201
|
Nomura T, Ohtaka-Maruyama C, Yamashita W, Wakamatsu Y, Murakami Y, Calegari F, Suzuki K, Gotoh H, Ono K. The evolution of basal progenitors in the developing non-mammalian brain. Development 2016; 143:66-74. [PMID: 26732839 PMCID: PMC4725208 DOI: 10.1242/dev.127100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The amplification of distinct neural stem/progenitor cell subtypes during embryogenesis is essential for the intricate brain structures present in various vertebrate species. For example, in both mammals and birds, proliferative neuronal progenitors transiently appear on the basal side of the ventricular zone of the telencephalon (basal progenitors), where they contribute to the enlargement of the neocortex and its homologous structures. In placental mammals, this proliferative cell population can be subdivided into several groups that include Tbr2+ intermediate progenitors and basal radial glial cells (bRGs). Here, we report that basal progenitors in the developing avian pallium show unique morphological and molecular characteristics that resemble the characteristics of bRGs, a progenitor population that is abundant in gyrencephalic mammalian neocortex. Manipulation of LGN (Leu-Gly-Asn repeat-enriched protein) and Cdk4/cyclin D1, both essential regulators of neural progenitor dynamics, revealed that basal progenitors and Tbr2+ cells are distinct cell lineages in the developing avian telencephalon. Furthermore, we identified a small population of subapical mitotic cells in the developing brains of a wide variety of amniotes and amphibians. Our results suggest that unique progenitor subtypes are amplified in mammalian and avian lineages by modifying common mechanisms of neural stem/progenitor regulation during amniote brain evolution. Highlighted article: In the developing chick pallium, a basal progenitor population resembles mammalian cortical basal radial glia, suggesting a more ancient evolutionary origin for this cell type.
Collapse
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyo-ku, Kyoto 606-0823, Japan Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Chiaki Ohtaka-Maruyama
- Neural Network Project, Department of Neural Development and Regeneration, Tokyo Metropolitan Institute of Medical Science, 2-1-6, Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Wataru Yamashita
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Yoshio Wakamatsu
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine (ART), Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Federico Calegari
- DFG-Centre for Regenerative Therapies Dresden, Faculty of Medicine, TUD, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Kunihiro Suzuki
- Department of Biology, Nihon University School of Dentistry at Matsudo, Chiba 271-8587, Japan Division of Companion Diagnostics, Department of Pathology and Microbiology, Nihon University School of Medicine, Tokyo 173-8610, Japan
| | - Hitoshi Gotoh
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyo-ku, Kyoto 606-0823, Japan
| | - Katsuhiko Ono
- Developmental Neurobiology, Kyoto Prefectural University of Medicine, INAMORI Memorial Building, 1-5 Shimogamo-hangi cho, Sakyo-ku, Kyoto 606-0823, Japan
| |
Collapse
|
202
|
Silbereis JC, Pochareddy S, Zhu Y, Li M, Sestan N. The Cellular and Molecular Landscapes of the Developing Human Central Nervous System. Neuron 2016; 89:248-68. [PMID: 26796689 DOI: 10.1016/j.neuron.2015.12.008] [Citation(s) in RCA: 504] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human CNS follows a pattern of development typical of all mammals, but certain neurodevelopmental features are highly derived. Building the human CNS requires the precise orchestration and coordination of myriad molecular and cellular processes across a staggering array of cell types and over a long period of time. Dysregulation of these processes affects the structure and function of the CNS and can lead to neurological or psychiatric disorders. Recent technological advances and increased focus on human neurodevelopment have enabled a more comprehensive characterization of the human CNS and its development in both health and disease. The aim of this review is to highlight recent advancements in our understanding of the molecular and cellular landscapes of the developing human CNS, with focus on the cerebral neocortex, and the insights these findings provide into human neural evolution, function, and dysfunction.
Collapse
Affiliation(s)
- John C Silbereis
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sirisha Pochareddy
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Ying Zhu
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Mingfeng Li
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA; Department of Genetics and Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA; Section of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
203
|
Rani N, Nowakowski TJ, Zhou H, Godshalk SE, Lisi V, Kriegstein AR, Kosik KS. A Primate lncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA. Neuron 2016; 90:1174-1188. [PMID: 27263970 PMCID: PMC4911262 DOI: 10.1016/j.neuron.2016.05.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 03/25/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) are a diverse and poorly conserved category of transcripts that have expanded greatly in primates, particularly in the brain. We identified an lncRNA, which has acquired 16 microRNA response elements for miR-143-3p in the Catarrhini branch of primates. This lncRNA, termed LncND (neurodevelopment), is expressed in neural progenitor cells and then declines in neurons. Binding and release of miR-143-3p by LncND control the expression of Notch receptors. LncND expression is enriched in radial glia cells (RGCs) in the ventricular and subventricular zones of developing human brain. Downregulation in neuroblastoma cells reduced cell proliferation and induced neuronal differentiation, an effect phenocopied by miR-143-3p overexpression. Gain of function of LncND in developing mouse cortex led to an expansion of PAX6+ RGCs. These findings support a role for LncND in miRNA-mediated regulation of Notch signaling within the neural progenitor pool in primates that may have contributed to the expansion of cerebral cortex.
Collapse
Affiliation(s)
- Neha Rani
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Tomasz J Nowakowski
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hongjun Zhou
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sirie E Godshalk
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Véronique Lisi
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Arnold R Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
204
|
Wang L, Hou S, Han YG. Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex. Nat Neurosci 2016; 19:888-96. [PMID: 27214567 PMCID: PMC4925239 DOI: 10.1038/nn.4307] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
The unique mental abilities of humans are rooted in the immensely expanded and folded neocortex, which reflects the expansion of neural progenitors, especially basal progenitors including basal radial glia (bRGs, also called outer RGs) and intermediate progenitor cells (IPCs). Here, we show that constitutively active Shh signaling expanded bRGs and IPCs and induced folding in the otherwise smooth mouse neocortex, whereas the loss of Shh signaling decreased the number of bRGs and IPCs and the size of the neocortex. SHH signaling was strongly active in the human fetal neocortex but not in the mouse embryonic neocortex, and blocking SHH signaling in human cerebral organoids decreased the number of bRGs. Mechanistically, Shh signaling increased the initial generation and self-renewal of bRGs as well as increasing IPC proliferation. Thus, robust SHH signaling in the human fetal neocortex may contribute to bRG and IPC expansion and neocortical growth and folding.
Collapse
Affiliation(s)
- Lei Wang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Division of Brain Tumor Research, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shirui Hou
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Division of Brain Tumor Research, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Young-Goo Han
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA.,Division of Brain Tumor Research, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
205
|
Fernández V, Llinares-Benadero C, Borrell V. Cerebral cortex expansion and folding: what have we learned? EMBO J 2016; 35:1021-44. [PMID: 27056680 PMCID: PMC4868950 DOI: 10.15252/embj.201593701] [Citation(s) in RCA: 240] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/23/2016] [Accepted: 03/17/2016] [Indexed: 01/22/2023] Open
Abstract
One of the most prominent features of the human brain is the fabulous size of the cerebral cortex and its intricate folding. Cortical folding takes place during embryonic development and is important to optimize the functional organization and wiring of the brain, as well as to allow fitting a large cortex in a limited cranial volume. Pathological alterations in size or folding of the human cortex lead to severe intellectual disability and intractable epilepsy. Hence, cortical expansion and folding are viewed as key processes in mammalian brain development and evolution, ultimately leading to increased intellectual performance and, eventually, to the emergence of human cognition. Here, we provide an overview and discuss some of the most significant advances in our understanding of cortical expansion and folding over the last decades. These include discoveries in multiple and diverse disciplines, from cellular and molecular mechanisms regulating cortical development and neurogenesis, genetic mechanisms defining the patterns of cortical folds, the biomechanics of cortical growth and buckling, lessons from human disease, and how genetic evolution steered cortical size and folding during mammalian evolution.
Collapse
Affiliation(s)
- Virginia Fernández
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Cristina Llinares-Benadero
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| |
Collapse
|
206
|
Otani T, Marchetto MC, Gage FH, Simons BD, Livesey FJ. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size. Cell Stem Cell 2016; 18:467-80. [PMID: 27049876 PMCID: PMC4826446 DOI: 10.1016/j.stem.2016.03.003] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 12/22/2015] [Accepted: 03/10/2016] [Indexed: 11/17/2022]
Abstract
Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. Human and primate PSCs can replicate cortical development in culture PSC-derived cortical progenitors from different species expand to different degrees Clonal analysis reveals marked difference in neurogenesis output over time Species-specific timing differences in neurogenesis are regulated cell autonomously
Collapse
Affiliation(s)
- Tomoki Otani
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Maria C Marchetto
- Laboratory of Genetics, Salk Institute, North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Fred H Gage
- Laboratory of Genetics, Salk Institute, North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Benjamin D Simons
- Gurdon Institute, Cambridge Stem Cell Institute, and Department of Physics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Frederick J Livesey
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
207
|
Pfeiffer M, Betizeau M, Waltispurger J, Pfister SS, Douglas RJ, Kennedy H, Dehay C. Unsupervised lineage-based characterization of primate precursors reveals high proliferative and morphological diversity in the OSVZ. J Comp Neurol 2016; 524:535-63. [PMID: 26053631 PMCID: PMC4758405 DOI: 10.1002/cne.23820] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 05/19/2015] [Accepted: 05/30/2015] [Indexed: 01/22/2023]
Abstract
Generation of the primate cortex is characterized by the diversity of cortical precursors and the complexity of their lineage relationships. Recent studies have reported miscellaneous precursor types based on observer classification of cell biology features including morphology, stemness, and proliferative behavior. Here we use an unsupervised machine learning method for Hidden Markov Trees (HMTs), which can be applied to large datasets to classify precursors on the basis of morphology, cell-cycle length, and behavior during mitosis. The unbiased lineage analysis automatically identifies cell types by applying a lineage-based clustering and model-learning algorithm to a macaque corticogenesis dataset. The algorithmic results validate previously reported observer classification of precursor types and show numerous advantages: It predicts a higher diversity of progenitors and numerous potential transitions between precursor types. The HMT model can be initialized to learn a user-defined number of distinct classes of precursors. This makes it possible to 1) reveal as yet undetected precursor types in view of exploring the significant features of precursors with respect to specific cellular processes; and 2) explore specific lineage features. For example, most precursors in the experimental dataset exhibit bidirectional transitions. Constraining the directionality in the HMT model leads to a reduction in precursor diversity following multiple divisions, thereby suggesting that one impact of bidirectionality in corticogenesis is to maintain precursor diversity. In this way we show that unsupervised lineage analysis provides a valuable methodology for investigating fundamental features of corticogenesis.
Collapse
Affiliation(s)
- Michael Pfeiffer
- Institute of NeuroinformaticsUniversity of Zurich and ETH Zurich8057ZurichSwitzerland
| | - Marion Betizeau
- Stem Cell and Brain Research InstituteINSERM U84669500BronFrance
- University of LyonUniversity of Lyon I69003LyonFrance
- Department of Biosystems Science and Engineering (D‐BSSE)ETH Zurich4058BaselSwitzerland
| | - Julie Waltispurger
- Stem Cell and Brain Research InstituteINSERM U84669500BronFrance
- University of LyonUniversity of Lyon I69003LyonFrance
| | - Sabina Sara Pfister
- Institute of NeuroinformaticsUniversity of Zurich and ETH Zurich8057ZurichSwitzerland
- Stem Cell and Brain Research InstituteINSERM U84669500BronFrance
- University of LyonUniversity of Lyon I69003LyonFrance
| | - Rodney J. Douglas
- Institute of NeuroinformaticsUniversity of Zurich and ETH Zurich8057ZurichSwitzerland
| | - Henry Kennedy
- Stem Cell and Brain Research InstituteINSERM U84669500BronFrance
- University of LyonUniversity of Lyon I69003LyonFrance
| | - Colette Dehay
- Stem Cell and Brain Research InstituteINSERM U84669500BronFrance
- University of LyonUniversity of Lyon I69003LyonFrance
| |
Collapse
|
208
|
Montiel JF, Vasistha NA, Garcia-Moreno F, Molnár Z. From sauropsids to mammals and back: New approaches to comparative cortical development. J Comp Neurol 2016; 524:630-45. [PMID: 26234252 PMCID: PMC4832283 DOI: 10.1002/cne.23871] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/21/2015] [Accepted: 07/21/2015] [Indexed: 01/31/2023]
Abstract
Evolution of the mammalian neocortex (isocortex) has been a persisting problem in neurobiology. While recent studies have attempted to understand the evolutionary expansion of the human neocortex from rodents, similar approaches have been used to study the changes between reptiles, birds, and mammals. We review here findings from the past decades on the development, organization, and gene expression patterns in various extant species. This review aims to compare cortical cell numbers and neuronal cell types to the elaboration of progenitor populations and their proliferation in these species. Several progenitors, such as the ventricular radial glia, the subventricular intermediate progenitors, and the subventricular (outer) radial glia, have been identified but the contribution of each to cortical layers and cell types through specific lineages, their possible roles in determining brain size or cortical folding, are not yet understood. Across species, larger, more diverse progenitors relate to cortical size and cell diversity. The challenge is to relate the radial and tangential expansion of the neocortex to the changes in the proliferative compartments during mammalian evolution and with the changes in gene expression and lineages evident in various sectors of the developing brain. We also review the use of recent lineage tracing and transcriptomic approaches to revisit theories and to provide novel understanding of molecular processes involved in specification of cortical regions.
Collapse
Affiliation(s)
- Juan F Montiel
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Centre for Biomedical Research, Facultad de Medicina, Universidad Diego Portales, Santiago, Chile
| | - Navneet A Vasistha
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Scotland, UK
| | | | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
209
|
Wang XJ, Kennedy H. Brain structure and dynamics across scales: in search of rules. Curr Opin Neurobiol 2016; 37:92-98. [PMID: 26868043 DOI: 10.1016/j.conb.2015.12.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/30/2015] [Indexed: 02/07/2023]
Abstract
Louis Henry Sullivan, the father of skyscrapers, famously stated 'Form ever follows function'. In this short review, we will focus on the relationship between form (structure) and function (dynamics) in the brain. We summarize recent advances on the quantification of directed- and weighted-mesoscopic connectivity of mammalian cortex, the exponential distance rule for mesoscopic and microscopic circuit wiring, a spatially embedded random model of inter-areal cortical networks, and a large-scale dynamical circuit model of money's cortex that gives rise to a hierarchy of timescales. These findings demonstrate that inter-areal cortical networks are dense (hence such concepts as 'small-world' need to be refined when applied to the brain), spatially dependent (therefore purely topological approach of graph theory has limited applicability) and heterogeneous (consequently cortical areas cannot be treated as identical 'nodes').
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA; NYU-ECNU Joint Institute of Brain and Cognitive Science, NYU Shanghai, Shanghai, China.
| | - Henry Kennedy
- Stem Cell and Brain Research Institute, INSERM U1208, 69500 Bron, France; Université de Lyon, Université Lyon I, 69003 Lyon, France
| |
Collapse
|
210
|
Suzuki IK, Vanderhaeghen P. Is this a brain which I see before me? Modeling human neural development with pluripotent stem cells. Development 2016; 142:3138-50. [PMID: 26395142 DOI: 10.1242/dev.120568] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The human brain is arguably the most complex structure among living organisms. However, the specific mechanisms leading to this complexity remain incompletely understood, primarily because of the poor experimental accessibility of the human embryonic brain. Over recent years, technologies based on pluripotent stem cells (PSCs) have been developed to generate neural cells of various types. While the translational potential of PSC technologies for disease modeling and/or cell replacement therapies is usually put forward as a rationale for their utility, they are also opening novel windows for direct observation and experimentation of the basic mechanisms of human brain development. PSC-based studies have revealed that a number of cardinal features of neural ontogenesis are remarkably conserved in human models, which can be studied in a reductionist fashion. They have also revealed species-specific features, which constitute attractive lines of investigation to elucidate the mechanisms underlying the development of the human brain, and its link with evolution.
Collapse
Affiliation(s)
- Ikuo K Suzuki
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), and ULB Institute of Neuroscience (UNI), 808 Route de Lennik, Brussels B-1070, Belgium
| | - Pierre Vanderhaeghen
- Université Libre de Bruxelles (ULB), Institute for Interdisciplinary Research (IRIBHM), and ULB Institute of Neuroscience (UNI), 808 Route de Lennik, Brussels B-1070, Belgium WELBIO, Université Libre de Bruxelles, 808 Route de Lennik, Brussels B-1070, Belgium
| |
Collapse
|
211
|
Mitsuhashi T, Takahashi T. Proliferation and differentiation characteristics of neural stem cells during course of cerebral cortical histogenesis. Congenit Anom (Kyoto) 2016; 56:6-11. [PMID: 26058879 DOI: 10.1111/cga.12117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 06/01/2015] [Indexed: 12/20/2022]
Abstract
Recent advancements in the research field of stem cell biology have enabled the realization of regenerative medicine in various systems of the body, including the central nervous system. However, fundamental knowledge regarding how neural stem cells divide and generate young neurons in mammals, especially in vivo, is still inadequate. In this article, we shall summarize the concept of cell cycle/division of neural stem cells that generate projection neurons in the murine cerebral cortex. We shall also review the molecular mechanisms that modulate the critical parameters related to the cell cycle regulatory mechanisms, with special reference to the cell cycle regulatory protein p27(Kip1) , an inhibitor of progression of the cell cycle at the G1 phase. A better understanding of the mechanisms controlling cell cycle progression is expected to contribute to the development of novel strategies to increase the efficiency of neural cell/tissue production, both in vivo and in vitro.
Collapse
Affiliation(s)
| | - Takao Takahashi
- Department of Pediatrics, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
212
|
Silver DL. Genomic divergence and brain evolution: How regulatory DNA influences development of the cerebral cortex. Bioessays 2015; 38:162-71. [PMID: 26642006 DOI: 10.1002/bies.201500108] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cerebral cortex controls our most distinguishing higher cognitive functions. Human-specific gene expression differences are abundant in the cerebral cortex, yet we have only begun to understand how these variations impact brain function. This review discusses the current evidence linking non-coding regulatory DNA changes, including enhancers, with neocortical evolution. Functional interrogation using animal models reveals converging roles for our genome in key aspects of cortical development including progenitor cell cycle and neuronal signaling. New technologies, including iPS cells and organoids, offer potential alternatives to modeling evolutionary modifications in a relevant species context. Several diseases rooted in the cerebral cortex uniquely manifest in humans compared to other primates, thus highlighting the importance of understanding human brain differences. Future studies of regulatory loci, including those implicated in disease, will collectively help elucidate key cellular and genetic mechanisms underlying our distinguishing cognitive traits.
Collapse
Affiliation(s)
- Debra L Silver
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.,Department of Neurobiology, Duke University Medical Center, Durham, NC, USA.,Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
213
|
Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc Natl Acad Sci U S A 2015; 112:15672-7. [PMID: 26644564 DOI: 10.1073/pnas.1520760112] [Citation(s) in RCA: 751] [Impact Index Per Article: 75.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cerebral organoids-3D cultures of human cerebral tissue derived from pluripotent stem cells-have emerged as models of human cortical development. However, the extent to which in vitro organoid systems recapitulate neural progenitor cell proliferation and neuronal differentiation programs observed in vivo remains unclear. Here we use single-cell RNA sequencing (scRNA-seq) to dissect and compare cell composition and progenitor-to-neuron lineage relationships in human cerebral organoids and fetal neocortex. Covariation network analysis using the fetal neocortex data reveals known and previously unidentified interactions among genes central to neural progenitor proliferation and neuronal differentiation. In the organoid, we detect diverse progenitors and differentiated cell types of neuronal and mesenchymal lineages and identify cells that derived from regions resembling the fetal neocortex. We find that these organoid cortical cells use gene expression programs remarkably similar to those of the fetal tissue to organize into cerebral cortex-like regions. Our comparison of in vivo and in vitro cortical single-cell transcriptomes illuminates the genetic features underlying human cortical development that can be studied in organoid cultures.
Collapse
|
214
|
Fixed single-cell transcriptomic characterization of human radial glial diversity. Nat Methods 2015; 13:87-93. [PMID: 26524239 PMCID: PMC4869711 DOI: 10.1038/nmeth.3629] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 09/23/2015] [Indexed: 01/13/2023]
Abstract
The human neocortex is created from diverse intermixed progenitors in the prenatal germinal zones. These progenitors have been difficult to characterize since progenitors—particularly radial glia (RG)—are rare, and are defined by a combination of intracellular markers, position and morphology. To circumvent these problems we developed a method called FRISCR for transcriptome profiling of individual fixed, stained and sorted cells. After validation of FRISCR using human embryonic stem cells, we profiled primary human RG that constitute only 1% of the mid-gestation cortex. These RG could be classified into ventricular zone-enriched RG (vRG) that express ANXA1 and CRYAB, and outer subventricular zone-localized RG (oRG) that express HOPX. Our study identifies the first markers and molecular profiles of vRG and oRG cells, and provides an essential step for understanding molecular networks driving the lineage of human neocortical progenitors. Furthermore, FRISCR allows targeted single-cell transcriptomic profiling of tissues that lack live-cell markers.
Collapse
|
215
|
Brunjes PC, Osterberg SK. Developmental Markers Expressed in Neocortical Layers Are Differentially Exhibited in Olfactory Cortex. PLoS One 2015; 10:e0138541. [PMID: 26407299 PMCID: PMC4583488 DOI: 10.1371/journal.pone.0138541] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 08/31/2015] [Indexed: 11/28/2022] Open
Abstract
Neurons in the cerebral cortex stratify on the basis of their time of origin, axonal terminations and the molecular identities assigned during early development. Olfactory cortices share many feature with the neocortex, including clear lamination and similar cell types. The present study demonstrates that the markers differentially expressed in the projection neurons of the cerebral cortex are also found in olfactory areas. Three of the four regions examined (pars principalis of the anterior olfactory nucleus: AONpP, anterior and posterior piriform cortices: APC, PPC, and the olfactory tubercle) expressed transcription factors found in deep or superficial neurons in the developing neocortex, though large differences were found between areas. For example, while the AONpP, APC and PPC all broadly expressed the deep cortical marker CTIP2, NOR1 (NR4a3) levels were higher in AONpP and DAARP-32 was more prevalent in the APC and PPC. Similar findings were encountered for superficial cortical markers: all three regions broadly expressed CUX1, but CART was only observed in the APC and PPC. Furthermore, regional variations were observed even within single structures (e.g., NOR1 was found primarily in in the dorsal region of AONpP and CART expression was observed in a discrete band in the middle of layer 2 of both the APC and PPC). Experiments using the mitotic marker EDU verified that the olfactory cortices and neocortex share similar patterns of neuronal production: olfactory cells that express markers found in the deep neocortex are produced earlier than those that express superficial makers. Projection neurons were filled by retrograde tracers injected into the olfactory bulb to see if olfactory neurons with deep and superficial markers had different axonal targets. Unlike the cerebral cortex, no specificity was observed: neurons with each of the transcription factors examined were found to be labelled. Together the results indicate that olfactory cortices are complex: they differ from each other and each is formed from a variable mosaic of neurons. The results suggest that the olfactory cortices are not merely a remnant architype of the primordial forebrain but varied and independent regions.
Collapse
Affiliation(s)
- Peter C. Brunjes
- Department Psychology, University of Virginia, Charlottesville, Virginia, 22904, United States of America
- * E-mail:
| | - Stephen K. Osterberg
- Department Psychology, University of Virginia, Charlottesville, Virginia, 22904, United States of America
| |
Collapse
|
216
|
Stouffer MA, Golden JA, Francis F. Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiol Dis 2015; 92:18-45. [PMID: 26299390 DOI: 10.1016/j.nbd.2015.08.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/05/2015] [Accepted: 08/12/2015] [Indexed: 01/28/2023] Open
Abstract
A wide spectrum of focal, regional, or diffuse structural brain abnormalities, collectively known as malformations of cortical development (MCDs), frequently manifest with intellectual disability (ID), epilepsy, and/or autistic spectrum disorder (ASD). As the acronym suggests, MCDs are perturbations of the normal architecture of the cerebral cortex and hippocampus. The pathogenesis of these disorders remains incompletely understood; however, one area that has provided important insights has been the study of neuronal migration. The amalgamation of human genetics and experimental studies in animal models has led to the recognition that common genetic causes of neurodevelopmental disorders, including many severe epilepsy syndromes, are due to mutations in genes regulating the migration of newly born post-mitotic neurons. Neuronal migration genes often, though not exclusively, code for proteins involved in the function of the cytoskeleton. Other cellular processes, such as cell division and axon/dendrite formation, which similarly depend on cytoskeletal functions, may also be affected. We focus here on how the susceptibility of the highly organized neocortex and hippocampus may be due to their laminar organization, which involves the tight regulation, both temporally and spatially, of gene expression, specialized progenitor cells, the migration of neurons over large distances and a birthdate-specific layering of neurons. Perturbations in neuronal migration result in abnormal lamination, neuronal differentiation defects, abnormal cellular morphology and circuit formation. Ultimately this results in disorganized excitatory and inhibitory activity leading to the symptoms observed in individuals with these disorders.
Collapse
Affiliation(s)
- Melissa A Stouffer
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France
| | - Jeffrey A Golden
- Department of Pathology, Brigham & Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| | - Fiona Francis
- INSERM UMRS 839, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie, Paris, France; Institut du Fer à Moulin, Paris, France.
| |
Collapse
|
217
|
Matsunaga E, Nambu S, Oka M, Iriki A. Complex and dynamic expression of cadherins in the embryonic marmoset cerebral cortex. Dev Growth Differ 2015; 57:474-483. [PMID: 26081465 PMCID: PMC4744772 DOI: 10.1111/dgd.12228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 05/05/2015] [Accepted: 05/09/2015] [Indexed: 01/14/2023]
Abstract
Cadherin is a cell adhesion molecule widely expressed in the nervous system. Previously, we analyzed the expression of nine classic cadherins (Cdh4, Cdh6, Cdh7, Cdh8, Cdh9, Cdh10, Cdh11, Cdh12, and Cdh20) and T-cadherin (Cdh13) in the developing postnatal common marmoset (Callithrix jacchus) brain, and found differential expressions between mice and marmosets. In this study, to explore primate-specific cadherin expression at the embryonic stage, we extensively analyzed the expression of these cadherins in the developing embryonic marmoset brain. Each cadherin showed differential spatial and temporal expression and exhibited temporally complicated expression. Furthermore, the expression of some cadherins differed from that in rodent brains, even at the embryonic stage. These results suggest the possibility that the differential expressions of diverse cadherins are involved in primate specific cortical development, from the prenatal to postnatal period.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan
| | - Sanae Nambu
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan
| | - Mariko Oka
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Hirosawa 2-1, Wako, 351-0198, Japan
| |
Collapse
|