wnt Signaling Pathway. PLoS One 2013; 8:e66376. [PMID: 23805217 PMCID: PMC3689838 DOI: 10.1371/journal.pone.0066376] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 05/05/2013] [Indexed: 02/06/2023] Open
Abstract
Embryonic stem cells (ES cells) are characterized by their pluripotency and infinite proliferation potential. Ever since ES cells were first established in 1981, there have been a growing number of studies aimed at clinical applications of ES cells. In recent years, various types of differentiation inducement systems using ES cells have been established. Further studies have been conducted to utilize differentiation inducement systems in the field of regenerative medicine. For cellular treatments using stem cells including ES cells, differentiation induction should be performed in a sufficient manner to obtain the intended cell lineages. Lignin is a high-molecular amorphous material that forms plants together with cellulose and hemicelluloses, in which phenylpropane fundamental units are complexly condensed. Lignin derivatives have been shown to have several bioactive functions. In spite of these findings, few studies have focused on the effects of lignin on stem cells. Our study aimed to develop a novel technology using lignin to effectively induce ES cells to differentiate into neuroectodermal cells including ocular cells and neural cells. Since lignin can be produced at a relatively low cost in large volumes, its utilization is expected for more convenient differentiation induction technologies and in the field of regenerative medicine in the future.
Collapse
|
206
|
Blenkinsop TA, Corneo B, Temple S, Stern JH. Ophthalmologic stem cell transplantation therapies. Regen Med 2013; 7:32-9. [PMID: 23210809 DOI: 10.2217/rme.12.77] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vision loss is a major social issue, with more than 20 million people over the age of 18 years affected in the USA alone. Loss of vision is feared more than premature death or cardiovascular disease, according to a recent Society for Consumer Research group survey. The annual direct cost of medical care for the most prevalent eye disease, age-related macular degeneration, was estimated at US$255 billion in 2010 with an additional economic impact of US$88 billion due to lost productivity and the burden of family and community care for visual disability. With the blossoming of human stem cell research, regenerative treatments are now being developed that can help reduce this burden. Positive results from animal studies demonstrate that stem cell-based transplants can preserve and potentially improve vision. This has led to new clinical trials for several eye diseases that are yielding encouraging results. In the next few years, additional trials and longer-term results are anticipated to further develop ocular regenerative therapies, with the potential to revolutionize our approach to ophthalmic disease and damage.
Collapse
Affiliation(s)
- Timothy A Blenkinsop
- Neural Stem Cell Institute, Regenerative Research Foundation, One Discovery Drive, Rensselaer, NY12144, USA
| | | | | | | |
Collapse
|
207
|
Karl MO. The potential of stem cell research for the treatment of neuronal damage in glaucoma. Cell Tissue Res 2013; 353:311-25. [PMID: 23708526 DOI: 10.1007/s00441-013-1646-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 04/23/2013] [Indexed: 01/29/2023]
Abstract
Stem cell research offers a wide variety of approaches for the advancement of our understanding of basic mechanisms of neurodegeneration and tissue regeneration and for the discovery and development of new therapeutic strategies to prevent and restore neuronal cell loss. Similar to most other regions of our central nervous system, degenerative diseases of the retina lead to the loss of neurons, which are not replaced. Recent work in animals has provided proof-of-concept evidence for the restoration of photoreceptor cells by cell transplantation and neuronal cell replacement by regeneration from endogenous cell sources. However, efficient therapeutic prevention of neuronal cell loss has not been achieved. Moreover, successful cell replacement of retinal neurons in humans, including that of ganglion cells, remains a major challenge. Future successes in the discovery and translation of neuroprotective drug and gene therapies and of cell-based regenerative therapies will depend on a better understanding of the underlying disease pathomechanisms. Existing stem cell and cell-reprogramming technologies offer the potential to generate human retina cells, to develop specific human-cell-based retina disease models, and to open up novel therapeutic strategies. Further, we might glean substantial knowledge from species that can or cannot regenerate their neuronal retina, in the search for new therapeutic approaches. Thus, stem cell research will pave the way toward clinical translation. In this review, I address some of the major possibilities presently on offer and speculate about the power of stem cell research to gain further insights into the pathomechanisms of retinal neurodegeneration (with special emphasis on glaucoma) and to advance our therapeutic options.
Collapse
Affiliation(s)
- Mike O Karl
- German Center for Neurodegenerative Diseases e.V. (DZNE), Arnoldstrasse 18/18b, 01307, Dresden, Germany.
| |
Collapse
|
208
|
Nakano K, Watanabe M, Matsunari H, Matsuda T, Honda K, Maehara M, Kanai T, Hayashida G, Kobayashi M, Kuramoto M, Arai Y, Umeyama K, Fujishiro SH, Mizukami Y, Nagaya M, Hanazono Y, Nagashima H. Generating porcine chimeras using inner cell mass cells and parthenogenetic preimplantation embryos. PLoS One 2013; 8:e61900. [PMID: 23626746 PMCID: PMC3633951 DOI: 10.1371/journal.pone.0061900] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 03/15/2013] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND The development and validation of stem cell therapies using induced pluripotent stem (iPS) cells can be optimized through translational research using pigs as large animal models, because pigs have the closest characteristics to humans among non-primate animals. As the recent investigations have been heading for establishment of the human iPS cells with naïve type characteristics, it is an indispensable challenge to develop naïve type porcine iPS cells. The pluripotency of the porcine iPS cells can be evaluated using their abilities to form chimeras. Here, we describe a simple aggregation method using parthenogenetic host embryos that offers a reliable and effective means of determining the chimera formation ability of pluripotent porcine cells. METHODOLOGY/SIGNIFICANT PRINCIPAL FINDINGS: In this study, we show that a high yield of chimeric blastocysts can be achieved by aggregating the inner cell mass (ICM) from porcine blastocysts with parthenogenetic porcine embryos. ICMs cultured with morulae or 4-8 cell-stage parthenogenetic embryos derived from in vitro-matured (IVM) oocytes can aggregate to form chimeric blastocysts that can develop into chimeric fetuses after transfer. The rate of production of chimeric blastocysts after aggregation with host morulae (20/24, 83.3%) was similar to that after the injection of ICMs into morulae (24/29, 82.8%). We also found that 4-8 cell-stage embryos could be used; chimeric blastocysts were produced with a similar efficiency (17/26, 65.4%). After transfer into recipients, these blastocysts yielded chimeric fetuses at frequencies of 36.0% and 13.6%, respectively. CONCLUSION/SIGNIFICANCE Our findings indicate that the aggregation method using parthenogenetic morulae or 4-8 cell-stage embryos offers a highly reproducible approach for producing chimeric fetuses from porcine pluripotent cells. This method provides a practical and highly accurate system for evaluating pluripotency of undifferentiated cells, such as iPS cells, based on their ability to form chimeras.
Collapse
Affiliation(s)
- Kazuaki Nakano
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research (MUIIBR), Kawasaki, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research (MUIIBR), Kawasaki, Japan
| | - Taisuke Matsuda
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kasumi Honda
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Miki Maehara
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Takahiro Kanai
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Gota Hayashida
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Mirina Kobayashi
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Momoko Kuramoto
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yoshikazu Arai
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research (MUIIBR), Kawasaki, Japan
| | - Shuh-hei Fujishiro
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Yoshihisa Mizukami
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research (MUIIBR), Kawasaki, Japan
| | - Yutaka Hanazono
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
- CREST, Japan Science and Technology Agency, Tokyo, Japan
| | - Hiroshi Nagashima
- Laboratory of Developmental Engineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
- Meiji University International Institute for Bio-Resource Research (MUIIBR), Kawasaki, Japan
| |
Collapse
|
209
|
Carr AJF, Smart MJK, Ramsden CM, Powner MB, da Cruz L, Coffey PJ. Development of human embryonic stem cell therapies for age-related macular degeneration. Trends Neurosci 2013; 36:385-95. [PMID: 23601133 DOI: 10.1016/j.tins.2013.03.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/11/2013] [Accepted: 03/18/2013] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in older adults and ultimately leads to the death of photoreceptor cells in the macular area of the neural retina. Currently, treatments are only available for patients with the wet form of AMD. In this review, we describe recent approaches to develop cell-based therapies for the treatment of AMD. Recent research has focused on replacing the retinal pigment epithelium (RPE), a monolayer of cells vital to photoreceptor cell health. We discuss the various methods used to differentiate and purify RPE from human embryonic stem cells (HESC), and describe the surgical approaches being used to transplant these cells in existing and forthcoming clinical trials.
Collapse
Affiliation(s)
- Amanda-Jayne F Carr
- The London Project to Cure Blindness, Division of ORBIT, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | | | | | | | | | |
Collapse
|
210
|
Maruotti J, Wahlin K, Gorrell D, Bhutto I, Lutty G, Zack DJ. A simple and scalable process for the differentiation of retinal pigment epithelium from human pluripotent stem cells. Stem Cells Transl Med 2013; 2:341-54. [PMID: 23585288 DOI: 10.5966/sctm.2012-0106] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD), the leading cause of irreversible vision loss and blindness among the elderly in industrialized countries, is associated with the dysfunction and death of the retinal pigment epithelial (RPE) cells. As a result, there has been significant interest in developing RPE culture systems both to study AMD disease mechanisms and to provide substrate for possible cell-based therapies. Because of their indefinite self-renewal, human pluripotent stem cells (hPSCs) have the potential to provide an unlimited supply of RPE-like cells. However, most protocols developed to date for deriving RPE cells from hPSCs involve time- and labor-consuming manual steps, which hinder their use in biomedical applications requiring large amounts of differentiated cells. Here, we describe a simple and scalable protocol for the generation of RPE cells from hPSCs that is less labor-intensive. After amplification by clonal propagation using a myosin inhibitor, differentiation was induced in monolayers of hPSCs, and the resulting RPE cells were purified by two rounds of whole-dish single-cell passage. This approach yields highly pure populations of functional hPSC-derived RPE cells that display many characteristics of native RPE cells, including proper pigmentation and morphology, cell type-specific marker expression, polarized membrane and vascular endothelial growth factor secretion, and phagocytic activity. This work represents a step toward mass production of RPE cells from hPSCs.
Collapse
|
211
|
Cramer AO, MacLaren RE. Translating induced pluripotent stem cells from bench to bedside: application to retinal diseases. Curr Gene Ther 2013; 13:139-51. [PMID: 23320477 PMCID: PMC3826973 DOI: 10.2174/1566523211313020008] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 12/17/2022]
Abstract
Induced pluripotent stem cells (iPSc) are a scientific and medical frontier. Application of reprogrammed somatic cells for clinical trials is in its dawn period; advances in research with animal and human iPSc are paving the way for retinal therapies with the ongoing development of safe animal cell transplantation studies and characterization of patient- specific and disease-specific human iPSc. The retina is an optimal model for investigation of neural regeneration; amongst other advantageous attributes, it is the most accessible part of the CNS for surgery and outcome monitoring. A recent clinical trial showing a degree of visual restoration via a subretinal electronic prosthesis implies that even a severely degenerate retina may have the capacity for repair after cell replacement through potential plasticity of the visual system. Successful differentiation of neural retina from iPSc and the recent generation of an optic cup from human ESc invitro increase the feasibility of generating an expandable and clinically suitable source of cells for human clinical trials. In this review we shall present recent studies that have propelled the field forward and discuss challenges in utilizing iPS cell derived retinal cells as reliable models for clinical therapies and as a source for clinical cell transplantation treatment for patients suffering from genetic retinal disease.
Collapse
Affiliation(s)
- Alona O. Cramer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Merton College, University of Oxford, Oxford OX1 4JD, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neuroscience, NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Merton College, University of Oxford, Oxford OX1 4JD, UK
- Moorfields Eye Hospital, London EC1V 2PD, UK
| |
Collapse
|
212
|
Kramer AS, Harvey AR, Plant GW, Hodgetts SI. Systematic Review of Induced Pluripotent Stem Cell Technology as a Potential Clinical Therapy for Spinal Cord Injury. Cell Transplant 2013; 22:571-617. [DOI: 10.3727/096368912x655208] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transplantation therapies aimed at repairing neurodegenerative and neuropathological conditions of the central nervous system (CNS) have utilized and tested a variety of cell candidates, each with its own unique set of advantages and disadvantages. The use and popularity of each cell type is guided by a number of factors including the nature of the experimental model, neuroprotection capacity, the ability to promote plasticity and guided axonal growth, and the cells' myelination capability. The promise of stem cells, with their reported ability to give rise to neuronal lineages to replace lost endogenous cells and myelin, integrate into host tissue, restore functional connectivity, and provide trophic support to enhance and direct intrinsic regenerative ability, has been seen as a most encouraging step forward. The advent of the induced pluripotent stem cell (iPSC), which represents the ability to “reprogram” somatic cells into a pluripotent state, hails the arrival of a new cell transplantation candidate for potential clinical application in therapies designed to promote repair and/or regeneration of the CNS. Since the initial development of iPSC technology, these cells have been extensively characterized in vitro and in a number of pathological conditions and were originally reported to be equivalent to embryonic stem cells (ESCs). This review highlights emerging evidence that suggests iPSCs are not necessarily indistinguishable from ESCs and may occupy a different “state” of pluripotency with differences in gene expression, methylation patterns, and genomic aberrations, which may reflect incomplete reprogramming and may therefore impact on the regenerative potential of these donor cells in therapies. It also highlights the limitations of current technologies used to generate these cells. Moreover, we provide a systematic review of the state of play with regard to the use of iPSCs in the treatment of neurodegenerative and neuropathological conditions. The importance of balancing the promise of this transplantation candidate in the light of these emerging properties is crucial as the potential application in the clinical setting approaches. The first of three sections in this review discusses (A) the pathophysiology of spinal cord injury (SCI) and how stem cell therapies can positively alter the pathology in experimental SCI. Part B summarizes (i) the available technologies to deliver transgenes to generate iPSCs and (ii) recent data comparing iPSCs to ESCs in terms of characteristics and molecular composition. Lastly, in (C) we evaluate iPSC-based therapies as a candidate to treat SCI on the basis of their neurite induction capability compared to embryonic stem cells and provide a summary of available in vivo data of iPSCs used in SCI and other disease models.
Collapse
Affiliation(s)
- Anne S. Kramer
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Alan R. Harvey
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| | - Giles W. Plant
- Stanford Partnership for Spinal Cord Injury and Repair, Stanford Institute for Neuro-Innovation and Translational Neurosciences, Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Stuart I. Hodgetts
- Spinal Cord Repair Laboratory, School of Anatomy, Physiology and Human Biology, The University of Western Australia, Perth, Western Australia
| |
Collapse
|
213
|
Cui L, Guan Y, Qu Z, Zhang J, Liao B, Ma B, Qian J, Li D, Li W, Xu GT, Jin Y. WNT signaling determines tumorigenicity and function of ESC-derived retinal progenitors. J Clin Invest 2013; 123:1647-61. [PMID: 23524971 PMCID: PMC3613909 DOI: 10.1172/jci65048] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 01/17/2013] [Indexed: 02/06/2023] Open
Abstract
Tumor formation constitutes a major obstacle to the clinical application of embryonic stem cell-derived (ESC-derived) cells. In an attempt to find major extracellular signaling and intrinsic factors controlling tumorigenicity and therapeutic functionality of transplanted ESC-derived retinal progenitor cells (ESC-RPCs), we evaluated multiple kinds of ESC-RPCs in a mouse retinal degeneration model and conducted genome-wide gene expression profiling. We identified canonical WNT signaling as a critical determinant for the tumorigenicity and therapeutic function of ESC-RPCs. The function of WNT signaling is primarily mediated by TCF7, which directly induces expression of Sox2 and Nestin. Inhibition of WNT signaling, overexpression of dominant-negative Tcf7, and silencing Tcf7, Sox2, or Nestin all resulted in drastically reduced tumor formation and substantially improved retinal integration and visual preservation in mice. These results demonstrate that the WNT signaling cascade plays a critical role in modulating the tumorigenicity and functionality of ESC-derived progenitors.
Collapse
Affiliation(s)
- Lu Cui
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Yuan Guan
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Zepeng Qu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Jingfa Zhang
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Bing Liao
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Bo Ma
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Jiang Qian
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Dangsheng Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Weiye Li
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Guo-Tong Xu
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| | - Ying Jin
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Jiao Tong University School of Medicine, and Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Shanghai Tenth People’s Hospital and Tongji Eye Institute, Tongji University School of Medicine, Shanghai, People’s Republic of China.
Department of Molecular Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China.
Department of Ophthalmology, Eye, Ear, Nose, Throat Hospital, Fudan University, Shanghai, People’s Republic of China.
Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China.
Department of Ophthalmology, Drexel University College of Medicine, Media, Pennsylvania, USA
| |
Collapse
|
214
|
Sridhar A, Steward MM, Meyer JS. Nonxenogeneic growth and retinal differentiation of human induced pluripotent stem cells. Stem Cells Transl Med 2013; 2:255-64. [PMID: 23512959 DOI: 10.5966/sctm.2012-0101] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) possess tremendous potential for the field of regenerative medicine because of their ability to differentiate into any cell type of the body. Such ability has profound implications for translational medicine, because these cells have been implicated for use in cell replacement, disease modeling, and pharmacological screening. However, the translation of established methods for deriving retinal cell types from hiPSCs has been hindered by the use of xenogeneic products for their growth and differentiation. Thus, the ability to derive retinal cell types in the absence of xenogeneic products would represent a significant advancement. The following studies were therefore undertaken to test the ability of hiPSCs to give rise to retinal cells under nonxenogeneic conditions. hiPSCs were maintained in traditional, feeder-free, or xeno-free culture conditions, and their ability to differentiate to a retinal fate was tested. Upon differentiation under all three conditions, cells acquired advancing features of retinal development, eventually yielding cell types of the mature retina. Reverse transcription-polymerase chain reaction and immunocytochemistry confirmed early trends in gene and protein expression patterns in xeno-free derived hiPSCs similar to those in cells derived in mouse embryonic fibroblasts and in feeder-free conditions. Results from this study demonstrate that hiPSCs can be maintained and directed to differentiate into retinal cell types under nonxenogeneic conditions, similar to cells derived using current xenogeneic methodologies. The demonstration of this capability will facilitate future efforts to develop hiPSC-based therapies for retinal disorders and also help to advance in vitro studies of human retinal development.
Collapse
Affiliation(s)
- Akshayalakshmi Sridhar
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
215
|
Melville H, Carpiniello M, Hollis K, Staffaroni A, Golestaneh N. Stem cells: a new paradigm for disease modeling and developing therapies for age-related macular degeneration. J Transl Med 2013; 11:53. [PMID: 23452406 PMCID: PMC3599723 DOI: 10.1186/1479-5876-11-53] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/19/2013] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in people over age 55 in the U.S. and the developed world. This condition leads to the progressive impairment of central visual acuity. There are significant limitations in the understanding of disease progression in AMD as well as a lack of effective methods of treatment. Lately, there has been considerable enthusiasm for application of stem cell biology for both disease modeling and therapeutic application. Human embryonic stem cells and induced pluripotent stem cells (iPSCs) have been used in cell culture assays and in vivo animal models. Recently a clinical trial was approved by FDA to investigate the safety and efficacy of the human embryonic stem cell-derived retinal pigment epithelium (RPE) transplantation in sub-retinal space of patients with dry AMD These studies suggest that stem cell research may provide both insight regarding disease development and progression, as well as direction for therapeutic innovation for the millions of patients afflicted with AMD.
Collapse
Affiliation(s)
- Heather Melville
- Georgetown University School of Medicine, 3900 Reservoir Rd, Washington, DC 20057, USA
| | - Matthew Carpiniello
- Georgetown University School of Medicine, 3900 Reservoir Rd, Washington, DC 20057, USA
| | - Kia Hollis
- Georgetown University School of Medicine, 3900 Reservoir Rd, Washington, DC 20057, USA
| | - Andrew Staffaroni
- Georgetown University School of Medicine, 3900 Reservoir Rd, Washington, DC 20057, USA
| | - Nady Golestaneh
- Georgetown University School of Medicine, 3900 Reservoir Rd, Washington, DC 20057, USA
- Department of Ophthalmology, Georgetown University, School of Medicine, 3900 Reservoir Rd, Washington, DC 20057, USA
- Department of Neurology, Georgetown University, School of Medicine, 3900 Reservoir Rd, Washington, DC 20057, USA
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, School of Medicine, 3900 Reservoir Rd, Washington, DC 20057, USA
| |
Collapse
|
216
|
|
217
|
Abstract
Over 200 hereditary diseases have been identified and reported in the cat, several of which affect the eye, with homology to human hereditary disease. Compared with traditional murine models, the cat demonstrates more features in common with humans, including many anatomic and physiologic similarities, longer life span, increased size, and a genetically more heterogeneous background. The development of genomic resources in the cat has facilitated mapping and further characterization of feline models. During recent years, the wealth of knowledge in feline ophthalmology and neurophysiology has been extended to include new diseases of significant interest for comparative ophthalmology. This makes the cat an extremely valuable animal species to utilize for further research into disease processes affecting both cats and humans. This is especially true in the advancement and study of new treatment regimens and for extended therapeutic trials. Groups of feline eye diseases reviewed in the following are lysosomal storage disorders, congenital glaucoma, and neuroretinal degenerations. Each has important implications for human ophthalmic research.
Collapse
Affiliation(s)
- Kristina Narfström
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, Missouri 65201;
| | | | | |
Collapse
|
218
|
Osakada F, Takahashi M. Stem Cells in the Developing and Adult Nervous System. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
219
|
Ng TK, Lam DSC, Cheung HS. Prospects of Stem Cells for Retinal Diseases. ASIA-PACIFIC JOURNAL OF OPHTHALMOLOGY (PHILADELPHIA, PA.) 2013; 2:57-63. [PMID: 26107868 DOI: 10.1097/apo.0b013e31827e3e5d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Retinal diseases, including glaucoma, retinitis pigmentosa, diabetic retinopathy, and age-related macular degeneration, are the leading causes of irreversible visual impairment and blindness in developed countries. Traditional and current treatment regimens are based on surgical or medical interventions to slow down the disease progression. However, the number of retinal cells would continue to diminish, and the diseases could not be completely cured. There is an emerging role of stem cells in retinal research. The stem cell therapy on retinal diseases is based on 2 theories: cell replacement therapy and neuroprotective effect. The former hypothesizes that new retinal cells could be regenerated from stem cells to substitute the damaged cells in the diseased retina, whereas the latter believes that the paracrine effects of stem cells modulate the microenvironments of the diseased retina so as to protect the retinal neurons. This article summarizes the choice of stem cells in retinal research. Moreover, the current progress of retinal research on stem cells and the clinical applications of stem cells on retinal diseases are reviewed. In addition, potential challenges and future prospects of retinal stem cell research are discussed.
Collapse
Affiliation(s)
- Tsz Kin Ng
- From the *Geriatric Research, Education and Clinical Center, Miami Veterans Affairs Medical Center, Miami, FL; †State Key Laboratory in Ophthalmology & Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China; and ‡Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, FL
| | | | | |
Collapse
|
220
|
Yu D, Chen M, Sun X, Ge J. Differentiation of mouse induced pluripotent stem cells into corneal epithelial-like cells. Cell Biol Int 2012; 37:87-94. [PMID: 23339091 DOI: 10.1002/cbin.10007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/18/2012] [Indexed: 12/12/2022]
Abstract
Somatic cells can be reprogrammed into a pluripotent ES-cell-like state (termed induced pluripotent stem cells, iPS) by transcription factors, which have enormous therapeutic potential for regenerative medicine. We have investigated whether iPS can directly differentiate into corneal epithelium-like cells. Mouse iPS cells were co-cultured with corneal limbal stroma. RT-PCR, immunohistochemistry and scanning electron microscopy analysis were used to detect differentiated iPS. Undifferentiated iPS cells expressed ES cells related genes. Co-culture with corneal limbal stroma, in the presence of additional factors bFGF, EGF and NGF, activated keratin expression 12 (K12, a marker of corneal epithelial cells) and downregulated Nanog. These data suggest that mouse iPS cells can differentiate into corneal epithelial-like cells by replication of a corneal epithelial stem cell niche.
Collapse
Affiliation(s)
- Dan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 Xian Lie Nan Road, Guangzhou 510060, China
| | | | | | | |
Collapse
|
221
|
Becker S, Jayaram H, Limb GA. Recent Advances towards the Clinical Application of Stem Cells for Retinal Regeneration. Cells 2012; 1:851-73. [PMID: 24710533 PMCID: PMC3901131 DOI: 10.3390/cells1040851] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 09/29/2012] [Accepted: 10/10/2012] [Indexed: 01/10/2023] Open
Abstract
Retinal degenerative diseases constitute a major cause of irreversible blindness in the world. Stem cell-based therapies offer hope for these patients at risk of or suffering from blindness due to the deterioration of the neural retina. Various sources of stem cells are currently being investigated, ranging from human embryonic stem cells to adult-derived induced pluripotent stem cells as well as human Müller stem cells, with the first clinical trials to investigate the safety and tolerability of human embryonic stem cell-derived retinal pigment epithelium cells having recently commenced. This review aims to summarize the latest advances in the development of stem cell strategies for the replacement of retinal neurons and their supportive cells, the retinal pigment epithelium (RPE) affected by retinal degenerative conditions. Particular emphasis will be given to the advances in stem cell transplantation and the challenges associated with their translation into clinical practice.
Collapse
Affiliation(s)
- Silke Becker
- Ocular Biology and Therapeutics, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| | - Hari Jayaram
- Ocular Biology and Therapeutics, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| | - G Astrid Limb
- Ocular Biology and Therapeutics, Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK.
| |
Collapse
|
222
|
Hayashi R, Ishikawa Y, Ito M, Kageyama T, Takashiba K, Fujioka T, Tsujikawa M, Miyoshi H, Yamato M, Nakamura Y, Nishida K. Generation of corneal epithelial cells from induced pluripotent stem cells derived from human dermal fibroblast and corneal limbal epithelium. PLoS One 2012; 7:e45435. [PMID: 23029008 PMCID: PMC3454439 DOI: 10.1371/journal.pone.0045435] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/16/2012] [Indexed: 12/17/2022] Open
Abstract
Induced pluripotent stem (iPS) cells can be established from somatic cells. However, there is currently no established strategy to generate corneal epithelial cells from iPS cells. In this study, we investigated whether corneal epithelial cells could be differentiated from iPS cells. We tested 2 distinct sources: human adult dermal fibroblast (HDF)-derived iPS cells (253G1) and human adult corneal limbal epithelial cells (HLEC)-derived iPS cells (L1B41). We first established iPS cells from HLEC by introducing the Yamanaka 4 factors. Corneal epithelial cells were successfully induced from the iPS cells by the stromal cell-derived inducing activity (SDIA) differentiation method, as Pax6(+)/K12(+) corneal epithelial colonies were observed after prolonged differentiation culture (12 weeks or later) in both the L1B41 and 253G1 iPS cells following retinal pigment epithelial and lens cell induction. Interestingly, the corneal epithelial differentiation efficiency was higher in L1B41 than in 253G1. DNA methylation analysis revealed that a small proportion of differentially methylated regions still existed between L1B41 and 253G1 iPS cells even though no significant difference in methylation status was detected in the specific corneal epithelium-related genes such as K12, K3, and Pax6. The present study is the first to demonstrate a strategy for corneal epithelial cell differentiation from human iPS cells, and further suggests that the epigenomic status is associated with the propensity of iPS cells to differentiate into corneal epithelial cells.
Collapse
Affiliation(s)
- Ryuhei Hayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Ishikawa
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Miyuki Ito
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Tomofumi Kageyama
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kuniko Takashiba
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tsuyoshi Fujioka
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Motokazu Tsujikawa
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Hiroyuki Miyoshi
- Subteam for Cell Fate Manipulation, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Masayuki Yamato
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
223
|
Westenskow PD, Moreno SK, Krohne TU, Kurihara T, Zhu S, Zhang ZN, Zhao T, Xu Y, Ding S, Friedlander M. Using flow cytometry to compare the dynamics of photoreceptor outer segment phagocytosis in iPS-derived RPE cells. Invest Ophthalmol Vis Sci 2012; 53:6282-90. [PMID: 22871841 DOI: 10.1167/iovs.12-9721] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
PURPOSE Retinal pigment epithelium (RPE) autologous grafts can be readily derived from induced pluripotent stem (iPS) cells. It is critical to stringently characterize iPS-RPE using standardized and quantifiable methods to be confident that they are safe and adequate replacements for diseased RPE before utilizing them in clinical settings. One important and required function is that the iPS-RPE phagocytose photoreceptor outer segments (POS). METHODS We developed a flow cytometry-based assay to monitor binding and internalization of FITC labeled POS by ARPE-19, human fetal RPE (hfRPE), and two types of iPS-RPE. Expression and density of α(v)β₅ integrin, CD36, and MerTK receptors, which are required for phagocytosis, were compared. RESULTS Trypsinization of treated RPE cells results in the release of bound POS. The number of freed POS, the percentage of cells that internalized POS, the brightness of the FITC signal from the cells, and the surface density of the phagocytosis receptors on single RPE cells were measured using flow cytometry. These assays reveal that receptor density is dynamic during differentiation and this can affect the binding and internalization dynamics of the RPE cells. Highly differentiated iPS-RPE phagocytose POS more efficiently than hfRPE. CONCLUSIONS Caution should be exercised to not use RPE grafts until demonstrating that they are fully functional. The density of the phagocytosis receptors is dynamic and may be used as a predictor for how well the iPS-RPE cells will function in vivo. The phagocytosis dynamics observed between iPS-RPE and primary RPE is very encouraging and adds to mounting evidence that iPS-RPE may be a viable replacement for dysfunctional or dying RPE in human patients.
Collapse
Affiliation(s)
- Peter D Westenskow
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Megaw R, Dhillon B. Towards photoreceptor transplantation for visual recovery. Regen Med 2012; 7:627-9. [PMID: 22954431 DOI: 10.2217/rme.12.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
225
|
Cho MS, Kim SJ, Ku SY, Park JH, Lee H, Yoo DH, Park UC, Song SA, Choi YM, Yu HG. Generation of retinal pigment epithelial cells from human embryonic stem cell-derived spherical neural masses. Stem Cell Res 2012; 9:101-109. [PMID: 22683799 DOI: 10.1016/j.scr.2012.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 04/06/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022] Open
Abstract
Dysfunction and loss of retinal pigment epithelium (RPE) are major pathologic changes observed in various retinal degenerative diseases such as aged-related macular degeneration. RPE generated from human pluripotent stem cells can be a good candidate for RPE replacement therapy. Here, we show the differentiation of human embryonic stem cells (hESCs) toward RPE with the generation of spherical neural masses (SNMs), which are pure masses of hESCs-derived neural precursors. During the early passaging of SNMs, cystic structures arising from opened neural tube-like structures showed pigmented epithelial morphology. These pigmented cells were differentiated into functional RPE by neuroectodermal induction and mechanical purification. Most of the differentiated cells showed typical RPE morphologies, such as a polygonal-shaped epithelial monolayer, and transmission electron microscopy revealed apical microvilli, pigment granules, and tight junctions. These cells also expressed molecular markers of RPE, including Mitf, ZO-1, RPE65, CRALBP, and bestrophin. The generated RPE also showed phagocytosis of isolated bovine photoreceptor outer segment and secreting pigment epithelium-derived factor and vascular endothelial growth factor. Functional RPE could be generated from SNM in our method. Because SNMs have several advantages, including the capability of expansion for long periods without loss of differentiation capability, easy storage and thawing, and no need for feeder cells, our method for RPE differentiation may be used as an efficient strategy for generating functional RPE cells for retinal regeneration therapy.
Collapse
Affiliation(s)
- Myung Soo Cho
- R&D Center, Jeil Pharmaceutical CO, LTD Yongin 449-861, Republic of Korea.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Abstract
Organogenesis is regulated by a complex network of intrinsic cues, diffusible signals and cell/cell or cell/matrix interactions that drive the cells of a prospective organ to differentiate and collectively organize in three dimensions. Generating organs in vitro from embryonic stem (ES) cells may provide a simplified system to decipher how these processes are orchestrated in time and space within particular and between neighboring tissues. Recently, this field of stem cell research has also gained considerable interest for its potential applications in regenerative medicine. Among human pathologies for which stem cell-based therapy is foreseen as a promising therapeutic strategy are many retinal degenerative diseases, like retinitis pigmentosa and age-related macular degeneration. Over the last decade, progress has been made in producing ES-derived retinal cells in vitro, but engineering entire synthetic retinas was considered beyond reach. Recently however, major breakthroughs have been achieved with pioneer works describing the extraordinary self-organization of murine and human ES cells into a three dimensional structure highly resembling a retina. ES-derived retinal cells indeed assemble to form a cohesive neuroepithelial sheet that is endowed with the intrinsic capacity to recapitulate, outside an embryonic environment, the main steps of retinal morphogenesis as observed in vivo. This represents a tremendous advance that should help resolving fundamental questions related to retinogenesis. Here, we will discuss these studies, and the potential applications of such stem cell-based systems for regenerative medicine.
Collapse
Affiliation(s)
- Gabriele Colozza
- Gabriele Colozza, Morgane Locker, Muriel Perron, Laboratory of Neurobiology and Development, UPR CNRS 3294, University Paris-Sud, 91405 ORSAY Cedex, France
| | | | | |
Collapse
|
227
|
Sahni JN, Angi M, Irigoyen C, Semeraro F, Romano MR, Parmeggiani F. Therapeutic challenges to retinitis pigmentosa: from neuroprotection to gene therapy. Curr Genomics 2012; 12:276-84. [PMID: 22131873 PMCID: PMC3131735 DOI: 10.2174/138920211795860062] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/08/2011] [Accepted: 04/18/2011] [Indexed: 12/12/2022] Open
Abstract
Syndromic retinitis pigmentosa (RP) is the result of several mutations expressed in rod photoreceptors, over 40 of which have so far been identified. Enormous efforts are being made to relate the advances in unraveling the patho-physiological mechanisms to therapeutic approaches in animal models, and eventually in clinical trials on humans. This review summarizes briefly the current clinical management of RP and focuses on the new exciting treatment possibilities. To date, there is no approved therapy able to stop the evolution of RP or restore vision. The current management includes an attempt at slowing down the degenerative process by vitamin supplementation, trying to treat ocular complications and to provide psychological support to blind patients. Novel therapeutic may be tailored dependant on the stage of the disease and can be divided in three groups. In the early stages, when there are surviving photoreceptors, the first approach would be to try to halt the degeneration by correction of the underlying biochemical abnormality in the visual cycle using gene therapy or pharmacological treatment. A second approach aims to cope with photoreceptor cell death using neurotrophic growth factors or anti-apoptotic factors, reducing the production of retino-toxic molecules, and limiting oxidative damage. In advanced stages, when there are few or no functional photoreceptors, strategies that may benefit include retinal transplantation, electronic retinal implants or a newly described optogenetic technique using a light-activated channel to genetically resensitize remnant cone-photoreceptor cells.
Collapse
Affiliation(s)
- Jayashree N Sahni
- St. Paul's Eye Unit, Royal Liverpool University Hospital, Liverpool, UK
| | | | | | | | | | | |
Collapse
|
228
|
The emerging role of stem cells in ocular neurodegeneration: hype or hope? Mol Cell Biochem 2012; 365:65-76. [PMID: 22290231 DOI: 10.1007/s11010-012-1244-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/14/2012] [Indexed: 01/14/2023]
Abstract
Affecting over a hundred million individuals worldwide, retinal diseases are among the leading causes of irreversible visual impairment and blindness. Thus, an appropriate study models, especially animal models, are essential to furthering our understanding of the etiology, pathology, and progression of these diseases. In this review, we provide an overview of retinal disorders in the context of biotherapeutic approaches in these disorders.
Collapse
|
229
|
Mellough CB, Sernagor E, Moreno-Gimeno I, Steel DHW, Lako M. Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells. Stem Cells 2012; 30:673-86. [PMID: 22267304 DOI: 10.1002/stem.1037] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent successes in the stem cell field have identified some of the key chemical and biological cues which drive photoreceptor derivation from human embryonic stem cells (hESC) and human induced pluripotent stem cells (hiPSC); however, the efficiency of this process is variable. We have designed a three-step photoreceptor differentiation protocol combining previously published methods that direct the differentiation of hESC and hiPSC toward a retinal lineage, which we further modified with additional supplements selected on the basis of reports from the eye field and retinal development. We report that hESC and hiPSC differentiating under our regimen over a 60 day period sequentially acquire markers associated with neural, retinal field, retinal pigmented epithelium and photoreceptor cells, including mature photoreceptor markers OPN1SW and RHODOPSIN with a higher efficiency than previously reported. In addition, we report the ability of hESC and hiPSC cultures to generate neural and retinal phenotypes under minimal culture conditions, which may be linked to their ability to endogenously upregulate the expression of a range of factors important for retinal cell type specification. However, cultures that were differentiated with full supplementation under our photoreceptor-induction regimen achieve this within a significantly shorter time frame and show a substantial increase in the expression of photoreceptor-specific markers in comparison to cultures differentiated under minimal conditions. Interestingly, cultures supplemented only with B27 and/or N2 displayed comparable differentiation efficiency to those under full supplementation, indicating a key role for B27 and N2 during the differentiation process. Furthermore, our data highlight an important role for Dkk1 and Noggin in enhancing the differentiation of hESC and hiPSC toward retinal progenitor cells and photoreceptor precursors during the early stages of differentiation, while suggesting that further maturation of these cells into photoreceptors may not require additional factors and can ensue under minimal culture conditions.
Collapse
Affiliation(s)
- Carla B Mellough
- Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | | | | | | | | |
Collapse
|
230
|
West EL, Gonzalez-Cordero A, Hippert C, Osakada F, Martinez-Barbera JP, Pearson RA, Sowden JC, Takahashi M, Ali RR. Defining the integration capacity of embryonic stem cell-derived photoreceptor precursors. Stem Cells 2012; 30:1424-35. [PMID: 22570183 PMCID: PMC3580313 DOI: 10.1002/stem.1123] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Retinal degeneration is a leading cause of irreversible blindness in the developed world. Differentiation of retinal cells, including photoreceptors, from both mouse and human embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), potentially provide a renewable source of cells for retinal transplantation. Previously, we have shown both the functional integration of transplanted rod photoreceptor precursors, isolated from the postnatal retina, in the adult murine retina, and photoreceptor cell generation by stepwise treatment of ESCs with defined factors. In this study, we assessed the extent to which this protocol recapitulates retinal development and also evaluated differentiation and integration of ESC-derived retinal cells following transplantation using our established procedures. Optimized retinal differentiation via isolation of Rax.GFP retinal progenitors recreated a retinal niche and increased the yield of Crx(+) and Rhodopsin(+) photoreceptors. Rod birth peaked at day 20 of culture and expression of the early photoreceptor markers Crx and Nrl increased until day 28. Nrl levels were low in ESC-derived populations compared with developing retinae. Transplantation of early stage retinal cultures produced large tumors, which were avoided by prolonged retinal differentiation (up to day 28) prior to transplantation. Integrated mature photoreceptors were not observed in the adult retina, even when more than 60% of transplanted ESC-derived cells expressed Crx. We conclude that exclusion of proliferative cells from ESC-derived cultures is essential for effective transplantation. Despite showing expression profiles characteristic of immature photoreceptors, the ESC-derived precursors generated using this protocol did not display transplantation competence equivalent to precursors from the postnatal retina.
Collapse
Affiliation(s)
- Emma L West
- Department of Genetics, UCL Institute of Ophthalmology, University College London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Derivation, culture and retinal pigment epithelial differentiation of human embryonic stem cells using human fibroblast feeder cells. J Assist Reprod Genet 2012; 29:735-44. [PMID: 22661130 DOI: 10.1007/s10815-012-9802-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/20/2012] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Retinal pigment epithelium cells derived from human embryonic stem cells (ESCs) could be useful for restoring retinal function in age-related macular degeneration. However the use of non-human feeder cells to support the growth of ESCs for clinical applications raises the concern of possible contamination because of direct contact between animal and human cells. METHODS In this study, we produced human ESCs using human fibroblast feeder layers isolated from foreskin and abdominal tissues. Using this system, human ESCs differentiated into retinal pigment epithelium cells in differentiation medium. RESULTS Seven human ESC lines were established from 18 blastocysts. These human ESCs showed normal morphology, expressed all expected cell surface markers, had the ability to form embryoid bodies upon culture in vitro and teratomas after injection into SCID mice, and differentiated further into derivatives of all three germ layers. Under conditions of committed differentiation, these human ESCs could differentiate into retinal pigment epithelium cells after 2 months in culture. CONCLUSIONS The results of this study demonstrated that human foreskin/abdominal fibroblasts have the potential to support the derivation and long-term culture of human ESCs, which can then be used to generate retinal pigment epithelium cells with characteristic morphology and molecular markers. This technique avoids the concerns of contamination from animal feeder layers during human ESC derivation, culture and differentiation, and will thus facilitate the development of retinal pigment epithelium cell transplantation therapy.
Collapse
|
232
|
Ong JM, da Cruz L. A review and update on the current status of stem cell therapy and the retina. Br Med Bull 2012; 102:133-46. [PMID: 22577179 DOI: 10.1093/bmb/lds013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION OR BACKGROUND Many diseases of the retina result in irreversible visual loss. Stem cell (SC) therapy is a rapidly developing field and represents a novel approach to replace non-functioning neuro-retinal cells. SOURCES OF DATA A systematic computerized literature search was conducted on PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). AREAS OF AGREEMENT The use of stem cells (SCs) in animal models of retinal diseases has resulted in improvement in visual function and performance. SC therapy represents an exciting prospect in restoring vision. Areas of controversy The use of human embryonic SCs raises ethical concerns. GROWING POINTS Human trials using SCs in retinal diseases have recently been approved. AREAS TIMELY FOR DEVELOPING RESEARCH The success of SCs in retinal therapy depends not only on implanted cell survival, but also on how well SCs migrate, integrate and form synapses. Further research will be needed to overcome these hurdles.
Collapse
Affiliation(s)
- J M Ong
- National Institute of Health Research, Biomedical Research Centre, Moorfields Eye Hospital, London, UK.
| | | |
Collapse
|
233
|
Kim MH, Sonoi R, Yamada K, Inamori M, Kino-oka M. Analysis of locality of early-stage maturation in confluent state of human retinal pigment epithelial cells. J Biosci Bioeng 2012; 113:778-81. [DOI: 10.1016/j.jbiosc.2012.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
|
234
|
Jin ZB, Okamoto S, Xiang P, Takahashi M. Integration-free induced pluripotent stem cells derived from retinitis pigmentosa patient for disease modeling. Stem Cells Transl Med 2012. [PMID: 23197854 DOI: 10.5966/sctm.2012-0005] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We investigated retinitis pigmentosa (RP) caused by a mutation in the gene rhodopsin (RHO) with a patient-specific rod cell model generated from induced pluripotent stem cells (iPSCs) derived from an RP patient. To generate the iPSCs and to avoid the unpredictable side effects associated with retrovirus integration at random loci in the host genome, a nonintegrating Sendai-virus vector was installed with four key reprogramming gene factors (POU5F1, SOX2, KLF4, and c-MYC) in skin cells from an RP patient. Subsequent selection of the iPSC lines was on the basis of karyotype analysis as well as in vitro and in vivo pluripotency tests. Using a serum-free, chemically defined, and stepwise differentiation method, the expressions of specific markers were sequentially induced in a neural retinal progenitor, a retinal pigment epithelial (RPE) progenitor, a photoreceptor precursor, RPE cells, and photoreceptor cells. In the differentiated rod cells, diffused distribution of RHO protein in cytoplasm and expressions of endoplasmic reticulum (ER) stress markers strongly indicated the involvement of ER stress. Furthermore, the rod cell numbers decreased significantly after successive culture, suggesting an in vitro model of rod degeneration. Thus, from integration-free patient-specific iPSCs, RP patient-specific rod cells were generated in vitro that recapitulated the disease feature and revealed evidence of ER stress in this patient, demonstrating its utility for disease modeling in vitro.
Collapse
Affiliation(s)
- Zi-Bing Jin
- Center for Vision Research, School of Ophthalmology and Optometry, Eye Hospital of Wenzhou Medical College, Wenzhou, China.
| | | | | | | |
Collapse
|
235
|
Bae D, Mondragon-Teran P, Hernandez D, Ruban L, Mason C, Bhattacharya SS, Veraitch FS. Hypoxia Enhances the Generation of Retinal Progenitor Cells from Human Induced Pluripotent and Embryonic Stem Cells. Stem Cells Dev 2012; 21:1344-55. [DOI: 10.1089/scd.2011.0225] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Daekyeong Bae
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Paul Mondragon-Teran
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Diana Hernandez
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Ludmila Ruban
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Chris Mason
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| | - Shomi S. Bhattacharya
- CABIMER, Isla de la Cartuja, Sevilla, Spain
- UCL-Institute of Ophthalmology, London, United Kingdom
| | - Farlan S. Veraitch
- Department of Biochemical Engineering, The Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
| |
Collapse
|
236
|
Clarke L, Ballios BG, van der Kooy D. Generation and clonal isolation of retinal stem cells from human embryonic stem cells. Eur J Neurosci 2012; 36:1951-9. [PMID: 22591375 DOI: 10.1111/j.1460-9568.2012.08123.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Retinal stem cells (RSCs) are present within the pigmented ciliary epithelium (CE) of the adult human eye and produce progeny that differentiate in vitro into all neural retinal subtypes and retinal pigmented epithelium (RPE). We hypothesized that a RSC population, similar to the adult CE-derived RSC, is contained within pigmented colonies that arise in long-term cultures of human embryonic stem cells (hESCs) suggested to recapitulate retinal development in vitro. Single pigmented hESC-derived cells were isolated and plated in serum-free media containing growth factors and, after 2 weeks, clonal sphere colonies containing both pigmented and non-pigmented cells were observed. These colonies expressed the early retinal transcription factors Rx, Chx10 and Pax6, and could be dissociated and replated as single cells to form secondary clonal colonies. When allowed to differentiate, expression of markers for both RPE and neurons was observed. Rhodopsin expression was detected after explant co-culture and transplantation into the developing mouse eye as well as following treatment with soluble factors in vitro. We show that RSCs emerge in an in vitro model of retinal development and are a potential source of human photoreceptors for use in transplantation.
Collapse
Affiliation(s)
- Laura Clarke
- Institute of Medical Science, University of Toronto, 1 King's College Circle, Toronto, ON, Canada.
| | | | | |
Collapse
|
237
|
Minhas G, Morishita R, Anand A. Preclinical models to investigate retinal ischemia: advances and drawbacks. Front Neurol 2012; 3:75. [PMID: 22593752 PMCID: PMC3350026 DOI: 10.3389/fneur.2012.00075] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/16/2012] [Indexed: 12/17/2022] Open
Abstract
Retinal ischemia is a major cause of blindness worldwide. It is associated with various disorders such as diabetic retinopathy, glaucoma, optic neuropathies, stroke, and other retinopathies. Retinal ischemia is a clinical condition that occurs due to lack of appropriate supply of blood to the retina. As the retina has a higher metabolic demand, any hindrance in the blood supply to it can lead to decreased supply of oxygen, thus causing retinal ischemia. The pathology of retinal ischemia is still not clearly known. To get a better insight into the pathophysiology of retinal ischemia, the role of animal models is indispensable. The standard treatment care for retinal ischemia has limited potential. Transplantation of stem cells provide neuroprotection and to replenish damaged cells is an emerging therapeutic approach to treat retinal ischemia. In this review we provide an overview of major animal models of retinal ischemia along with the current and preclinical treatments in use.
Collapse
Affiliation(s)
- Gillipsie Minhas
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and ResearchChandigarh, India
| | - Ryuichi Morishita
- Division of Clinical Gene Therapy, Graduate School of Medicine, Osaka University Medical SchoolOsaka, Japan
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and ResearchChandigarh, India
| |
Collapse
|
238
|
Cai S, Smith ME, Redenti SM, Wnek GE, Young MJ. Mouse retinal progenitor cell dynamics on electrospun poly (ϵ-caprolactone). JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:1451-65. [PMID: 21781383 DOI: 10.1163/092050611x584388] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Age-related macular degeneration, retinitis pigmentosa and glaucoma are among the many retinal degenerative diseases where retinal cell death leads to irreversible vision loss and blindness. Working toward a cell-replacement-based therapy for such diseases, a number of research groups have recently evaluated the feasibility of using retinal progenitor cells (RPCs) cultured and transplanted on biodegradable polymer substrates to replace damaged retinal tissue. Appropriate polymer substrate design is essential to providing a three-dimensional environment that can facilitate cell adhesion, proliferation and post-transplantation migration into the host environment. In this study, we have designed and fabricated a novel, ultra-thin electrospun poly(ϵ-caprolactone) (PCL) scaffold with microscale fiber diameters, appropriate porosity for infiltration by RPCs, and biologically compatible mechanical characteristics. We have verified that our electrospun PCL scaffold supports robust mouse RPC proliferation, adhesion, and differentiation in vitro, as well as migration into mouse retinal explants. These promising results make PCL a strong candidate for further development as a cell transplantation substrate in retinal regenerative research.
Collapse
Affiliation(s)
- Sophie Cai
- a Department of Ophthalmology , Schepens Eye Research Institute, Harvard Medical School , 20 Staniford Street , Boston , MA , 02114 , USA
| | | | | | | | | |
Collapse
|
239
|
|
240
|
Mandai M, Homma K, Okamoto S, Yamada C, Nomori A, Takahashi M. Adequate Time Window and Environmental Factors Supporting Retinal Graft Cell Survival in rd Mice. CELL MEDICINE 2012; 4:45-54. [PMID: 26858854 DOI: 10.3727/215517912x639315] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Postnatal photoreceptor cells can be integrated into the wild-type adult retina in mice, and retinal transplantation is now one therapeutic option for retinal degenerative diseases when photoreceptor degeneration is the primary cause of the disease. The aim of this study was to specify the optimal time window during the course of retinal degeneration and to modulate the host and/or graft environment for a successful transplantation. We first studied the background features of the mice with phosphodiesterase 6b (PDE6b) gene mutation (rd; C3H/Hej) and found that the infiltration of microglia and glial fibrillary acidic protein (GFAP) expression once increased at the peak of rod death (∼2-3 weeks of age) but then reduced for a following period until gliosis began to take place with enhanced GFAP expression (∼8 weeks of age). The postnatal retinal cells (p4-p7) were successfully transplanted during this period with neurite extension into the host retina. In later transplantations (6 or 8 weeks of age), graft cells survived better in the presence of chondroitinase ABC (ChABC), which digests chondroitin sulfate proteoglycan (CSPG), an essential component of gliosis. In contrast, in earlier transplantations (4 weeks of age), graft cells survived better in the presence of valproic acid (VPA), a neural differentiating reagent, or glatiramer acetate, an immune modulator. These suggest that, immediately after the outer nuclear layer (ONL) degeneration, an inflammatory reaction may be easily induced but the host neurons may be more able to accept donor cells in the presence of neural differentiating factor. These results will help optimize transplantation conditions when we consider clinical application.
Collapse
Affiliation(s)
- Michiko Mandai
- Laboratory for Retinal Regeneration , Riken Kobe CDB, Kobe, Hyogo , Japan
| | - Kohei Homma
- Laboratory for Retinal Regeneration , Riken Kobe CDB, Kobe, Hyogo , Japan
| | - Satoshi Okamoto
- Laboratory for Retinal Regeneration , Riken Kobe CDB, Kobe, Hyogo , Japan
| | - Chikako Yamada
- Laboratory for Retinal Regeneration , Riken Kobe CDB, Kobe, Hyogo , Japan
| | - Akane Nomori
- Laboratory for Retinal Regeneration , Riken Kobe CDB, Kobe, Hyogo , Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration , Riken Kobe CDB, Kobe, Hyogo , Japan
| |
Collapse
|
241
|
Rowland TJ, Blaschke AJ, Buchholz DE, Hikita ST, Johnson LV, Clegg DO. Differentiation of human pluripotent stem cells to retinal pigmented epithelium in defined conditions using purified extracellular matrix proteins. J Tissue Eng Regen Med 2012; 7:642-53. [PMID: 22514096 DOI: 10.1002/term.1458] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 10/05/2011] [Accepted: 11/24/2011] [Indexed: 01/24/2023]
Abstract
A potential application of human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) is the generation of retinal pigmented epithelium (RPE) to treat age-related macular degeneration (AMD), a common but incurable retinal disease. RPE cells derived from hESCs (hESC-RPEs) and iPSCs (iPSC-RPEs) express essential RPE markers and can rescue visual function in animal models. However, standard differentiation protocols yield RPE cells at low frequency, especially from iPSC lines, and the common use of Matrigel and xenogeneic feeder cells is not compatible with clinical applications. The extracellular matrix (ECM) can affect differentiation, and therefore changes in ECM composition may improve the frequency of stem cell-RPE differentiation. We selected several purified ECM proteins and substrates, based on the in vivo RPE ECM environment, and tested their ability to support iPSC-RPE differentiation and maintenance. iPSCs differentiated on nearly all tested substrates developed pigmented regions, with Matrigel and mouse laminin-111 supporting the highest pigmentation frequencies. Although iPSC-RPEs cultured on the majority of the tested substrates expressed key RPE genes, only six substrates supported development of confluent monolayers with normal RPE morphology, including Matrigel and mouse laminin-111. iPSCs differentiated on mouse laminin-111 produced iPSC-RPEs expressing RPE proteins, and hESCs differentiated on mouse laminin-111 resulted in high yields of functional hESC-RPEs. This identification of key ECM proteins may assist with future scaffold designs and provide peptide sequences for use in synthetic, xeno-free, GMP-compliant generation of RPE from human pluripotent stem cells relevant to clinical translation.
Collapse
Affiliation(s)
- Teisha J Rowland
- Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, CA 93106, USA
| | | | | | | | | | | |
Collapse
|
242
|
Phillips MJ, Wallace KA, Dickerson SJ, Miller MJ, Verhoeven AD, Martin JM, Wright LS, Shen W, Capowski EE, Percin EF, Perez ET, Zhong X, Canto-Soler MV, Gamm DM. Blood-derived human iPS cells generate optic vesicle-like structures with the capacity to form retinal laminae and develop synapses. Invest Ophthalmol Vis Sci 2012; 53:2007-19. [PMID: 22410558 DOI: 10.1167/iovs.11-9313] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
PURPOSE We sought to determine if human induced pluripotent stem cells (iPSCs) derived from blood could produce optic vesicle-like structures (OVs) with the capacity to stratify and express markers of intercellular communication. METHODS Activated T-lymphocytes from a routine peripheral blood sample were reprogrammed by retroviral transduction to iPSCs. The T-lymphocyte-derived iPSCs (TiPSCs) were characterized for pluripotency and differentiated to OVs using our previously published protocol. TiPSC-OVs were then manually isolated, pooled, and cultured en masse to more mature stages of retinogenesis. Throughout this stepwise differentiation process, changes in anterior neural, retinal, and synaptic marker expression were monitored by PCR, immunocytochemistry, and/or flow cytometry. RESULTS TiPSCs generated abundant OVs, which contained a near homogeneous population of proliferating neuroretinal progenitor cells (NRPCs). These NRPCs differentiated into multiple neuroretinal cell types, similar to OV cultures from human embryonic stem cells and fibroblast-derived iPSCs. In addition, portions of some TiPSC-OVs maintained their distinctive neuroepithelial appearance and spontaneously formed primitive laminae, reminiscent of the developing retina. Retinal progeny from TiPSC-OV cultures expressed numerous genes and proteins critical for synaptogenesis and gap junction formation, concomitant with the emergence of glia and the upregulation of thrombospondins in culture. CONCLUSIONS We demonstrate for the first time that human blood-derived iPSCs can generate retinal cell types, providing a highly convenient donor cell source for iPSC-based retinal studies. We also show that cultured TiPSC-OVs have the capacity to self-assemble into rudimentary neuroretinal structures and express markers indicative of chemical and electrical synapses.
Collapse
Affiliation(s)
- M Joseph Phillips
- Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Rowland TJ, Buchholz DE, Clegg DO. Pluripotent human stem cells for the treatment of retinal disease. J Cell Physiol 2012; 227:457-66. [PMID: 21520078 DOI: 10.1002/jcp.22814] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite advancements made in our understanding of ocular biology, therapeutic options for many debilitating retinal diseases remain limited. Stem cell-based therapies are a potential avenue for treatment of retinal disease, and this mini-review will focus on current research in this area. Cellular therapies to replace retinal pigmented epithelium (RPE) and/or photoreceptors to treat age-related macular degeneration (AMD), Stargardt's macular dystrophy, and retinitis pigmentosa are currently being developed. Over the past decade, significant advancements have been made using different types of human stem cells with varying capacities to differentiate into these target retinal cell types. We review and evaluate pluripotent stem cells, both human embryonic stem cells and human induced pluripotent stem cells, as well as protocols for differentiation of ocular cells, and culture and transplant techniques that might be used to deliver cells to patients.
Collapse
Affiliation(s)
- Teisha J Rowland
- Center for Stem Cell Biology and Engineering, University of California, Santa Barbara, California, USA
| | | | | |
Collapse
|
244
|
Abstract
Regeneration of the nervous system requires either the repair or replacement of nerve cells that have been damaged by injury or disease. While lower organisms possess extensive capacity for neural regeneration, evolutionarily higher organisms including humans are limited in their ability to regenerate nerve cells, posing significant issues for the treatment of injury and disease of the nervous system. This chapter focuses on current approaches for neural regeneration, with a discussion of traditional methods to enhance neural regeneration as well as emerging concepts within the field such as stem cells and cellular reprogramming. Stem cells are defined by their ability to self-renew as well as their ability to differentiate into multiple cell types, and hence can serve as a source for cell replacement of damaged neurons. Traditionally, adult stem cells isolated from the hippocampus and subventricular zone have served as a source of neural stem cells for replacement purposes. With the advancement of pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (iPSCs), new and exciting approaches for neural cell replacement are being developed. Furthermore, with increased understanding of the human genome and epigenetics, scientists have been successful in the direct genetic reprogramming of somatic cells to a neuronal fate, bypassing the intermediary pluripotent stage. Such breakthroughs have accelerated the timing of production of mature neuronal cell types from a patient-specific somatic cell source such as skin fibroblasts or mononuclear blood cells. While extensive hurdles remain to the translational application of such stem cell and reprogramming strategies, these approaches have revolutionized the field of regenerative biology and have provided innovative approaches for the potential regeneration of the nervous system.
Collapse
Affiliation(s)
- Melissa M Steward
- Department of Biology, Indiana University Purdue University, Indianapolis, IN, USA
| | | | | |
Collapse
|
245
|
Skottman H. Differentiation of Human Embryonic Stem Cells and Human Induced Pluripotent Stem Cells into Retinal Pigment Epithelium. STEM CELLS AND CANCER STEM CELLS, VOLUME 7 2012. [DOI: 10.1007/978-94-007-4285-7_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
246
|
Amirpour N, Karamali F, Rabiee F, Rezaei L, Esfandiari E, Razavi S, Dehghani A, Razmju H, Nasr-Esfahani MH, Baharvand H. Differentiation of Human Embryonic Stem Cell–Derived Retinal Progenitors into Retinal Cells by Sonic Hedgehog and/or Retinal Pigmented Epithelium and Transplantation into the Subretinal Space of Sodium Iodate–Injected Rabbits. Stem Cells Dev 2012; 21:42-53. [DOI: 10.1089/scd.2011.0073] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Noushin Amirpour
- Department of Cell and Molecular Biology, Royan Institute for Animal Biotechnology, Isfahan, Iran
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Fereshteh Karamali
- Department of Cell and Molecular Biology, Royan Institute for Animal Biotechnology, Isfahan, Iran
| | - Farzaneh Rabiee
- Department of Cell and Molecular Biology, Royan Institute for Animal Biotechnology, Isfahan, Iran
| | - Leila Rezaei
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Ebrahim Esfandiari
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Shahnaz Razavi
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Dehghani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hassan Razmju
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | | | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
247
|
Jin ZB, Takahashi M. Generation of retinal cells from pluripotent stem cells. PROGRESS IN BRAIN RESEARCH 2012. [PMID: 23186714 DOI: 10.1016/b978-0-444-59544-7.00008-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Retinal degeneration is a leading cause of incurable low vision and blindness worldwide. Most retinal degenerative diseases are caused by irreversible apoptosis of retinal neural cells or adjacent supporting tissue. Because there is no radical treatment for retinal degeneration, most therapies are aimed at specific situations, such as drug or surgical intervention for late complications. Retinal cell replacement would be valuable for regenerating functional retinas, and therefore it is being examined as a next-generation treatment for retinal degeneration. With advances in stem cell biology, considerable progress has been made in recent years on generation of retinal cells. Both sensory retinal neural cells and retinal pigment epithelial cells can be induced in vitro from pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells. Here, we review the stepwise differentiation of retinal cells from pluripotent stem cells, with emphases on the methodology and application potential.
Collapse
Affiliation(s)
- Zi-Bing Jin
- Laboratory for Stem Cell & Retinal Regeneration, Center for Vision Research, The Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical College, Wenzhou, China.
| | | |
Collapse
|
248
|
Zarbin MA, Montemagno C, Leary JF, Ritch R. Regenerative nanomedicine and the treatment of degenerative retinal diseases. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 4:113-37. [DOI: 10.1002/wnan.167] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Marco A. Zarbin
- Institute of Ophthalmology and Visual Science, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ, USA
| | - Carlo Montemagno
- College of Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - James F. Leary
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN Purdue University, School of Veterinary Medicine, West Lafayette, IN, USA
| | - Robert Ritch
- Einhorn Clinical Research Center, New York Eye & Ear Infirmary, New York, NY, USA
| |
Collapse
|
249
|
Mason SL, Stewart RMK, Kearns VR, Williams RL, Sheridan CM. Ocular epithelial transplantation: current uses and future potential. Regen Med 2011; 6:767-82. [DOI: 10.2217/rme.11.94] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Visual loss may be caused by a variety of ocular diseases and places a significant burden on society. Replacing or regenerating epithelial structures in the eye has been demonstrated to recover visual loss in a number of such diseases. Several types of cells (e.g., embryonic stem cells, adult stem/progenitor/differentiated epithelial cells and induced pluripotent cells) have generated much interest and research into their potential in restoring vision in a variety of conditions: from ocular surface disease to age-related macular degeneration. While there has been some success in clinical transplantation of conjunctival and particularly corneal epithelium utilizing ocular stem cells, in particular, from the limbus, the replacement of the retinal pigment epithelium by utilizing stem cell sources has yet to reach the clinic. Advances in our understanding of all of these cell types, their differentiation and subsequent optimization of culture conditions and development of suitable substrates for their transplantation will enable us to overcome current clinical obstacles. This article addresses the current status of knowledge concerning the biology of stem cells, their progeny and the use of differentiated epithelial cells to replace ocular epithelial cells. It will highlight the clinical outcomes to date and their potential for future clinical use.
Collapse
Affiliation(s)
- Sharon L Mason
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Rosalind MK Stewart
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Victoria R Kearns
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | - Rachel L Williams
- Department of Eye & Vision Science, Institute of Ageing & Chronic Disease, University of Liverpool, Daulby Street, L69 3GA, UK
| | | |
Collapse
|
250
|
Abstract
Retinal degenerative disease has limited therapeutic options and the possibility of stem cell-mediated regenerative treatments is being actively explored for these blinding retinal conditions. The relative accessibility of this central nervous system tissue and the ability to visually monitor changes after transplantation make the retina and adjacent retinal pigment epithelium prime targets for pioneering stem cell therapeutics. Prior work conducted for several decades indicated the promise of cell transplantation for retinal disease, and new strategies that combine these established surgical approaches with stem cell-derived donor cells is ongoing. A variety of tissue-specific and pluripotent-derived donor cells are being advanced to replace lost or damaged retinal cells and/or to slow the disease processes by providing neuroprotective factors, with the ultimate aim of long-term improvement in visual function. Clinical trials are in the early stages, and data on safety and efficacy are widely anticipated. Positive outcomes from these stem cell-based clinical studies would radically change the way that blinding disorders are approached in the clinic.
Collapse
|