201
|
Rohacs T. Phosphoinositide signaling in somatosensory neurons. Adv Biol Regul 2016; 61:2-16. [PMID: 26724974 PMCID: PMC4884561 DOI: 10.1016/j.jbior.2015.11.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/06/2015] [Accepted: 11/07/2015] [Indexed: 02/03/2023]
Abstract
Somatosensory neurons of the dorsal root ganglia (DRG) and trigeminal ganglia (TG) are responsible for detecting thermal and tactile stimuli. They are also the primary neurons mediating pain and itch. A large number of cell surface receptors in these neurons couple to phospholipase C (PLC) enzymes leading to the hydrolysis of phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and the generation of downstream signaling molecules. These neurons also express many different ion channels, several of which are regulated by phosphoinositides. This review will summarize the knowledge on phosphoinositide signaling in DRG neurons, with special focus on effects on sensory and other ion channels.
Collapse
Affiliation(s)
- Tibor Rohacs
- Rutgers, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
202
|
Ni L, Klein M, Svec KV, Budelli G, Chang EC, Ferrer AJ, Benton R, Samuel AD, Garrity PA. The Ionotropic Receptors IR21a and IR25a mediate cool sensing in Drosophila. eLife 2016; 5. [PMID: 27126188 PMCID: PMC4851551 DOI: 10.7554/elife.13254] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/18/2016] [Indexed: 01/25/2023] Open
Abstract
Animals rely on highly sensitive thermoreceptors to seek out optimal temperatures, but the molecular mechanisms of thermosensing are not well understood. The Dorsal Organ Cool Cells (DOCCs) of the Drosophila larva are a set of exceptionally thermosensitive neurons critical for larval cool avoidance. Here, we show that DOCC cool-sensing is mediated by Ionotropic Receptors (IRs), a family of sensory receptors widely studied in invertebrate chemical sensing. We find that two IRs, IR21a and IR25a, are required to mediate DOCC responses to cooling and are required for cool avoidance behavior. Furthermore, we find that ectopic expression of IR21a can confer cool-responsiveness in an Ir25a-dependent manner, suggesting an instructive role for IR21a in thermosensing. Together, these data show that IR family receptors can function together to mediate thermosensation of exquisite sensitivity. DOI:http://dx.doi.org/10.7554/eLife.13254.001 Animals need to be able to sense temperatures for a number of reasons. For example, this ability allows animals to avoid conditions that are either too hot or too cold, and to maintain an optimal body temperature. Most animals detect temperature via nerve cells called thermoreceptors. These sensors are often extremely sensitive and some can even detect changes in temperature of just a few thousandths of a degree per second. However, it is not clear how thermoreceptors detect temperature with such sensitivity, and many of the key molecules involved in this ability are unknown. In 2015, researchers discovered a class of highly sensitive nerve cells that allow fruit fly larvae to navigate away from unfavorably cool temperatures. Now, Ni, Klein et al. – who include some of the researchers involved in the 2015 work – have determined that these nerves use a combination of two receptors to detect cooling. Unexpectedly, these two receptors – Ionotropic Receptors called IR21a and IR25a – had previously been implicated in the detection of chemicals rather than temperature. IR25a was well-known to combine with other related receptors to detect an array of tastes and smells, while IR21a was thought to act in a similar way but had not been associated with detecting any specific chemicals. These findings demonstrate that the combination of IR21a and IR25a detects temperature instead. Together, these findings reveal a new molecular mechanism that underlies an animal’s ability to sense temperature. These findings also raise the possibility that other “orphan” Ionotropic Receptors, which have not been shown to detect any specific chemicals, might actually contribute to sensing temperature instead. Further work will explore this possibility and attempt to uncover precisely how IR21a and IR25a work to detect cool temperatures. DOI:http://dx.doi.org/10.7554/eLife.13254.002
Collapse
Affiliation(s)
- Lina Ni
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States.,Volen Center for Complex Systems, Brandeis University, Waltham, United States.,Department of Biology, Brandeis University, Waltham, United States
| | - Mason Klein
- Department of Physics, Harvard University, Cambridge, United States.,Department of Physics, University of Miami, Coral Gables, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Kathryn V Svec
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States.,Volen Center for Complex Systems, Brandeis University, Waltham, United States.,Department of Biology, Brandeis University, Waltham, United States
| | - Gonzalo Budelli
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States.,Volen Center for Complex Systems, Brandeis University, Waltham, United States.,Department of Biology, Brandeis University, Waltham, United States
| | - Elaine C Chang
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States.,Volen Center for Complex Systems, Brandeis University, Waltham, United States.,Department of Biology, Brandeis University, Waltham, United States
| | - Anggie J Ferrer
- Department of Physics, University of Miami, Coral Gables, United States
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Aravinthan Dt Samuel
- Department of Physics, Harvard University, Cambridge, United States.,Center for Brain Science, Harvard University, Cambridge, United States
| | - Paul A Garrity
- National Center for Behavioral Genomics, Brandeis University, Waltham, United States.,Volen Center for Complex Systems, Brandeis University, Waltham, United States.,Department of Biology, Brandeis University, Waltham, United States
| |
Collapse
|
203
|
Suzuki A, Shinoda M, Honda K, Shirakawa T, Iwata K. Regulation of transient receptor potential vanilloid 1 expression in trigeminal ganglion neurons via methyl-CpG binding protein 2 signaling contributes tongue heat sensitivity and inflammatory hyperalgesia in mice. Mol Pain 2016; 12:12/0/1744806916633206. [PMID: 27030715 PMCID: PMC4956183 DOI: 10.1177/1744806916633206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 12/29/2015] [Indexed: 01/22/2023] Open
Abstract
Background Pain hypoalgesia has been reported in Rett syndrome patients, a severe neurodevelopmental disorder which can be attributed to mutations in the methyl-CpG binding protein 2 (MeCP2). Here, we examined the role of MeCP2 signaling in tongue heat sensitivity in the normal and inflamed state using Mecp2 heterozygous (Mecp2+/−) mice. Results Heat hypoalgesia of the tongue occurred in Mecp2+/− mice and submucosal injection of complete Freund’s adjuvant into the tongue produced a long-lasting heat hyperalgesia at the inflamed site in wild-type mice but not in Mecp2+/− mice. Transient receptor potential vanilloid 1 was expressed in a large number of MeCP2-immunoreactive trigeminal ganglion neurons innervating the tongue in both wild-type and Mecp2+/− mice (70.9% in wild type; 72.1% in Mecp2+/−). The number of transient receptor potential vanilloid 1-immunoreactive trigeminal ganglion neurons innervating the tongue was smaller in Mecp2+/− mice relative to wild-type mice (30.5% in wild type; 20.2% in Mecp2+/−). Following complete Freund’s adjuvant injection, the number of transient receptor potential vanilloid 1- and MeCP2-immunoreactive trigeminal ganglion neurons innervating the tongue, as well as MeCP2 protein expression in trigeminal ganglion, was significantly increased in wild-type mice but not in Mecp2+/− mice. Additionally, tongue heat hyperalgesia following complete Freund’s adjuvant injection was completely suppressed by the administration of SB366791, a transient receptor potential vanilloid 1 antagonist, in the tongue. Conclusions These findings indicate that tongue heat sensitivity and hypersensitivity are dependent on the expression of transient receptor potential vanilloid 1 which is regulated via MeCP2 signaling in trigeminal ganglion neurons innervating the tongue.
Collapse
Affiliation(s)
- Azumi Suzuki
- Department of Pediatric Dentistry, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Masamichi Shinoda
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Kuniya Honda
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Tetsuro Shirakawa
- Department of Pediatric Dentistry, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| | - Koichi Iwata
- Department of Physiology, Nihon University School of Dentistry, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
204
|
Hwang SJ, Basma N, Sanders KM, Ward SM. Effects of new-generation inhibitors of the calcium-activated chloride channel anoctamin 1 on slow waves in the gastrointestinal tract. Br J Pharmacol 2016; 173:1339-49. [PMID: 26774021 DOI: 10.1111/bph.13431] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE High-throughput screening of compound libraries using genetically encoded fluorescent biosensors has identified several second-generation. low MW inhibitors of the calcium-activated chloride channel anoctamin 1 (CaCC/Ano1). Here we have (i) examined the effects of these Ano1 inhibitors on gastric and intestinal pacemaker activity; (ii) compared the effects of these inhibitors with those of the more classical CaCC inhibitor, 5-nitro-2-(3-phenylpropylalanine) benzoate (NPPB); (ii) examined the mode of action of these compounds on the waveform of pacemaker activity; and (iii) compared differences in the sensitivity between gastric and intestinal pacemaker activity to the Ano1 inhibitors. EXPERIMENTAL APPROACH Using intracellular microelectrode recordings of gastric and intestinal muscle preparations from C57BL/6 mice, the dose-dependent effects of Ano1 inhibitors were examined on spontaneous electrical slow waves. KEY RESULTS The efficacy of second-generation Ano1 inhibitors on gastric and intestinal pacemaker activity differed significantly. Antral slow waves were more sensitive to these inhibitors than intestinal slow waves. CaCCinh -A01 and benzbromarone were the most potent at inhibiting slow waves in both muscle preparations and more potent than NPPB. Dichlorophene and hexachlorophene were equally potent at inhibiting slow waves. Surprisingly, slow waves were relatively insensitive to T16Ainh -A01 in both preparations. CONCLUSIONS AND IMPLICATIONS We have identified several second-generation Ano1 inhibitors, blocking gastric and intestinal pacemaker activity. Different sensitivities to Ano1 inhibitors between stomach and intestine suggest the possibility of different splice variants in these two organs or the involvement of other conductances in the generation and propagation of pacemaker activity in these tissues.
Collapse
Affiliation(s)
- Sung Jin Hwang
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Naseer Basma
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Kenton M Sanders
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| | - Sean M Ward
- Department of Physiology & Cell Biology, University of Nevada School of Medicine, Reno, NV, USA
| |
Collapse
|
205
|
Attenuation of neuropathic pain and neuroinflammatory responses by a pyranocoumarin derivative, anomalin in animal and cellular models. Eur J Pharmacol 2016; 774:95-104. [DOI: 10.1016/j.ejphar.2016.02.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Revised: 12/24/2015] [Accepted: 02/01/2016] [Indexed: 12/19/2022]
|
206
|
Liu S, Feng J, Luo J, Yang P, Brett TJ, Hu H. Eact, a small molecule activator of TMEM16A, activates TRPV1 and elicits pain- and itch-related behaviours. Br J Pharmacol 2016; 173:1208-18. [PMID: 26756551 DOI: 10.1111/bph.13420] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE TMEM16A, also known as anoctamin 1 channel, is a member of the Ca(2+)-activated chloride channels family and serves as a heat sensor in the primary nociceptors. Eact is a recently discovered small molecule activator of the TMEM16A channel. Here, we asked if Eact produces pain- and itch-related responses in vivo and investigated the cellular and molecular basis of Eact-elicited responses in dorsal root ganglia (DRG) neurons. EXPERIMENTAL APPROACH We employed behavioural testing combined with pharmacological inhibition and genetic ablation approaches to identify transient receptor potential vanilloid 1 (TRPV1) as the prominent mediator for Eact-evoked itch- or pain-related responses. We investigated the effects of Eact on TRPV1 and TMEM16A channels expressed in HEK293T cells and in DRG neurons isolated from wild type and Trpv1(-/-) mice using Ca(2+) imaging and patch-clamp recordings. We also used site-directed mutagenesis to determine the molecular basis of Eact activation of TRPV1. KEY RESULTS Administration of Eact elicited both itch- and pain-related behaviours. Unexpectedly, the Eact-elicited behavioural responses were dependent on the function of TRPV1, as shown by pharmacological inhibition and genetic ablation studies. Eact activated membrane currents and increased intracellular free Ca(2+) in both TRPV1-expressing HEK293T cells and isolated DRG neurons in a TRPV1-dependent manner. Eact activation of the TRPV1 channel was severely attenuated by mutations disrupting the capsaicin-binding sites. CONCLUSIONS AND IMPLICATIONS Our results suggest that Eact activates primary sensory nociceptors and produces both pain and itch responses mainly through direct activation of TRPV1 channels.
Collapse
Affiliation(s)
- Shenbin Liu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jing Feng
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jialie Luo
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Pu Yang
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thomas J Brett
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
207
|
Bill A, Gutierrez A, Kulkarni S, Kemp C, Bonenfant D, Voshol H, Duvvuri U, Gaither LA. ANO1/TMEM16A interacts with EGFR and correlates with sensitivity to EGFR-targeting therapy in head and neck cancer. Oncotarget 2016; 6:9173-88. [PMID: 25823819 PMCID: PMC4496210 DOI: 10.18632/oncotarget.3277] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/07/2015] [Indexed: 12/23/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) contributes to the pathogenesis of head&neck squamous cell carcinoma (HNSCC). However, only a subset of HNSCC patients benefit from anti-EGFR targeted therapy. By performing an unbiased proteomics screen, we found that the calcium-activated chloride channel ANO1 interacts with EGFR and facilitates EGFR-signaling in HNSCC. Using structural mutants of EGFR and ANO1 we identified the trans/juxtamembrane domain of EGFR to be critical for the interaction with ANO1. Our results show that ANO1 and EGFR form a functional complex that jointly regulates HNSCC cell proliferation. Expression of ANO1 affected EGFR stability, while EGFR-signaling elevated ANO1 protein levels, establishing a functional and regulatory link between ANO1 and EGFR. Co-inhibition of EGFR and ANO1 had an additive effect on HNSCC cell proliferation, suggesting that co-targeting of ANO1 and EGFR could enhance the clinical potential of EGFR-targeted therapy in HNSCC and might circumvent the development of resistance to single agent therapy. HNSCC cell lines with amplification and high expression of ANO1 showed enhanced sensitivity to Gefitinib, suggesting ANO1 overexpression as a predictive marker for the response to EGFR-targeting agents in HNSCC therapy. Taken together, our results introduce ANO1 as a promising target and/or biomarker for EGFR-directed therapy in HNSCC.
Collapse
Affiliation(s)
- Anke Bill
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Abraham Gutierrez
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| | - Sucheta Kulkarni
- University of Pittsburgh, Medical Center, Department of Otolaryngology, Pittsburgh, PA 15213, USA
| | - Carolyn Kemp
- University of Pittsburgh, Medical Center, Department of Otolaryngology, Pittsburgh, PA 15213, USA
| | - Debora Bonenfant
- Novartis Institutes for Biomedical Research, Basel, CH-4002, Switzerland
| | - Hans Voshol
- Novartis Institutes for Biomedical Research, Basel, CH-4002, Switzerland
| | - Umamaheswar Duvvuri
- University of Pittsburgh, Medical Center, Department of Otolaryngology, Pittsburgh, PA 15213, USA.,VA Pittsburgh HealthCare System, Pittsburgh, PA 15213, USA
| | - L Alex Gaither
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, USA
| |
Collapse
|
208
|
Abstract
The detection of temperature is one of the most fundamental sensory functions across all species, and is critical for animal survival. Animals have thus evolved a diversity of thermosensory mechanisms allowing them to sense and respond to temperature changes (thermoreception). A key process underlying thermoreception is the translation of thermal energy into electrical signals, a process mediated by thermal sensors (thermoreceptors) that are sensitive to a specific range of temperatures. In disease conditions, the temperature sensitivity of thermoreceptors is altered, leading to abnormal temperature sensation such as heat hyperalgesia. Therefore, the identification of thermal sensors and understanding their functions and regulation hold great potential for developing novel therapeutics against many medical conditions such as pain.
Collapse
Affiliation(s)
- Xuming Zhang
- a Rowett Institute of Nutrition and Health & Institute of Medical Sciences ; University of Aberdeen , Foresterhill , Aberdeen , UK
| |
Collapse
|
209
|
Abstract
Ca2+-activated Cl− channels (CaCCs) are a class of Cl− channels activated by intracellular Ca2+ that are known to mediate numerous physiological functions. In 2008, the molecular identity of CaCCs was found to be anoctamin 1 (ANO1/TMEM16A). Its roles have been studied in electrophysiological, histological, and genetic aspects. ANO1 is known to mediate Cl− secretion in secretory epithelia such as airways, salivary glands, intestines, renal tubules, and sweat glands. ANO1 is a heat sensor activated by noxious heat in somatosensory neurons and mediates acute pain sensation as well as chronic pain. ANO1 is also observed in vascular as well as airway smooth muscles, controlling vascular tone as well as airway hypersensitivity. ANO1 is upregulated in numerous types of cancers and thus thought to be involved in tumorigenesis. ANO1 is also found in proliferating cells. In addition to ANO1, involvement of its paralogs in pathophysiological conditions was also reported. ANO2 is involved in olfaction, whereas ANO6 works as a scramblase whose mutation causes a rare bleeding disorder, the Scott syndrome. ANO5 is associated with muscle and bone diseases. Recently, an X-ray crystal structure of a fungal TMEM16 was reported, which explains a precise molecular gating mechanism as well as ion conduction or phospholipid transport across the plasma membrane.
Collapse
|
210
|
Modulating Ca²⁺ signals: a common theme for TMEM16, Ist2, and TMC. Pflugers Arch 2015; 468:475-90. [PMID: 26700940 DOI: 10.1007/s00424-015-1767-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/21/2022]
Abstract
Since the discovery of TMEM16A (anoctamin 1, ANO1) as Ca(2+)-activated Cl(-) channel, the protein was found to serve different physiological functions, depending on the type of tissue. Subsequent reports on other members of the anoctamin family demonstrated a broad range of yet poorly understood properties. Compromised anoctamin function is causing a wide range of diseases, such as hearing loss (ANO2), bleeding disorder (ANO6), ataxia and dystonia (ANO3, 10), persistent borrelia and mycobacteria infection (ANO10), skeletal syndromes like gnathodiaphyseal dysplasia and limb girdle muscle dystrophy (ANO5), and cancer (ANO1, 6, 7). Animal models demonstrate CF-like airway disease, asthma, and intestinal hyposecretion (ANO1). Although present data indicate that ANO1 is a Ca(2+)-activated Cl(-) channel, it remains unclear whether all anoctamins form plasma membrane-localized or intracellular chloride channels. We find Ca(2+)-activated Cl(-) currents appearing by expression of most anoctamin paralogs, including the Nectria haematococca homologue nhTMEM16 and the yeast homologue Ist2. As recent studies show a role of anoctamins, Ist2, and the related transmembrane channel-like (TMC) proteins for intracellular Ca(2+) signaling, we will discuss the role of these proteins in generating compartmentalized Ca(2+) signals, which may give a hint as to the broad range of cellular functions of anoctamins.
Collapse
|
211
|
Li CL, Li KC, Wu D, Chen Y, Luo H, Zhao JR, Wang SS, Sun MM, Lu YJ, Zhong YQ, Hu XY, Hou R, Zhou BB, Bao L, Xiao HS, Zhang X. Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity. Cell Res 2015; 26:83-102. [PMID: 26691752 DOI: 10.1038/cr.2015.149] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/04/2015] [Accepted: 12/01/2015] [Indexed: 11/09/2022] Open
Abstract
Sensory neurons are distinguished by distinct signaling networks and receptive characteristics. Thus, sensory neuron types can be defined by linking transcriptome-based neuron typing with the sensory phenotypes. Here we classify somatosensory neurons of the mouse dorsal root ganglion (DRG) by high-coverage single-cell RNA-sequencing (10 950 ± 1 218 genes per neuron) and neuron size-based hierarchical clustering. Moreover, single DRG neurons responding to cutaneous stimuli are recorded using an in vivo whole-cell patch clamp technique and classified by neuron-type genetic markers. Small diameter DRG neurons are classified into one type of low-threshold mechanoreceptor and five types of mechanoheat nociceptors (MHNs). Each of the MHN types is further categorized into two subtypes. Large DRG neurons are categorized into four types, including neurexophilin 1-expressing MHNs and mechanical nociceptors (MNs) expressing BAI1-associated protein 2-like 1 (Baiap2l1). Mechanoreceptors expressing trafficking protein particle complex 3-like and Baiap2l1-marked MNs are subdivided into two subtypes each. These results provide a new system for cataloging somatosensory neurons and their transcriptome databases.
Collapse
Affiliation(s)
- Chang-Lin Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China
| | - Kai-Cheng Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China
| | - Dan Wu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China
| | - Yan Chen
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China
| | - Hao Luo
- School of Life Science and Technology, ShanghaiTec University, Shanghai 200031, China
| | - Jing-Rong Zhao
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China
| | - Sa-Shuang Wang
- School of Life Science and Technology, ShanghaiTec University, Shanghai 200031, China
| | - Ming-Ming Sun
- National Engineering Center for Biochip at Shanghai, Shanghai, China
| | - Ying-Jin Lu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China
| | - Yan-Qing Zhong
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China
| | - Xu-Ye Hu
- Shanghai Clinical Center, Chinese Academy of Sciences/XuHui Central Hospital, Shanghai, China
| | - Rui Hou
- National Engineering Center for Biochip at Shanghai, Shanghai, China
| | - Bei-Bei Zhou
- National Engineering Center for Biochip at Shanghai, Shanghai, China
| | - Lan Bao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.,School of Life Science and Technology, ShanghaiTec University, Shanghai 200031, China
| | - Hua-Sheng Xiao
- National Engineering Center for Biochip at Shanghai, Shanghai, China
| | - Xu Zhang
- Institute of Neuroscience and State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 20031, China.,School of Life Science and Technology, ShanghaiTec University, Shanghai 200031, China
| |
Collapse
|
212
|
Yatsu R, Miyagawa S, Kohno S, Saito S, Lowers RH, Ogino Y, Fukuta N, Katsu Y, Ohta Y, Tominaga M, Guillette LJ, Iguchi T. TRPV4 associates environmental temperature and sex determination in the American alligator. Sci Rep 2015; 5:18581. [PMID: 26677944 PMCID: PMC4683465 DOI: 10.1038/srep18581] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 11/20/2015] [Indexed: 12/28/2022] Open
Abstract
Temperature-dependent sex determination (TSD), commonly found among reptiles, is a sex determination mode in which the incubation temperature during a critical temperature sensitive period (TSP) determines sexual fate of the individual rather than the individual’s genotypic background. In the American alligator (Alligator mississippiensis), eggs incubated during the TSP at 33 °C (male producing temperature: MPT) yields male offspring, whereas incubation temperatures below 30 °C (female producing temperature: FPT) lead to female offspring. However, many of the details of the underlying molecular mechanism remains elusive, and the molecular link between environmental temperature and sex determination pathway is yet to be elucidated. Here we show the alligator TRPV4 ortholog (AmTRPV4) to be activated at temperatures proximate to the TSD-related temperature in alligators, and using pharmacological exposure, we show that AmTRPV4 channel activity affects gene expression patterns associated with male differentiation. This is the first experimental demonstration of a link between a well-described thermo-sensory mechanism, TRPV4 channel, and its potential role in regulation of TSD in vertebrates, shedding unique new light on the elusive TSD molecular mechanism.
Collapse
Affiliation(s)
- Ryohei Yatsu
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki Aichi 444-8787 Japan.,Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki Aichi 444-8787 Japan
| | - Shinichi Miyagawa
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki Aichi 444-8787 Japan.,Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki Aichi 444-8787 Japan
| | - Satomi Kohno
- Department of Obstetrics and Gynecology, Medical University of South Carolina, and Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Charleston SC 29412 USA
| | - Shigeru Saito
- Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki Aichi 444-8787 Japan.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki Aichi 444-8787 Japan
| | - Russell H Lowers
- Innovative Health Applications, Kennedy Space Center, Merritt Island FL 32899 USA
| | - Yukiko Ogino
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki Aichi 444-8787 Japan.,Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki Aichi 444-8787 Japan
| | - Naomi Fukuta
- Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki Aichi 444-8787 Japan
| | - Yoshinao Katsu
- Graduate School of Life Science and Department of Biological Sciences, Hokkaido University, Sapporo Hokkaido 062-8520 Japan
| | - Yasuhiko Ohta
- Department of Veterinary Medicine, Faculty of Agriculture, Tottori University, Koyama Tottori 680-8553 Japan
| | - Makoto Tominaga
- Okazaki Institute for Integrative Bioscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki Aichi 444-8787 Japan.,Department of Physiological Sciences, SOKENDAI (The Graduate University for Advanced Studies), Okazaki Aichi 444-8787 Japan
| | - Louis J Guillette
- Department of Obstetrics and Gynecology, Medical University of South Carolina, and Marine Biomedicine and Environmental Science Center, Hollings Marine Laboratory, Charleston SC 29412 USA
| | - Taisen Iguchi
- Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki Aichi 444-8787 Japan.,Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki Aichi 444-8787 Japan
| |
Collapse
|
213
|
A Probabilistic Model for Estimating the Depth and Threshold Temperature of C-fiber Nociceptors. Sci Rep 2015; 5:17670. [PMID: 26638830 PMCID: PMC4671062 DOI: 10.1038/srep17670] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 10/30/2015] [Indexed: 11/08/2022] Open
Abstract
The subjective experience of thermal pain follows the detection and encoding of noxious stimuli by primary afferent neurons called nociceptors. However, nociceptor morphology has been hard to access and the mechanisms of signal transduction remain unresolved. In order to understand how heat transducers in nociceptors are activated in vivo, it is important to estimate the temperatures that directly activate the skin-embedded nociceptor membrane. Hence, the nociceptor's temperature threshold must be estimated, which in turn will depend on the depth at which transduction happens in the skin. Since the temperature at the receptor cannot be accessed experimentally, such an estimation can currently only be achieved through modeling. However, the current state-of-the-art model to estimate temperature at the receptor suffers from the fact that it cannot account for the natural stochastic variability of neuronal responses. We improve this model using a probabilistic approach which accounts for uncertainties and potential noise in system. Using a data set of 24 C-fibers recorded in vitro, we show that, even without detailed knowledge of the bio-thermal properties of the system, the probabilistic model that we propose here is capable of providing estimates of threshold and depth in cases where the classical method fails.
Collapse
|
214
|
Zhang W, Schmelzeisen S, Parthier D, Frings S, Möhrlen F. Anoctamin Calcium-Activated Chloride Channels May Modulate Inhibitory Transmission in the Cerebellar Cortex. PLoS One 2015; 10:e0142160. [PMID: 26558388 PMCID: PMC4641602 DOI: 10.1371/journal.pone.0142160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/19/2015] [Indexed: 01/18/2023] Open
Abstract
Calcium-activated chloride channels of the anoctamin (alias TMEM16) protein family fulfill critical functions in epithelial fluid transport, smooth muscle contraction and sensory signal processing. Little is known, however, about their contribution to information processing in the central nervous system. Here we examined the recent finding that a calcium-dependent chloride conductance impacts on GABAergic synaptic inhibition in Purkinje cells of the cerebellum. We asked whether anoctamin channels may underlie this chloride conductance. We identified two anoctamin channel proteins, ANO1 and ANO2, in the cerebellar cortex. ANO1 was expressed in inhibitory interneurons of the molecular layer and the granule cell layer. Both channels were expressed in Purkinje cells but, while ANO1 appeared to be retained in the cell body, ANO2 was targeted to the dendritic tree. Functional studies confirmed that ANO2 was involved in a calcium-dependent mode of ionic plasticity that reduces the efficacy of GABAergic synapses. ANO2 channels attenuated GABAergic transmission by increasing the postsynaptic chloride concentration, hence reducing the driving force for chloride influx. Our data suggest that ANO2 channels are involved in a Ca2+-dependent regulation of synaptic weight in GABAergic inhibition. Thus, in balance with the chloride extrusion mechanism via the co-transporter KCC2, ANO2 appears to regulate ionic plasticity in the cerebellum.
Collapse
Affiliation(s)
- Weiping Zhang
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Steffen Schmelzeisen
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Daniel Parthier
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Stephan Frings
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
| | - Frank Möhrlen
- Department of Animal Molecular Physiology, Centre of Organismal Studies, Im Neuenheimer Feld 504, Heidelberg University, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
215
|
Chun H, Cho H, Choi J, Lee J, Kim SM, Kim H, Oh U. Protons inhibit anoctamin 1 by competing with calcium. Cell Calcium 2015; 58:431-41. [DOI: 10.1016/j.ceca.2015.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/13/2015] [Accepted: 06/28/2015] [Indexed: 01/30/2023]
|
216
|
Deba F, Bessac BF. Anoctamin-1 Cl(-) channels in nociception: activation by an N-aroylaminothiazole and capsaicin and inhibition by T16A[inh]-A01. Mol Pain 2015; 11:55. [PMID: 26364309 PMCID: PMC4567824 DOI: 10.1186/s12990-015-0061-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/07/2015] [Indexed: 11/29/2022] Open
Abstract
Background Anoctamin 1 (ANO1 or TMEM16A) Ca2+-gated Cl− channels of nociceptor neurons are emerging as important molecular components of peripheral pain transduction. At physiological intracellular Cl− concentrations ([Cl−]i) sensory neuronal Cl− channels are excitatory. The ability of sensory neuronal ANO1 to trigger action potentials and subsequent nocifensive (pain) responses were examined by direct activation with an N-aroylaminothiazole. ANO1 channels are also activated by intracellular Ca2+ ([Ca2+]i) from sensory neuronal TRPV1 (transient-receptor-potential vallinoid 1) ion channels and other noxicant receptors. Thus, sensory neuronal ANO1 can facilitate TRPV1 triggering of action potentials, resulting in enhanced nociception. This was investigated by reducing ANO1 facilitation of TRPV1 effects with: (1) T16A[inh]-A01 ANO1-inhibitor reagent at physiological [Cl−]i and (2) by lowering sensory neuronal [Cl−]i to switch ANO1 to be inhibitory. Results ANO1 effects on action potential firing of mouse dorsal root ganglia (DRG) neurons in vitro and mouse nocifensive behaviors in vivo were examined with an N-aroylaminothiazole ANO1-activator (E-act), a TRPV1-activator (capsaicin) and an ANO1-inhibitor (T16A[inh]-A01). At physiological [Cl−]i (40 mM), E-act (10 µM) increased current sizes (in voltage-clamp) and action potential firing (in current-clamp) recorded in DRG neurons using whole-cell electrophysiology. To not disrupt TRPV1 carried-Ca2+ activation of ANO1 in DRG neurons, ANO1 modulation of capsaicin-induced action potentials was measured by perforated-patch (Amphotericin–B) current-clamp technique. Subsequently, at physiological [Cl−]i, capsaicin (15 µM)-induced action potential firing was diminished by co-application with T16A[inh]-A01 (20 µM). Under conditions of low [Cl−]i (10 mM), ANO1 actions were reversed. Specifically, E-act did not trigger action potentials; however, capsaicin-induced action potential firing was inhibited by co-application of E-act, but was unaffected by co-application of T16A[inh]-A01. Nocifensive responses of mice hind paws were dramatically induced by subcutaneous injections of E-act (5 mM) or capsaicin (50 µM). The nocifensive responses were attenuated by co-injection with T16A[inh]-A01 (1.3 mM). Conclusions An ANO1-activator (E-act) induced [Cl−]i-dependent sensory neuronal action potentials and mouse nocifensive behaviors; thus, direct ANO1 activation can induce pain perception. ANO1-inhibition attenuated capsaicin-triggering of action potentials and capsaicin-induced nocifensive behaviors. These results indicate ANO1 channels are involved with TRPV1 actions in sensory neurons and inhibition of ANO1 could be a novel means of inducing analgesia. Electronic supplementary material The online version of this article (doi:10.1186/s12990-015-0061-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Farah Deba
- Department of Pharmaceutical Sciences, I. L. Rangel College of Pharmacy, Texas A&M Health Science Center, 1010 West Avenue B MSC 131, Kingsville, TX, 78363, USA.
| | - Bret F Bessac
- Department of Pharmaceutical Sciences, I. L. Rangel College of Pharmacy, Texas A&M Health Science Center, 1010 West Avenue B MSC 131, Kingsville, TX, 78363, USA.
| |
Collapse
|
217
|
Scudieri P, Caci E, Venturini A, Sondo E, Pianigiani G, Marchetti C, Ravazzolo R, Pagani F, Galietta LJV. Ion channel and lipid scramblase activity associated with expression of TMEM16F/ANO6 isoforms. J Physiol 2015; 593:3829-48. [PMID: 26108457 PMCID: PMC4575572 DOI: 10.1113/jp270691] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/26/2015] [Indexed: 11/08/2022] Open
Abstract
TMEM16F is a membrane protein with possible dual function as an ion channel and a phospholipid scramblase. The properties of ion channels associated with TMEM16F and the link between ion channel and scramblase activity are a matter of debate. We studied the properties of four isoforms of TMEM16F generated by alternative splicing. Upregulation of three TMEM16F isoforms or silencing of endogenous TMEM16F increased and decreased, respectively, both scramblase and channel activities. Introduction of an activating mutation in TMEM16F sequence caused a marked increase in phosphatidylserine scrambling and in ion transport indicating direct involvement of the protein in both functions. TMEM16F, also known as ANO6, is a membrane protein that has been associated with phospholipid scramblase and ion channel activity. However, the characteristics of TMEM16F-dependent channels, particularly the ion selectivity, are a matter of debate. Furthermore, the direct involvement of TMEM16F in phospholipid scrambling has been questioned. We studied the properties of different TMEM16F variants generated by alternative splicing. Using whole-cell patch-clamp recordings, we found that V1, V2 and V5 variants generated membrane currents activated by very high (micromolar) intracellular Ca(2+) concentrations and positive membrane potentials. These variants showed different degrees of Ca(2+) sensitivity and kinetics of activation but similar ion permeability, characterized by a slight selectivity for Cl(-) over Na(+) . A fourth variant (V3) showing a unique carboxy-terminus was devoid of activity, in agreement with its intracellular localization. We also measured scramblase activity using the binding of annexin V to detect phosphatidylserine on the cell surface. V1, V2 and V5 variants were associated with calcium-dependent phosphatidylserine externalization. Interestingly, introduction of an activating mutation, D409G, produced a marked increase in the apparent Ca(2+) sensitivity of TMEM16F-dependent channels. In parallel, this mutation also enhanced the extent of phosphatidylserine externalization that occurred even under resting conditions. These results support the conclusion that TMEM16F proteins are directly involved in dual activity, as a phospholipid scramblase and as an ion channel.
Collapse
Affiliation(s)
| | | | | | | | - Giulia Pianigiani
- Human Molecular Genetics, International Centre for Genetic Engineering and BiotechnologyTrieste, Italy
| | | | - Roberto Ravazzolo
- Istituto Giannina GasliniGenova, Italy
- DINOGMI, University of GenovaItaly
| | - Franco Pagani
- Human Molecular Genetics, International Centre for Genetic Engineering and BiotechnologyTrieste, Italy
| | | |
Collapse
|
218
|
TMEM16, LRRC8A, bestrophin: chloride channels controlled by Ca2+ and cell volume. Trends Biochem Sci 2015; 40:535-43. [DOI: 10.1016/j.tibs.2015.07.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/10/2015] [Accepted: 07/10/2015] [Indexed: 01/13/2023]
|
219
|
Anoctamin 1 (TMEM16A) is essential for testosterone-induced prostate hyperplasia. Proc Natl Acad Sci U S A 2015; 112:9722-7. [PMID: 26153424 DOI: 10.1073/pnas.1423827112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is characterized by an enlargement of the prostate, causing lower urinary tract symptoms in elderly men worldwide. However, the molecular mechanism underlying the pathogenesis of BPH is unclear. Anoctamin1 (ANO1) encodes a Ca(2+)-activated chloride channel (CaCC) that mediates various physiological functions. Here, we demonstrate that it is essential for testosterone-induced BPH. ANO1 was highly amplified in dihydrotestosterone (DHT)-treated prostate epithelial cells, whereas the selective knockdown of ANO1 inhibited DHT-induced cell proliferation. Three androgen-response elements were found in the ANO1 promoter region, which is relevant for the DHT-dependent induction of ANO1. Administration of the ANO1 blocker or Ano1 small interfering RNA, inhibited prostate enlargement and reduced histological abnormalities in vivo. We therefore concluded that ANO1 is essential for the development of prostate hyperplasia and is a potential target for the treatment of BPH.
Collapse
|
220
|
Pineda-Farias JB, Barragán-Iglesias P, Loeza-Alcocer E, Torres-López JE, Rocha-González HI, Pérez-Severiano F, Delgado-Lezama R, Granados-Soto V. Role of anoctamin-1 and bestrophin-1 in spinal nerve ligation-induced neuropathic pain in rats. Mol Pain 2015; 11:41. [PMID: 26130088 PMCID: PMC4487556 DOI: 10.1186/s12990-015-0042-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/11/2015] [Indexed: 01/17/2023] Open
Abstract
Background Calcium-activated chloride channels (CaCCs) activation induces membrane depolarization by increasing chloride efflux in primary sensory neurons that can facilitate action potential generation. Previous studies suggest that CaCCs family members bestrophin-1 and anoctamin-1 are involved in inflammatory pain. However, their role in neuropathic pain is unclear. In this investigation we assessed the involvement of these CaCCs family members in rats subjected to the L5/L6 spinal nerve ligation. In addition, anoctamin-1 and bestrophin-1 mRNA and protein expression in dorsal root ganglion (DRG) and spinal cord was also determined in the presence and absence of selective inhibitors. Results L5/L6 spinal nerve ligation induced mechanical tactile allodynia. Intrathecal administration of non-selective CaCCs inhibitors (NPPB, 9-AC and NFA) dose-dependently reduced tactile allodynia. Intrathecal administration of selective CaCCs inhibitors (T16Ainh-A01 and CaCCinh-A01) also dose-dependently diminished tactile allodynia and thermal hyperalgesia. Anoctamin-1 and bestrophin-1 mRNA and protein were expressed in the dorsal spinal cord and DRG of naïve, sham and neuropathic rats. L5/L6 spinal nerve ligation rose mRNA and protein expression of anoctamin-1, but not bestrophin-1, in the dorsal spinal cord and DRG from day 1 to day 14 after nerve ligation. In addition, repeated administration of CaCCs inhibitors (T16Ainh-A01, CaCCinh-A01 or NFA) or anti-anoctamin-1 antibody prevented spinal nerve ligation-induced rises in anoctamin-1 mRNA and protein expression. Following spinal nerve ligation, the compound action potential generation of putative C fibers increased while selective CaCCs inhibitors (T16Ainh-A01 and CaCCinh-A01) attenuated such increase. Conclusions There is functional anoctamin-1 and bestrophin-1 expression in rats at sites related to nociceptive processing. Blockade of these CaCCs suppresses compound action potential generation in putative C fibers and lessens established tactile allodynia. As CaCCs activity contributes to neuropathic pain maintenance, selective inhibition of their activity may function as a tool to generate analgesia in nerve injury pain states. Electronic supplementary material The online version of this article (doi:10.1186/s12990-015-0042-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorge Baruch Pineda-Farias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, Calzada de los Tenorios 235, Colonia Granjas Coapa, 14330, México, D.F., México.
| | - Paulino Barragán-Iglesias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, Calzada de los Tenorios 235, Colonia Granjas Coapa, 14330, México, D.F., México.
| | - Emanuel Loeza-Alcocer
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav), Zacatenco, México, D.F., México.
| | - Jorge E Torres-López
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Tabasco, México. .,Hospital Regional de Alta Especialidad "Dr. Juan Graham Casasús", Villahermosa, Tabasco, México.
| | - Héctor Isaac Rocha-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, D.F., México.
| | - Francisca Pérez-Severiano
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suárez", México, D.F., México.
| | - Rodolfo Delgado-Lezama
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav), Zacatenco, México, D.F., México.
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur, Calzada de los Tenorios 235, Colonia Granjas Coapa, 14330, México, D.F., México.
| |
Collapse
|
221
|
Sato-Numata K, Numata T, Okada Y. Temperature sensitivity of acid-sensitive outwardly rectifying (ASOR) anion channels in cortical neurons is involved in hypothermic neuroprotection against acidotoxic necrosis. Channels (Austin) 2015; 8:278-83. [PMID: 24476793 DOI: 10.4161/chan.27748] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The acid-sensitive outwardly rectifying (ASOR) anion channel has been found in non-neuronal cell types and was shown to be involved in acidotoxic death of epithelial cells. We have recently shown that the ASOR channel is sensitive to temperature. Here, we extend those results to show that temperature-sensitive ASOR anion channels are expressed in cortical neurons and involved in acidotoxic neuronal cell death. In cultured mouse cortical neurons, reduction of extracellular pH activated anionic currents exhibiting phenotypic properties of the ASOR anion channel. The neuronal ASOR currents recorded at pH 5.25 were augmented by warm temperature, with a threshold temperature of 26 °C and the Q(10) value of 5.6. After 1 h exposure to acidic solution at 37 °C, a large population of neurons suffered from necrotic cell death which was largely protected not only by ASOR channel blockers but also by reduction of temperature to 25 °C. Thus, it is suggested that high temperature sensitivity of the neuronal ASOR anion channel provides, at least in part, a basis for hypothermic neuroprotection under acidotoxic situations associated with a number of pathological brain states.
Collapse
|
222
|
Zhang XH, Zheng B, Yang Z, He M, Yue LY, Zhang RN, Zhang M, Zhang W, Zhang X, Wen JK. TMEM16A and myocardin form a positive feedback loop that is disrupted by KLF5 during Ang II-induced vascular remodeling. Hypertension 2015; 66:412-21. [PMID: 26077572 DOI: 10.1161/hypertensionaha.115.05280] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/25/2015] [Indexed: 12/26/2022]
Abstract
The TMEM16A protein is an important component of Ca(2+)-dependent Cl(-) channels (CaCCs) in vascular smooth muscle cells. A recent study showed that TMEM16A inhibits angiotensin II-induced proliferation in rat basilar smooth muscle cells. However, whether and how TMEM16A is involved in vascular remodeling characterized by vascular smooth muscle cell proliferation remains largely unclear. In this study, luciferase reporter, Western blotting, and qRT-PCR assays were performed. The results suggested that myocardin promotes TMEM16A expression by forming a complex with serum response factor (SRF) on the TMEM16A promoter in human aortic smooth muscle cells (HASMCs). In turn, upregulated TMEM16A promotes expression of myocardin and vascular smooth muscle cell marker genes, thus forming a positive feedback loop that induces cell differentiation and inhibits cell proliferation. Angiotensin II inhibits TMEM16A expression via Krüppel-like factor 5 (KLF5) in cultured HASMCs. Moreover, in vivo experiments show that infusion of angiotensin II into mice causes a marked reduction in TMEM16A expression and vascular remodeling, and angiotensin II-induced effects are largely reversed in KLF5 null (KLF5(-/-)) mice. KLF5 competes with SRF to interact with myocardin, thereby limiting myocardin binding to SRF and the synergistic activation of the TMEM16A promoter by myocardin and SRF. Our studies demonstrated that angiotensin II induces KLF5 expression and facilitates KLF5 association with myocardin to disrupt the myocardin-SRF complex, subsequently leading to inhibition of TMEM16A transcription. Blocking the positive feedback loop between myocardin and TMEM16A may be a novel therapeutic approach for vascular remodeling.
Collapse
Affiliation(s)
- Xin-Hua Zhang
- From the Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education (X.-h.Z., B.Z., Z.Y., M.H., L.-y.Y., R.-n.Z., J.-k.W.) and Department of Pharmacology, Institute of Chinese Integrative Medicine (M.Z., W.Z., X.Z.), Hebei Medical University, Shijiazhuang, China
| | - Bin Zheng
- From the Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education (X.-h.Z., B.Z., Z.Y., M.H., L.-y.Y., R.-n.Z., J.-k.W.) and Department of Pharmacology, Institute of Chinese Integrative Medicine (M.Z., W.Z., X.Z.), Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- From the Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education (X.-h.Z., B.Z., Z.Y., M.H., L.-y.Y., R.-n.Z., J.-k.W.) and Department of Pharmacology, Institute of Chinese Integrative Medicine (M.Z., W.Z., X.Z.), Hebei Medical University, Shijiazhuang, China
| | - Ming He
- From the Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education (X.-h.Z., B.Z., Z.Y., M.H., L.-y.Y., R.-n.Z., J.-k.W.) and Department of Pharmacology, Institute of Chinese Integrative Medicine (M.Z., W.Z., X.Z.), Hebei Medical University, Shijiazhuang, China
| | - Ling-Yan Yue
- From the Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education (X.-h.Z., B.Z., Z.Y., M.H., L.-y.Y., R.-n.Z., J.-k.W.) and Department of Pharmacology, Institute of Chinese Integrative Medicine (M.Z., W.Z., X.Z.), Hebei Medical University, Shijiazhuang, China
| | - Ruo-Nan Zhang
- From the Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education (X.-h.Z., B.Z., Z.Y., M.H., L.-y.Y., R.-n.Z., J.-k.W.) and Department of Pharmacology, Institute of Chinese Integrative Medicine (M.Z., W.Z., X.Z.), Hebei Medical University, Shijiazhuang, China
| | - Ming Zhang
- From the Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education (X.-h.Z., B.Z., Z.Y., M.H., L.-y.Y., R.-n.Z., J.-k.W.) and Department of Pharmacology, Institute of Chinese Integrative Medicine (M.Z., W.Z., X.Z.), Hebei Medical University, Shijiazhuang, China
| | - Wei Zhang
- From the Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education (X.-h.Z., B.Z., Z.Y., M.H., L.-y.Y., R.-n.Z., J.-k.W.) and Department of Pharmacology, Institute of Chinese Integrative Medicine (M.Z., W.Z., X.Z.), Hebei Medical University, Shijiazhuang, China
| | - Xuan Zhang
- From the Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education (X.-h.Z., B.Z., Z.Y., M.H., L.-y.Y., R.-n.Z., J.-k.W.) and Department of Pharmacology, Institute of Chinese Integrative Medicine (M.Z., W.Z., X.Z.), Hebei Medical University, Shijiazhuang, China
| | - Jin-Kun Wen
- From the Department of Biochemistry and Molecular Biology, Key Laboratory of Neural and Vascular Biology, Ministry of Education (X.-h.Z., B.Z., Z.Y., M.H., L.-y.Y., R.-n.Z., J.-k.W.) and Department of Pharmacology, Institute of Chinese Integrative Medicine (M.Z., W.Z., X.Z.), Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
223
|
Flegel C, Schöbel N, Altmüller J, Becker C, Tannapfel A, Hatt H, Gisselmann G. RNA-Seq Analysis of Human Trigeminal and Dorsal Root Ganglia with a Focus on Chemoreceptors. PLoS One 2015; 10:e0128951. [PMID: 26070209 PMCID: PMC4466559 DOI: 10.1371/journal.pone.0128951] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/01/2015] [Indexed: 12/11/2022] Open
Abstract
The chemosensory capacity of the somatosensory system relies on the appropriate expression of chemoreceptors, which detect chemical stimuli and transduce sensory information into cellular signals. Knowledge of the complete repertoire of the chemoreceptors expressed in human sensory ganglia is lacking. This study employed the next-generation sequencing technique (RNA-Seq) to conduct the first expression analysis of human trigeminal ganglia (TG) and dorsal root ganglia (DRG). We analyzed the data with a focus on G-protein coupled receptors (GPCRs) and ion channels, which are (potentially) involved in chemosensation by somatosensory neurons in the human TG and DRG. For years, transient receptor potential (TRP) channels have been considered the main group of receptors for chemosensation in the trigeminal system. Interestingly, we could show that sensory ganglia also express a panel of different olfactory receptors (ORs) with putative chemosensory function. To characterize OR expression in more detail, we performed microarray, semi-quantitative RT-PCR experiments, and immunohistochemical staining. Additionally, we analyzed the expression data to identify further known or putative classes of chemoreceptors in the human TG and DRG. Our results give an overview of the major classes of chemoreceptors expressed in the human TG and DRG and provide the basis for a broader understanding of the reception of chemical cues.
Collapse
Affiliation(s)
- Caroline Flegel
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Nicole Schöbel
- Department of Animal Physiology, Ruhr-University Bochum, Bochum, Germany
| | | | | | | | - Hanns Hatt
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| | - Günter Gisselmann
- Department of Cell Physiology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
224
|
Morita T, McClain SP, Batia LM, Pellegrino M, Wilson SR, Kienzler MA, Lyman K, Olsen ASB, Wong JF, Stucky CL, Brem RB, Bautista DM. HTR7 Mediates Serotonergic Acute and Chronic Itch. Neuron 2015; 87:124-38. [PMID: 26074006 DOI: 10.1016/j.neuron.2015.05.044] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 03/31/2015] [Accepted: 05/18/2015] [Indexed: 12/13/2022]
Abstract
Chronic itch is a prevalent and debilitating condition for which few effective therapies are available. We harnessed the natural variation across genetically distinct mouse strains to identify transcripts co-regulated with itch behavior. This survey led to the discovery of the serotonin receptor HTR7 as a key mediator of serotonergic itch. Activation of HTR7 promoted opening of the ion channel TRPA1, which in turn triggered itch behaviors. In addition, acute itch triggered by serotonin or a selective serotonin reuptake inhibitor required both HTR7 and TRPA1. Aberrant serotonin signaling has long been linked to a variety of human chronic itch conditions, including atopic dermatitis. In a mouse model of atopic dermatitis, mice lacking HTR7 or TRPA1 displayed reduced scratching and skin lesion severity. These data highlight a role for HTR7 in acute and chronic itch and suggest that HTR7 antagonists may be useful for treating a variety of pathological itch conditions.
Collapse
Affiliation(s)
- Takeshi Morita
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shannan P McClain
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Lyn M Batia
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Maurizio Pellegrino
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Sarah R Wilson
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael A Kienzler
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Kyle Lyman
- Neurobiology Course, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | | | - Justin F Wong
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Cheryl L Stucky
- Departments of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA 94945, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Diana M Bautista
- Department of Molecular & Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, CA 94720-3200, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
225
|
Maurya DK, Henriques T, Marini M, Pedemonte N, Galietta LJV, Rock JR, Harfe BD, Menini A. Development of the Olfactory Epithelium and Nasal Glands in TMEM16A-/- and TMEM16A+/+ Mice. PLoS One 2015; 10:e0129171. [PMID: 26067252 PMCID: PMC4465891 DOI: 10.1371/journal.pone.0129171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 05/05/2015] [Indexed: 12/16/2022] Open
Abstract
TMEM16A/ANO1 is a calcium-activated chloride channel expressed in several types of epithelia and involved in various physiological processes, including proliferation and development. During mouse embryonic development, the expression of TMEM16A in the olfactory epithelium is dynamic. TMEM16A is expressed at the apical surface of the entire olfactory epithelium at embryonic day E12.5 while from E16.5 its expression is restricted to a region near the transition zone with the respiratory epithelium. To investigate whether TMEM16A plays a role in the development of the mouse olfactory epithelium, we obtained the first immunohistochemistry study comparing the morphological properties of the olfactory epithelium and nasal glands in TMEM16A-/- and TMEM16A+/+ littermate mice. A comparison between the expression of the olfactory marker protein and adenylyl cyclase III shows that genetic ablation of TMEM16A did not seem to affect the maturation of olfactory sensory neurons and their ciliary layer. As TMEM16A is expressed at the apical part of supporting cells and in their microvilli, we used ezrin and cytokeratin 8 as markers of microvilli and cell body of supporting cells, respectively, and found that morphology and development of supporting cells were similar in TMEM16A-/- and TMEM16A+/+ littermate mice. The average number of supporting cells, olfactory sensory neurons, horizontal and globose basal cells were not significantly different in the two types of mice. Moreover, we also observed that the morphology of Bowman’s glands, nasal septal glands and lateral nasal glands did not change in the absence of TMEM16A. Our results indicate that the development of mouse olfactory epithelium and nasal glands does not seem to be affected by the genetic ablation of TMEM16A.
Collapse
Affiliation(s)
- Devendra Kumar Maurya
- Laboratory of Olfactory Transduction, SISSA, International School for Advanced Studies, Trieste, Italy
| | - Tiago Henriques
- Laboratory of Olfactory Transduction, SISSA, International School for Advanced Studies, Trieste, Italy
| | | | | | | | - Jason R. Rock
- Department of Anatomy, UCSF School of Medicine, San Francisco, CA, United States of America
| | - Brian D. Harfe
- Department of Molecular Genetics and Microbiology Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, United States of America
| | - Anna Menini
- Laboratory of Olfactory Transduction, SISSA, International School for Advanced Studies, Trieste, Italy
- * E-mail:
| |
Collapse
|
226
|
Wang G, Nauseef WM. Salt, chloride, bleach, and innate host defense. J Leukoc Biol 2015; 98:163-72. [PMID: 26048979 DOI: 10.1189/jlb.4ru0315-109r] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022] Open
Abstract
Salt provides 2 life-essential elements: sodium and chlorine. Chloride, the ionic form of chlorine, derived exclusively from dietary absorption and constituting the most abundant anion in the human body, plays critical roles in many vital physiologic functions, from fluid retention and secretion to osmotic maintenance and pH balance. However, an often overlooked role of chloride is its function in innate host defense against infection. Chloride serves as a substrate for the generation of the potent microbicide chlorine bleach by stimulated neutrophils and also contributes to regulation of ionic homeostasis for optimal antimicrobial activity within phagosomes. An inadequate supply of chloride to phagocytes and their phagosomes, such as in CF disease and other chloride channel disorders, severely compromises host defense against infection. We provide an overview of the roles that chloride plays in normal innate immunity, highlighting specific links between defective chloride channel function and failures in host defense.
Collapse
Affiliation(s)
- Guoshun Wang
- *Departments of Microbiology and Immunology, Genetics, and Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; and Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Administration Medical Center, Iowa City, Iowa, USA
| | - William M Nauseef
- *Departments of Microbiology and Immunology, Genetics, and Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA; and Department of Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, and Veterans Administration Medical Center, Iowa City, Iowa, USA
| |
Collapse
|
227
|
Xu D, Song L, Wang H, Xu X, Wang T, Lu L. Proteomic analysis of cellular protein expression profiles in response to grass carp reovirus infection. FISH & SHELLFISH IMMUNOLOGY 2015; 44:515-524. [PMID: 25783000 DOI: 10.1016/j.fsi.2015.03.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 06/04/2023]
Abstract
Grass carp (Ctenopharyngodon idella) hemorrhagic disease, caused by grass carp reovirus (GCRV), is emerging as a serious problem in grass carp aquaculture. To better understand the molecular responses to GCRV infection, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption/ionization tandem mass spectroscopy were performed to investigate altered proteins in C. idella kidney (CIK) cells. Differentially expressed proteins in mock infected CIK cells and GCRV-infected CIK cells were compared. Twenty-three differentially expressed spots were identified (22 upregulated spots and 1 downregulated spot), which included cytoskeleton proteins, macromolecular biosynthesis-associated proteins, stress response proteins, signal transduction proteins, energy metabolism-associated proteins and ubiquitin proteasome pathway-associated proteins. Moreover, 10 of the corresponding genes of the differentially expressed proteins were quantified by real-time reverse transcription polymerase chain reaction to examine their transcriptional profiles. The T cell internal antigen 1 (TIA1) and Ras-GTPase-activating SH3-domain-binding protein1 (G3BP1) of the cellular stress granule pathway from grass carp C. idella (designated as CiTIA1 and CiG3BP1) were upregulated and downregulated during GCRV infection, respectively. The full-length cDNA of CiTIA1 was 2753 bp, with an open reading frame (ORF) of 1155bp, which encodes a putative 385-amino acid protein. The 2271 bp full-length cDNA of CiG3BP1 comprised an ORF of 1455 bp that encodes a putative 485-amino acid protein. Phylogenetic analysis revealed that the complete ORFs of CiTIA1 and CiG3BP1 were very similar to zebrafish and well-characterized mammalian homologs. The expressions of the cellular proteins CiTIA1 and CiG3BP1 in response to GCRV were validated by western blotting, which indicated that the GCRV should unlink TIA1 aggregation and stress granule formation. This study provides useful information on the proteomic and cellular stress granule pathway's responses to GCRV infection, which adds to our understanding of viral pathogenesis.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Lang Song
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Hao Wang
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xiaoyan Xu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Tu Wang
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China
| | - Liqun Lu
- Key Laboratory of Aquatic Genetic Resources of the Ministry of Agriculture, Shanghai Ocean University, Shanghai 201306, PR China.
| |
Collapse
|
228
|
Wang H, Siemens J. TRP ion channels in thermosensation, thermoregulation and metabolism. Temperature (Austin) 2015; 2:178-87. [PMID: 27227022 PMCID: PMC4843888 DOI: 10.1080/23328940.2015.1040604] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 12/13/2022] Open
Abstract
In humans, the TRP superfamily of cation channels includes 27 related molecules that respond to a remarkable variety of chemical and physical stimuli. While physiological roles for many TRP channels remain unknown, over the past years several have been shown to function as molecular sensors in organisms ranging from yeast to humans. In particular, TRP channels are now known to constitute important components of sensory systems, where they participate in the detection or transduction of osmotic, mechanical, thermal, or chemosensory stimuli. We here summarize our current understanding of the role individual members of this versatile receptor family play in thermosensation and thermoregulation, and also touch upon their immerging role in metabolic control.
Collapse
Affiliation(s)
- Hong Wang
- Department of Pharmacology; University of Heidelberg ; Heidelberg, Germany
| | - Jan Siemens
- Department of Pharmacology; University of Heidelberg ; Heidelberg, Germany
| |
Collapse
|
229
|
Carrasquel-Ursulaez W, Moldenhauer H, Castillo JP, Latorre R, Alvarez O. Biophysical analysis of thermosensitive TRP channels with a special focus on the cold receptor TRPM8. Temperature (Austin) 2015; 2:188-200. [PMID: 27227023 PMCID: PMC4843903 DOI: 10.1080/23328940.2015.1047558] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 11/03/2022] Open
Abstract
Mammals maintain homeostatic control of their body temperature. Therefore, these organisms are expected to have adaptations that confer the ability to detect and react to both self and ambient temperature. Temperature-activated ion channels have been discovered to be the primary molecular determinants of thermosensation. The most representative group of these determinants constitutes members of the transient receptor potential superfamily, TRP, which are activated by either low or high temperatures covering the whole range of physiologically relevant temperatures. This review makes a critical assessment of existing analytical methods of temperature-activated TRP channel mechanisms using the cold-activated TRPM8 channel as a paradigm.
Collapse
Key Words
- DRG, dorsal root ganglion
- F, Faraday
- G0, Standard molar Gibbs free energy
- H0, Standard molar enthalpy
- Q10, temperature coefficient
- R, universal gas constant
- S0, Standard molar entropy
- T, temperature
- TG, trigeminal ganglion
- TRP, transient receptor potential
Collapse
Affiliation(s)
- Willy Carrasquel-Ursulaez
- Centro Interdisciplinario de Neurociencia de Valparaíso; Universidad de Valparaíso; Valparaíso, Chile; Doctorado en Ciencias Mención Neurociencias; Facultad de Ciencias; Universidad de Valparaíso; Valparaíso, Chile
| | - Hans Moldenhauer
- Centro Interdisciplinario de Neurociencia de Valparaíso; Universidad de Valparaíso ; Valparaíso, Chile
| | - Juan Pablo Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso; Universidad de Valparaíso ; Valparaíso, Chile
| | - Ramón Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso; Universidad de Valparaíso ; Valparaíso, Chile
| | - Osvaldo Alvarez
- Centro Interdisciplinario de Neurociencia de Valparaíso; Universidad de Valparaíso; Valparaíso, Chile; Departamento de Biología; Facultad de Ciencias; Universidad de Chile; Santiago, Chile
| |
Collapse
|
230
|
Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons. Proc Natl Acad Sci U S A 2015; 112:5213-8. [PMID: 25848051 DOI: 10.1073/pnas.1421507112] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The capsaicin receptor transient receptor potential cation channel vanilloid 1 (TRPV1) is activated by various noxious stimuli, and the stimuli are converted into electrical signals in primary sensory neurons. It is believed that cation influx through TRPV1 causes depolarization, leading to the activation of voltage-gated sodium channels, followed by the generation of action potential. Here we report that the capsaicin-evoked action potential could be induced by two components: a cation influx-mediated depolarization caused by TRPV1 activation and a subsequent anion efflux-mediated depolarization via activation of anoctamin 1 (ANO1), a calcium-activated chloride channel, resulting from the entry of calcium through TRPV1. The interaction between TRPV1 and ANO1 is based on their physical binding. Capsaicin activated the chloride currents in an extracellular calcium-dependent manner in HEK293T cells expressing TRPV1 and ANO1. Similarly, in mouse dorsal root ganglion neurons, capsaicin-activated inward currents were inhibited significantly by a specific ANO1 antagonist, T16Ainh-A01 (A01), in the presence of a high concentration of EGTA but not in the presence of BAPTA [1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid]. The generation of a capsaicin-evoked action potential also was inhibited by A01. Furthermore, pain-related behaviors in mice treated with capsaicin, but not with αβ-methylene ATP, were reduced significantly by the concomitant administration of A01. These results indicate that TRPV1-ANO1 interaction is a significant pain-enhancing mechanism in the peripheral nervous system.
Collapse
|
231
|
Four basic residues critical for the ion selectivity and pore blocker sensitivity of TMEM16A calcium-activated chloride channels. Proc Natl Acad Sci U S A 2015; 112:3547-52. [PMID: 25733897 DOI: 10.1073/pnas.1502291112] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TMEM16A (transmembrane protein 16) (Anoctamin-1) forms a calcium-activated chloride channel (CaCC) that regulates a broad array of physiological properties in response to changes in intracellular calcium concentration. Although known to conduct anions according to the Eisenman type I selectivity sequence, the structural determinants of TMEM16A anion selectivity are not well-understood. Reasoning that the positive charges on basic residues are likely contributors to anion selectivity, we performed whole-cell recordings of mutants with alanine substitution for basic residues within the putative pore region and identified four residues on four different putative transmembrane segments that significantly increased the permeability of the larger halides and thiocyanate relative to that of chloride. Because TMEM16A permeation properties are known to shift with changes in intracellular calcium concentration, we further examined the calcium dependence of anion selectivity. We found that WT TMEM16A but not mutants with alanine substitution at those four basic residues exhibited a clear decline in the preference for larger anions as intracellular calcium was increased. Having implicated these residues as contributing to the TMEM16A pore, we scrutinized candidate small molecules from a high-throughput CaCC inhibitor screen to identify two compounds that act as pore blockers. Mutations of those four putative pore-lining basic residues significantly altered the IC50 of these compounds at positive voltages. These findings contribute to our understanding regarding anion permeation of TMEM16A CaCC and provide valuable pharmacological tools to probe the channel pore.
Collapse
|
232
|
|
233
|
Palkar R, Lippoldt EK, McKemy DD. The molecular and cellular basis of thermosensation in mammals. Curr Opin Neurobiol 2015; 34:14-9. [PMID: 25622298 DOI: 10.1016/j.conb.2015.01.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/10/2015] [Indexed: 12/01/2022]
Abstract
Over a decade and a half of intensive study has shown that the Transient Receptor Potential family ion channels TRPV1 and TRPM8 are the primary sensors of heat and cold temperatures in the peripheral nervous system. TRPV homologues and TRPA1 are also implicated, but recent genetic evidence has diminished their significance in thermosensation and suggests that a number of newly identified thermosensitive channels, including TRPM3, two-pore potassium channels, and the chloride channel Ano1, require further consideration. In addition to novel thermostransducers, recent genetic and pharmacological approaches have begun to elucidate the afferent neurocircuits underlying temperature sensation, continuing the rapid expansion in our understanding of the cellular and molecular basis of thermosensation that began with the discovery of TRPV1 and TRPM8.
Collapse
Affiliation(s)
- Radhika Palkar
- Neuroscience Graduate Program, University of Southern California, United States
| | - Erika K Lippoldt
- Neurobiology Graduate Program, University of Southern California, United States
| | - David D McKemy
- Neuroscience Graduate Program, University of Southern California, United States; Neurobiology Graduate Program, University of Southern California, United States; Department of Biological Sciences, University of Southern California, United States.
| |
Collapse
|
234
|
Chiu IM, Barrett LB, Williams EK, Strochlic DE, Lee S, Weyer AD, Lou S, Bryman GS, Roberson DP, Ghasemlou N, Piccoli C, Ahat E, Wang V, Cobos EJ, Stucky CL, Ma Q, Liberles SD, Woolf CJ. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity. eLife 2014; 3. [PMID: 25525749 PMCID: PMC4383053 DOI: 10.7554/elife.04660] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/18/2014] [Indexed: 12/17/2022] Open
Abstract
The somatosensory nervous system is critical for the organism's ability to respond to
mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally
and anatomically diverse but their molecular profiles are not well-defined. Here, we
used transcriptional profiling to analyze the detailed molecular signatures of dorsal
root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4
labeling to purify three major non-overlapping classes of neurons: 1)
IB4+SNS-Cre/TdTomato+, 2)
IB4−SNS-Cre/TdTomato+, and 3)
Parv-Cre/TdTomato+ cells, encompassing the majority of
nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed
distinct expression patterns of ion channels, transcription factors, and GPCRs.
Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the
three populations demonstrated further diversity, with unbiased clustering analysis
identifying six distinct subgroups. These data significantly increase our knowledge
of the molecular identities of known DRG populations and uncover potentially novel
subsets, revealing the complexity and diversity of those neurons underlying
somatosensation. DOI:http://dx.doi.org/10.7554/eLife.04660.001 In the nervous system, a network of specialized neurons—known as the
somatosensory system—carries information about sensations including touch,
muscle position, temperature and pain. Distinct sets of somatosensory neurons are
thought to carry information about the different types of sensations. In young
animals, the precise switching on, or ‘expression’, of genes controls
the formation of the network of neurons. However, it is not known exactly which genes
are expressed in what types of neurons, where, or when. Here, Chiu et al. used a technique called flow cytometry using different fluorescent
markers to isolate a group of cells called Dorsal Root Ganglion (DRG) neurons in
mice. These neurons have long thread-like fibers that extend from the spinal cord to
the skin, muscles and joints all over the body. These fibers carry sensory
information to the spinal cord, where it can be relayed to the brain and processed.
The experiments compared three distinct types of DRG neuron and found that they
differed in their ability to send information to other cells. Chiu et al. analyzed the expression of all the genes in the three types of DRG
neurons. Each type of neuron had distinct groups of genes that were being expressed.
Also, several genes that are known to be important for sensation were expressed at
different levels in the different types of cells. Next, large numbers of single cells
were analyzed to find out the finer details about the three types of neuron. These
findings made it possible to further divide the DRG neurons into six distinct subsets
that matched previously known groups of somatosensory neurons, and also identified
new ones. Chiu et al.'s findings reveal the complexity and diversity of the neurons involved in
carrying information about sensations towards the brain. This is an important step in
classifying the nervous system, and uncovers many genes previously not linked to
sensation. The next challenges lie in understanding how the expression of these genes
in each type of neuron relates to their unique roles. DOI:http://dx.doi.org/10.7554/eLife.04660.002
Collapse
Affiliation(s)
- Isaac M Chiu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Lee B Barrett
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Erika K Williams
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - David E Strochlic
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Seungkyu Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Andy D Weyer
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Shan Lou
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Gregory S Bryman
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - David P Roberson
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Nader Ghasemlou
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Cara Piccoli
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Ezgi Ahat
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Victor Wang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Enrique J Cobos
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| | - Qiufu Ma
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States
| | - Stephen D Liberles
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Clifford J Woolf
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, United States
| |
Collapse
|
235
|
Jin X, Shah S, Du X, Zhang H, Gamper N. Activation of Ca(2+) -activated Cl(-) channel ANO1 by localized Ca(2+) signals. J Physiol 2014; 594:19-30. [PMID: 25398532 PMCID: PMC4704509 DOI: 10.1113/jphysiol.2014.275107] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 11/08/2014] [Indexed: 12/13/2022] Open
Abstract
Ca2+‐activated chloride channels (CaCCs) regulate numerous physiological processes including epithelial transport, smooth muscle contraction and sensory processing. Anoctamin‐1 (ANO1, TMEM16A) is a principal CaCC subunit in many cell types, yet our understanding of the mechanisms of ANO1 activation and regulation are only beginning to emerge. Ca2+ sensitivity of ANO1 is rather low and at negative membrane potentials the channel requires several micromoles of intracellular Ca2+ for activation. However, global Ca2+ levels in cells rarely reach such levels and, therefore, there must be mechanisms that focus intracellular Ca2+ transients towards the ANO1 channels. Recent findings indeed indicate that ANO1 channels often co‐localize with sources of intracellular Ca2+ signals. Interestingly, it appears that in many cell types ANO1 is particularly tightly coupled to the Ca2+ release sites of the intracellular Ca2+ stores. Such preferential coupling may represent a general mechanism of ANO1 activation in native tissues.
Collapse
Affiliation(s)
- Xin Jin
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sihab Shah
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Xiaona Du
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| | - Nikita Gamper
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Department of Pharmacology, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
236
|
Jang W, Kim JY, Cui S, Jo J, Lee BC, Lee Y, Kwon KS, Park CS, Kim C. The anoctamin family channel subdued mediates thermal nociception in Drosophila. J Biol Chem 2014; 290:2521-8. [PMID: 25505177 DOI: 10.1074/jbc.m114.592758] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Calcium-permeable and thermosensitive transient receptor potential (TRP) channels mediate the nociceptive transduction of noxious temperature in Drosophila nociceptors. However, the underlying molecular mechanisms are not completely understood. Here we find that Subdued, a calcium-activated chloride channel of the Drosophila anoctamin family, functions in conjunction with the thermo-TRPs in thermal nociception. Genetic analysis with deletion and the RNAi-mediated reduction of subdued show that subdued is required for thermal nociception in nociceptors. Further genetic analysis of subdued mutant and thermo-TRP mutants show that they interact functionally in thermal nociception. We find that Subdued expressed in heterologous cells mediates a strong chloride conductance in the presence of both heat and calcium ions. Therefore, our analysis suggests that Subdued channels may amplify the nociceptive neuronal firing that is initiated by thermo-TRP channels in response to thermal stimuli.
Collapse
Affiliation(s)
- Wijeong Jang
- From the Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Yongbong-Dong, Gwangju-Si, 500-757, South Korea
| | - Ji Young Kim
- From the Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Yongbong-Dong, Gwangju-Si, 500-757, South Korea, the Aging Research Center, Korea Research Institute of Bioscience and BioTechnology, 125 Gwahak-ro, Yuseong-gu, Daejon, South Korea
| | - Shanyu Cui
- the School of Life Sciences, National Leading Research Laboratory for Ion Channel, and
| | - Juyeon Jo
- From the Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Yongbong-Dong, Gwangju-Si, 500-757, South Korea
| | - Byoung-Cheol Lee
- the School of Life Sciences, Cell Dynamic Research Center, Gwangju Institute of Science and Technology, Gwangju, 500-712, South Korea, and
| | - Yeonwoo Lee
- the School of Life Sciences, Cell Dynamic Research Center, Gwangju Institute of Science and Technology, Gwangju, 500-712, South Korea, and
| | - Ki-Sun Kwon
- the Aging Research Center, Korea Research Institute of Bioscience and BioTechnology, 125 Gwahak-ro, Yuseong-gu, Daejon, South Korea
| | - Chul-Seung Park
- the School of Life Sciences, National Leading Research Laboratory for Ion Channel, and Cell Dynamic Research Center, Gwangju Institute of Science and Technology, Gwangju, 500-712, South Korea, and
| | - Changsoo Kim
- From the Hormone Research Center, School of Biological Sciences and Technology, Chonnam National University, Yongbong-Dong, Gwangju-Si, 500-757, South Korea,
| |
Collapse
|
237
|
Bill A, Popa MO, van Diepen MT, Gutierrez A, Lilley S, Velkova M, Acheson K, Choudhury H, Renaud NA, Auld DS, Gosling M, Groot-Kormelink PJ, Gaither LA. Variomics screen identifies the re-entrant loop of the calcium-activated chloride channel ANO1 that facilitates channel activation. J Biol Chem 2014; 290:889-903. [PMID: 25425649 DOI: 10.1074/jbc.m114.618140] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcium-activated chloride channel ANO1 regulates multiple physiological processes. However, little is known about the mechanism of channel gating and regulation of ANO1 activity. Using a high-throughput, random mutagenesis-based variomics screen, we generated and functionally characterized ∼6000 ANO1 mutants and identified novel mutations that affected channel activity, intracellular trafficking, or localization of ANO1. Mutations such as S741T increased ANO1 calcium sensitivity and rendered ANO1 calcium gating voltage-independent, demonstrating a critical role of the re-entrant loop in coupling calcium and voltage sensitivity of ANO1 and hence in regulating ANO1 activation. Our data present the first unbiased and comprehensive study of the structure-function relationship of ANO1. The novel ANO1 mutants reported have diverse functional characteristics, providing new tools to study ANO1 function in biological systems, paving the path for a better understanding of the function of ANO1 and its role in health and diseases.
Collapse
Affiliation(s)
- Anke Bill
- From the Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - M Oana Popa
- the Novartis Institutes for Biomedical Research, Horsham, West Sussex RH12 5AB, United Kingdom, and
| | - Michiel T van Diepen
- the Novartis Institutes for Biomedical Research, Horsham, West Sussex RH12 5AB, United Kingdom, and
| | - Abraham Gutierrez
- From the Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Sarah Lilley
- the Novartis Institutes for Biomedical Research, Horsham, West Sussex RH12 5AB, United Kingdom, and
| | - Maria Velkova
- the Novartis Institutes for Biomedical Research, Horsham, West Sussex RH12 5AB, United Kingdom, and
| | - Kathryn Acheson
- the Novartis Institutes for Biomedical Research, Horsham, West Sussex RH12 5AB, United Kingdom, and
| | - Hedaythul Choudhury
- the Novartis Institutes for Biomedical Research, Horsham, West Sussex RH12 5AB, United Kingdom, and
| | - Nicole A Renaud
- From the Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Douglas S Auld
- From the Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139
| | - Martin Gosling
- the Novartis Institutes for Biomedical Research, Horsham, West Sussex RH12 5AB, United Kingdom, and
| | | | - L Alex Gaither
- From the Novartis Institutes for Biomedical Research, Cambridge, Massachusetts 02139,
| |
Collapse
|
238
|
Kaila K, Price TJ, Payne JA, Puskarjov M, Voipio J. Cation-chloride cotransporters in neuronal development, plasticity and disease. Nat Rev Neurosci 2014; 15:637-54. [PMID: 25234263 DOI: 10.1038/nrn3819] [Citation(s) in RCA: 538] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Electrical activity in neurons requires a seamless functional coupling between plasmalemmal ion channels and ion transporters. Although ion channels have been studied intensively for several decades, research on ion transporters is in its infancy. In recent years, it has become evident that one family of ion transporters, cation-chloride cotransporters (CCCs), and in particular K(+)-Cl(-) cotransporter 2 (KCC2), have seminal roles in shaping GABAergic signalling and neuronal connectivity. Studying the functions of these transporters may lead to major paradigm shifts in our understanding of the mechanisms underlying brain development and plasticity in health and disease.
Collapse
Affiliation(s)
- Kai Kaila
- 1] Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Theodore J Price
- University of Texas at Dallas, School of Behavior and Brain Sciences, Dallas, Texas 75093, USA
| | - John A Payne
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California 95616, USA
| | - Martin Puskarjov
- 1] Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland. [2] Neuroscience Center, University of Helsinki, 00014 Helsinki, Finland
| | - Juha Voipio
- Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
239
|
Mazzone A, Gibbons SJ, Bernard CE, Nowsheen S, Middha S, Almada LL, Ordog T, Kendrick ML, Reid Lombardo KM, Shen KR, Galietta LJV, Fernandez-Zapico ME, Farrugia G. Identification and characterization of a novel promoter for the human ANO1 gene regulated by the transcription factor signal transducer and activator of transcription 6 (STAT6). FASEB J 2014; 29:152-63. [PMID: 25351986 DOI: 10.1096/fj.14-258541] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Anoctamin-1 (Ano1) is a widely expressed protein responsible for endogenous Ca(2+)-activated Cl(-) currents. Ano1 is overexpressed in cancer. Differential expression of transcriptional variants is also found in other diseases. However, the mechanisms underlying regulation of Ano1 are unknown. This study identifies the Ano1 promoter and defines a mechanism for regulating its expression. Next-generation RNA sequencing (RNA-seq) analysis in human gastric muscle found a new exon upstream of the reported exon 1 and identified a promoter proximal to this new exon. Reporter assays in human embryonic kidney 293 cells showed a 6.7 ± 2.1-fold increase in activity over empty vector. Treatment with a known regulator of Ano1 expression, IL-4, increased promoter activity by 1.6 ± 0.02-fold over untreated cells. The promoter region contained putative binding sites for multiple transcription factors including signal transducer and activator of transcription 6 (STAT6), a downstream effector of IL-4. Chromatin immunoprecipitation (ChIP) experiments on T84 cells, which endogenously express Ano1, showed a 2.1 ± 0.12-fold increase in binding of STAT6 to P0 after IL-4 treatment. These results were confirmed by mutagenesis, expression, and RNA interference techniques. This work allows deeper understanding of the regulation of Ano1 in physiology and as a potential therapeutic target in a variety of diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Luciana L Almada
- Schulze Center for Novel Therapeutics, Department of Oncology, and
| | | | | | | | - K Robert Shen
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA; and
| | | | | | | |
Collapse
|
240
|
TMEM16 proteins: unknown structure and confusing functions. J Mol Biol 2014; 427:94-105. [PMID: 25451786 DOI: 10.1016/j.jmb.2014.09.028] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 09/24/2014] [Accepted: 09/29/2014] [Indexed: 11/23/2022]
Abstract
The TMEM16 family of membrane proteins, also known as anoctamins, plays key roles in a variety of physiological functions that range from ion transport to phospholipid scrambling and to regulating other ion channels. The first two family members to be functionally characterized, TMEM16A (ANO1) and TMEM16B (ANO2), form Ca(2+)-activated Cl(-) channels and are important for transepithelial ion transport, olfaction, phototransduction, smooth muscle contraction, nociception, cell proliferation and control of neuronal excitability. The roles of other family members, such as TMEM16C (ANO3), TMEM16D (ANO4), TMEM16F (ANO6), TMEM16G (ANO7) and TMEM16J (ANO9), remain poorly understood and controversial. These homologues were reported to be phospholipid scramblases, ion channels, to have both functions or to be regulatory subunits of other channels. Mutations in TMEM16F cause Scott syndrome, a bleeding disorder caused by impaired Ca(2+)-dependent externalization of phosphatidylserine in activated platelets, suggesting that this homologue might be a scramblase. However, overexpression of TMEM16F has also been associated with a remarkable number of different ion channel types, raising the possibility that this protein might be involved in both ion and lipid transports. The recent identification of an ancestral TMEM16 homologue with intrinsic channel and scramblase activities supports this hypothesis. Thus, the TMEM16 family might have diverged in two or three different subclasses, channels, scramblases and dual-function channel/scramblases. The structural bases and functional implication of such a functional diversity within a single protein family remain to be elucidated and the links between TMEM16 functions and human physiology and pathologies need to be investigated.
Collapse
|
241
|
Lewin GR, Nykjaer A. Pro-neurotrophins, sortilin, and nociception. Eur J Neurosci 2014; 39:363-74. [PMID: 24494677 PMCID: PMC4232910 DOI: 10.1111/ejn.12466] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/13/2013] [Accepted: 11/28/2013] [Indexed: 01/26/2023]
Abstract
Nerve growth factor (NGF) signaling is important in the development and functional maintenance of nociceptors, but it also plays a central role in initiating and sustaining heat and mechanical hyperalgesia following inflammation. NGF signaling in pain has traditionally been thought of as primarily engaging the classic high-affinity receptor tyrosine kinase receptor TrkA to initiate sensitization events. However, the discovery that secreted proforms of nerve NGF have biological functions distinct from the processed mature factors raised the possibility that these proneurotrophins (proNTs) may have distinct function in painful conditions. ProNTs engage a novel receptor system that is distinct from that of mature neurotrophins, consisting of sortilin, a type I membrane protein belonging to the VPS10p family, and its co-receptor, the classic low-affinity neurotrophin receptor p75NTR. Here, we review how this new receptor system may itself function with or independently of the classic TrkA system in regulating inflammatory or neuropathic pain.
Collapse
Affiliation(s)
- Gary R Lewin
- Department of Neuroscience, Molecular Physiology of Somatic Sensation Group, Max-Delbrück Center for Molecular Medicine, Robert-Rössle Str. 10, 13122, Berlin, Germany
| | | |
Collapse
|
242
|
Lee J, Jung J, Tak MH, Wee J, Lee B, Jang Y, Chun H, Yang DJ, Yang YD, Park SH, Han BW, Hyun S, Yu J, Cho H, Hartzell HC, Oh U. Two helices in the third intracellular loop determine anoctamin 1 (TMEM16A) activation by calcium. Pflugers Arch 2014; 467:1677-87. [PMID: 25231974 PMCID: PMC4502317 DOI: 10.1007/s00424-014-1603-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 11/24/2022]
Abstract
Anoctamin 1 (ANO1)/TMEM16A is a Cl− channel activated by intracellular Ca2+ mediating numerous physiological functions. However, little is known of the ANO1 activation mechanism by Ca2+. Here, we demonstrate that two helices, “reference” and “Ca2+ sensor” helices in the third intracellular loop face each other with opposite charges. The two helices interact directly in a Ca2+-dependent manner. Positively and negatively charged residues in the two helices are essential for Ca2+-dependent activation because neutralization of these charges change the Ca2+ sensitivity. We now predict that the Ca2+ sensor helix attaches to the reference helix in the resting state, and as intracellular Ca2+ rises, Ca2+ acts on the sensor helix, which repels it from the reference helix. This Ca2+-dependent push-pull conformational change would be a key electromechanical movement for gating the ANO1 channel. Because chemical activation of ANO1 is viewed as an alternative means of rescuing cystic fibrosis, understanding its gating mechanism would be useful in developing novel treatments for cystic fibrosis.
Collapse
Affiliation(s)
- Jesun Lee
- Sensory Research Center, Creative Research Initiatives, College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Chowdhury S, Jarecki BW, Chanda B. A molecular framework for temperature-dependent gating of ion channels. Cell 2014; 158:1148-1158. [PMID: 25156949 DOI: 10.1016/j.cell.2014.07.026] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/02/2014] [Accepted: 07/18/2014] [Indexed: 12/13/2022]
Abstract
Perception of heat or cold in higher organisms is mediated by specialized ion channels whose gating is exquisitely sensitive to temperature. The physicochemical underpinnings of this temperature-sensitive gating have proven difficult to parse. Here, we took a bottom-up protein design approach and rationally engineered ion channels to activate in response to thermal stimuli. By varying amino acid polarities at sites undergoing state-dependent changes in solvation, we were able to systematically confer temperature sensitivity to a canonical voltage-gated ion channel. Our results imply that the specific heat capacity change during channel gating is a major determinant of thermosensitive gating. We also show that reduction of gating charges amplifies temperature sensitivity of designer channels, which accounts for low-voltage sensitivity in all known temperature-gated ion channels. These emerging principles suggest a plausible molecular mechanism for temperature-dependent gating that reconcile how ion channels with an overall conserved transmembrane architecture may exhibit a wide range of temperature-sensing phenotypes. :
Collapse
Affiliation(s)
- Sandipan Chowdhury
- Graduate Program in Biophysics, 1111 Highland Ave, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI 53705, USA; Department of Neuroscience, 1111 Highland Ave, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI 53705, USA
| | - Brian W Jarecki
- Department of Neuroscience, 1111 Highland Ave, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI 53705, USA
| | - Baron Chanda
- Graduate Program in Biophysics, 1111 Highland Ave, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI 53705, USA; Department of Neuroscience, 1111 Highland Ave, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI 53705, USA.
| |
Collapse
|
244
|
Zhou C, Liang P, Liu J, Zhang W, Liao D, Chen Y, Chen X, Li T. Emulsified isoflurane enhances thermal transient receptor potential vanilloid-1 channel activation-mediated sensory/nociceptive blockade by QX-314. Anesthesiology 2014; 121:280-289. [PMID: 24667830 DOI: 10.1097/aln.0000000000000236] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND QX-314 produces nociceptive blockade, facilitated by permeation through transient receptor potential vanilloid-1 (TRPV1) channels. TRPV1 channel can be activated by noxious heat and sensitized by volatile anesthetics. The authors hypothesized that emulsified isoflurane (EI) could enhance thermal TRPV1 channel activation-mediated sensory/nociceptive blockade by QX-314. METHODS Rats were perineurally injected with QX-314 (Sigma-Aldrich Co. Ltd. Shanghai, China) alone or QX-314 combined with EI, followed by heat exposure on the injection site. The tail-flick and tail-clamping tests were used to assess sensory and nociceptive blockade, respectively; a sciatic nerve block model was used to assess motor and sensory blockade. Effects of EI on thermal activation of TRPV1 channels were evaluated on rat dorsal root ganglia neurons by whole-cell patch-clamp recordings. RESULTS Heat exposure enhanced sensory/nociceptive blockade by QX-314 in rat tails, but not motor blockade in sciatic nerve block model. QX-314 alone or QX-314 + 42°C produced no nociceptive blockade. QX-314 + 48°C produced 100% nociceptive blockade with duration of 12.5 ± 2.0 h (mean ± SEM). By adding 2% EI, QX-314 + 42°C produced 80% nociceptive blockade with duration of 8.1 ± 1.9 h, which was similar to the effect of QX-314 + 46°C (7.7 ± 1.1 h; P = 0.781). The enhancement of heat on sensory/nociceptive blockade of QX-314 was prevented by TRPV1 channel antagonist. The temperature thresholds of TRPV1 channel activation on dorsal root ganglia neurons were significantly reduced by EI. CONCLUSIONS Thermal activation of TRPV1 channels enhanced long-lasting sensory/nociceptive blockade by QX-314 without affecting motor blockade. The addition of EI reduced temperature thresholds for inducing long-lasting sensory/nociceptive blockade due to QX-314.
Collapse
Affiliation(s)
- Cheng Zhou
- From the Laboratory of Anesthesia and Critical Care Medicine (C.Z., J.L., W.Z., D.L., Y.C., X.C., T.L.), Department of Anesthesiology (P.L., J.L., W.Z., X.C.), Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Liu Y, Zhang H, Huang D, Qi J, Xu J, Gao H, Du X, Gamper N, Zhang H. Characterization of the effects of Cl⁻ channel modulators on TMEM16A and bestrophin-1 Ca²⁺ activated Cl⁻ channels. Pflugers Arch 2014; 467:1417-1430. [PMID: 25078708 DOI: 10.1007/s00424-014-1572-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/13/2014] [Accepted: 06/30/2014] [Indexed: 11/30/2022]
Abstract
The Ca(2+) activated Cl(-) channels (CaCCs) play a multitude of important physiological functions. A number of candidate proteins have been proposed to form CaCC, but only two families, the bestrophins and the TMEM16 proteins, recapitulate the properties of native CaCC in expression systems. Studies of endogenous CaCCs are hindered by the lack of specific pharmacology as most Cl(-) channel modulators lack selectivity and a systematic comparison of the effects of these modulators on TMEM16A and bestrophin is missing. In the present study, we studied seven Cl(-) channel inhibitors: niflumic acid (NFA), NPPB, flufenamic acid (FFA), DIDS, tannic acid, CaCCinh-A01 and T16Ainh-A01 for their effects on TMEM16A and bestrophin-1 (Best1) stably expressed in CHO (Chinese hamster ovary) cells using patch clamp technique. Among seven inhibitors studied, NFA showed highest selectivity for TMEM16A (IC50 of 7.40 ± 0.95 μM) over Best1 (IC50 of 102.19 ± 15.05 μM). In contrast, DIDS displayed a reverse selectivity inhibiting Best1 with IC50 of 3.93 ± 0.73 μM and TMEM16A with IC50 of 548.86 ± 25.57 μM. CaCCinh-A01 was the most efficacious blocker for both TMEM16A and Best1 channels. T16Ainh-A01 partially inhibited TMEM16A currents but had no effect on Best1 currents. Tannic acid, NPPB and FFA had variable intermediate effects. Potentiation of channel activity by some of these modulators and the effects on TMEM16A deactivation kinetics were also described. Characterization of Cl(-) channel modulators for their effects on TMEM16A and Best1 will facilitate future studies of native CaCCs.
Collapse
Affiliation(s)
- Yani Liu
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Department of Pharmacology, Hebei Medical University, Shijizhuang, Heibei, China
| | - Huiran Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Department of Pharmacology, Hebei Medical University, Shijizhuang, Heibei, China
| | - Dongyang Huang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Department of Pharmacology, Hebei Medical University, Shijizhuang, Heibei, China
| | - Jinlong Qi
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Department of Pharmacology, Hebei Medical University, Shijizhuang, Heibei, China
| | - Jiaxi Xu
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Department of Pharmacology, Hebei Medical University, Shijizhuang, Heibei, China
| | - Haixia Gao
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Department of Pharmacology, Hebei Medical University, Shijizhuang, Heibei, China
| | - Xiaona Du
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Department of Pharmacology, Hebei Medical University, Shijizhuang, Heibei, China
| | - Nikita Gamper
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Department of Pharmacology, Hebei Medical University, Shijizhuang, Heibei, China.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Hailin Zhang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education; Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Province; Department of Pharmacology, Hebei Medical University, Shijizhuang, Heibei, China.
| |
Collapse
|
246
|
Vriens J, Nilius B, Voets T. Peripheral thermosensation in mammals. Nat Rev Neurosci 2014; 15:573-89. [PMID: 25053448 DOI: 10.1038/nrn3784] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Our ability to perceive temperature is crucial: it enables us to swiftly react to noxiously cold or hot objects and helps us to maintain a constant body temperature. Sensory nerve endings, upon depolarization by temperature-gated ion channels, convey electrical signals from the periphery to the CNS, eliciting a sense of temperature. In the past two decades, we have witnessed important advances in our understanding of mammalian thermosensation, with the identification and animal-model assessment of candidate molecular thermosensors - such as types of transient receptor potential (TRP) cation channels - involved in peripheral thermosensation. Ongoing research aims to understand how these miniature thermometers operate at the cellular and molecular level, and how they can be pharmacologically targeted to treat pain without disturbing vital thermoregulatory processes.
Collapse
Affiliation(s)
- Joris Vriens
- Laboratory of Experimental Gynaecology, KU Leuven, Herestraat 49 BOX 611, B-3000 Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49 BOX 802, B-3000 Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research and TRP Research Platform Leuven (TRPLe), KU Leuven, Herestraat 49 BOX 802, B-3000 Leuven, Belgium
| |
Collapse
|
247
|
Vocke K, Dauner K, Hahn A, Ulbrich A, Broecker J, Keller S, Frings S, Möhrlen F. Calmodulin-dependent activation and inactivation of anoctamin calcium-gated chloride channels. ACTA ACUST UNITED AC 2014; 142:381-404. [PMID: 24081981 PMCID: PMC3787769 DOI: 10.1085/jgp.201311015] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Calcium-dependent chloride channels serve critical functions in diverse biological systems. Driven by cellular calcium signals, the channels codetermine excitatory processes and promote solute transport. The anoctamin (ANO) family of membrane proteins encodes three calcium-activated chloride channels, named ANO 1 (also TMEM16A), ANO 2 (also TMEM16B), and ANO 6 (also TMEM16F). Here we examined how ANO 1 and ANO 2 interact with Ca2+/calmodulin using nonstationary current analysis during channel activation. We identified a putative calmodulin-binding domain in the N-terminal region of the channel proteins that is involved in channel activation. Binding studies with peptides indicated that this domain, a regulatory calmodulin-binding motif (RCBM), provides two distinct modes of interaction with Ca2+/calmodulin, one at submicromolar Ca2+ concentrations and one in the micromolar Ca2+ range. Functional, structural, and pharmacological data support the concept that calmodulin serves as a calcium sensor that is stably associated with the RCBM domain and regulates the activation of ANO 1 and ANO 2 channels. Moreover, the predominant splice variant of ANO 2 in the brain exhibits Ca2+/calmodulin-dependent inactivation, a loss of channel activity within 30 s. This property may curtail ANO 2 activity during persistent Ca2+ signals in neurons. Mutagenesis data indicated that the RCBM domain is also involved in ANO 2 inactivation, and that inactivation is suppressed in the retinal ANO 2 splice variant. These results advance the understanding of Ca2+ regulation in anoctamin Cl− channels and its significance for the physiological function that anoctamin channels subserve in neurons and other cell types.
Collapse
Affiliation(s)
- Kerstin Vocke
- Department of Molecular Physiology, Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
248
|
García G, Martínez-Rojas VA, Rocha-González HI, Granados-Soto V, Murbartián J. Evidence for the participation of Ca(2+)-activated chloride channels in formalin-induced acute and chronic nociception. Brain Res 2014; 1579:35-44. [PMID: 25036442 DOI: 10.1016/j.brainres.2014.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/23/2014] [Accepted: 07/07/2014] [Indexed: 01/03/2023]
Abstract
In this study we determined the role of Ca(2+)-activated chloride channels (CaCC) in acute and chronic nociceptive responses elicited by 1% formalin. Formalin injection produced a typical pattern of flinching behavior for about 1h. Moreover, it produced secondary allodynia and hyperalgesia in the ipsilateral and contralateral paws for at least 6 days. Local peripheral and intrathecal pre-treatment (-10 min) with the non-selective and selective CaCC blockers niflumic acid and CaCCinh-A01, respectively, prevented formalin-induced flinching behavior mainly during phase 2 of the formalin test. Furthermore, niflumic acid and CaCCinh-A01 also prevented in a dose-dependent manner the long-lasting evoked secondary mechanical allodynia and hyperalgesia in the ipsilateral and contralateral paws. Moreover, local peripheral and intrathecal post-treatment (on day 6) with both CaCC blockers decreased the established formalin-induced secondary mechanical allodynia and hyperalgesia behavior in both paws. CaCC anoctamin-1 and bestrophin-1 were detected in the dorsal root ganglia. Formalin injection increased anoctamin-1, but not bestrophin-1 protein levels at 6 days. Intrathecal injection of the CaCC inhibitor CaCCinh-A01 prevented formalin-induced anoctamin-1 increase. Data suggest that peripheral and spinal CaCC, and particularly anoctamin-1, participates in the acute nociception induced by formalin as well as in the development and maintenance of secondary mechanical allodynia and hyperalgesia. Thus, CaCC activity contributes to neuronal excitability in the process of nociception induced by formalin.
Collapse
Affiliation(s)
- Guadalupe García
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. México, D.F., Mexico
| | - Vladimir A Martínez-Rojas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. México, D.F., Mexico
| | - Héctor I Rocha-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, D.F., Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, México, D.F., Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur. México, D.F., Mexico.
| |
Collapse
|
249
|
Sondo E, Caci E, Galietta LJ. The TMEM16A chloride channel as an alternative therapeutic target in cystic fibrosis. Int J Biochem Cell Biol 2014; 52:73-6. [DOI: 10.1016/j.biocel.2014.03.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/20/2014] [Accepted: 03/21/2014] [Indexed: 01/12/2023]
|
250
|
Three functionally distinct classes of C-fibre nociceptors in primates. Nat Commun 2014; 5:4122. [PMID: 24947823 PMCID: PMC4072246 DOI: 10.1038/ncomms5122] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/14/2014] [Indexed: 01/01/2023] Open
Abstract
In primates, C-fibre polymodal nociceptors are broadly classified into two groups based on mechanosensitivity. Here we demonstrate that mechanically sensitive polymodal nociceptors that respond either quickly (QC) or slowly (SC) to a heat stimulus differ in responses to a mild burn, heat sensitization, conductive properties and chemosensitivity. Superficially applied capsaicin and intradermal injection of β-alanine, an MrgprD agonist, excite vigorously all QCs. Only 40% of SCs respond to β-alanine, and their response is only half that of QCs. Mechanically insensitive C-fibres (C-MIAs) are β-alanine insensitive but vigorously respond to capsaicin and histamine with distinct discharge patterns. Calcium imaging reveals that β-alanine and histamine activate distinct populations of capsaicin-responsive neurons in primate dorsal root ganglion. We suggest that histamine itch and capsaicin pain are peripherally encoded in C-MIAs, and that primate polymodal nociceptive afferents form three functionally distinct subpopulations with β-alanine responsive QC fibres likely corresponding to murine MrgprD-expressing, non-peptidergic nociceptive afferents.
Collapse
|