201
|
The Isolation and Deep Sequencing of Mitochondrial DNA. Methods Mol Biol 2021. [PMID: 34080167 DOI: 10.1007/978-1-0716-1270-5_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In recent years, next-generation sequencing (NGS) has become a powerful tool for studying both inherited and somatic heteroplasmic mitochondrial DNA (mtDNA) variation. NGS has proved particularly powerful when combined with single-cell isolation techniques, allowing the investigation of low-level heteroplasmic variants both between cells and within tissues. Nevertheless, there remain significant challenges, especially around the selective enrichment of mtDNA from total cellular DNA and the avoidance of nuclear pseudogenes. This chapter summarizes the techniques needed to enrich, amplify, sequence, and analyse mtDNA using NGS .
Collapse
|
202
|
Beckstead MJ, Howell RD. Progressive parkinsonism due to mitochondrial impairment: Lessons from the MitoPark mouse model. Exp Neurol 2021; 341:113707. [PMID: 33753138 PMCID: PMC8169575 DOI: 10.1016/j.expneurol.2021.113707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
The cardinal pathophysiological finding of Parkinson's disease (PD) is a chronic, progressive degeneration of dopamine (DA) neurons in the substantia nigra, which is responsible for the motor and some of the non-motor symptomatology. While the primary causes of nigrostriatal degeneration are hotly debated, considerable evidence supports a central role for impaired mitochondrial function. Postmortem analysis of PD patients reveals impaired respiratory chains and increased mutations of mitochondrial DNA (mtDNA), in addition to increased markers of oxidative stress indicative of mitochondrial impairment. Most animal models of PD, both genetic and toxin-based, target some component of mitochondrial function to reproduce aspects of the human disease. One model that continues to gain attention is the MitoPark mouse, created through a cell type-specific knockout of mitochondrial transcription factor A specifically in midbrain DA neurons. This model effectively recapitulates the slowly developing, adult onset motor decline seen in PD due to mass loss of DA neurons. MitoPark mice therefore represent an effective tool for studying the sequence of events that occurs in the early stages of DA neuron degeneration following mitochondrial impairment, as well as for testing the efficacy of potential disease-modifying therapies in a progressive model of neurodegeneration. A targeted review of key findings from MitoPark mice has not been published since the early years following the initial report of the model in 2007. The current review synthesizes findings from several groups that are exploring MitoPark mice and discusses implications for the future identification of disease-modifying treatments for PD.
Collapse
Affiliation(s)
- Michael J Beckstead
- Oklahoma Medical Research Foundation, Aging & Metabolism Research Program, USA.
| | - Rebecca D Howell
- Oklahoma Medical Research Foundation, Aging & Metabolism Research Program, USA
| |
Collapse
|
203
|
Lou MM, Tang XQ, Wang GM, He J, Luo F, Guan MF, Wang F, Zou H, Wang JY, Zhang Q, Xu MJ, Shi QL, Shen LB, Ma GM, Wu Y, Zhang YY, Liang AB, Wang TH, Xiong LL, Wang J, Xu J, Wang WY. Long noncoding RNA BS-DRL1 modulates the DNA damage response and genome stability by interacting with HMGB1 in neurons. Nat Commun 2021; 12:4075. [PMID: 34210972 PMCID: PMC8249382 DOI: 10.1038/s41467-021-24236-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/09/2021] [Indexed: 12/15/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are known to regulate DNA damage response (DDR) and genome stability in proliferative cells. However, it remains unknown whether lncRNAs are involved in these vital biological processes in post-mitotic neurons. Here, we report and characterize a lncRNA, termed Brain Specific DNA-damage Related lncRNA1 (BS-DRL1), in the central nervous system. BS-DRL1 is a brain-specific lncRNA and depletion of BS-DRL1 in neurons leads to impaired DDR upon etoposide treatment in vitro. Mechanistically, BS-DRL1 interacts with HMGB1, a chromatin protein that is important for genome stability, and is essential for the assembly of HMGB1 on chromatin. BS-DRL1 mediated DDR exhibits cell-type specificity in the cortex and cerebellum in gamma-irradiated mice and BS-DRL1 knockout mice show impaired motor function and concomitant purkinje cell degeneration. Our study extends the understanding of lncRNAs in DDR and genome stability and implies a protective role of lncRNA against neurodegeneration.
Collapse
Affiliation(s)
- Min-Min Lou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese academy of Science, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Qiang Tang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese academy of Science, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guang-Ming Wang
- East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Hematology, Tongji Hospital of Tongji University School of Medicine, Shanghai, China
- Postdoctoral Station of Clinical Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jia He
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese academy of Science, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fang Luo
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese academy of Science, Shanghai, 200032, China
| | - Ming-Feng Guan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese academy of Science, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese academy of Science, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huan Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese academy of Science, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Ying Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese academy of Science, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qun Zhang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Ming-Jian Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese academy of Science, Shanghai, 200032, China
| | - Qi-Li Shi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese academy of Science, Shanghai, 200032, China
| | - Li-Bing Shen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese academy of Science, Shanghai, 200032, China
| | - Guo-Ming Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese academy of Science, Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yao-Yang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese academy of Science, Shanghai, 200032, China
| | - Ai-Bin Liang
- Postdoctoral Station of Clinical Medicine, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ting-Hua Wang
- Animal Center of Zoology, Institute of Neuroscience, Kunming medical University, Kunming, China
| | - Liu-Lin Xiong
- Animal Center of Zoology, Institute of Neuroscience, Kunming medical University, Kunming, China
| | - Jian Wang
- Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Jing'an District, Shanghai, China.
| | - Jun Xu
- East Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Wen-Yuan Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese academy of Science, Shanghai, 200032, China.
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Animal Center of Zoology, Institute of Neuroscience, Kunming medical University, Kunming, China.
| |
Collapse
|
204
|
Frison M, Faccenda D, Abeti R, Rigon M, Strobbe D, England-Rendon BS, Cash D, Barnes K, Sadeghian M, Sajic M, Wells LA, Xia D, Giunti P, Smith K, Mortiboys H, Turkheimer FE, Campanella M. The translocator protein (TSPO) is prodromal to mitophagy loss in neurotoxicity. Mol Psychiatry 2021; 26:2721-2739. [PMID: 33664474 PMCID: PMC8505241 DOI: 10.1038/s41380-021-01050-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/13/2021] [Accepted: 02/05/2021] [Indexed: 12/14/2022]
Abstract
Dysfunctional mitochondria characterise Parkinson's Disease (PD). Uncovering etiological molecules, which harm the homeostasis of mitochondria in response to pathological cues, is therefore pivotal to inform early diagnosis and therapy in the condition, especially in its idiopathic forms. This study proposes the 18 kDa Translocator Protein (TSPO) to be one of those. Both in vitro and in vivo data show that neurotoxins, which phenotypically mimic PD, increase TSPO to enhance cellular redox-stress, susceptibility to dopamine-induced cell death, and repression of ubiquitin-dependent mitophagy. TSPO amplifies the extracellular signal-regulated protein kinase 1 and 2 (ERK1/2) signalling, forming positive feedback, which represses the transcription factor EB (TFEB) and the controlled production of lysosomes. Finally, genetic variances in the transcriptome confirm that TSPO is required to alter the autophagy-lysosomal pathway during neurotoxicity.
Collapse
Affiliation(s)
- Michele Frison
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London, United Kingdom
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Danilo Faccenda
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London, United Kingdom
| | - Rosella Abeti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square London, United Kingdom
| | - Manuel Rigon
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London, United Kingdom
- Department of Biology, University of Rome TorVergata, Via della Ricerca Scientifica, Rome, Italy
| | - Daniela Strobbe
- Department of Biology, University of Rome TorVergata, Via della Ricerca Scientifica, Rome, Italy
| | - Britannie S England-Rendon
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, Institute of Psychiatry, King's College London, Camberwell, United Kingdom
| | - Katy Barnes
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Mona Sadeghian
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Marija Sajic
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Lisa A Wells
- Imanova Limited, Centre for Imaging Sciences, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Dong Xia
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London, United Kingdom
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square London, United Kingdom
| | - Kenneth Smith
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, King's College London, Camberwell, United Kingdom
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, Royal College Street, London, United Kingdom.
- Department of Biology, University of Rome TorVergata, Via della Ricerca Scientifica, Rome, Italy.
- University College London Consortium for Mitochondrial Research, London, United Kingdom.
| |
Collapse
|
205
|
Dorszewska J, Kowalska M, Prendecki M, Piekut T, Kozłowska J, Kozubski W. Oxidative stress factors in Parkinson's disease. Neural Regen Res 2021; 16:1383-1391. [PMID: 33318422 PMCID: PMC8284265 DOI: 10.4103/1673-5374.300980] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/24/2020] [Accepted: 10/21/2020] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease (PD) is the second most common cause of neurodegeneration. Over the last two decades, various hypotheses have been proposed to explain the etiology of PD. Among these is the oxidant-antioxidant theory, which asserts that local and systemic oxidative damage triggered by reactive oxygen species and other free radicals may promote dopaminergic neuron degeneration. Excessive reactive oxygen species formation, one of the underlying causes of pathology in the course of PD has been evidenced by various studies showing that oxidized macromolecules including lipids, proteins, and nucleic acids accumulate in brain tissues of PD patients. DNA oxidation may produce various lesions in the course of PD. Mutations incurred as a result of DNA oxidation may further enhance reactive oxygen species production in the brains of PD patients, exacerbating neuronal loss due to defects in the mitochondrial electron transport chain, antioxidant depletion, and exposure to toxic oxidized dopamine. The protein products of SNCA, PRKN, PINK1, DJ1, and LRRK2 genes are associated with disrupted oxidoreductive homeostasis in PD. SNCA is the first gene linked with familial PD and is currently known to be affected by six mutations correlated with the disorder: A53T, A30P, E46K, G51D, H50Q and A53E. PRKN encodes Parkin, an E3 ubiquitin ligase which mediates the proteasome degradation of redundant and disordered proteins such as glycosylated α-synuclein. Over 100 mutations have been found among the 12 exons of PRKN. PINK1, a mitochondrial kinase highly expressed in the brain, may undergo loss of function mutations which constitute approximately 1-8% of early onset PD cases. More than 50 PD-promoting mutations have been found in PINK1. Mutations in DJ-1, a neuroprotective protein, are a rare cause of early onset PD and constitute only 1% of cases. Around 20 mutations have been found in DJ1 among PD patients thus far. Mutations in the LRRK2 gene are the most common known cause of familial autosomal dominant PD and sporadic PD. Treatment of PD patients, especially in the advanced stages of the disease, is very difficult. The first step in managing progressive PD is to optimize dopaminergic therapy by increasing the doses of dopamine agonists and L-dopa. The next step is the introduction of advanced therapies, such as deep brain stimulation. Genetic factors may influence the response to L-dopa and deep brain stimulation therapy and the regulation of oxidative stress. Consequently, research into minimally invasive surgical interventions, as well as therapies that target the underlying etiology of PD is warranted.
Collapse
Affiliation(s)
- Jolanta Dorszewska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Kowalska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Michał Prendecki
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Thomas Piekut
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Kozłowska
- Laboratory of Neurobiology, Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| | - Wojciech Kozubski
- Chair and Department of Neurology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
206
|
Paß T, Wiesner RJ, Pla-Martín D. Selective Neuron Vulnerability in Common and Rare Diseases-Mitochondria in the Focus. Front Mol Biosci 2021; 8:676187. [PMID: 34295920 PMCID: PMC8290884 DOI: 10.3389/fmolb.2021.676187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial dysfunction is a central feature of neurodegeneration within the central and peripheral nervous system, highlighting a strong dependence on proper mitochondrial function of neurons with especially high energy consumptions. The fitness of mitochondria critically depends on preservation of distinct processes, including the maintenance of their own genome, mitochondrial dynamics, quality control, and Ca2+ handling. These processes appear to be differently affected in common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, as well as in rare neurological disorders, including Huntington’s disease, Amyotrophic Lateral Sclerosis and peripheral neuropathies. Strikingly, particular neuron populations of different morphology and function perish in these diseases, suggesting that cell-type specific factors contribute to the vulnerability to distinct mitochondrial defects. Here we review the disruption of mitochondrial processes in common as well as in rare neurological disorders and its impact on selective neurodegeneration. Understanding discrepancies and commonalities regarding mitochondrial dysfunction as well as individual neuronal demands will help to design new targets and to make use of already established treatments in order to improve treatment of these diseases.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, Cologne, Germany
| |
Collapse
|
207
|
Moya GE, Rivera PD, Dittenhafer-Reed KE. Evidence for the Role of Mitochondrial DNA Release in the Inflammatory Response in Neurological Disorders. Int J Mol Sci 2021; 22:7030. [PMID: 34209978 PMCID: PMC8268735 DOI: 10.3390/ijms22137030] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondria are regarded as the metabolic centers of cells and are integral in many other cell processes, including the immune response. Each mitochondrion contains numerous copies of mitochondrial DNA (mtDNA), a small, circular, and bacterial-like DNA. In response to cellular damage or stress, mtDNA can be released from the mitochondrion and trigger immune and inflammatory responses. mtDNA release into the cytosol or bloodstream can occur as a response to hypoxia, sepsis, traumatic injury, excitatory cytotoxicity, or drastic mitochondrial membrane potential changes, some of which are hallmarks of neurodegenerative and mood disorders. Released mtDNA can mediate inflammatory responses observed in many neurological and mood disorders by driving the expression of inflammatory cytokines and the interferon response system. The current understanding of the role of mtDNA release in affective mood disorders and neurodegenerative diseases will be discussed.
Collapse
Affiliation(s)
| | - Phillip D. Rivera
- Department of Chemistry and Biology, Hope College, Holland, MI 49423, USA;
| | | |
Collapse
|
208
|
D'Errico M, Parlanti E, Pascucci B, Filomeni G, Mastroberardino PG, Dogliotti E. The interplay between mitochondrial functionality and genome integrity in the prevention of human neurologic diseases. Arch Biochem Biophys 2021; 710:108977. [PMID: 34174223 DOI: 10.1016/j.abb.2021.108977] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/23/2022]
Abstract
As mitochondria are vulnerable to oxidative damage and represent the main source of reactive oxygen species (ROS), they are considered key tuners of ROS metabolism and buffering, whose dysfunction can progressively impact neuronal networks and disease. Defects in DNA repair and DNA damage response (DDR) may also affect neuronal health and lead to neuropathology. A number of congenital DNA repair and DDR defective syndromes, indeed, show neurological phenotypes, and a growing body of evidence indicate that defects in the mechanisms that control genome stability in neurons acts as aging-related modifiers of common neurodegenerative diseases such as Alzheimer, Parkinson's, Huntington diseases and Amyotrophic Lateral Sclerosis. In this review we elaborate on the established principles and recent concepts supporting the hypothesis that deficiencies in either DNA repair or DDR might contribute to neurodegeneration via mechanisms involving mitochondrial dysfunction/deranged metabolism.
Collapse
Affiliation(s)
| | - Eleonora Parlanti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Pascucci
- Institute of Crystallography, Consiglio Nazionale Delle Ricerche, Rome, Italy
| | - Giuseppe Filomeni
- Redox Biology, Danish Cancer Society Research Center, Copenhagen, Denmark; Center for Healthy Aging, Copenhagen University, Copenhagen, Denmark; Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Pier Giorgio Mastroberardino
- Department of Molecular Genetics, Erasmus MC, Rotterdam, the Netherlands; IFOM- FIRC Institute of Molecular Oncology, Milan, Italy; Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Eugenia Dogliotti
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
209
|
Saha T, Roy S, Chakraborty R, Biswas A, Das SK, Ray K, Ray J, Sengupta M. Mitochondrial DNA Haplogroups and Three Independent Polymorphisms have no Association with the Risk of Parkinson's Disease in East Indian Population. Neurol India 2021; 69:461-465. [PMID: 33904476 DOI: 10.4103/0028-3886.314553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Parkinson's disease (PD) is a multifaceted illness affecting ~ 0.3% of the world population. The genetic complexity of PD has not been, fully elucidated. Several studies suggest that mitochondrial DNA variants are associated with PD. Objective Here, we have explored the possibility of genetic association between mitochondrial haplogroups as well as three independent SNPs with PD in a representative east Indian population. Methods and Material The Asian mtDNA haplogroups: M, N, R, B, D, M7, and 3 other SNPs: 4336 T/C, 9055 G/A, 13708 G/A were genotyped in 100 sporadic PD patients and 100 matched controls via conventional PCR-RFLP-sequencing approach. Results The distribution of mtDNA haplogroups, as well as 3 single polymorphisms, did not show any significant differences (P > 0.05) between patients and controls. Conclusion This is the first of its kind of study from India that suggests no association of selected mitochondrial DNA variations with PD.
Collapse
Affiliation(s)
- Tania Saha
- Department of Genetics, University of Calcutta, Kolkata, West Bengal, India
| | - Somrita Roy
- Department of Genetics, University of Calcutta, Kolkata, West Bengal, India
| | | | - Arindam Biswas
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, West Bengal, India
| | - Shyamal K Das
- Movement Disorders Clinic, Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Kunal Ray
- School of Biological Sciences, RKMVERI, Narendrapur, West Bengal, India
| | - Jharna Ray
- S. N. Pradhan Centre for Neurosciences, University of Calcutta, Kolkata, West Bengal, India
| | - Mainak Sengupta
- Department of Genetics, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
210
|
PINK1 and parkin shape the organism-wide distribution of a deleterious mitochondrial genome. Cell Rep 2021; 35:109203. [PMID: 34077728 DOI: 10.1016/j.celrep.2021.109203] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 03/23/2021] [Accepted: 04/16/2021] [Indexed: 12/14/2022] Open
Abstract
In multiple species, certain tissue types are prone to acquiring greater loads of mitochondrial genome (mtDNA) mutations relative to others, but the mechanisms that drive these heteroplasmy differences are unknown. We find that the conserved PTEN-induced putative kinase (PINK1/PINK-1) and the E3 ubiquitin-protein ligase parkin (PDR-1), which are required for mitochondrial autophagy (mitophagy), underlie stereotyped differences in heteroplasmy of a deleterious mitochondrial genome mutation (ΔmtDNA) between major somatic tissues types in Caenorhabditis elegans. We demonstrate that tissues prone to accumulating ΔmtDNA have lower mitophagy responses than those with low mutation levels. Moreover, we show that ΔmtDNA heteroplasmy increases when proteotoxic species that are associated with neurodegenerative disease and mitophagy inhibition are overexpressed in the nervous system. These results suggest that PINK1 and parkin drive organism-wide patterns of heteroplasmy and provide evidence of a causal link between proteotoxicity, mitophagy, and mtDNA mutation levels in neurons.
Collapse
|
211
|
Focus on the Complex Interconnection between Cancer, Narcolepsy and Other Neurodegenerative Diseases: A Possible Case of Orexin-Dependent Inverse Comorbidity. Cancers (Basel) 2021; 13:cancers13112612. [PMID: 34073579 PMCID: PMC8198883 DOI: 10.3390/cancers13112612] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary This narrative review first describes from several points of view the complex interrelationship between cancer and neurodegeneration, with special attention to the mechanisms that might underlie an inverse relationship between them. In particular, the mechanisms that might induce an imbalance between cell apoptotic and proliferative stimuli are discussed. Second, the review summarizes findings on orexins and their involvement in narcolepsy, neurodegenerative diseases, and cancer, starting from epidemiological data then addressing laboratory findings, animal models, and human clinical observational and interventional investigations. Important research efforts are warranted on these topics, as they might lead to novel therapeutic approaches to both neurodegenerative diseases and cancer. Abstract Conditions such as Alzheimer’s (AD) and Parkinson’s diseases (PD) are less prevalent in cancer survivors and, overall, cancer is less prevalent in subjects with these neurodegenerative disorders. This seems to suggest that a propensity towards one type of disease may decrease the risk of the other. In addition to epidemiologic data, there is also evidence of a complex biological interconnection, with genes, proteins, and pathways often showing opposite dysregulation in cancer and neurodegenerative diseases. In this narrative review, we focus on the possible role played by orexin signaling, which is altered in patients with narcolepsy type 1 and in those with AD and PD, and which has been linked to β-amyloid brain levels and inflammation in mouse models and to cancer in cell lines. Taken together, these lines of evidence depict a possible case of inverse comorbidity between cancer and neurodegenerative disorders, with a role played by orexins. These considerations suggest a therapeutic potential of orexin modulation in diverse pathologies such as narcolepsy, neurodegenerative disorders, and cancer.
Collapse
|
212
|
Behl T, Kaur G, Sehgal A, Zengin G, Singh S, Ahmadi A, Bungau S. Flavonoids, the Family of Plant-derived Antioxidants making inroads into Novel Therapeutic Design against IR-induced Oxidative Stress in Parkinson's Disease. Curr Neuropharmacol 2021; 20:324-343. [PMID: 34030619 PMCID: PMC9413797 DOI: 10.2174/1570159x19666210524152817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/17/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Ionizing radiation from telluric sources is unceasingly an unprotected pitfall to humans. Thus, the foremost contributors to human exposure are global and medical radiations. Various evidences assembled during preceding years reveal the pertinent role of ionizing radiation-induced oxidative stress in the progression of neurodegenerative insults, such as Parkinson’s disease, which have been contributing to increased proliferation and generation of reactive oxygen species. Objective: This review delineates the role of ionizing radiation-induced oxidative stress in Parkinson’s disease and proposes novel therapeutic interventions of flavonoid family, offering effective management and slowing down the progression of Parkinson’s disease. Methods: Published papers were searched in MEDLINE, PubMed, etc., published to date for in-depth database collection. Results: The oxidative damage may harm the non-targeted cells. It can also modulate the functions of the central nervous system, such as protein misfolding, mitochondria dysfunction, increased levels of oxidized lipids, and dopaminergic cell death, which accelerate the progression of Parkinson’s disease at the molecular, cellular, or tissue levels. In Parkinson’s disease, reactive oxygen species exacerbate the production of nitric oxides and superoxides by activated microglia, rendering death of dopaminergic neuronal cell through different mechanisms. Conclusion: Rising interest has extensively engrossed in the clinical trial designs based on the plant-derived family of antioxidants. They are known to exert multifarious impact on neuroprotection via directly suppressing ionizing radiation-induced oxidative stress and reactive oxygen species production or indirectly increasing the dopamine levels and activating the glial cells.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gagandeep Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, Konya, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Centre, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari. Iran
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea. Romania
| |
Collapse
|
213
|
Oxygen tension modulates the mitochondrial genetic bottleneck and influences the segregation of a heteroplasmic mtDNA variant in vitro. Commun Biol 2021; 4:584. [PMID: 33990696 PMCID: PMC8121860 DOI: 10.1038/s42003-021-02069-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
Most humans carry a mixed population of mitochondrial DNA (mtDNA heteroplasmy) affecting ~1–2% of molecules, but rapid percentage shifts occur over one generation leading to severe mitochondrial diseases. A decrease in the amount of mtDNA within the developing female germ line appears to play a role, but other sub-cellular mechanisms have been implicated. Establishing an in vitro model of early mammalian germ cell development from embryonic stem cells, here we show that the reduction of mtDNA content is modulated by oxygen and reaches a nadir immediately before germ cell specification. The observed genetic bottleneck was accompanied by a decrease in mtDNA replicating foci and the segregation of heteroplasmy, which were both abolished at higher oxygen levels. Thus, differences in oxygen tension occurring during early development likely modulate the amount of mtDNA, facilitating mtDNA segregation and contributing to tissue-specific mutation loads. Using an in vitro culture system, Pezet et al. studied the influence of oxygen on the mitochondrial DNA (mtDNA) in primordial germ cell-like cells (PGCLCs) in vitro. Low oxygen levels resembling in vivo reduced the cell mtDNA content causing a genetic bottleneck and the segregation of different mtDNA genotypes.
Collapse
|
214
|
Gezen-Ak D, Alaylıoğlu M, Genç G, Şengül B, Keskin E, Sordu P, Güleç ZEK, Apaydın H, Bayram-Gürel Ç, Ulutin T, Yılmazer S, Ertan S, Dursun E. Altered Transcriptional Profile of Mitochondrial DNA-Encoded OXPHOS Subunits, Mitochondria Quality Control Genes, and Intracellular ATP Levels in Blood Samples of Patients with Parkinson's Disease. J Alzheimers Dis 2021; 74:287-307. [PMID: 32007957 DOI: 10.3233/jad-191164] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunctions are significant contributors to neurodegeneration. One result or a cause of mitochondrial dysfunction might be the disruption of mtDNA transcription. Limited data indicated an altered expression of mtDNA encoded transcripts in Alzheimer's disease (AD) or Parkinson's disease (PD). The number of mitochondria is high in cells with a high energy demand, such as muscle or nerve cells. AD or PD involves increased risk of cardiomyopathy, suggesting that mitochondrial dysfunction might be systemic. If it is systemic, we should observe it in different cell types. Given that, we wanted to investigate any disruption in the regulation of mtDNA encoded gene expression in addition to PINK1, PARKIN, and ATP levels in peripheral blood samples of PD cases who are affected by a neurodegenerative disorder that is very well known by its mitochondrial aspects. Our results showed for the first time that: 1) age of onset > 50 PD sporadic (PDS) cases: mtDNA transcription and quality control genes were affected; 2) age of onset <50 PDS cases: only mtDNA transcription was affected; and 3) PD cases with familial background: only quality control genes were affected. mtDNA copy number was not a confounder. Intracellular ATP levels of PD case subgroups were significantly higher than those of healthy subjects. We suggest that a systemic dysregulation of transcription of mtDNA or mitochondrial quality control genes might result in the development of a sporadic form of the disease. Additionally, ATP elevation might be an independent compensatory and response mechanism. Hyperactive cells in AD and PD require further investigation.
Collapse
Affiliation(s)
- Duygu Gezen-Ak
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Merve Alaylıoğlu
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gençer Genç
- Department of Neurology, Şişli Etfal Training and Research Hospital, Istanbul, Turkey
| | - Büşra Şengül
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ebru Keskin
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Pelin Sordu
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Zeynep Ece Kaya Güleç
- Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Hülya Apaydın
- Department of Neurology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Çiğdem Bayram-Gürel
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Selma Yılmazer
- Department of Medical Biology, Faculty of Medicine, Altınbaş University, Istanbul, Turkey
| | - Sibel Ertan
- Department of Neurology, Faculty of Medicine, Koç University, Istanbul, Turkey
| | - Erdinç Dursun
- Department of Medical Biology, Brain and Neurodegenerative Disorders Research Laboratories, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.,Department of Neuroscience, Institute of Neurological Sciences, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
215
|
Chen C, McDonald D, Blain A, Sachdeva A, Bone L, Smith ALM, Warren C, Pickett SJ, Hudson G, Filby A, Vincent AE, Turnbull DM, Reeve AK. Imaging mass cytometry reveals generalised deficiency in OXPHOS complexes in Parkinson's disease. NPJ Parkinsons Dis 2021; 7:39. [PMID: 33980828 PMCID: PMC8115071 DOI: 10.1038/s41531-021-00182-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Here we report the application of a mass spectrometry-based technology, imaging mass cytometry, to perform in-depth proteomic profiling of mitochondrial complexes in single neurons, using metal-conjugated antibodies to label post-mortem human midbrain sections. Mitochondrial dysfunction, particularly deficiency in complex I has previously been associated with the degeneration of dopaminergic neurons in Parkinson's disease. To further our understanding of the nature of this dysfunction, and to identify Parkinson's disease specific changes, we validated a panel of antibodies targeting subunits of all five mitochondrial oxidative phosphorylation complexes in dopaminergic neurons from Parkinson's disease, mitochondrial disease, and control cases. Detailed analysis of the expression profile of these proteins, highlighted heterogeneity between individuals. There is a widespread decrease in expression of all complexes in Parkinson's neurons, although more severe in mitochondrial disease neurons, however, the combination of affected complexes varies between the two groups. We also provide evidence of a potential neuronal response to mitochondrial dysfunction through a compensatory increase in mitochondrial mass. This study highlights the use of imaging mass cytometry in the assessment and analysis of expression of oxidative phosphorylation proteins, revealing the complexity of deficiencies of these proteins within individual neurons which may contribute to and drive neurodegeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Chun Chen
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David McDonald
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Alasdair Blain
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Ashwin Sachdeva
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Bone
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anna L M Smith
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Charlotte Warren
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sarah J Pickett
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Filby
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Flow Cytometry Core Facility, Newcastle University, Newcastle upon Tyne, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Amy K Reeve
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
216
|
van Vliet T, Casciaro F, Demaria M. To breathe or not to breathe: Understanding how oxygen sensing contributes to age-related phenotypes. Ageing Res Rev 2021; 67:101267. [PMID: 33556549 DOI: 10.1016/j.arr.2021.101267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/21/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
Aging is characterized by a progressive loss of tissue integrity and functionality due to disrupted homeostasis. Molecular oxygen is pivotal to maintain tissue functions, and aerobic species have evolved a sophisticated sensing system to ensure proper oxygen supply and demand. It is not surprising that aberrations in oxygen and oxygen-associated pathways subvert health and promote different aspects of aging. In this review, we discuss emerging findings on how oxygen-sensing mechanisms regulate different cellular and molecular processes during normal physiology, and how dysregulation of oxygen availability lead to disease and aging. We describe various clinical manifestations associated with deregulation of oxygen balance, and how oxygen-modulating therapies and natural oxygen oscillations influence longevity. We conclude by discussing how a better understanding of oxygen-related mechanisms that orchestrate aging processes may lead to the development of new therapeutic strategies to extend healthy aging.
Collapse
|
217
|
Jiang L, Zhou S, Zhang X, Li C, Ji S, Mao H, Jiang X. Mitochondrion-specific dendritic lipopeptide liposomes for targeted sub-cellular delivery. Nat Commun 2021; 12:2390. [PMID: 33888699 PMCID: PMC8062597 DOI: 10.1038/s41467-021-22594-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 03/22/2021] [Indexed: 01/16/2023] Open
Abstract
The mitochondrion is an important sub-cellular organelle responsible for the cellular energetic source and processes. Owing to its unique sensitivity to heat and reactive oxygen species, the mitochondrion is an appropriate target for photothermal and photodynamic treatment for cancer. However, targeted delivery of therapeutics to mitochondria remains a great challenge due to their location in the sub-cellular compartment and complexity of the intracellular environment. Herein, we report a class of the mitochondrion-targeted liposomal delivery platform consisting of a guanidinium-based dendritic peptide moiety mimicking mitochondrion protein transmembrane signaling to exert mitochondrion-targeted delivery with pH sensitive and charge-reversible functions to enhance tumor accumulation and cell penetration. Compared to the current triphenylphosphonium (TPP)-based mitochondrion targeting system, this dendritic lipopeptide (DLP) liposomal delivery platform exhibits about 3.7-fold higher mitochondrion-targeted delivery efficacy. Complete tumor eradication is demonstrated in mice bearing 4T1 mammary tumors after combined photothermal and photodynamic therapies delivered by the reported DLP platform.
Collapse
Affiliation(s)
- Lei Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Sensen Zhou
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Xiaoke Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Cheng Li
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Shilu Ji
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
218
|
Ainslie A, Huiting W, Barazzuol L, Bergink S. Genome instability and loss of protein homeostasis: converging paths to neurodegeneration? Open Biol 2021; 11:200296. [PMID: 33878947 PMCID: PMC8059563 DOI: 10.1098/rsob.200296] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Genome instability and loss of protein homeostasis are hallmark events of age-related diseases that include neurodegeneration. Several neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis are characterized by protein aggregation, while an impaired DNA damage response (DDR) as in many genetic DNA repair disorders leads to pronounced neuropathological features. It remains unclear to what degree these cellular events interconnect with each other in the development of neurological diseases. This review highlights how the loss of protein homeostasis and genome instability influence one other. We will discuss studies that illustrate this connection. DNA damage contributes to many neurodegenerative diseases, as shown by an increased level of DNA damage in patients, possibly due to the effects of protein aggregates on chromatin, the sequestration of DNA repair proteins and novel putative DNA repair functions. Conversely, genome stability is also important for protein homeostasis. For example, gene copy number variations and the loss of key DDR components can lead to marked proteotoxic stress. An improved understanding of how protein homeostasis and genome stability are mechanistically connected is needed and promises to lead to the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Anna Ainslie
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Wouter Huiting
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Lara Barazzuol
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Steven Bergink
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
219
|
Duarte JN. Neuroinflammatory Mechanisms of Mitochondrial Dysfunction and Neurodegeneration in Glaucoma. J Ophthalmol 2021; 2021:4581909. [PMID: 33953963 PMCID: PMC8064803 DOI: 10.1155/2021/4581909] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 06/29/2020] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
The exact mechanism of retinal ganglion cell loss in the pathogenesis of glaucoma is yet to be understood. Mitochondrial damage-associated molecular patterns (DAMPs) resulting from mitochondrial dysfunction have been linked to Leber's hereditary optic neuropathy and autosomal dominant optic atrophy, as well as to brain neurodegenerative diseases. Recent evidence shows that, in conditions where mitochondria are damaged, a sustained inflammatory response and downstream pathological inflammation may ensue. Mitochondrial damage has been linked to the accumulation of age-related mitochondrial DNA mutations and mitochondrial dysfunction, possibly through aberrant reactive oxygen species production and defective mitophagy. The present review focuses on how mitochondrial dysfunction may overwhelm the ability of neurons and glial cells to adequately maintain homeostasis and how mitochondria-derived DAMPs trigger the immune system and induce neurodegeneration.
Collapse
Affiliation(s)
- Joao N. Duarte
- Neuroinflammation Unit, Biotech Research & Innovation Center, University of Copenhagen, Copenhagen, Denmark
- Department of Ophthalmology, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Immunology, Section 7631, Rigshospitalet, Copenhagen, Denmark
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
220
|
Lareau CA, Ludwig LS, Muus C, Gohil SH, Zhao T, Chiang Z, Pelka K, Verboon JM, Luo W, Christian E, Rosebrock D, Getz G, Boland GM, Chen F, Buenrostro JD, Hacohen N, Wu CJ, Aryee MJ, Regev A, Sankaran VG. Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling. Nat Biotechnol 2021; 39:451-461. [PMID: 32788668 PMCID: PMC7878580 DOI: 10.1038/s41587-020-0645-6] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/17/2020] [Indexed: 12/24/2022]
Abstract
Natural mitochondrial DNA (mtDNA) mutations enable the inference of clonal relationships among cells. mtDNA can be profiled along with measures of cell state, but has not yet been combined with the massively parallel approaches needed to tackle the complexity of human tissue. Here, we introduce a high-throughput, droplet-based mitochondrial single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq), a method that combines high-confidence mtDNA mutation calling in thousands of single cells with their concomitant high-quality accessible chromatin profile. This enables the inference of mtDNA heteroplasmy, clonal relationships, cell state and accessible chromatin variation in individual cells. We reveal single-cell variation in heteroplasmy of a pathologic mtDNA variant, which we associate with intra-individual chromatin variability and clonal evolution. We clonally trace thousands of cells from cancers, linking epigenomic variability to subclonal evolution, and infer cellular dynamics of differentiating hematopoietic cells in vitro and in vivo. Taken together, our approach enables the study of cellular population dynamics and clonal properties in vivo.
Collapse
Affiliation(s)
- Caleb A Lareau
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Division of Medical Sciences, Harvard Medical School, Boston, MA, USA.
| | - Leif S Ludwig
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Christoph Muus
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Satyen H Gohil
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Academic Haematology, UCL Cancer Institute, London, UK
| | - Tongtong Zhao
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Zachary Chiang
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Karin Pelka
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey M Verboon
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wendy Luo
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Elena Christian
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Daniel Rosebrock
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gad Getz
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Genevieve M Boland
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fei Chen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jason D Buenrostro
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Nir Hacohen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Catherine J Wu
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Martin J Aryee
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology, Harvard Medical School, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
- Department of Biology and Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Vijay G Sankaran
- Division of Hematology/Oncology, Boston Children's Hospital and Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
221
|
Abstract
Mitochondria are organelles central to myriad cellular processes. To maintain mitochondrial health, various processes co-operate at both the molecular and organelle level. At the molecular level, mitochondria can sense imbalances in their homeostasis and adapt to these by signaling to the nucleus. This mito-nuclear communication leads to the expression of nuclear stress response genes. Upon external stimuli, mitochondria can also alter their morphology accordingly, by inducing fission or fusion. In an extreme situation, mitochondria are degraded by mitophagy. Adequate function and regulation of these mitochondrial quality control pathways are crucial for cellular homeostasis. As we discuss, alterations in these processes have been linked to several pathologies including neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Alba Roca-Portoles
- Institute of Cancer Sciences, Cancer Research UK Beatson Institute, University of Glasgow, Switchback Road, Glasgow, G61 1BD, UK.
- Centro de Biología Molecular Severo Ochoa (CBMSO), Nicolás Cabrera, 1, 28049, Madrid, Spain.
| | - Stephen W G Tait
- Institute of Cancer Sciences, Cancer Research UK Beatson Institute, University of Glasgow, Switchback Road, Glasgow, G61 1BD, UK.
| |
Collapse
|
222
|
Nicoletti V, Palermo G, Del Prete E, Mancuso M, Ceravolo R. Understanding the Multiple Role of Mitochondria in Parkinson's Disease and Related Disorders: Lesson From Genetics and Protein-Interaction Network. Front Cell Dev Biol 2021; 9:636506. [PMID: 33869180 PMCID: PMC8047151 DOI: 10.3389/fcell.2021.636506] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
As neurons are highly energy-demanding cell, increasing evidence suggests that mitochondria play a large role in several age-related neurodegenerative diseases. Synaptic damage and mitochondrial dysfunction have been associated with early events in the pathogenesis of major neurodegenerative diseases, including Parkinson’s disease, atypical parkinsonisms, and Huntington disease. Disruption of mitochondrial structure and dynamic is linked to increased levels of reactive oxygen species production, abnormal intracellular calcium levels, and reduced mitochondrial ATP production. However, recent research has uncovered a much more complex involvement of mitochondria in such disorders than has previously been appreciated, and a remarkable number of genes and proteins that contribute to the neurodegeneration cascade interact with mitochondria or affect mitochondrial function. In this review, we aim to summarize and discuss the deep interconnections between mitochondrial dysfunction and basal ganglia disorders, with an emphasis into the molecular triggers to the disease process. Understanding the regulation of mitochondrial pathways may be beneficial in finding pharmacological or non-pharmacological interventions to delay the onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Valentina Nicoletti
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Del Prete
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michelangelo Mancuso
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
223
|
PGC-1s in the Spotlight with Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22073487. [PMID: 33800548 PMCID: PMC8036867 DOI: 10.3390/ijms22073487] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease is one of the most common neurodegenerative disorders worldwide, characterized by a progressive loss of dopaminergic neurons mainly localized in the substantia nigra pars compacta. In recent years, the detailed analyses of both genetic and idiopathic forms of the disease have led to a better understanding of the molecular and cellular pathways involved in PD, pointing to the centrality of mitochondrial dysfunctions in the pathogenic process. Failure of mitochondrial quality control is now considered a hallmark of the disease. The peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1) family acts as a master regulator of mitochondrial biogenesis. Therefore, keeping PGC-1 level in a proper range is fundamental to guarantee functional neurons. Here we review the major findings that tightly bond PD and PGC-1s, raising important points that might lead to future investigations.
Collapse
|
224
|
Lakshmanan LN, Yee Z, Halliwell B, Gruber J, Gunawan R. Thermodynamic analysis of DNA hybridization signatures near mitochondrial DNA deletion breakpoints. iScience 2021; 24:102138. [PMID: 33665557 PMCID: PMC7900216 DOI: 10.1016/j.isci.2021.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Broad evidence in the literature supports double-strand breaks (DSBs) as initiators of mitochondrial DNA (mtDNA) deletion mutations. While DNA misalignment during DSB repair is commonly proposed as the mechanism by which DSBs cause deletion mutations, details such as the specific DNA repair errors are still lacking. Here, we used DNA hybridization thermodynamics to infer the sequence lengths of mtDNA misalignments that are associated with mtDNA deletions. We gathered and analyzed 9,921 previously reported mtDNA deletion breakpoints in human, rhesus monkey, mouse, rat, and Caenorhabditis elegans. Our analysis shows that a large fraction of mtDNA breakpoint positions can be explained by the thermodynamics of short ≤ 5-nt misalignments. The significance of short DNA misalignments supports an important role for erroneous non-homologous and micro-homology-dependent DSB repair in mtDNA deletion formation. The consistency of the results of our analysis across species further suggests a shared mode of mtDNA deletion mutagenesis.
Collapse
Affiliation(s)
- Lakshmi Narayanan Lakshmanan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Zhuangli Yee
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Barry Halliwell
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jan Gruber
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Ageing Research Laboratory, Science Division, Yale-NUS College, Singapore, Singapore
| | - Rudiyanto Gunawan
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, NY, USA
- Corresponding author
| |
Collapse
|
225
|
Bury AG, Vincent AE, Turnbull DM, Actis P, Hudson G. Mitochondrial isolation: when size matters. Wellcome Open Res 2021; 5:226. [PMID: 33718619 PMCID: PMC7931255 DOI: 10.12688/wellcomeopenres.16300.2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial vitality is critical to cellular function, with mitochondrial dysfunction linked to a growing number of human diseases. Tissue and cellular heterogeneity, in terms of genetics, dynamics and function means that increasingly mitochondrial research is conducted at the single cell level. Whilst there are several technologies that are currently available for single-cell analysis, each with their advantages, they cannot be easily adapted to study mitochondria with subcellular resolution. Here we review the current techniques and strategies for mitochondrial isolation, critically discussing each technology's limitations for future mitochondrial research. Finally, we highlight and discuss the recent breakthroughs in sub-cellular isolation techniques, with a particular focus on nanotechnologies that enable the isolation of mitochondria from subcellular compartments. This allows isolation of mitochondria with unprecedented spatial precision with minimal disruption to mitochondria and their immediate cellular environment.
Collapse
Affiliation(s)
- Alexander G Bury
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Amy E Vincent
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Paolo Actis
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Gavin Hudson
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK.,Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| |
Collapse
|
226
|
Modelling Parkinson's Disease: iPSCs towards Better Understanding of Human Pathology. Brain Sci 2021; 11:brainsci11030373. [PMID: 33799491 PMCID: PMC8000082 DOI: 10.3390/brainsci11030373] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s Disease (PD) is a chronic neurodegenerative disorder characterized by motor and non-motor symptoms, among which are bradykinesia, rigidity, tremor as well as mental symptoms such as dementia. The underlying cause of Parkinson disease is degeneration of dopaminergic neurons. It has been challenging to develop an efficient animal model to accurately represent the complex phenotypes found with PD. However, it has become possible to recapitulate the myriad of phenotypes underlying the PD pathology by using human induced pluripotent stem cell (iPSC) technology. Patient-specific iPSC-derived dopaminergic neurons are available and present an opportunity to study many aspects of the PD phenotypes in a dish. In this review, we report the available data on iPSC-derived neurons derived from PD patients with identified gene mutations. Specifically, we will report on the key phenotypes of the generated iPSC-derived neurons from PD patients with different genetic background. Furthermore, we discuss the relationship these cellular phenotypes have to PD pathology and future challenges and prospects for iPSC modelling and understanding of the pathogenesis of PD.
Collapse
|
227
|
Gonçalves AM, Pereira-Santos AR, Esteves AR, Cardoso SM, Empadinhas N. The Mitochondrial Ribosome: A World of Opportunities for Mitochondrial Dysfunction Toward Parkinson's Disease. Antioxid Redox Signal 2021; 34:694-711. [PMID: 32098485 DOI: 10.1089/ars.2019.7997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Mitochondrial ribosomes (mitoribosomes) are organelles that translate mitochondrial messenger RNA in the matrix and, in mammals, have evolved to translate 13 polypeptides of the pathway that performs oxidative phosphorylation (OXPHOS). Although a number of devastating diseases result from defects in this mitochondrial translation apparatus, most are associated with genetic mutations and little is known about allelopathic defects caused by antibiotics, toxins, or nonproteinogenic amino acids. Recent Advances: The levels of mitochondrial ribosomal subunits 12S and 16S ribosomal RNA (rRNA) in cells/tissues from patients carrying mutations in these genes have been associated with alterations in mitochondrial translation efficiency and with impaired OXPHOS activities, as well as with the severity of clinical phenotypes. In recent decades, important studies revealed a prominent role of mitochondrial dysfunction in Parkinson's disease (PD); however, the involvement of mitoribosomes remains largely unknown. Critical Issues: Considering that mitoribosomal structure and function can determine the efficiency of OXPHOS and that an impaired mitochondrial respiratory chain is a common finding in PD, we argue that the mitoribosome may be key to disease onset and progression. With this review, we comprehensively integrate the available knowledge on the composition, assembly, and role of the mitoribosome in mitochondrial efficiency, reflecting on its possible involvement in the etiopathogenesis of this epidemic disease as an appealing research avenue. Future Directions: If a direct correlation between mitoribosome failure and PD pathology is demonstrated, these mitochondrial organelles will provide valuable early clinical markers and potentially attractive targets for the development of innovative PD-directed therapeutic agents.
Collapse
Affiliation(s)
- Ana Mafalda Gonçalves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Pereira-Santos
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ana Raquel Esteves
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Sandra M Cardoso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Nuno Empadinhas
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,IIIUC-Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
228
|
Xie K, Qin Q, Long Z, Yang Y, Peng C, Xi C, Li L, Wu Z, Daria V, Zhao Y, Wang F, Wang M. High-Throughput Metabolomics for Discovering Potential Biomarkers and Identifying Metabolic Mechanisms in Aging and Alzheimer's Disease. Front Cell Dev Biol 2021; 9:602887. [PMID: 33718349 PMCID: PMC7947003 DOI: 10.3389/fcell.2021.602887] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/04/2021] [Indexed: 01/21/2023] Open
Abstract
Alzheimer's disease (AD) is an aging-related neurodegenerative disease. We aimed to investigate the metabolic mechanisms of aging and AD and to identify potential biomarkers for the early screening of AD in a natural aging population. To analyze the plasma metabolites related to aging, we conducted an untargeted metabolomics analysis using ultra-high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry in a two-stage cross-sectional study. Spearman's correlation analysis and random forest were applied to model the relationship between age and each metabolite. Moreover, a systematic review of metabolomics studies of AD in the PubMed, Cochrane and Embase databases were searched to extract the differential metabolites and altered pathways from original studies. Pathway enrichment analysis was conducted using Mummichog. In total, 669 metabolites were significantly altered with aging, and 12 pathways were enriched and correlated with aging. Three pathways (purine metabolism, arginine and proline metabolism, and the TCA cycle) were shared between aging and AD. Arginine and proline metabolism play a key role in the progression from healthy to mild cognitive impairment and to AD in the natural aging population. Three metabolites, 16-a-hydroxypregnenolone, stearic acid and PC[16:0/22:5(4Z,7Z,10Z,13Z,16Z)] were finally proposed as potential markers of AD in the natural aging population. The underlying mechanism shared between aging and AD and the potential biomarkers for AD diagnosis were proposed based on multistep comparative analysis.
Collapse
Affiliation(s)
- Kun Xie
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Qi Qin
- Department of Neurology, Innovation Center for Neurological Disorders, National Clinical Research Center for Geriatric Diseases, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Zhiping Long
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yihui Yang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Chenghai Peng
- The Forth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chunyang Xi
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liangliang Li
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhen Wu
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Volontovich Daria
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Fan Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Maoqing Wang
- National Key Disciplines of Nutrition and Food Hygiene, Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin, China
| |
Collapse
|
229
|
Wang T, Shi C, Luo H, Zheng H, Fan L, Tang M, Su Y, Yang J, Mao C, Xu Y. Neuroinflammation in Parkinson's Disease: Triggers, Mechanisms, and Immunotherapies. Neuroscientist 2021; 28:364-381. [PMID: 33576313 DOI: 10.1177/1073858421991066] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Parkinson's disease (PD) is a heterogeneous neurodegenerative disease involving multiple etiologies and pathogenesis, in which neuroinflammation is a common factor. Both preclinical experiments and clinical studies provide evidence for the involvement of neuroinflammation in the pathophysiology of PD, although there are a number of key issues related to neuroinflammatory processes in PD that remain to be addressed. In this review, we highlight the relationship between the common pathological mechanisms of PD and neuroinflammation, including aggregation of α-synuclein, genetic factors, mitochondrial dysfunction, and gut microbiome dysbiosis. We also describe the two positive feedback loops initiated in PD after the immune system is activated, and their role in the pathogenesis of PD. In addition, the interconnections and differences between the central and peripheral immune systems are discussed. Finally, we review the latest progress in immunotherapy research for PD patients, and propose future directions for clinical research.
Collapse
Affiliation(s)
- Tai Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyang Luo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Mibo Tang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Sino-British Research Centre for Molecular Oncology, National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
230
|
Paul S, Pickrell AM. Hidden phenotypes of PINK1/Parkin knockout mice. Biochim Biophys Acta Gen Subj 2021; 1865:129871. [PMID: 33571581 DOI: 10.1016/j.bbagen.2021.129871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/26/2022]
Abstract
PINK1, a serine/threonine ubiquitin kinase, and Parkin, an E3 ubiquitin ligase, work in coordination to target damaged mitochondria to the lysosome in a process called mitophagy. This review will cover what we have learned from PINK1 and Parkin knockout (KO) mice. Systemic PINK1 and Parkin KO mouse models haven't faithfully recapitulated early onset forms of Parkinson's disease found in humans with recessive mutations in these genes. However, the utilization of these mouse models has given us insight into how PINK1 and Parkin contribute to mitochondrial quality control and function in different tissues beyond the brain such as in heart and adipose tissue. Although PINK1 and Parkin KO mice have been generated over a decade ago, these models are still being used today to creatively elucidate cell-type specific functions. Recently, these mouse models have uncovered that these proteins contribute to innate immunity and cancer phenotypes.
Collapse
Affiliation(s)
- Swagatika Paul
- Graduate Studies in Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24601, USA; School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Alicia M Pickrell
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
231
|
Borsche M, Pereira SL, Klein C, Grünewald A. Mitochondria and Parkinson's Disease: Clinical, Molecular, and Translational Aspects. JOURNAL OF PARKINSONS DISEASE 2021; 11:45-60. [PMID: 33074190 PMCID: PMC7990451 DOI: 10.3233/jpd-201981] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction represents a well-established player in the pathogenesis of both monogenic and idiopathic Parkinson’s disease (PD). Initially originating from the observation that mitochondrial toxins cause PD, findings from genetic PD supported a contribution of mitochondrial dysfunction to the disease. Here, proteins encoded by the autosomal recessively inherited PD genes Parkin, PTEN-induced kinase 1 (PINK1), and DJ-1 are involved in mitochondrial pathways. Additional evidence for mitochondrial dysfunction stems from models of autosomal-dominant PD due to mutations in alpha-synuclein (SNCA) and leucine-rich repeat kinase 2 (LRRK2). Moreover, patients harboring alterations in mitochondrial polymerase gamma (POLG) often exhibit signs of parkinsonism. While some molecular studies suggest that mitochondrial dysfunction is a primary event in PD, others speculate that it is the result of impaired mitochondrial clearance. Most recent research even implicated damage-associated molecular patterns released from non-degraded mitochondria in neuroinflammatory processes in PD. Here, we summarize the manifold literature dealing with mitochondria in the context of PD. Moreover, in light of recent advances in the field of personalized medicine, patient stratification according to the degree of mitochondrial impairment followed by mitochondrial enhancement therapy may hold potential for at least a subset of genetic and idiopathic PD cases. Thus, in the second part of this review, we discuss therapeutic approaches targeting mitochondrial dysfunction with the aim to prevent or delay neurodegeneration in PD.
Collapse
Affiliation(s)
- Max Borsche
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Sandro L Pereira
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Anne Grünewald
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany.,Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
232
|
Stewart JB, Chinnery PF. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat Rev Genet 2021; 22:106-118. [PMID: 32989265 DOI: 10.1038/s41576-020-00284-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Contrary to the long-held view that most humans harbour only identical mitochondrial genomes, deep resequencing has uncovered unanticipated extreme genetic variation within mitochondrial DNA (mtDNA). Most, if not all, humans contain multiple mtDNA genotypes (heteroplasmy); specific patterns of variants accumulate in different tissues, including cancers, over time; and some variants are preferentially passed down or suppressed in the maternal germ line. These findings cast light on the origin and spread of mtDNA mutations at multiple scales, from the organelle to the human population, and challenge the conventional view that high percentages of a mutation are required before a new variant has functional consequences.
Collapse
Affiliation(s)
- James B Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
233
|
Müller‐Nedebock AC, Westhuizen FH, Kõks S, Bardien S. Nuclear Genes Associated with Mitochondrial
DNA
Processes as Contributors to Parkinson's Disease Risk. Mov Disord 2021; 36:815-831. [DOI: 10.1002/mds.28475] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/07/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Affiliation(s)
- Amica C. Müller‐Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| | | | - Sulev Kõks
- Perron Institute for Neurological and Translational Science Nedlands Western Australia Australia
- Centre for Molecular Medicine and Innovative Therapeutics Murdoch University Murdoch Western Australia Australia
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences Stellenbosch University Cape Town South Africa
| |
Collapse
|
234
|
Chao MR, Evans MD, Hu CW, Ji Y, Møller P, Rossner P, Cooke MS. Biomarkers of nucleic acid oxidation - A summary state-of-the-art. Redox Biol 2021; 42:101872. [PMID: 33579665 PMCID: PMC8113048 DOI: 10.1016/j.redox.2021.101872] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Oxidatively generated damage to DNA has been implicated in the pathogenesis of a wide variety of diseases. Increasingly, interest is also focusing upon the effects of damage to the other nucleic acids, RNA and the (2′-deoxy-)ribonucleotide pools, and evidence is growing that these too may have an important role in disease. LC-MS/MS has the ability to provide absolute quantification of specific biomarkers, such as 8-oxo-7,8-dihydro-2′-deoxyGuo (8-oxodG), in both nuclear and mitochondrial DNA, and 8-oxoGuo in RNA. However, significant quantities of tissue are needed, limiting its use in human biomonitoring studies. In contrast, the comet assay requires much less material, and as little as 5 μL of blood may be used, offering a minimally invasive means of assessing oxidative stress in vivo, but this is restricted to nuclear DNA damage only. Urine is an ideal matrix in which to non-invasively study nucleic acid-derived biomarkers of oxidative stress, and considerable progress has been made towards robustly validating these measurements, not least through the efforts of the European Standards Committee on Urinary (DNA) Lesion Analysis. For urine, LC-MS/MS is considered the gold standard approach, and although there have been improvements to the ELISA methodology, this is largely limited to 8-oxodG. Emerging DNA adductomics approaches, which either comprehensively assess the totality of adducts in DNA, or map DNA damage across the nuclear and mitochondrial genomes, offer the potential to considerably advance our understanding of the mechanistic role of oxidatively damaged nucleic acids in disease. Oxidatively damaged nucleic acids are implicated in the pathogenesis of disease. LC-MS/MS, comet assay and ELISA are often used to study oxidatively damaged DNA. Urinary oxidatively damaged nucleic acids non-invasively reflect oxidative stress. DNA adductomics will aid understanding the role of ROS damaged DNA in disease.
Collapse
Affiliation(s)
- Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung, 402, Taiwan; Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Mark D Evans
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, The Gateway, Leicester, LE1 9BH, United Kingdom
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Yunhee Ji
- Department of Environmental Health Sciences, Florida International University, Miami, FL, 33199, USA
| | - Peter Møller
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Øster Farimagsgade 5A, DK, 1014, Copenhagen K, Denmark
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine of the CAS, 142 20, Prague, Czech Republic
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA.
| |
Collapse
|
235
|
Liu JW, Yang YG, Wang K, Wang G, Shen CC, Chen YH, Liu YF, James TD, Jiang K, Zhang H. Activation and Monitoring of mtDNA Damage in Cancer Cells via the "Proton-Triggered" Decomposition of an Ultrathin Nanosheet. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3669-3678. [PMID: 33435678 DOI: 10.1021/acsami.0c20060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mitochondrial DNA (mtDNA) damage is a very important molecular event, which has significant effects on living organisms. Therefore, a particularly important challenge for biomaterials research is to develop functionalized nanoparticles that can activate and monitor mtDNA damage and instigate cancer cell apoptosis, and as such eliminate the negative effects on living organisms. Toward that goal, with this research, we have developed a hydroxyapatite ultrathin nanosheet (HAP-PDCns)-a high Ca2+ content biomaterial. HAP-PDCns undergoes proton-triggered decomposition after entering cancer cells via clathrin-mediated endocytosis, and then, it selectively concentrates in the charged mitochondrial membrane. This kind of proton-triggered decomposition phenomenon facilitates mtDNA damage by causing instantaneous local calcium overload in the mitochondria of cancer cells, and inhibits tumor growth. Importantly, at the same time, a real-time green-red-green fluorescence change occurs that correlates with the degree of mtDNA deterioration because of the changes in the highest occupied molecular orbital-lowest unoccupied molecular orbital energy gaps during this process. Significantly, the decomposition and the fluorescence changes cannot be triggered in normal cells. Thus, HAP-PDCns can selectively induce apoptosis and the death of a cancer cell by facilitating mtDNA damage, but does not affect normal cells. In addition, HAP-PDCns can simultaneously monitor the degree of mtDNA damage. We anticipate that this design strategy can be generalized to develop other functionalized biomaterials that can be used to instigate the positive effects of mtDNA damage on living organisms while eliminating any negative effects.
Collapse
Affiliation(s)
- Jun W Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yong G Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Kui Wang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ge Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Cong C Shen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yue H Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yu F Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tony D James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Kai Jiang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hua Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, School of Physics, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
236
|
Mani S, Swargiary G, Chadha R. Mitophagy impairment in neurodegenerative diseases: Pathogenesis and therapeutic interventions. Mitochondrion 2021; 57:270-293. [PMID: 33476770 DOI: 10.1016/j.mito.2021.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/23/2020] [Accepted: 01/14/2021] [Indexed: 02/07/2023]
Abstract
Neurons are specialized cells, requiring a lot of energy for its proper functioning. Mitochondria are the key cellular organelles and produce most of the energy in the form of ATP, required for all the crucial functions of neurons. Hence, the regulation of mitochondrial biogenesis and quality control is important for maintaining neuronal health. As a part of mitochondrial quality control, the aged and damaged mitochondria are removed through a selective mode of autophagy called mitophagy. However, in different pathological conditions, this process is impaired in neuronal cells and lead to a variety of neurodegenerative disease (NDD). Various studies indicate that specific protein aggregates, the characteristics of different NDDs, affect this process of mitophagy, adding to the severity and progression of diseases. Though, the detailed process of this association is yet to be explored. In light of the significant role of impaired mitophagy in NDDs, further studies have also investigated a large number of therapeutic strategies to target mitophagy in these diseases. Our current review summarizes the abnormalities in different mitophagy pathways and their association with different NDDs. We have also elaborated upon various novel therapeutic strategies and their limitations to enhance mitophagy in NDDs that may help in the management of symptoms and increasing the life expectancy of NDD patients. Thus, our study provides an overview of mitophagy in NDDs and emphasizes the need to elucidate the mechanism of impaired mitophagy prevalent across different NDDs in future research. This will help designing better treatment options with high efficacy and specificity.
Collapse
Affiliation(s)
- Shalini Mani
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India.
| | - Geeta Swargiary
- Department of Biotechnology, Centre for Emerging Disease, Jaypee Institute of Information Technology, Noida, India
| | - Radhika Chadha
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, USA
| |
Collapse
|
237
|
Ma HJ, Gai C, Chai Y, Feng WD, Cheng CC, Zhang JK, Zhang YX, Yang LP, Guo ZY, Gao YS, Sun HM. Bu-Yin-Qian-Zheng Formula Ameliorates MPP +-Induced Mitochondrial Dysfunction in Parkinson's Disease via Parkin. Front Pharmacol 2021; 11:577017. [PMID: 33424590 PMCID: PMC7793772 DOI: 10.3389/fphar.2020.577017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
As a typical traditional Chinese medicine, Bu-Yin-Qian-Zheng Formula (BYQZF) has been shown to have neuroprotective effects in patients with Parkinson’s disease (PD), particularly by ameliorating mitochondrial dysfunction and regulating expression of the parkin protein. However, the underlying mechanisms by which BYQZF affects mitochondrial function through parkin are unclear. Accordingly, in this study, we evaluated the mechanisms by which BYQZF ameliorates mitochondrial dysfunction through parkin in PD. We constructed a parkin-knockdown cell model and performed fluorescence microscopy to observe transfected SH-SY5Y cells. Quantitative real-time reverse transcription polymerase chain reaction and western blotting were conducted to detect the mRNA and protein expression levels of parkin. Additionally, we evaluated the cell survival rates, ATP levels, mitochondrial membrane potential (ΔΨm), mitochondrial morphology, parkin protein expression, PINK1 protein expression, and mitochondrial fusion and fission protein expression after treatment with MPP+ and BYQZF. Our results showed that cell survival rates, ATP levels, ΔΨm, mitochondrial morphology, parkin protein levels, PINK1 protein levels, and mitochondrial fusion protein levels were reduced after MPP+ treatment. In contrast, mitochondrial fission protein levels were increased after MPP+ treatment. Moreover, after transient transfection with a negative control plasmid, the above indices were significantly increased by BYQZF. However, there were no obvious differences in these indices after transient transfection with a parkin-knockdown plasmid. Our findings suggest that BYQZF has protective effects on mitochondrial function in MPP+-induced SH-SY5Y cells via parkin-dependent regulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Hao-Jie Ma
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Chai
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.,Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wan-Di Feng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cui-Cui Cheng
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jin-Kun Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Xin Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lu-Ping Yang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhen-Yu Guo
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yu-Shan Gao
- Center for Scientific Research, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hong-Mei Sun
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
238
|
Sazonova MA, Sinyov VV, Ryzhkova AI, Sazonova MD, Kirichenko TV, Khotina VA, Khasanova ZB, Doroschuk NA, Karagodin VP, Orekhov AN, Sobenin IA. Some Molecular and Cellular Stress Mechanisms Associated with Neurodegenerative Diseases and Atherosclerosis. Int J Mol Sci 2021; 22:E699. [PMID: 33445687 PMCID: PMC7828120 DOI: 10.3390/ijms22020699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic stress is a combination of nonspecific adaptive reactions of the body to the influence of various adverse stress factors which disrupt its homeostasis, and it is also a corresponding state of the organism's nervous system (or the body in general). We hypothesized that chronic stress may be one of the causes occurence of several molecular and cellular types of stress. We analyzed literary sources and considered most of these types of stress in our review article. We examined genes and mutations of nuclear and mitochondrial genomes and also molecular variants which lead to various types of stress. The end result of chronic stress can be metabolic disturbance in humans and animals, leading to accumulation of reactive oxygen species (ROS), oxidative stress, energy deficiency in cells (due to a decrease in ATP synthesis) and mitochondrial dysfunction. These changes can last for the lifetime and lead to severe pathologies, including neurodegenerative diseases and atherosclerosis. The analysis of literature allowed us to conclude that under the influence of chronic stress, metabolism in the human body can be disrupted, mutations of the mitochondrial and nuclear genome and dysfunction of cells and their compartments can occur. As a result of these processes, oxidative, genotoxic, and cellular stress can occur. Therefore, chronic stress can be one of the causes forthe occurrence and development of neurodegenerative diseases and atherosclerosis. In particular, chronic stress can play a large role in the occurrence and development of oxidative, genotoxic, and cellular types of stress.
Collapse
Affiliation(s)
- Margarita A. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Vasily V. Sinyov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Anastasia I. Ryzhkova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
| | - Marina D. Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
| | - Tatiana V. Kirichenko
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 117418 Moscow, Russia
| | - Victoria A. Khotina
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 117418 Moscow, Russia
| | - Zukhra B. Khasanova
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Natalya A. Doroschuk
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| | - Vasily P. Karagodin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Department of Commodity Science and Expertise, Plekhanov Russian University of Economics, 125993 Moscow, Russia
| | - Alexander N. Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Research Institute of Human Morphology, 117418 Moscow, Russia
- Institute for Atherosclerosis Research, Skolkovo Innovative Centre, 143024 Moscow, Russia
| | - Igor A. Sobenin
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (V.V.S.); (A.I.R.); (M.D.S.); (T.V.K.); (V.A.K.); (V.P.K.); (A.N.O.); (I.A.S.)
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (Z.B.K.); (N.A.D.)
| |
Collapse
|
239
|
Pabis K. Triplex and other DNA motifs show motif-specific associations with mitochondrial DNA deletions and species lifespan. Mech Ageing Dev 2021; 194:111429. [PMID: 33422563 DOI: 10.1016/j.mad.2021.111429] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 11/20/2022]
Abstract
The "theory of resistant biomolecules" posits that long-lived species show resistance to molecular damage at the level of their biomolecules. Here, we test this hypothesis in the context of mitochondrial DNA (mtDNA) as it implies that predicted mutagenic DNA motifs should be inversely correlated with species maximum lifespan (MLS). First, we confirmed that guanine-quadruplex and direct repeat (DR) motifs are mutagenic, as they associate with mtDNA deletions in the human major arc of mtDNA, while also adding mirror repeat (MR) and intramolecular triplex motifs to a growing list of potentially mutagenic features. What is more, triplex motifs showed disease-specific associations with deletions and an apparent interaction with guanine-quadruplex motifs. Surprisingly, even though DR, MR and guanine-quadruplex motifs were associated with mtDNA deletions, their correlation with MLS was explained by the biased base composition of mtDNA. Only triplex motifs negatively correlated with MLS even after adjusting for body mass, phylogeny, mtDNA base composition and effective number of codons. Taken together, our work highlights the importance of base composition for the comparative biogerontology of mtDNA and suggests that future research on mitochondrial triplex motifs is warranted.
Collapse
Affiliation(s)
- Kamil Pabis
- Georg August University of Göttingen, Göttingen, Germany.
| |
Collapse
|
240
|
Lin CY, Huang YN, Fu RH, Liao YH, Kuo TY, Tsai CW. Promotion of mitochondrial biogenesis via the regulation of PARIS and PGC-1α by parkin as a mechanism of neuroprotection by carnosic acid. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 80:153369. [PMID: 33070082 DOI: 10.1016/j.phymed.2020.153369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/31/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Impairment of mitochondrial biogenesis is associated with the pathological progression of Parkinson's disease (PD). Parkin-interacting substrate (PARIS) can be ubiquitinated by parkin and prevents the repression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α). PURPOSE This study investigated whether the neuroprotective mechanism of carnosic acid (CA) from rosemary is mediated via the regulation of PARIS and PGC-1α by parkin. METHODS The Western blotting and RT-PCR were used to determine protein and mRNA, respectively. To investigate the protein-protein interaction of between PARIS and ubiquitin, the immunoprecipitation assay (IP assay) was utilized. Silencing of endogenous parkin or PGC-1α was performed by using transient transfection of small interfering RNA (siRNA). RESULTS SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA) increased PARIS protein, decreased PGC-1α protein, and reduced protein and mRNA of mitochondrial biogenesis-related genes. CA pretreatment reversed the effects of 6-OHDA. By IP assay, the interaction of PARIS with ubiquitin protein caused by CA was stronger than that caused by 6-OHDA. Moreover, knockdown of parkin attenuated the ability of CA to reverse the 6-OHDA-induced increase in PARIS and decrease in PGC-1α expression. PGC-1α siRNA was used to investigate how CA influenced the effect of 6-OHDA on the modulation of mitochondrial biogenesis and apoptosis. In the presence of PGC-1α siRNA, CA could no longer significantly reverse the reduction of mitochondrial biogenesis or the induction of cleavage of apoptotic-related proteins by 6-OHDA. CONCLUSION The cytoprotective of CA is related to the enhancement of mitochondrial biogenesis by inhibiting PARIS and inducing PGC-1α by parkin. The activation of PGC-1α-mediated mitochondrial biogenesis by CA prevents the degeneration of dopaminergic neurons, CA may have therapeutic application in PD.
Collapse
Affiliation(s)
- Chia-Yuan Lin
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Yan-Ning Huang
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan; Translational Medicine Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Hsin Liao
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Tzu-Yu Kuo
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Wen Tsai
- Department of Nutrition, China Medical University, Taichung, Taiwan.
| |
Collapse
|
241
|
Onyango IG, Bennett JP, Stokin GB. Regulation of neuronal bioenergetics as a therapeutic strategy in neurodegenerative diseases. Neural Regen Res 2021; 16:1467-1482. [PMID: 33433460 PMCID: PMC8323696 DOI: 10.4103/1673-5374.303007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis are a heterogeneous group of debilitating disorders with multifactorial etiologies and pathogeneses that manifest distinct molecular mechanisms and clinical manifestations with abnormal protein dynamics and impaired bioenergetics. Mitochondrial dysfunction is emerging as an important feature in the etiopathogenesis of these age-related neurodegenerative diseases. The prevalence and incidence of these diseases is on the rise with the increasing global population and average lifespan. Although many therapeutic approaches have been tested, there are currently no effective treatment routes for the prevention or cure of these diseases. We present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in these diseases and highlight recent advances in novel therapeutic strategies targeting neuronal bioenergetics as potential approach for treating these diseases.
Collapse
Affiliation(s)
- Isaac G Onyango
- Center for Translational Medicine, International Clinical Research Centre (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| | - James P Bennett
- Neurodegeneration Therapeutics, 3050A Berkmar Drive, Charlottesville, VA, USA
| | - Gorazd B Stokin
- Center for Translational Medicine, International Clinical Research Centre (ICRC), St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
242
|
Arena G, Modjtahedi N, Kruger R. Exploring the contribution of the mitochondrial disulfide relay system to Parkinson's disease: the PINK1/CHCHD4 interplay. Neural Regen Res 2021; 16:2222-2224. [PMID: 33818502 PMCID: PMC8354137 DOI: 10.4103/1673-5374.310679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Giuseppe Arena
- Translational Neuroscience group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Nazanine Modjtahedi
- Université Paris-Saclay, Gustave Roussy Institute, CNRS, Metabolic and systemic aspects of oncogenesis for new therapeutic approaches, Villejuif, France
| | - Rejko Kruger
- Translational Neuroscience group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg; Parkinson Research Clinic, Centre Hospitalier du Luxembourg (CHL); Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg
| |
Collapse
|
243
|
Sargent D, Moore DJ. Mechanisms of VPS35-Mediated Neurodegeneration in Parkinson's Disease. INTERNATIONAL REVIEW OF MOVEMENT DISORDERS 2021; 2:221-244. [PMID: 35497708 DOI: 10.1016/bs.irmvd.2021.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Parkinson's disease is a sporadic and common neurodegenerative movement disorder resulting from the complex interplay between genetic risk, aging and environmental exposure. Familial forms of PD account for ~10% of cases and are known to result from the inheritance of mutations in at least 15 genes. Mutations in the vacuolar protein sorting 35 ortholog (VPS35) gene cause late-onset, autosomal dominant familial PD. VPS35 is a key suunit of the pentameric retromer complex that plays a role in the retrograde sorting and recycling of transmembrane cargo proteins from endosomes to the plasma membrane and trans-Golgi network. A single heterozygous Asp620Asn (D620N) mutation in VPS35 has been identified in multiple families that segregates with PD, and a number of experimental cellular and animal models have been developed to understand its pathogenic effects. At the molecular level, the D620N mutation has been shown to impair the interaction of VPS35 with the WASH complex, that plays an accessory function in retromer-dependent sorting. In addition, the D620N mutation has been linked to the abnormal sorting of retromer cargo, including CI-M6PR, AMPA receptor subunits, MUL1, LAMP2a and ATG9A, as well as to LRRK2 hyperactivation. At the cellular level, data support an impact of D620N VPS35 on mitochondrial function, the autophagy-lysosomal pathway, Wnt signaling and neurotransmission via altered endosomal sorting. The relevance of abnormal retromer sorting and cellular pathways to PD-related neurodegenerative phenotypes induced by D620N VPS35 in rodent models is not yet clear. There is also uncertainty regarding the mechanism-of-action of the D620N mutation and whether it manifests pathogenic effects in animal models and PD through a gain-of-function and/or a partial dominant-negative mechanism. Here, we discuss the emerging molecular and cellular mechanisms underlying PD induced by familial VPS35 mutations, going from structure to cellular function to neuropathology. We further discuss studies linking reduced retromer function to other neurodegenerative diseases and potential therapeutic strategies to normalize retromer function to mitigate disease.
Collapse
Affiliation(s)
- Dorian Sargent
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Darren J Moore
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| |
Collapse
|
244
|
Filograna R, Mennuni M, Alsina D, Larsson NG. Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett 2020; 595:976-1002. [PMID: 33314045 PMCID: PMC8247411 DOI: 10.1002/1873-3468.14021] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
Most of the genetic information has been lost or transferred to the nucleus during the evolution of mitochondria. Nevertheless, mitochondria have retained their own genome that is essential for oxidative phosphorylation (OXPHOS). In mammals, a gene‐dense circular mitochondrial DNA (mtDNA) of about 16.5 kb encodes 13 proteins, which constitute only 1% of the mitochondrial proteome. Mammalian mtDNA is present in thousands of copies per cell and mutations often affect only a fraction of them. Most pathogenic human mtDNA mutations are recessive and only cause OXPHOS defects if present above a certain critical threshold. However, emerging evidence strongly suggests that the proportion of mutated mtDNA copies is not the only determinant of disease but that also the absolute copy number matters. In this review, we critically discuss current knowledge of the role of mtDNA copy number regulation in various types of human diseases, including mitochondrial disorders, neurodegenerative disorders and cancer, and during ageing. We also provide an overview of new exciting therapeutic strategies to directly manipulate mtDNA to restore OXPHOS in mitochondrial diseases.
Collapse
Affiliation(s)
- Roberta Filograna
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Mara Mennuni
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - David Alsina
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
245
|
Mitochondrial Dysfunction in Parkinson's Disease: Focus on Mitochondrial DNA. Biomedicines 2020; 8:biomedicines8120591. [PMID: 33321831 PMCID: PMC7763033 DOI: 10.3390/biomedicines8120591] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria, the energy stations of the cell, are the only extranuclear organelles, containing their own (mitochondrial) DNA (mtDNA) and the protein synthesizing machinery. The location of mtDNA in close proximity to the oxidative phosphorylation system of the inner mitochondrial membrane, the main source of reactive oxygen species (ROS), is an important factor responsible for its much higher mutation rate than nuclear DNA. Being more vulnerable to damage than nuclear DNA, mtDNA accumulates mutations, crucial for the development of mitochondrial dysfunction playing a key role in the pathogenesis of various diseases. Good evidence exists that some mtDNA mutations are associated with increased risk of Parkinson’s disease (PD), the movement disorder resulted from the degenerative loss of dopaminergic neurons of substantia nigra. Although their direct impact on mitochondrial function/dysfunction needs further investigation, results of various studies performed using cells isolated from PD patients or their mitochondria (cybrids) suggest their functional importance. Studies involving mtDNA mutator mice also demonstrated the importance of mtDNA deletions, which could also originate from abnormalities induced by mutations in nuclear encoded proteins needed for mtDNA replication (e.g., polymerase γ). However, proteomic studies revealed only a few mitochondrial proteins encoded by mtDNA which were downregulated in various PD models. This suggests nuclear suppression of the mitochondrial defects, which obviously involve cross-talk between nuclear and mitochondrial genomes for maintenance of mitochondrial functioning.
Collapse
|
246
|
Proteomic Characterization of Synaptosomes from Human Substantia Nigra Indicates Altered Mitochondrial Translation in Parkinson's Disease. Cells 2020; 9:cells9122580. [PMID: 33276480 PMCID: PMC7761546 DOI: 10.3390/cells9122580] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/17/2020] [Accepted: 11/24/2020] [Indexed: 12/25/2022] Open
Abstract
The pathological hallmark of Parkinson's disease (PD) is the loss of neuromelanin-containing dopaminergic neurons within the substantia nigra pars compacta (SNpc). Additionally, numerous studies indicate an altered synaptic function during disease progression. To gain new insights into the molecular processes underlying the alteration of synaptic function in PD, a proteomic study was performed. Therefore, synaptosomes were isolated by density gradient centrifugation from SNpc tissue of individuals at advanced PD stages (N = 5) as well as control subjects free of pathology (N = 5) followed by mass spectrometry-based analysis. In total, 362 proteins were identified and assigned to the synaptosomal core proteome. This core proteome comprised all proteins expressed within the synapses without regard to data analysis software, gender, age, or disease. The differential analysis between control subjects and PD cases revealed that CD9 antigen was overrepresented and fourteen proteins, among them Thymidine kinase 2 (TK2), mitochondrial, 39S ribosomal protein L37, neurolysin, and Methionine-tRNA ligase (MARS2) were underrepresented in PD suggesting an alteration in mitochondrial translation within synaptosomes.
Collapse
|
247
|
Bury AG, Vincent AE, Turnbull DM, Actis P, Hudson G. Mitochondrial isolation: when size matters. Wellcome Open Res 2020; 5:226. [PMID: 33718619 PMCID: PMC7931255 DOI: 10.12688/wellcomeopenres.16300.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2020] [Indexed: 01/31/2024] Open
Abstract
Mitochondrial vitality is critical to cellular function, with mitochondrial dysfunction linked to a growing number of human diseases. Tissue and cellular heterogeneity, in terms of genetics, dynamics and function means that increasingly mitochondrial research is conducted at the single cell level. Whilst there are several technologies that are currently available for single-cell analysis, each with their advantages, they cannot be easily adapted to study mitochondria with subcellular resolution. Here we review the current techniques and strategies for mitochondrial isolation, critically discussing each technology's limitations for future mitochondrial research. Finally, we highlight and discuss the recent breakthroughs in sub-cellular isolation techniques, with a particular focus on nanotechnologies that enable the isolation of mitochondria from subcellular compartments. This allows isolation of mitochondria with unprecedented spatial precision with minimal disruption to mitochondria and their immediate cellular environment.
Collapse
Affiliation(s)
- Alexander G. Bury
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Amy E. Vincent
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Doug M. Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Translational and Clinical Research Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| | - Paolo Actis
- Pollard Institute, School of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Gavin Hudson
- Wellcome Trust Centre for Mitochondrial Research, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
- Biosciences Institute, Medical School, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, UK
| |
Collapse
|
248
|
Mukherjee A, Becerra Calixto AD, Chavez M, Delgado JP, Soto C. Mitochondrial transplant to replenish damaged mitochondria: A novel therapeutic strategy for neurodegenerative diseases? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 177:49-63. [PMID: 33453942 DOI: 10.1016/bs.pmbts.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Neurodegenerative diseases are currently some of the most debilitating and incurable illness, including highly prevalent disorders, such as Alzheimer's and Parkinson's disease. Despite impressive advances in understanding the molecular basis of neurodegenerative diseases, several clinical trials have failed in identifying drugs that successfully delay or stop disease progression. New targets are likely necessary to successfully combat these devastating diseases. In this chapter, we review the evidence indicating that impairment in the cellular energy machinery in the form of mitochondrial damage and dysfunction may be at the root of neurodegeneration. We also propose that transplant of functional isolated mitochondria may overcome the energetic damage and delay the progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Abhisek Mukherjee
- Mitchell Center Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Houston Medical School, Houston, TX, United States
| | - Andrea D Becerra Calixto
- Mitchell Center Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Houston Medical School, Houston, TX, United States
| | - Melissa Chavez
- Mitchell Center Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Houston Medical School, Houston, TX, United States
| | - Jean Paul Delgado
- Grupo Genética, Regeneración & Cáncer, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Claudio Soto
- Mitchell Center Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, University of Texas Houston Medical School, Houston, TX, United States.
| |
Collapse
|
249
|
Ji D, Yin JY, Li DF, Zhu CT, Ye JP, Pan YQ. Effects of inflammatory and anti-inflammatory environments on the macrophage mitochondrial function. Sci Rep 2020; 10:20324. [PMID: 33230189 PMCID: PMC7684315 DOI: 10.1038/s41598-020-77370-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022] Open
Abstract
Mitochondrial response to inflammation is crucial in the metabolic adaptation to infection. This study aimed to explore the mitochondrial response under inflammatory and anti-inflammatory environments, with a focus on the tricarboxylic acid (TCA) cycle. Expression levels of key TCA cycle enzymes and the autophagy-related protein light chain 3b (LC3b) were determined in raw 264.7 cells treated with lipopolysaccharide (LPS) and metformin (Met). Additionally, reactive oxygen species (ROS) levels and mitochondrial membrane potential were assessed using flow cytometry. Moreover, 8-week-old C57BL/6J mice were intraperitoneally injected with LPS and Met to assess the mitochondrial response in vivo. Upon LPS stimulation, the expression of key TCA enzymes, including citrate synthase, α-ketoglutarate dehydrogenase, and isocitrate dehydrogenase 2, and the mitochondrial membrane potential decreased, whereas the levels of LC3b and ROS increased. However, treatment with Met inhibited the reduction of LPS-induced enzyme levels as well as the elevation of LC3b and ROS levels. In conclusion, the mitochondrial TCA cycle is affected by the inflammatory environment, and the LPS-induced effects can be reversed by Met treatment.
Collapse
Affiliation(s)
- Dong Ji
- Central Laboratory, Shanghai Sixth People's Hospital, Shanghai University of Medicine & Health Sciences, No. 600 Yishan Road, Shanghai, 200233, China
| | - Jian-Yun Yin
- Department of Thyroid Breast Surgery, Kunshan Affiliated Hospital of Nanjing University of Chinese Medicine, Kunshan, 215300, Jiangsu Province, China
| | - Dan-Feng Li
- Central Laboratory, Shanghai Sixth People's Hospital, Shanghai University of Medicine & Health Sciences, No. 600 Yishan Road, Shanghai, 200233, China
| | - Chang-Tai Zhu
- Central Laboratory, Shanghai Sixth People's Hospital, Shanghai University of Medicine & Health Sciences, No. 600 Yishan Road, Shanghai, 200233, China.
| | - Jian-Ping Ye
- Central Laboratory, Shanghai Sixth People's Hospital, Shanghai University of Medicine & Health Sciences, No. 600 Yishan Road, Shanghai, 200233, China.
| | - Yuan-Qing Pan
- Department of Medical Psychology, Guilin Medical University, Tianjin University of Technology and Education, Campbell China Network, No.1 Zhiyuan Road, Guilin, 541010, China.
| |
Collapse
|
250
|
Liu Z, Ye Q, Wang F, Guo Y, Cui R, Wang J, Wang D. Overexpression of thioredoxin reductase 1 can reduce DNA damage, mitochondrial autophagy and endoplasmic reticulum stress in Parkinson's disease. Exp Brain Res 2020; 239:475-490. [PMID: 33230666 DOI: 10.1007/s00221-020-05979-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra (SN). Several factors, including neuroinflammation, neuronal excitotoxicity, genetic mutations and incorrect protein folding are involved in PD pathophysiology. However, the precise mechanism that contributes to the decreased number of dopaminergic neurons is unknown. A growing body of research suggests that oxidative stress is a major factor in PD. Therefore, antioxidant therapy is an important approach for treating PD. The thioredoxin system is an important antioxidant system, and thioredoxin reductase 1 (TR1) is a major member of the thioredoxin system. The present study demonstrates that oxidative stress is increased and that the expression of TR1 is decreased in the SNc of A53T mice; TR1 has emerged as an important antioxidant agent in dopaminergic neurons. Therefore, we over-expressed TR1 in the MPP+-induced cellular model and in the A53T transgenic mouse model of PD. We confirmed that the overexpression of TR1 in neuronal cells decreased DNA damage and malondialdehyde (MDA) and ROS generation, increased T-SOD and GSH production, and decreased the ER stress, and autophagy in the PD model. In summary, our findings demonstrate that the overexpression of TR1 could be effective as a novel neuroprotective strategy for PD. This research suggests a novel direction in the treatment of PD.
Collapse
Affiliation(s)
- Zihua Liu
- Department of Zoology and Biomedical Science, School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, Gansu, China
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Blood Transfusion Service, The Second Affiliated Hospital of Lanzhou University, Lanzhou, 730030, Gansu Province, China
| | - Qiang Ye
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fang Wang
- Gynecology With Integrated Traditional Chinese and Western Medicine of Gansu Provincial Maternity and Child Care Hospital, Lanzhou, 730050, Gansu, China
| | - Yanan Guo
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Rong Cui
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jianlin Wang
- Department of Zoology and Biomedical Science, School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Degui Wang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|