201
|
Marquet A, Bui BTS, Smith AG, Warren MJ. Iron-sulfur proteins as initiators of radical chemistry. Nat Prod Rep 2007; 24:1027-40. [PMID: 17898896 DOI: 10.1039/b703109m] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Iron-sulfur proteins are very versatile biological entities for which many new functions are continuously being unravelled. This review focus on their role in the initiation of radical chemistry, with special emphasis on radical-SAM enzymes, since several members of the family catalyse key steps in the biosynthetic pathways of cofactors such as biotin, lipoate, thiamine, heme and the molybdenum cofactor. It will also include other examples to show the chemical logic which is emerging from the presently available data on this family of enzymes. The common step in all the (quite different) reactions described here is the monoelectronic reductive cleavage of SAM by a reduced [4Fe-4S](1+) cluster, producing methionine and a highly oxidising deoxyadenosyl radical, which can initiate chemically difficult reactions. This set of enzymes, which represent a means to perform oxidation under reductive conditions, are often present in anaerobic organisms. Some other, non-SAM-dependent, radical reactions obeying the same chemical logic are also covered.
Collapse
Affiliation(s)
- Andrée Marquet
- Université Pierre et Marie Curie-Paris 6, CNRS UMR 7613, (Synthèse, Structure et Fonction de Molécules Bioactives), Paris, France.
| | | | | | | |
Collapse
|
202
|
Aurora R, Hihara Y, Singh AK, Pakrasi HB. A network of genes regulated by light in cyanobacteria. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2007; 11:166-85. [PMID: 17594236 DOI: 10.1089/omi.2007.4323] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Oxygenic photosynthetic organisms require light for their growth and development. However, exposure to high light is detrimental to them. Using time series microarray data from a model cyanobacterium, Synechocystis 6803 transferred from low to high light, we generated a gene co-expression network. The network has twelve sub-networks connected hierarchically, each consisting of an interconnected hub-and-spoke architecture. Within each sub-network, edges formed between genes that recapitulate known pathways. Analysis of the expression profiles shows that the cells undergo a phase transition 6-hours post-shift to high light, characterized by core sub-network. The core sub-network is enriched in proteins that (putatively) bind Fe-S clusters and proteins that mediate iron and sulfate homeostasis. At the center of this core is a sulfate permease, suggesting sulfate is rate limiting for cells grown in high light. To validate this novel finding, we demonstrate the limited ability of cell growth in sulfate-depleted medium in high light. This study highlights how understanding the organization of the networks can provide insights into the coordination of physiologic responses.
Collapse
Affiliation(s)
- Rajeev Aurora
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA.
| | | | | | | |
Collapse
|
203
|
Shen G, Balasubramanian R, Wang T, Wu Y, Hoffart LM, Krebs C, Bryant DA, Golbeck JH. SufR coordinates two [4Fe-4S]2+, 1+ clusters and functions as a transcriptional repressor of the sufBCDS operon and an autoregulator of sufR in cyanobacteria. J Biol Chem 2007; 282:31909-19. [PMID: 17827500 DOI: 10.1074/jbc.m705554200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The sufR gene encodes a protein that functions as a transcriptional repressor of the suf regulon in cyanobacteria. It is predicted to contain an N-terminal helix loop helix DNA binding motif and a C-terminal Fe/S binding domain. Through immunoblotting assays of cell extracts, the sufR product in Synechocystis sp. PCC 6803 was shown to have a mass of approximately 25 kDa. This indicates that the second ATG in the open reading frame is the correct start codon and that sufR encodes a protein of 216 amino acids (SufR216) rather than the originally predicted 240 amino acids. Recombinant SufR harbored [4Fe-4S]2+, 1+ clusters, which were present in a mixture of S=1/2 and 3/2 ground spin states, and the holoprotein was a homodimer, containing 3.7 of non-heme irons and 3.5 labile sulfides per monomer. Thus, two [4Fe-4S]2+, 1+ clusters are coordinated by each SufR216 homodimer. SufR216 bound to two DNA sequences in the regulatory region between the divergently transcribed sufR gene and the sufBCDS operon, and its binding affinity depended on the presence and redox state of the [4Fe-4S]2+, 1+ clusters. A high affinity binding site, which controls sufBCDS expression, and a low affinity binding site, which controls sufR expression, were identified. The SufR binding sites, which are separated by 26 base pairs, each contain a perfect inverted repeat, CAAC-N6-GTTG, and are highly conserved in cyanobacteria. The Fe/S protein SufR thus functions both as a transcriptional repressor of the sufBCDS operon and as an autoregulator of sufR.
Collapse
Affiliation(s)
- Gaozhong Shen
- Departments of Biochemistry and Molecular Biology and Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | | | | | | | | | | | | | | |
Collapse
|
204
|
Canal F, Fosset C, Chauveau MJ, Drapier JC, Bouton C. Regulation of the cysteine desulfurase Nfs1 and the scaffold protein IscU in macrophages stimulated with interferon-γ and lipopolysaccharide. Arch Biochem Biophys 2007; 465:282-92. [PMID: 17603005 DOI: 10.1016/j.abb.2007.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 06/04/2007] [Accepted: 06/06/2007] [Indexed: 02/03/2023]
Abstract
Biogenesis of iron-sulfur (Fe-S) clusters in mammals involves a complex mitochondrial machinery that provides inorganic sulfide and iron for their assembly and insertion into apo-proteins. Mechanisms of Fe-S cluster assembly are just being unraveled, and regulation of the genes of this machinery remains unknown. In this study, we report that expression of two essential components of the Fe-S machinery, the cysteine desulfurase Nfs1 and its scaffold protein partner IscU, is down-regulated at both mRNA and protein levels when murine macrophages are physiologically stimulated with IFN-gamma and LPS. Regulation did not rely on cluster disassembly or NO production because exposure of cells to exogenous sources of NO did not alter Nfs1 expression, while it converted cytosolic Fe-S aconitase into its apo-form and because macrophages from NOS2 deficient mice displayed Nfs1 down-regulation. While IFN-gamma alone induced Nfs1 protein instability, LPS triggered a delayed decline of Nfs1, rather involving transcriptional events or mRNA instability. Also, the expression of IscU was down-regulated in IFN-gamma- and/or LPS-stimulated macrophages independently of NO, pointing to a general mechanism for marshalling the regulation of the Fe-S cluster assembly machinery in macrophages exposed to inflammatory stimuli.
Collapse
Affiliation(s)
- Frédéric Canal
- Institut de Chimie des Substances Naturelles, CNRS, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
205
|
Zeng J, Zhao W, Liu Y, Xia L, Liu J, Qiu G. Expression, purification and characterization of an iron-sulfur cluster assembly protein, IscU, from Acidithiobacillus ferrooxidans. Biotechnol Lett 2007; 29:1965-72. [PMID: 17660945 DOI: 10.1007/s10529-007-9488-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/06/2007] [Accepted: 07/06/2007] [Indexed: 11/26/2022]
Abstract
An iron-sulfur cluster assembly protein, IscU, is encoded by the operon iscSUA in Acidithiobacillus ferrooxidans. The gene of IscU was cloned and expressed in Escherichia coli. The protein was purified by one-step affinity chromatography to homogeneity. The protein was in apo-form, the [Fe(2)S(2)] cluster could be assembled in apoIscU with Fe(2+) and sulfide in vitro, and in the presence of IscA and IscS, the IscU could utilize L: -cysteine and Fe(2+) to synthesize [Fe(2)S(2)] cluster in the protein. Site-directed mutagenesis for the protein revealed that Cys37, Asp39, Cys63 and Cys106 were involved in ligating with the [Fe(2)S(2)] cluster.
Collapse
Affiliation(s)
- Jia Zeng
- Department of Bioengineering, School of Resources Processing and Bioengineering, Central South University, Changsha, 410083, PR China
| | | | | | | | | | | |
Collapse
|
206
|
Srinath T, Bharti SK, Varshney U. Substrate specificities and functional characterization of a thermo-tolerant uracil DNA glycosylase (UdgB) from Mycobacterium tuberculosis. DNA Repair (Amst) 2007; 6:1517-28. [PMID: 17588829 DOI: 10.1016/j.dnarep.2007.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 05/08/2007] [Accepted: 05/10/2007] [Indexed: 10/23/2022]
Abstract
Uracil DNA glycosylases (UDGs) excise uracil from DNA and initiate the base (uracil) excision repair pathway. Ung, a highly conserved protein, is the only UDG characterized so far in mycobacteria. Here, we show that Rv1259 from Mycobacterium tuberculosis codes for a double-stranded DNA (dsDNA) specific UDG (MtuUdgB). MtuUdgB is thermo-tolerant, contains Fe-S cluster and, in addition to uracil, it excises ethenocytosine and hypoxanthine from dsDNA. MtuUdgB is product inhibited by AP-site containing dsDNA but not by uracil. While MtuUdgB excises uracil present as a single-nucleotide bulge in dsDNA, it is insensitive to inhibition by dsDNA containing AP-site in the bulge. Interestingly, in the presence of cellular factors, the uracil excision activity of MtuUdgB is enhanced, and when introduced into E. coli (ung(-)), it rescues its mutator phenotype and prevents C to T mutations in DNA. Novel features of the mechanism of action of MtuUdgB and the physiological significance of the family 5 UDG in mycobacteria have been discussed.
Collapse
Affiliation(s)
- Thiruneelakantan Srinath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | | | | |
Collapse
|
207
|
|
208
|
Partridge JD, Poole RK, Green J. The Escherichia coli yhjA gene, encoding a predicted cytochrome c peroxidase, is regulated by FNR and OxyR. MICROBIOLOGY (READING, ENGLAND) 2007; 153:1499-1509. [PMID: 17464064 DOI: 10.1099/mic.0.2006/004838-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Escherichia coli FNR protein is an oxygen-responsive global transcription factor, and OxyR is a key regulator of the peroxide stress response. Here both FNR and OxyR are shown to regulate expression of the E. coli yhjA gene. The yhjA gene encodes a predicted cytochrome c peroxidase, a bacterial haem-containing protein involved in the peroxide stress response through its ability to convert hydrogen peroxide to water. It is shown that the yhjA gene of E. coli possesses a class II FNR site and an OxyR site upstream of the yhjA transcript start. Expression of yhjA was found to be dependent on this unusual combination of FNR and OxyR under conditions of oxygen starvation. Phenotypic analysis of the yhjA mutant revealed increased sensitivity to exogenous hydrogen peroxide and organic peroxides during growth under anaerobic conditions, consistent with the observed regulation and predicted function of the yhjA gene product.
Collapse
Affiliation(s)
- Jonathan D Partridge
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
209
|
Zeng J, Geng M, Jiang H, Liu Y, Liu J, Qiu G. The IscA from Acidithiobacillus ferrooxidans is an iron-sulfur protein which assemble the [Fe4S4] cluster with intracellular iron and sulfur. Arch Biochem Biophys 2007; 463:237-44. [PMID: 17470358 DOI: 10.1016/j.abb.2007.03.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/08/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
IscA was proposed to be involved in the iron-sulfur cluster assembly in Acidithiobacillus ferrooxidans encoded by the iscSUA operon, but the role of IscA in the iron-sulfur cluster assembly still remains controversial. In this study, the IscA from A. ferrooxidans ATCC 23270 was successfully expressed in Escherichia coli, and purified by affinity chromatography to homogeneity. To our surprise, the purified IscA was observed to be an iron-sulfur protein according to MALDI-TOF-MS and spectra results, which was capable of recruiting intracellular iron and sulfur and hosted a stable [Fe4S4] cluster. Site-directed mutagenesis for the protein revealed that Cys35, Cys99 and Cys101 were in ligating with the [Fe4S4] cluster. The [Fe4S4] cluster could be assembled in apoIscA with Fe2+ and sulfide in vitro. The IscA from A. ferrooxidans may function as a scaffold protein for the pre-assembly of Fe-S cluster and then transfer it to target proteins in A. ferrooxidans.
Collapse
Affiliation(s)
- Jia Zeng
- Department of Bioengineering, School of Resources Processing and Bioengineering, Central South University, Changsha 410083, PR China
| | | | | | | | | | | |
Collapse
|
210
|
Jervis AJ, Green J. In vivo demonstration of FNR dimers in response to lower O(2) availability. J Bacteriol 2007; 189:2930-2. [PMID: 17277055 PMCID: PMC1855794 DOI: 10.1128/jb.01921-06] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Accepted: 01/20/2007] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli FNR is an O(2)-sensing transcription factor. In vitro studies indicate that anaerobic iron-sulfur cluster acquisition promotes FNR dimerization. Here, two-hybrid assays show that iron-sulfur cluster-dependent FNR dimers are formed in vivo in response to lower O(2) availability, consistent with the current model of FNR activation.
Collapse
Affiliation(s)
- Adrian J Jervis
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
211
|
Zeller T, Mraheil MA, Moskvin OV, Li K, Gomelsky M, Klug G. Regulation of hydrogen peroxide-dependent gene expression in Rhodobacter sphaeroides: regulatory functions of OxyR. J Bacteriol 2007; 189:3784-92. [PMID: 17351037 PMCID: PMC1913319 DOI: 10.1128/jb.01795-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome-wide transcriptome profiling was used to reveal hydrogen peroxide (H(2)O(2))-dependent regulatory mechanisms in the facultatively photosynthetic bacterium Rhodobacter sphaeroides. In this study we focused on the role of the OxyR protein, a known regulator of the H(2)O(2) response in bacteria. The transcriptome profiles of R. sphaeroides wild-type and oxyR mutant strains that were exposed to 1 mM H(2)O(2) for 7 min or were not exposed to H(2)O(2) were analyzed. Three classes of OxyR-dependent genes were identified based on their expression patterns in the wild type of oxyR mutant strains with differing predicted roles of oxidized and reduced OxyR as activators of transcription. DNA binding studies revealed that OxyR binds upstream of class I genes, which are induced by H(2)O(2) and exhibit similar basal levels of expression in the wild-type and oxyR mutant strains. The effect of OxyR on class II genes, which are also induced by H(2)O(2) but exhibit significantly lower basal levels of expression in the wild-type strain than in the mutant, is indirect. Interestingly, reduced OxyR also activates expression of few genes (class III). The role of reduced OxyR as an activator is shown for the first time. Our data reveal that the OxyR-mediated response is fast and transient. In addition, we found that additional regulatory pathways are involved in the H(2)O(2) response.
Collapse
Affiliation(s)
- Tanja Zeller
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
212
|
Alam MS, Garg SK, Agrawal P. Molecular function of WhiB4/Rv3681c of Mycobacterium tuberculosis H37Rv: a [4Fe?4S] cluster co-ordinating protein disulphide reductase. Mol Microbiol 2007; 63:1414-31. [PMID: 17302817 DOI: 10.1111/j.1365-2958.2007.05589.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The genome sequence of Mycobacterium tuberculosis H37Rv revealed the presence of seven whiB-like open reading frames. In spite of several genetic studies on whiB genes, the biochemical properties of WhiB proteins are poorly understood. All WhiB-like proteins have four conserved cysteine residues, out of which two are present in a CXXC motif. We report for the first time the detailed biochemical and biophysical properties of M. tuberculosis WhiB4/Rv3681c and demonstrate the functional relevance of four conserved cysteines and the CXXC motif. UV-visible absorption spectra of freshly purified mWhiB4 showed the presence of a [2Fe-2S] cluster, whereas the electron paramagnetic resonance (EPR) spectra of reconstituted protein showed the presence of a [4Fe-4S] cluster. The iron-sulphur cluster was redox sensitive but stably co-ordinated to the protein even in the presence of high concentration of chaotropic agents. Despite primary sequence divergence from thioredoxin family proteins, the apo mWhiB4 has properties similar to thioredoxins and functions as a protein disulphide reductase, whereas holo mWhiB4 is enzymatically inactive. Apart from the cysteine thiol of CXXC motif the distantly placed thiol pair also contributes equally to the enzymatic activity of mWhiB4. A functional model of mWhiB4 in redox signaling during oxidative stress in M. tuberculosis has been presented.
Collapse
Affiliation(s)
- Md Suhail Alam
- Institute of Microbial Technology, Sector-39A, Chandigarh, 160 036, India
| | | | | |
Collapse
|
213
|
Justino MC, Almeida CC, Teixeira M, Saraiva LM. Escherichia coli di-iron YtfE protein is necessary for the repair of stress-damaged iron-sulfur clusters. J Biol Chem 2007; 282:10352-9. [PMID: 17289666 DOI: 10.1074/jbc.m610656200] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA microarray experiments showed that the expression of the Escherichia coli ytfE gene is highly increased upon exposure to nitric oxide. We also reported that deletion of ytfE significantly alters the phenotype of E. coli, generating a strain with enhanced susceptibility to nitrosative stress and defective in the activity of several iron-sulfur-containing proteins. In this work, it is shown that the E. coli ytfE confers protection against oxidative stress. Furthermore, we found that the damage of the [4Fe-4S](2+) clusters of aconitase B and fumarase A caused by exposure to hydrogen peroxide and nitric oxide stress occurs at higher rates in the absence of ytfE. The ytfE null mutation also abolished the recovery of aconitase and fumarase activities, which is observed in wild type E. coli once the stress is scavenged. Notably, upon the addition of purified holo-YtfE protein to the mutant cell extracts, the enzymatic activities of fumarase and aconitase are fully recovered and at rates similar to the wild type strain. We concluded that YtfE is critical for the repair of iron-sulfur clusters damaged by oxidative and nitrosative stress conditions.
Collapse
Affiliation(s)
- Marta C Justino
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | | | | | | |
Collapse
|
214
|
Alves R, Sorribas A. In silico pathway reconstruction: Iron-sulfur cluster biogenesis in Saccharomyces cerevisiae. BMC SYSTEMS BIOLOGY 2007; 1:10. [PMID: 17408500 PMCID: PMC1839888 DOI: 10.1186/1752-0509-1-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 01/31/2007] [Indexed: 01/17/2023]
Abstract
Background Current advances in genomics, proteomics and other areas of molecular biology make the identification and reconstruction of novel pathways an emerging area of great interest. One such class of pathways is involved in the biogenesis of Iron-Sulfur Clusters (ISC). Results Our goal is the development of a new approach based on the use and combination of mathematical, theoretical and computational methods to identify the topology of a target network. In this approach, mathematical models play a central role for the evaluation of the alternative network structures that arise from literature data-mining, phylogenetic profiling, structural methods, and human curation. As a test case, we reconstruct the topology of the reaction and regulatory network for the mitochondrial ISC biogenesis pathway in S. cerevisiae. Predictions regarding how proteins act in ISC biogenesis are validated by comparison with published experimental results. For example, the predicted role of Arh1 and Yah1 and some of the interactions we predict for Grx5 both matches experimental evidence. A putative role for frataxin in directly regulating mitochondrial iron import is discarded from our analysis, which agrees with also published experimental results. Additionally, we propose a number of experiments for testing other predictions and further improve the identification of the network structure. Conclusion We propose and apply an iterative in silico procedure for predictive reconstruction of the network topology of metabolic pathways. The procedure combines structural bioinformatics tools and mathematical modeling techniques that allow the reconstruction of biochemical networks. Using the Iron Sulfur cluster biogenesis in S. cerevisiae as a test case we indicate how this procedure can be used to analyze and validate the network model against experimental results. Critical evaluation of the obtained results through this procedure allows devising new wet lab experiments to confirm its predictions or provide alternative explanations for further improving the models.
Collapse
Affiliation(s)
- Rui Alves
- Departament de Ciencies Mediques Basiques, Universidad de Lleida, Montserrat Roig 2, 25008 Lleida, Spain
| | - Albert Sorribas
- Departament de Ciencies Mediques Basiques, Universidad de Lleida, Montserrat Roig 2, 25008 Lleida, Spain
| |
Collapse
|
215
|
Giedroc DP, Arunkumar AI. Metal sensor proteins: nature's metalloregulated allosteric switches. Dalton Trans 2007:3107-20. [PMID: 17637984 DOI: 10.1039/b706769k] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metalloregulatory proteins control the expression of genes that allow organisms to quickly adapt to chronic toxicity or deprivation of both biologically essential metal ions and heavy metal pollutants found in their microenvironment. Emerging evidence suggests that metal ion homeostasis and resistance defines an important tug-of-war in human host-bacterial pathogen interactions. This adaptive response originates with the formation of "metal receptor" complexes of exquisite selectivity. In this perspective, we summarize consensus structural features of metal sensing coordination complexes and the evolution of distinct metal selectivities within seven characterized metal sensor protein families. In addition, we place recent efforts to understand the structural basis of metal-induced allosteric switching of these metalloregulatory proteins in a thermodynamic framework, and review the degree to which coordination chemistry drives changes in protein structure and dynamics in selected metal sensor systems. New insights into how metal sensor proteins function in the complex intracellular milieu of the cytoplasm of cells will require a more sophisticated understanding of the "metallome" and will benefit greatly from ongoing collaborative efforts in bioinorganic, biophysical and analytical chemistry, structural biology and microbiology.
Collapse
Affiliation(s)
- David P Giedroc
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA.
| | | |
Collapse
|
216
|
Shen K, Sayeed S, Antalis P, Gladitz J, Ahmed A, Dice B, Janto B, Dopico R, Keefe R, Hayes J, Johnson S, Yu S, Ehrlich N, Jocz J, Kropp L, Wong R, Wadowsky RM, Slifkin M, Preston RA, Erdos G, Post JC, Ehrlich GD, Hu FZ. Extensive genomic plasticity in Pseudomonas aeruginosa revealed by identification and distribution studies of novel genes among clinical isolates. Infect Immun 2006; 74:5272-83. [PMID: 16926421 PMCID: PMC1594838 DOI: 10.1128/iai.00546-06] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distributed genome hypothesis (DGH) states that each strain within a bacterial species receives a unique distribution of genes from a population-based supragenome that is many times larger than the genome of any given strain. The observations that natural infecting populations are often polyclonal and that most chronic bacterial pathogens have highly developed mechanisms for horizontal gene transfer suggested the DGH and provided the means and the mechanisms to explain how chronic infections persist in the face of a mammalian host's adaptive defense mechanisms. Having previously established the validity of the DGH for obligate pathogens, we wished to evaluate its applicability to an opportunistic bacterial pathogen. This was accomplished by construction and analysis of a highly redundant pooled genomic library containing approximately 216,000 functional clones that was constructed from 12 low-passage clinical isolates of Pseudomonas aeruginosa, 6 otorrheic isolates and 6 from other body sites. Sequence analysis of 3,214 randomly picked clones (mean insert size, approximately 1.4 kb) from this library demonstrated that 348 (10.8%) of the clones were unique with respect to all genomic sequences of the P. aeruginosa prototype strain, PAO1. Hypothetical translations of the open reading frames within these unique sequences demonstrated protein homologies to a number of bacterial virulence factors and other proteins not previously identified in P. aeruginosa. PCR and reverse transcription-PCR-based assays were performed to analyze the distribution and expression patterns of a 70-open reading frame subset of these sequences among 11 of the clinical strains. These sequences were unevenly distributed among the clinical isolates, with nearly half (34/70) of the novel sequences being present in only one or two of the individual strains. Expression profiling revealed that a vast majority of these sequences are expressed, strongly suggesting they encode functional proteins.
Collapse
Affiliation(s)
- Kai Shen
- Center for Genomic Sciences, Allegheny-Singer Research Institute, Allegheny General Hospital, 320 East North Ave., 11th Floor South Tower, Pittsburgh, PA 15212, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Fosset C, Chauveau MJ, Guillon B, Canal F, Drapier JC, Bouton C. RNA Silencing of Mitochondrial m-Nfs1 Reduces Fe-S Enzyme Activity Both in Mitochondria and Cytosol of Mammalian Cells. J Biol Chem 2006; 281:25398-406. [PMID: 16787928 DOI: 10.1074/jbc.m602979200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In prokaryotes and yeast, the general mechanism of biogenesis of iron-sulfur (Fe-S) clusters involves activities of several proteins among which IscS and Nfs1p provide, through cysteine desulfuration, elemental sulfide for Fe-S core formation. Although these proteins have been well characterized, the role of their mammalian homolog in Fe-S cluster biogenesis has never been evaluated. We report here the first functional study that implicates the putative cysteine desulfurase m-Nfs1 in the biogenesis of both mitochondrial and cytosolic mammalian Fe-S proteins. Depletion of m-Nfs1 in cultured fibroblasts through small interfering RNA-based gene silencing significantly inhibited the activities of mitochondrial NADH-ubiquinone oxidoreductase (complex I) and succinate-ubiquinone oxidoreductase (complex II) of the respiratory chain, as well as aconitase of the Krebs cycle, with no alteration in their protein levels. Activity of cytosolic xanthine oxidase, which holds a [2Fe-2S] cluster, was also specifically reduced, and iron-regulatory protein-1 was converted from its [4Fe-4S] aconitase form to its apo- or RNA-binding form. Reduction of Fe-S enzyme activities occurred earlier and more markedly in the cytosol than in mitochondria, suggesting that there is a mechanism that primarily dedicates m-Nfs1 to the biogenesis of mitochondrial Fe-S clusters in order to maintain cell survival. Finally, depletion of m-Nfs1, which conferred on apo-IRP-1 a high affinity for ferritin mRNA, was associated with the down-regulation of the iron storage protein ferritin.
Collapse
Affiliation(s)
- Cédric Fosset
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
218
|
Abstract
Friedreich ataxia is the most common hereditary ataxia. The signs and symptoms of the disorder derive from decreased expression of the protein frataxin, which is involved in iron metabolism. Frataxin chaperones iron for iron-sulfur cluster biogenesis and detoxifies iron in the mitochondrial matrix. Decreased expression of frataxin is associated with impairments of iron-sulfur cluster biogenesis and heme synthesis, as well as with mitochondrial dysfunction and oxidative stress. Compounds currently in clinical trials are directed toward improving mitochondrial function and lessening oxidative stress. Iron chelators and compounds that increase frataxin expression are under evaluation. Further elucidation of frataxin's function should lead to additional therapeutic approaches.
Collapse
Affiliation(s)
- Robert B Wilson
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19106, USA.
| |
Collapse
|
219
|
Seki A, Nakano T, Takahashi H, Matsumoto K, Ikeuchi M, Tanaka K. Light-responsive transcriptional regulation of the suf promoters involved in cyanobacterium Synechocystis sp. PCC 6803 Fe-S cluster biogenesis. FEBS Lett 2006; 580:5044-8. [PMID: 16949578 DOI: 10.1016/j.febslet.2006.08.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 08/07/2006] [Accepted: 08/12/2006] [Indexed: 11/21/2022]
Abstract
The widely conserved SUF system is involved in Fe-S cluster repair and biogenesis. In cyanobacterium Synechocystis sp. PCC 6803, transcription of the sufBCDS operon encoding the Suf complex is negatively regulated by the upstream sufR gene encoded by the complementary strand. In this report, two promoters for the sufBCDS operon (P1 and P2) and another promoter for sufR (PsufR) was identified, and it was shown that P1 was activated by a shift to high light conditions. We also showed that Thermosynechococcus SufR negatively regulated P1 and PsufR but not P2, in a reconstituted in vitro transcription system using His(6)-tagged RNA polymerase.
Collapse
Affiliation(s)
- Asako Seki
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | | | |
Collapse
|
220
|
Yeo WS, Lee JH, Lee KC, Roe JH. IscR acts as an activator in response to oxidative stress for thesufoperon encoding Fe-S assembly proteins. Mol Microbiol 2006; 61:206-18. [PMID: 16824106 DOI: 10.1111/j.1365-2958.2006.05220.x] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In Escherichia coli, Fe-S clusters are assembled by gene products encoded from the isc and suf operons. Both the iscRSUA and sufABCDSE operons are induced highly by oxidants, reflecting an increased need for providing and maintaining Fe-S clusters under oxidative stress conditions. Three cis-acting oxidant-responsive elements (ORE-I, II, III) in the upstream of the sufA promoter serve as the binding sites for OxyR, IHF and an uncharacterized factor respectively. Using DNA affinity fractionation, we isolated an ORE-III-binding factor that positively regulates the suf operon in response to various oxidants. MALDI-TOF mass analysis identified it with IscR, known to serve as a repressor of the iscRSUA gene expression under anaerobic condition as a [2Fe-2S]-bound form. The iscR null mutation abolished ORE-III-binding activity in cell extracts, and caused a significant decrease in the oxidant induction of sufA in vivo. OxyR and IscR contributed almost equally to activate the sufA operon in response to oxidants. Purified IscR that lacked Fe-S cluster bound to the ORE-III site and activated transcription from the sufA promoter in vitro. Mutations in Fe-S-binding sites of IscR enabled sufA activation in vivo and in vitro. These results support a model that IscR in its demetallated form directly activates sufA transcription, while it de-represses isc operon, under oxidative stress condition.
Collapse
Affiliation(s)
- Won-Sik Yeo
- Laboratory of Molecular Microbiology, School of Biological Sciences, and, Institute of Microbiology, Seoul National University, Seoul 151-742, Korea
| | | | | | | |
Collapse
|
221
|
Lill R, Dutkiewicz R, Elsässer HP, Hausmann A, Netz DJA, Pierik AJ, Stehling O, Urzica E, Mühlenhoff U. Mechanisms of iron-sulfur protein maturation in mitochondria, cytosol and nucleus of eukaryotes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:652-67. [PMID: 16843540 DOI: 10.1016/j.bbamcr.2006.05.011] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2006] [Revised: 04/26/2006] [Accepted: 05/05/2006] [Indexed: 11/27/2022]
Abstract
Iron-sulfur (Fe/S) clusters are important cofactors of numerous proteins involved in electron transfer, metabolic and regulatory processes. In eukaryotic cells, known Fe/S proteins are located within mitochondria, the nucleus and the cytosol. Over the past years the molecular basis of Fe/S cluster synthesis and incorporation into apoproteins in a living cell has started to become elucidated. Biogenesis of these simple inorganic cofactors is surprisingly complex and, in eukaryotes such as Saccharomyces cerevisiae, is accomplished by three distinct proteinaceous machineries. The "iron-sulfur cluster (ISC) assembly machinery" of mitochondria was inherited from the bacterial ancestor of mitochondria. ISC components are conserved in eukaryotes from yeast to man. The key principle of biosynthesis is the assembly of the Fe/S cluster on a scaffold protein before it is transferred to target apoproteins. Cytosolic and nuclear Fe/S protein maturation also requires the function of the mitochondrial ISC assembly system. It is believed that mitochondria contribute a still unknown compound to biogenesis outside the organelle. This compound is exported by the mitochondrial "ISC export machinery" and utilised by the "cytosolic iron-sulfur protein assembly (CIA) machinery". Components of these two latter systems are also highly conserved in eukaryotes. Defects in the mitochondrial ISC assembly and export systems, but not in the CIA machinery have a strong impact on cellular iron uptake and intracellular iron distribution showing that mitochondria are crucial for both cellular Fe/S protein assembly and iron homeostasis.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie, Philipps Universität Marburg, Robert-Koch-Strasse 6, 35037 Marburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Shimomura Y, Takahashi Y, Kakuta Y, Fukuyama K. Crystal structure of Escherichia coli YfhJ protein, a member of the ISC machinery involved in assembly of iron-sulfur clusters. Proteins 2006; 60:566-9. [PMID: 15937904 DOI: 10.1002/prot.20481] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoshimitsu Shimomura
- Department of Biology, Graduate School of Science, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
223
|
Abstract
Oxidative stress affects a wide variety of different cellular processes. Now, an increasing number of proteins have been identified that use the presence of reactive oxygen species or alterations in the cellular thiol-disulfide state as regulators of their protein function. This review focuses on two members of this growing group of redox-regulated proteins that utilize a cysteine-containing zinc center as the redox switch: Hsp33, the first molecular chaperone, whose ability to protect cells against stress-induced protein unfolding depends on the presence of reactive oxygen species and RsrA, the first anti-sigma factor that uses a cysteine-containing zinc center to sense and respond to cellular disulfide stress.
Collapse
Affiliation(s)
- Marianne Ilbert
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, 48109-1048, USA
| | | | | |
Collapse
|
224
|
Kurtz DM. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin. J Inorg Biochem 2006; 100:679-93. [PMID: 16504301 DOI: 10.1016/j.jinorgbio.2005.12.017] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
The Fenton or Fenton-type reaction between aqueous ferrous ion and hydrogen peroxide generates a highly oxidizing species, most often formulated as hydroxyl radical or ferryl ([Fe(IV)O](2+)). Intracellular Fenton-type chemistry can be lethal if not controlled. Nature has, therefore, evolved enzymes to scavenge superoxide and hydrogen peroxide, the reduced dioxygen species that initiate intracellular Fenton-type chemistry. Two such enzymes found predominantly in air-sensitive bacteria and archaea, superoxide reductase (SOR) and rubrerythrin (Rbr), functioning as a peroxidase (hydrogen peroxide reductase), contain non-heme iron. The iron coordination spheres in these enzymes contain five or six protein ligands from His and Glu residues, and, in the case of SOR, a Cys residue. SOR contains a mononuclear active site that is designed to protonate and rapidly expel peroxide generated as a product of the enzymatic reaction. The ferrous SOR reacts adventitiously but relatively slowly (several seconds to a few minutes) with exogenous hydrogen peroxide, presumably in a Fenton-type reaction. The diferrous active site of Rbr reacts more rapidly with hydrogen peroxide but can divert Fenton-type reactions towards the two-electron reduction of hydrogen peroxide to water. Proximal aromatic residues may function as radical sinks for Fenton-generated oxidants. Fenton-initiated damage to these iron active sites may become apparent only under extremely oxidizing intracellular conditions.
Collapse
Affiliation(s)
- Donald M Kurtz
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
225
|
Balmer Y, Vensel WH, Cai N, Manieri W, Schürmann P, Hurkman WJ, Buchanan BB. A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts. Proc Natl Acad Sci U S A 2006; 103:2988-93. [PMID: 16481623 PMCID: PMC1413819 DOI: 10.1073/pnas.0511040103] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
A growing number of processes throughout biology are regulated by redox via thiol-disulfide exchange. This mechanism is particularly widespread in plants, where almost 200 proteins have been linked to thioredoxin (Trx), a widely distributed small regulatory disulfide protein. The current study extends regulation by Trx to amyloplasts, organelles prevalent in heterotrophic plant tissues that, among other biosynthetic activities, catalyze the synthesis and storage of copious amounts of starch. Using proteomics and immunological methods, we identified the components of the ferredoxin/Trx system (ferredoxin, ferredoxin-Trx reductase, and Trx), originally described for chloroplasts, in amyloplasts isolated from wheat starchy endosperm. Ferredoxin is reduced not by light, as in chloroplasts, but by metabolically generated NADPH via ferredoxin-NADP reductase. However, once reduced, ferredoxin appears to act as established for chloroplasts, i.e., via ferredoxin-Trx reductase and a Trx (m-type). A proteomics approach in combination with affinity chromatography and a fluorescent thiol probe led to the identification of 42 potential Trx target proteins, 13 not previously recognized, including a major membrane transporter (Brittle-1 or ADP-glucose transporter). The proteins function in a range of processes in addition to starch metabolism: biosynthesis of lipids, amino acids, and nucleotides; protein folding; and several miscellaneous reactions. The results suggest a mechanism whereby light is initially recognized as a thiol signal in chloroplasts, then as a sugar during transit to the sink, where it is converted again to a thiol signal. In this way, amyloplast reactions in the grain can be coordinated with photosynthesis taking place in leaves.
Collapse
Affiliation(s)
- Yves Balmer
- *Department of Plant and Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720
| | - William H. Vensel
- Western Regional Research Center, U.S. Department of Agriculture Agricultural Research Service, Albany, CA 94710; and
| | - Nick Cai
- *Department of Plant and Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720
| | - Wanda Manieri
- Laboratoire de Biochimie Végétale, Université de Neuchātel, 2007 Neuchātel, Switzerland
| | - Peter Schürmann
- Laboratoire de Biochimie Végétale, Université de Neuchātel, 2007 Neuchātel, Switzerland
| | - William J. Hurkman
- Western Regional Research Center, U.S. Department of Agriculture Agricultural Research Service, Albany, CA 94710; and
| | - Bob B. Buchanan
- *Department of Plant and Biology, University of California, 111 Koshland Hall, Berkeley, CA 94720
| |
Collapse
|
226
|
Barras F, Loiseau L, Py B. How Escherichia coli and Saccharomyces cerevisiae build Fe/S proteins. Adv Microb Physiol 2006; 50:41-101. [PMID: 16221578 DOI: 10.1016/s0065-2911(05)50002-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Owing to the versatile electronic properties of iron and sulfur, iron sulfur (Fe/S) clusters are perfectly suited for sensing changes in environmental conditions and regulating protein properties accordingly. Fe/S proteins have been recruited in a wide array of diverse biological processes, including electron transfer chains, metabolic pathways and gene regulatory circuits. Chemistry has revealed the great diversity of Fe/S clusters occurring in proteins. The question now is to understand how iron and sulfur come together to form Fe/S clusters and how these clusters are subsequently inserted into apoproteins. Iron, sulfide and reducing conditions were found to be sufficient for successful maturation of many apoproteins in vitro, opening the possibility that insertion might be a spontaneous event. However, as in many other biological pathways such as protein folding, genetic analyses revealed that Fe/S cluster biogenesis and insertion depend in vivo upon auxiliary proteins. This was brought to light by studies on Azotobacter vinelandii nitrogenase, which, in particular, led to the concept of scaffold proteins, the role of which would be to allow transient assembly of Fe/S cluster. These studies paved the way toward the identification of the ISC and SUF systems, subjects of the present review that allow Fe/S cluster assembly into apoproteins of most organisms. Despite the recent discovery of the SUF and ISC systems, remarkable progress has been made in our understanding of their molecular composition and biochemical mechanisms. Such a rapid increase in our knowledge arose from a convergent interest from researchers engaged in unrelated fields and whose complementary expertise covered most experimental approaches used in biology. Also, the high conservation of ISC and SUF systems throughout a wide array of organisms helped cross-feeding between studies. The ISC system is conserved in eubacteria and most eukaryotes, while the SUF system arises in eubacteria, archaea, plants and parasites. ISC and SUF systems share a common core function made of a cysteine desulfurase, which acts as a sulfur donor, and scaffold proteins, which act as sulfur and iron acceptors. The ISC and SUF systems also exhibit important differences. In particular, the ISC system includes an Hsp70/Hsp40-like pair of chaperones, while the SUF system involves an unorthodox ATP-binding cassette (ABC)-like component. The role of these two sets of ATP-hydrolyzing proteins in Fe/S cluster biogenesis remains unclear. Both systems are likely to target overlapping sets of apoproteins. However, regulation and phenotypic studies in E. coli, which synthesizes both types of systems, leads us to envisage ISC as the house-keeping one that functions under normal laboratory conditions, while the SUF system appears to be required in harsh environmental conditions such as oxidative stress and iron starvation. In Saccharomyces cerevisiae, the ISC system is located in the mitochondria and its function is necessary for maturation of both mitochondrial and cytosolic Fe/S proteins. Here, we attempt to provide the first comprehensive review of the ISC and SUF systems since their discovery in the mid and late 1990s. Most emphasis is put on E. coli and S. cerevisiae models with reference to other organisms when their analysis provided us with information of particular significance. We aim at covering information made available on each Isc and Suf component by the different experimental approaches, including physiology, gene regulation, genetics, enzymology, biophysics and structural biology. It is our hope that this parallel coverage will facilitate the identification of both similarities and specificities of ISC and SUF systems.
Collapse
Affiliation(s)
- Frédéric Barras
- Laboratoire de Chimie Bactérienne, UPR-CNRS 9043 and LRC-CNRS-CEA 35v, Institut de Biologie Structurale et Microbiologie, 31 Chemin Joseph Aiguier, 13402 Marseille, France
| | | | | |
Collapse
|
227
|
Xiao Y, Koutmos M, Case DA, Coucouvanis D, Wang H, Cramer SP. Dynamics of an [Fe4S4(SPh)4]2- cluster explored via IR, Raman, and nuclear resonance vibrational spectroscopy (NRVS)-analysis using 36S substitution, DFT calculations, and empirical force fields. Dalton Trans 2006:2192-201. [PMID: 16673033 DOI: 10.1039/b513331a] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have used four vibrational spectroscopies--FT-IR, FT-Raman, resonance Raman, and 57Fe nuclear resonance vibrational spectroscopy (NRVS)--to study the normal modes of the Fe-S cluster in [(n-Bu)4N]2[Fe4S4(SPh)4]. This [Fe4S4(SR)4]2- complex serves as a model for the clusters in 4Fe ferredoxins and high-potential iron proteins (HiPIPs). The IR spectra exhibited differences above and below the 243 K phase transition. Significant shifts with 36S substitution into the bridging S positions were also observed. The NRVS results were in good agreement with the low temperature data from the conventional spectroscopies. The NRVS spectra were interpreted by normal mode analysis using optimized Urey-Bradley force fields (UBFF) as well as from DFT theory. For the UBFF calculations, the parameters were refined by comparing calculated and observed NRVS frequencies and intensities. The frequency shifts after 36S substitution were used as an additional constraint. A D 2d symmetry Fe4S4S'4 model could explain most of the observed frequencies, but a better match to the observed intensities was obtained when the ligand aromatic rings were included for a D 2d Fe4S4(SPh)4 model. The best results were obtained using the low temperature structure without symmetry constraints. In addition to stretching and bending vibrations, low frequency modes between approximately 50 and 100 cm(-1) were observed. These modes, which have not been seen before, are interpreted as twisting motions with opposing sides of the cube rotating in opposite directions. In contrast with a recent paper on a related Fe4S4 cluster, we find no need to assign a large fraction of the low frequency NRVS intensity to 'rotational lattice modes'. We also reassign the 430 cm(-1) band as primarily an elongation of the thiophenolate ring, with approximately 10% terminal Fe-S stretch character. This study illustrates the benefits of combining NRVS with conventional Raman and IR analysis for characterization of Fe-S centers. DFT theory is shown to provide remarkable agreement with the experimental NRVS data. These results provide a reference point for the analysis of more complex Fe-S clusters in proteins.
Collapse
Affiliation(s)
- Yuming Xiao
- Department of Applied Science, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
228
|
Rodrigues PM, Macedo AL, Goodfellow BJ, Moura I, Moura JJG. Desulfovibrio gigas ferredoxin II: redox structural modulation of the [3Fe-4S] cluster. J Biol Inorg Chem 2006; 11:307-15. [PMID: 16453120 DOI: 10.1007/s00775-005-0077-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Accepted: 12/22/2005] [Indexed: 11/25/2022]
Abstract
Desulfovibrio gigas ferredoxin II (DgFdII) is a small protein with a polypeptide chain composed of 58 amino acids, containing one Fe3S4 cluster per monomer. Upon studying the redox cycle of this protein, we detected a stable intermediate (FdIIint) with four 1H resonances at 24.1, 20.5, 20.8 and 13.7 ppm. The differences between FdIIox and FdIIint were attributed to conformational changes resulting from the breaking/formation of an internal disulfide bridge. The same 1H NMR methodology used to fully assign the three cysteinyl ligands of the [3Fe-4S] core in the oxidized state (DgFdIIox) was used here for the assignment of the same three ligands in the intermediate state (DgFdIIint). The spin-coupling model used for the oxidized form of DgFdII where magnetic exchange coupling constants of around 300 cm-1 and hyperfine coupling constants equal to 1 MHz for all the three iron centres were found, does not explain the isotropic shift temperature dependence for the three cysteinyl cluster ligands in DgFdIIint. This study, together with the spin delocalization mechanism proposed here for DgFdIIint, allows the detection of structural modifications at the [3Fe-4S] cluster in DgFdIIox and DgFdIIint.
Collapse
Affiliation(s)
- Pedro M Rodrigues
- FCMA, CCMAR, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | | | | | | | | |
Collapse
|
229
|
Szilagyi RK, Winslow MA. On the accuracy of density functional theory for iron—sulfur clusters. J Comput Chem 2006; 27:1385-97. [PMID: 16788911 DOI: 10.1002/jcc.20449] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A simple, yet powerful wave function manipulation method was introduced utilizing a generalized ionic fragment approach that allows for systematic mapping of the wave function space for multispin systems with antiferromagnetic coupling. The use of this method was demonstrated for developing ground state electronic wave function for [2Fe-2S] and [Mo-3Fe-4S] clusters. Using well-defined ionic wave functions for ferrous and ferric irons, sulfide, and thiolate fragments, the accuracy of various density functionals and basis sets including effective core potentials were evaluated on a [4Fe-4S] cluster by comparing the calculated geometric and electronic structures with crystallographic data and experimental atomic spin densities from X-ray absorption spectroscopy, respectively. We found that the most reasonable agreement for both geometry and atomic spin densities is obtained by a hybrid functional with 5% HF exchange and 95% density functional exchange supplemented with Perdew's 1986 correlation functional. The basis set seems to saturate only at the triple-zeta level with polarization and diffuse functions. Reasonably preoptimized structures can be obtained by employing computationally less expensive effective core potentials, such as the Stuttgart-Dresden potential with a triple-zeta valence basis set. The extension of the described calibration methodology to other biologically important and more complex iron-sulfur clusters, such as hydrogenase H-cluster and nitrogenase FeMo-co will follow.
Collapse
Affiliation(s)
- Robert K Szilagyi
- Department of Chemistry and Biochemistry, Montana State University, 223 Gaines Hall, Bozeman, Montana 59717, USA.
| | | |
Collapse
|
230
|
Dibden DP, Green J. In vivo cycling of the Escherichia coli transcription factor FNR between active and inactive states. MICROBIOLOGY (READING, ENGLAND) 2005; 151:4063-4070. [PMID: 16339951 DOI: 10.1099/mic.0.28253-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
FNR proteins are transcription regulators that sense changes in oxygen availability via assembly-disassembly of [4Fe-4S] clusters. The Escherichia coli FNR protein is present in bacteria grown under aerobic and anaerobic conditions. Under aerobic conditions, FNR is isolated as an inactive monomeric apoprotein, whereas under anaerobic conditions, FNR is present as an active dimeric holoprotein containing one [4Fe-4S] cluster per subunit. It has been suggested that the active and inactive forms of FNR are interconverted in vivo, or that iron-sulphur clusters are mostly incorporated into newly synthesized FNR. Here, experiments using a thermo-inducible fnr expression plasmid showed that a model FNR-dependent promoter is activated under anaerobic conditions by FNR that was synthesized under aerobic conditions. Immunoblots suggested that FNR was more prone to degradation under aerobic compared with anaerobic conditions, and that the ClpXP protease contributes to this degradation. Nevertheless, FNR was sufficiently long lived (half-life under aerobic conditions, approximately 45 min) to allow cycling between active and inactive forms. Measuring the abundance of the FNR-activated dms transcript when chloramphenicol-treated cultures were switched between aerobic and anaerobic conditions showed that it increased when cultures were switched to anaerobic conditions, and decreased when aerobic conditions were restored. In contrast, measurement of the abundance of the FNR-repressed ndh transcript under the same conditions showed that it decreased upon switching to anaerobic conditions, and then increased when aerobic conditions were restored. The abundance of the FNR- and oxygen-independent tatE transcript was unaffected by changes in oxygen availability. Thus, the simplest explanation for the observations reported here is that the FNR protein can be switched between inactive and active forms in vivo in the absence of de novo protein synthesis.
Collapse
Affiliation(s)
- David P Dibden
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jeffrey Green
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
231
|
Zeller T, Moskvin OV, Li K, Klug G, Gomelsky M. Transcriptome and physiological responses to hydrogen peroxide of the facultatively phototrophic bacterium Rhodobacter sphaeroides. J Bacteriol 2005; 187:7232-42. [PMID: 16237007 PMCID: PMC1272974 DOI: 10.1128/jb.187.21.7232-7242.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptome responses to hydrogen peroxide, H2O2, of the facultatively phototrophic bacterium Rhodobacter sphaeroides grown under semiaerobic conditions were investigated. At 7 min after the addition of 1 mM H2O2, the expression of approximately 9% of all genes (total, 394) was changed reliably by at least twofold. At 30 min, the number of genes (total, 88) and the magnitude of expression changes were much lower, indicating rapid recovery from stress. Two types of responses were observed: (i) an H2O2 stress response per se and (ii) a shift to high-oxygen metabolism. The former response involved the upregulation of genes for H2O2 detoxification, protein folding and proteolysis, DNA damage repair, iron transport and storage, iron-sulfur cluster repair, and the downregulation of genes for protein translation, motility, and cell wall and lipopolysaccharide synthesis. The shift to high-oxygen metabolism was evident from the differential regulation of genes for aerobic electron transport chain components and the downregulation of tetrapyrrole biosynthesis and photosystem genes. The abundance of photosynthetic complexes was decreased upon prolonged exposure of R. sphaeroides to H2O2, thus confirming the physiological significance of the transcriptome data. The regulatory pathways mediating the shift to high-oxygen metabolism were investigated. They involved the anaerobic activator FnrL and the antirepressor-repressor AppA-PpsR system. The transcription of FnrL-dependent genes was down at 7 min, apparently due to the transient inactivation by H2O2 of the iron-sulfur cluster of FnrL. The transcription of the AppA-PpsR-dependent genes was down at 30 min, apparently due to the significant decrease in appA mRNA.
Collapse
Affiliation(s)
- Tanja Zeller
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Germany
| | | | | | | | | |
Collapse
|
232
|
Fontecave M, Choudens SOD, Py B, Barras F. Mechanisms of iron-sulfur cluster assembly: the SUF machinery. J Biol Inorg Chem 2005; 10:713-21. [PMID: 16211402 DOI: 10.1007/s00775-005-0025-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Accepted: 08/23/2005] [Indexed: 11/26/2022]
Abstract
Biosynthesis of iron-sulfur clusters is a cellular process which depends on complex protein machineries. Escherichia coli contains two such biosynthetic systems, ISC and SUF. In this review article we specifically make a presentation of the various Suf proteins and discuss the molecular mechanisms by which these proteins work together to assemble Fe and S atoms within a scaffold and to transfer the resulting cluster to target proteins.
Collapse
Affiliation(s)
- M Fontecave
- Laboratoire de Chimie et Biochimie des Centres Rédox Biologiques, DRDC-CB, CEA/CNRS/Université Joseph Fourier, CEA-Grenoble, Grenoble Cedex 09, France.
| | | | | | | |
Collapse
|
233
|
Huet G, Daffé M, Saves I. Identification of the Mycobacterium tuberculosis SUF machinery as the exclusive mycobacterial system of [Fe-S] cluster assembly: evidence for its implication in the pathogen's survival. J Bacteriol 2005; 187:6137-46. [PMID: 16109955 PMCID: PMC1196142 DOI: 10.1128/jb.187.17.6137-6146.2005] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The worldwide recrudescence of tuberculosis and widespread antibiotic resistance have strengthened the need for the rapid development of new antituberculous drugs targeting essential functions of its etiologic agent, Mycobacterium tuberculosis. In our search for new targets, we found that the M. tuberculosis pps1 gene, which contains an intein coding sequence, belongs to a conserved locus of seven open reading frames. In silico analyses indicated that the mature Pps1 protein is orthologous to the SufB protein of many organisms, a highly conserved component of the [Fe-S] cluster assembly and repair SUF (mobilization of sulfur) machinery. We showed that the mycobacterial pps1 locus constitutes an operon which encodes Suf-like proteins. Interactions between these proteins were demonstrated, supporting the functionality of the M. tuberculosis SUF system. The noticeable absence of any alternative [Fe-S] cluster assembly systems in mycobacteria is in agreement with the apparent essentiality of the suf operon in Mycobacterium smegmatis. Altogether, these results establish that Pps1, as a central element of the SUF system, could play an essential function for M. tuberculosis survival virtually through its implication in the bacterial resistance to iron limitation and oxidative stress. As such, Pps1 may represent an interesting molecular target for new antituberculous drugs.
Collapse
Affiliation(s)
- Gaëlle Huet
- Department of Molecular Mechanisms of Mycobacterial Infections, Institut de Pharmacologie et Biologie Structurale (UMR5089), C.N.R.S./Université Paul Sabatier Toulouse III, 205 Route de Narbonne, F-31077 Toulouse Cedex, France
| | | | | |
Collapse
|
234
|
Banh Q, Arenskötter M, Steinbüchel A. Establishment of Tn5096-based transposon mutagenesis in Gordonia polyisoprenivorans. Appl Environ Microbiol 2005; 71:5077-84. [PMID: 16151089 PMCID: PMC1214614 DOI: 10.1128/aem.71.9.5077-5084.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transposons Tn5, Tn10, Tn611, and Tn5096 were characterized regarding transposition in Gordonia polyisoprenivorans strain VH2. No insertional mutants were obtained employing Tn5 or Tn10. The thermosensitive plasmid pCG79 harboring Tn611 integrated into the chromosome of G. polyisoprenivorans; however, the insertional mutants were fairly unstable und reverted frequently to the wild-type phenotype. In contrast, various stable mutants were obtained employing Tn5096-mediated transposon mutagenesis. Auxotrophic mutants, mutants defective or deregulated in carotenoid biosynthesis, and mutants defective in utilization of rubber and/or highly branched isoprenoid hydrocarbons were obtained by integration of plasmid pMA5096 harboring Tn5096 as a whole into the genome. From about 25,000 isolated mutants, the insertion loci of pMA5096 were subsequently mapped in 20 independent mutants in genes which could be related to the above-mentioned metabolic pathways or to putative regulation proteins. Analyses of the genotypes of pMA5096-mediated mutants defective in biodegradation of poly(cis-1,4-isoprene) did not reveal homologues to recently identified genes coding for enzymes catalyzing the initial cleavage of poly(cis-1,4-isoprene). One rubber-negative mutant was disrupted in mcr, encoding an alpha-methylacyl-coenzyme A racemase. This mutant was defective in degradation of poly(cis-1,4-isoprene) and also of highly branched isoprenoid hydrocarbons.
Collapse
Affiliation(s)
- Quyen Banh
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany
| | | | | |
Collapse
|
235
|
Médigue C, Krin E, Pascal G, Barbe V, Bernsel A, Bertin PN, Cheung F, Cruveiller S, D'Amico S, Duilio A, Fang G, Feller G, Ho C, Mangenot S, Marino G, Nilsson J, Parrilli E, Rocha EPC, Rouy Z, Sekowska A, Tutino ML, Vallenet D, von Heijne G, Danchin A. Coping with cold: the genome of the versatile marine Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. Genome Res 2005; 15:1325-35. [PMID: 16169927 PMCID: PMC1240074 DOI: 10.1101/gr.4126905] [Citation(s) in RCA: 285] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A considerable fraction of life develops in the sea at temperatures lower than 15 degrees C. Little is known about the adaptive features selected under those conditions. We present the analysis of the genome sequence of the fast growing Antarctica bacterium Pseudoalteromonas haloplanktis TAC125. We find that it copes with the increased solubility of oxygen at low temperature by multiplying dioxygen scavenging while deleting whole pathways producing reactive oxygen species. Dioxygen-consuming lipid desaturases achieve both protection against oxygen and synthesis of lipids making the membrane fluid. A remarkable strategy for avoidance of reactive oxygen species generation is developed by P. haloplanktis, with elimination of the ubiquitous molybdopterin-dependent metabolism. The P. haloplanktis proteome reveals a concerted amino acid usage bias specific to psychrophiles, consistently appearing apt to accommodate asparagine, a residue prone to make proteins age. Adding to its originality, P. haloplanktis further differs from its marine counterparts with recruitment of a plasmid origin of replication for its second chromosome.
Collapse
Affiliation(s)
- Claudine Médigue
- Genoscope, CNRS-UMR 8030, Atelier de Génomique Comparative, 91006 Evry Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Bailey-Serres J, Chang R. Sensing and signalling in response to oxygen deprivation in plants and other organisms. ANNALS OF BOTANY 2005; 96:507-18. [PMID: 16051633 PMCID: PMC4247021 DOI: 10.1093/aob/mci206] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2005] [Revised: 03/11/2005] [Accepted: 04/19/2005] [Indexed: 05/03/2023]
Abstract
AIMS AND SCOPE All aerobic organisms require molecular di-oxygen (O2) for efficient production of ATP though oxidative phosphorylation. Cellular depletion of oxygen results in rapid molecular and physiological acclimation. The purpose of this review is to consider the processes of low oxygen sensing and response in diverse organisms, with special consideration of plant cells. CONCLUSIONS The sensing of oxygen deprivation in bacteria, fungi, metazoa and plants involves multiple sensors and signal transduction pathways. Cellular responses result in a reprogramming of gene expression and metabolic processes that enhance transient survival and can enable long-term tolerance to sub-optimal oxygen levels. The mechanism of sensing can involve molecules that directly bind or react with oxygen (direct sensing), or recognition of altered cellular homeostasis (indirect sensing). The growing knowledge of the activation of genes in response to oxygen deprivation has provided additional information on the response and acclimation processes. Conservation of calcium fluxes and reactive oxygen species as second messengers in signal transduction pathways in metazoa and plants may reflect the elemental importance of rapid sensing of cellular restriction in oxygen by aerobic organisms.
Collapse
Affiliation(s)
- Julia Bailey-Serres
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA.
| | | |
Collapse
|
237
|
Vincent KA, Armstrong FA. Investigating metalloenzyme reactions using electrochemical sweeps and steps: fine control and measurements with reactants ranging from ions to gases. Inorg Chem 2005; 44:798-809. [PMID: 15859247 DOI: 10.1021/ic048519+] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein film voltammetry is a powerful method for probing the chemistry of redox-active sites in metalloproteins. The technique affords precise potential control over a tiny quantity of material that is manipulated on an electrode surface, providing information on ligand- or metal-exchange reactions coupled to electron transfer. This is illustrated by examples of transformations of the iron-sulfur clusters in ferredoxins. Protein film voltammetry is particularly advantageous in studies of metalloenzymes for which the current response is proportional to catalytic activity: kinetic data of extremely high signal/noise ratio are obtained for highly active enzymes. We present a series of interesting examples in which catalytic activity varies in unusual ways with applied potential, surveying information that can be obtained from cyclic voltammetry and then looking beyond this method to controlled potential-step experiments that yield kinetic and mechanistic details. Recent results on the voltammetry of the highly active [NiFe]-hydrogenase from Allochromatium vinosum illustrate how it is possible to use the precise kinetic information from potential-step experiments to diagnose subtle details of transformations between catalytically active and inactive states of an enzyme. Protein film voltammetry thus complements spectroscopic techniques and other physical methods, revealing the chemistry of systems that might appear intractable or convoluted by other means.
Collapse
Affiliation(s)
- Kylie A Vincent
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, England
| | | |
Collapse
|
238
|
Abstract
The presence of 4Fe-4S clusters in enzymes involved in DNA repair has posed the question of the role of these intricate cofactors in damaged DNA recognition and repair. It is particularly intriguing that base excision repair glycosylases that remove a wide variety of damaged bases, and also have vastly different sequences and structures, have been found to contain this cofactor. The accumulating biochemical and structural evidence indicates that the region supported by the cluster is intimately involved in DNA binding, and that such binding interactions impact catalysis of base removal. Recent evidence has also established that binding of the glycosylases to DNA facilitates oxidation of the [4Fe-4S](2+) cluster to the [4Fe-4S](3+) form. Notably, the measured redox potentials for a variety of 4Fe-4S cluster-containing glycosylases are remarkably similar. Based on this DNA-mediated redox behavior, it has been suggested that this property may be used to enhance the activity of these enzymes by facilitating damaged DNA location.
Collapse
Affiliation(s)
- Olga A Lukianova
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
239
|
Kovács AT, Rákhely G, Balogh J, Maróti G, Fülöp A, Kovács KL. Anaerobic regulation of hydrogenase transcription in different bacteria. Biochem Soc Trans 2005; 33:36-8. [PMID: 15667258 DOI: 10.1042/bst0330036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hydrogen metabolism is closely related to other important metabolic and energetic processes of bacterial cells, such as photosynthesis, anaerobic respiration and sulphur metabolism. Even small environmental changes influence these networks through different regulatory systems. The presence or absence of oxygen is one of the most important signals; how the cascades evolved to transmit this signal in different bacteria is summarized. In many instances, hydrogen is released only under anoxic conditions, because of bioenergetic considerations. Most [NiFe] hydrogenases are inactivated by oxygen, but many of them can be re-activated under reducing conditions. In addition to direct inactivation of the hydrogenases, oxygen can also regulate their expression. The global regulatory systems [FNR (fumarate and nitrate reduction regulator), ArcAB (aerobic respiratory control) and RegAB], which respond to alterations in oxygen content and redox conditions of the environment, have an important role in hydrogenase regulation of several bacteria. FNR-like proteins were shown to be important for the regulation of hydrogenases in Escherichia coli, Thiocapsa roseopersicina and Rhizobium leguminosarum, whereas RegA protein modulates the expression of hupSL genes in Rhodobacter capsulatus.
Collapse
Affiliation(s)
- A T Kovács
- Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences and Department of Biotechnology, University of Szeged, H-6726 Szeged, Temesvári krt. 62, Hungary
| | | | | | | | | | | |
Collapse
|
240
|
Xu D, Liu X, Zhao J, Zhao J. FesM, a membrane iron-sulfur protein, is required for cyclic electron flow around photosystem I and photoheterotrophic growth of the cyanobacterium Synechococcus sp. PCC 7002. PLANT PHYSIOLOGY 2005; 138:1586-95. [PMID: 15980195 PMCID: PMC1176428 DOI: 10.1104/pp.105.061549] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2005] [Revised: 03/28/2005] [Accepted: 04/06/2005] [Indexed: 05/03/2023]
Abstract
While it is known that cyclic electron flow around photosystem I is an important pathway of photosynthetic electron transfer for converting light energy to chemical energy, some components of cyclic electron flow remain to be revealed. Here, we show that fesM, encoding a novel membrane iron-sulfur protein, is essential to cyclic electron flow in the cyanobacterium Synechococcus sp. PCC 7002. The FesM protein is predicted to have a cAMP-binding domain, an NtrC-like domain, a redox sensor motif, and an iron-sulfur (4Fe-4S) motif. Deletion of fesM (fesM-D) led to an inability for Synechococcus cells to grow in the presences of glycerol and 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Photoheterotrophic growth was restored by a complete fesM gene present on a replicable plasmid. A mutant fesM gene encoding a truncated FesM protein lacking the cAMP domain failed to restore the phenotype, suggesting this domain is important to the function of FesM. Measurements of reduction of P700(+) and the redox state of interphotosystem electron carriers showed that cells had a slower rate of respiratory electron donation to the interphotosystem electron transport chain, and cyclic electron flow around photosystem I in fesM-D was impaired, suggesting that FesM is a critical protein for respiratory and cyclic electron flow. Phosphatase fusion analysis showed that FesM contains nine membrane-spanning helices, and all functional domains of FesM are located on the cytoplasmic face of the thylakoid membranes.
Collapse
Affiliation(s)
- Dongyi Xu
- State Key Laboratory of Protein and Genetic Engineering, College of Life Science, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
241
|
Lian T, Simmer MI, D'Souza CA, Steen BR, Zuyderduyn SD, Jones SJM, Marra MA, Kronstad JW. Iron-regulated transcription and capsule formation in the fungal pathogen Cryptococcus neoformans. Mol Microbiol 2005; 55:1452-72. [PMID: 15720553 DOI: 10.1111/j.1365-2958.2004.04474.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cryptococcus neoformans is the leading cause of fungal meningitis in humans. Production of a polysaccharide capsule is a key virulence property for the fungus and capsule synthesis is regulated by iron levels. Given that iron acquisition is an important aspect of virulence for many pathogens, we employed serial analysis of gene expression (SAGE) to examine the transcriptome under iron-limiting and iron-replete conditions. Initially, we demonstrated by SAGE and Northern analysis that iron limitation results in an elevated transcript level for the CAP60 gene that is required for capsule production. We also identified genes encoding putative components for iron transport and homeostasis, including the FTR1 (iron permease) gene, with higher transcript levels in the low-iron condition. An FTR1 disruption mutant grows more slowly than wild-type cells in low-iron medium, and shows delayed growth and altered capsule regulation in iron-replete medium. Iron deprivation also resulted in elevated SAGE tags for putative extracellular mannoproteins and the GPI8 gene encoding a glycosylphosphatidylinositol (GPI) transamidase. The GPI8 gene appears to be essential while disruption of the CIG1 gene encoding a mannoprotein resulted in impaired growth in low-iron medium and altered capsule response to the iron-replete condition. Additionally, we found that iron-replete conditions led to elevated transcripts for genes for iron storage, nitrogen metabolism, glycolysis, mitochondrial function, lipid metabolism and calmodulin-calcineurin signalling. Overall, these studies provide the first view of the C. neoformans transcriptional response to different iron levels.
Collapse
Affiliation(s)
- Tianshun Lian
- The Michael Smith Laboratories, Department of Microbiology and Immunology, and Faculty of Agricultural Sciences, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Mesa S, Ucurum Z, Hennecke H, Fischer HM. Transcription activation in vitro by the Bradyrhizobium japonicum regulatory protein FixK2. J Bacteriol 2005; 187:3329-38. [PMID: 15866917 PMCID: PMC1112000 DOI: 10.1128/jb.187.10.3329-3338.2005] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Bradyrhizobium japonicum, the N2-fixing root nodule endosymbiont of soybean, a group of genes required for microaerobic, anaerobic, or symbiotic growth is controlled by FixK2, a key regulator that is part of the FixLJ-FixK2 cascade. FixK2 belongs to the family of cyclic AMP receptor protein/fumarate and nitrate reductase (CRP/FNR) transcription factors that recognize a palindromic DNA motif (CRP/FNR box) associated with the regulated promoters. Here, we report on a biochemical analysis of FixK2 and its transcription activation activity in vitro. FixK2 was expressed in Escherichia coli and purified as a soluble N-terminally histidine-tagged protein. Gel filtration experiments revealed that increasing the protein concentration shifts the monomer-dimer equilibrium toward the dimer. Purified FixK2 productively interacted with the B. japonicum sigma80-RNA polymerase holoenzyme, but not with E. coli sigma70-RNA polymerase holoenzyme, to activate transcription from the B. japonicum fixNOQP, fixGHIS, and hemN2 promoters in vitro. Furthermore, FixK2 activated transcription from the E. coli FF(-41.5) model promoter, again only in concert with B. japonicum RNA polymerase. All of these promoters are so-called class II CRP/FNR-type promoters. We showed by specific mutagenesis that the FixK2 box at nucleotide position -40.5 in the hemN2 promoter, but not that at -78.5, is crucial for activation both in vivo and in vitro, which argues against recognition of a potential class III promoter. Given the lack of any evidence for the presence of a cofactor in purified FixK2, we surmise that FixK2 alone is sufficient to activate in vitro transcription to at least a basal level. This contrasts with all well-studied CRP/FNR-type proteins, which do require coregulators.
Collapse
Affiliation(s)
- Socorro Mesa
- Institute of Microbiology, Eidgenössische Technische Hochschule, CH-8093 Zürich, Switzerland.
| | | | | | | |
Collapse
|
243
|
Abstract
Iron-sulfur [Fe-S] clusters are ubiquitous and evolutionary ancient prosthetic groups that are required to sustain fundamental life processes. Owing to their remarkable structural plasticity and versatile chemical/electronic features [Fe-S] clusters participate in electron transfer, substrate binding/activation, iron/sulfur storage, regulation of gene expression, and enzyme activity. Formation of intracellular [Fe-S] clusters does not occur spontaneously but requires a complex biosynthetic machinery. Three different types of [Fe-S] cluster biosynthetic systems have been discovered, and all of them are mechanistically unified by the requirement for a cysteine desulfurase and the participation of an [Fe-S] cluster scaffolding protein. Important mechanistic questions related to [Fe-S] cluster biosynthesis involve the molecular details of how [Fe-S] clusters are assembled on scaffold proteins, how [Fe-S] clusters are transferred from scaffolds to target proteins, how various accessory proteins participate in [Fe-S] protein maturation, and how the biosynthetic process is regulated.
Collapse
Affiliation(s)
- Deborah C Johnson
- Department of Biochemistry, Virginia Polytechnic Institute, Blacksburg, Virginia 24061, USA.
| | | | | | | |
Collapse
|
244
|
Loiseau L, Ollagnier-de Choudens S, Lascoux D, Forest E, Fontecave M, Barras F. Analysis of the heteromeric CsdA-CsdE cysteine desulfurase, assisting Fe-S cluster biogenesis in Escherichia coli. J Biol Chem 2005; 280:26760-9. [PMID: 15901727 DOI: 10.1074/jbc.m504067200] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biogenesis of iron-sulfur (Fe-S) cluster-containing proteins relies on assistance of complex machineries. To date three systems, NIF, ISC, and SUF, were reported to allow maturation of Fe-S proteins. Here we report that the csdA-csdE (formally ygdK) genes of Escherichia coli constitute a sulfur-generating system referred to as CSD which also contributes to Fe-S biogenesis in vivo. This conclusion was reached by applying a thorough combination of both in vivo and in vitro strategies and techniques. Yeast two-hybrid analysis allowed us to show that CsdA and CsdE interact. Enzymology analysis showed that CsdA cysteine desulfurase activity is increased 2-fold in the presence of CsdE. Mass spectrometry analysis and site-directed mutagenesis showed that residue Cys-61 from CsdE acted as an acceptor site for sulfur provided by cysteine desulfurase activity of CsdA. Genetic investigations revealed that the csdA-csdE genes could act as multicopy suppressors of iscS mutation. Moreover, both in vitro and in vivo investigations pointed to a specific connection between the CSD system and quinolinate synthetase NadA.
Collapse
Affiliation(s)
- Laurent Loiseau
- Laboratoire de Chimie Bactérienne, UPR-CNRS 9043, Institut de Biologie Structurale et Microbiologie, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | |
Collapse
|
245
|
Tang Y, Guest JR, Artymiuk PJ, Green J. Switching aconitase B between catalytic and regulatory modes involves iron-dependent dimer formation. Mol Microbiol 2005; 56:1149-58. [PMID: 15882410 DOI: 10.1111/j.1365-2958.2005.04610.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In addition to being the major citric acid cycle aconitase in Escherichia coli the aconitase B protein (AcnB) is also a post-transcriptional regulator of gene expression. The AcnB proteins represent a distinct branch of the aconitase superfamily that possess a HEAT-like domain (domain 5). The HEAT domains of other proteins are implicated in protein:protein interactions. Gel filtration analysis has now shown that cell-free extracts contain high-molecular-weight species of AcnB. Furthermore, in vitro and in vivo protein interaction experiments have shown that AcnB forms homodimers. Addition of the iron chelator bipyridyl to cultures inhibited the dimer-dependent readout from an AcnB bacterial two-hybrid system. A similar response was observed with a catalytically inactive AcnB variant, AcnB(C769S), suggesting that the monomer-dimer transition is not mediated by the state of the AcnB iron-sulphur cluster. The iron-responsive interacting unit was accordingly traced to the N-terminal region (domains 4 and 5) of the AcnB protein, and not to domain 3 that houses the iron-sulphur cluster. Thus, it was shown that a polypeptide containing AcnB N-terminal domains 5 and 4 (AcnB5-4) interacts with a second AcnB5-4 to form a homodimer. AcnB has recently been shown to initiate a regulatory cascade controlling flagella biosynthesis in Salmonella enterica by binding to the ftsH transcript and inhibiting the synthesis of the FtsH protease. A plasmid encoding AcnB5-4 complemented the flagella-deficient phenotype of a S. enterica acnB mutant, and the isolated AcnB5-4 polypeptide specifically recognized and bound to the ftsH transcript. Thus, the N-terminal region of AcnB is necessary and sufficient for promoting the formation of AcnB dimers and also for AcnB binding to target mRNA. Furthermore, the relative effects of iron on these processes provide a simple iron-mediated dimerization mechanism for switching the AcnB protein between catalytic and regulatory roles.
Collapse
Affiliation(s)
- Yue Tang
- The Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | | | | |
Collapse
|
246
|
Solovieva IM, Kreneva RA, Errais Lopes L, Perumov DA. The riboflavin kinase encoding gene ribR of Bacillus subtilis is a part of a 10 kb operon, which is negatively regulated by the yrzC gene product. FEMS Microbiol Lett 2005; 243:51-8. [PMID: 15668000 DOI: 10.1016/j.femsle.2004.11.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Revised: 11/05/2004] [Accepted: 11/21/2004] [Indexed: 11/19/2022] Open
Abstract
The riboflavin kinase encoding gene ribR is situated within a 12 genes locus ytmI-ytnM of the Bacillus subtilis chromosome. Here we demonstrate that ribR is transcribed as part of a 10 kb ytmI-ytnM operon. The riboflavin overproduction phenotype of B. subtilis ribC mutant strains, which is a result of the strongly reduced flavokinase activity of the riboflavin kinase/FAD synthetase RibC, was suppressed by ribR expression. Analysis of mutations with an upregulated ribR gene revealed 2 different groups of mutants. One class of mutants contained base substitutions in an 8 nucleotide sequence of the promoter region of the ytmI-ytnM operon. A second class of mutants had single point mutations within the yrzC gene or in the RBS of this gene. Dot-blot analysis of ytmI-ytnM transcription and the results of in trans complementation experiments for the yrzC mutants confirmed a role of the yrzC gene product as a negative regulator for the ytmI-ytnM operon.
Collapse
Affiliation(s)
- Irina M Solovieva
- Molecular and Radiation Biophysics Division, St. Petersburg Nuclear Physics Institute of the Russian Academy of Sciences, Gatchina, Leningrad district 188350, Russia.
| | | | | | | |
Collapse
|
247
|
Affiliation(s)
- Janneke Balk
- Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Strasse 6, 35033 Marburg, Germany
| | | |
Collapse
|
248
|
Rouault TA, Tong WH. Iron–sulphur cluster biogenesis and mitochondrial iron homeostasis. Nat Rev Mol Cell Biol 2005; 6:345-51. [PMID: 15803140 DOI: 10.1038/nrm1620] [Citation(s) in RCA: 325] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Iron-sulphur clusters are important cofactors for proteins that are involved in many cellular processes, including electron transport, enzymatic catalysis and regulation. The enzymes that catalyse the formation of iron-sulphur clusters are widely conserved from bacteria to humans. Recent studies in model systems and humans reveal that iron-sulphur proteins have important roles in mitochondrial iron homeostasis and in the pathogenesis of the human disease Friedreich ataxia.
Collapse
Affiliation(s)
- Tracey A Rouault
- National Institute of Child Health and Human Development, Cell Biology and Metabolism Branch, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
249
|
Jakimowicz P, Cheesman MR, Bishai WR, Chater KF, Thomson AJ, Buttner MJ. Evidence That the Streptomyces Developmental Protein WhiD, a Member of the WhiB Family, Binds a [4Fe-4S] Cluster. J Biol Chem 2005; 280:8309-15. [PMID: 15615709 DOI: 10.1074/jbc.m412622200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WhiD is required for the late stages of sporulation in the Gram-positive bacterium Streptomyces coelicolor. WhiD is a member of the WhiB-like family of putative transcription factors that are present throughout the actinomycetes but absent from other organisms. This family of proteins has four near-invariant cysteines, suggesting that these residues might act as ligands for a metal cofactor. Overexpressed WhiD, purified from Escherichia coli, contained substoichiometric amounts of iron and had an absorption spectrum characteristic of a [2Fe-2S] cluster. After Fe-S cluster reconstitution under anaerobic conditions, WhiD contained approximately 4 iron atoms/monomer and similar amounts of sulfide ion and gave an absorption spectrum characteristic of a [4Fe-4S] cluster. Reconstituted WhiD gave no electron paramagnetic resonance signal as prepared but, after reduction with dithionite, gave an electron paramagnetic resonance signal (g approximately 2.06, 1.94) consistent with a one-electron reduction of a [4Fe-4S](2+) cluster to a [4Fe-4S](1+) state with electron spin of S = (1/2). The anaerobically reconstituted [4Fe-4S] cluster was oxygen sensitive. Upon exposure to air, absorption at 410 and 505 nm first increased and then showed a steady decrease with time until the protein was colorless in the near UV/visible region. These changes are consistent with an oxygen-induced change from a [4Fe-4S] to a [2Fe-2S] cluster, followed by complete loss of cluster from the protein. Each of the four conserved cysteine residues, Cys-23, -53, -56, and -62, was essential for WhiD function in vivo.
Collapse
Affiliation(s)
- Piotr Jakimowicz
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom.
| | | | | | | | | | | |
Collapse
|
250
|
Kang Y, Weber KD, Qiu Y, Kiley PJ, Blattner FR. Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol 2005; 187:1135-60. [PMID: 15659690 PMCID: PMC545700 DOI: 10.1128/jb.187.3.1135-1160.2005] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major regulator controlling the physiological switch between aerobic and anaerobic growth conditions in Escherichia coli is the DNA binding protein FNR. To identify genes controlled by FNR, we used Affymetrix Antisense GeneChips to compare global gene expression profiles from isogenic MG1655 wild-type and Deltafnr strains grown in glucose minimal media under aerobic or anaerobic conditions. We found that 297 genes contained within 184 operons were regulated by FNR and/or by O2 levels. The expression of many genes known to be involved in anaerobic respiration and fermentation was increased under anaerobic growth conditions, while that of genes involved in aerobic respiration and the tricarboxylic acid cycle were repressed as expected. The expression of nine operons associated with acid resistance was also increased under anaerobic growth conditions, which may reflect the production of acidic fermentation products. Ninety-one genes with no presently defined function were also altered in expression, including seven of the most highly anaerobically induced genes, six of which we found to be directly regulated by FNR. Classification of the 297 genes into eight groups by k-means clustering analysis indicated that genes with common gene expression patterns also had a strong functional relationship, providing clues for studying the function of unknown genes in each group. Six of the eight groups showed regulation by FNR; while some expression groups represent genes that are simply activated or repressed by FNR, others, such as those encoding functions for chemotaxis and motility, showed a more complex pattern of regulation. A computer search for FNR DNA binding sites within predicted promoter regions identified 63 new sites for 54 genes. We suggest that E. coli MG1655 has a larger metabolic potential under anaerobic conditions than has been previously recognized.
Collapse
Affiliation(s)
- Yisheng Kang
- Department of Genetics, 425 Henry Mall, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|