201
|
Srivastava DP, Woolfrey KM, Penzes P. Insights into rapid modulation of neuroplasticity by brain estrogens. Pharmacol Rev 2013; 65:1318-50. [PMID: 24076546 PMCID: PMC3799233 DOI: 10.1124/pr.111.005272] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Converging evidence from cellular, electrophysiological, anatomic, and behavioral studies suggests that the remodeling of synapse structure and function is a critical component of cognition. This modulation of neuroplasticity can be achieved through the actions of numerous extracellular signals. Moreover, it is thought that it is the integration of different extracellular signals regulation of neuroplasticity that greatly influences cognitive function. One group of signals that exerts powerful effects on multiple neurologic processes is estrogens. Classically, estrogens have been described to exert their effects over a period of hours to days. However, there is now increasing evidence that estrogens can rapidly influence multiple behaviors, including those that require forebrain neural circuitry. Moreover, these effects are found in both sexes. Critically, it is now emerging that the modulation of cognition by rapid estrogenic signaling is achieved by activation of specific signaling cascades and regulation of synapse structure and function, cumulating in the rewiring of neural circuits. The importance of understanding the rapid effects of estrogens on forebrain function and circuitry is further emphasized as investigations continue to consider the potential of estrogenic-based therapies for neuropathologies. This review focuses on how estrogens can rapidly influence cognition and the emerging mechanisms that underlie these effects. We discuss the potential sources and the biosynthesis of estrogens within the brain and the consequences of rapid estrogenic-signaling on the remodeling of neural circuits. Furthermore, we argue that estrogens act via distinct signaling pathways to modulate synapse structure and function in a manner that may vary with cell type, developmental stage, and sex. Finally, we present a model in which the coordination of rapid estrogenic-signaling and activity-dependent stimuli can result in long-lasting changes in neural circuits, contributing to cognition, with potential relevance for the development of novel estrogenic-based therapies for neurodevelopmental or neurodegenerative disorders.
Collapse
Affiliation(s)
- Deepak P Srivastava
- Department of Neuroscience & Centre for the Cellular Basis of Behaviour, 125 Coldharbour Lane, The James Black Centre, Institute of Psychiatry, King's College London, London, SE5 9NU, UK.
| | | | | |
Collapse
|
202
|
Tsutsui K, Haraguchi S, Fukada Y, Vaudry H. Brain and pineal 7α-hydroxypregnenolone stimulating locomotor activity: identification, mode of action and regulation of biosynthesis. Front Neuroendocrinol 2013; 34:179-89. [PMID: 23685042 DOI: 10.1016/j.yfrne.2013.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 05/01/2013] [Accepted: 05/08/2013] [Indexed: 11/30/2022]
Abstract
Biologically active steroids synthesized in the central and peripheral nervous systems are termed neurosteroids. However, the biosynthetic pathways leading to the formation of neurosteroids are still incompletely elucidated. 7α-Hydroxypregnenolone, a novel bioactive neurosteroid stimulating locomotor activity, has been recently identified in the brain of newts and quail. Subsequently, the mode of action and regulation of biosynthesis of 7α-hydroxypregnenolone have been determined. Moreover, recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity in juvenile chickens, connecting light-induced gene expression with locomotion. This review summarizes the advances in our understanding of the identification, mode of action and regulation of biosynthesis of brain and pineal 7α-hydroxypregnenolone, a potent stimulator of locomotor activity.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan.
| | | | | | | |
Collapse
|
203
|
Reddy DS. Role of hormones and neurosteroids in epileptogenesis. Front Cell Neurosci 2013; 7:115. [PMID: 23914154 PMCID: PMC3728472 DOI: 10.3389/fncel.2013.00115] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/01/2013] [Indexed: 12/03/2022] Open
Abstract
This article describes the emerging evidence of hormonal influence on epileptogenesis, which is a process whereby a brain becomes progressively epileptic due to an initial precipitating event of diverse origin such as brain injury, stroke, infection, or prolonged seizures. The molecular mechanisms underlying the development of epilepsy are poorly understood. Neuroinflammation and neurodegeneration appear to trigger epileptogenesis. There is an intense search for drugs that truly prevent the development of epilepsy in people at risk. Hormones play an important role in children and adults with epilepsy. Corticosteroids, progesterone, estrogens, and neurosteroids have been shown to affect seizure activity in animal models and in clinical studies. However, the impact of hormones on epileptogenesis has not been investigated widely. There is emerging new evidence that progesterone, neurosteroids, and endogenous hormones may play a role in regulating the epileptogenesis. Corticosterone has excitatory effects and triggers epileptogenesis in animal models. Progesterone has disease-modifying activity in epileptogenic models. The antiepileptogenic effect of progesterone has been attributed to its conversion to neurosteroids, which binds to GABA-A receptors and enhances phasic and tonic inhibition in the brain. Neurosteroids are robust anticonvulsants. There is pilot evidence that neurosteroids may have antiepileptogenic properties. Future studies may generate new insight on the disease-modifying potential of hormonal agents and neurosteroids in epileptogenesis.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center Bryan, TX, USA
| |
Collapse
|
204
|
Prange-Kiel J, Schmutterer T, Fester L, Zhou L, Imholz P, Brandt N, Vierk R, Jarry H, Rune GM. Endocrine regulation of estrogen synthesis in the hippocampus? ACTA ACUST UNITED AC 2013; 48:49-64. [PMID: 23906992 DOI: 10.1016/j.proghi.2013.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Estradiol synthesis in the ovaries is regulated via feedback mechanisms mediated by gonadotrophin-releasing hormone (GnRH) and gonadotrophins, secreted by the hypothalamus and the pituitary, respectively. Estradiol synthesis also takes place in the hippocampus. In hippocampal slice cultures of female animals, GnRH regulates estradiol synthesis dose-dependently. Hence, both hippocampal and ovarian estradiol synthesis are synchronized by GnRH. Hippocampus-derived estradiol is essential to synapse stability and maintenance because it stabilizes the spine cytoskeleton of hippocampal neurons. Inhibition of hippocampal estradiol synthesis in mice, however, results in loss of spines and spine synapses in females, but not in males. Stereotaxic application of GnRH to the hippocampus of female rats confirms the regulatory role of GnRH on estradiol synthesis and synapse density in the female hippocampus in vivo. This regulatory role of GnRH necessarily results in estrus cyclicity of spine density in the hippocampus of females.
Collapse
Affiliation(s)
- Janine Prange-Kiel
- University of Texas Southwestern Medical Center at Dallas, Department of Cell Biology, 5323 Harry Hines Blvd., Dallas, Texas 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Aouad M, Petit-Demoulière N, Goumon Y, Poisbeau P. Etifoxine stimulates allopregnanolone synthesis in the spinal cord to produce analgesia in experimental mononeuropathy. Eur J Pain 2013; 18:258-68. [PMID: 23881562 DOI: 10.1002/j.1532-2149.2013.00367.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2013] [Indexed: 02/04/2023]
Abstract
BACKGROUND Pathological pain states are often associated with neuronal hyperexcitability in the spinal cord. Reducing this excitability could theoretically be achieved by amplifying the existing spinal inhibitory control mediated by GABAA receptors (GABAARs). In this study, we used the non-benzodiazepine anxiolytic etifoxine (EFX) to characterize its interest as pain killer and spinal mechanisms of action. EFX potentiates GABAAR function but can also increase its function by stimulating the local synthesis of 3α-reduced neurosteroids (3αNS), the most potent endogenous modulators of this receptor. METHODS The efficacy of EFX analgesia and the contribution of 3αNS were evaluated in a rat model of mononeuropathy. Spinal contribution of EFX was characterized through changes in pain symptoms after intrathecal injections, spinal content of EFX and 3αNS, and expression of FosB-related genes, a marker of long-term plasticity. RESULTS We found that a 2-week treatment with EFX (>5 mg/kg, i.p.) fully suppressed neuropathic pain symptoms. This effect was fully mediated by 3αNS and probably by allopregnanolone, which was found at a high concentration in the spinal cord. In good agreement, the level of EFX analgesia after intrathecal injections confirmed that the spinal cord is a privileged target as well as the limited expression of FosB/ΔFosB gene products that are highly expressed in persistent pain states. CONCLUSIONS This preclinical study shows that stimulating the production of endogenous analgesics such as 3αNS represents an interesting strategy to reduce neuropathic pain symptoms. Since EFX is already prescribed as an anxiolytic in several countries, a translation to the human clinic needs to be rapidly evaluated.
Collapse
Affiliation(s)
- M Aouad
- Nociception and Pain Department, Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique and University of Strasbourg, Strasbourg, France
| | | | | | | |
Collapse
|
206
|
Guo WZ, Miao YL, An LN, Wang XY, Pan NL, Ma YQ, Chen HX, Zhao N, Zhang H, Li YF, Mi WD. Midazolam provides cytoprotective effect during corticosterone-induced damages in rat astrocytes by stimulating steroidogenesis. Neurosci Lett 2013; 547:53-8. [DOI: 10.1016/j.neulet.2013.05.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/30/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
|
207
|
Burel D, Li JH, Do-Rego JL, Wang AF, Luu-The V, Pelletier G, Tillet Y, Taragnat C, Kwon HB, Seong JY, Vaudry H. Gonadotropin-releasing hormone stimulates the biosynthesis of pregnenolone sulfate and dehydroepiandrosterone sulfate in the hypothalamus. Endocrinology 2013; 154:2114-28. [PMID: 23554453 DOI: 10.1210/en.2013-1095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The sulfated neurosteroids pregnenolone sulfate (Δ(5)PS) and dehydroepiandrosterone sulfate (DHEAS) are known to play a role in the control of reproductive behavior. In the frog Pelophylax ridibundus, the enzyme hydroxysteroid sulfotransferase (HST), responsible for the biosynthesis of Δ(5)PS and DHEAS, is expressed in the magnocellular nucleus and the anterior preoptic area, two hypothalamic regions that are richly innervated by GnRH1-containing fibers. This observation suggests that GnRH1 may regulate the formation of sulfated neurosteroids to control sexual activity. Double labeling of frog brain slices with HST and GnRH1 antibodies revealed that GnRH1-immunoreactive fibers are located in close vicinity of HST-positive neurons. The cDNAs encoding 3 GnRH receptors (designated riGnRHR-1, -2, and -3) were cloned from the frog brain. RT-PCR analyses revealed that riGnRHR-1 is strongly expressed in the hypothalamus and the pituitary whereas riGnRHR-2 and -3 are primarily expressed in the brain. In situ hybridization histochemistry indicated that GnRHR-1 and GnRHR-3 mRNAs are particularly abundant in preoptic area and magnocellular nucleus whereas the concentration of GnRHR-2 mRNA in these 2 nuclei is much lower. Pulse-chase experiments using tritiated Δ(5)P and DHEA as steroid precursors, and 3'-phosphoadenosine 5'-phosphosulfate as a sulfonate moiety donor, showed that GnRH1 stimulates, in a dose-dependent manner, the biosynthesis of Δ(5)PS and DHEAS in frog diencephalic explants. Because Δ(5)PS and DHEAS, like GnRH, stimulate sexual activity, our data strongly suggest that some of the behavioral effects of GnRH could be mediated via the modulation of sulfated neurosteroid production.
Collapse
Affiliation(s)
- Delphine Burel
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institut National de la Sante´ et de la Recherche Me´ dicale U982, Research Institute for Biomedecine (IRIB), International Associated Laboratory Samuel de Champlain, University of Rouen, 76821 Mont-Saint Aignan, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Tsutsui K, Haraguchi S, Inoue K, Miyabara H, Ubuka T, Hatori M, Hirota T, Fukada Y. New biosynthesis and biological actions of avian neurosteroids. J Exp Neurosci 2013; 7:15-29. [PMID: 25157204 PMCID: PMC4089810 DOI: 10.4137/jen.s11148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
De novo neurosteroidogenesis from cholesterol occurs in the brain of various avian species. However, the biosynthetic pathways leading to the formation of neurosteroids are still not completely elucidated. We have recently found that the avian brain produces 7α-hydroxypregnenolone, a novel bioactive neurosteroid that stimulates locomotor activity. Until recently, it was believed that neurosteroids are produced in neurons and glial cells in the central and peripheral nervous systems. However, our recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity of juvenile birds, connecting light-induced gene expression with locomotion. The other major pineal neurosteroid allopregnanolone is involved in Purkinje cell survival during development. This paper highlights new aspects of neurosteroid synthesis and actions in birds.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Kazuhiko Inoue
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Hitomi Miyabara
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Takayoshi Ubuka
- Laboratory of Integrative Brain Sciences, Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Megumi Hatori
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tsuyoshi Hirota
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Fukada
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
209
|
Giuliani FA, Escudero C, Casas S, Bazzocchini V, Yunes R, Laconi MR, Cabrera R. Allopregnanolone and puberty: modulatory effect on glutamate and GABA release and expression of 3α-hydroxysteroid oxidoreductase in the hypothalamus of female rats. Neuroscience 2013; 243:64-75. [PMID: 23562943 DOI: 10.1016/j.neuroscience.2013.03.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 02/26/2013] [Accepted: 03/26/2013] [Indexed: 02/07/2023]
Abstract
The hypothalamic release of glutamate and GABA regulates neurosecretory functions that may control the onset of puberty. This release may be influenced by neurosteroids such as allopregnanolone. Using superfusion experiments we examined the role of allopregnanolone on the K(+)-evoked and basal [(3)H]-glutamate and [(3)H]-GABA release from mediobasal hypothalamus and anterior preoptic area in prepubertal, vaginal opening and pubertal (P) rats and evaluated its modulatory effect on GABAA and NMDA (N-methyl-d-aspartic acid) receptors. Also, we examined the hypothalamic activity and mRNA expression of 3α-hydroxysteroid oxidoreductase (3α-HSOR) - enzyme that synthesizes allopregnanolone - using a spectrophotometric method and RT-PCR, respectively. Allopregnanolone increased both the K(+)-evoked [(3)H]-glutamate and [(3)H]-GABA release in P rats, being the former effect mediated by the modulation of NMDA receptors - as was reverted by Mg(2+) and by the NMDA receptor antagonist AP-7 and the latter by the modulation of NMDA and GABAA receptors - as was reverted by Mg(2+) and the GABAA receptor antagonist bicuculline. The neurosteroid also increased the basal release of [(3)H]-glutamate in VO rats in an effect that was dependent on the modulation of NMDA receptors as was reverted by Mg(2+). On the other hand we show that allopregnanolone reduced the basal release of [(3)H]-GABA in P rats although we cannot elucidate the precise mechanism by which the neurosteroid exerted this latter effect. The enzymatic activity and the mRNA expression of 3α-HSOR were both increased in P rats regarding the other two studied stages of sexual development. These results suggest an important physiological function of allopregnanolone in the hypothalamus of the P rat where it might be involved in the 'fine tuning' of neurosecretory functions related to the biology of reproduction of the female rats.
Collapse
Affiliation(s)
- F A Giuliani
- Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Mendoza, IMBECU-CONICET, Paseo Dr. Emilio Descotte 720, 5500 Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
210
|
di Michele F, Luchetti S, Bernardi G, Romeo E, Longone P. Neurosteroid and neurotransmitter alterations in Parkinson's disease. Front Neuroendocrinol 2013; 34:132-42. [PMID: 23563222 DOI: 10.1016/j.yfrne.2013.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/17/2013] [Accepted: 03/25/2013] [Indexed: 01/13/2023]
Abstract
Parkinson's disease (PD) is associated with a massive loss of dopaminergic cells in the substantia nigra leading to dopamine hypofunction and alteration of the basal ganglia circuitry. These neurons, are under the control, among others, of the excitatory glutamatergic and inhibitory γ-aminobutyric acid (GABA) systems. An imbalance between these systems may contribute to excitotoxicity and dopaminergic cell death. Neurosteroids, a group of steroid hormones synthesized in the brain, modulate the function of several neurotransmitter systems. The substantia nigra of the human brain expresses high concentrations of allopregnanolone (3α, 5αtetrahydroprogesterone), a neurosteroid that positively modulates the action of GABA at GABAA receptors and of 5α-dihydroprogesterone, a neurosteroid acting at the genomic level. This article reviews the roles of NS acting as neuroprotectants and as GABAA receptor agonists in the physiology and pathophysiology of the basal ganglia, their impact on dopaminergic cell activity and survival, and potential therapeutic application in PD.
Collapse
|
211
|
Abstract
This review describes the neuroendocrinological aspects of catamenial epilepsy, a menstrual cycle-related seizure disorder in women with epilepsy. Catamenial epilepsy is a multifaceted neuroendocrine condition in which seizures are clustered around specific points in the menstrual cycle, most often around perimenstrual or periovulatory period. Three types of catamenial seizures (perimenstrual, periovulatory and inadequate luteal) have been identified. The molecular pathophysiology of catamenial epilepsy remains unclear. Cyclical changes in the circulating levels of estrogens and progesterone (P) play a central role in the development of catamenial epilepsy. Endogenous neurosteroids such as allopregnanolone (AP) and allotetrahydrodeoxycorticosterone (THDOC) that modulate seizure susceptibility could play a critical role in catamenial epilepsy. In addition, plasticity in GABA-A receptor subunits could play a role in the enhanced seizure susceptibility in catamenial epilepsy. P-derived neurosteroids such as AP and THDOC potentiate synaptic GABA-A receptor function and also activate extrasynaptic GABA-A receptors in the hippocampus and thus may represent endogenous regulators of catamenial seizure susceptibility. Experimental studies have shown that neurosteroids confer greater seizure protection in animal models of catamenial epilepsy, especially without evident tolerance to their actions during chronic therapy. In the recently completed NIH-sponsored, placebo controlled phase 3 clinical trial, P therapy proved to be beneficial only in women with perimenstrual catamenial epilepsy but not in non-catamenial subjects. Neurosteroid analogs with favorable profile may be useful in the treatment of catamenial epilepsy.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, 8447 State Highway 47, MREB Building, Bryan, TX 77807, USA.
| |
Collapse
|
212
|
Nagarajan G, Aruna A, Chang CF. Increase in estrogen signaling in the early brain of orange-spotted grouper Epinephelus coioides: a mini-review. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:95-101. [PMID: 22692774 DOI: 10.1007/s10695-012-9667-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 05/25/2012] [Indexed: 06/01/2023]
Abstract
Despite neurosteroidogenic enzymes are playing important roles in the regulation of brain development and function, the potential link between brain and gonad by the action of steroid hormones during gonadal sex differentiation is still not clear in teleosts. In this mini-review, we summarized our understanding on the early brain development related to the synthesis of neurosteroids and receptor signaling during gonadal sex differentiation in protogynous orange-spotted grouper, Epinephelus coioides (functional females for the first 6 years of life and start to sex change around the age of 7 years) and protandrous black porgy (functional males for the first 2 years of life but begin to change sex during the third year). We found a similar profile in the increased expression of brain aromatase gene (aromatatse B or cyp19a1b), aromatase activity, estradiol (E(2)), and estrogen signaling in the brain of both grouper and black porgy fish during gonadal sex differentiation. In contrast to mammals, teleost fish Cyp19a1b expressed in a unique cell type, a radial glial cell, which is acted as progenitors in the brain of developing and adult fish. In agreement with these pioneer studies, we demonstrated that the grouper cyp19a1b/Cyp19a1b was expressed in radial glial cells. Further, in vivo data in the grouper brain showed that exogenous E(2) upregulated Cyp19a1b immunoreactivity (ir) in radial glial cells. These data suggest the possible roles of Cyp19a1b and E(2) in early brain development which is presumably related to gonadal sex differentiation.
Collapse
Affiliation(s)
- Ganesan Nagarajan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | | | | |
Collapse
|
213
|
Cui J, Shen Y, Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol Med 2013; 19:197-209. [PMID: 23348042 DOI: 10.1016/j.molmed.2012.12.007] [Citation(s) in RCA: 487] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/18/2012] [Accepted: 12/27/2012] [Indexed: 01/05/2023]
Abstract
Estrogens are the primary female sex hormones and play important roles in both reproductive and non-reproductive systems. Estrogens can be synthesized in non-reproductive tissues such as liver, heart, muscle, bone and brain, and tissue-specific estrogen synthesis is consistent with a diversity of estrogen actions. In this article we review tissue and cell-specific estrogen synthesis and estrogen receptor signaling in three parts: (i) synthesis and metabolism, (ii) the distribution of estrogen receptors and signaling, and (iii) estrogen functions and related disorders, including cardiovascular diseases, osteoporosis, Alzheimer's disease (AD), and Parkinson disease (PD). This comprehensive review provides new insights into estrogens by giving a better understanding of the tissue-specific estrogen effects and their roles in various diseases.
Collapse
Affiliation(s)
- Jie Cui
- Center for Hormone Advanced Science and Education (CHASE), Roskamp Institute, Sarasota, FL 34243, USA
| | | | | |
Collapse
|
214
|
Nagarajan G, Aruna A, Chang CF. Neurosteroidogenic enzymes and their regulation in the early brain of the protogynous grouper Epinephelus coioides during gonadal sex differentiation. Gen Comp Endocrinol 2013; 181:271-87. [PMID: 23168084 DOI: 10.1016/j.ygcen.2012.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 10/07/2012] [Accepted: 10/11/2012] [Indexed: 11/17/2022]
Abstract
The regulatory role of neurosteroids in the early brain during gonadal sex differentiation is unclear. The aim of this study was to investigate the expression and cellular localization of key steroidogenic enzymes in the early brain of the protogynous orange-spotted grouper Epinephelus coioides and the temporal expressions has been correlated with gonadal sex differentiation. In this study, we showed that peak neurosteroidogenesis occurs in the early brain during gonadal sex differentiation. The temporal expressions of key enzymes, cyp11a1 (cytochrome P450 side chain cleavage), hsd3b1 (3β-hydroxysteroid dehydrogenase) and cyp17a1 (cytochrome P450c17) were studied at different developmental ages (from 90- to 150-dah: days after hatching) using quantitative real-time PCR (q-PCR). q-PCR analysis indicated that the transcript expressions of cyp11a1, hsd3b1 and cyp17a1 were increased in the brain around the period of gonadal sex differentiation. Further, in situ hybridization (ISH) analysis showed that cyp11a1, hsd3b1 and cyp17a1 transcripts were widely expressed in several discrete brain regions, especially the intense expression in the forebrain, with an overall similar expression pattern. High density in the cyp19a1b/Cyp19a1b expression was detected in radial glial cells. Thus, the expression of grouper cyp19a1b/Cyp19a1b is restricted to radial glial cells, suggesting estrogens can modulate their activity. Next, by combining Cyp19a1b immunohistochemistry (IHC) with florescence ISH (FISH) of cyp11a1, hsd3b1 and cyp17a1, we showed that sub-cellular localization of cyp11a1, hsd3b1 and cyp17a1 transcripts, in partial, appeared to be in Cyp19a1b radial glial cell soma. Further, exogenous estradiol (E(2)) increased the expression of cyp17a1 and cyp19a1b/Cyp19a1b in the brain of grouper. Consequently, our results illustrated that the locally synthesized E(2) upregulated neurosteroidogenic enzymes in the early brain and suggest a role for these enzymes in the neurogenic process during gonadal sex differentiation.
Collapse
Affiliation(s)
- Ganesan Nagarajan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | | | | |
Collapse
|
215
|
|
216
|
Tsutsui K, Haraguchi S, Hatori M, Hirota T, Fukada Y. Biosynthesis and biological actions of pineal neurosteroids in domestic birds. Neuroendocrinology 2013; 98:97-105. [PMID: 23797037 DOI: 10.1159/000353782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 06/15/2013] [Indexed: 11/19/2022]
Abstract
The central and peripheral nervous systems have the capacity of synthesizing steroids de novo from cholesterol, the so-called 'neurosteroids'. De novo synthesis of neurosteroids from cholesterol appears to be a conserved property across the subphylum vertebrata. Until recently, it was generally believed that neurosteroids are produced in neurons and glial cells in the central and peripheral nervous systems. However, our recent studies on birds have demonstrated that the pineal gland, an endocrine organ located close to the brain, is an important site of production of neurosteroids de novo from cholesterol. 7α-Hydroxypregnenolone is a major pineal neurosteroid that stimulates locomotor activity of juvenile birds, connecting light-induced gene expression with locomotion. The other major pineal neurosteroid allopregnanolone is involved in Purkinje cell survival by suppressing the activity of caspase-3, a crucial mediator of apoptosis during cerebellar development. This review is an updated summary of the biosynthesis and biological actions of pineal neurosteroids.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
217
|
Carta MG, Bhat KM, Preti A. GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct 2012; 8:61. [PMID: 23253178 PMCID: PMC3573983 DOI: 10.1186/1744-9081-8-61] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 11/30/2012] [Indexed: 01/27/2023] Open
Abstract
Neurosteroids are synthesized in the brain and modulate brain excitability. There is increasing evidence of their sedative, anesthetic and antiseizure properties, as well as their influence on mood. Currently neurosteroids are classified as pregnane neurosteroids (allopregnanolone and allotetrahydrodeoxycorticosterone), androstane neurosteroids (androstanediol and etiocholanone) or sulfated neurosteroids (pregnenolone sulfate and dehydroepiandrosterone sulfate). Both preclinical and clinical findings indicate that progesterone derivative neurosteroids such as allopregnanolone and allotetrahydrodeoxycorticosterone play a role in mood disorders. Clozapine and olanzapine, which were shown to be effective in stabilizing bipolar disorder, elevate pregnenolone levels in rat hippocampus, cerebral cortex, and serum. In lithium-treated mice, the blood levels of allopregnanolone and pregnenolone were elevated compared to control levels. Women diagnosed with bipolar disorder typically show symptomatic exacerbation in relation to the menstrual cycle, and show vulnerability to the onset or recurrence of mood disorders immediately after giving birth, when the levels of neurosteroid derivatives of progesterone drop. Whereas in women who had recovered from bipolar disorder, the plasma concentration of allopregnanolone was elevated compared to either healthy controls or women with major depressive disorder during the premenstrual period. During depressive episodes, blood level of allopregnanolone is low. Treatment with fluoxetine tends to stabilize the levels of neurosteroids in depression. These findings converge to suggest that these steroids have significant mood-stabilizing effect. This hypothesis is consistent with the observation that a number of anticonvulsants are effective therapies for bipolar disorder, a finding also consistent with the antiseizure properties of neurosteroids. Further exploration of action of neuroactive steroids is likely to open new frontiers in the investigation of the etiology and treatment of mood disorders, particularly bipolar disorders.
Collapse
Affiliation(s)
- Mauro Giovanni Carta
- Department of Public Health, Clinical and Molecular Medicine, University of Cagliari and Center for Consultation-Liaison Psychiatry and Psychosomatics University Hospital of Cagliari, Cagliari, Italy.
| | | | | |
Collapse
|
218
|
Possible role of pineal allopregnanolone in Purkinje cell survival. Proc Natl Acad Sci U S A 2012; 109:21110-5. [PMID: 23213208 DOI: 10.1073/pnas.1210804109] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is believed that neurosteroids are produced in the brain and other nervous systems. Here, we show that allopregnanolone (ALLO), a neurosteroid, is exceedingly produced in the pineal gland compared with the brain and that pineal ALLO acts on the Purkinje cell, a principal cerebellar neuron, to prevent apoptosis in the juvenile quail. We first demonstrated that the pineal gland is a major organ of neurosteroidogenesis. A series of experiments using molecular and biochemical techniques has further demonstrated that the pineal gland produces a variety of neurosteroids de novo from cholesterol in the juvenile quail. Importantly, ALLO was far more actively produced in the pineal gland than in the brain. Pinealectomy (Px) decreased ALLO concentration in the cerebellum and induced apoptosis of Purkinje cells, whereas administration of ALLO to Px quail chicks prevented apoptosis of Purkinje cells. We further found that Px significantly increased the number of Purkinje cells that expressed active caspase-3, a key protease in apoptotic pathway, and daily injection of ALLO to Px quail chicks decreased the number of Purkinje cells expressing active caspase-3. These results indicate that the neuroprotective effect of pineal ALLO is associated with the decrease in caspase-3 activity during the early stage of neuronal development. We thus provide evidence that the pineal gland is an important neurosteroidogenic organ and that pineal ALLO may be involved in Purkinje cell survival during development. This is an important function of the pineal gland in the formation of neuronal circuits in the developing cerebellum.
Collapse
|
219
|
Cornil CA, Ball GF, Balthazart J. Rapid control of male typical behaviors by brain-derived estrogens. Front Neuroendocrinol 2012; 33:425-46. [PMID: 22983088 PMCID: PMC3496013 DOI: 10.1016/j.yfrne.2012.08.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/13/2012] [Accepted: 08/17/2012] [Indexed: 01/01/2023]
Abstract
Beside their genomic mode of action, estrogens also activate a variety of cellular signaling pathways through non-genomic mechanisms. Until recently, little was known regarding the functional significance of such actions in males and the mechanisms that control local estrogen concentration with a spatial and time resolution compatible with these non-genomic actions had rarely been examined. Here, we review evidence that estrogens rapidly modulate a variety of behaviors in male vertebrates. Then, we present in vitro work supporting the existence of a control mechanism of local brain estrogen synthesis by aromatase along with in vivo evidence that rapid changes in aromatase activity also occur in a region-specific manner in response to changes in the social or environmental context. Finally, we suggest that the brain estrogen provision may also play a significant role in females. Together these data bolster the hypothesis that brain-derived estrogens should be considered as neuromodulators.
Collapse
Affiliation(s)
- Charlotte A Cornil
- GIGA Neurosciences, Research Group in Behavioral Neuroendocrinology, University of Liège, Liège, Belgium.
| | | | | |
Collapse
|
220
|
Toyoda F, Hasunuma I, Nakada T, Haraguchi S, Tsutsui K, Kikuyama S. Involvement of the neurosteroid 7α-hydroxypregnenolone in the courtship behavior of the male newt Cynops pyrrhogaster. Horm Behav 2012; 62:375-80. [PMID: 22796546 DOI: 10.1016/j.yhbeh.2012.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/26/2012] [Accepted: 07/03/2012] [Indexed: 10/28/2022]
Abstract
Reproductive behavior in amphibians, as in other vertebrate animals, is controlled by multiple hormones. A neurosteroid, 7α-hydroxypregnenolone, has recently been found to enhance locomotor activity in the male newt, Cynops pyrrhogaster. Here, we show that this neurosteroid is also involved in enhancing the expression of courtship behavior. Intracerebroventricular (ICV) injection of 7α-hydroxypregnenolone enhanced courtship behavior dose-dependently in the sexually undeveloped males that had been pretreated with prolactin and gonadotropin, which is known to bring the males to a sexually developed state. But, unlike the case in the locomotion activity, 7α-hydroxypregnenolone did not elicit the behavior in males receiving no prior injections of these hormones. ICV administration of ketoconazole, an inhibitor of the steroidogenic enzyme cytochrome P450s, suppressed the spontaneously occurring courtship behavior in sexually active males. Supplementation with 7α-hydroxypregnenolone reversed the effect of ketoconazole in these animals. It was also demonstrated that the effect of the neurosteroid on the courtship behavior was blocked by a dopamine D2-like, but not by a D1-like, receptor antagonist. These results indicate that endogenous 7α-hydroxypregnenolone enhances the expression of the male courtship behavior through a dopaminergic system mediated by a D2-like receptor in the brain.
Collapse
Affiliation(s)
- Fumiyo Toyoda
- Physiology Department-I, Nara Medical University, Nara 634-8521, Japan.
| | | | | | | | | | | |
Collapse
|
221
|
Samba Reddy D, Ramanathan G. Finasteride inhibits the disease-modifying activity of progesterone in the hippocampus kindling model of epileptogenesis. Epilepsy Behav 2012; 25:92-7. [PMID: 22835430 PMCID: PMC3444667 DOI: 10.1016/j.yebeh.2012.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 05/24/2012] [Accepted: 05/26/2012] [Indexed: 11/19/2022]
Abstract
Progesterone (P) plays an important role in seizure susceptibility in women with epilepsy. Preclinical and experimental studies suggest that P appears to interrupt epileptogenesis, which is a process whereby a normal brain becomes progressively susceptible to recurrent, unprovoked seizures due to precipitating risk factors. Progesterone has not been investigated widely for its potential disease-modifying activity in epileptogenic models. Recently, P has been shown to exert disease-modifying effects in the kindling model of epileptogenesis. However, the mechanisms underlying the protective effects of P against epileptogenesis remain unclear. In this study, we investigated the role of P-derived neurosteroids in the disease-modifying activity of P. It is hypothesized that 5α-reductase converts P to allopregnanolone and related neurosteroids that retard epileptogenesis in the brain. To test this hypothesis, we utilized the mouse hippocampus kindling model of epileptogenesis and investigated the effect of finasteride, a 5α-reductase and neurosteroid synthesis inhibitor. Progesterone markedly retarded the development of epileptogenesis and inhibited the rate of kindling acquisition to elicit stage 5 seizures. Pretreatment with finasteride led to complete inhibition of the P-induced retardation of the limbic epileptogenesis in mice. Finasteride did not significantly influence the acute seizure expression in fully kindled mice expressing stage 5 seizures. Thus, neurosteroids that potentiate phasic and tonic inhibition in the hippocampus, such as allopregnanolone, may mediate the disease-modifying effect of P, indicating a new role of neurosteroids in acquired limbic epileptogenesis and temporal lobe epilepsy.
Collapse
Affiliation(s)
- Doodipala Samba Reddy
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA.
| | | |
Collapse
|
222
|
Manca P, Caria MA, Blasi J, Martín-Satué M, Mameli O. Cytochrome P450 17α-hydroxylase/C(17,20)-lyase immunoreactivity and molecular expression in the cerebellar nuclei of adult male rats. J Chem Neuroanat 2012; 45:18-25. [PMID: 22800812 DOI: 10.1016/j.jchemneu.2012.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/15/2012] [Accepted: 07/04/2012] [Indexed: 10/28/2022]
Abstract
Several probes have been developed to identify steroidogenic activity in the brain of vertebrates. However, the presence of the cytochrome P450 17α-hydroxylase/C(17,20)-lyase (P450C(17)), an enzyme that converts pregnenolone and progesterone into dehydroepiandrosterone and androstenedione, in specific areas of the cerebellum such as the deep cerebellar nuclei, remains virtually unexplored. Using Western blot analysis and immunohistochemistry, we found molecular expression of P450C(17) in the lateral, interposed and medial deep cerebellar nuclei. Moreover, double immunofluorescence procedures enabled localization of P450C(17) mainly in neurons, axons and glutamatergic synapses. Taken together, these data demonstrate the occurrence of P450C(17) in the deep cerebellar nuclei, and enable the chemical characterization of the cells that express the cytochrome.
Collapse
Affiliation(s)
- Paolo Manca
- Department of Clinical and Experimental Medicine, Human Physiology, University of Sassari, Italy.
| | | | | | | | | |
Collapse
|
223
|
Burrone L, Santillo A, Pinelli C, Baccari GC, Di Fiore MM. Induced synthesis of P450 aromatase and 17β-estradiol by D-aspartate in frog brain. ACTA ACUST UNITED AC 2012; 215:3559-65. [PMID: 22771744 DOI: 10.1242/jeb.073296] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
D-Aspartic acid is an endogenous amino acid occurring in the endocrine glands as well as in the nervous system of various animal phyla. Our previous studies have provided evidence that D-aspartate plays a role in the induction of estradiol synthesis in gonads. Recently, we have also demonstrated that D-aspartic acid induces P450 aromatase mRNA expression in the frog (Pelophylax esculentus) testis. P450 aromatase is the key enzyme in the estrogen synthetic pathway and irreversibly converts testosterone into 17β-estradiol. In this study, we firstly investigated the immunolocalisation of P450 aromatase in the brain of P. esculentus, which has never previously been described in amphibians. Therefore, to test the hypothesis that d-aspartate mediates a local synthesis of P450 aromatase in the frog brain, we administered D-aspartate in vivo to male frogs and then assessed brain aromatase expression, sex hormone levels and sex hormone receptor expression. We found that D-aspartate enhances brain aromatase expression (mRNA and protein) through the CREB pathway. Then, P450 aromatase induces 17β-estradiol production from testosterone, with a consequent increase of its receptor. Therefore, the regulation of d-aspartate-mediated P450 aromatase expression could be an important step in the control of neuroendocrine regulation of the reproductive axis. Accordingly, we found that the sites of P450 aromatase immunoreactivity in the frog brain correspond to the areas known to be involved in neurosteroid synthesis.
Collapse
Affiliation(s)
- Lavinia Burrone
- Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100, Caserta, Italy
| | | | | | | | | |
Collapse
|
224
|
Ahboucha S, Talani G, Fanutza T, Sanna E, Biggio G, Gamrani H, Butterworth RF. Reduced brain levels of DHEAS in hepatic coma patients: significance for increased GABAergic tone in hepatic encephalopathy. Neurochem Int 2012; 61:48-53. [PMID: 22490610 DOI: 10.1016/j.neuint.2012.03.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/25/2012] [Accepted: 03/26/2012] [Indexed: 11/28/2022]
Abstract
Increased neurosteroids with allosteric modulatory activity on GABA(A) receptors such as 3α-5α tertrahydroprogesterone; allopregnanolone (ALLO), are candidates to explain the phenomenon of "increased GABAergic tone" in hepatic encephalopathy (HE). However, it is not known how changes of other GABA(A) receptor modulators such as dehydroepiandrosterone sulfate (DHEAS) contribute to altered GABAergic tone in HE. Concentrations of DHEAS were measured by radioimmunoassay in frontal cortex samples obtained at autopsy from 11 cirrhotic patients who died in hepatic coma and from an equal number of controls matched for age, gender, and autopsy delay intervals free from hepatic or neurological diseases. To assess whether reduced brain DHEAS contributes to increased GABAergic tone, in vitro patch clamp recordings in rat prefrontal cortex neurons were performed. A significant reduction of DHEAS (5.81±0.88 ng/g tissue) compared to control values (9.70±0.79 ng/g, p<0.01) was found. Brain levels of DHEAS in patients with liver disease who died without HE (11.43±1.74 ng/g tissue), and in a patient who died in uremic coma (12.56 ng/g tissue) were within the control range. Increasing ALLO enhances GABAergic tonic currents concentration-dependently, but increasing DHEAS reduces these currents. High concentrations of DHEAS (50 μM) reduce GABAergic tonic currents in the presence of ALLO, whereas reduced concentrations of DHEAS (1 μM) further stimulate these currents. These findings demonstrate that decreased concentrations of DHEAS together with increased brain concentrations of ALLO increase GABAergic tonic currents synergistically; suggesting that reduced brain DHEAS could further increase GABAergic tone in human HE.
Collapse
Affiliation(s)
- Samir Ahboucha
- Polydisciplinary Faculty of Khouribga, Hassan I University, Khouribga, Morocco.
| | | | | | | | | | | | | |
Collapse
|
225
|
Ahboucha S, Gamrani H, Baker G. GABAergic neurosteroids: the "endogenous benzodiazepines" of acute liver failure. Neurochem Int 2012; 60:707-714. [PMID: 22041164 DOI: 10.1016/j.neuint.2011.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 10/06/2011] [Accepted: 10/10/2011] [Indexed: 12/19/2022]
Abstract
Acute liver failure (ALF) or fulminant hepatic failure represents a serious life-threatening condition. ALF is characterized by a significant liver injury that leads to a rapid onset of hepatic encephalopathy (HE). In ALF, patients manifest rapid deterioration in consciousness leading to hepatic coma together with an onset of brain edema which induces high intracranial pressure that frequently leads to herniation and death. It is well accepted that hyperammonemia is a cardinal, but not the sole, mediator in the pathophysiology of ALF. There is increasing evidence that neurosteroids, including the parent neurosteroid pregnenolone, and the progesterone metabolites tetrahydroprogesterone (allopregnanolone) and tetrahydrodeoxycorticosterone (THDOC) accumulate in brain in experimental models of ALF. Neurosteroids in ALF represent good candidates to explain the phenomenon of "increased GABAergic tone" in chronic and ALF, and the beneficial effects of benzodiazepine drugs. The mechanisms that trigger brain neurosteroid changes in ALF are not yet well known, but could involve partially de novo neurosteroidogenesis following activation of the translocator protein (TSPO). The factors that contribute to TSPO changes in ALF may include ammonia and cytokines. It is possible that increases in brain levels of neurosteroids in ALF may result in auto-regulatory mechanisms where hypothermia may play a significant role. Possible mechanisms that may involve neurosteroids in the pathophysiology of HE, and more speculatively in brain edema, and inflammatory processes in ALF are suggested.
Collapse
Affiliation(s)
- Samir Ahboucha
- Université Cadi Ayyad, Faculté des Sciences Semlalia, Equipe Neurosciences Pharmacologie et Environnement, BP 2930 Marrakech, Morocco.
| | | | | |
Collapse
|
226
|
Chaube R, Mishra S. Brain steroid contents in the catfish Heteropneustes fossilis: sex and gonad stage-specific changes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:757-767. [PMID: 22002168 DOI: 10.1007/s10695-011-9558-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 09/05/2011] [Indexed: 05/31/2023]
Abstract
Neurosteroids are those which are synthesized in the central nervous system independently of supply by peripheral endocrine glands. In the present study, brain contents of the steroid hormones, estradiol-17β (E(2)), testosterone (T), corticosteroids, and progestins were investigated in both male and female catfish Heteropneustes fossilis in prespawning (vitellogenic) and spawning (post-vitellogenic) phases using ELISA or HPLC. The data show that the measured steroid hormones showed both stage-specific and sex-related variations. Brain E(2) was significantly higher in males in the prespawning phase and in females in the spawning phase. Testosterone was significantly higher in males in comparison with females in the prespawning phase. Cortisol was significantly higher in the prespawning and spawning phases in males than in females. Corticosterone level was low in the brain. 21-deoxycortisol and deoxycorticosterone were significantly higher in the prespawning phase than in the spawning phase. Male brain recorded the highest concentration of deoxycorticosterone. Progesterone (P(4)) was high in the prespawning phase and low in the spawning phase in both sexes. Levels of 17-hydroxy-4-pregnene-3,20-dione and 17,20β-dihydroxy-4-pregnen-3-one (17,20β-DP) and the metabolites of P(4) were the highest in females in the prespawning phase. The stage-specific and sexual differences in the content of the steroids suggest their biosynthesis in the brain, which may have implications in brain functions, in addition to reproductive regulation.
Collapse
Affiliation(s)
- R Chaube
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, India.
| | | |
Collapse
|
227
|
Tsutsui K, Haraguchi S, Matsunaga M, Koyama T, Do Rego JL, Vaudry H. 7α-Hydroxypregnenolone, a new key regulator of amphibian locomotion: discovery, progress and prospect. Gen Comp Endocrinol 2012; 176:440-7. [PMID: 22138220 DOI: 10.1016/j.ygcen.2011.11.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/11/2011] [Accepted: 11/13/2011] [Indexed: 11/26/2022]
Abstract
Seasonally-breeding amphibians have served as excellent animal models to investigate the biosynthesis and biological actions of neurosteroids. Previous studies have demonstrated that the brain of amphibians possesses key steroidogenic enzymes and produces pregnenolone, a precursor of steroid hormones, and other various neurosteroids. We recently found that the brain of seasonally-breeding newts actively produces 7α-hydroxypregnenolone, a previously undescribed amphibian neurosteroid. This novel amphibian neurosteroid acts as a neuronal modulator to stimulate locomotor activity in newts. Subsequently, the mode of action of 7α-hydroxypregnenolone has been demonstrated in the newt brain. 7α-Hydroxypregnenolone stimulates locomotor activity through activation of the dopaminergic system. To understand the functional significance of 7α-hydroxypregnenolone in the regulation of locomotor activity, diurnal and seasonal changes in synthesis of 7α-hydroxypregnenolone have also been demonstrated in the newt brain. Melatonin derived from the pineal gland and eyes regulates 7α-hydroxypregnenolone synthesis in the brain, thus inducing diurnal locomotor changes. Prolactin, an adenohypophyseal hormone, regulates 7α-hydroxypregnenolone synthesis in the brain, and also induces seasonal locomotor changes. In addition, 7α-hydroxypregnenolone mediates corticosterone action to increase locomotor activity under stress. This review summarizes the discovery, progress and prospect of 7α-hydroxypregnenolone, a new key regulator of amphibian locomotion.
Collapse
Affiliation(s)
- Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University and Center for Medical Life Science of Waseda University, Tokyo 162-8480, Japan.
| | | | | | | | | | | |
Collapse
|
228
|
Schonemann MD, Muench MO, Tee MK, Miller WL, Mellon SH. Expression of P450c17 in the human fetal nervous system. Endocrinology 2012; 153:2494-505. [PMID: 22434081 PMCID: PMC3339640 DOI: 10.1210/en.2011-1545] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
P450c17 catalyzes steroid 17α-hydroxylase and 17,20 lyase activities. P450c17 is expressed in human fetal and postnatal adrenals and gonads and in the developing mouse nervous system, but little is known about its expression in the human nervous system. We obtained portions of 9-, 10-, and 11-wk gestation human fetuses and delineated the pattern of expression of P450c17 in their peripheral nervous systems by immunocytochemistry using the P450c17 antiserum previously used to characterize P450c17 in the mouse brain. P450c17 was readily detected in the dorsal root ganglia (DRG) and spinal cord. Neural structures were identified with antisera to the cytoskeletal protein neural cell adhesion molecule; DRG were identified with antisera to the neuronal transcription factor BRN3A and neurotrophin receptor tropomyosin-receptor-kinase B. The identification of P450c17 was confirmed using commercial antisera directed against different domains of P450c17 and by using antisera immunodepleted with authentic human P450c17. We also found expression of the P450 cholesterol side-chain cleavage enzyme (P450scc) in the spinal cord and DRG. Expression of P450scc is limited to cell bodies; unlike P450c17, we never detected P450scc in fiber tracts. Catalysis by P450c17 requires electron donation from P450 oxidoreductase (POR). Dual-label immunohistochemistry detected P450c17 and POR colocalized in DRG bundles, but some fibers containing P450c17 lacked POR. These data suggest that neurosteroids synthesized via these two enzymes may act in the developing human nervous system. The expression of P450c17 in structures lacking POR means that P450c17 may not be steroidogenic in those locations, suggesting that P450c17 may have additional functions that do not require POR.
Collapse
Affiliation(s)
- Marcus D Schonemann
- Department of Obstetrics, Gynecology, and Reproductive Science, University of California, San Francisco, 513 Parnassus Avenue, Box 0556, San Francisco, California 94143-0556, USA
| | | | | | | | | |
Collapse
|
229
|
Bourque M, Dluzen DE, Di Paolo T. Signaling pathways mediating the neuroprotective effects of sex steroids and SERMs in Parkinson's disease. Front Neuroendocrinol 2012; 33:169-78. [PMID: 22387674 DOI: 10.1016/j.yfrne.2012.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 11/27/2022]
Abstract
Studies with the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) animal model of Parkinson's disease have shown the ability of 17β-estradiol to protect the nigrostriatal dopaminergic system. This paper reviews the signaling pathways mediating the neuroprotective effect of 17β-estradiol against MPTP-induced toxicity. The mechanisms of 17β-estradiol action implicate activation of signaling pathways such as the phosphatidylinositol-3 kinase/Akt and the mitogen-activated protein kinase pathways. 17β-estradiol signaling is complex and integrates multiple interactions with signaling molecules that act to potentiate a protective effect. 17β-estradiol signaling is mediated via estrogen receptors, including GPER1, but others receptors, such as the IGF-1 receptor, are implicated in the neuroprotective effect. Glial and neuronal crosstalk is a critical factor in the maintenance of dopamine neuronal survival and in the neuroprotective action of 17β-estradiol. Compounds that stimulate GPER1 such as selective estrogen receptor modulators and phytoestrogens show neuroprotective activity and are alternatives to 17β-estradiol.
Collapse
Affiliation(s)
- Mélanie Bourque
- Molecular Endocrinology and Genomic Research Center, Centre de recherche du CHUQ (CHUL), Quebec City, QC, Canada G1V 4G2
| | | | | |
Collapse
|
230
|
MacKenzie SM, Connell JMC, Davies E. Non-adrenal synthesis of aldosterone: a reality check. Mol Cell Endocrinol 2012; 350:163-7. [PMID: 21767599 DOI: 10.1016/j.mce.2011.06.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/21/2011] [Accepted: 06/24/2011] [Indexed: 11/24/2022]
Abstract
Advances in the sensitivity of molecular techniques during the 1990s led to a flurry of studies that supported the existence of extra-adrenal sites of aldosterone production in various tissues including the brain and the heart. Subsequent work was often conflicting or ambiguous, leading many to question whether extra-adrenal aldosterone was of any physiological importance, or whether it even existed. In this article, we review these studies and, in light of this evidence, discuss whether the current lack of interest in extra-adrenal aldosterone biosynthesis is justified.
Collapse
Affiliation(s)
- Scott M MacKenzie
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| | | | | |
Collapse
|
231
|
Abstract
The intraneuronal conversion of testosterone to oestradiol constitutes a critical step in the development and sexual differentiation of the brain of many short gestation mammalian species and has been inferred to play a similar role in long gestation sheep. This conversion is catalysed by cytochrome P450 aromatase (CYP19), which is expressed in specific brain structures during foetal development. The present study was undertaken to examine the specific neuroanatomical distribution and relative expression of aromatase mRNA in the developing sheep hypothalamus. The foetal sheep is a highly tractable model system for localising the region-specific expression of aromatase in the brain during prenatal development that can help predict regions where oestrogen acts to shape neural development. Our results, obtained using real time quantitative reverse transcriptase-polymerase chain reaction, revealed that aromatase mRNA was expressed throughout mid to late gestation in the foetal preoptic area and amygdala. In the preoptic area, aromatase expression declined with advancing gestation, whereas, it increased in the amygdala. No sex differences were observed in either brain area. We next investigated the anatomical distribution of aromatase using in situ hybridisation histochemistry and found that the pattern of mRNA expression was largely established by midgestation. High expression was observed in the medial preoptic nucleus, bed nucleus of the stria terminalis and corticomedial amygdala. We also observed substantial expression in the dorsal striatum. These results extend our understanding of the developmental expression of aromatase in the foetal sheep brain and lend support to the view that it plays an essential role in sexual differentiation and maturation of the neuroendocrine, motor and reward control systems.
Collapse
Affiliation(s)
- C E Roselli
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97201-3098, USA.
| | | |
Collapse
|
232
|
Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghoumari AM. Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci 2012; 6:10. [PMID: 22347156 PMCID: PMC3274763 DOI: 10.3389/fnins.2012.00010] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/16/2012] [Indexed: 11/15/2022] Open
Abstract
Progesterone is well known as a female reproductive hormone and in particular for its role in uterine receptivity, implantation, and the maintenance of pregnancy. However, neuroendocrine research over the past decades has established that progesterone has multiple functions beyond reproduction. Within the nervous system, its neuromodulatory and neuroprotective effects are much studied. Although progesterone has been shown to also promote myelin repair, its influence and that of other steroids on myelination and remyelination is relatively neglected. Reasons for this are that hormonal influences are still not considered as a central problem by most myelin biologists, and that neuroendocrinologists are not sufficiently concerned with the importance of myelin in neuron functions and viability. The effects of progesterone in the nervous system involve a variety of signaling mechanisms. The identification of the classical intracellular progesterone receptors as therapeutic targets for myelin repair suggests new health benefits for synthetic progestins, specifically designed for contraceptive use and hormone replacement therapies. There are also major advantages to use natural progesterone in neuroprotective and myelin repair strategies, because progesterone is converted to biologically active metabolites in nervous tissues and interacts with multiple target proteins. The delivery of progesterone however represents a challenge because of its first-pass metabolism in digestive tract and liver. Recently, the intranasal route of progesterone administration has received attention for easy and efficient targeting of the brain. Progesterone in the brain is derived from the steroidogenic endocrine glands or from local synthesis by neural cells. Stimulating the formation of endogenous progesterone is currently explored as an alternative strategy for neuroprotection, axonal regeneration, and myelin repair.
Collapse
|
233
|
Haraguchi S, Koyama T, Hasunuma I, Okuyama SI, Ubuka T, Kikuyama S, Do Rego JL, Vaudry H, Tsutsui K. Acute stress increases the synthesis of 7α-hydroxypregnenolone, a new key neurosteroid stimulating locomotor activity, through corticosterone action in newts. Endocrinology 2012; 153:794-805. [PMID: 22128027 DOI: 10.1210/en.2011-1422] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
7α-Hydroxypregnenolone (7α-OH PREG) is a newly identified bioactive neurosteroid stimulating locomotor activity in the brain of newt, a wild animal, which serves as an excellent model to investigate the biosynthesis and biological action of neurosteroids. Here, we show that acute stress increases 7α-OH PREG synthesis in the dorsomedial hypothalamus (DMH) through corticosterone (CORT) action in newts. A 30-min restraint stress increased 7α-OH PREG synthesis in the brain tissue concomitant with the increase in plasma CORT concentrations. A 30-min restraint stress also increased the expression of cytochrome P450(7α) (CYP7B), the steroidogenic enzyme of 7α-OH PREG formation, in the DMH. Decreasing plasma CORT concentrations by hypophysectomy or trilostane administration decreased 7α-OH PREG synthesis in the diencephalon, whereas administration of CORT to these animals increased 7α-OH PREG synthesis. Glucocorticoid receptor was present in DMH neurons expressing CYP7B. Thus, CORT appears to act directly on DMH neurons to increase 7α-OH PREG synthesis. We further investigated the biological action of 7α-OH PREG in the brain under stress. A 30-min restraint stress or central administration of 7α-OH PREG increased serotonin concentrations in the diencephalon. Double immunolabeling further showed colocalization of CYP7B and serotonin in the DMH. These results indicate that acute stress increases the synthesis of 7α-OH PREG via CORT action in the DMH, and 7α-OH PREG activates serotonergic neurons in the DMH that may coordinate behavioral responses to stress. This is the first demonstration of neurosteroid biosynthesis regulated by peripheral steroid hormone and of neurosteroid action in the brain under stress in any vertebrate class.
Collapse
Affiliation(s)
- Shogo Haraguchi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
234
|
Escudero C, Casas S, Giuliani F, Bazzocchini V, García S, Yunes R, Cabrera R. Allopregnanolone prevents memory impairment: Effect on mRNA expression and enzymatic activity of hippocampal 3-α hydroxysteroid oxide-reductase. Brain Res Bull 2012; 87:280-5. [DOI: 10.1016/j.brainresbull.2011.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 11/03/2011] [Accepted: 11/25/2011] [Indexed: 12/22/2022]
|
235
|
Do Rego JL, Seong JY, Burel D, Leprince J, Vaudry D, Luu-The V, Tonon MC, Tsutsui K, Pelletier G, Vaudry H. Regulation of neurosteroid biosynthesis by neurotransmitters and neuropeptides. Front Endocrinol (Lausanne) 2012; 3:4. [PMID: 22654849 PMCID: PMC3356045 DOI: 10.3389/fendo.2012.00004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/05/2012] [Indexed: 12/30/2022] Open
Abstract
The enzymatic pathways leading to the synthesis of bioactive steroids in the brain are now almost completely elucidated in various groups of vertebrates and, during the last decade, the neuronal mechanisms involved in the regulation of neurosteroid production have received increasing attention. This report reviews the current knowledge concerning the effects of neurotransmitters, peptide hormones, and neuropeptides on the biosynthesis of neurosteroids. Anatomical studies have been carried out to visualize the neurotransmitter- or neuropeptide-containing fibers contacting steroid-synthesizing neurons as well as the neurotransmitter, peptide hormones, or neuropeptide receptors expressed in these neurons. Biochemical experiments have been conducted to investigate the effects of neurotransmitters, peptide hormones, or neuropeptides on neurosteroid biosynthesis, and to characterize the type of receptors involved. Thus, it has been found that glutamate, acting through kainate and/or AMPA receptors, rapidly inactivates P450arom, and that melatonin produced by the pineal gland and eye inhibits the biosynthesis of 7α-hydroxypregnenolone (7α-OH-Δ(5)P), while prolactin produced by the adenohypophysis enhances the formation of 7α-OH-Δ(5)P. It has also been demonstrated that the biosynthesis of neurosteroids is inhibited by GABA, acting through GABA(A) receptors, and neuropeptide Y, acting through Y1 receptors. In contrast, it has been shown that the octadecaneuropetide ODN, acting through central-type benzodiazepine receptors, the triakontatetraneuropeptide TTN, acting though peripheral-type benzodiazepine receptors, and vasotocin, acting through V1a-like receptors, stimulate the production of neurosteroids. Since neurosteroids are implicated in the control of various neurophysiological and behavioral processes, these data suggest that some of the neurophysiological effects exerted by neurotransmitters and neuropeptides may be mediated via the regulation of neurosteroid production.
Collapse
Affiliation(s)
- Jean Luc Do Rego
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
| | - Jae Young Seong
- Laboratory of G Protein-Coupled Receptors, Graduate School of Medicine, Korea University College of MedicineSeoul, Korea
| | - Delphine Burel
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
| | - Jerôme Leprince
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
| | - David Vaudry
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
| | - Van Luu-The
- Research Center in Molecular Endocrinology, Oncology and Genetics, Laval University Hospital CenterQuébec, QC, Canada
| | - Marie-Christine Tonon
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
| | - Kazuyoshi Tsutsui
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda UniversityTokyo, Japan
- Center for Medical Life Science of Waseda UniversityTokyo, Japan
| | - Georges Pelletier
- Research Center in Molecular Endocrinology, Oncology and Genetics, Laval University Hospital CenterQuébec, QC, Canada
| | - Hubert Vaudry
- INSERMMont-Saint-Aignan France
- European Institute for Peptide Research, IFRMP 23, Regional Platform for Cell Imaging, PRIMACEN, University of RouenMont-Saint-Aignan, France
- International Associated Laboratory Samuel de ChamplainMont-Saint-Aignan, France
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, INSERM U982, University of RouenMont-Saint-Aignan, France
- *Correspondence: Hubert Vaudry, INSERM U982, European Institute for Peptide Research, IFRMP 23, University of Rouen, 76821 Mont-Saint-Aignan, France. e-mail:
| |
Collapse
|
236
|
Diotel N, Do Rego JL, Anglade I, Vaillant C, Pellegrini E, Vaudry H, Kah O. The brain of teleost fish, a source, and a target of sexual steroids. Front Neurosci 2011; 5:137. [PMID: 22194715 PMCID: PMC3242406 DOI: 10.3389/fnins.2011.00137] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 11/30/2011] [Indexed: 11/13/2022] Open
Abstract
Neurosteroids are defined as steroids de novo synthesized in the central nervous system. While the production of neurosteroids is well documented in mammals and amphibians, there is less information about teleosts, the largest group of fish. Teleosts have long been known for their high brain aromatase and 5α-reductase activities, but recent data now document the capacity of the fish brain to produce a large variety of sex steroids. This article aims at reviewing the available information regarding expression and/or activity of the main steroidogenic enzymes in the brain of fish. In addition, the distribution of estrogen, androgen, and progesterone nuclear receptors is documented in relation with the potential sites of production of neurosteroids. Interestingly, radial glial cells acting as neuronal progenitors, appear to be a potential source of neurosteroids, but also a target for centrally and/or peripherally produced steroids.
Collapse
Affiliation(s)
- Nicolas Diotel
- Neurogenesis and Œstrogens, UMR CNRS 6026, IFR 140, Université de Rennes 1 Rennes, France
| | | | | | | | | | | | | |
Collapse
|
237
|
Gunn BG, Brown AR, Lambert JJ, Belelli D. Neurosteroids and GABA(A) Receptor Interactions: A Focus on Stress. Front Neurosci 2011; 5:131. [PMID: 22164129 PMCID: PMC3230140 DOI: 10.3389/fnins.2011.00131] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/14/2011] [Indexed: 11/13/2022] Open
Abstract
Since the pioneering discovery of the rapid CNS depressant actions of steroids by the "father of stress," Hans Seyle 70 years ago, brain-derived "neurosteroids" have emerged as powerful endogenous modulators of neuronal excitability. The majority of the intervening research has focused on a class of naturally occurring steroids that are metabolites of progesterone and deoxycorticosterone, which act in a non-genomic manner to selectively augment signals mediated by the main inhibitory receptor in the CNS, the GABA(A) receptor. Abnormal levels of such neurosteroids associate with a variety of neurological and psychiatric disorders, suggesting that they serve important physiological and pathophysiological roles. A compelling case can be made to implicate neurosteroids in stress-related disturbances. Here we will critically appraise how brain-derived neurosteroids may impact on the stress response to acute and chronic challenges, both pre- and postnatally through to adulthood. The pathological implications of such actions in the development of psychiatric disturbances will be discussed, with an emphasis on the therapeutic potential of neurosteroids for the treatment of stress-associated disorders.
Collapse
Affiliation(s)
- Benjamin G Gunn
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital and Medical School, Ninewells Hospital, University of Dundee Dundee, UK
| | | | | | | |
Collapse
|
238
|
Chaube R, Joy KP. Estradiol-17β modulates dose-dependently hypothalamic tyrosine hydroxylase activity inhibited by α-methylparatyrosine in the catfish Heteropneustes fossilis. Endocrine 2011; 40:394-9. [PMID: 21994011 DOI: 10.1007/s12020-011-9543-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 09/14/2011] [Indexed: 01/17/2023]
Abstract
The brain is a target for organizational and activational effects of oestrogens synthesized de novo or transported from the peripheral organs. A neuroprotective role of oestrogens has been documented in a variety of vertebrates. In the present study in the catfish Heteropneustes fossilis, we have demonstrated that estradiol-17β (E(2)), the major circulating oestrogen at low dosages (0.05 and 0.1 μg/g body weight of fish for 3 days) stimulated hypothalamic tyrosine hydroxylase (TH) activity, and countered the negative effects of ovariectomy (3-week) or α-methylparatyrosine (α-MPT: 250 μg/g body weight, a competitive inhibitor of TH). In contrast, high dosages of E(2) (1 and 2 μg/g body weight of fish for 3 days) were inhibitory and further amplified the inhibitory effects of ovariectomy and α-MPT. The inhibiting role of E(2) was higher in gonad-active (prespawning) phase than gonad-inactive (resting phase) phase. The dual roles of E(2) may ensure a tight regulation of catecholaminergic activity, activating and inhibiting the system against wide fluctuations that are characteristic of seasonally breeding animals.
Collapse
Affiliation(s)
- Radha Chaube
- Department of Zoology, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221005, India.
| | | |
Collapse
|
239
|
Diotel N, Servili A, Gueguen MM, Mironov S, Pellegrini E, Vaillant C, Zhu Y, Kah O, Anglade I. Nuclear progesterone receptors are up-regulated by estrogens in neurons and radial glial progenitors in the brain of zebrafish. PLoS One 2011; 6:e28375. [PMID: 22140581 PMCID: PMC3227669 DOI: 10.1371/journal.pone.0028375] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 11/07/2011] [Indexed: 12/02/2022] Open
Abstract
In rodents, there is increasing evidence that nuclear progesterone receptors are transiently expressed in many regions of the developing brain, notably outside the hypothalamus. This suggests that progesterone and/or its metabolites could be involved in functions not related to reproduction, particularly in neurodevelopment. In this context, the adult fish brain is of particular interest, as it exhibits constant growth and high neurogenic activity that is supported by radial glia progenitors. However, although synthesis of neuroprogestagens has been documented recently in the brain of zebrafish, information on the presence of progesterone receptors is very limited. In zebrafish, a single nuclear progesterone receptor (pgr) has been cloned and characterized. Here, we demonstrate that this pgr is widely distributed in all regions of the zebrafish brain. Interestingly, we show that Pgr is strongly expressed in radial glial cells and more weakly in neurons. Finally, we present evidence, based on quantitative PCR and immunohistochemistry, that nuclear progesterone receptor mRNA and proteins are upregulated by estrogens in the brain of adult zebrafish. These data document for the first time the finding that radial glial cells are preferential targets for peripheral progestagens and/or neuroprogestagens. Given the crucial roles of radial glial cells in adult neurogenesis, the potential effects of progestagens on their activity and the fate of daughter cells require thorough investigation.
Collapse
Affiliation(s)
- Nicolas Diotel
- Neurogenesis and Oestrogens, UMR CNRS 6026, IFR140, Université de Rennes 1, Rennes, France
| | - Arianna Servili
- Neurogenesis and Oestrogens, UMR CNRS 6026, IFR140, Université de Rennes 1, Rennes, France
| | | | - Svetlana Mironov
- Neurogenesis and Oestrogens, UMR CNRS 6026, IFR140, Université de Rennes 1, Rennes, France
| | - Elisabeth Pellegrini
- Neurogenesis and Oestrogens, UMR CNRS 6026, IFR140, Université de Rennes 1, Rennes, France
| | - Colette Vaillant
- Neurogenesis and Oestrogens, UMR CNRS 6026, IFR140, Université de Rennes 1, Rennes, France
| | - Yong Zhu
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America
| | - Olivier Kah
- Neurogenesis and Oestrogens, UMR CNRS 6026, IFR140, Université de Rennes 1, Rennes, France
- * E-mail:
| | - Isabelle Anglade
- Neurogenesis and Oestrogens, UMR CNRS 6026, IFR140, Université de Rennes 1, Rennes, France
| |
Collapse
|
240
|
Nagarajan G, Tsai YJ, Chen CY, Chang CF. Developmental expression of genes involved in neural estrogen biosynthesis and signaling in the brain of the orange-spotted grouper Epinephelus coioides during gonadal sex differentiation. J Steroid Biochem Mol Biol 2011; 127:155-66. [PMID: 21513797 DOI: 10.1016/j.jsbmb.2011.03.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 03/22/2011] [Accepted: 03/25/2011] [Indexed: 12/11/2022]
Abstract
In the brain, the synthesis of neurosteroids and receptor activation during gonadal sex differentiation in teleosts are poorly understood. In the present study, the protogynous orange-spotted grouper (Epinephelus coioides) was selected as a model fish, and we hypothesized that de novo synthesis of neural estrogen may play a role in the female grouper brain during gonadal sex differentiation. We investigated the temporal expression of the genes StAR, cyp19a1b and pcna and the sex steroid nuclear receptors for estrogen (ERα, ERβ1 and ERβ2), androgen (AR) and the plasma membrane-associated estrogen receptor (GPR30) in the brain during early developmental ages from 90 days after hatching (dah) to 180dah after gonadal sex differentiation. Our results revealed that mRNA for ERs and GPR30 but not AR was significantly increased at 110dah (a time close to gonadal sex differentiation) in the forebrain and midbrain and for cyp19a1b at 110dah in the forebrain. Brain aromatase activity and estradiol (E2) levels, but not testosterone (T), were increased in the forebrain at 110 and 120dah, respectively. Furthermore, exogenous E2 stimulated cyp19a1b transcripts in the forebrain and hypothalamus and immunoreactive (ir)Cyp19a1b (aromatase enzyme) in the forebrain. irCyp19a1b localized in the glial cells of the forebrain regions. Therefore, we identified a peak of functional aromatase activity and estrogen signaling in the early grouper brain during gonadal sex differentiation. Moreover, pcna transcripts (a marker for cell proliferation activity) were higher in the early brain at 110-150dah. Thus, a peak time of development in the brain is suggested to occur during gonadal sex differentiation in the grouper.
Collapse
Affiliation(s)
- Ganesan Nagarajan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 20224, Taiwan
| | | | | | | |
Collapse
|
241
|
Neurosteroid biosynthetic pathways changes in prefrontal cortex in Alzheimer's disease. Neurobiol Aging 2011; 32:1964-76. [DOI: 10.1016/j.neurobiolaging.2009.12.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 12/10/2009] [Accepted: 12/17/2009] [Indexed: 12/21/2022]
|
242
|
Mello NK, Knudson IM, Kelly M, Fivel PA, Mendelson JH. Effects of progesterone and testosterone on cocaine self-administration and cocaine discrimination by female rhesus monkeys. Neuropsychopharmacology 2011; 36:2187-99. [PMID: 21796112 PMCID: PMC3176575 DOI: 10.1038/npp.2011.130] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/25/2011] [Accepted: 06/15/2011] [Indexed: 01/31/2023]
Abstract
The neuroactive steroid hormone progesterone attenuates cocaine's abuse-related effects in women and in rodents under some conditions, but the effects of testosterone are unknown. We compared the acute effects of progesterone (0.1, 0.2, and 0.3 mg/kg, intramuscularly (i.m.)), testosterone (0.001, 0.003, and 0.01 mg/kg, i.m.), and placebo on cocaine self-administration and cocaine discrimination dose-effect curves in female rhesus monkeys. Cocaine self-administration (0.03 mg/kg per inj.) was maintained on a fixed ratio 30 schedule of reinforcement, and monkeys had unlimited access to cocaine for 2 h each day. Cocaine doses were administered in an irregular order during each dose-effect curve determination, and the same dose order was used in each subject in all treatment conditions. Blood samples for hormone analysis were collected at the end of each test session. Banana-flavored food pellets (1 g) were also available in three 1-h daily sessions. In drug discrimination studies, the effects of pretreatment with progesterone (0.032-0.32 mg/kg, i.m.) and testosterone (0.001-0.01 mg/kg, i.m.) on the discriminative stimulus effects of cocaine (0.18 mg/kg, i.m.) were examined. Progesterone and testosterone did not alter cocaine discrimination, and did not substitute for cocaine. In contrast, progesterone and testosterone each significantly decreased cocaine self-administration, and produced a downward and rightward shift in the cocaine self-administration dose-effect curve. These findings are concordant with clinical reports that progesterone administration may decrease ratings of positive subjective effects of cocaine in women, and suggest the possible value of neuroactive steroid hormones for the treatment of cocaine abuse and reduction of risk for relapse.
Collapse
Affiliation(s)
- Nancy K Mello
- Alcohol and Drug Abuse Research Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | | | | | | | | |
Collapse
|
243
|
|
244
|
Fester L, Prange-Kiel J, Jarry H, Rune GM. Estrogen synthesis in the hippocampus. Cell Tissue Res 2011; 345:285-94. [DOI: 10.1007/s00441-011-1221-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 07/17/2011] [Indexed: 12/31/2022]
|
245
|
Saldanha CJ, Remage-Healey L, Schlinger BA. Synaptocrine signaling: steroid synthesis and action at the synapse. Endocr Rev 2011; 32:532-49. [PMID: 21622487 PMCID: PMC3369574 DOI: 10.1210/er.2011-0004] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sex steroids have long been recognized for their dramatic impact on brain and behavior, including rapid modulation of membrane excitability. It is a widely held perception that these molecules are largely derived from peripheral sources and lack the spatial and temporal specificity ascribed to classical neuromodulatory systems. Neuromodulatory systems, in contrast, are defined by their regulated neuronal presynaptic secretion and by their functional modulation of perisynaptic events. Here we provide evidence for regulated presynaptic estrogen synthesis and functional postsynaptic actions. These results meet all the criteria for a neuromodulatory system and shift our perception of estrogens from that of peripheral signals exclusively to include that of a signaling system intrinsic to the brain itself. We apply the term synaptocrine to describe this form of neuromodulation.
Collapse
Affiliation(s)
- Colin J Saldanha
- Departments of Integrative Biology and Physiology, Ecology and Evolutionary Biology, University of California-Los Angeles, USA
| | | | | |
Collapse
|
246
|
Higo S, Hojo Y, Ishii H, Komatsuzaki Y, Ooishi Y, Murakami G, Mukai H, Yamazaki T, Nakahara D, Barron A, Kimoto T, Kawato S. Endogenous synthesis of corticosteroids in the hippocampus. PLoS One 2011; 6:e21631. [PMID: 21829438 PMCID: PMC3145636 DOI: 10.1371/journal.pone.0021631] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2011] [Accepted: 06/03/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Brain synthesis of steroids including sex-steroids is attracting much attention. The endogenous synthesis of corticosteroids in the hippocampus, however, has been doubted because of the inability to detect deoxycorticosterone (DOC) synthase, cytochrome P450(c21). METHODOLOGY/PRINCIPAL FINDINGS The expression of P450(c21) was demonstrated using mRNA analysis and immmunogold electron microscopic analysis in the adult male rat hippocampus. DOC production from progesterone (PROG) was demonstrated by metabolism analysis of (3)H-steroids. All the enzymes required for corticosteroid synthesis including P450(c21), P450(2D4), P450(11β1) and 3β-hydroxysteroid dehydrogenase (3β-HSD) were localized in the hippocampal principal neurons as shown via in situ hybridization and immunoelectron microscopic analysis. Accurate corticosteroid concentrations in rat hippocampus were determined by liquid chromatography-tandem mass spectrometry. In adrenalectomized rats, net hippocampus-synthesized corticosterone (CORT) and DOC were determined to 6.9 and 5.8 nM, respectively. Enhanced spinogenesis was observed in the hippocampus following application of low nanomolar (10 nM) doses of CORT for 1 h. CONCLUSIONS/SIGNIFICANCE These results imply the complete pathway of corticosteroid synthesis of 'pregnenolone →PROG→DOC→CORT' in the hippocampal neurons. Both P450(c21) and P450(2D4) can catalyze conversion of PROG to DOC. The low nanomolar level of CORT synthesized in hippocampal neurons may play a role in modulation of synaptic plasticity, in contrast to the stress effects by micromolar CORT from adrenal glands.
Collapse
Affiliation(s)
- Shimpei Higo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Yasushi Hojo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of Tokyo, Meguro, Tokyo, Japan
- Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo, Meguro, Tokyo, Japan
| | - Hirotaka Ishii
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Yoshimasa Komatsuzaki
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Department of Physics, College of Science and Technology, Nihon University, Chiyoda, Tokyo, Japan
| | - Yuuki Ooishi
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Gen Murakami
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo, Meguro, Tokyo, Japan
| | - Hideo Mukai
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of Tokyo, Meguro, Tokyo, Japan
- Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo, Meguro, Tokyo, Japan
| | - Takeshi Yamazaki
- Laboratory of Molecular Brain Science, Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | - Daiichiro Nakahara
- Department of Psychology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Anna Barron
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Tetsuya Kimoto
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
| | - Suguru Kawato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, Japan
- Core Research for Evolutional Science and Technology Project of Japan Science and Technology Agency, The University of Tokyo, Meguro, Tokyo, Japan
- Bioinformatics Project of Japan Science and Technology Agency, The University of Tokyo, Meguro, Tokyo, Japan
- * E-mail:
| |
Collapse
|
247
|
Taves MD, Gomez-Sanchez CE, Soma KK. Extra-adrenal glucocorticoids and mineralocorticoids: evidence for local synthesis, regulation, and function. Am J Physiol Endocrinol Metab 2011; 301:E11-24. [PMID: 21540450 PMCID: PMC3275156 DOI: 10.1152/ajpendo.00100.2011] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glucocorticoids and mineralocorticoids are steroid hormones classically thought to be secreted exclusively by the adrenal glands. However, recent evidence has shown that corticosteroids can also be locally synthesized in various other tissues, including primary lymphoid organs, intestine, skin, brain, and possibly heart. Evidence for local synthesis includes detection of steroidogenic enzymes and high local corticosteroid levels, even after adrenalectomy. Local synthesis creates high corticosteroid concentrations in extra-adrenal organs, sometimes much higher than circulating concentrations. Interestingly, local corticosteroid synthesis can be regulated via locally expressed mediators of the hypothalamic-pituitary-adrenal (HPA) axis or renin-angiotensin system (RAS). In some tissues (e.g., skin), these local control pathways might form miniature analogs of the pathways that regulate adrenal corticosteroid production. Locally synthesized glucocorticoids regulate activation of immune cells, while locally synthesized mineralocorticoids regulate blood volume and pressure. The physiological importance of extra-adrenal glucocorticoids and mineralocorticoids has been shown, because inhibition of local synthesis has major effects even in adrenal-intact subjects. In sum, while adrenal secretion of glucocorticoids and mineralocorticoids into the blood coordinates multiple organ systems, local synthesis of corticosteroids results in high spatial specificity of steroid action. Taken together, studies of these five major organ systems challenge the conventional understanding of corticosteroid biosynthesis and function.
Collapse
Affiliation(s)
- Matthew D Taves
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | |
Collapse
|
248
|
Kukkonen JP. A ménage à trois made in heaven: G-protein-coupled receptors, lipids and TRP channels. Cell Calcium 2011; 50:9-26. [DOI: 10.1016/j.ceca.2011.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 04/21/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
|
249
|
Diotel N, Do Rego JL, Anglade I, Vaillant C, Pellegrini E, Gueguen MM, Mironov S, Vaudry H, Kah O. Activity and expression of steroidogenic enzymes in the brain of adult zebrafish. Eur J Neurosci 2011; 34:45-56. [DOI: 10.1111/j.1460-9568.2011.07731.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
250
|
Luchetti S, Huitinga I, Swaab DF. Neurosteroid and GABA-A receptor alterations in Alzheimer's disease, Parkinson's disease and multiple sclerosis. Neuroscience 2011; 191:6-21. [PMID: 21514366 DOI: 10.1016/j.neuroscience.2011.04.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 04/03/2011] [Accepted: 04/05/2011] [Indexed: 01/17/2023]
Abstract
Steroid hormones (e.g. estrogens, androgens, progestagens) which are synthesized de novo or metabolized within the CNS are called neurosteroids. There is substantial evidence from animal studies suggesting that these steroids can affect brain function by modulating neurotransmission, and influence neuronal survival, neuronal and glial differentiation and myelination in the CNS by regulating gene expression of neurotrophic factors and anti-inflammatory molecules. Indeed, evidence is emerging that expression of the enzymes responsible for the synthesis of neurosteroids changes in neurodegenerative diseases. Some of these changes may contribute to the pathology, while others, conversely, may represent an attempted rescue program in the diseased brain. Here we review the data on changes in neurosteroid levels and neurosteroid synthesis pathways in the human brain in three neurodegenerative conditions, Alzheimers's (AD) and Parkinson's (PD) diseases and Multiple Sclerosis (MS) and the extent to which these findings may implicate protective or pathological roles for neurosteroids in the course of these diseases.Some neurosteroids can modulate neurotransmitter activity, for example, the pregnane steroids allopregnanolone and 3α5α-tetrahydro-deoxycorticosterone which are potent positive allosteric modulators of ionotropic GABA-A receptors. Therefore, neurosteroid-modulated GABA-A receptor subunit alterations found in AD and PD will also be discussed. These data imply an involvement of neurosteroid changes in the neurodegenerative and neuroinflammatory processes and suggest that they may deserve further investigation as potential therapeutic agents in AD, PD and MS. Finally, suggestions for therapeutic strategies will be included. This article is part of a Special Issue entitled: Neuroactive Steroids: Focus on Human Brain.
Collapse
Affiliation(s)
- S Luchetti
- Netherlands Institute for Neuroscience (NIN), an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.
| | | | | |
Collapse
|