201
|
Ronaldson PT, Persidsky Y, Bendayan R. Regulation of ABC membrane transporters in glial cells: Relevance to the pharmacotherapy of brain HIV-1 infection. Glia 2008; 56:1711-35. [DOI: 10.1002/glia.20725] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
202
|
Dauchy S, Miller F, Couraud PO, Weaver RJ, Weksler B, Romero IA, Scherrmann JM, De Waziers I, Declèves X. Expression and transcriptional regulation of ABC transporters and cytochromes P450 in hCMEC/D3 human cerebral microvascular endothelial cells. Biochem Pharmacol 2008; 77:897-909. [PMID: 19041851 DOI: 10.1016/j.bcp.2008.11.001] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 11/02/2008] [Accepted: 11/04/2008] [Indexed: 11/26/2022]
Abstract
We investigated the expression of genes encoding ABC transporters, cytochromes P450 (CYPs) and some transcription factors in the hCMEC/D3 immortalized human cerebral microvascular endothelial cell line, a promising in vitro model of the human BBB, and we compared these expressions to a non-brain endothelial cell line (HUVEC) and freshly human brain microvessels. qRT-PCR showed that the MDR1, BCRP, MRP1, MRP3, MRP4 and MRP5 genes were expressed and that the main CYP gene was CYP2U1 in hCMEC/D3. The pattern of ABC and CYPs gene expression in hCMEC/D3 differed from HUVEC which did not express MDR1. Moreover, expression of P-gp and BCRP was lower in hCMEC/D3 than in human brain microvessels but remain functional as shown by rhodamine 123 efflux assay. The gene encoding the aryl hydrocarbon receptor (AhR), a transcription factor that regulates the expression of some ABC and CYPs was highly expressed in hCMEC/D3 and HUVEC, while the pregnane-X-receptor (PXR) and the constitutive androstane receptor (CAR) were barely detected. We investigated the function of the AhR-mediated regulatory pathway in hCMEC/D3 by treating them with the AhR agonist TCDD. The expressions of two AhR-target genes, CYP1A1 and CYP1B1, were increased 26-fold and 28-fold. But the expressions of ABC transporter genes were not significantly altered. We have thus determined the pattern of expression of the genes encoding ABC transporters, CYPs and three transcription factors in hCMEC/D3 and shown that the AhR pathway might afford an original functional transport and metabolic pattern in cerebral endothelial cells that is different from other peripheral endothelial cells.
Collapse
Affiliation(s)
- Sandrine Dauchy
- Neuropsychopharmacologie des addictions (CNRS UMR 7157), Université Paris Descartes, Faculté de Pharmacie, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Gazzin S, Strazielle N, Schmitt C, Fevre-Montange M, Ostrow JD, Tiribelli C, Ghersi-Egea JF. Differential expression of the multidrug resistance-related proteins ABCb1 and ABCc1 between blood-brain interfaces. J Comp Neurol 2008; 510:497-507. [PMID: 18680196 DOI: 10.1002/cne.21808] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cerebral homeostasis results from the presence of the protective blood-brain and blood-cerebrospinal fluid barriers located respectively at the brain capillary endothelium and the choroid plexus epithelium. ABCb1 (Pgp) and ABCc1 (Mrp1) transporters are two major proteins of neuroprotection whose localization and functional significance at both barriers remain partly unsettled. We conducted a comparative analysis of their relative protein content between the two blood-brain interfaces. Microvessels and choroid plexuses located in the fourth and lateral ventricles were isolated from developing and adult rat brains, and whole homogenates were submitted to quantitative Western blot analysis by using standard curves generated from one of the samples. In adult, choroid plexus-associated Pgp content was less than 0.5% of the level in microvessels, whereas Mrp1 content in microvessels was 4% of that in the fourth ventricle choroid plexus. Pgp but not Mrp1 was enriched in microvessels over parenchyma. In choroid plexuses, Mrp1 displayed a basolateral epithelial localization, and reached its high adult protein level, early during postnatal development. In postnatal as in adult microvessels, Pgp localization appeared luminal. However, by contrast to Mrp1, the level of this transporter increased 4.6-fold between 9-day-old and adult animals. Western blot analysis of human samples confirmed the mirror image of Pgp and Mrp1 expression between the two barriers. We conclude that there are major differences in the mechanisms by which blood-brain interfaces fulfill their neuroprotective functions. The data also highlight the significance of the neuroprotective function of the choroid plexus during brain maturation, when the microvasculature is still developing.
Collapse
Affiliation(s)
- Silvia Gazzin
- INSERM U842, Université de Lyon, Lyon 1, Faculté de Médecine Laennec, F-69372 Lyon, France
| | | | | | | | | | | | | |
Collapse
|
204
|
Toyoda Y, Hagiya Y, Adachi T, Hoshijima K, Kuo MT, Ishikawa T. MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions. Xenobiotica 2008; 38:833-62. [DOI: 10.1080/00498250701883514] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
205
|
Eilers M, Roy U, Mondal D. MRP (ABCC) transporters-mediated efflux of anti-HIV drugs, saquinavir and zidovudine, from human endothelial cells. Exp Biol Med (Maywood) 2008; 233:1149-60. [PMID: 18535159 PMCID: PMC2575034 DOI: 10.3181/0802-rm-59] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The constituents of highly active anti-retroviral therapy (HAART) include HIV-1 protease inhibitors (HPIs) and nucleoside reverse transcriptase inhibitors (NRTIs). Endothelial cell (EC) barriers, especially the blood-brain-barrier (BBB) suppresses the entry of HAART drugs to subendothelial HIV-1 reservoirs. The ATP binding cassette (ABC) transporter family members, multidrug resistant-1 (MDR-1) and multidrug resistance-associated proteins (MRPs) can efflux both HPIs and NRTIs from intracellular compartments. Using brain derived ECs from non-human sources, previous studies suggested a dominant role for MDR-1 in HAART efflux from the BBB. However, due to species variations in ABC-transporter expression, drug-efflux functions using human brain ECs need to be investigated. Furthermore, roles of ABC-transporters in drug-efflux from systemic EC barriers need to be studied. We monitored the expression of ABC-transporters in primary human ECs obtained from brain (HBMVECs), aorta (HAECs), pulmonary-artery (HPAECs), dermal-microvessel (HDMVECs) and umbilical vein (HUVECs). Gene expression for MDR-1 and MRPs (MRP-1 to MRP-5) were analyzed by reverse transcriptase polymerase chain reaction (RT-PCR). Drug efflux functions were determined by calcein retention assays. Intracellular accumulation of both 3H-saquinavir (an HPI) and 3H-zidovudine (an NRTI) were also monitored in HAECs and HBMVECs. Both assays were carried out in presence of verapamil (20-60 microM) or MK-571 (12.5-50 microM) inhibitors of MDR-1 and MRPs, respectively in presence of verapamil or MK-571. The HBMVECs expressed higher levels of MRPs than MDR-1 and only MK-571 significantly (P<0.01) suppressed calcein efflux from these cells. However, both HAECs and HPAECs showed MDR-1 and MRP expression and calcein efflux was inhibited by both verapamil and MK-571. Both inhibitors suppressed 3H-saqubinavir efflux from HAECs, but only MK-571 suppressed saquinavir efflux from HBMVECs. In both ECs, 3H-zidovudine efflux was only suppressed by MK-571. Thus, primary human ECs, especially brain derived ECs, predominantly express MRPs and their specific inhibition may enhance HAART efficacy in subendothelial HIV-1 reservoirs.
Collapse
Affiliation(s)
- Mark Eilers
- Department of Pharmacology, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-83, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
206
|
Roberts L, Black D, Raman C, Woodford K, Zhou M, Haggerty J, Yan A, Cwirla S, Grindstaff K. Subcellular localization of transporters along the rat blood–brain barrier and blood–cerebral-spinal fluid barrier by in vivo biotinylation. Neuroscience 2008; 155:423-38. [DOI: 10.1016/j.neuroscience.2008.06.015] [Citation(s) in RCA: 185] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 04/15/2008] [Accepted: 06/04/2008] [Indexed: 11/30/2022]
|
207
|
Daood MJ, Tsai C, Ahdab-Barmada M, Watchko JF. ABC transporter (P-gp/ABCB1, MRP1/ABCC1, BCRP/ABCG2) expression in the developing human CNS. Neuropediatrics 2008; 39:211-8. [PMID: 19165709 PMCID: PMC2821654 DOI: 10.1055/s-0028-1103272] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
P-glycoprotein (P-gp/ABCB1), multidrug resistance associated protein 1 (MRP1/ABCC1), and breast cancer resistance protein (BCRP/ABCG2) are plasma membrane efflux pumps that limit the intracellular uptake and retention of numerous lipophilic, amphipathic xeno- and endobiotics. Little is known about the neonatal and developmental expression of P-gp/ABCB1, MRP1/ABCC1, and BCRP/ABCG2 in the human central nervous system (CNS), therefore post-mortem CNS tissue from infants born at 22 (0/7)-42 (0/7) weeks of gestation and adults was immunostained to determine their ontogeny and cellular localization. P-gp/ABCB1 immunostaining was observed in microvessel endothelial cells as early as 22 (0/7) weeks, increasing in prevalence and intensity with maturation, and later in gestation in large pyramidal neurons. MRP1/ABCC1 immunostaining was prominent early in the choroid plexus and ventricular ependyma, and noted later in large pyramidal neurons. BCRP/ABCG2 expression was limited to microvessel endothelial cells. P-gp/ABCB1, MRP1/ABCC1 and BCRP/ABCG2 in adult brain matched term newborn CNS but with more intense immunostaining. We conclude that P-gp/ABCB1, MRP1/ABCC1, and BCRP/ABCG2 are expressed in a developmental, cell specific, fashion in the human CNS. The complementary pattern of P-gp/ABCB1 and BCRP/ABCG2 at the blood-brain with MRP1/ABCC1 at the blood-CSF barriers may limit CNS uptake and retention of drugs and toxins in neonates.
Collapse
Affiliation(s)
- Monica J. Daood
- Division of Newborn Medicine Department of Pediatrics University of Pittsburgh School of Medicine Magee-Womens Research Institute Pittsburgh, Pennsylvania USA
| | - Cathy Tsai
- Division of Newborn Medicine Department of Pediatrics University of Pittsburgh School of Medicine Magee-Womens Research Institute Pittsburgh, Pennsylvania USA
| | | | - Jon F. Watchko
- Division of Newborn Medicine Department of Pediatrics University of Pittsburgh School of Medicine Magee-Womens Research Institute Pittsburgh, Pennsylvania USA
| |
Collapse
|
208
|
Giri N, Shaik N, Pan G, Terasaki T, Mukai C, Kitagaki S, Miyakoshi N, Elmquist WF. Investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) on pharmacokinetics and central nervous system penetration of abacavir and zidovudine in the mouse. Drug Metab Dispos 2008; 36:1476-84. [PMID: 18443033 PMCID: PMC5091086 DOI: 10.1124/dmd.108.020974] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Many anti-human immunodeficiency virus 1 nucleoside reverse-transcriptase inhibitors have low central nervous system (CNS) distribution due in part to active efflux transport at the blood-brain barrier. We have previously shown that zidovudine (AZT) and abacavir (ABC) are in vitro substrates for the efflux transport protein breast cancer resistance protein (Bcrp) 1. We evaluated the influence of Bcrp1 on plasma pharmacokinetics and brain penetration of zidovudine and abacavir in wild-type and Bcrp1-deficient (Bcrp1-/-) FVB mice. There was no difference in either area under the concentration-time profiles for plasma (AUC(plasma)) or brain (AUC(brain)) for zidovudine between the wild-type and Bcrp1-/- mice. The AUC(plasma) of abacavir was 20% lower in the Bcrp1-/- mice, whereas the AUC(brain) was 20% greater. This difference resulted in a 1.5-fold increase in abacavir brain exposure in the Bcrp1-/- mice. The effect of selective and nonselective transport inhibitors on the ABC brain/plasma ratio at a single time point was evaluated. 3-(6-Isobutyl-9-methoxy-1,4-dioxo-1,2,3,4,6, 7,12,12a-octahydropyrazino[1',2':1,6]pyrido[3,4-b]indol-3-yl)-propionicacid tert-butyl ester (Ko143), N[4[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinolin-2-yl)ethyl]phenyl]-5-methoxy-9-oxo-10H-acridine-4-carboxamide (GF120918), probenecid, and Pluronic P85 increased abacavir plasma concentrations in the wild-type mice. Abacavir plasma concentrations in Bcrp1-/- mice were increased by (R)-4-((1aR,6R,10bS)-1,2-difluoro-1,1a,6,10b-tetrahydrodibenzo (a,e)cyclopropa(c)cycloheptan-6-yl)-alpha-((5-quinoloyloxy)methyl)-1-piperazineethanol trihydrochloride (LY335979), GF120918, and probenecid, but not by Ko143. Brain/plasma concentration ratios in both the wild-type and Bcrp1-/- mice were increased by the P-glycoprotein inhibitors LY335979 and GF120918, but not by BCRP-selective inhibitors. These data indicate that deletion of Bcrp1 has little influence on the pharmacokinetics or brain penetration of AZT. However, for abacavir, deletion of Bcrp1 reduces plasma exposure and enhances brain penetration. These findings suggest that Bcrp1 does not play a significant role in limiting the CNS distribution of zidovudine and abacavir; however, brain penetration of abacavir is dependent on P-glycoprotein-mediated efflux.
Collapse
Affiliation(s)
- Nagdeep Giri
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Abstract
The capacity of dendritic cells (DCs) to migrate from peripheral organs to lymph nodes (LNs) is important in the initiation of a T cell-mediated immune response. The ATP-binding cassette (ABC) transporters P-glycoprotein (P-gp; ABCB1) and the multidrug resistance protein 1 (MRP1; ABCC1) have been shown to play a role in both human and murine DC migration. Here we show that a more recently discovered family member, MRP4 (ABCC4), is expressed on both epidermal and dermal human skin DCs and contributes to the migratory capacity of DCs. Pharmacological inhibition of MRP4 activity or down-regulation through RNAi in DCs resulted in reduced migration of DCs from human skin explants and of in vitro generated Langerhans cells. The responsible MRP4 substrate remains to be identified as exogenous addition of MRP4's known substrates prostaglandin E(2), leukotriene B(4) and D(4), or cyclic nucleotides (all previously implicated in DC migration) could not restore migration. This notwithstanding, our data show that MRP4 is an important protein, significantly contributing to human DC migration toward the draining lymph nodes, and therefore relevant for the initiation of an immune response and a possible target for immunotherapy.
Collapse
|
210
|
Dietrich DR, Fischer A, Michel C, Hoeger SJ. Toxin mixture in cyanobacterial blooms--a critical comparison of reality with current procedures employed in human health risk assessment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 619:885-912. [PMID: 18461795 DOI: 10.1007/978-0-387-75865-7_39] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cyanobacteria are the oldest life forms on earth known to produce a broad spectrum of secondary metabolites. The functions/advantages of most of these secondary metabolites (peptides and alkaloids) are unknown, however, some of them have adverse effects in humans and wildlife, especially when ingested, inhaled or upon dermal exposure. Surprisingly, some of these cyanobacteria are ingested voluntarily. Indeed, for centuries mankind has used cyanobacteria as a protein source, primarily Spirulina species. However, recently also Aphanizomenon flos-aquae are used for the production of so called blue green algae supplements (BGAS), supposedly efficacious for treatment of various diseases and afflictions. Unfortunately, traces of neurotoxins and protein phosphatases (inhibiting compounds) have been detected in BGAS, making these health supplements a good example for human exposure to a mixture of cyanobacterial toxins in a complex matrix. The discussion of this and other possible exposure scenarios, e.g. drinking water, contact during recreational activity, or consumption of contaminated food, can provide insight into the question of whether or not our current risk assessment schemes for cyanobacterial blooms and the toxins contained therein suffice for protection of human health.
Collapse
|
211
|
Abstract
Elucidation of the key mechanisms that confer interindividual differences in drug response remains an important focus of drug disposition and clinical pharmacology research. We now know both environmental and host genetic factors contribute to the apparent variability in drug efficacy or in some cases, toxicity. In addition to the widely studied and recognized genes involved in the metabolism of drugs in clinical use today, we now recognize that membrane-bound proteins, broadly referred to as transporters, may be equally as important to the disposition of a substrate drug, and that genetic variation in drug transporter genes may be a major contributor of the apparent intersubject variation in drug response, both in terms of attained plasma and tissue drug level at target sites of action. Of particular relevance to drug disposition are members of the ATP Binding Cassette (ABC) superfamily of efflux transporters. In this review a comprehensive assessment and annotation of recent findings in relation to genetic variation in the Multidrug Resistance Proteins 1-5 (ABCC1-5) and Breast Cancer Resistance Protein (ABCG2) are described, with particular emphasis on the impact of such transporter genetic variation to drug disposition or efficacy.
Collapse
Affiliation(s)
- Ulrike Gradhand
- Division of Clinical Pharmacology, Department of Medicine, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Canada
| | | |
Collapse
|
212
|
Ravna AW, Sager G. Molecular model of the outward facing state of the human multidrug resistance protein 4 (MRP4/ABCC4). Bioorg Med Chem Lett 2008; 18:3481-3. [PMID: 18513968 DOI: 10.1016/j.bmcl.2008.05.047] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 05/08/2008] [Accepted: 05/09/2008] [Indexed: 11/28/2022]
Abstract
ATP-binding cassette (ABC) transporter multidrug resistance protein 4 (MRP4, ABCC4) is involved in multidrug resistance (MDR), which is an increasing challenge to the treatment of cancer and infections. We have constructed a molecular model of ABCC4 based on the outward facing Sav1866 crystal structure using molecular modeling techniques. Amino acids reported by ICMPocketFinder to take part in substrate translocation were among others Glu103 (TMH1), Ser328 (TMH5), Gly359 (TMH6), Arg362 (TMH6), Val726 (TMH7), and Leu987 (TMH12), and their corresponding amino acids in ABCB1 (P-glycoprotein) have been reported to be involved in drug binding according to site-directed mutagenesis studies. The ABCC4 model may be used as a working tool for experimental studies on ABCC4 and design of more specific membrane transport modulating agents (MTMA).
Collapse
Affiliation(s)
- Aina Westrheim Ravna
- Department of Pharmacology, Institute of Medical Biology, University of Tromsø, N-9037 Tromsø, Norway.
| | | |
Collapse
|
213
|
Ronaldson PT, Bendayan R. HIV-1 viral envelope glycoprotein gp120 produces oxidative stress and regulates the functional expression of multidrug resistance protein-1 (Mrp1) in glial cells. J Neurochem 2008; 106:1298-313. [PMID: 18485102 DOI: 10.1111/j.1471-4159.2008.05479.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Brain human immunodeficiency virus type-1 (HIV-1) infection is associated with oxidative stress, which may lead to HIV-1 encephalitis, a chronic neurodegenerative condition. In vitro, oxidative stress can be induced in glial cells by exposure to HIV-1 envelope protein glycoprotein (gp120). Multidrug resistance proteins (Mrps) are known to efflux endogenous substrates (i.e. GSH and GSSG) involved in cellular defense against oxidative stress. Altered GSH/GSSG export may contribute to oxidative damage during HIV-1 encephalitis. At present, it is unknown if gp120 exposure can alter the functional expression of Mrp isoforms. Heat-shock protein 70, inducible nitric oxide synthase, intracellular GSSG, 2',7'-dichlorofluorescein fluorescence, and extracellular nitrite were increased in primary cultures of rat astrocytes triggered with gp120, suggesting an oxidative stress response. RT-PCR and immunoblot analysis demonstrated increased Mrp1 mRNA (2.3-fold) and protein (2.2-fold), respectively, in gp120 treated astrocytes while Mrp4 mRNA or protein expression was not changed. Cellular retention of 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, an established Mrp substrate, was reduced (twofold) in gp120-treated astrocytes, suggesting increased Mrp-mediated transport. In addition, GSH and GSSG export were enhanced in gp120-triggered cells. These data suggest that gp120 can up-regulate Mrp1, but not Mrp4, functional expression in cultured astrocytes. Our observation of increased GSH/GSSG efflux in response to gp120 treatment implies that Mrp isoforms may be involved in regulating the oxidative stress response in glial cells.
Collapse
Affiliation(s)
- Patrick T Ronaldson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
214
|
Mechanisms of renal anionic drug transport. Eur J Pharmacol 2008; 585:245-55. [DOI: 10.1016/j.ejphar.2008.02.085] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/08/2008] [Accepted: 02/20/2008] [Indexed: 01/11/2023]
|
215
|
Lu C, Shervington A. Chemoresistance in gliomas. Mol Cell Biochem 2008; 312:71-80. [PMID: 18259841 DOI: 10.1007/s11010-008-9722-8] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 01/29/2008] [Indexed: 01/07/2023]
Abstract
Despite improved knowledge and advanced treatments of gliomas, the overall survival rate for glioma patients remains low. Gliomas comprise of significant cell heterogeneity that contains a large number of multidrug resistant (MDR) phenotypes and cancer stem cells (CSCs), a combination that may contribute to the resistance to treatment. This article reviews the MDR related genes, major-vault protein (MVP), anti-apoptotic protein (Bcl-2) and the molecular mechanisms that may contribute to chemoresistance, in addition to the upregulated MDR phenotypes present in CSCs that has recently been identified in gliomas. Moreover, future potential therapies that modulate MDR phenotypes and CSCs are also reviewed. An improved understanding of MDR may lead to a combined treatment, targeting both CSCs and their protective MDR phenotypes leading eventually to attractive strategies for the treatment of gliomas.
Collapse
Affiliation(s)
- Chen Lu
- Brain Tumour North West, Faculty of Science, University of Central Lancashire, Preston, UK
| | | |
Collapse
|
216
|
Ravna AW, Sylte I, Sager G. A molecular model of a putative substrate releasing conformation of multidrug resistance protein 5 (MRP5). Eur J Med Chem 2008; 43:2557-67. [PMID: 18313803 DOI: 10.1016/j.ejmech.2008.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 10/08/2007] [Accepted: 01/07/2008] [Indexed: 01/31/2023]
Abstract
The ATP-binding cassette (ABC) transporter multidrug resistance protein 5 (MRP5) contributes to the cellular export of organic anions, including guanosine 3'-5' cyclic monophosphate (cGMP). The structural knowledge of this protein is limited, and in lack of an MRP5 X-ray structure, a model of MRP5 was constructed based on the homology with the bacterial ABC transporter Sav1866 from Staphylococcus aureus, which has been crystallised in an outward-facing, substrate releasing conformation. Two putative binding sites were identified, and docking of cGMP indicated that TMHs 1-3, 6, 11 and 12 were in contact with the ligands in binding site 1, while TMHs 1, 3, 5-8 were in contact with the ligands in binding site 2. The proposed MRP5 model may be used for further experimental studies of the molecular structure and function of this member of the ABC-transporter superfamily.
Collapse
Affiliation(s)
- Aina Westrheim Ravna
- Department of Pharmacology, Institute of Medical Biology, Faculty of Medicine, University of Tromsø, MH-Building, Breivika, N-9037 Tromsø, Norway
| | | | | |
Collapse
|
217
|
Rius M, Hummel-Eisenbeiss J, Keppler D. ATP-dependent transport of leukotrienes B4 and C4 by the multidrug resistance protein ABCC4 (MRP4). J Pharmacol Exp Ther 2008; 324:86-94. [PMID: 17959747 DOI: 10.1124/jpet.107.131342] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The proinflammatory mediators leukotriene (LT) B(4) and LTC(4) must be transported out of cells before they can interact with LT receptors. Previously, we identified the multidrug resistance protein ABCC1 (MRP1) as an efflux pump for LTC(4). However, the molecular basis for the efflux of LTB(4) was unknown. Here, we demonstrate that human ABCC4 mediates the ATP-dependent efflux of LTB(4) in the presence of reduced glutathione (GSH), whereby the latter can be replaced by S-methyl GSH. Transport studies were performed with inside-out membrane vesicles from V79 fibroblasts and Sf9 insect cells that contained recombinant ABCC4, with vesicles from human platelets and myelomonocytic U937 cells, which were rich in endogenous ABCC4, but ABCC1 was below detectability. Moreover, human polymorphonuclear leukocytes contained ABCC4. K(m) values for LTB(4) were 5.2 muM with vesicles from fibroblasts and 5.6 muM with vesicles from platelets. ABCC4, with its broad substrate specificity, also functioned as an ATP-dependent efflux pump for LTC(4) with a K(m) of 0.13 muM in vesicles from fibroblasts and 0.32 muM in vesicles from platelets. However, GSH was not required for the transport of this glutathionylated leukotriene. The transport of LTC(4) by ABCC4 explains its release from platelets during transcellular synthesis. ATP-dependent transport of LTB(4) and LTC(4) by ABCC4 was inhibited by several organic anions, including S-decyl GSH, sulindac sulfide, and by the LTD(4) receptor antagonists montelukast and 3-(((3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl)-((3-dimethyl-amino-3-oxopropyl)-thio)-methyl)thio)propanoic acid (MK571). Thus, as an efflux pump for the proinflammatory mediators LTB(4) and LTC(4), ABCC4 may represent a novel target for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Maria Rius
- Division of Tumor Biochemistry, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
218
|
Fetal Blood-Brain Barrier P-Glycoprotein Contributes to Brain Protection During Human Development. J Neuropathol Exp Neurol 2008; 67:50-61. [DOI: 10.1097/nen.0b013e31815f65d9] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
219
|
Multichannel liquid chromatography-tandem mass spectrometry cocktail method for comprehensive substrate characterization of multidrug resistance-associated protein 4 transporter. Pharm Res 2007; 24:2281-96. [PMID: 17939016 DOI: 10.1007/s11095-007-9453-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 09/04/2007] [Indexed: 12/18/2022]
Abstract
PURPOSE To develop a comprehensive substrate-screening method for the ATP-binding cassette (ABC) transporter, and identify new substrates for multidrug resistance-associated protein 4 (MRP4/ABCC4). METHODS Human MRP4-expressing membrane vesicles were incubated with a mixture of 50 compounds, including methotrexate, a known MRP4 substrate. The amounts transported were simultaneously determined by liquid chromatography-tandem mass spectrometry. RESULTS From 49 compounds, 12 were identified as substrate candidates for MRP4 in the first screening. The second screening was performed involving the uptake of mixture using single quadrupole multichannel mode, and the third screening was performed involving the uptake of individual compounds using multiple reaction monitoring multichannel mode. As a result, eight substrate candidates were additionally identified. Subsequently, in the fourth step, osmotic pressure-dependent transport was demonstrated for 18 compounds (cefmetazole, piperacillin, rebamipide, tetracycline, ampicillin, benzylpenicillin, bumetanide, cephalosporin C, enalapril, pipemidic acid, furosemide, ceftazidime, pravastatin, hydrochlorothiazide, sulbactam, baclofen, bezafibrate and alacepril) among the 20 substrate candidates, thereby confirming them as MRP4 substrates. By contrast, the uptakes of meloxicam and nateglinide did not depend on osmolarity, indicating that these compounds were not substrates, but bound to MRP4. CONCLUSIONS The new comprehensive substrate-screening method for ABC transporters allowed the identification of 18 new substrates for MRP4.
Collapse
|
220
|
Chen C, Lin J, Smolarek T, Tremaine L. P-glycoprotein has differential effects on the disposition of statin acid and lactone forms in mdr1a/b knockout and wild-type mice. Drug Metab Dispos 2007; 35:1725-9. [PMID: 17640956 DOI: 10.1124/dmd.107.015677] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the present study we examined the disposition of atorvastatin, lovastatin, and simvastatin in acid and lactone forms and pravastatin in acid form in multidrug-resistant gene (mdr1a/b) knockout (KO), and wild-type (WT) mice. Each statin was administered s.c. to mdr1a/b KO and WT mice at 3.0 mg/kg (n > or = 3 mice/time point). Blood, brain, and liver samples were harvested at 0, 0.5, 1.5, and 3 h postdose. Plasma and tissue concentrations of the acid and lactone (only the acid form was determined for pravastatin) were determined using a liquid chromatography-mass spectrometry method. Both lactone and acid were observed in plasma when lactones were administered, but only acids were detected when the acid forms were administered. The plasma and liver concentrations of acid or lactone were similar between the KO and WT mice. Two- to 23-fold higher concentrations were observed in liver than in plasma, suggesting potential uptake transporters involved. A significantly higher (p < 0.05) brain penetration in the KO compared with the WT mice was observed for lovastatin acid (but the brain/plasma ratio was low for both KO and WT mice) and lactone and simvastatin lactone but not for atorvastatin or pravastatin. The present results suggest that mouse P-glycoprotein does not affect the lactone-acid interconversion or liver-plasma distribution. Furthermore, P-glycoprotein plays a limited role in restricting the brain penetration of the acid forms of atorvastatin, pravastatin, simvastatin, lovastatin, and atorvastatin lactone but may limit the brain availability of the lactone forms of simvastatin and lovastatin.
Collapse
Affiliation(s)
- Cuiping Chen
- Global Preclinical Development, Johnson and Johnson, Mountain View, CA 94039, USA.
| | | | | | | |
Collapse
|
221
|
Jedlitschky G, Hoffmann U, Kroemer HK. Structure and function of the MRP2 (ABCC2) protein and its role in drug disposition. Expert Opin Drug Metab Toxicol 2007; 2:351-66. [PMID: 16863439 DOI: 10.1517/17425255.2.3.351] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The multi-drug resistance protein 2 (MRP2; ABCC2) is an ATP-binding cassette transporter playing an important role in detoxification and chemoprotection by transporting a wide range of compounds, especially conjugates of lipophilic substances with glutathione, glucuronate and sulfate, which are collectively known as phase II products of biotransformation. In addition, MRP2 can also transport uncharged compounds in cotransport with glutathione, and thus can modulate the pharmacokinetics of many drugs. The other way around, its expression and activity are also altered by certain drugs and disease states. Unlike other members of the MRP/ABCC family, MRP2 is specifically expressed on the apical membrane domain of polarised cells as hepatocytes, renal proximal tubular cells, enterocytes and syncytiotrophoblasts of the placenta. Several naturally occurring mutations leading to the absence of functional MRP2 protein from the apical membrane have been described causing the human Dubin-Johnson syndrome associated with conjugated hyperbilirubinaemia. Experimental mutation studies have revealed critical amino acids for substrate binding in the MRP2 molecule. This review is, therefore, focused on the structure and function of MRP2, the substrates transported and the clinical relevance of MRP2.
Collapse
Affiliation(s)
- Gabriele Jedlitschky
- Research Center of Pharmacology and Experimental Therapeutics, Department of Pharmacology, Ernst-Moritz-Arndt-University Greifswald, Friedrich-Loeffler-Str. 23d, 17487 Greifswald, Germany.
| | | | | |
Collapse
|
222
|
Nies AT. The role of membrane transporters in drug delivery to brain tumors. Cancer Lett 2007; 254:11-29. [PMID: 17275180 DOI: 10.1016/j.canlet.2006.12.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 12/14/2006] [Indexed: 01/11/2023]
Abstract
Most brain tumors are highly resistant to chemotherapy because many chemotherapeutic drugs poorly cross the blood-brain barrier, the blood-cerebrospinal-fluid barrier, and the plasma membrane of the tumor cells. This restricted drug delivery is largely due to the presence of integral plasma membrane proteins belonging to the solute carriers (SLCs) and to the ATP-binding cassette (ABC) superfamily of transporters that decisively determine substance uptake and efflux, respectively, by the barrier-forming cells and the tumor cells. This review focuses on the localization and function of drug-transporting members of both transporter groups in human brain.
Collapse
Affiliation(s)
- Anne T Nies
- Division of Tumor Biochemistry, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
223
|
Ohtsuki S, Terasaki T. Contribution of Carrier-Mediated Transport Systems to the Blood–Brain Barrier as a Supporting and Protecting Interface for the Brain; Importance for CNS Drug Discovery and Development. Pharm Res 2007; 24:1745-58. [PMID: 17619998 DOI: 10.1007/s11095-007-9374-5] [Citation(s) in RCA: 339] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Accepted: 06/06/2007] [Indexed: 12/21/2022]
Abstract
The blood-brain barrier (BBB) forms an interface between the circulating blood and the brain and possesses various carrier-mediated transport systems for small molecules to support and protect CNS function. For example, the blood-to-brain influx transport systems supply nutrients, such as glucose and amino acids. Consequently, xenobiotic drugs recognized by influx transporters are expected to have high permeability across the BBB. On the other hand, efflux transporters, including ATP-binding cassette transporters such as P-glycoprotein located at the luminal membrane of endothelial cells, function as clearance systems for metabolites and neurotoxic compounds produced in the brain. Drugs recognized by these transporters are expected to show low BBB permeability and low distribution to the brain. Despite recent progress, the transport mechanisms at the BBB have not been fully clarified yet, especially in humans. However, an understanding of the human BBB transport system is critical, because species differences mean that it can be difficult to extrapolate data obtained in experimental animals during drug development to humans. Recent progress in methodologies is allowing us to address this issue. Positron emission tomography can be used to evaluate the activity of human BBB transport systems in vivo. Proteomic studies may also provide important insights into human BBB function. Construction of a human BBB transporter atlas would be a most important advance from the viewpoint of CNS drug discovery and drug delivery to the brain.
Collapse
Affiliation(s)
- Sumio Ohtsuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | | |
Collapse
|
224
|
Brayden DJ, Griffin J. Avermectin transepithelial transport in MDR1- and MRP-transfected canine kidney monolayers. Vet Res Commun 2007; 32:93-106. [PMID: 17578674 DOI: 10.1007/s11259-007-9007-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 05/16/2007] [Indexed: 01/03/2023]
Abstract
Fluxes of the anti-parasitic agents, [(3)H]-ivermectin, [(3)H]-selamectin and [(3)H]-moxidectin were studied across non-transfected and transfected canine kidney epithelial monolayers, MDCK II/wt, MDCK II-MDR1, MDCK II-MRP1 and MDCK II-MRP2. All four lines surprisingly expressed significant levels of P-glycoprotein (P-gp), coded for by MDR1, but MDCK II-MDR1 expressed increased levels compared to the other lines. MDCK II-MRP1 and MDCK II-MRP2 expressed increased levels of MRP1 and MRP2 respectively. Fluxes of [(3)H]-ivermectin, [(3)H]-selamectin, [(3)H]-moxidectin, and the P-gp substrates, rhodamine-123 and DiOC(2), were polarized in the basolateral-to-apical (secretory) direction across the four lines. Selected MRP inhibitors used in relevant pharmacological concentrations did not block the secretory fluxes of either [(3)H]-ivermectin or [(3)H]-selamectin in either the non-transfected or MRP-transfected lines. In contrast, secretory fluxes of ivermectin and selamectin were inhibited in all four lines by the P-gp inhibitor, verapamil. These data confirm that ivermectin and selamectin are substrates for P-gp in four additional cell lines, but suggest that they are not significant substrates for MRP1 or MRP2 where there is background expression of P-gp. Since this pattern of expression also pertains on the blood-brain barrier, it is unlikely that MRP1 and MRP2 play a significant role in ivermectin and selamectin blood: brain distribution in vivo.
Collapse
Affiliation(s)
- David J Brayden
- School of Agriculture, Food Science and Veterinary Medicine, University College Dublin, Veterinary Sciences Building, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
225
|
Three novel ABCC5 splice variants in human retina and their role as regulators of ABCC5 gene expression. BMC Mol Biol 2007; 8:42. [PMID: 17521428 PMCID: PMC1890297 DOI: 10.1186/1471-2199-8-42] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 05/23/2007] [Indexed: 12/02/2022] Open
Abstract
Background The ABCC5 gene encodes an organic anion pump of the ATP-binding cassette (ABC) transporter family, subclass C. The exact physiological function of ABCC5 however is not known. Here, we have isolated three novel ABCC5 splice variants and characterized their role in the regulation of ABCC5 gene expression. Results Two additional exons within intron 5 of the ABCC5 gene were identified; one of the exons exhibits alternative donor splice sites. Differential usage of these exons generates three short ABCC5 transcripts named ABCC5_SV1, ABCC5_SV2 and ABCC5_SV3. The variants share the first five exons with the ABCC5 gene but differ in their 3' sequences. ABCC5 and its novel isoforms are abundantly expressed in the human retina. Splice variant ABCC5_SV1 and ABCC5_SV2 contain premature stop codons. While inhibition of nonsense-mediated mRNA decay selectively stabilized ABCC5_SV1 but not ABCC5_SV2, the amount of full length ABCC5 mRNA was simultaneously reduced. A negative regulatory effect on full length ABCC5 expression was also observed when the ABCC5 isoforms were silenced with siRNA duplexes. Finally, we show that the evolutionarily conserved ABCC5_SV2 transcript is translated into a protein abundantly present in endothelial cells of inner retinal blood vessels and along RPE membranes. Conclusion Our data suggest that alternative splicing of the ABCC5 gene has functional consequences by modulating ABCC5 gene expression. In addition, at least one ABCC5 splice variant is protein-coding and produces a truncated ABCC5 protein isoform with thus far unknown functional properties in the retina.
Collapse
|
226
|
Tachikawa M, Toki H, Tomi M, Hosoya KI. Gene expression profiles of ATP-binding cassette transporter A and C subfamilies in mouse retinal vascular endothelial cells. Microvasc Res 2007; 75:68-72. [PMID: 17574281 DOI: 10.1016/j.mvr.2007.05.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 05/10/2007] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to quantify gene expression levels of the ATP-binding cassette (ABC) transporter A and C subfamilies ABCA1-A9, and ABCC1-6/Mrp1-6, C10/Mrp7 in mouse retinal vascular endothelial cells (RVEC) using a combination of a magnetic isolation method for mouse RVEC and real-time quantitative PCR analysis. The transcript level of endothelial cell markers, such as CD31, Tie-2, claudin-5, occludin, ABCB1a/mdr1a, and ABCG2, were more than 20-fold higher than those in the non-RVEC fraction, suggesting that RVEC in the RVEC fraction are concentrated at least 20-fold compared with those of the non-RVEC fraction. In the ABCA1 to A9 families, the transcript level of ABCA3 and A9 in the RVEC fraction was 1.2- and 32-fold higher than that in the non-RVEC fraction. Although ABCA3 was expressed in both the RVEC and non-RVEC fractions, A9 is predominantly expressed in the RVEC fraction. In the ABCC1 to C6 and C10 families, the transcript level of ABCC3, C4, and C6 in the RVEC fraction was 27-, 251-, and 242-fold higher, respectively, than that in the non-RVEC fraction, suggesting that ABCC3, C4, and C6 are predominantly expressed in the RVEC. In conclusion, ABCA3, ABCA9, ABCC3, ABCC4, and ABCC6 mRNAs are predominantly expressed at the inner blood-retina barrier (inner BRB) and appear to play a major role in the efflux transport of their substrates at the inner BRB.
Collapse
Affiliation(s)
- Masanori Tachikawa
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama 930-0194, Japan
| | | | | | | |
Collapse
|
227
|
Kelly MP, Isiegas C, Cheung YF, Tokarczyk J, Yang X, Esposito MF, Rapoport DA, Fabian SA, Siegel SJ, Wand G, Houslay MD, Kanes SJ, Abel T. Constitutive activation of Galphas within forebrain neurons causes deficits in sensorimotor gating because of PKA-dependent decreases in cAMP. Neuropsychopharmacology 2007; 32:577-88. [PMID: 16738544 PMCID: PMC3303872 DOI: 10.1038/sj.npp.1301099] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sensorimotor gating, the ability to automatically filter sensory information, is deficient in a number of psychiatric disorders, yet little is known of the biochemical mechanisms underlying this critical neural process. Previously, we reported that mice expressing a constitutively active isoform of the G-protein subunit Galphas (Galphas(*)) within forebrain neurons exhibit decreased gating, as measured by prepulse inhibition of acoustic startle (PPI). Here, to elucidate the biochemistry regulating sensorimotor gating and to identify novel therapeutic targets, we test the hypothesis that Galphas(*) causes PPI deficits via brain region-specific changes in cyclic AMP (cAMP) signaling. As predicted from its ability to stimulate adenylyl cyclase, we find here that Galphas(*) increases cAMP levels in the striatum. Suprisingly, however, Galphas(*) mice exhibit reduced cAMP levels in the cortex and hippocampus because of increased cAMP phosphodiesterase (cPDE) activity. It is this decrease in cAMP that appears to mediate the effect of Galphas(*) on PPI because Rp-cAMPS decreases PPI in C57BL/6J mice. Furthermore, the antipsychotic haloperidol increases both PPI and cAMP levels specifically in Galphas(*) mice and the cPDE inhibitor rolipram also rescues PPI deficits of Galphas(*) mice. Finally, to block potentially the pathway that leads to cPDE upregulation in Galphas(*) mice, we coexpressed the R(AB) transgene (a dominant-negative regulatory subunit of protein kinase A (PKA)), which fully rescues the reductions in PPI and cAMP caused by Galphas(*). We conclude that expression of Galphas(*) within forebrain neurons causes PPI deficits because of a PKA-dependent decrease in cAMP and suggest that cAMP PDE inhibitors may exhibit antipsychotic-like therapeutic effects.
Collapse
MESH Headings
- Acoustic Stimulation/methods
- Amphetamine/pharmacology
- Analysis of Variance
- Animals
- Behavior, Animal/drug effects
- Brain Chemistry/drug effects
- Cyclic AMP/analogs & derivatives
- Cyclic AMP/metabolism
- Cyclic AMP/pharmacology
- Cyclic AMP-Dependent Protein Kinases/physiology
- Dopamine Antagonists/pharmacology
- Dose-Response Relationship, Radiation
- GTP-Binding Protein alpha Subunits, Gs/genetics
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Gait Disorders, Neurologic/etiology
- Gait Disorders, Neurologic/genetics
- Gait Disorders, Neurologic/metabolism
- Haloperidol/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Neurons/drug effects
- Neurons/metabolism
- Prosencephalon/cytology
- Prosencephalon/metabolism
- Protein Kinase Inhibitors/pharmacology
- Reflex, Startle/drug effects
- Reflex, Startle/physiology
- Thionucleotides/pharmacology
Collapse
Affiliation(s)
- Michele P Kelly
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
228
|
Abstract
Opioids are used for acute and chronic pain and dependency. They have a narrow therapeutic index and large interpatient variability in response. Genetic factors regulating their pharmacokinetics (metabolizing enzymes, transporters) and pharmacodynamics (receptors and signal transduction elements) are contributors to such variability. The polymorphic CYP2D6 regulates the O-demethylation of codeine and other weak opioids to more potent metabolites with poor metabolizers having reduced antinociception in some cases. Some opioids are P-glycoprotein substrates, whereas, ABCB1 genotypes inconsistently influence opioid pharmacodynamics and dosage requirements. Single-nucleotide polymorphisms in the mu opioid receptor gene are associated with increasing morphine, but not methadone dosage requirements and altered efficacy of mu opioid agonists and antagonists. As knowledge regarding the interplay between genes affecting opioid pharmacokinetics including cerebral kinetics and pharmacodynamics increases, our understanding of the role of pharmacogenomics in mediating interpatient variability in efficacy and side effects to this important class of drugs will be better informed. Opioid drugs as a group have withstood the test of time in their ability to attenuate acute and chronic pain. Since the isolation of morphine in the early 1800s by Friedrich Sertürner, a large number of opioid drugs beginning with modification of the 4,5-epoxymorphinan ring structure were developed in order to improve their therapeutic margin, including reducing dependence and tolerance, ultimately without success.
Collapse
Affiliation(s)
- Andrew A Somogyi
- Discipline of Pharmacology, School of Medical Sciences, University of Adelaide, Adelaide, Australia.
| | | | | |
Collapse
|
229
|
Ohtsuki S, Yamaguchi H, Asashima T, Terasaki T. Establishing a Method to Isolate Rat Brain Capillary Endothelial Cells by Magnetic Cell Sorting and Dominant mRNA Expression of Multidrug Resistance-associated Protein 1 and 4 in Highly Purified Rat Brain Capillary Endothelial Cells. Pharm Res 2007; 24:688-94. [PMID: 17318419 DOI: 10.1007/s11095-006-9188-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Accepted: 11/06/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE To establish a method for isolating highly purified brain capillary endothelial cells (BCECs) from rat brain by using magnetic cell sorting, and clarify the expression levels of multidrug resistance-associated protein (Mrp) subtypes in these highly purified BCECs. METHODS The cells were prepared from the capillary enriched-fraction by enzyme digestion, and reacted with anti-PECAM-1 antibody. The cell sorting was performed by autoMACS. The mRNA levels were measured by quantitative real-time PCR analysis. RESULTS From five rats, 2.3 x 10(6) cells were isolated in the PECAM-1(+) fraction and the percentage of labeled cells in this was 85.9%. PECAM-1, claudin-5 and Tie-2 mRNA were concentrated in the PECAM-1(+) fraction compared with rat brain. The contamination by neurons and astrocytes was markedly less than in the brain capillary fraction prepared by the glass bead column method. Mrp1 and 4 were predominantly expressed in the PECAM-1(+) fraction at similar levels to Mdr1a. The mRNA levels of Mrp5 and 3 were 10.6 and 7.60% of that of Mrp1, respectively. CONCLUSIONS This new purification method provides BCECs with less contamination by neural cells. In the isolated BCECs, Mrp1 and 4 are predominantly expressed, suggesting that they play an important role at the rat blood-brain barrier.
Collapse
Affiliation(s)
- Sumio Ohtsuki
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Sendai, Japan
| | | | | | | |
Collapse
|
230
|
Yousif S, Marie-Claire C, Roux F, Scherrmann JM, Declèves X. Expression of drug transporters at the blood–brain barrier using an optimized isolated rat brain microvessel strategy. Brain Res 2007; 1134:1-11. [PMID: 17196184 DOI: 10.1016/j.brainres.2006.11.089] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 10/27/2006] [Accepted: 11/26/2006] [Indexed: 11/17/2022]
Abstract
Quantitative RT-PCR (qRT-PCR) and Western blotting studies on transporters at the blood-brain barrier (BBB) of isolated brain microvessels have produced conflicting data on their cellular distribution. A major problem is identifying cells expressing the genes of interest, since isolated brain microvessels are composed of several cell types and may be contaminated with mRNA or proteins from astrocytes and neurons. We isolated rat brain microvessels and examined microscopically samples at each step of isolation to evaluate microvessel purity. The expression of specific markers of endothelial cells (Glut-1, Flk-1), pericytes (Ng2), neurons (synaptophysin, Syn) and astrocytes (Gfap) was measured by qRT-PCR in order to select the protocol giving the least astrocyte and neuron mRNAs and the most endothelial mRNAs. We also evaluated the gene expression of drug transporters (Mdr1a, Mdr1b, Mrp1-5, Bcrp and Oatp-2) at each step to optimize their location in cells at the BBB. The Mdr1a, Mrp4, Bcrp and Oatp-2 gene profiles were similar to those of endothelium markers. The profiles of Mrp2 and Mrp3 closely resembled that of Ng2. Mrp5 and Mrp1 expression was not increased in the microvessel-enriched fraction, suggesting that they are ubiquitously expressed throughout the cortex parenchyma. We also evaluated by Western blotting the expression of P-gp, Mrp2, Gfap and Syn in the cortex and in the purest obtained microvessel fraction. Our results showed that P-gp expression strongly increased in microvessels whereas Mrp2 was not detected in any of the fraction. Surprisingly, Gfap expression increased in isolated microvessels whereas Syn was not detected. Our results showed that the strategy consisting of identifying gene expression at different steps of the protocol is useful to identify cells containing mRNA at the BBB and give overall similar results with protein expression.
Collapse
Affiliation(s)
- Salah Yousif
- INSERM U705, CNRS, UMR 7157, University Paris 5, Neuropsychopharmacology of Addiction, Laboratory of Pharmacokinetics, Faculty of Pharmacy, Hôpital Fernand Widal, Paris, France
| | | | | | | | | |
Collapse
|
231
|
Belinsky MG, Guo P, Lee K, Zhou F, Kotova E, Grinberg A, Westphal H, Shchaveleva I, Klein-Szanto A, Gallo JM, Kruh GD. Multidrug Resistance Protein 4 Protects Bone Marrow, Thymus, Spleen, and Intestine from Nucleotide Analogue–Induced Damage. Cancer Res 2007; 67:262-8. [PMID: 17210706 DOI: 10.1158/0008-5472.can-06-2680] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nucleoside-based analogues are mainstays in the treatment of cancer, viral infections, and inflammatory diseases. Recent studies showing that the ATP-binding cassette transporter, multidrug resistance protein 4, is able to efflux nucleoside and nucleotide analogues from transfected cells suggests that the pump may affect the efficacy of this class of agents. However, the in vivo pharmacologic functions of the pump are largely unexplored. Here, using Mrp4(-/-) mice as a model system, and the nucleotide analogue, 9'-(2'-phosphonylmethoxyethyl)-adenine (PMEA) as a probe, we investigate the ability of Mrp4 to function in vivo as an endogenous resistance factor. In the absence of alterations in plasma PMEA levels, Mrp4-null mice treated with PMEA exhibit increased lethality associated with marked toxicity in several tissues. Affected tissues include the bone marrow, spleen, thymus, and gastrointestinal tract. In addition, PMEA penetration into the brain is increased in Mrp4(-/-) mice. These findings indicate that Mrp4 is an endogenous resistance factor, and that the pump may be a component of the blood-brain barrier for nucleoside-based analogues. This is the first demonstration that an ATP-binding cassette transporter can affect in vivo tissue sensitivity towards this class of agents.
Collapse
Affiliation(s)
- Martin G Belinsky
- Medical Science Division, Department of Pathology, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Hawkins BT, Ocheltree SM, Norwood KM, Egleton RD. Decreased blood-brain barrier permeability to fluorescein in streptozotocin-treated rats. Neurosci Lett 2007; 411:1-5. [PMID: 17110033 PMCID: PMC1785293 DOI: 10.1016/j.neulet.2006.09.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/01/2006] [Accepted: 09/06/2006] [Indexed: 01/01/2023]
Abstract
Investigations of the blood-brain barrier (BBB) in diabetes have yielded contradictory results. It is possible that diabetes differentially affects paracellular and transcellular permeabilities via modulation of tight junction and transport proteins, respectively. Fluorescein (FL), a marker for paracellular permeability, is a substrate for the transport proteins organic anion transporter (OAT)-3 and multidrug resistance protein (MRP)-2 at the BBB. Furthermore, MRP-2-mediated efflux of FL can be upregulated by glucose. In this study, streptozotocin-induced diabetes led to decreased brain distribution of FL measured by in situ brain perfusion, consistent with activation of an efflux transport system for FL at the BBB. This change was paralleled by increased protein expression of MRP-2, but not OAT-3, in cerebral microvessels. These data indicate that diabetes may lead to changes in efflux transporters at the BBB and have implications for delivery of therapeutics to the central nervous system.
Collapse
Affiliation(s)
- Brian T. Hawkins
- Department of Medical Pharmacology, The University of Arizona College of Medicine, Tucson, AZ 85724
| | - Scott M. Ocheltree
- Department of Medical Pharmacology, The University of Arizona College of Medicine, Tucson, AZ 85724
| | - Kristi M. Norwood
- Department of Medical Pharmacology, The University of Arizona College of Medicine, Tucson, AZ 85724
| | - Richard D. Egleton
- Department of Medical Pharmacology, The University of Arizona College of Medicine, Tucson, AZ 85724
| |
Collapse
|
233
|
Joshi G, Hardas S, Sultana R, St Clair DK, Vore M, Butterfield DA. Glutathione elevation by γ-glutamyl cysteine ethyl ester as a potential therapeutic strategy for preventing oxidative stress in brain mediated by in vivo administration of adriamycin: Implication for chemobrain. J Neurosci Res 2007; 85:497-503. [PMID: 17171703 DOI: 10.1002/jnr.21158] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Oxidative stress in heart and brain by the cancer chemotherapeutic drug adriamycin (ADR), used for treating solid tumors, is well established. Long-term treatment with ADR in breast cancer patients has led to symptoms of cardiomyopathy. Less well recognized, but increasingly well documented, is cognitive dysfunction. After chemotherapy, free radical-mediated oxidative stress has been reported in both heart and brain. We recently showed a significant increase in protein oxidation and lipid peroxidation in brain isolated from mice injected intraperitonially (i.p) with ADR. Systemic administration of ADR also induces tumor necrosis factor-alpha (TNF-alpha), which leads to production of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in brain. Circulating TNF also causes mitochondrial dysfunction, leading to apoptotic pathways in brain. Inducible nitric oxide synthase also plays a role in ADR-induced TNF-mediated neurotoxicity. In addition, we previously showed a significant decrease in glutathione (GSH) levels in brain isolated from ADR injected mice, along with increased expression of multidrug-resistant protein-1 (MRP-1), glutathione-S-transferase (GST), glutathione peroxidase (GPx), and glutathione reductase (GR). There was a significant decrease in activity of brain GST. The present study was designed to test the hypothesis that, by elevating brain levels of GSH, the brain would be protected against oxidative stress in ADR-injected mice. gamma-Glutamyl cysteine ethyl ester (GCEE), a precursor of glutathione, injected i.p. (150 mg/ kg body weight) 4 hr prior ADR injection (20 mg/kg body weight) led to significantly decreased protein oxidation and lipid peroxidation in subsequently isolated mice brain compared with brain isolated from ADR-injected mice without GCEE. The GSH levels were restored to the level of brain isolated from saline-injected mice. Furthermore, the enzyme activity of GST was increased in brain isolated from ADR-injected mice previously injected with GCEE compared with the brain isolated from ADR-injected mice previously injected with saline. These results are discussed with regard to potential pharmacological prevention of brain cognitive dysfunction in patients receiving ADR chemotherapy.
Collapse
Affiliation(s)
- Gururaj Joshi
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA
| | | | | | | | | | | |
Collapse
|
234
|
Bakos E, Homolya L. Portrait of multifaceted transporter, the multidrug resistance-associated protein 1 (MRP1/ABCC1). Pflugers Arch 2006; 453:621-41. [PMID: 17187268 DOI: 10.1007/s00424-006-0160-8] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2006] [Revised: 05/10/2006] [Accepted: 05/24/2006] [Indexed: 10/23/2022]
Abstract
MRP1 (ABCC1) is a peculiar member of the ABC transporter superfamily for several aspects. This protein has an unusually broad substrate specificity and is capable of transporting not only a wide variety of neutral hydrophobic compounds, like the MDR1/P-glycoprotein, but also facilitating the extrusion of numerous glutathione, glucuronate, and sulfate conjugates. The transport mechanism of MRP1 is also complex; a composite substrate-binding site permits both cooperativity and competition between various substrates. This versatility and the ubiquitous tissue distribution make this transporter suitable for contributing to various physiological functions, including defense against xenobiotics and endogenous toxic metabolites, leukotriene-mediated inflammatory responses, as well as protection from the toxic effect of oxidative stress. In this paper, we give an overview of the considerable amount of knowledge which has accumulated since the discovery of MRP1 in 1992. We place special emphasis on the structural features essential for function, our recent understanding of the transport mechanism, and the numerous assignments of this transporter.
Collapse
Affiliation(s)
- Eva Bakos
- Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary
| | | |
Collapse
|
235
|
Ketabi-Kiyanvash N, Herold-Mende C, Kashfi F, Caldeira S, Tommasino M, Haefeli WE, Weiss J. NKIM-6, a new immortalized human brain capillary endothelial cell line with conserved endothelial characteristics. Cell Tissue Res 2006; 328:19-29. [PMID: 17180596 DOI: 10.1007/s00441-006-0348-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Accepted: 09/19/2006] [Indexed: 01/16/2023]
Abstract
Primary human brain capillary endothelial cells (hBCECs) are available only in small quantities and have a short life span in vitro; this restricts their use as in vitro model for the blood-brain barrier (BBB). To overcome these limitations, we have established an immortalized hBCEC line (NKIM-6) by transfection with pLXSN16E6E7, which encodes the human papillomavirus type 16 E6 and E7 genes. The cell line exhibits an extended life span in vitro and retains its characteristic endothelial morphology, endothelial markers, and physiology. Likewise, as demonstrated by immunohistochemistry and reverse transcription/polymerase chain reaction (RT-PCR), NKIM-6 cells express BBB markers, and the lack of glial, neuronal, and epithelial markers confirms their endothelial origin. Moreover, with quantitative RT-PCR, we have been able to demonstrate that several ATP-binding cassette-transporters are expressed in NKIM-6 cells with a conserved expression order compared with primary hBCECs. Our results suggest that this cell line might be suitable as in vitro model for several aspects of the BBB.
Collapse
Affiliation(s)
- Nahal Ketabi-Kiyanvash
- Department of Internal Medicine VI, Clinical Pharmacology and Pharmacoepidemiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
236
|
Lin T, Islam O, Heese K. ABC transporters, neural stem cells and neurogenesis – a different perspective. Cell Res 2006; 16:857-71. [PMID: 17088897 DOI: 10.1038/sj.cr.7310107] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stem cells intrigue. They have the ability to divide exponentially, recreate the stem cell compartment, as well as create differentiated cells to generate tissues. Therefore, they should be natural candidates to provide a renewable source of cells for transplantation applied in regenerative medicine. Stem cells have the capacity to generate specific tissues or even whole organs like the blood, heart, or bones. A subgroup of stem cells, the neural stem cells (NSCs), is characterized as a self-renewing population that generates neurons and glia of the developing brain. They can be isolated, genetically manipulated and differentiated in vitro and reintroduced into a developing, adult or a pathologically altered central nervous system. NSCs have been considered for use in cell replacement therapies in various neurodegenerative diseases such as Parkinson's disease and Alzheimer's disease. Characterization of genes with tightly controlled expression patterns during differentiation represents an approach to understanding the regulation of stem cell commitment. The regulation of stem cell biology by the ATP-binding cassette (ABC) transporters has emerged as an important new field of investigation. As a major focus of stem cell research is in the manipulation of cells to enable differentiation into a targeted cell population; in this review, we discuss recent literatures on ABC transporters and stem cells, and propose an integrated view on the role of the ABC transporters, especially ABCA2, ABCA3, ABCB1 and ABCG2, in NSCs' proliferation, differentiation and regulation, along with comparisons to that in hematopoietic and other stem cells.
Collapse
Affiliation(s)
- Tingting Lin
- Department of Molecular and Cell Biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | |
Collapse
|
237
|
Hermann DM, Kilic E, Spudich A, Krämer SD, Wunderli-Allenspach H, Bassetti CL. Role of drug efflux carriers in the healthy and diseased brain. Ann Neurol 2006; 60:489-498. [PMID: 17048260 DOI: 10.1002/ana.21012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The blood-brain barrier is a natural diffusion barrier, which expresses active carriers extruding drugs on their way to the brain back into the blood against concentration gradients. Whereas these so-called adenosine triphosphate-binding cassette (ABC) transporters prevent the brain entry of toxic compounds under physiological conditions, they complicate pharmacotherapies in neurological disease. Recent observations in animal models of ischemic stroke, drug-resistant epilepsy, and brain cancer showed that the prototype of ABC transporters, ABCB1, is upregulated on brain injury, deactivation of this carrier considerably enhancing the accumulation of neuroprotective, antiepileptic, and chemotherapeutic compounds. These studies provide the proof of concept that the efficacy of brain-targeting drugs may significantly be improved when drug efflux is blocked. Under clinical conditions, efforts currently are made to enhance drug accumulation by selecting new compounds that do not bind to efflux carriers or deactivating ABC transporters by targeted downregulation or pharmacological inhibition. We predict that strategies aiming at circumventing drug efflux may greatly facilitate progress in neurological therapies.
Collapse
Affiliation(s)
- Dirk M Hermann
- Department of Neurology, University Hospital Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
238
|
Scherrmann JM. Expression and function of multidrug resistance transporters at the blood-brain barriers. Expert Opin Drug Metab Toxicol 2006; 1:233-46. [PMID: 16922639 DOI: 10.1517/17425255.1.2.233] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The presence of active carrier-mediated transport of substrates from the brain to the blood is a major feature of the barrier properties of the blood-brain barrier (BBB). These proteins lie in the luminal or abluminal membranes of the endothelial cells that form the BBB. Some are ATP-binding cassette proteins (ABC) and many amphipathic cationic drugs are carried by P-glycoprotein (ABCB1) or ABCG2, which lie at the luminal pole of the BBB. Several multidrug resistance-associated proteins (MRPs, ABCCs) are also present on the membranes of brain microvessels; these are mainly involved in the efflux of anionic compounds. All these ABC proteins help to protect the brain and form a critical target for CNS pharmaceuticals, influencing the clinical variability of responses to, and the design of, these drugs.
Collapse
Affiliation(s)
- Jean-Michel Scherrmann
- INSERM U705, CNRS UMR7157, University Paris 7, University Paris 5, Hôpital Fernand Widal, 200 rue du Faubourg Saint-Denis, 75475 Paris cedex 10, France.
| |
Collapse
|
239
|
Dazert P, Suofu Y, Grube M, Popa-Wagner A, Kroemer HK, Jedlitschky G, Kessler C. Differential regulation of transport proteins in the periinfarct region following reversible middle cerebral artery occlusion in rats. Neuroscience 2006; 142:1071-9. [PMID: 16997484 DOI: 10.1016/j.neuroscience.2006.07.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 06/15/2006] [Accepted: 07/14/2006] [Indexed: 11/23/2022]
Abstract
Members of various transport protein families including ATP-binding cassette transporters and solute carriers were shown to be expressed in brain capillaries, choroid plexus, astrocytes or neurons, controlling drug and metabolite distribution to and from the brain. However, data are currently very limited on how the expression of these transport systems is affected by damage to the brain such as stroke. Therefore we studied the expression of four selected transporters, P-glycoprotein (Mdr1a/b; Abcb1a/b), Mrp5 (Abcc5), Bcrp (Abcg2), and Oatp2 (Slc21a5) in a rat model for stroke. Transporter expression was analyzed by real-time polymerase chain reaction in the periinfarcted region and protein localization and cellular phenotyping were done by immunohistochemistry and confocal immunofluorescence microscopy. After stroke, P-glycoprotein staining was detected in endothelial cells of disintegrated capillaries and by day 14 in newly generated blood vessels. There was no significant difference, however, in the Mdr1a mRNA amount in the periinfarcted region compared with the contralateral site. For Bcrp, a significant mRNA up-regulation was observed from days 3-14. This up-regulation was followed by the protein as confirmed by quantitative immunohistochemistry. Oatp2, located in the vascular endothelium, was also up-regulated at day 14. For Mrp5, an up-regulation was observed in neurons in the periinfarcted region (day 14). In conclusion, after stroke the transport proteins were up-regulated with a maximum at day 14, a time point that coincides with behavioral recuperation. The study further suggests Bcrp as a pronounced marker for the regenerative process and a possible functional role of Mrp5 in surviving neurons.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 2
- ATP-Binding Cassette Transporters/genetics
- ATP-Binding Cassette Transporters/metabolism
- Animals
- Biomarkers/metabolism
- Blood-Brain Barrier/metabolism
- Blood-Brain Barrier/physiopathology
- Brain/metabolism
- Brain/physiopathology
- Capillaries/metabolism
- Capillaries/physiopathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cerebral Infarction/metabolism
- Cerebral Infarction/physiopathology
- Disease Models, Animal
- Endothelial Cells/metabolism
- Gene Expression Regulation/physiology
- Infarction, Middle Cerebral Artery/metabolism
- Infarction, Middle Cerebral Artery/physiopathology
- Male
- Multidrug Resistance-Associated Proteins/genetics
- Multidrug Resistance-Associated Proteins/metabolism
- Organic Anion Transporters/genetics
- Organic Anion Transporters/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Recovery of Function/physiology
- Regeneration/physiology
- Time Factors
- Up-Regulation/physiology
Collapse
Affiliation(s)
- P Dazert
- Department of Pharmacology, Research Center of Pharmacology and Experimental Therapeutics, Ernst-Moritz-Arndt University, Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
240
|
de Vries NA, Beijnen JH, Boogerd W, van Tellingen O. Blood-brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev Neurother 2006; 6:1199-209. [PMID: 16893347 DOI: 10.1586/14737175.6.8.1199] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The blood-brain barrier (BBB) is of pivotal importance to maintain homeostasis of the CNS, as it closely regulates the composition of the interstitial fluid in the brain. Unfortunately, malignancies that grow within the CNS may evade chemotherapeutic drugs using the same barrier, making this disease refractory to most chemotherapy regimens. This review will outline the impact of the BBB in brain cancer and discuss the efforts that have been made to enhance the drug exposure of brain tumors. Although this review will focus on the role of the BBB in primary brain cancer (malignant glioma), its impact on brain metastases will also be briefly discussed.
Collapse
Affiliation(s)
- Nienke A de Vries
- The Netherlands Cancer Institute, Department of Clinical Chemistry, Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
241
|
Deeley RG, Westlake C, Cole SPC. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 2006; 86:849-99. [PMID: 16816140 DOI: 10.1152/physrev.00035.2005] [Citation(s) in RCA: 552] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multidrug Resistance Proteins (MRPs), together with the cystic fibrosis conductance regulator (CFTR/ABCC7) and the sulfonylurea receptors (SUR1/ABCC8 and SUR2/ABCC9) comprise the 13 members of the human "C" branch of the ATP binding cassette (ABC) superfamily. All C branch proteins share conserved structural features in their nucleotide binding domains (NBDs) that distinguish them from other ABC proteins. The MRPs can be further divided into two subfamilies "long" (MRP1, -2, -3, -6, and -7) and "short" (MRP4, -5, -8, -9, and -10). The short MRPs have a typical ABC transporter structure with two polytropic membrane spanning domains (MSDs) and two NBDs, while the long MRPs have an additional NH2-terminal MSD. In vitro, the MRPs can collectively confer resistance to natural product drugs and their conjugated metabolites, platinum compounds, folate antimetabolites, nucleoside and nucleotide analogs, arsenical and antimonial oxyanions, peptide-based agents, and, under certain circumstances, alkylating agents. The MRPs are also primary active transporters of other structurally diverse compounds, including glutathione, glucuronide, and sulfate conjugates of a large number of xeno- and endobiotics. In vivo, several MRPs are major contributors to the distribution and elimination of a wide range of both anticancer and non-anticancer drugs and metabolites. In this review, we describe what is known of the structure of the MRPs and the mechanisms by which they recognize and transport their diverse substrates. We also summarize knowledge of their possible physiological functions and evidence that they may be involved in the clinical drug resistance of various forms of cancer.
Collapse
Affiliation(s)
- Roger G Deeley
- Division of Cancer Biology and Genetics, Cancer Research Institute and Department of Biochemistry, Queen's University Kingdom, Ontario, Canada.
| | | | | |
Collapse
|
242
|
Balayssac D, Cayre A, Authier N, Ling B, Maublant J, Eschalier A, Penault-Llorca F, Coudore F. Involvement of the multidrug resistance transporters in cisplatin-induced neuropathy in rats. Comparison with the chronic constriction injury model and monoarthritic rats. Eur J Pharmacol 2006; 544:49-57. [PMID: 16859677 DOI: 10.1016/j.ejphar.2006.06.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 06/07/2006] [Accepted: 06/20/2006] [Indexed: 10/24/2022]
Abstract
It has recently been suggested that P-glycoprotein is involved in the genesis and the treatment of the neurotoxic adverse events of anticancer drugs, including vincristine. A lower activity of P-glycoprotein in the peripheral nervous system (PNS) than in the central nervous system could contribute to the neurotoxicity of vincristine. Vincristine treatment is responsible for the induction of multidrug resistance (MDR) gene expression and transporter activity, with deleterious consequences, including a potential decrease in the efficiency of opioid analgesics, antidepressants or antiepileptics. Concerning cisplatin, which is also a strong neurotoxic drug but only an multidrug resistance protein 2 (MRP2) substrate, the same assumption could be suggested for MRP2 nervous function. The aim of this study was to assess MDR gene and protein activity in a rat model of cisplatin-induced neuropathy compared with different peripheral nerve injury models, i.e. mononeuropathy and inflammatory pain (monoarthritis). First, in cisplatin-induced neuropathy, this study demonstrated low MRP2 gene expression in dorsal root ganglia compared with the brain and spinal cord, which could contribute to the strong neurotoxicity of cisplatin in the PNS and particularly the dorsal root ganglia. Thus, gene expression increased in cisplatin-induced neuropathy but decreased in mononeuropathy and remained unchanged in monoarthritis models. Transporter activity of nervous tissues increased in the cisplatin-induced neuropathy, mononeuropathy and monoarthritis to different intensities (3.7-, 1.8- and 1.8-fold, respectively). The development of a MDR in the cisplatin-induced neuropathy is a striking difference with mononeuropathy and monoarthritis models, and characterizes the neuropathies induced by this anticancer drug.
Collapse
Affiliation(s)
- David Balayssac
- INSERM 766, Laboratoire de Toxicologie, Faculté de Médecine et de Pharmacie, BP 38, F-63000 Clermont-Ferrand, France.
| | | | | | | | | | | | | | | |
Collapse
|
243
|
Syvänen S, Blomquist G, Sprycha M, Höglund AU, Roman M, Eriksson O, Hammarlund-Udenaes M, Långström B, Bergström M. Duration and degree of cyclosporin induced P-glycoprotein inhibition in the rat blood-brain barrier can be studied with PET. Neuroimage 2006; 32:1134-41. [PMID: 16857389 DOI: 10.1016/j.neuroimage.2006.05.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 05/10/2006] [Accepted: 05/16/2006] [Indexed: 10/24/2022] Open
Abstract
Active efflux transporters in the blood-brain barrier lower the brain concentrations of many drug molecules and endogenous substances and thus affect their central action. The objective of this investigation was to study the dynamics of the entire inhibition process of the efflux transporter P-glycoprotein (P-gp), using positron emission tomography (PET). The P-gp marker [(11)C]verapamil was administered to anesthetized rats as an i.v. bolus dose followed by graded infusions via a computerized pump system to obtain a steady-state concentration of [(11)C]verapamil in brain. The P-gp modulator cyclosporin A (CsA) (3, 10 and 25 mg/kg) was administered as a short bolus injection 30 min after the start of the [(11)C]verapamil infusion. The CsA pharmacokinetics was studied in whole blood in a parallel group of rats. The CsA blood concentrations were used as input to model P-gp inhibition. The inhibition of P-gp was observed as a rapid increase in brain concentrations of [(11)C]verapamil, with a maximum after 5, 7.5 and 17.5 min for the respective doses. The respective increases in maximal [(11)C]verapamil concentrations were 1.5, 2.5 and 4 times the baseline concentration. A model in which CsA inhibited P-gp by decreasing the transport of [(11)C]verapamil out from the brain resulted in the best fit. Our data suggest that it is not the CsA concentration in blood, but rather the CsA concentration in an effect compartment, probably the endothelial cells of the blood-brain barrier that is responsible for the inhibition of P-gp.
Collapse
Affiliation(s)
- Stina Syvänen
- Uppsala Imanet, PO Box 967, SE-751 85 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Nies AT, Keppler D. The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch 2006; 453:643-59. [PMID: 16847695 DOI: 10.1007/s00424-006-0109-y] [Citation(s) in RCA: 261] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2006] [Accepted: 05/29/2006] [Indexed: 12/14/2022]
Abstract
ABCC2 is a member of the multidrug resistance protein subfamily localized exclusively to the apical membrane domain of polarized cells, such as hepatocytes, renal proximal tubule epithelia, and intestinal epithelia. This localization supports the function of ABCC2 in the terminal excretion and detoxification of endogenous and xenobiotic organic anions, particularly in the unidirectional efflux of substances conjugated with glutathione, glucuronate, or sulfate, as exemplified by leukotriene C(4), bilirubin glucuronosides, and some steroid sulfates. The hepatic ABCC2 pump contributes to the driving forces of bile flow. Acquired or hereditary deficiency of ABCC2, the latter known as Dubin-Johnson syndrome in humans, causes an increased concentration of bilirubin glucuronosides in blood because of their efflux from hepatocytes via the basolateral ABCC3, which compensates for the deficiency in ABCC2-mediated apical efflux. In this article we provide an overview on the molecular characteristics of ABCC2 and its expression in various tissues and species. We discuss the transcriptional and posttranscriptional regulation of ABCC2 and review approaches to the functional analysis providing information on its substrate specificity. A comprehensive list of sequence variants in the human ABCC2 gene summarizes predicted and proven functional consequences, including variants leading to Dubin-Johnson syndrome.
Collapse
Affiliation(s)
- Anne T Nies
- Division of Tumor Biochemistry, German Cancer Research Center, Heidelberg, Germany.
| | | |
Collapse
|
245
|
Cole SPC, Deeley RG. Transport of glutathione and glutathione conjugates by MRP1. Trends Pharmacol Sci 2006; 27:438-46. [PMID: 16820223 DOI: 10.1016/j.tips.2006.06.008] [Citation(s) in RCA: 275] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Revised: 04/25/2006] [Accepted: 06/19/2006] [Indexed: 11/30/2022]
Abstract
Glutathione (GSH)-conjugated xenobiotics and GSH-conjugated metabolites (e.g. the cysteinyl leukotriene C4) must be exported from the cells in which they are formed before they can be eliminated from the body or act on their cellular targets. This efflux is often mediated by the multidrug resistance protein 1 (MRP1) transporter, which also confers drug resistance to tumour cells and can protect normal cells from toxic insults. In addition to drugs and GSH conjugates, MRP1 exports GSH and GSH disulfide, and might thus have a role in cellular responses to oxidative stress. The transport of several drugs and conjugated organic anions by MRP1 requires the presence of GSH, but it is not well understood how GSH (and its analogues) enhances transport. Site-directed mutagenesis studies and biophysical analyses have provided important insights into the structural determinants of MRP1 that influence GSH and GSH conjugate binding and transport.
Collapse
Affiliation(s)
- Susan P C Cole
- Division of Cancer Biology and Genetics, Cancer Research Institute, Queen's University, Kingston, Ontario K7L 3N6, Canada.
| | | |
Collapse
|
246
|
Dallas S, Miller DS, Bendayan R. Multidrug resistance-associated proteins: expression and function in the central nervous system. Pharmacol Rev 2006; 58:140-61. [PMID: 16714484 DOI: 10.1124/pr.58.2.3] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Drug delivery to the brain is highly restricted, since compounds must cross a series of structural and metabolic barriers to reach their final destination, often a cellular compartment such as neurons, microglia, or astrocytes. The primary barriers to the central nervous system are the blood-brain and blood-cerebrospinal fluid barriers. Through structural modifications, including the presence of tight junctions that greatly limit paracellular transport, the cells that make up these barriers restrict diffusion of many pharmaceutically active compounds. In addition, the cells that comprise the blood-brain and blood-cerebrospinal fluid barriers express multiple ATP-dependent, membrane-bound, efflux transporters, such as members of the multidrug resistance-associated protein (MRP) family, which contribute to lowered drug accumulation. A relatively new concept in brain drug distribution just beginning to be explored is the possibility that cellular components of the brain parenchyma could act as a "second" barrier to brain permeation of pharmacological agents via expression of many of the same transporters. Indeed, efflux transporters expressed in brain parenchyma may facilitate the overall export of xenobiotics from the central nervous system, essentially handing them off to the barrier tissues. We propose that these primary and secondary barriers work in tandem to limit overall accumulation and distribution of xenobiotics in the central nervous system. The present review summarizes recent knowledge in this area and emphasizes the clinical significance of MRP transporter expression in a variety of neurological disorders.
Collapse
Affiliation(s)
- Shannon Dallas
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | | | | |
Collapse
|
247
|
Chalimoniuk M, Lukacova N, Marsala J, Langfort J. Alterations of the expression and activity of midbrain nitric oxide synthase and soluble guanylyl cyclase in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice. Neuroscience 2006; 141:1033-1046. [PMID: 16716528 DOI: 10.1016/j.neuroscience.2006.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 04/10/2006] [Accepted: 04/13/2006] [Indexed: 12/21/2022]
Abstract
The study was aimed at investigating the expression and the activity of neuronal nitric oxide synthase, and of soluble guanylyl cyclase and phosphodiesterase activities that regulate guanosine 3',5'-cyclic monophosphate level in the midbrain, in a mouse model of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine injections. Adult male mice of the C57/BL strain were given three i.p. injections of physiological saline or three i.p. injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine solution in physiological saline at 2 h intervals (summary 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine dose: 40 mg/kg), and were killed 3, 7, or 14 days later. mRNA, protein level, and/or activities of neuronal nitric oxide synthase, soluble guanylyl cyclase, phosphodiesterase and guanosine 3',5'-cyclic monophosphate were determined. Immunohistochemistry showed about 75% decrease in the number of tyrosine hydroxylase-positive neurons in the substantia nigra pars compacta. Mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine showed increased midbrain guanylyl cyclase and total nitric oxide synthase activities at 3, 7, and 14 days post-treatment. The specific neuronal nitric oxide synthase inhibitor 7-nitroindazole (10 microM) and the specific inducible nitric oxide synthase inhibitor 1400W (10 microM) inhibited the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced excess in nitric oxide synthase activity by 63-70 and 13-25%, respectively. The increases in total midbrain nitric oxide synthase activity were accompanied by elevated guanosine 3',5'-cyclic monophosphate, enhanced expression of neuronal nitric oxide synthase and of the beta1 subunit of guanylyl cyclase at both mRNA and protein levels that persisted up to the end of the observation period, and by enhanced neuronal nitric oxide synthase and guanylyl cyclase beta1 immunoreactivities in substantia nigra pars compacta 7 and 14 days after the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine treatment. The increases in guanylyl cyclase activity were found to occur exclusively due to increased maximal enzyme activity. No 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced change in phosphodiesterase activity has been detected in any brain region studied. 7-Nitroindazole prevented a significant increase in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced midbrain guanosine 3',5'-cyclic monophosphate level and neurodegeneration of dopaminergic neurons. These results raise the possibility that the nitric oxide/guanylyl cyclase/guanosine 3',5'-cyclic monophosphate signaling pathway may play a role in maintaining dopaminergic neurons function in substantia nigra pars compacta.
Collapse
Affiliation(s)
- M Chalimoniuk
- Department of Cellular Signaling, Medical Research Center, Polish Academy of Sciences, 5 Pawínskiego St., 02-106 Warsaw, Poland.
| | - N Lukacova
- Institute of Neurobiology, Slovak Academy of Sciences, 4 Soltesovej St., 040 01 Kosice, Slovak Republic
| | - J Marsala
- Institute of Neurobiology, Slovak Academy of Sciences, 4 Soltesovej St., 040 01 Kosice, Slovak Republic
| | - J Langfort
- Department of Experimental Pharmacology, Medical Research Center, Polish Academy of Sciences, 5 Pawínskiego St., 02-106 Warsaw, Poland
| |
Collapse
|
248
|
Su Y, Sinko PJ. Drug delivery across the blood–brain barrier: why is it difficult? how to measure and improve it? Expert Opin Drug Deliv 2006; 3:419-35. [PMID: 16640501 DOI: 10.1517/17425247.3.3.419] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of drugs that act in the CNS has been significantly impeded by the difficulty of delivering them across the blood-brain barrier (BBB). This article aims to provide the reader with a critical overview of important issues in the discovery and development of drugs that need to enter the brain to elicit pharmacological activity, focusing particularly on i) the role of drug transporters in brain permeation and how to manipulate them to enhance drug brain bioavailability; ii) the successful application, limitations and challenges of commonly used in vitro and in vivo methodologies for measuring drug transport across the BBB, and iii) a discussion of recently developed strategies (e.g., modulation of efflux transporters by chemical inhibitors and the employment of delivery vectors taking advantage of native transport systems at the BBB) for facilitating drug penetration into the brain.
Collapse
Affiliation(s)
- Yaming Su
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | |
Collapse
|
249
|
Borst P, de Wolf C, van de Wetering K. Multidrug resistance-associated proteins 3, 4, and 5. Pflugers Arch 2006; 453:661-73. [PMID: 16586096 DOI: 10.1007/s00424-006-0054-9] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 02/08/2006] [Indexed: 12/16/2022]
Abstract
We summarize in this paper the recently published results on multidrug resistance-associated proteins 3, 4, and 5 (MRPs 3-5). MRP3 can transport organic compounds conjugated to glutathione, sulfate, or glucuronate, such as estradiol-17beta-glucuronide, bilirubin-glucuronides, and etoposide-glucuronide, and also bile salts and methotrexate. Studies in knockout mice have shown that Mrp3 contributes to the transport of morphine-3-glucuronide and acetaminophen-glucuronide from the liver into blood. There is no evidence for a major role of MRP3 in bile salt metabolism, at least in mice. The function of MRP3 in other tissues, notably the gut and the adrenal cortex, remains to be defined. MRP4 and MRP5 have attracted attention by their ability to transport cyclic nucleotides and many nucleotide analogs. The initial reports that MRP4 and 5 can transport cGMP with microM affinity have not been confirmed in recent work and the physiological importance of cyclic nucleotide transport by MRP4 and 5 remains to be determined. Transfected cells containing high concentrations of MRP4 and 5 are moderately resistant to base, nucleoside, and nucleotide analogs. The affinity of both transporters for nucleotide analogs is low (K (m) around 1 mM) and there is no evidence that the transport of these compounds results in resistance in vivo. The physiological function of MRP4 and 5 remains to be found.
Collapse
Affiliation(s)
- Piet Borst
- Division of Molecular Biology and Center of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
250
|
Minich T, Riemer J, Schulz JB, Wielinga P, Wijnholds J, Dringen R. The multidrug resistance protein 1 (Mrp1), but not Mrp5, mediates export of glutathione and glutathione disulfide from brain astrocytes. J Neurochem 2006; 97:373-84. [PMID: 16539673 DOI: 10.1111/j.1471-4159.2006.03737.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Astrocytes play an important role in the glutathione (GSH) metabolism of the brain. To test for an involvement of multidrug resistance protein (Mrp) 1 and 5 in the release of GSH and glutathione disulfide (GSSG) from astrocytes, we used astrocyte cultures from wild-type, Mrp1-deficient [Mrp1(-/-)] and Mrp5-deficient [Mrp5(-/-)] mice. During incubation of wild-type or Mrp5(-/-) astrocytes, GSH accumulated in the medium at a rate of about 3 nmol/(h.mg), whereas the export of GSH from Mrp1(-/-) astrocytes was only one-third of that. In addition, Mrp1(-/-) astrocytes had a 50% higher specific GSH content than wild-type or Mrp5(-/-) cells. The presence of 50 microm of the Mrp inhibitor MK571 inhibited the rate of GSH release from wild-type and Mrp5(-/-) astrocytes by 60%, but stimulated at the low concentration of 1 microm GSH release by 40%. In contrast, both concentrations of MK571 did not affect GSH export from Mrp1(-/-) astrocytes. Moreover, in contrast to wild-type and Mrp5(-/-) cells, GSSG export during H(2)O(2) stress was not observed for Mrp1(-/-) astrocytes. These data demonstrate that in astrocytes Mrp1 mediates 60% of the GSH export, that Mrp1 is exclusively responsible for GSSG export and that Mrp5 does not contribute to these transport processes.
Collapse
Affiliation(s)
- Tobias Minich
- Institute for Biochemistry, University of Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|