201
|
Hong SY. DNA damage response is hijacked by human papillomaviruses to complete their life cycle. J Zhejiang Univ Sci B 2017; 18:215-232. [PMID: 28271657 DOI: 10.1631/jzus.b1600306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The DNA damage response (DDR) is activated when DNA is altered by intrinsic or extrinsic agents. This pathway is a complex signaling network and plays important roles in genome stability, tumor transformation, and cell cycle regulation. Human papillomaviruses (HPVs) are the main etiological agents of cervical cancer. Cervical cancer ranks as the fourth most common cancer among women and the second most frequent cause of cancer-related death worldwide. Over 200 types of HPVs have been identified and about one third of these infect the genital tract. The HPV life cycle is associated with epithelial differentiation. Recent studies have shown that HPVs deregulate the DDR to achieve a productive life cycle. In this review, I summarize current findings about how HPVs mediate the ataxia-telangiectasia mutated kinase (ATM) and the ATM-and RAD3-related kinase (ATR) DDRs, and focus on the roles that ATM and ATR signalings play in HPV viral replication. In addition, I demonstrate that the signal transducer and activator of transcription-5 (STAT)-5, an important immune regulator, can promote ATM and ATR activations through different mechanisms. These findings may provide novel opportunities for development of new therapeutic targets for HPV-related cancers.
Collapse
Affiliation(s)
- Shi-Yuan Hong
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
202
|
Herzig JK, Bullinger L, Tasdogan A, Zimmermann P, Schlegel M, Teleanu V, Weber D, Rücker FG, Paschka P, Dolnik A, Schneider E, Kuchenbauer F, Heidel FH, Buske C, Döhner H, Döhner K, Gaidzik VI. Protein phosphatase 4 regulatory subunit 2 (PPP4R2) is recurrently deleted in acute myeloid leukemia and required for efficient DNA double strand break repair. Oncotarget 2017; 8:95038-95053. [PMID: 29221109 PMCID: PMC5707003 DOI: 10.18632/oncotarget.21119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 09/03/2017] [Indexed: 11/25/2022] Open
Abstract
We have previously identified a recurrent deletion at chromosomal band 3p14.1-p13 in patients with acute myeloid leukemia (AML). Among eight protein-coding genes, this microdeletion affects the protein phosphatase 4 regulatory subunit 2 (PPP4R2), which plays an important role in DNA damage response (DDR). Investigation of mRNA expression during murine myelopoiesis determined that Ppp4r2 is higher expressed in more primitive hematopoietic cells. PPP4R2 expression in primary AML samples compared to healthy bone marrow was significantly lower, particularly in patients with 3p microdeletion or complex karyotype. To identify a functional role of PPP4R2 in hematopoiesis and leukemia, we genetically inactivated Ppp4r2 by RNAi in murine hematopoietic stem and progenitor cells and murine myeloid leukemia. Furthermore, we ectopically expressed PPP4R2 in a deficient human myeloid leukemic cell line. While PPP4R2 is involved in DDR of both hematopoietic and leukemic cells, our findings indicate that PPP4R2 deficiency impairs de-phosphorylation of phosphorylated key DDR proteins KRAB-domain associated protein 1 (pKAP1), histone variant H2AX (γH2AX), tumor protein P53 (pP53), and replication protein A2 (pRPA2). Potential impact of affected DNA repair processes in primary AML cases with regard to differential PPP4R2 expression or 3p microdeletion is also supported by our results obtained by gene expression profiling and whole exome sequencing. Impaired DDR and increased DNA damage by PPP4R2 suppression is one possible mechanism by which the 3p microdeletion may contribute to the pathogenesis of AML. Further studies are warranted to determine the potential benefit of inefficient DNA repair upon PPP4R2 deletion to the development of therapeutic agents.
Collapse
Affiliation(s)
- Julia K Herzig
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Alpaslan Tasdogan
- Institute of Immunology, Ulm University, Ulm, Germany.,Current/Present address: Children's Medical Center Research Institute, UT Southwestern, Dallas, TX, USA
| | - Philipp Zimmermann
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Martin Schlegel
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Veronica Teleanu
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Daniela Weber
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Frank G Rücker
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Peter Paschka
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Anna Dolnik
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Edith Schneider
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Florian Kuchenbauer
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Florian H Heidel
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany.,Innere Medizin II, Hämatologie und Onkologie, Universitätsklinikum Jena, Jena, Germany
| | - Christian Buske
- Institute of Experimental Cancer Research, University Hospital of Ulm, Ulm, Germany
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Verena I Gaidzik
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| |
Collapse
|
203
|
Herbert S, Brion A, Arbona JM, Lelek M, Veillet A, Lelandais B, Parmar J, Fernández FG, Almayrac E, Khalil Y, Birgy E, Fabre E, Zimmer C. Chromatin stiffening underlies enhanced locus mobility after DNA damage in budding yeast. EMBO J 2017; 36:2595-2608. [PMID: 28694242 PMCID: PMC5579376 DOI: 10.15252/embj.201695842] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
DNA double-strand breaks (DSBs) induce a cellular response that involves histone modifications and chromatin remodeling at the damaged site and increases chromosome dynamics both locally at the damaged site and globally in the nucleus. In parallel, it has become clear that the spatial organization and dynamics of chromosomes can be largely explained by the statistical properties of tethered, but randomly moving, polymer chains, characterized mainly by their rigidity and compaction. How these properties of chromatin are affected during DNA damage remains, however, unclear. Here, we use live cell microscopy to track chromatin loci and measure distances between loci on yeast chromosome IV in thousands of cells, in the presence or absence of genotoxic stress. We confirm that DSBs result in enhanced chromatin subdiffusion and show that intrachromosomal distances increase with DNA damage all along the chromosome. Our data can be explained by an increase in chromatin rigidity, but not by chromatin decondensation or centromeric untethering only. We provide evidence that chromatin stiffening is mediated in part by histone H2A phosphorylation. Our results support a genome-wide stiffening of the chromatin fiber as a consequence of DNA damage and as a novel mechanism underlying increased chromatin mobility.
Collapse
Affiliation(s)
- Sébastien Herbert
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alice Brion
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Jean-Michel Arbona
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Mickaël Lelek
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Adeline Veillet
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Benoît Lelandais
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jyotsana Parmar
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Fabiola García Fernández
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Etienne Almayrac
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Yasmine Khalil
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Eleonore Birgy
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Emmanuelle Fabre
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Christophe Zimmer
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
204
|
Czerwińska P, Mazurek S, Wiznerowicz M. The complexity of TRIM28 contribution to cancer. J Biomed Sci 2017; 24:63. [PMID: 28851455 PMCID: PMC5574234 DOI: 10.1186/s12929-017-0374-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/24/2017] [Indexed: 01/07/2023] Open
Abstract
Since the first discovery in 1996, the engagement of TRIM28 in distinct aspects of cellular biology has been extensively studied resulting in identification of a complex nature of TRIM28 protein. In this review, we summarize core biological functions of TRIM28 that emerge from TRIM28 multi-domain structure and possessed enzymatic activities. Moreover, we will discuss whether the complexity of TRIM28 engagement in cancer biology makes TRIM28 a possible candidate for targeted anti-cancer therapy. Briefly, we will demonstrate the role of TRIM28 in regulation of target gene transcription, response to DNA damage, downregulation of p53 activity, stimulation of epithelial-to-mesenchymal transition, stemness sustainability, induction of autophagy and regulation of retrotransposition, to provide the answer whether TRIM28 functions as a stimulator or inhibitor of tumorigenesis. To date, number of studies demonstrate significant upregulation of TRIM28 expression in cancer tissues which correlates with worse overall patient survival, suggesting that TRIM28 supports cancer progression. Here, we present distinct aspects of TRIM28 involvement in regulation of cancer cell homeostasis which collectively imply pro-tumorigenic character of TRIM28. Thorough analyses are further needed to verify whether TRIM28 possess the potential to become a new anti-cancer target.
Collapse
Affiliation(s)
- Patrycja Czerwińska
- Laboratory of Gene Therapy, Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866, Poznan, Poland. .,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Sylwia Mazurek
- Laboratory of Gene Therapy, Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Wiznerowicz
- Laboratory of Gene Therapy, Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 15 Garbary Street, 61-866, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
205
|
Miné-Hattab J, Recamier V, Izeddin I, Rothstein R, Darzacq X. Multi-scale tracking reveals scale-dependent chromatin dynamics after DNA damage. Mol Biol Cell 2017; 28:mbc.E17-05-0317. [PMID: 28794266 PMCID: PMC5687033 DOI: 10.1091/mbc.e17-05-0317] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/21/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022] Open
Abstract
The dynamic organization of genes inside the nucleus is an important determinant for their function. Using fast DNA tracking microscopy in S. cerevisiae cells and improved analysis of mean square displacements, we quantified DNA motion at time scales ranging from 10 milliseconds to minute and found that following DNA damage, DNA exhibits distinct sub-diffusive regimes. In response to double-strand breaks, chromatin is more mobile at large time scales but, surprisingly, its mobility is reduced at short time scales. This effect is even more pronounced at the site of damage. Such a pattern of dynamics is consistent with a global increase in chromatin persistence length in response to DNA damage. Scale-dependent nuclear exploration is regulated by the Rad51 repair protein, both at the break and throughout the genome. We propose a model in which stiffening of the damaged ends by the repair complex, combined with global increased stiffness, act like a "needle in a ball of yarn", enhancing the ability of the break to traverse the chromatin meshwork.
Collapse
Affiliation(s)
- Judith Miné-Hattab
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris 75005, France
- Department of Genetics & Development, Columbia University Medical Center, New York, NY 10032, USA
- Nuclear Dynamics, CNRS UMR 3664, Institut Curie, Paris 75005, France
| | - Vincent Recamier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris 75005, France
| | - Ignacio Izeddin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris 75005, France
- Institut Langevin, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Xavier Darzacq
- Division of Genetics, Genomics & Development, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris 75005, France
| |
Collapse
|
206
|
Kim J, Xu S, Xiong L, Yu L, Fu X, Xu Y. SALL4 promotes glycolysis and chromatin remodeling via modulating HP1α-Glut1 pathway. Oncogene 2017; 36:6472-6479. [DOI: 10.1038/onc.2017.265] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 05/18/2017] [Accepted: 06/23/2017] [Indexed: 12/17/2022]
|
207
|
Jiang J, Bellani M, Li L, Wang P, Seidman MM, Wang Y. Arsenite Binds to the RING Finger Domain of FANCL E3 Ubiquitin Ligase and Inhibits DNA Interstrand Crosslink Repair. ACS Chem Biol 2017; 12:1858-1866. [PMID: 28535027 DOI: 10.1021/acschembio.6b01135] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human exposure to arsenic in drinking water is known to be associated with the development of bladder, lung, kidney, and skin cancers. The molecular mechanisms underlying the carcinogenic effects of arsenic species remain incompletely understood. DNA interstrand cross-links (ICLs) are among the most cytotoxic type of DNA lesions that block DNA replication and transcription, and these lesions can be induced by endogenous metabolism and by exposure to exogenous agents. Fanconi anemia (FA) is a congenital disorder manifested with elevated sensitivity toward DNA interstrand cross-linking agents, and monoubiquitination of FANCD2 by FANCL is a crucial step in FA-mediated DNA repair. Here, we demonstrated that As3+ could bind to the PHD/RING finger domain of FANCL in vitro and in cells. This binding led to compromised ubiquitination of FANCD2 in cells and diminished recruitment of FANCD2 to chromatin and DNA damage sites induced by 4,5',8-trimethylpsoralen plus UVA irradiation. Furthermore, clonogenic survival assay results showed that arsenite coexposure rendered cells more sensitive toward DNA interstrand cross-linking agents. Together, our study suggested that arsenite may compromise genomic stability via perturbation of the Fanconi anemia pathway, thereby conferring its carcinogenic effect.
Collapse
Affiliation(s)
| | - Marina Bellani
- Laboratory
of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | | | | | - Michael M. Seidman
- Laboratory
of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, United States
| | | |
Collapse
|
208
|
Chen CC, Kass EM, Yen WF, Ludwig T, Moynahan ME, Chaudhuri J, Jasin M. ATM loss leads to synthetic lethality in BRCA1 BRCT mutant mice associated with exacerbated defects in homology-directed repair. Proc Natl Acad Sci U S A 2017; 114:7665-7670. [PMID: 28659469 PMCID: PMC5530697 DOI: 10.1073/pnas.1706392114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BRCA1 is essential for homology-directed repair (HDR) of DNA double-strand breaks in part through antagonism of the nonhomologous end-joining factor 53BP1. The ATM kinase is involved in various aspects of DNA damage signaling and repair, but how ATM participates in HDR and genetically interacts with BRCA1 in this process is unclear. To investigate this question, we used the Brca1S1598F mouse model carrying a mutation in the BRCA1 C-terminal domain of BRCA1. Whereas ATM loss leads to a mild HDR defect in adult somatic cells, we find that ATM inhibition leads to severely reduced HDR in Brca1S1598F cells. Consistent with a critical role for ATM in HDR in this background, loss of ATM leads to synthetic lethality of Brca1S1598F mice. Whereas both ATM and BRCA1 promote end resection, which can be regulated by 53BP1, 53bp1 deletion does not rescue the HDR defects of Atm mutant cells, in contrast to Brca1 mutant cells. These results demonstrate that ATM has a role in HDR independent of the BRCA1-53BP1 antagonism and that its HDR function can become critical in certain contexts.
Collapse
Affiliation(s)
- Chun-Chin Chen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Allied Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| | - Elizabeth M Kass
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Wei-Feng Yen
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Allied Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Thomas Ludwig
- Department of Cancer Biology and Genetics, Ohio State University College of Medicine, Columbus, OH 43210
| | - Mary Ellen Moynahan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Jayanta Chaudhuri
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065;
- Biochemistry & Structural Biology, Cell & Developmental Biology, and Molecular Biology (BCMB) Allied Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065
| |
Collapse
|
209
|
Jaiswal H, Benada J, Müllers E, Akopyan K, Burdova K, Koolmeister T, Helleday T, Medema RH, Macurek L, Lindqvist A. ATM/Wip1 activities at chromatin control Plk1 re-activation to determine G2 checkpoint duration. EMBO J 2017; 36:2161-2176. [PMID: 28607002 PMCID: PMC5510006 DOI: 10.15252/embj.201696082] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 04/05/2017] [Accepted: 05/08/2017] [Indexed: 12/17/2022] Open
Abstract
After DNA damage, the cell cycle is arrested to avoid propagation of mutations. Arrest in G2 phase is initiated by ATM-/ATR-dependent signaling that inhibits mitosis-promoting kinases such as Plk1. At the same time, Plk1 can counteract ATR-dependent signaling and is required for eventual resumption of the cell cycle. However, what determines when Plk1 activity can resume remains unclear. Here, we use FRET-based reporters to show that a global spread of ATM activity on chromatin and phosphorylation of ATM targets including KAP1 control Plk1 re-activation. These phosphorylations are rapidly counteracted by the chromatin-bound phosphatase Wip1, allowing cell cycle restart despite persistent ATM activity present at DNA lesions. Combining experimental data and mathematical modeling, we propose a model for how the minimal duration of cell cycle arrest is controlled. Our model shows how cell cycle restart can occur before completion of DNA repair and suggests a mechanism for checkpoint adaptation in human cells.
Collapse
Affiliation(s)
- Himjyot Jaiswal
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jan Benada
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Erik Müllers
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karen Akopyan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kamila Burdova
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Tobias Koolmeister
- Department of Medical Biochemistry and Biophysics, and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Department of Medical Biochemistry and Biophysics, and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - René H Medema
- Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Libor Macurek
- Laboratory of Cancer Cell Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Arne Lindqvist
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
210
|
Abstract
Several recent studies in a number of model systems including zebrafish, Arabidopsis, and mouse have revealed phenotypic differences between knockouts (i.e., mutants) and knockdowns (e.g., antisense-treated animals). These differences have been attributed to a number of reasons including off-target effects of the antisense reagents. An alternative explanation was recently proposed based on a zebrafish study reporting that genetic compensation was observed in egfl7 mutant but not knockdown animals. Dosage compensation was first reported in Drosophila in 1932, and genetic compensation in response to a gene knockout was first reported in yeast in 1969. Since then, genetic compensation has been documented many times in a number of model organisms; however, our understanding of the underlying molecular mechanisms remains limited. In this review, we revisit studies reporting genetic compensation in higher eukaryotes and outline possible molecular mechanisms, which may include both transcriptional and posttranscriptional processes.
Collapse
Affiliation(s)
- Mohamed A. El-Brolosy
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- * E-mail:
| |
Collapse
|
211
|
Abstract
Reverse gyrase introduces positive supercoils to circular DNA and is implicated in genome stability maintenance in thermophiles. The extremely thermophilic crenarchaeon Sulfolobus encodes two reverse gyrase proteins, TopR1 (topoisomerase reverse gyrase 1) and TopR2, whose functions in thermophilic life remain to be demonstrated. Here, we investigated the roles of TopR1 in genome stability maintenance in S. islandicus in response to the treatment of methyl methanesulfonate (MMS), a DNA alkylation agent. Lethal MMS treatment induced two successive events: massive chromosomal DNA backbone breakage and subsequent DNA degradation. The former occurred immediately after drug treatment, leading to chromosomal DNA degradation that concurred with TopR1 degradation, followed by chromatin protein degradation and DNA-less cell formation. To gain a further insight into TopR1 function, the expression of the enzyme was reduced in S. islandicus cells using a CRISPR-mediated mRNA interference approach (CRISPRi) in which topR1 mRNAs were targeted for degradation by endogenous III-B CRISPR-Cas systems. We found that the TopR1 level was reduced in the S. islandicus CRISPRi cells and that the cells underwent accelerated genomic DNA degradation during MMS treatment, accompanied by a higher rate of cell death. Taken together, these results indicate that TopR1 probably facilitates genome integrity maintenance by protecting DNA breaks from thermo-degradation in vivo.
Collapse
|
212
|
Abstract
Ataxia Telangiectasia Mutated (ATM) has been known for decades as the main kinase mediating the DNA Double-Strand Break Response (DDR). Extensive studies have revealed its dual role in locally promoting detection and repair of DSBs as well as in activating global DNA damage checkpoints. However, recent studies pinpoint additional unanticipated functions for ATM in modifying both the local chromatin landscape and the global chromosome organization, more particularly at persistent breaks. Given the emergence of a novel and unexpected class of DSBs prevalently arising in transcriptionally active genes and intrinsically difficult to repair, a specific role of ATM at refractory DSBs could be an important and so far overlooked feature of Ataxia Telangiectasia (A-T) a severe disorder associated with ATM mutations.
Collapse
Affiliation(s)
- Thomas Clouaire
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, France
| | - Aline Marnef
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, France
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, France.
| |
Collapse
|
213
|
Lambrus BG, Daggubati V, Uetake Y, Scott PM, Clutario KM, Sluder G, Holland AJ. A USP28-53BP1-p53-p21 signaling axis arrests growth after centrosome loss or prolonged mitosis. J Cell Biol 2017; 214:143-53. [PMID: 27432896 PMCID: PMC4949452 DOI: 10.1083/jcb.201604054] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/24/2016] [Indexed: 12/18/2022] Open
Abstract
Precise regulation of centrosome number is critical for accurate chromosome segregation and the maintenance of genomic integrity. In nontransformed cells, centrosome loss triggers a p53-dependent surveillance pathway that protects against genome instability by blocking cell growth. However, the mechanism by which p53 is activated in response to centrosome loss remains unknown. Here, we have used genome-wide CRISPR/Cas9 knockout screens to identify a USP28-53BP1-p53-p21 signaling axis at the core of the centrosome surveillance pathway. We show that USP28 and 53BP1 act to stabilize p53 after centrosome loss and demonstrate this function to be independent of their previously characterized role in the DNA damage response. Surprisingly, the USP28-53BP1-p53-p21 signaling pathway is also required to arrest cell growth after a prolonged prometaphase. We therefore propose that centrosome loss or a prolonged mitosis activate a common signaling pathway that acts to prevent the growth of cells that have an increased propensity for mitotic errors.
Collapse
Affiliation(s)
- Bramwell G Lambrus
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Vikas Daggubati
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Yumi Uetake
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Phillip M Scott
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Kevin M Clutario
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Greenfield Sluder
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
214
|
Gursoy-Yuzugullu O, Carman C, Serafim RB, Myronakis M, Valente V, Price BD. Epigenetic therapy with inhibitors of histone methylation suppresses DNA damage signaling and increases glioma cell radiosensitivity. Oncotarget 2017; 8:24518-24532. [PMID: 28445939 PMCID: PMC5421867 DOI: 10.18632/oncotarget.15543] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/07/2017] [Indexed: 01/09/2023] Open
Abstract
Radiation therapy is widely used to treat human malignancies, but many tumor types, including gliomas, exhibit significant radioresistance. Radiation therapy creates DNA double-strand breaks (DSBs), and DSB repair is linked to rapid changes in epigenetic modifications, including increased histone methylation. This increased histone methylation recruits DNA repair proteins which can then alter the local chromatin structure and promote repair. Consequently, combining inhibitors of specific histone methyltransferases with radiation therapy may increase tumor radiosensitivity, particularly in tumors with significant therapeutic resistance. Here, we demonstrate that inhibitors of the H4K20 methyltransferase SETD8 (UNC-0379) and the H3K9 methyltransferase G9a (BIX-01294) are effective radiosensitizers of human glioma cells. UNC-0379 blocked H4K20 methylation and reduced recruitment of the 53BP1 protein to DSBs, although this loss of 53BP1 caused only limited changes in radiosensitivity. In contrast, loss of H3K9 methylation through G9a inhibition with BIX-01294 increased radiosensitivity of a panel of glioma cells (SER2Gy range: 1.5 - 2.9). Further, loss of H3K9 methylation reduced DSB signaling dependent on H3K9, including reduced activation of the Tip60 acetyltransferase, loss of ATM signaling and reduced phosphorylation of the KAP-1 repressor. In addition, BIX-0194 inhibited DSB repair through both the homologous recombination and nonhomologous end-joining pathways. Inhibition of G9a and loss of H3K9 methylation is therefore an effective approach for increasing radiosensitivity of glioma cells. These results suggest that combining inhibitors of histone methyltransferases which are critical for DSB repair with radiation therapy may provide a new therapeutic route for sensitizing gliomas and other tumors to radiation therapy.
Collapse
Affiliation(s)
- Ozge Gursoy-Yuzugullu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA 02215, USA
| | - Chelsea Carman
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA 02215, USA
| | | | - Marios Myronakis
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA 02215, USA
| | - Valeria Valente
- São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, Rodovia Araraquara-Jaú, Campos Ville, SP, 14800-903, Brazil
| | - Brendan D. Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston MA 02215, USA
| |
Collapse
|
215
|
Lorković ZJ, Park C, Goiser M, Jiang D, Kurzbauer MT, Schlögelhofer P, Berger F. Compartmentalization of DNA Damage Response between Heterochromatin and Euchromatin Is Mediated by Distinct H2A Histone Variants. Curr Biol 2017; 27:1192-1199. [PMID: 28392109 DOI: 10.1016/j.cub.2017.03.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/31/2022]
Abstract
DNA double-strand break (DSB) repair depends on the ataxia telangiectasia mutated (ATM) kinase that phosphorylates the conserved C-terminal SQ motif present in the histone variant H2A.X [1-7]. In constitutive heterochromatin of mammals, DSB repair is delayed and relies on phosphorylation of the proteins HP1 and KAP1 by ATM [2, 8-14]. However, KAP1 is not conserved in plants and the HP1-related protein Like-HP1 (LHP1) is not localized at constitutive heterochromatin [15], suggesting that in plants, alternative mechanisms could be responsible for repair of DSBs in heterochromatin. In Arabidopsis, constitutive heterochromatin is marked by H3K9 methylation and the plant-specific histone variants H2A.W, which are distinguished by their C-terminal motif KSPKK and required for heterochromatin compaction [16-18]. We report that the Arabidopsis histone variant H2A.W.7 is confined to heterochromatin and carries a SQ motif that is phosphorylated by ATM. In response to DNA damage, phosphorylation of H2A.W.7 takes place in heterochromatin, while H2A.X phosphorylation takes place primarily in euchromatin. We propose that H2A.W.7 evolved in addition to H2A.X to facilitate DNA damage response in highly condensed heterochromatin, thus playing a role similar to KAP1 and HP1 phosphorylation in mammals. These data support the idea of the functional diversification of histone variants and their role in spatial compartmentalization of chromatin-related functions in eukaryotes.
Collapse
Affiliation(s)
- Zdravko J Lorković
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Chulmin Park
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Malgorzata Goiser
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Danhua Jiang
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Marie-Therese Kurzbauer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Peter Schlögelhofer
- Department of Chromosome Biology, Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| |
Collapse
|
216
|
Timashev LA, Babcock H, Zhuang X, de Lange T. The DDR at telomeres lacking intact shelterin does not require substantial chromatin decompaction. Genes Dev 2017; 31:578-589. [PMID: 28381412 PMCID: PMC5393053 DOI: 10.1101/gad.294108.116] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 03/07/2017] [Indexed: 11/24/2022]
Abstract
Telomeres are protected by shelterin, a six-subunit protein complex that represses the DNA damage response (DDR) at chromosome ends. Extensive data suggest that TRF2 in shelterin remodels telomeres into the t-loop structure, thereby hiding telomere ends from double-stranded break repair and ATM signaling, whereas POT1 represses ATR signaling by excluding RPA. An alternative protection mechanism was suggested recently by which shelterin subunits TRF1, TRF2, and TIN2 mediate telomeric chromatin compaction, which was proposed to minimize access of DDR factors. We performed superresolution imaging of telomeres in mouse cells after conditional deletion of TRF1, TRF2, or both, the latter of which results in the complete loss of shelterin. Upon removal of TRF1 or TRF2, we observed only minor changes in the telomere volume in most of our experiments. Upon codeletion of TRF1 and TRF2, the telomere volume increased by varying amounts, but even those samples exhibiting small changes in telomere volume showed DDR at nearly all telomeres. Upon shelterin removal, telomeres underwent 53BP1-dependent clustering, potentially explaining at least in part the apparent increase in telomere volume. Furthermore, chromatin accessibility, as determined by ATAC-seq (assay for transposase-accessible chromatin [ATAC] with high-throughput sequencing), was not substantially altered by shelterin removal. These results suggest that the DDR induced by shelterin removal does not require substantial telomere decompaction.
Collapse
Affiliation(s)
- Leonid A Timashev
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, New York 10021, USA
| | - Hazen Babcock
- Center for Advanced Imaging, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Xiaowei Zhuang
- Center for Advanced Imaging, Harvard University, Cambridge, Massachusetts 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Titia de Lange
- Laboratory for Cell Biology and Genetics, Rockefeller University, New York, New York 10021, USA
| |
Collapse
|
217
|
Li X, Burton EM, Bhaduri-McIntosh S. Chloroquine triggers Epstein-Barr virus replication through phosphorylation of KAP1/TRIM28 in Burkitt lymphoma cells. PLoS Pathog 2017; 13:e1006249. [PMID: 28249048 PMCID: PMC5348047 DOI: 10.1371/journal.ppat.1006249] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/13/2017] [Accepted: 02/17/2017] [Indexed: 01/09/2023] Open
Abstract
Trials to reintroduce chloroquine into regions of Africa where P. falciparum has regained susceptibility to chloroquine are underway. However, there are long-standing concerns about whether chloroquine increases lytic-replication of Epstein-Barr virus (EBV), thereby contributing to the development of endemic Burkitt lymphoma. We report that chloroquine indeed drives EBV replication by linking the DNA repair machinery to chromatin remodeling-mediated transcriptional repression. Specifically, chloroquine utilizes ataxia telangiectasia mutated (ATM) to phosphorylate the universal transcriptional corepressor Krüppel-associated Box-associated protein 1/tripartite motif-containing protein 28 (KAP1/TRIM28) at serine 824 -a mechanism that typically facilitates repair of double-strand breaks in heterochromatin, to instead activate EBV. Notably, activation of ATM occurs in the absence of detectable DNA damage. These findings i) clarify chloroquine's effect on EBV replication, ii) should energize field investigations into the connection between chloroquine and endemic Burkitt lymphoma and iii) provide a unique context in which ATM modifies KAP1 to regulate persistence of a herpesvirus in humans.
Collapse
Affiliation(s)
- Xiaofan Li
- Division of Infectious Diseases, Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, NY, United States of America
| | - Eric M. Burton
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States of America
| | - Sumita Bhaduri-McIntosh
- Division of Infectious Diseases, Department of Pediatrics, Stony Brook University School of Medicine, Stony Brook, NY, United States of America
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, United States of America
- * E-mail:
| |
Collapse
|
218
|
New diagnosis of atypical ataxia-telangiectasia in a 17-year-old boy with T-cell acute lymphoblastic leukemia and a novel ATM mutation. J Hum Genet 2017; 62:581-584. [PMID: 28123174 PMCID: PMC5404952 DOI: 10.1038/jhg.2017.6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/25/2016] [Accepted: 01/03/2017] [Indexed: 01/09/2023]
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive chromosome breakage
disorder caused by mutations in the ATM gene. Typically it
presents in early childhood with progressive cerebellar dysfunction along with
immunodeficiency and oculocutaneous telangiectasia. An increased risk of
malignancy is also associated with the syndrome and, rarely, may be the
presenting feature in small children. We describe a 17-year-old boy with slurred
speech, mild motor delays and learning disability diagnosed with atypical A-T in
the setting of T-cell acute lymphoblastic leukemia. Suspicion for A-T was raised
after review of a peripheral blood karyotype demonstrating rearrangements
involving chromosomes 7 and/or 14. The diagnosis was confirmed after molecular
testing identified a novel homozygous missense variant in ATM
(c.5585T>A; p.Leu1862His) that resulted in protein instability and
abolished serine/threonine protein kinase activity. To our knowledge, this is
the first report of concurrent A-T and lymphoid malignancy diagnoses in an older
child or adult with only mild neurological disease. Our experience suggests that
screening for the disorder should be considered in any individual with lymphoid
malignancy and neurological findings, especially as radiation and certain
chemotherapy protocols are contraindicated in A-T.
Collapse
|
219
|
Enriquez-Rios V, Dumitrache LC, Downing SM, Li Y, Brown EJ, Russell HR, McKinnon PJ. DNA-PKcs, ATM, and ATR Interplay Maintains Genome Integrity during Neurogenesis. J Neurosci 2017; 37:893-905. [PMID: 28123024 PMCID: PMC5296783 DOI: 10.1523/jneurosci.4213-15.2016] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 11/14/2016] [Accepted: 11/26/2016] [Indexed: 12/15/2022] Open
Abstract
The DNA damage response (DDR) orchestrates a network of cellular processes that integrates cell-cycle control and DNA repair or apoptosis, which serves to maintain genome stability. DNA-PKcs (the catalytic subunit of the DNA-dependent kinase, encoded by PRKDC), ATM (ataxia telangiectasia, mutated), and ATR (ATM and Rad3-related) are related PI3K-like protein kinases and central regulators of the DDR. Defects in these kinases have been linked to neurodegenerative or neurodevelopmental syndromes. In all cases, the key neuroprotective function of these kinases is uncertain. It also remains unclear how interactions between the three DNA damage-responsive kinases coordinate genome stability, particularly in a physiological context. Here, we used a genetic approach to identify the neural function of DNA-PKcs and the interplay between ATM and ATR during neurogenesis. We found that DNA-PKcs loss in the mouse sensitized neuronal progenitors to apoptosis after ionizing radiation because of excessive DNA damage. DNA-PKcs was also required to prevent endogenous DNA damage accumulation throughout the adult brain. In contrast, ATR coordinated the DDR during neurogenesis to direct apoptosis in cycling neural progenitors, whereas ATM regulated apoptosis in both proliferative and noncycling cells. We also found that ATR controls a DNA damage-induced G2/M checkpoint in cortical progenitors, independent of ATM and DNA-PKcs. These nonoverlapping roles were further confirmed via sustained murine embryonic or cortical development after all three kinases were simultaneously inactivated. Thus, our results illustrate how DNA-PKcs, ATM, and ATR have unique and essential roles during the DDR, collectively ensuring comprehensive genome maintenance in the nervous system. SIGNIFICANCE STATEMENT The DNA damage response (DDR) is essential for prevention of a broad spectrum of different human neurologic diseases. However, a detailed understanding of the DDR at a physiological level is lacking. In contrast to many in vitro cellular studies, here we demonstrate independent biological roles for the DDR kinases DNA-PKcs, ATM, and ATR during neurogenesis. We show that DNA-PKcs is central to DNA repair in nonproliferating cells, and restricts DNA damage accumulation, whereas ATR controls damage-induced G2 checkpoint control and apoptosis in proliferating cells. Conversely, ATM is critical for controlling apoptosis in immature noncycling neural cells after DNA damage. These data demonstrate functionally distinct, but cooperative, roles for each kinase in preserving genome stability in the nervous system.
Collapse
Affiliation(s)
- Vanessa Enriquez-Rios
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, and
| | - Lavinia C Dumitrache
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Susanna M Downing
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Yang Li
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Eric J Brown
- Abramson Family Cancer Research Institute and the Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Helen R Russell
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Peter J McKinnon
- Department of Genetics, St Jude Children's Research Hospital, Memphis, Tennessee 38105,
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee 38163, and
| |
Collapse
|
220
|
Amaral N, Ryu T, Li X, Chiolo I. Nuclear Dynamics of Heterochromatin Repair. Trends Genet 2017; 33:86-100. [PMID: 28104289 DOI: 10.1016/j.tig.2016.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/19/2016] [Accepted: 12/20/2016] [Indexed: 01/09/2023]
Abstract
Repairing double-strand breaks (DSBs) is particularly challenging in pericentromeric heterochromatin, where the abundance of repeated sequences exacerbates the risk of ectopic recombination and chromosome rearrangements. Recent studies in Drosophila cells revealed that faithful homologous recombination (HR) repair of heterochromatic DSBs relies on the relocalization of DSBs to the nuclear periphery before Rad51 recruitment. We summarize here the exciting progress in understanding this pathway, including conserved responses in mammalian cells and surprising similarities with mechanisms in yeast that deal with DSBs in distinct sites that are difficult to repair, including other repeated sequences. We will also point out some of the most important open questions in the field and emerging evidence suggesting that deregulating these pathways might have dramatic consequences for human health.
Collapse
Affiliation(s)
- Nuno Amaral
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA 90089, USA
| | - Taehyun Ryu
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA 90089, USA
| | - Xiao Li
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA 90089, USA
| | - Irene Chiolo
- University of Southern California, Molecular and Computational Biology Department, Los Angeles, CA 90089, USA.
| |
Collapse
|
221
|
Paget S, Dubuissez M, Dehennaut V, Nassour J, Harmon BT, Spruyt N, Loison I, Abbadie C, Rood BR, Leprince D. HIC1 (hypermethylated in cancer 1) SUMOylation is dispensable for DNA repair but is essential for the apoptotic DNA damage response (DDR) to irreparable DNA double-strand breaks (DSBs). Oncotarget 2017; 8:2916-2935. [PMID: 27935866 PMCID: PMC5356852 DOI: 10.18632/oncotarget.13807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022] Open
Abstract
The tumor suppressor gene HIC1 (Hypermethylated In Cancer 1) encodes a transcriptional repressor mediating the p53-dependent apoptotic response to irreparable DNA double-strand breaks (DSBs) through direct transcriptional repression of SIRT1. HIC1 is also essential for DSB repair as silencing of endogenous HIC1 in BJ-hTERT fibroblasts significantly delays DNA repair in functional Comet assays. HIC1 SUMOylation favours its interaction with MTA1, a component of NuRD complexes. In contrast with irreparable DSBs induced by 16-hours of etoposide treatment, we show that repairable DSBs induced by 1 h etoposide treatment do not increase HIC1 SUMOylation or its interaction with MTA1. Furthermore, HIC1 SUMOylation is dispensable for DNA repair since the non-SUMOylatable E316A mutant is as efficient as wt HIC1 in Comet assays. Upon induction of irreparable DSBs, the ATM-mediated increase of HIC1 SUMOylation is independent of its effector kinase Chk2. Moreover, irreparable DSBs strongly increase both the interaction of HIC1 with MTA1 and MTA3 and their binding to the SIRT1 promoter. To characterize the molecular mechanisms sustained by this increased repression potential, we established global expression profiles of BJ-hTERT fibroblasts transfected with HIC1-siRNA or control siRNA and treated or not with etoposide. We identified 475 genes potentially repressed by HIC1 with cell death and cell cycle as the main cellular functions identified by pathway analysis. Among them, CXCL12, EPHA4, TGFβR3 and TRIB2, also known as MTA1 target-genes, were validated by qRT-PCR analyses. Thus, our data demonstrate that HIC1 SUMOylation is important for the transcriptional response to non-repairable DSBs but dispensable for DNA repair.
Collapse
Affiliation(s)
- Sonia Paget
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Marion Dubuissez
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
- Present Address: Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital, Boulevard l'Assomption Montreal, Canada
| | - Vanessa Dehennaut
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Joe Nassour
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
- Present Address: The Salk Institute for Biological Studies, Molecular and Cell Biology Department, La Jolla, California, USA
| | - Brennan T. Harmon
- Genomics Core, Children's National Medical Center, Washington DC, USA
| | - Nathalie Spruyt
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Ingrid Loison
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Corinne Abbadie
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Brian R. Rood
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington DC, USA
| | - Dominique Leprince
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| |
Collapse
|
222
|
Zanini IMY, Soneson C, Lorenzi LE, Azzalin CM. Human cactin interacts with DHX8 and SRRM2 to assure efficient pre-mRNA splicing and sister chromatid cohesion. J Cell Sci 2017; 130:767-778. [PMID: 28062851 DOI: 10.1242/jcs.194068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022] Open
Abstract
Cactins constitute a family of eukaryotic proteins broadly conserved from yeast to human and required for fundamental processes such as cell proliferation, genome stability maintenance, organismal development and immune response. Cactin proteins have been found to associate with the spliceosome in several model organisms, nevertheless their molecular functions await elucidation. Here we show that depletion of human cactin leads to premature sister chromatid separation, genome instability and cell proliferation arrest. Moreover, cactin is essential for efficient splicing of thousands of pre-mRNAs, and incomplete splicing of the pre-mRNA of sororin (also known as CDCA5), a cohesin-associated factor, is largely responsible for the aberrant chromatid separation in cactin-depleted cells. Lastly, cactin physically and functionally interacts with the spliceosome-associated factors DHX8 and SRRM2. We propose that cellular complexes comprising cactin, DHX8 and SRRM2 sustain precise chromosome segregation, genome stability and cell proliferation by allowing faithful splicing of specific pre-mRNAs. Our data point to novel pathways of gene expression regulation dependent on cactin, and provide an explanation for the pleiotropic dysfunctions deriving from cactin inactivation in distant eukaryotes.
Collapse
Affiliation(s)
- Isabella M Y Zanini
- Institute of Biochemistry (IBC), Department of Biology, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich CH-8093, Switzerland
| | - Charlotte Soneson
- Bioinformatics Core Facility, SIB Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Luca E Lorenzi
- Institute of Biochemistry (IBC), Department of Biology, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich CH-8093, Switzerland
| | - Claus M Azzalin
- Institute of Biochemistry (IBC), Department of Biology, Eidgenössische Technische Hochschule Zürich (ETHZ), Zürich CH-8093, Switzerland
| |
Collapse
|
223
|
Marnef A, Legube G. Organizing DNA repair in the nucleus: DSBs hit the road. Curr Opin Cell Biol 2017; 46:1-8. [PMID: 28068556 DOI: 10.1016/j.ceb.2016.12.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 11/30/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
In the past decade, large-scale movements of DNA double strand breaks (DSBs) have repeatedly been identified following DNA damage. These mobility events include clustering, anchoring or peripheral movement at subnuclear structures. Recent work suggests roles for motion in homology search and in break sequestration to preclude deleterious outcomes. Yet, the precise functions of these movements still remain relatively obscure, and the same holds true for the determinants. Here we review recent advances in this exciting area of research, and highlight that a recurrent characteristic of mobile DSBs may lie in their inability to undergo rapid repair. A major future challenge remains to understand how DSB mobility impacts on genome integrity.
Collapse
Affiliation(s)
- Aline Marnef
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, France
| | - Gaëlle Legube
- LBCMCP, Centre de Biologie Intégrative (CBI), CNRS, Université de Toulouse, UT3, France.
| |
Collapse
|
224
|
Mian E, Wiesmüller L. Phenotypic Analysis of ATM Protein Kinase in DNA Double-Strand Break Formation and Repair. Methods Mol Biol 2017; 1599:317-334. [PMID: 28477129 DOI: 10.1007/978-1-4939-6955-5_23] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ataxia telangiectasia mutated (ATM) encodes a serine/threonine protein kinase, which is involved in various regulatory processes in mammalian cells. Its best-known role is apical activation of the DNA damage response following generation of DNA double-strand breaks (DSBs). When DSBs appear, sensor and mediator proteins are recruited, activating transducers such as ATM, which in turn relay a widespread signal to a multitude of downstream effectors. ATM mutation causes Ataxia telangiectasia (AT), whereby the disease phenotype shows differing characteristics depending on the underlying ATM mutation. However, all phenotypes share progressive neurodegeneration and marked predisposition to malignancies at the organismal level and sensitivity to ionizing radiation and chromosome aberrations at the cellular level. Expression and localization of the ATM protein can be determined via western blotting and immunofluorescence microscopy; however, detection of subtle alterations such as resulting from amino acid exchanges rather than truncating mutations requires functional testing. Previous studies on the role of ATM in DSB repair, which connects with radiosensitivity and chromosomal stability, gave at first sight contradictory results. To systematically explore the effects of clinically relevant ATM mutations on DSB repair, we engaged a series of lymphoblastoid cell lines (LCLs) derived from AT patients and controls. To examine DSB repair both in a quantitative and qualitative manners, we used an EGFP-based assay comprising different substrates for distinct DSB repair mechanisms. In this way, we demonstrated that particular signaling defects caused by individual ATM mutations led to specific DSB repair phenotypes. To explore the impact of ATM on carcinogenic chromosomal aberrations, we monitored chromosomal breakage at a breakpoint cluster region hotspot within the MLL gene that has been associated with therapy-related leukemia. PCR-based MLL-breakage analysis of HeLa cells treated with and without pharmacological kinase inhibitors revealed ATM-dependent chromatin remodeling at the MLL break site giving access to DNA repair proteins but also nucleases triggering MLL rearrangements. This chapter summarizes these methods for functional characterization of ATM in patient LCLs and human cell lines.
Collapse
Affiliation(s)
- Elisabeth Mian
- Department of Obstetrics and Gynaecology, The University of Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynaecology, The University of Ulm, Prittwitzstrasse 43, 89075, Ulm, Germany.
| |
Collapse
|
225
|
Abramowicz I, Carpenter G, Alfieri M, Colnaghi R, Outwin E, Parent P, Thauvin-Robinet C, Iaconis D, Franco B, O'Driscoll M. Oral-facial-digital syndrome type I cells exhibit impaired DNA repair; unanticipated consequences of defective OFD1 outside of the cilia network. Hum Mol Genet 2017; 26:19-32. [PMID: 27798113 DOI: 10.1093/hmg/ddw364] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/18/2016] [Indexed: 02/11/2024] Open
Abstract
Defects in OFD1 underlie the clinically complex ciliopathy, Oral-Facial-Digital syndrome Type I (OFD Type I). Our understanding of the molecular, cellular and clinical consequences of impaired OFD1 originates from its characterised roles at the centrosome/basal body/cilia network. Nonetheless, the first described OFD1 interactors were components of the TIP60 histone acetyltransferase complex. We find that OFD1 can also localise to chromatin and its reduced expression is associated with mis-localization of TIP60 in patient-derived cell lines. TIP60 plays important roles in controlling DNA repair. OFD Type I cells exhibit reduced histone acetylation and altered chromatin dynamics in response to DNA double strand breaks (DSBs). Furthermore, reduced OFD1 impaired DSB repair via homologous recombination repair (HRR). OFD1 loss also adversely impacted upon the DSB-induced G2-M checkpoint, inducing a hypersensitive and prolonged arrest. Our findings show that OFD Type I patient cells have pronounced defects in the DSB-induced histone modification, chromatin remodelling and DSB-repair via HRR; effectively phenocopying loss of TIP60. These data extend our knowledge of the molecular and cellular consequences of impaired OFD1, demonstrating that loss of OFD1 can negatively impact upon important nuclear events; chromatin plasticity and DNA repair.
Collapse
Affiliation(s)
- Iga Abramowicz
- Human DNA damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Gillian Carpenter
- Human DNA damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | | | - Rita Colnaghi
- Human DNA damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Emily Outwin
- Human DNA damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| | - Philippe Parent
- Service de Génétique, Centre Hospitalier Universitaire de Brest, France
| | | | | | - Brunella Franco
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Department of Medical Translational Sciences, Federico II University, Naples, Italy
| | - Mark O'Driscoll
- Human DNA damage Response Disorders Group, Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, UK
| |
Collapse
|
226
|
Klement K, Goodarzi AA. Analyzing Heterochromatic DNA Double Strand Break (DSB) Repair in Response to Ionizing Radiation. Methods Mol Biol 2017; 1599:303-315. [PMID: 28477128 DOI: 10.1007/978-1-4939-6955-5_22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
DNA damaging agents such as ionizing irradiation induce lesions in the DNA such as double strand breaks (DSBs). Depending on cell type, 10-25% of these DSBs are induced in heterochromatin. Heterochromatic DSBs are resolved with slow kinetics (compared to DSBs in euchromatin) and require ATM activity for repair. Investigating the underlying causes of the slow component of DSB repair and the role of individual response factors in this process provides insight into DSB response pathways and will further the understanding of diseases where such pathways are dysfunctional due to mutation. Here, we describe a method to detect DSB repair foci in the heterochromatin of human cells. We provide a detailed protocol for cell culture preparation, immunofluorescence microscopy, and a computer-assisted approach to analyze overlap between DSB foci and heterochromatin.
Collapse
Affiliation(s)
- Karolin Klement
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Department of Biochemistry and Molecular Biology and Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1
| | - Aaron A Goodarzi
- Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Department of Biochemistry and Molecular Biology and Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada, T2N 4N1.
| |
Collapse
|
227
|
Kuo CY, Li X, Stark JM, Shih HM, Ann DK. RNF4 regulates DNA double-strand break repair in a cell cycle-dependent manner. Cell Cycle 2016; 15:787-98. [PMID: 26766492 PMCID: PMC4845925 DOI: 10.1080/15384101.2016.1138184] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Both RNF4 and KAP1 play critical roles in the response to DNA double-strand breaks (DSBs), but the functional interplay of RNF4 and KAP1 in regulating DNA damage response remains unclear. We have previously demonstrated the recruitment and degradation of KAP1 by RNF4 require the phosphorylation of Ser824 (pS824) and SUMOylation of KAP1. In this report, we show the retention of DSB-induced pS824-KAP1 foci and RNF4 abundance are inversely correlated as cell cycle progresses. Following irradiation, pS824-KAP1 foci predominantly appear in the cyclin A (-) cells, whereas RNF4 level is suppressed in the G0-/G1-phases and then accumulates during S-/G2-phases. Notably, 53BP1 foci, but not BRCA1 foci, co-exist with pS824-KAP1 foci. Depletion of KAP1 yields opposite effect on the dynamics of 53BP1 and BRCA1 loading, favoring homologous recombination repair. In addition, we identify p97 is present in the RNF4-KAP1 interacting complex and the inhibition of p97 renders MCF7 breast cancer cells relatively more sensitive to DNA damage. Collectively, these findings suggest that combined effect of dynamic recruitment of RNF4 to KAP1 regulates the relative occupancy of 53BP1 and BRCA1 at DSB sites to direct DSB repair in a cell cycle-dependent manner.
Collapse
Affiliation(s)
- Ching-Ying Kuo
- a Department of Molecular Pharmacology , Beckman Research Institute, City of Hope , Duarte , CA , USA.,b Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute , City of Hope, Duarte , CA , USA
| | - Xu Li
- a Department of Molecular Pharmacology , Beckman Research Institute, City of Hope , Duarte , CA , USA
| | - Jeremy M Stark
- b Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute , City of Hope, Duarte , CA , USA.,c Department of Radiation Biology , Beckman Research Institute , City of Hope, Duarte , CA , USA
| | - Hsiu-Ming Shih
- d Institute of Biomedical Sciences, Academia Sinica , Taipei , Taiwan , Republic of China
| | - David K Ann
- a Department of Molecular Pharmacology , Beckman Research Institute, City of Hope , Duarte , CA , USA.,b Irell & Manella Graduate School of Biological Sciences, Beckman Research Institute , City of Hope, Duarte , CA , USA
| |
Collapse
|
228
|
Roos WP, Krumm A. The multifaceted influence of histone deacetylases on DNA damage signalling and DNA repair. Nucleic Acids Res 2016; 44:10017-10030. [PMID: 27738139 PMCID: PMC5137451 DOI: 10.1093/nar/gkw922] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/02/2016] [Accepted: 10/05/2016] [Indexed: 12/16/2022] Open
Abstract
Histone/protein deacetylases play multiple roles in regulating gene expression and protein activation and stability. Their deregulation during cancer initiation and progression cause resistance to therapy. Here, we review the role of histone deacetylases (HDACs) and the NAD+ dependent sirtuins (SIRTs) in the DNA damage response (DDR). These lysine deacetylases contribute to DNA repair by base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end joining (NHEJ), homologous recombination (HR) and interstrand crosslink (ICL) repair. Furthermore, we discuss possible mechanisms whereby these histone/protein deacetylases facilitate the switch between DNA double-strand break (DSB) repair pathways, how SIRTs play a central role in the crosstalk between DNA repair and cell death pathways due to their dependence on NAD+, and the influence of small molecule HDAC inhibitors (HDACi) on cancer cell resistance to genotoxin based therapies. Throughout the review, we endeavor to identify the specific HDAC targeted by HDACi leading to therapy sensitization.
Collapse
Affiliation(s)
- Wynand Paul Roos
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Andrea Krumm
- Institute of Toxicology, Medical Center of the University Mainz, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| |
Collapse
|
229
|
Smith RJ, Savoian MS, Weber LE, Park JH. Ataxia telangiectasia mutated (ATM) interacts with p400 ATPase for an efficient DNA damage response. BMC Mol Biol 2016; 17:22. [PMID: 27814680 PMCID: PMC5097431 DOI: 10.1186/s12867-016-0075-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 10/29/2016] [Indexed: 11/13/2022] Open
Abstract
Background Ataxia telangiectasia mutated (ATM) and TRRAP proteins belong to the phosphatidylinositol 3-kinase-related kinase family and are involved in DNA damage repair and chromatin remodeling. ATM is a checkpoint kinase that is recruited to sites of DNA double-strand breaks where it phosphorylates a diverse range of proteins that are part of the chromatin and DNA repair machinery. As an integral subunit of the TRRAP-TIP60 complexes, p400 ATPase is a chromatin remodeler that is also targeted to DNA double-strand break sites. While it is understood that DNA binding transcriptional activators recruit p400 ATPase into a regulatory region of the promoter, how p400 recognises and moves to DNA double-strand break sites is far less clear. Here we investigate a possibility whether ATM serves as a shuttle to deliver p400 to break sites. Results Our data indicate that p400 co-immunoprecipitates with ATM independently of DNA damage state and that the N-terminal domain of p400 is vital for this interaction. Heterologous expression studies using Sf9 cells revealed that the ATM-p400 complex can be reconstituted without other mammalian bridging proteins. Overexpression of ATM-interacting p400 regions in U2OS cells induced dominant negative effects including the inhibition of both DNA damage repair and cell proliferation. Consistent with the dominant negative effect, the stable expression of an N-terminal p400 fragment showed a decrease in the association of p400 with ATM, but did not alter the association of p400 with TRRAP. Conclusion Taken together, our findings suggest that a protein–protein interaction between ATM and p400 ATPase occurs independently of DNA damage and contributes to efficient DNA damage response and repair. Electronic supplementary material The online version of this article (doi:10.1186/s12867-016-0075-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rebecca J Smith
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Matthew S Savoian
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Lauren E Weber
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Jeong Hyeon Park
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
230
|
Feng W, Michaels SD. Accessing the Inaccessible: The Organization, Transcription, Replication, and Repair of Heterochromatin in Plants. Annu Rev Genet 2016; 49:439-59. [PMID: 26631514 DOI: 10.1146/annurev-genet-112414-055048] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic genomes often contain large quantities of potentially deleterious sequences, such as transposons. One strategy for mitigating this risk is to package such sequences into so-called constitutive heterochromatin, where the dense chromatin environment is thought to inhibit transcription by excluding transcription factors and RNA polymerase. This type of model makes it tempting to think of heterochromatin as an inert region that is isolated from the rest of the nucleus. Recent work on heterochromatin, however, reveals that it is a dynamic environment. Despite its dense packaging, heterochromatin must remain accessible for a host of processes, including DNA replication and repair, and, paradoxically, transcription. In plants, transcripts produced by specialized RNA polymerases are used to target regions of the genome for silencing via DNA methylation. Thus, the maintenance of heterochromatin requires a careful balancing act of access and exclusion, which is achieved through the action of a host of interrelated pathways.
Collapse
Affiliation(s)
- Wei Feng
- Carnegie Institution for Science, Department of Plant Biology, Stanford, California 94305;
| | - Scott D Michaels
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| |
Collapse
|
231
|
Gong F, Chiu LY, Miller KM. Acetylation Reader Proteins: Linking Acetylation Signaling to Genome Maintenance and Cancer. PLoS Genet 2016; 12:e1006272. [PMID: 27631103 PMCID: PMC5025232 DOI: 10.1371/journal.pgen.1006272] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Chromatin-based DNA damage response (DDR) pathways are fundamental for preventing genome and epigenome instability, which are prevalent in cancer. Histone acetyltransferases (HATs) and histone deacetylases (HDACs) catalyze the addition and removal of acetyl groups on lysine residues, a post-translational modification important for the DDR. Acetylation can alter chromatin structure as well as function by providing binding signals for reader proteins containing acetyl-lysine recognition domains, including the bromodomain (BRD). Acetylation dynamics occur upon DNA damage in part to regulate chromatin and BRD protein interactions that mediate key DDR activities. In cancer, DDR and acetylation pathways are often mutated or abnormally expressed. DNA damaging agents and drugs targeting epigenetic regulators, including HATs, HDACs, and BRD proteins, are used or are being developed to treat cancer. Here, we discuss how histone acetylation pathways, with a focus on acetylation reader proteins, promote genome stability and the DDR. We analyze how acetylation signaling impacts the DDR in the context of cancer and its treatments. Understanding the relationship between epigenetic regulators, the DDR, and chromatin is integral for obtaining a mechanistic understanding of genome and epigenome maintenance pathways, information that can be leveraged for targeting acetylation signaling, and/or the DDR to treat diseases, including cancer.
Collapse
Affiliation(s)
- Fade Gong
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Li-Ya Chiu
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Kyle M. Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
232
|
c-Fos Repression by Piwi Regulates Drosophila Ovarian Germline Formation and Tissue Morphogenesis. PLoS Genet 2016; 12:e1006281. [PMID: 27622269 PMCID: PMC5021354 DOI: 10.1371/journal.pgen.1006281] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/04/2016] [Indexed: 11/19/2022] Open
Abstract
Drosophila melanogaster Piwi functions within the germline stem cells (GSCs) and the somatic niche to regulate GSC self-renewal and differentiation. How Piwi influences GSCs is largely unknown. We uncovered a genetic interaction between Piwi and c-Fos in the somatic niche that influences GSCs. c-Fos is a proto-oncogene that influences many cell and developmental processes. In wild-type ovarian cells, c-Fos is post-transcriptionally repressed by Piwi, which destabilized the c-Fos mRNA by promoting the processing of its 3' untranslated region (UTR) into Piwi-interacting RNAs (piRNAs). The c-Fos 3' UTR was sufficient to trigger Piwi-dependent destabilization of a GFP reporter. Piwi represses c-Fos in the somatic niche to regulate GSC maintenance and differentiation and in the somatic follicle cells to affect somatic cell disorganization, tissue dysmorphogenesis, oocyte maturation arrest, and infertility.
Collapse
|
233
|
Jiang Y, Chen HC, Su X, Thompson PA, Liu X, Do KA, Wierda W, Keating MJ, Plunkett W. ATM function and its relationship with ATM gene mutations in chronic lymphocytic leukemia with the recurrent deletion (11q22.3-23.2). Blood Cancer J 2016; 6:e465. [PMID: 27588518 PMCID: PMC5056966 DOI: 10.1038/bcj.2016.69] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023] Open
Abstract
Approximately 10-20% of chronic lymphocytic leukemia (CLL) patients exhibit del(11q22-23) before treatment, this cohort increases to over 40% upon progression following chemoimmunotherapy. The coding sequence of the DNA damage response gene, ataxia-telangiectasia-mutated (ATM), is contained in this deletion. The residual ATM allele is frequently mutated, suggesting a relationship between gene function and clinical response. To investigate this possibility, we sought to develop and validate an assay for the function of ATM protein in these patients. SMC1 (structural maintenance of chromosomes 1) and KAP1 (KRAB-associated protein 1) were found to be unique substrates of ATM kinase by immunoblot detection following ionizing radiation. Using a pool of eight fluorescence in situ hybridization-negative CLL samples as a standard, the phosphorylation of SMC1 and KAP1 from 46 del (11q22-23) samples was analyzed using normal mixture model-based clustering. This identified 13 samples (28%) that were deficient in ATM function. Targeted sequencing of the ATM gene of these samples, with reference to genomic DNA, revealed 12 somatic mutations and 15 germline mutations in these samples. No strong correlation was observed between ATM mutation and function. Therefore, mutation status may not be taken as an indicator of ATM function. Rather, a direct assay of the kinase activity should be used in the development of therapies.
Collapse
MESH Headings
- Ataxia Telangiectasia Mutated Proteins/genetics
- Ataxia Telangiectasia Mutated Proteins/metabolism
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosome Deletion
- Chromosomes, Human, Pair 11
- DNA Methylation
- Gene Deletion
- Germ-Line Mutation
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Mutation
- Phosphorylation
- Promoter Regions, Genetic
- Tripartite Motif-Containing Protein 28/metabolism
Collapse
Affiliation(s)
- Y Jiang
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - H-C Chen
- Department of Biostatistics, Houston, TX, USA
| | - X Su
- Department of Bioinformatics and Computational Biology, Houston, TX, USA
| | - P A Thompson
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - X Liu
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - K-A Do
- Department of Biostatistics, Houston, TX, USA
| | - W Wierda
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - M J Keating
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Plunkett
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
234
|
Cheng CT, Kuo CY, Ouyang C, Li CF, Chung Y, Chan DC, Kung HJ, Ann DK. Metabolic Stress-Induced Phosphorylation of KAP1 Ser473 Blocks Mitochondrial Fusion in Breast Cancer Cells. Cancer Res 2016; 76:5006-5018. [PMID: 27364555 PMCID: PMC5316485 DOI: 10.1158/0008-5472.can-15-2921] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/15/2016] [Indexed: 12/20/2022]
Abstract
Mitochondrial dynamics during nutrient starvation of cancer cells likely exert profound effects on their capability for metastatic progression. Here, we report that KAP1 (TRIM28), a transcriptional coadaptor protein implicated in metastatic progression in breast cancer, is a pivotal regulator of mitochondrial fusion in glucose-starved cancer cells. Diverse metabolic stresses induced Ser473 phosphorylation of KAP1 (pS473-KAP1) in a ROS- and p38-dependent manner. Results from live-cell imaging and molecular studies revealed that during the first 6 to 8 hours of glucose starvation, mitochondria initially underwent extensive fusion, but then subsequently fragmented in a pS473-KAP1-dependent manner. Mechanistic investigations using phosphorylation-defective mutants revealed that KAP1 Ser473 phosphorylation limited mitochondrial hyperfusion in glucose-starved breast cancer cells, as driven by downregulation of the mitofusin protein MFN2, leading to reduced oxidative phosphorylation and ROS production. In clinical specimens of breast cancer, reduced expression of MFN2 corresponded to poor prognosis in patients. In a mouse xenograft model of human breast cancer, there was an association in the core region of tumors between MFN2 downregulation and the presence of highly fragmented mitochondria. Collectively, our results suggest that KAP1 Ser473 phosphorylation acts through MFN2 reduction to restrict mitochondrial hyperfusion, thereby contributing to cancer cell survival under conditions of sustained metabolic stress. Cancer Res; 76(17); 5006-18. ©2016 AACR.
Collapse
Affiliation(s)
- Chun-Ting Cheng
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, California. Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California
| | - Ching-Ying Kuo
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, California
| | - Ching Ouyang
- Department of Molecular Medicine, Beckman Research Institute, City of Hope, Duarte, California
| | - Chien-Feng Li
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan. Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Yiyin Chung
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, California
| | - David C Chan
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Hsing-Jien Kung
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, Sacramento, California. National Health Research Institutes, Miaoli, Taiwan
| | - David K Ann
- Diabetes and Metabolism Research Institute, City of Hope, Duarte, California. Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, California.
| |
Collapse
|
235
|
Oleson BJ, Broniowska KA, Naatz A, Hogg N, Tarakanova VL, Corbett JA. Nitric Oxide Suppresses β-Cell Apoptosis by Inhibiting the DNA Damage Response. Mol Cell Biol 2016; 36:2067-77. [PMID: 27185882 PMCID: PMC4946431 DOI: 10.1128/mcb.00262-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide, produced in pancreatic β cells in response to proinflammatory cytokines, plays a dual role in the regulation of β-cell fate. While nitric oxide induces cellular damage and impairs β-cell function, it also promotes β-cell survival through activation of protective pathways that promote β-cell recovery. In this study, we identify a novel mechanism in which nitric oxide prevents β-cell apoptosis by attenuating the DNA damage response (DDR). Nitric oxide suppresses activation of the DDR (as measured by γH2AX formation and the phosphorylation of KAP1 and p53) in response to multiple genotoxic agents, including camptothecin, H2O2, and nitric oxide itself, despite the presence of DNA damage. While camptothecin and H2O2 both induce DDR activation, nitric oxide suppresses only camptothecin-induced apoptosis and not H2O2-induced necrosis. The ability of nitric oxide to suppress the DDR appears to be selective for pancreatic β cells, as nitric oxide fails to inhibit DDR signaling in macrophages, hepatocytes, and fibroblasts, three additional cell types examined. While originally described as the damaging agent responsible for cytokine-induced β-cell death, these studies identify a novel role for nitric oxide as a protective molecule that promotes β-cell survival by suppressing DDR signaling and attenuating DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Bryndon J Oleson
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | | | - Aaron Naatz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Neil Hogg
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Vera L Tarakanova
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
236
|
Matt S, Hofmann TG. The DNA damage-induced cell death response: a roadmap to kill cancer cells. Cell Mol Life Sci 2016; 73:2829-50. [PMID: 26791483 PMCID: PMC11108532 DOI: 10.1007/s00018-016-2130-4] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/11/2015] [Accepted: 01/04/2016] [Indexed: 12/19/2022]
Abstract
Upon massive DNA damage cells fail to undergo productive DNA repair and trigger the cell death response. Resistance to cell death is linked to cellular transformation and carcinogenesis as well as radio- and chemoresistance, making the underlying signaling pathways a promising target for therapeutic intervention. Diverse DNA damage-induced cell death pathways are operative in mammalian cells and finally culminate in the induction of programmed cell death via activation of apoptosis or necroptosis. These signaling routes affect nuclear, mitochondria- and plasma membrane-associated key molecules to activate the apoptotic or necroptotic response. In this review, we highlight the main signaling pathways, molecular players and mechanisms guiding the DNA damage-induced cell death response.
Collapse
Affiliation(s)
- Sonja Matt
- German Cancer Research Center (dkfz), Cellular Senescence Group, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thomas G Hofmann
- German Cancer Research Center (dkfz), Cellular Senescence Group, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
237
|
Li L, Shi L, Yang S, Yan R, Zhang D, Yang J, He L, Li W, Yi X, Sun L, Liang J, Cheng Z, Shi L, Shang Y, Yu W. SIRT7 is a histone desuccinylase that functionally links to chromatin compaction and genome stability. Nat Commun 2016; 7:12235. [PMID: 27436229 PMCID: PMC4961794 DOI: 10.1038/ncomms12235] [Citation(s) in RCA: 278] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 06/14/2016] [Indexed: 01/03/2023] Open
Abstract
Although SIRT7 is a member of sirtuin family proteins that are described as NAD+-dependent class III histone deacetylases, the intrinsic enzymatic activity of this sirtuin protein remains to be investigated and the cellular function of SIRT7 remains to be explored. Here we report that SIRT7 is an NAD+-dependent histone desuccinylase. We show that SIRT7 is recruited to DNA double-strand breaks (DSBs) in a PARP1-dependent manner and catalyses desuccinylation of H3K122 therein, thereby promoting chromatin condensation and DSB repair. We demonstrate that depletion of SIRT7 impairs chromatin compaction during DNA-damage response and sensitizes cells to genotoxic stresses. Our study indicates SIRT7 is a histone desuccinylase, providing a molecular basis for the understanding of epigenetic regulation by this sirtuin protein. Our experiments reveal that SIRT7-catalysed H3K122 desuccinylation is critically implemented in DNA-damage response and cell survival, providing a mechanistic insight into the cellular function of SIRT7. SIRT7 is a member of sirtuin family proteins that are described as NAD+-dependent class III histone deacetylases. Here, the authors show that SIRT7 is histone desuccinylase catalysing H3K122 desuccinylation, thereby promoting chromatin condensation and repair of DNA double strand breaks.
Collapse
Affiliation(s)
- Lei Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lan Shi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shangda Yang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Ruorong Yan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Di Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianguo Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wanjin Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xia Yi
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Zhongyi Cheng
- Jingjie PTM BioLab Co. Ltd., Hangzhou Economic and Technological Development Area, Hangzhou 310018, China
| | - Lei Shi
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yongfeng Shang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.,2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Wenhua Yu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
238
|
Vazquez BN, Thackray JK, Simonet NG, Kane-Goldsmith N, Martinez-Redondo P, Nguyen T, Bunting S, Vaquero A, Tischfield JA, Serrano L. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. EMBO J 2016; 35:1488-503. [PMID: 27225932 PMCID: PMC4884211 DOI: 10.15252/embj.201593499] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/21/2016] [Accepted: 04/27/2016] [Indexed: 11/14/2022] Open
Abstract
Sirtuins, a family of protein deacetylases, promote cellular homeostasis by mediating communication between cells and environment. The enzymatic activity of the mammalian sirtuin SIRT7 targets acetylated lysine in the N-terminal tail of histone H3 (H3K18Ac), thus modulating chromatin structure and transcriptional competency. SIRT7 deletion is associated with reduced lifespan in mice through unknown mechanisms. Here, we show that SirT7-knockout mice suffer from partial embryonic lethality and a progeroid-like phenotype. Consistently, SIRT7-deficient cells display increased replication stress and impaired DNA repair. SIRT7 is recruited in a PARP1-dependent manner to sites of DNA damage, where it modulates H3K18Ac levels. H3K18Ac in turn affects recruitment of the damage response factor 53BP1 to DNA double-strand breaks (DSBs), thereby influencing the efficiency of non-homologous end joining (NHEJ). These results reveal a direct role for SIRT7 in DSB repair and establish a functional link between SIRT7-mediated H3K18 deacetylation and the maintenance of genome integrity.
Collapse
Affiliation(s)
- Berta N Vazquez
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Joshua K Thackray
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Nicolas G Simonet
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Noriko Kane-Goldsmith
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Paloma Martinez-Redondo
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Trang Nguyen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Samuel Bunting
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ, USA
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Jay A Tischfield
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Lourdes Serrano
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
239
|
Tsouroula K, Furst A, Rogier M, Heyer V, Maglott-Roth A, Ferrand A, Reina-San-Martin B, Soutoglou E. Temporal and Spatial Uncoupling of DNA Double Strand Break Repair Pathways within Mammalian Heterochromatin. Mol Cell 2016; 63:293-305. [PMID: 27397684 DOI: 10.1016/j.molcel.2016.06.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 05/11/2016] [Accepted: 05/31/2016] [Indexed: 12/13/2022]
Abstract
Repetitive DNA is packaged into heterochromatin to maintain its integrity. We use CRISPR/Cas9 to induce DSBs in different mammalian heterochromatin structures. We demonstrate that in pericentric heterochromatin, DSBs are positionally stable in G1 and recruit NHEJ factors. In S/G2, DSBs are resected and relocate to the periphery of heterochromatin, where they are retained by RAD51. This is independent of chromatin relaxation but requires end resection and RAD51 exclusion from the core. DSBs that fail to relocate are engaged by NHEJ or SSA proteins. We propose that the spatial disconnection between end resection and RAD51 binding prevents the activation of mutagenic pathways and illegitimate recombination. Interestingly, in centromeric heterochromatin, DSBs recruit both NHEJ and HR proteins throughout the cell cycle. Our results highlight striking differences in the recruitment of DNA repair factors between pericentric and centromeric heterochromatin and suggest a model in which the commitment to specific DNA repair pathways regulates DSB position.
Collapse
Affiliation(s)
- Katerina Tsouroula
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France
| | - Audrey Furst
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France
| | - Melanie Rogier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France
| | - Vincent Heyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France
| | - Anne Maglott-Roth
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France
| | - Alexia Ferrand
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France.
| | - Evi Soutoglou
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U964, 67404 Illkirch, France; Centre National de Recherche Scientifique, UMR7104, 67404 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France.
| |
Collapse
|
240
|
Chen Y, Zhu WG. Biological function and regulation of histone and non-histone lysine methylation in response to DNA damage. Acta Biochim Biophys Sin (Shanghai) 2016; 48:603-16. [PMID: 27217472 DOI: 10.1093/abbs/gmw050] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/21/2016] [Indexed: 02/07/2023] Open
Abstract
DNA damage response (DDR) signaling network is initiated to protect cells from various exogenous and endogenous damage resources. Timely and accurate regulation of DDR proteins is required for distinct DNA damage repair pathways. Post-translational modifications of histone and non-histone proteins play a vital role in the DDR factor foci formation and signaling pathway. Phosphorylation, ubiquitylation, SUMOylation, neddylation, poly(ADP-ribosyl)ation, acetylation, and methylation are all involved in the spatial-temporal regulation of DDR, among which phosphorylation and ubiquitylation are well studied. Studies in the past decade also revealed extensive roles of lysine methylation in response to DNA damage. Lysine methylation is finely regulated by plenty of lysine methyltransferases, lysine demethylases, and can be recognized by proteins with chromodomain, plant homeodomain, Tudor domain, malignant brain tumor domain, or proline-tryptophan-tryptophan-proline domain. In this review, we outline the dynamics and regulation of histone lysine methylation at canonical (H3K4, H3K9, H3K27, H3K36, H3K79, and H4K20) and non-canonical sites after DNA damage, and discuss their context-specific functions in DDR protein recruitment or extraction, chromatin environment establishment, and transcriptional regulation. We also present the emerging advances of lysine methylation in non-histone proteins during DDR.
Collapse
Affiliation(s)
- Yongcan Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China Peking University-Tsinghua University Center for Life Sciences, Beijing 100191, China
| | - Wei-Guo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), State Key Laboratory of Natural and Biomimetic Drugs, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100191, China Peking University-Tsinghua University Center for Life Sciences, Beijing 100191, China School of Medicine, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
241
|
Feng YL, Xiang JF, Kong N, Cai XJ, Xie AY. Buried territories: heterochromatic response to DNA double-strand breaks. Acta Biochim Biophys Sin (Shanghai) 2016; 48:594-602. [PMID: 27151295 DOI: 10.1093/abbs/gmw033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/28/2016] [Indexed: 12/22/2022] Open
Abstract
Cellular response to DNA double-strand breaks (DSBs), the most deleterious type of DNA damage, is highly influenced by higher-order chromatin structure in eukaryotic cells. Compared with euchromatin, the compacted structure of heterochromatin not only protects heterochromatic DNA from damage, but also adds an extra layer of control over the response to DSBs occurring in heterochromatin. One key step in this response is the decondensation of heterochromatin structure. This decondensation process facilitates the DNA damage signaling and promotes proper heterochromatic DSB repair, thus helping to prevent instability of heterochromatic regions of genomes. This review will focus on the functions of the ataxia telangiectasia mutated (ATM) signaling cascade involving ATM, heterochromatin protein 1 (HP1), Krüppel-associated box (KRAB)-associated protein-1 (KAP-1), tat-interacting protein 60 (Tip60), and many other protein factors in DSB-induced decondensation of heterochromatin and subsequent repair of heterochromatic DSBs. As some subsets of DSBs may be repaired in heterochromatin independently of the ATM signaling, a possible repair model is also proposed for ATM-independent repair of these heterochromatic DSBs.
Collapse
Affiliation(s)
- Yi-Li Feng
- Key Laboratory of Surgery of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Ji-Feng Xiang
- Key Laboratory of Surgery of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Na Kong
- Key Laboratory of Surgery of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| | - Xiu-Jun Cai
- Key Laboratory of Surgery of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China
| | - An-Yong Xie
- Key Laboratory of Surgery of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, China Institute of Translational Medicine, Zhejiang University, Hangzhou 310029, China
| |
Collapse
|
242
|
Harding SM, Greenberg RA. Choreographing the Double Strand Break Response: Ubiquitin and SUMO Control of Nuclear Architecture. Front Genet 2016; 7:103. [PMID: 27375678 PMCID: PMC4894868 DOI: 10.3389/fgene.2016.00103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/24/2016] [Indexed: 12/16/2022] Open
Abstract
The cellular response to DNA double strand breaks (DSBs) is a multifaceted signaling program that centers on post-translational modifications including phosphorylation, ubiquitylation and SUMOylation. In this review we discuss how ubiquitin and SUMO orchestrate the recognition of DSBs and explore how this influences chromatin organization. We discuss functional outcomes of this response including transcriptional silencing and how pre-existing chromatin states may control the DSB response and the maintenance of genomic stability.
Collapse
Affiliation(s)
- Shane M Harding
- Departments of Cancer Biology and Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Roger A Greenberg
- Departments of Cancer Biology and Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
243
|
Magni M, Ruscica V, Restelli M, Fontanella E, Buscemi G, Zannini L. CCAR2/DBC1 is required for Chk2-dependent KAP1 phosphorylation and repair of DNA damage. Oncotarget 2016; 6:17817-31. [PMID: 26158765 PMCID: PMC4627348 DOI: 10.18632/oncotarget.4417] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 01/26/2023] Open
Abstract
Cell cycle and apoptosis regulator 2 (CCAR2, formerly known as DBC1) is a nuclear protein largely involved in DNA damage response, apoptosis, metabolism, chromatin structure and transcription regulation. Upon DNA lesions, CCAR2 is phosphorylated by the apical kinases ATM/ATR and this phosphorylation enhances CCAR2 binding to SIRT1, leading to SIRT1 inhibition, p53 acetylation and p53-dependent apoptosis. Recently, we found that also the checkpoint kinase Chk2 and the proteasome activator REGγ are required for efficient CCAR2-mediated inhibition of SIRT1 and induction of p53-dependent apoptosis. Here, we report that CCAR2 is required for the repair of heterochromatic DNA lesions, as cells knock-out for CCAR2 retain, at late time-points after genotoxic treatment, abnormal levels of DNA damage-associated nuclear foci, whose timely resolution is reinstated by HP1β depletion. Conversely, repair of DNA damages in euchromatin are not affected by CCAR2 absence. We also report that the impairment in heterochromatic DNA repair is caused by defective Chk2 activation, detectable in CCAR2 ablated cells, which finally impacts on the phosphorylation of the Chk2 substrate KAP1 that is required for the induction of heterochromatin relaxation and DNA repair. These studies further extend and confirm the role of CCAR2 in the DNA damage response and DNA repair and illustrate a new mechanism of Chk2 activity regulation. Moreover, the involvement of CCAR2 in the repair of heterochromatic DNA breaks suggests a new role for this protein in the maintenance of chromosomal stability, which is necessary to prevent cancer formation.
Collapse
Affiliation(s)
- Martina Magni
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Vincenzo Ruscica
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Current address: Max Planck Institute for Developmental Biology, Tubingen, Germany
| | - Michela Restelli
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Enrico Fontanella
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Giacomo Buscemi
- Department of Biosciences, University of Milan, Milan, Italy
| | - Laura Zannini
- Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| |
Collapse
|
244
|
Gursoy-Yuzugullu O, House N, Price BD. Patching Broken DNA: Nucleosome Dynamics and the Repair of DNA Breaks. J Mol Biol 2016; 428:1846-60. [PMID: 26625977 PMCID: PMC4860187 DOI: 10.1016/j.jmb.2015.11.021] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/12/2015] [Accepted: 11/21/2015] [Indexed: 01/07/2023]
Abstract
The ability of cells to detect and repair DNA double-strand breaks (DSBs) is dependent on reorganization of the surrounding chromatin structure by chromatin remodeling complexes. These complexes promote access to the site of DNA damage, facilitate processing of the damaged DNA and, importantly, are essential to repackage the repaired DNA. Here, we will review the chromatin remodeling steps that occur immediately after DSB production and that prepare the damaged chromatin template for processing by the DSB repair machinery. DSBs promote rapid accumulation of repressive complexes, including HP1, the NuRD complex, H2A.Z and histone methyltransferases at the DSB. This shift to a repressive chromatin organization may be important to inhibit local transcription and limit mobility of the break and to maintain the DNA ends in close contact. Subsequently, the repressive chromatin is rapidly dismantled through a mechanism involving dynamic exchange of the histone variant H2A.Z. H2A.Z removal at DSBs alters the acidic patch on the nucleosome surface, promoting acetylation of the H4 tail (by the NuA4-Tip60 complex) and shifting the chromatin to a more open structure. Further, H2A.Z removal promotes chromatin ubiquitination and recruitment of additional DSB repair proteins to the break. Modulation of the nucleosome surface and nucleosome function during DSB repair therefore plays a vital role in processing of DNA breaks. Further, the nucleosome surface may function as a central hub during DSB repair, directing specific patterns of histone modification, recruiting DNA repair proteins and modulating chromatin packing during processing of the damaged DNA template.
Collapse
Affiliation(s)
- Ozge Gursoy-Yuzugullu
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02132, USA, T: 617 632-4946,
| | - Nealia House
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02132, USA, T: 617 632-4946,
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02132, USA, T: 617 632-4946,
| |
Collapse
|
245
|
Abstract
RNA polymerase II (Pol II) pausing at promoter-proximal regions is a highly regulated step in the transcription cycle. Pause release is facilitated by the P-TEFb kinase, which phosphorylates Pol II and negative elongation factors. Recent studies suggest that P-TEFb (as part of the inhibitory 7SK snRNP) is recruited to promoter-proximal regions through interaction with KAP1/TRIM28/TIF1β to facilitate 'on-site' kinase activation and transcription elongation. Here, I discuss features of this model and future challenges to further hone our understanding of transcriptional regulation including Pol II pausing and pause release.
Collapse
Affiliation(s)
- Iván D'Orso
- a Department of Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
246
|
Mata-Garrido J, Casafont I, Tapia O, Berciano MT, Lafarga M. Neuronal accumulation of unrepaired DNA in a novel specific chromatin domain: structural, molecular and transcriptional characterization. Acta Neuropathol Commun 2016; 4:41. [PMID: 27102221 PMCID: PMC4840862 DOI: 10.1186/s40478-016-0312-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/11/2016] [Indexed: 11/30/2022] Open
Abstract
There is growing evidence that defective DNA repair in neurons with accumulation of DNA lesions and loss of genome integrity underlies aging and many neurodegenerative disorders. An important challenge is to understand how neurons can tolerate the accumulation of persistent DNA lesions without triggering the apoptotic pathway. Here we study the impact of the accumulation of unrepaired DNA on the chromatin architecture, kinetics of the DNA damage response and transcriptional activity in rat sensory ganglion neurons exposed to 1-to-3 doses of ionizing radiation (IR). In particular, we have characterized the structural, molecular and transcriptional compartmentalization of unrepaired DNA in persistent DNA damaged foci (PDDF). IR induced the formation of numerous transient foci, which repaired DNA within the 24 h post-IR, and a 1-to-3 PDDF. The latter concentrate DNA damage signaling and repair factors, including γH2AX, pATM, WRAP53 and 53BP1. The number and size of PDDF was dependent on the doses of IR administered. The proportion of neurons carrying PDDF decreased over time of post-IR, indicating that a slow DNA repair occurs in some foci. The fine structure of PDDF consisted of a loose network of unfolded 30 nm chromatin fiber intermediates, which may provide a structural scaffold accessible for DNA repair factors. Furthermore, the transcription assay demonstrated that PDDF are transcriptionally silent, although transcription occurred in flanking euchromatin. Therefore, the expression of γH2AX can be used as a reliable marker of gene silencing in DNA damaged neurons. Moreover, PDDF were located in repressive nuclear environments, preferentially in the perinucleolar domain where they were frequently associated with Cajal bodies or heterochromatin clumps forming a structural triad. We propose that the sequestration of unrepaired DNA in discrete PDDF and the transcriptional silencing can be essential to preserve genome stability and prevent the synthesis of aberrant mRNA and protein products encoded by damaged genes.
Collapse
|
247
|
Agarwal P, Miller KM. The nucleosome: orchestrating DNA damage signaling and repair within chromatin. Biochem Cell Biol 2016; 94:381-395. [PMID: 27240007 DOI: 10.1139/bcb-2016-0017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
DNA damage occurs within the chromatin environment, which ultimately participates in regulating DNA damage response (DDR) pathways and repair of the lesion. DNA damage activates a cascade of signaling events that extensively modulates chromatin structure and organization to coordinate DDR factor recruitment to the break and repair, whilst also promoting the maintenance of normal chromatin functions within the damaged region. For example, DDR pathways must avoid conflicts between other DNA-based processes that function within the context of chromatin, including transcription and replication. The molecular mechanisms governing the recognition, target specificity, and recruitment of DDR factors and enzymes to the fundamental repeating unit of chromatin, i.e., the nucleosome, are poorly understood. Here we present our current view of how chromatin recognition by DDR factors is achieved at the level of the nucleosome. Emerging evidence suggests that the nucleosome surface, including the nucleosome acidic patch, promotes the binding and activity of several DNA damage factors on chromatin. Thus, in addition to interactions with damaged DNA and histone modifications, nucleosome recognition by DDR factors plays a key role in orchestrating the requisite chromatin response to maintain both genome and epigenome integrity.
Collapse
Affiliation(s)
- Poonam Agarwal
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, USA.,Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, USA.,Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 2506 Speedway Stop A5000, Austin, TX 78712, USA
| |
Collapse
|
248
|
Abstract
This review discusses our current understanding of the small ubiquitin-like modifier (SUMO) pathway and how it functionally intersects with Ras signaling in cancer. The Ras family of small GTPases are frequently mutated in cancer. The role of the SUMO pathway in cancer and in Ras signaling is currently not well understood. Recent studies have shown that the SUMO pathway can both regulate Ras/MAPK pathway activity directly and support Ras-driven oncogenesis through the regulation of proteins that are not direct Ras effectors. We recently discovered that in Ras mutant cancer cells, the SUMOylation status of a subset of proteins is altered and one such protein, KAP1, is required for Ras-driven transformation. A better understanding of the functional interaction between the SUMO and Ras pathways could lead to new insights into the mechanism of Ras-driven oncogenesis.
Collapse
Affiliation(s)
- Haibo Zhang
- a Laboratory of Canter Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| | - Ji Luo
- a Laboratory of Canter Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH , Bethesda , MD , USA
| |
Collapse
|
249
|
Kalousi A, Soutoglou E. Nuclear compartmentalization of DNA repair. Curr Opin Genet Dev 2016; 37:148-157. [DOI: 10.1016/j.gde.2016.05.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/23/2016] [Accepted: 05/26/2016] [Indexed: 12/24/2022]
|
250
|
Teo EC, Valdez BC, Ji J, Li Y, Liu Y, Brammer JE, Hosing C, Nieto Y, Champlin RE, Andersson BS. Synergistic cytotoxicity of busulfan, melphalan, gemcitabine, panobinostat, and bortezomib in lymphoma cells. Leuk Lymphoma 2016; 57:2644-52. [PMID: 26980288 DOI: 10.3109/10428194.2016.1157871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA alkylators busulfan (B) and melphalan (M) act synergistically with gemcitabine (G) against lymphoma cells. To further improve the cytotoxicity, we combined them with the histone deacetylase inhibitor panobinostat (P) and proteasome inhibitor bortezomib (V). Lymphoma cell lines U937 and J45.01, and patient-derived cell samples were exposed to these drugs and the effects on cell proliferation and apoptosis were quantified. The combination BMGPV was found to exert strong synergistic cytotoxicity. Drug exposure to these cells activated the ATM pathway and modified histones at the epigenetic level. Cell death was triggered by the production of reactive oxygen species (ROS), permeabilization of the mitochondrial membrane, upregulation of proapoptotic factors, and activation of caspases. Downregulation of anti-apoptotic proteins c-MYC, MCL-1, and BCL-2 and inhibition of the prosurvival PI3K-AKT-mTOR pathway, culminated in apoptosis. The results of this study support a clinical trial using BMGPV as a possible pre-transplant conditioning regimen for relapsed/refractory lymphoma patients.
Collapse
Affiliation(s)
- Esmeralda C Teo
- a Department of Hematology , Singapore General Hospital , Singapore ;,b Department of Stem Cell Transplantation and Cellular Therapy , UT MD Anderson Cancer Center , Houston , TX , USA
| | - Benigno C Valdez
- b Department of Stem Cell Transplantation and Cellular Therapy , UT MD Anderson Cancer Center , Houston , TX , USA
| | - Jie Ji
- b Department of Stem Cell Transplantation and Cellular Therapy , UT MD Anderson Cancer Center , Houston , TX , USA ;,c Department of Hematology , West China Hospital, Sichuan University , Sichuan , China
| | - Yang Li
- b Department of Stem Cell Transplantation and Cellular Therapy , UT MD Anderson Cancer Center , Houston , TX , USA
| | - Yan Liu
- b Department of Stem Cell Transplantation and Cellular Therapy , UT MD Anderson Cancer Center , Houston , TX , USA
| | - Jonathan E Brammer
- b Department of Stem Cell Transplantation and Cellular Therapy , UT MD Anderson Cancer Center , Houston , TX , USA
| | - Chitra Hosing
- b Department of Stem Cell Transplantation and Cellular Therapy , UT MD Anderson Cancer Center , Houston , TX , USA
| | - Yago Nieto
- b Department of Stem Cell Transplantation and Cellular Therapy , UT MD Anderson Cancer Center , Houston , TX , USA
| | - Richard E Champlin
- b Department of Stem Cell Transplantation and Cellular Therapy , UT MD Anderson Cancer Center , Houston , TX , USA
| | - Borje S Andersson
- b Department of Stem Cell Transplantation and Cellular Therapy , UT MD Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|