201
|
Zhang L, Zhou X, Sha H, Xie L, Liu B. Recent Progress on Therapeutic Vaccines for Breast Cancer. Front Oncol 2022; 12:905832. [PMID: 35734599 PMCID: PMC9207208 DOI: 10.3389/fonc.2022.905832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer remains the most frequently diagnosed malignancy worldwide. Advanced breast cancer is still an incurable disease mainly because of its heterogeneity and limited immunogenicity. The great success of cancer immunotherapy is paving the way for a new era in cancer treatment, and therapeutic cancer vaccination is an area of interest. Vaccine targets include tumor-associated antigens and tumor-specific antigens. Immune responses differ in different vaccine delivery platforms. Next-generation sequencing technologies and computational analysis have recently made personalized vaccination possible. However, only a few cases benefiting from neoantigen-based treatment have been reported in breast cancer, and more attention has been given to overexpressed antigen-based treatment, especially human epidermal growth factor 2-derived peptide vaccines. Here, we discuss recent advancements in therapeutic vaccines for breast cancer and highlight near-term opportunities for moving forward.
Collapse
Affiliation(s)
- Lianru Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Xipeng Zhou
- Department of oncology, Yizheng People's Hospital, Yangzhou, China
| | - Huizi Sha
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Li Xie
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
202
|
A Therapeutic Whole-Tumor-Cell Vaccine Covalently Conjugated with a TLR7 Agonist. Cells 2022; 11:cells11131986. [PMID: 35805071 PMCID: PMC9266217 DOI: 10.3390/cells11131986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/30/2022] Open
Abstract
A single-protein or -peptide vaccine is not sufficient to arouse immune responses in cancer therapy. A whole-tumor-cell vaccine with complete cancer cell antigens and all conformations elicits robust immune responses and is a promising method for the treatment of advanced malignant tumors. In this study, we used 5-azacitidine to stimulate B16-F10 melanoma cells to express toll-like receptor (TLR) 3 on the cell surface and then chemically linked SZU-106, a small-molecule TLR7 agonist, to the cell surface with a pegylated linker to produce a novel whole-tumor-cell vaccine, abbreviated as Aza-BFcell-106. The vaccine stimulated mouse splenic lymphocytes and bone marrow-derived dendritic cells to secrete cytokines, promoted the maturation of dendritic cells and enhanced the capability of dendritic cells to present antigens. In a mouse model of melanoma, the vaccine effectively inhibited tumor growth, decreased tumor volume and prolonged survival. Further combination of the vaccine with a chemokine inhibitor, reparixin, significantly increased the infiltration of CD4+ and CD8+ T cells into the tumor environment, while the antitumor effect was significantly enhanced. The whole-tumor-cell vaccine Aza-BFcell-106 induced immune-activating responses in both in vitro and in vivo experiments, indicating that this vaccine has great potential to treat advanced malignant tumors.
Collapse
|
203
|
Zeng W, Pan J, Fang Z, Jia J, Zhang R, He M, Zhong H, He J, Yang X, Shi Y, Zhong B, Zeng J, Fu B, Huang M, Liu H. A Novel PD-L1-Containing MSLN Targeting Vaccine for Lung Cancer Immunotherapy. Front Immunol 2022; 13:925217. [PMID: 35795680 PMCID: PMC9251065 DOI: 10.3389/fimmu.2022.925217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Therapeutic tumor vaccines have become an important breakthrough in the treatment of various solid tumors including lung cancer. Dendritic cells (DCs)-based tumor vaccines targeting tumor-associated antigens (TAAs) play a key role in immunotherapy and immunoprevention. However, the weak immunogenicity of TAAs and low immune response rates are a major challenge faced in the application of therapeutic tumor vaccines. Here, we tested whether targeting an attractive target Mesothelin (MSLN) and PD-L1 immune checkpoint molecule to DCs in vivo would elicit therapeutic antitumor cytotoxic T lymphocyte (CTL) response. We generated specific MSLN fragment combined with PD-L1 and GM-CSF peptide immunogen (MSLN-PDL1-GMCSF) based on the novel anti-PD-L1 vaccination strategy we recently developed for the cancer treatment and prevention. We found that DCs loaded with MSLN-PDL1-GMCSF vaccine elicited much stronger endogenous anti-PD-L1 antibody and T cell responses in immunized mice and that antigen specific CTLs had cytolytic activities against tumor cells expressing both MSLN and PD-L1. We demonstrated that vaccination with MSLN-PDL1-GMCSF potently inhibited the tumor growth of MSLN+ and PD-L1+ lung cancer cells, exhibiting a significant therapeutic anti-tumor potential. Furthermore, PD-1 blockade further improved the synergistic antitumor therapeutic efficacy of MSLN-PDL1-GMCSF vaccine in immunized mice. In summary, our data demonstrated for the first time that this PD-L1-containing MSLN therapeutic vaccine can induce persistent anti-PD-L1 antibody and CTL responses, providing an effective immunotherapeutic strategy for lung cancer immunotherapy by combining MSLN-PDL1-GMCSF vaccine and PD-1 blockade.
Collapse
Affiliation(s)
- Wuyi Zeng
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiayi Pan
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zixuan Fang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiangtao Jia
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Rong Zhang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Menghua He
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hanyu Zhong
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jiashan He
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xinyu Yang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yi Shi
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bei Zhong
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jun Zeng
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Bishi Fu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou, China
| | - Maoping Huang
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Hui Liu, ; Maoping Huang,
| | - Hui Liu
- School of Basic Medical Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University, Guangzhou, China
- The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy and Clinical Immunology, Guangzhou, China
- *Correspondence: Hui Liu, ; Maoping Huang,
| |
Collapse
|
204
|
Qureischi M, Mohr J, Arellano-Viera E, Knudsen SE, Vohidov F, Garitano-Trojaola A. mRNA-based therapies: Preclinical and clinical applications. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:1-54. [PMID: 36064262 DOI: 10.1016/bs.ircmb.2022.04.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
At the fundamental level, messenger RNA (mRNA)-based therapeutics involves the delivery of in vitro-transcribed (IVT) mRNA into the cytoplasm of a target cell, where it is translated into the desired protein. IVT mRNA presents various advantages compared to DNA and recombinant protein-based approaches that make it ideal for a broad range of therapeutic applications. IVT mRNA, which is translated in the cytoplasm after transfection into cells, can encode virtually any target protein. Notably, it does not enter the nucleus, which avoids its integration into the genome and the risk of insertional mutagenesis. The large-scale production of IVT mRNA is less complex than production of recombinant proteins, and Good Manufacturing Practice-compliant mRNA production is easily scalable, ideally poising mRNA for not only off-the-shelf, but more personalized treatment approaches. IVT mRNA's safety profile, pharmacokinetics, and pharmacodynamics, including its inherent immunostimulatory capacity, can be optimized for different therapeutic applications by harnessing a wide array of optimized sequence elements, chemical modifications, purification techniques, and delivery methods. The value of IVT mRNA was recently proved during the COVID-19 pandemic when mRNA-based vaccines outperformed the efficacy of established technologies, and millions of doses were rapidly deployed. In this review, we will discuss chemical modifications of IVT mRNA and highlight numerous preclinical and clinical applications including vaccines for cancer and infectious diseases, cancer immunotherapy, protein replacement, gene editing, and cell reprogramming.
Collapse
|
205
|
Li X, Omonova Tuychi Qizi C, Mohamed Khamis A, Zhang C, Su Z. Nanotechnology for Enhanced Cytoplasmic and Organelle Delivery of Bioactive Molecules to Immune Cells. Pharm Res 2022; 39:1065-1083. [PMID: 35661086 DOI: 10.1007/s11095-022-03284-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 04/30/2022] [Indexed: 12/18/2022]
Abstract
Immune cells stand as a critical component of the immune system to maintain the internal environment homeostasis. The dysfunction of immune cells can result in various life-threatening diseases, including refractory infection, diabetes, cardiovascular disease, and cancer. Therefore, strategies to standardize or even enhance the function of immune cells are critical. Recently, nanotechnology has been highly researched and extensively applied for enhancing the cytoplasmic delivery of bioactive molecules to immune cells, providing efficient approaches to correct in vivo and in vitro dysfunction of immune cells. This review focuses on the technologies and challenges involved in improving endo-lysosomal escape, cytoplasmic release and organelle targeted delivery of different bioactive molecules in immune cells. Furthermore, it will elaborate on the broader vision of applying nanotechnology for treating immune cell-related diseases and constructing immune therapies and cytopharmaceuticals as potential treatments for diseases.
Collapse
Affiliation(s)
- Xiaoyu Li
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Charos Omonova Tuychi Qizi
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Amari Mohamed Khamis
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhigui Su
- State Key Laboratory of Natural Medicines, Center of Advanced Pharmaceuticals and Biomaterials, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
206
|
Wang J, Liu Y, Ni W, Wu X, Zhou J, Zhang Z, Zhou H, Zhang N, Jiang M, Sang Q, Yuan H, Tai G. TRAF6-overexpressing dendritic cells loaded with MUC1 peptide enhance anti-tumor activity in B16-MUC1 melanoma-bearing mice. Int Immunopharmacol 2022; 107:108667. [DOI: 10.1016/j.intimp.2022.108667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/15/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022]
|
207
|
Duan LJ, Wang Q, Zhang C, Yang DX, Zhang XY. Potentialities and Challenges of mRNA Vaccine in Cancer Immunotherapy. Front Immunol 2022; 13:923647. [PMID: 35711457 PMCID: PMC9196868 DOI: 10.3389/fimmu.2022.923647] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/02/2022] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has become the breakthrough strategies for treatment of cancer in recent years. The application of messenger RNA in cancer immunotherapy is gaining tremendous popularity as mRNA can function as an effective vector for the delivery of therapeutic antibodies on immune targets. The high efficacy, decreased toxicity, rapid manufacturing and safe administration of mRNA vaccines have great advantages over conventional vaccines. The unprecedent success of mRNA vaccines against infection has proved its effectiveness. However, the instability and inefficient delivery of mRNA has cast a shadow on the wide application of this approach. In the past decades, modifications on mRNA structure and delivery methods have been made to solve these questions. This review summarizes recent advancements of mRNA vaccines in cancer immunotherapy and the existing challenges for its clinical application, providing insights on the future optimization of mRNA vaccines for the successful treatment of cancer.
Collapse
Affiliation(s)
- Li-Juan Duan
- Medical School, Huanghe Science and Technology College, Zhengzhou, China
| | - Qian Wang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Cuilian Zhang
- Reproductive Medicine Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Dong-Xiao Yang
- Medical School, Huanghe Science and Technology College, Zhengzhou, China
| | - Xu-Yao Zhang
- Medical School, Huanghe Science and Technology College, Zhengzhou, China
| |
Collapse
|
208
|
Jing H, Saed B, Pálmai M, Gunasekara H, Snee PT, Hu YS. Fluorescent Artificial Antigens Revealed Extended Membrane Networks Utilized by Live Dendritic Cells for Antigen Uptake. NANO LETTERS 2022; 22:4020-4027. [PMID: 35499493 DOI: 10.1021/acs.nanolett.2c00629] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Dendritic cells (DCs) can infiltrate tight junctions of the epithelium to collect remote antigens during immune surveillance. While elongated membrane structures represent a plausible structure to perform this task, their functional mechanisms remain elusive owing to the lack of high-resolution characterizations in live DCs. Here, we developed fluorescent artificial antigens (FAAs) based on quantum dots coated with polyacrylic acid. Single-particle tracking of FAAs enables us to superresolve the membrane fiber network responsible for the antigen uptake. Using the DC2.4 cell line as a model system, we discovered the extensive membrane network approaching 200 μm in length with tunnel-like cavities about 150 nm in width. The membrane fiber network also contained heterogeneous circular migrasomes. Disconnecting the membrane network from the cell body decreased the intracellular FAA density. Our study enables mechanistic investigations of DC membrane networks and nanocarriers that target this mechanism.
Collapse
Affiliation(s)
- Haoran Jing
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Badeia Saed
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Marcell Pálmai
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Hirushi Gunasekara
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Preston T Snee
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| | - Ying S Hu
- Department of Chemistry, College of Liberal Arts and Sciences, University of Illinois at Chicago, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
209
|
He X, Qu Y, Lin X, Sun J, Jiang Z, Wang C, Deng Y, Yan F, Sun Y. Self-assembled D-arginine derivatives based on click chemical reactions for intracellular codelivery of antigens and adjuvants for potential immunotherapy. J Mater Chem B 2022; 10:3491-3500. [PMID: 35403659 DOI: 10.1039/d2tb00346e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembled amino acid derivatives could form well-defined nanostructures which have great application value for drug delivery systems. In particular, D-amino acid derivatives possess tremendous advantages including anti-degradation and good lysosome escape compared with L-amino acid derivatives. In this work, 9-fluorenylmethyloxycarbonyl (Fmoc) neighboring D-arginine derivatives were replaced by dibenzocyclooctyne (DBCO) to extend the class of functional D-arginine derivatives, which were further reacted with various cross-linkers including azide to construct a library of self-assembled supramolecular nanovehicles and strengthen the stability of nanostructures for disease immunotherapy. Moreover, in vitro studies demonstrated that the combination of DBCO modified D-arginine derivative DR3 and cross-linker C1 not only reinforced the cellular uptake efficiency of ovalbumin (OVA) which was chosen as the model antigen, but also promoted the cytokine TNF-α release of RAW 264.7 cells after the introduction of adjuvant unmethylated cytosine-phosphate-guanine dinucleotides (CpG). Furthermore, the nanovaccine based on DR3C1 could enhance the antigen OVA and adjuvant cytosolic delivery of marrow derived dendritic cells (BMDCs), which improved the antigen-presentation cross efficiency and induced the maturation of BMDCs. Taken together, we believe that D-arginine derivatives functionalized by DBCO provide an effective strategy for disease immunotherapy and act as a great potential delivery tool.
Collapse
Affiliation(s)
- Xiao He
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| | - Yannv Qu
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| | - Xiaohong Lin
- Department of Infertility and Reproductive Health, Shenzhen Longhua District Maternity & Child Healthcare Hospital, Shenzhen, Guangdong, 518109, China
| | - Jiapan Sun
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| | - Zhiru Jiang
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| | - Chaodong Wang
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yuanfei Deng
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| | - Fei Yan
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| | - Yansun Sun
- Department of Geriatrics, The Shenzhen Hospital of Peking University, Shenzhen, Guangdong, 518036, China.
| |
Collapse
|
210
|
Affiliation(s)
- Yahya Mohammadzadeh
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
211
|
Kolostova K, Pospisilova E, Matkowski R, Szelachowska J, Bobek V. Immune activation of the monocyte-derived dendritic cells using patients own circulating tumor cells. Cancer Immunol Immunother 2022; 71:2901-2911. [PMID: 35471603 DOI: 10.1007/s00262-022-03189-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/09/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Dendritic cell (DC) therapy counts to the promising strategies how to weaken and eradicate cancer disease. We aimed to develop a good manufacturing practice (GMP) protocol for monocyte-derived DC (Mo-DC) maturation using circulating tumor cells lysates with subsequent experimental T-cell priming in vitro. METHODS DC differentiation was induced from a population of immunomagnetically enriched CD14 + monocytes out of the leukapheresis samples (n = 6). The separation was provided automatically, in a closed bag system, using CliniMACS Prodigy® separation protocols (Miltenyi Biotec). For differentiation and maturation of CD14 + cells, DendriMACs® growing medium with supplements (GM-CSF, IL-4, IL-6, IL-1B, TNFa, PGE) was used. Immature Mo-DCs were loaded with autologous circulating tumor cell (CTCs) lysates. Autologous CTCs were sorted out by size-based filtration (MetaCell®) of the leukapheresis CD14-negative fraction. A mixture of mature Mo-DCs and autologous non-target blood cells (NTBCs) was co-cultured and the activation effect of mature Mo-DCs on T-cell activation was monitored by means of multimarker gene expression profiling. RESULTS New protocols for mMo-DC production using automatization and CTC lysates were introduced including a feasible in vitro assay for mMo-DC efficacy evaluation. Gene expression analysis revealed elevation for following genes in NTBC (T cells) subset primed by mMo-DCs: CD8A, CD4, MKI67, MIF, TNFA, CD86, and CD80 (p ≤ 0.01). CONCLUSION Summarizing the presented data, we might conclude mMo-DCs were generated using CliniMACS Prodigy® machine and CTC lysates in a homogenous manner showing a potential to generate NTBC activation in co-cultures. Identification of the activation signals in T-cell population by simple multimarker-qPCRs could fasten the process of effective mMo-DC production.
Collapse
Affiliation(s)
- Katarina Kolostova
- Laboratory of Personalized Medicine, Oncology Clinic, University Hospital Kralovske Vinohrady, Srobarova 50, 10034, Prague, Czech Republic
| | - Eliska Pospisilova
- Laboratory of Personalized Medicine, Oncology Clinic, University Hospital Kralovske Vinohrady, Srobarova 50, 10034, Prague, Czech Republic
| | - Rafal Matkowski
- Department of Oncology, Wrocław Medical University, Wrocław, Poland.,Breast Cancer Unit, Lower Silesian Oncology, Pulmonology and Hematology Center, Plac Hirszfelda 12, 54-413, Wrocław, Poland
| | - Jolanta Szelachowska
- Department of Oncology, Wrocław Medical University, Wrocław, Poland.,Breast Cancer Unit, Lower Silesian Oncology, Pulmonology and Hematology Center, Plac Hirszfelda 12, 54-413, Wrocław, Poland
| | - Vladimir Bobek
- Laboratory of Personalized Medicine, Oncology Clinic, University Hospital Kralovske Vinohrady, Srobarova 50, 10034, Prague, Czech Republic. .,3rd Department of Surgery University Hospital Motol and 1st Faculty of Medicine, Charles University, V Uvalu 84, 15006, Prague, Czech Republic. .,Department of Thoracic Surgery, Masaryk's Hospital, Krajska Zdravotni a.s., Socialni pece 3316/12A, 40113, Usti nad Labem, Czech Republic. .,Department of Thoracic Surgery, Lower Silesian Oncology, Pulmology and Hematology Center and Medical University Wroclaw, Grabiszynska 105, 53-413, Wrocław, Poland.
| |
Collapse
|
212
|
Lee M, Chun D, Park S, Choi G, Kim Y, Kang SJ, Im SG. Engineering of Surface Energy of Cell-Culture Platform to Enhance the Growth and Differentiation of Dendritic Cells via Vapor-Phase Synthesized Functional Polymer Films. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106648. [PMID: 35297560 DOI: 10.1002/smll.202106648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Although the dendritic cell (DC)-based modulation of immune responses has emerged as a promising therapeutic strategy for tumors, infections, and autoimmune diseases, basic research and therapeutic applications of DCs are hampered by expensive growth factors and sophisticated culture procedures. Furthermore, the platform to drive the differentiation of a certain DC subset without any additional biochemical manipulations has not yet been developed. Here, five types of polymer films with different hydrophobicity via an initiated chemical vapor deposition (iCVD) process to modulate the interactions related to cell-substrate adhesion are introduced. Especially, poly(cyclohexyl methacrylate) (pCHMA) substantially enhances the expansion and differentiation of conventional type 1 DCs (cDC1s), the prime DC subset for antigen cross-presentation, and CD8+ T cell activation, by 4.8-fold compared to the conventional protocol. The cDC1s generated from the pCHMA-coated plates retain the bona fide DC functions including the expression of co-stimulatory molecules, cytokine secretion, antigen uptake and processing, T cell activation, and induction of antitumor immune responses. To the authors' knowledge, this is the first report highlighting that the modulation of surface hydrophobicity of the culture plate can be an incisive approach to construct an advanced DC culture platform with high efficiency, which potentially facilitates basic research and the development of immunotherapy employing DCs.
Collapse
Affiliation(s)
- Minseok Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Dongmin Chun
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Seonghyeon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Goro Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yesol Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Suk-Jo Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KAIST Institute For NanoCentury (KINC), Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
213
|
Kwon S, Kwon M, Im S, Lee K, Lee H. mRNA vaccines: the most recent clinical applications of synthetic mRNA. Arch Pharm Res 2022; 45:245-262. [PMID: 35426547 PMCID: PMC9012156 DOI: 10.1007/s12272-022-01381-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/05/2022] [Indexed: 12/24/2022]
Abstract
Synthetic mRNA has been considered as an emerging biotherapeutic agent for the past decades. Recently, the SARS-CoV-2 pandemic has led to the first clinical use of synthetic mRNA. mRNA vaccines showed far surpassing influences on the public as compared to other vaccine platforms such as viral vector vaccines and recombinant protein vaccines. It allowed rapid development and production of vaccines that have never been achieved in history. Synthetic mRNA, called in vitro transcribed (IVT) mRNA, is the key component of mRNA vaccines. It has several advantages over conventional gene-expressing systems such as plasmid DNA and viral vectors. It can translate proteins in the cytoplasm by structurally resembling natural mRNA and exhibit various protein expression patterns depending on how it is engineered. Another advantage is that synthetic mRNA enables fast, scalable, and cost-effective production. Therefore, starting with the mRNA vaccine, synthetic mRNA is now in the spotlight as a promising new drug development agent. In this review, we will summarize the latest IVT mRNA technology such as new mRNA structures or large-scale production. In addition, the nature of the innate immunogenicity of IVT mRNA will be discussed along with its roles in the development of vaccines. Finally, the principles of the mRNA vaccine and the future direction of synthetic mRNA will be provided.
Collapse
Affiliation(s)
- Suji Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Minseon Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seongeun Im
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Kyuri Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Hyukjin Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
214
|
Park MY. Synergistic Anti-Tumor Effect by the Combination of Cyclophosphamide and Dendritic Cell Vaccination in Murine Tumor Model that CEA Expressing. KOREAN JOURNAL OF CLINICAL LABORATORY SCIENCE 2022. [DOI: 10.15324/kjcls.2022.54.1.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Mi-Young Park
- Department of Clinical Laboratory Science, Suwon Science College, Hwaseong, Korea
| |
Collapse
|
215
|
Bikorimana JP, Salame N, Beaudoin S, Balood M, Crosson T, Abusarah J, Talbot S, Löbenberg R, Plouffe S, Rafei M. Promoting antigen escape from dendritic cell endosomes potentiates anti-tumoral immunity. Cell Rep Med 2022; 3:100534. [PMID: 35492876 PMCID: PMC9040180 DOI: 10.1016/j.xcrm.2022.100534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 12/17/2021] [Accepted: 01/27/2022] [Indexed: 12/12/2022]
Abstract
The cross-presenting capacity of dendritic cells (DCs) can be limited by non-specific degradation during endosome maturation. To bypass this limitation, we present in this study a new Accum-based formulation designed to promote endosome-to-cytosol escape. Treatment of primary DCs with Accum linked to the xenoantigen ovalbumin (OVA) triggers endosomal damages and enhances protein processing. Despite multiple challenges using ascending doses of tumor cells, DC prophylactic vaccination results in complete protection due to increased levels of effector CD4 and CD8 T cells as well as high production of pro-inflammatory mediators. When combined with anti-PD-1, therapeutic vaccination using both syngeneic and allogeneic Accum-OVA-pulsed DCs triggers potent anti-tumoral responses. The net outcome culminates in increased CD11c, CD8, and NK infiltration along with a high CD8/Treg ratio. These highly favorable therapeutic effects highlight the promising potential of Accum as a distinct and potent technology platform suitable for the design of next generation cell cancer vaccines. Accum-linked antigen enhances antigen processing and presentation Pulsed dendritic cells elicit potent effector T cell responses Therapeutic vaccination using allogeneic DCs controls pre-established tumors The vaccine boosts tumor-infiltrating lymphocytes and increases the CD8/Treg ratio
Collapse
Affiliation(s)
- Jean-Pierre Bikorimana
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Natasha Salame
- Department of Biomedical Sciences, Université de Montréal, Montréal, QC, Canada
| | - Simon Beaudoin
- Research and Development Branch, Defence Therapeutics Inc., Vancouver, BC, Canada
| | - Mohammad Balood
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
| | - Théo Crosson
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
| | - Jamilah Abusarah
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
| | - Sebastien Talbot
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada
| | - Raimar Löbenberg
- Department of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sebastien Plouffe
- Research and Development Branch, Defence Therapeutics Inc., Vancouver, BC, Canada
| | - Moutih Rafei
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada.,Department of Pharmacology and Physiology, Université de Montréal, Montréal, QC, Canada.,Molecular Biology Program, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
216
|
Gupta YH, Khanom A, Acton SE. Control of Dendritic Cell Function Within the Tumour Microenvironment. Front Immunol 2022; 13:733800. [PMID: 35355992 PMCID: PMC8960065 DOI: 10.3389/fimmu.2022.733800] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 02/09/2022] [Indexed: 12/12/2022] Open
Abstract
The tumour microenvironment (TME) presents a major block to anti-tumour immune responses and to effective cancer immunotherapy. The inflammatory mediators such as cytokines, chemokines, growth factors and prostaglandins generated in the TME alter the phenotype and function of dendritic cells (DCs) that are critical for a successful adaptive immune response against the growing tumour. In this mini review we discuss how tumour cells and the surrounding stroma modulate DC maturation and trafficking to impact T cell function. Fibroblastic stroma and the associated extracellular matrix around tumours can also provide physical restrictions to infiltrating DCs and other leukocytes. We discuss interactions between the inflammatory TME and infiltrating immune cell function, exploring how the inflammatory TME affects generation of T cell-driven anti-tumour immunity. We discuss the open question of the relative importance of antigen-presentation site; locally within the TME versus tumour-draining lymph nodes. Addressing these questions will potentially increase immune surveillance and enhance anti-tumour immunity.
Collapse
Affiliation(s)
- Yukti Hari Gupta
- Stromal Immunology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| | | | - Sophie E. Acton
- Stromal Immunology Laboratory, MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
| |
Collapse
|
217
|
Huang L, Ding Z, Zhang Y. CD24+ MDSC-DCs Induced by CCL5-Deficiency Showed Improved Antitumor Activity as Tumor Vaccines. Glob Med Genet 2022; 9:97-109. [PMID: 35707772 PMCID: PMC9192183 DOI: 10.1055/s-0042-1743569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 11/24/2022] Open
Abstract
Background
Dendritic cell (DC) tumor vaccine has been extensively utilized in preclinical and clinical studies; however, this technique has encountered many difficulties, particularly in late-stage tumor patients. For those, ex vivo-induced DCs are actuallymyeloid-derived suppressive cells-derived DCs (MDSC-DCs). MDSCs with immunosuppressive activity, but not monocytes, became the major DC precursor. Thus, how to enhance antitumor activity of MDSC-DCs is urgent need to address.
Methods
We utilized 4T1 and MC38 tumor-bearing both wildtype and CC chemokine ligand 5
−/−
(CCL5
−/−
) mice as animal models. MDSC-DCs were induced from splenocytes of these mice by granulocyte macrophage–colony stimulating factor/interleukin-4 with or without all-trans-retinoic acid (ATRA) in vitro for 7 days, then incubated with tumor-cell-lysis to treat mouse models for total three doses. For human MDSC-DCs, peripheral bloods from colorectal cancer patients were induced in vitro as murine cells with or without T- lymphocytes depletion to get rid of CCL5.
Results
Flow cytometry analysis showed that MDSCs from
CCL5−/−
mice could be induced into a new type of CD24
+
MDSC-DCs in the presence of ATRA, which had more antitumor activity than control. Antibody blocking and adoptive transfer experiments demonstrated that downregulation of regulatory T cells (Tregs) mediated the inhibition of CD24
+
MDSC-DCs on tumor growth. Mechanically, CD24
+
MDSC-DCs inhibited Tregs' polarization by secreting cytokine or coactivators' expression. What's important, decreasing CCL5 protein levels by T- lymphocytes depletion during both murine and human MDSC-DCs in vitro induction could also acquire CD24
+
MDSC-DCs.
Conclusion
Knockdown of CCL5 protein during MDSC-DCs culture might provide a promising method to acquire DC-based tumor vaccines with high antitumor activity.
Collapse
Affiliation(s)
- Lei Huang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zequn Ding
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med-X Stem Cell Research Center, Ren Ji Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
218
|
Rosa FF, Pires CF, Kurochkin I, Halitzki E, Zahan T, Arh N, Zimmermannová O, Ferreira AG, Li H, Karlsson S, Scheding S, Pereira CF. Single-cell transcriptional profiling informs efficient reprogramming of human somatic cells to cross-presenting dendritic cells. Sci Immunol 2022; 7:eabg5539. [PMID: 35245086 DOI: 10.1126/sciimmunol.abg5539] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Type 1 conventional dendritic cells (cDC1s) are rare immune cells critical for the induction of antigen-specific cytotoxic CD8+ T cells, although the genetic program driving human cDC1 specification remains largely unexplored. We previously identified PU.1, IRF8, and BATF3 transcription factors as sufficient to induce cDC1 fate in mouse fibroblasts, but reprogramming of human somatic cells was limited by low efficiency. Here, we investigated single-cell transcriptional dynamics during human cDC1 reprogramming. Human induced cDC1s (hiDC1s) generated from embryonic fibroblasts gradually acquired a global cDC1 transcriptional profile and expressed antigen presentation signatures, whereas other DC subsets were not induced at the single-cell level during the reprogramming process. We extracted gene modules associated with successful reprogramming and identified inflammatory signaling and the cDC1-inducing transcription factor network as key drivers of the process. Combining IFN-γ, IFN-β, and TNF-α with constitutive expression of cDC1-inducing transcription factors led to improvement of reprogramming efficiency by 190-fold. hiDC1s engulfed dead cells, secreted inflammatory cytokines, and performed antigen cross-presentation, key cDC1 functions. This approach allowed efficient hiDC1 generation from adult fibroblasts and mesenchymal stromal cells. Mechanistically, PU.1 showed dominant and independent chromatin targeting at early phases of reprogramming, recruiting IRF8 and BATF3 to shared binding sites. The cooperative binding at open enhancers and promoters led to silencing of fibroblast genes and activation of a cDC1 program. These findings provide mechanistic insights into human cDC1 specification and reprogramming and represent a platform for generating patient-tailored cDC1s, a long-sought DC subset for vaccination strategies in cancer immunotherapy.
Collapse
Affiliation(s)
- Fábio F Rosa
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden.,Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal 3004-517 Coimbra, Portugal.,Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, Coimbra, Portugal
| | - Cristiana F Pires
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden.,Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal 3004-517 Coimbra, Portugal
| | - Ilia Kurochkin
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden.,Skolkovo Institute of Science and Technology, Nobel Street, Building 3, Moscow 143026, Russia
| | - Evelyn Halitzki
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Tasnim Zahan
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Nejc Arh
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Olga Zimmermannová
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Alexandra G Ferreira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden.,Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal 3004-517 Coimbra, Portugal.,Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, Coimbra, Portugal
| | - Hongzhe Li
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, BMC B12, 221 84 Lund, Sweden
| | - Stefan Karlsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden
| | - Stefan Scheding
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, BMC B12, 221 84 Lund, Sweden.,Department of Hematology, Skåne University Hospital Lund, Skåne, 222 42 Lund, Sweden
| | - Carlos-Filipe Pereira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Centre, Lund University, BMC A12, 221 84 Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84 Lund, Sweden.,Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal 3004-517 Coimbra, Portugal
| |
Collapse
|
219
|
Ruan S, Erwin N, He M. Light-induced high-efficient cellular production of immune functional extracellular vesicles. J Extracell Vesicles 2022; 11:e12194. [PMID: 35230743 PMCID: PMC8886920 DOI: 10.1002/jev2.12194] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicle (EV)-based therapies and vaccines are emerging. However, employment at the scale for population-based dose development is always a huge bottleneck. In order to overcome such a roadblock, we introduce a simple and straightforward approach for promoting cellular production of dendritic cell derived EVs (DEVs) by leveraging phototherapy based light induction. Under the optimization of light wavelengths, intensities, and exposure times, we achieved more than 13-fold enhancement in DEV production rate, while maintaining good integral quality and immune function from produced EVs. The LED light at 365 nm is optimal to reliably trigger enhanced cellular production of EVs no matter cell line types. Our observation and other reported studies support longer near UV wavelength does not impair cell growth. We conducted a series of investigations in terms of size, zeta potential, morphology, immune surface markers and cytokines, biocompatibility, cellular uptake behaviour, and immune-modulation ability on eliciting cellular responses in vitro. We also validated the biodistribution, immunogenicity, and administration safety using light-promoted DEVs in mice models from both male and female genders. Overall data supports that light promoted DEVs are highly immune functional with great biocompatibility for serving as good therapeutic platforms. The in vivo animal study also demonstrated light-promoted DEVs are as well tolerated as native DEVs, with no safety concerns. Taken together, the data supports that light promoted DEVs are in excellent quality, high biocompatibility, in vivo tolerant, and viable for serving as an ideal therapeutic platform in scalable production.
Collapse
Affiliation(s)
- Shaobo Ruan
- Department of PharmaceuticsCollege of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Nina Erwin
- Department of PharmaceuticsCollege of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| | - Mei He
- Department of PharmaceuticsCollege of PharmacyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
220
|
Song H, Jiang C. Recent advances in targeted drug delivery for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Drug Deliv 2022; 19:281-301. [PMID: 35220832 DOI: 10.1080/17425247.2022.2045943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) has become a serious health problem with high impact worldwide. The heterogeneity of PDAC makes it difficult to apply drug delivery systems (DDS) used in other cancer models, for example, the poorly developed vascular system makes anti-angiogenic therapy ineffective. Due to its various malignant pathological changes, drug delivery against PDAC is a matter of urgent concern. Based on this situation, various drug delivery strategies specially designed for PDAC have been generated. AREAS COVERED This review will briefly describe how delivery systems can be designed through nanotechnology and formulation science. Most research focused on penetrating the stromal barrier, exploiting and alleviating the hypoxic microenvironment, targeting immune cells, or designing vaccines, and combination therapies. This review will summarize the ways to reverse the malignant pathological features of PDAC and hopefully provide ideas for subsequent studies. EXPERT OPINION Drug delivery systems designed to achieve penetrating functions or to alleviate hypoxia and activate immunity have achieved good therapeutic results in animal models in several studies. In future studies, there is a need to deliver PDAC therapeutics in a more precise manner, or the use of drug carriers for multiple functions simultaneously, are potential therapeutic strategy.
Collapse
Affiliation(s)
- Haolin Song
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| | - Chen Jiang
- Department of Pharmaceutics, Fudan University, Shanghai, Sichuan, 201203 China
| |
Collapse
|
221
|
Bai X, Wong CC, Pan Y, Chen H, Liu W, Zhai J, Kang W, Shi Y, Yamamoto M, Tsukamoto T, Nomura S, Chiu P, Yu J, Kwok-Wai Ng E. Loss of YTHDF1 in gastric tumors restores sensitivity to antitumor immunity by recruiting mature dendritic cells. J Immunother Cancer 2022; 10:jitc-2021-003663. [PMID: 35193930 PMCID: PMC9066370 DOI: 10.1136/jitc-2021-003663] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 01/22/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancer worldwide. We analyzed the expression of m6A regulatory genes in GC cohorts and revealed that YTHDF1 was uniquely upregulated in GC as compared with adjacent normal tissues. In this study, we analyzed the role of YTHDF1 in GC cells and modulation of the tumor immune microenvironment. Methods Three GC cohorts (cohort 1, n=101; cohort 2, n=278, and the Cancer Genome Atlas cohort, n=375) were analyzed for YTHDF1 expression. Function of YTHDF1 in GC was determined in GC cell lines. Role of YTHDF1 in antitumor immunity was investigated in allograft models. Results YTHDF1 is upregulated in GC compared with adjacent normal tissues, and high YTHDF1 expression was correlated with poor survival of patients with GC at mRNA (p=0.016) and protein levels (p=0.039). Loss of YTHDF1 in human (AGS, BGC823, MKN74) or mouse (YTN16) GC cell lines inhibited cell growth and colony formation in vitro. Strikingly, syngeneic YTN16 tumors with loss of YTHDF1 underwent complete remission in immunocompetent mice, while a lesser effect was found in immunodeficient mice. Consistently, YTHDF1 loss in GC tumors led to recruitment of mature dendritic cells (DCs) with increased MHCII expression and interleukin-12 (IL-12) secretion, which in turn, promoted CD4+ and CD8+ T cells infiltration with increased interferon-γ (IFN-γ) secretion. Loss of YTHDF1 mediated the overexpression of IFN-γ receptor 1 and JAK/STAT1 signaling pathway in tumor cells, which might contribute to restored sensitivity to antitumor immunity. In addition, pre-emptive exposure of YTN16 tumors with YTHDF1 loss triggered a potent antitumor immune response on rechallenge with wild-type YTN16 cells, implying that YTHDF1 loss induced a lasting systemic antitumor immunity. Conclusions YTHDF1 is overexpressed in GC and promotes GC by inducing cell proliferation and repression of DCs-mediated antitumor immune response. YTHDF1 is a promising therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Xiaowu Bai
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China.,Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi Chun Wong
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Yasi Pan
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Weixin Liu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianning Zhai
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu Shi
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Masami Yamamoto
- Division of Physiological Pathology, School of Veterinary Nursing and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Tetsuya Tsukamoto
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal Surgery, Graduate School of medicine, The University of Tokyo, Tokyo, Japan
| | - Philip Chiu
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Enders Kwok-Wai Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
222
|
Booty MG, Hlavaty KA, Stockmann A, Ozay EI, Smith C, Tian L, How E, Subramanya D, Venkitaraman A, Yee C, Pryor O, Volk K, Blagovic K, Vicente-Suarez I, Yarar D, Myint M, Merino A, Chow J, Abdeljawad T, An H, Liu S, Mao S, Heimann M, Talarico L, Jacques MK, Chong E, Pomerance L, Gonzalez JT, von Andrian UH, Jensen KF, Langer R, Knoetgen H, Trumpfheller C, Umaña P, Bernstein H, Sharei A, Loughhead SM. Microfluidic Squeezing Enables MHC Class I Antigen Presentation by Diverse Immune Cells to Elicit CD8 + T Cell Responses with Antitumor Activity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:929-940. [PMID: 35091434 PMCID: PMC9012083 DOI: 10.4049/jimmunol.2100656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022]
Abstract
CD8+ T cell responses are the foundation of the recent clinical success of immunotherapy in oncologic indications. Although checkpoint inhibitors have enhanced the activity of existing CD8+ T cell responses, therapeutic approaches to generate Ag-specific CD8+ T cell responses have had limited success. Here, we demonstrate that cytosolic delivery of Ag through microfluidic squeezing enables MHC class I presentation to CD8+ T cells by diverse cell types. In murine dendritic cells (DCs), squeezed DCs were ∼1000-fold more potent at eliciting CD8+ T cell responses than DCs cross-presenting the same amount of protein Ag. The approach also enabled engineering of less conventional APCs, such as T cells, for effective priming of CD8+ T cells in vitro and in vivo. Mixtures of immune cells, such as murine splenocytes, also elicited CD8+ T cell responses in vivo when squeezed with Ag. We demonstrate that squeezing enables effective MHC class I presentation by human DCs, T cells, B cells, and PBMCs and that, in clinical scale formats, the system can squeeze up to 2 billion cells per minute. Using the human papillomavirus 16 (HPV16) murine model, TC-1, we demonstrate that squeezed B cells, T cells, and unfractionated splenocytes elicit antitumor immunity and correlate with an influx of HPV-specific CD8+ T cells such that >80% of CD8s in the tumor were HPV specific. Together, these findings demonstrate the potential of cytosolic Ag delivery to drive robust CD8+ T cell responses and illustrate the potential for an autologous cell-based vaccine with minimal turnaround time for patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Harry An
- SQZ Biotechnologies, Watertown, MA
| | - Sophia Liu
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Shirley Mao
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Megan Heimann
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | | | | | | | | | | | - Ulrich H von Andrian
- Department of Immunology, Harvard Medical School, Boston, MA
- Ragon Institute of MGH, MIT, and Harvard, Boston, MA
- Center for Immune Imaging at Harvard Medical School, Boston, MA
| | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA
- David Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA
| | - Hendrik Knoetgen
- Roche Innovation Center Basel, Roche Pharmaceutical Research and Early Development, Basel, Switzerland; and
| | - Christine Trumpfheller
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, Schlieren, Switzerland
| | - Pablo Umaña
- Roche Innovation Center Zurich, Roche Pharmaceutical Research and Early Development, Schlieren, Switzerland
| | | | | | | |
Collapse
|
223
|
Makino K, Long MD, Kajihara R, Matsueda S, Oba T, Kanehira K, Liu S, Ito F. Generation of cDC-like cells from human induced pluripotent stem cells via Notch signaling. J Immunother Cancer 2022; 10:jitc-2021-003827. [PMID: 35101945 PMCID: PMC8804689 DOI: 10.1136/jitc-2021-003827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2021] [Indexed: 12/23/2022] Open
Abstract
Background Dendritic cells (DCs) play critical roles in regulating the innate and adaptive immune responses, and have long been a major focus of cancer immunotherapy. Accumulating evidence suggests that conventional type 1 DCs (cDC1s) excel in cross-presentation of exogenous antigens on MHC-I molecules and induction of antitumor CD8+ T cell immunity; however, obtaining large numbers of cDC1s is difficult. The use of reprogramming and differentiation technology is advantageous for obtaining unlimited numbers of autologous cDC1s especially for therapeutic interventions where repeated vaccinations are required. However, generation of cDC1s from human induced pluripotent stem cells (iPSCs) remains elusive. Methods Human iPSCs established from peripheral blood T cells and monocytes were differentiated to myeloid cells under on-feeder or feeder-free culture conditions in vitro. Phenotype, genomic and transcriptomic signature, and function of human iPSC-derived DCs were analyzed. The role of Notch signaling for the generation of HLA-DR+ cells from human iPSCs was interrogated by a loss- and gain-of-function approach. Results Flow cytometric analyses and single-cell profiling of HLA-DR+ cells revealed that human iPSCs gave rise to CD141+XCR1+CLEC9A+ cells (cDC1s), CLEC4AhiCLEC10A–CD1c+ cells (cDC2As), CLEC4AloCLEC10A+CD1c+ cells (cDC2Bs), CD163–CD5+CD1c+ cells (CD5+cDC2s), and AXL+SIGLEC6+ cells (AS-DCs) on OP9 feeder cells expressing the Notch ligand delta-like 1 (OP9-DL1) while the majority of iPSC-derived cells differentiated on OP9 cells were CD163+CD5–CD1c+ cells (DC3s) and monocytes. Plasmacytoid DCs were not differentiated from iPSCs on either OP9 or OP9-DL1 cells. Inhibition of Notch signaling during co-culture of iPSC-derived CD34+ hematopoietic progenitor cells with OP9-DL1 cells abrogated generation of cDC1s, cDC2As, cDC2Bs, CD5+cDC2s, and AS-DCs but increased frequency of DC3s. Notch-activated human iPSC-derived XCR1+CLEC9A+HLA-DR+CD11c+ cells exhibited similar gene expression profile with peripheral blood cDC1s. Human iPSC-derived DCs have phagocytic, T-cell proliferative, and cytokine-producing functions. Conclusions Our study demonstrates a critical role of Notch signaling in regulating developmental pathway of human cDCs. These findings provide insights into the future development of personalized treatment with unlimited numbers of autologous cDCs from human iPSCs.
Collapse
Affiliation(s)
- Kenichi Makino
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.,Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine School of Medicine, Akita, Japan
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Ryutaro Kajihara
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Satoko Matsueda
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Takaaki Oba
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.,Department of Surgery, Shinshu University Graduate School of Medicine School of Medicine, Matsumoto, Nagano, Japan
| | - Kazunori Kanehira
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA
| | - Fumito Ito
- Center for Immunotherapy, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA .,Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, New York, USA.,Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Surgery, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
224
|
Engineered nanomaterials for synergistic photo-immunotherapy. Biomaterials 2022; 282:121425. [DOI: 10.1016/j.biomaterials.2022.121425] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/19/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
|
225
|
Plesca I, Müller L, Böttcher JP, Medyouf H, Wehner R, Schmitz M. Tumor-associated human dendritic cell subsets: phenotype, functional orientation, and clinical relevance. Eur J Immunol 2022; 52:1750-1758. [PMID: 35106759 DOI: 10.1002/eji.202149487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 11/09/2022]
Abstract
Dendritic cells (DCs) play a pivotal role in orchestrating innate and adaptive antitumor immunity. Activated DCs can produce large amounts of various proinflammatory cytokines, initiate T cell responses, and exhibit direct cytotoxicity against tumor cells. They also efficiently enhance the antitumoral properties of natural killer cells and T lymphocytes. Based on these capabilities, immunogenic DCs promote tumor elimination and are associated with improved survival of patients. Furthermore, they can essentially contribute to the clinical efficacy of immunotherapeutic strategies for cancer patients. However, depending on their intrinsic properties and the tumor microenvironment, DCs can be rendered dysfunctional and mediate tolerance by producing immunosuppressive cytokines and activating regulatory T cells. Such tolerogenic DCs can foster tumor progression and are linked to poor prognosis of patients. Here, we focus on recent studies exploring the phenotype, functional orientation, and clinical relevance of tumor-infiltrating conventional DC1, conventional DC2, plasmacytoid DCs, and monocyte-derived DCs in translational and clinical settings. In addition, recent findings demonstrating the influence of DCs on the efficacy of immunotherapeutic strategies are summarized. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ioana Plesca
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Luise Müller
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Jan P Böttcher
- Institute of Molecular Immunology and Experimental Oncology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Hind Medyouf
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt/Main, Germany.,Frankfurt Cancer Institute, Frankfurt am Main, Germany.,German Cancer Consortium (DKTK), Partner Site Frankfurt/Mainz, Frankfurt, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rebekka Wehner
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, TU Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
226
|
The Critical Role of Toll-like Receptor-mediated Signaling in Cancer Immunotherapy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
227
|
Wang H, Yang X, hu C, Huang C, Wang H, Zhu D, Zhang L. Programmed polymersomes with spatio-temporal delivery of antigen and dual-adjuvants for efficient dendritic cells-based cancer immunotherapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
228
|
Network models of prostate cancer immune microenvironments identify ROMO1 as heterogeneity and prognostic marker. Sci Rep 2022; 12:192. [PMID: 34996995 PMCID: PMC8741951 DOI: 10.1038/s41598-021-03946-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) is the fifth leading cause of death from cancer in men worldwide. Its treatment remains challenging due to the heterogeneity of the tumor, mainly because of the lack of effective and targeted prognostic markers at the system biology level. First, the data were retrieved from TCGA dataset, and valid samples were obtained by consistent clustering and principal component analysis; next, key genes were analyzed for prognosis of PCa using WGCNA, MEGENA, and LASSO Cox regression model analysis, while key genes were screened based on disease-free survival significance. Finally, TIMER data were selected to explore the relationship between genes and tumor immune infiltration, and GSCAlite was used to explore the small-molecule targeted drugs that act with them. Here, we used tumor subtype analysis and an energetic co-expression network algorithm of WGCNA and MEGENA to identify a signal dominated by the ROMO1 to predict PCa prognosis. Cox regression analysis of ROMO1 was an independent influence, and the prognostic value of this biomarker was validated in the training set, the validated data itself, and external data, respectively. This biomarker correlates with tumor immune infiltration and has a high degree of infiltration, poor prognosis, and strong correlation with CD8+T cells. Gene function annotation and other analyses also implied a potential molecular mechanism for ROMO1. In conclusion, we putative ROMO1 as a portal key prognostic gene for the diagnosis and prognosis of PCa, which provides new insights into the diagnosis and treatment of PCa.
Collapse
|
229
|
Karami Fath M, Azargoonjahromi A, Jafari N, Mehdi M, Alavi F, Daraei M, Mohammadkhani N, Mueller AL, Brockmueller A, Shakibaei M, Payandeh Z. Exosome application in tumorigenesis: diagnosis and treatment of melanoma. Med Oncol 2022; 39:19. [PMID: 34982284 DOI: 10.1007/s12032-021-01621-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Melanoma is the most aggressive of skin cancer derived from genetic mutations in the melanocytes. Current therapeutic approaches include surgical resection, chemotherapy, photodynamic therapy, immunotherapy, biochemotherapy, and targeted therapy. However, the efficiency of these strategies may be decreased due to the development of diverse resistance mechanisms. Here, it has been proven that therapeutic monoclonal antibodies (mAbs) can improve the efficiency of melanoma therapies and also, cancer vaccines are another approach for the treatment of melanoma that has already improved clinical outcomes in these patients. The use of antibodies and gene vaccines provides a new perspective in melanoma treatment. Since the tumor microenvironment is another important factor for cancer progression and metastasis, in recent times, a mechanism has been identified to provide an opportunity for melanoma cells to communicate with remote cells. This mechanism is involved by a novel molecular structure, named extracellular vesicles (EVs). Depending on the functional status of origin cells, exosomes contain various cargos and different compositions. In this review, we presented recent progress of exosome applications in the treatment of melanoma. Different aspects of exosome therapy and ongoing efforts in this field will be discussed too.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Jafari
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Mehdi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Fatemeh Alavi
- Department of Pathobiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mona Daraei
- Pharmacy School, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, 1985717443, Tehran, Iran
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336, Munich, Germany
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336, Munich, Germany
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336, Munich, Germany.
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
230
|
Iseghohi F, Yahemba AP, Rowaiye AB, Oli AN. Dendritic cells as vaccine targets. VACCINOLOGY AND METHODS IN VACCINE RESEARCH 2022:57-94. [DOI: 10.1016/b978-0-323-91146-7.00010-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
231
|
He N, Jiang J. Contribution of immune cells to bone metastasis pathogenesis. Front Endocrinol (Lausanne) 2022; 13:1019864. [PMID: 36246916 PMCID: PMC9556850 DOI: 10.3389/fendo.2022.1019864] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Bone metastasis is closely related to the survival rate of cancer patients and reduces their quality of life. The bone marrow microenvironment contains a complex immune cell component with a local microenvironment that is conducive to tumor formation and growth. In this unique immune environment, a variety of immune cells, including T cells, natural killer cells, macrophages, dendritic cells, and myeloid-derived suppressor cells, participate in the process of bone metastasis. In this review, we will introduce the interactions between immune cells and cancer cells in the bone microenvironment, obtain the details of their contributions to the implications of bone metastasis, and discuss immunotherapeutic strategies targeting immune cells in cancer patients with bone metastasis.
Collapse
Affiliation(s)
- Ningning He
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, Yangzhou University, Yangzhou, China
- Department of Oncology, First People’s Hospital of Changzhou, Changzhou, China
| | - Jingting Jiang
- Department of Tumor Biological Treatment, The Third Affiliated Hospital of Soochow University, Changzhou, China
- Department of Oncology, First People’s Hospital of Changzhou, Changzhou, China
- *Correspondence: Jingting Jiang,
| |
Collapse
|
232
|
Viswanath DI, Liu HC, Huston DP, Chua CYX, Grattoni A. Emerging biomaterial-based strategies for personalized therapeutic in situ cancer vaccines. Biomaterials 2022; 280:121297. [PMID: 34902729 PMCID: PMC8725170 DOI: 10.1016/j.biomaterials.2021.121297] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 11/19/2021] [Accepted: 11/29/2021] [Indexed: 01/03/2023]
Abstract
Landmark successes in oncoimmunology have led to development of therapeutics boosting the host immune system to eradicate local and distant tumors with impactful tumor reduction in a subset of patients. However, current immunotherapy modalities often demonstrate limited success when involving immunologically cold tumors and solid tumors. Here, we describe the role of various biomaterials to formulate cancer vaccines as a form of cancer immunotherapy, seeking to utilize the host immune system to activate and expand tumor-specific T cells. Biomaterial-based cancer vaccines enhance the cancer-immunity cycle by harnessing cellular recruitment and activation against tumor-specific antigens. In this review, we discuss biomaterial-based vaccine strategies to induce lymphocytic responses necessary to mediate anti-tumor immunity. We focus on strategies that selectively attract dendritic cells via immunostimulatory gradients, activate them against presented tumor-specific antigens, and induce effective cross-presentation to T cells in secondary lymphoid organs, thereby generating immunity. We posit that personalized cancer vaccines are promising targets to generate long-term systemic immunity against patient- and tumor-specific antigens to ensure long-term cancer remission.
Collapse
Affiliation(s)
- Dixita Ishani Viswanath
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Texas A&M University College of Medicine, Bryan & Houston, TX, USA
| | - Hsuan-Chen Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - David P Huston
- Texas A&M University College of Medicine, Bryan & Houston, TX, USA
| | | | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
233
|
Swartz AM, Hotchkiss KM, Nair SK, Sampson JH, Batich KA. Generation of Tumor Targeted Dendritic Cell Vaccines with Improved Immunogenic and Migratory Phenotype. Methods Mol Biol 2022; 2410:609-626. [PMID: 34914072 DOI: 10.1007/978-1-0716-1884-4_33] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Our group has employed methodologies for effective ex vivo generation of dendritic cell (DC) vaccines for patients with primary malignant brain tumors. In order to reliably produce the most potent, most representational vaccinated DC that will engender an antitumor response requires the ability to orchestrate multiple methodologies that address antigen cross-presentation, T-cell costimulation and polarization, and migratory capacity. In this chapter, we describe a novel method for augmenting the immunogenicity and migratory potential of DCs for their use as vaccines. We have elucidated methodologies to avoid the phenomenon known as immunodominance in generating cancer vaccines. We have found that culturing DC progenitors in serum-free conditions for the duration of the differentiation protocol results in a more homogeneously mature population of DCs that exhibit enhanced immunogenicity compared to DCs generated in serum-containing culture conditions. Furthermore, we demonstrate our method for generating high mobility DCs that readily migrate toward lymphoid organ chemoattractants using CCL3 protein. The combination of these two approaches represents a facile and clinically tractable methodology for generating highly mature DCs with excellent migratory capacity.
Collapse
Affiliation(s)
- Adam M Swartz
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Kelly M Hotchkiss
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | - Smita K Nair
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, NC, USA
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| | - John H Sampson
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA
| | - Kristen A Batich
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA.
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
234
|
Zeng C, Zhang C, Walker PG, Dong Y. Formulation and Delivery Technologies for mRNA Vaccines. Curr Top Microbiol Immunol 2022; 440:71-110. [PMID: 32483657 PMCID: PMC8195316 DOI: 10.1007/82_2020_217] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
mRNA vaccines have become a versatile technology for the prevention of infectious diseases and the treatment of cancers. In the vaccination process, mRNA formulation and delivery strategies facilitate effective expression and presentation of antigens, and immune stimulation. mRNA vaccines have been delivered in various formats: encapsulation by delivery carriers, such as lipid nanoparticles, polymers, peptides, free mRNA in solution, and ex vivo through dendritic cells. Appropriate delivery materials and formulation methods often boost the vaccine efficacy which is also influenced by the selection of a proper administration route. Co-delivery of multiple mRNAs enables synergistic effects and further enhances immunity in some cases. In this chapter, we overview the recent progress and existing challenges in the formulation and delivery technologies of mRNA vaccines with perspectives for future development.
Collapse
Affiliation(s)
- Chunxi Zeng
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, 43210, Columbus, OH, USA
| | - Chengxiang Zhang
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, 43210, Columbus, OH, USA
| | - Patrick G Walker
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics & Pharmacology, College of Pharmacy, The Ohio State University, 43210, Columbus, OH, USA. .,The Center for Clinical and Translational Science, The Ohio State University, Columbus, OH, 43210, USA. .,The Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA. .,Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, 43210, Columbus, OH, USA. .,Department of Radiation Oncology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
235
|
Najibi AJ, Shih TY, Mooney DJ. Cryogel vaccines effectively induce immune responses independent of proximity to the draining lymph nodes. Biomaterials 2021; 281:121329. [PMID: 34954588 DOI: 10.1016/j.biomaterials.2021.121329] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 01/22/2023]
Abstract
The delivery location of traditional vaccines can impact immune responses and resulting efficacy. Cryogel-based cancer vaccines, which are typically injected near the inguinal lymph nodes (iLNs), recruit and activate dendritic cells (DC) in situ, induce DC homing to the iLNs, and have generated potent anti-tumor immunity against several murine cancer models. However, whether cryogel vaccination distance to a draining LN affects the kinetics of DC homing and downstream antigen-specific immunity is unknown, given the heightened importance of the scaffold vaccine site. We hypothesized that vaccination near the iLNs would lead to more rapid DC trafficking to the iLNs, thereby inducing faster and stronger immune responses. Here, mice were injected with cryogel vaccines against ovalbumin either adjacent or distal to the iLNs, and the resultant DC trafficking kinetics, T cell phenotypes, antigen-specific T cell and humoral responses, and prophylactic efficacy in an ovalbumin-expressing tumor model were assessed. Cryogel vaccines induced potent, long-lasting antigen-specific immune responses independent of distance to the iLNs, with no significant differences in DC trafficking kinetics, ovalbumin-specific T cell and antibody responses, or prophylactic efficacy. Moreover, DC trafficking and activation state were not impacted when cryogels were injected near a tumor. These results demonstrate a flexibility in vaccination location for scaffold-based vaccines, independent of draining LN distance.
Collapse
Affiliation(s)
- Alexander J Najibi
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Ting-Yu Shih
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
236
|
Berti C, Boarino A, Graciotti M, Bader LPE, Kandalaft LE, Klok HA. Reduction-Sensitive Protein Nanogels Enhance Uptake of Model and Tumor Lysate Antigens In Vitro by Mouse- and Human-Derived Dendritic Cells. ACS APPLIED BIO MATERIALS 2021; 4:8291-8300. [PMID: 35005925 DOI: 10.1021/acsabm.1c00828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptides and proteins represent an emerging class of powerful therapeutics. Peptide and protein nanogels are attractive carriers for the transport and delivery of biologically active peptides and proteins because they allow essentially quantitative encapsulation of these biologics. One interesting field of use of peptide and protein nanogels is the transport of antigens and adjuvants in cancer immunotherapy. This study demonstrates the use of reduction-sensitive protein nanogels for the delivery of ovalbumin and oxidized tumor lysate-based antigens to mouse and human-donor-derived dendritic cells. Challenging mouse-derived and human dendritic cells with reduction-sensitive ovalbumin nanogels was found to significantly enhance antigen uptake as compared to the use of the corresponding free protein antigen. The experiments with mouse-derived dendritic cells further showed that the administration of ovalbumin in the form of reduction-sensitive nanogels enhanced dendritic cell maturation as well as the presentation of the SIINFEKL epitope as compared to experiments that use free ovalbumin. In addition to ovalbumin as a model antigen, the feasibility of reduction-sensitive nanogels was also demonstrated for the delivery of oxidized, whole tumor lysate-based cancer antigens. In experiments with dendritic cells harvested from human donors, dendritic cell uptake of the oxidized tumor lysate antigen was significantly enhanced in experiments that used oxidized tumor lysate nanogels as compared to the free antigen.
Collapse
Affiliation(s)
- Cristiana Berti
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Alice Boarino
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Michele Graciotti
- Ludwig Cancer Research Center─Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Lisa P E Bader
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Cancer Research Center─Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Harm-Anton Klok
- Laboratoire des Polymères, École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
237
|
Thakur A, Parra DC, Motallebnejad P, Brocchi M, Chen HJ. Exosomes: Small vesicles with big roles in cancer, vaccine development, and therapeutics. Bioact Mater 2021; 10:281-294. [PMID: 34901546 PMCID: PMC8636666 DOI: 10.1016/j.bioactmat.2021.08.029] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a deadly disease that is globally and consistently one of the leading causes of mortality every year. Despite the availability of chemotherapy, radiotherapy, immunotherapy, and surgery, a cure for cancer has not been attained. Recently, exosomes have gained significant attention due to the therapeutic potential of their various components including proteins, lipids, nucleic acids, miRNAs, and lncRNAs. Exosomes constitute a set of tiny extracellular vesicles with an approximate diameter of 30-100 nm. They are released from different cells and are present in biofluids including blood, cerebrospinal fluid (CSF), and urine. They perform crucial multifaceted functions in the malignant progression of cancer via autocrine, paracrine, and endocrine communications. The ability of exosomes to carry different cargoes including drug and molecular information to recipient cells make them a novel tool for cancer therapeutics. In this review, we discuss the major components of exosomes and their role in cancer progression. We also review important literature about the potential role of exosomes as vaccines and delivery carriers in the context of cancer therapeutics.
Collapse
Affiliation(s)
- Abhimanyu Thakur
- Pritzker School of Molecular Engineering, The University of Chicago, United States.,Ben May Department for Cancer Research, The University of Chicago, United States
| | - Diana Carolina Parra
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Pedram Motallebnejad
- Pritzker School of Molecular Engineering, The University of Chicago, United States.,Ben May Department for Cancer Research, The University of Chicago, United States
| | - Marcelo Brocchi
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas (UNICAMP), São Paulo, Brazil
| | - Huanhuan Joyce Chen
- Pritzker School of Molecular Engineering, The University of Chicago, United States.,Ben May Department for Cancer Research, The University of Chicago, United States
| |
Collapse
|
238
|
Ramirez A, Amosu M, Lee P, Maisel K. Microfluidic systems to study tissue barriers to immunotherapy. Drug Deliv Transl Res 2021; 11:2414-2429. [PMID: 34215998 PMCID: PMC9059778 DOI: 10.1007/s13346-021-01016-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2021] [Indexed: 10/20/2022]
Abstract
Immunotherapies have been heavily explored in the last decade, ranging from new treatments for cancer to allergic diseases. These therapies target the immune system, a complex organ system consisting of tissues with intricate structures and cells with a multitude of functions. To better understand immune functions and develop better therapeutics, many cellular and 2-dimensional (2D) tissue models have been developed. However, research has demonstrated that the 3-dimensional (3D) tissue structure can significantly affect cellular functions, and this is not recapitulated by more traditional 2D models. Microfluidics has been used to design 3D tissue models that allow for intricate arrangements of cells and extracellular spaces, thus allowing for more physiologically relevant in vitro model systems. Here, we summarize the multitude of microfluidic devices designed to study the immune system with the ultimate goal to improve existing and design new immunotherapies. We have included models of the different immune organs, including bone marrow and lymph node (LN), models of immunity in diseases such as cancer and inflammatory bowel disease, and therapeutic models to test or engineer new immune-modulatory treatments. We particularly emphasize research on how microfluidic devices are used to better understand different physiological states and how interactions within the immune microenvironment can influence the efficacy of immunotherapies.
Collapse
Affiliation(s)
- Ann Ramirez
- Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Mayowa Amosu
- Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Priscilla Lee
- Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Katharina Maisel
- Department of Bioengineering, University of Maryland, College Park, MD, USA.
| |
Collapse
|
239
|
Yang Y, Wang K, Pan Y, Rao L, Luo G. Engineered Cell Membrane-Derived Nanoparticles in Immune Modulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102330. [PMID: 34693653 PMCID: PMC8693058 DOI: 10.1002/advs.202102330] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/19/2021] [Indexed: 05/26/2023]
Abstract
Immune modulation is one of the most effective approaches in the therapy of complex diseases, including public health emergency. However, most immune therapeutics such as drugs, vaccines, and cellular therapy suffer from the limitations of poor efficacy and adverse side effects. Fortunately, cell membrane-derived nanoparticles (CMDNs) have superior compatibility with other therapeutics and offer new opportunities to push the limits of current treatments in immune modulation. As the interface between cells and outer surroundings, cell membrane contains components which instruct intercellular communication and the plasticity of cytomembrane has significantly potentiated CMDNs to leverage our immune system. Therefore, cell membranes employed in immunomodulatory CMDNs have gradually shifted from natural to engineered. In this review, unique properties of immunomodulatory CMDNs and engineering strategies of emerging CMDNs for immune modulation, with an emphasis on the design logic are summarized. Further, this review points out some pressing problems to be solved during clinical translation and put forward some suggestions on the prospect of immunoregulatory CMDNs. It is anticipated that this review can provide new insights on the design of immunoregulatory CMDNs and expand their potentiation in the precise control of the dysregulated immune system.
Collapse
Affiliation(s)
- Yixiao Yang
- Institute of Burn ResearchThe First Affiliated HospitalState Key Lab of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsThird Military Medical University (Army Medical University)Chongqing400038China
| | - Kai Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS)School of Basic Medical Sciences and Shanghai Public Health Clinical CenterShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yuanwei Pan
- Institute of Biomedical Health Technology and EngineeringShenzhen Bay LaboratoryShenzhen518132China
| | - Lang Rao
- Institute of Biomedical Health Technology and EngineeringShenzhen Bay LaboratoryShenzhen518132China
| | - Gaoxing Luo
- Institute of Burn ResearchThe First Affiliated HospitalState Key Lab of TraumaBurn and Combined InjuryChongqing Key Laboratory for Disease ProteomicsThird Military Medical University (Army Medical University)Chongqing400038China
| |
Collapse
|
240
|
Berti C, Graciotti M, Boarino A, Yakkala C, Kandalaft LE, Klok HA. Polymer Nanoparticle-Mediated Delivery of Oxidized Tumor Lysate-Based Cancer Vaccines. Macromol Biosci 2021; 22:e2100356. [PMID: 34822219 DOI: 10.1002/mabi.202100356] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/09/2021] [Indexed: 12/17/2022]
Abstract
Cancer vaccination is a powerful strategy to combat cancer. A very attractive approach to prime the immune system against cancer cells involves the use of tumor lysate as antigen source. The immunogenicity of tumor lysate can be further enhanced by treatment with hypochlorous acid. This study explores poly(lactic-co-glycolic acid) (PLGA) nanoparticles to enhance the delivery of oxidized tumor lysate to dendritic cells. Using human donor-derived dendritic cells, it is found that the use of PLGA nanoparticles enhances antigen uptake and dendritic cell maturation, as compared to the use of the free tumor lysate. The ability of the activated dendritic cells to stimulate autologous peripheral blood mononuclear cells (PBMCs) is assessed in vitro by coculturing PBMCs with A375 melanoma cells. Live cell imaging analysis of this experiment highlights the potential of nanoparticle-mediated dendritic-cell-based vaccination approaches. Finally, the efficacy of the PLGA nanoparticle formulation is evaluated in vivo in a therapeutic vaccination study using B16F10 tumor-bearing C57BL/6J mice. Animals that are challenged with the polymer nanoparticle-based oxidized tumor lysate formulation survive for up to 50 days, in contrast to a maximum of 41 days for the group that receives the corresponding free oxidized tumor lysate-based vaccine.
Collapse
Affiliation(s)
- Cristiana Berti
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| | - Michele Graciotti
- Ludwig Cancer Research Center - Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Alice Boarino
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| | - Chakradhar Yakkala
- Ludwig Cancer Research Center - Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Lana E Kandalaft
- Ludwig Cancer Research Center - Lausanne Branch, Department of Oncology, University Hospital of Lausanne, University of Lausanne, Lausanne, CH-1011, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, Lausanne, CH-1015, Switzerland
| |
Collapse
|
241
|
Radojević D, Tomić S, Mihajlović D, Tolinački M, Pavlović B, Vučević D, Bojić S, Golić N, Čolić M, Đokić J. Fecal microbiota composition associates with the capacity of human peripheral blood monocytes to differentiate into immunogenic dendritic cells in vitro. Gut Microbes 2021; 13:1-20. [PMID: 33970783 PMCID: PMC8115579 DOI: 10.1080/19490976.2021.1921927] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Although promising for active immunization in cancer patients, dendritic cells (DCs) vaccines generated in vitro display high inter-individual variability in their immunogenicity, which mostly limits their therapeutic efficacy. Gut microbiota composition is a key emerging factor affecting individuals' immune responses, but it is unknown how it affects the variability of donors' precursor cells to differentiate into immunogenic DCs in vitro. By analyzing gut microbiota composition in 14 healthy donors, along with the phenotype and cytokines production by monocyte-derived DCs, we found significant correlations between immunogenic properties of DC and microbiota composition. Namely, donors who had higher α-diversity of gut microbiota and higher abundance of short-chain fatty acid (SCFAs) and SCFA-producing bacteria in feces, displayed lower expression of CD1a on immature (im)DC and higher expression of ILT-3, costimulatory molecules (CD86, CD40) proinflammatory cytokines (TNF-α, IL-6, IL-8) and IL-12p70/IL-10 ratio, all of which correlated with their lower maturation potential and immunogenicity upon stimulation with LPS/IFNγ, a well-known Th1 polarizing cocktail. In contrast, imDCs generated from donors with lower α-diversity and higher abundance of Bifidobacterium and Collinsella in feces displayed higher CD1a expression and higher potential to up-regulate CD86 and CD40, increase TNF-α, IL-6, IL-8 production, and IL-12p70/IL-10 ratio upon stimulation. These results emphasize the important role of gut microbiota on the capacity of donor precursor cells to differentiate into immunogenic DCs suitable for cancer therapy, which could be harnessed for improving the actual and future DC-based cancer therapies.
Collapse
Affiliation(s)
- Dušan Radojević
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Sergej Tomić
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | - Dušan Mihajlović
- Faculty of Medicine Foca, University of East Sarajevo, Republic of Srpska, Bosnia and Herzegovina,Medical Faculty of the Military Medical Academy, University of Defence, Belgrade, Serbia
| | - Maja Tolinački
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | | | - Dragana Vučević
- Department for Immunology and Immunoparasitology, Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia
| | | | - Nataša Golić
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia
| | - Miodrag Čolić
- Faculty of Medicine Foca, University of East Sarajevo, Republic of Srpska, Bosnia and Herzegovina,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Jelena Đokić
- Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGI), University of Belgrade, Belgrade, Serbia,CONTACT Jelena Đokić Laboratory for Molecular Microbiology (LMM), Institute of Molecular Genetics and Genetic Engineering (IMGGE), University of Belgrade, Vojvode Stepe 444a, Belgrade11042, Serbia
| |
Collapse
|
242
|
Lu Y, Shi Y, You J. Strategy and clinical application of up-regulating cross presentation by DCs in anti-tumor therapy. J Control Release 2021; 341:184-205. [PMID: 34774890 DOI: 10.1016/j.jconrel.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022]
Abstract
The cross presentation of exogenous antigen (Ag) by dendritic cells (DCs) facilitates a diversified mode of T-cell activation, orchestrates specific humoral and cellular immunity, and contributes to an efficient anti-tumor immune response. DCs-mediated cross presentation is subject to both intrinsic and extrinsic factors, including the homing and phenotype of DCs, the spatiotemporal trafficking and degradation kinetics of Ag, and multiple microenvironmental clues, with many details largely unexplored. Here, we systemically review the current mechanistic understanding and regulation strategies of cross presentation by heterogeneous DC populations. We also provide insights into the future exploitation of DCs cross presentation for a better clinical efficacy in anti-tumor therapy.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
243
|
El-Ashmawy NE, Salem ML, Abd El-Fattah EE, Khedr EG. Targeting CD166 + lung cancer stem cells: Molecular study using murine dendritic cell vaccine. Toxicol Appl Pharmacol 2021; 429:115699. [PMID: 34437932 DOI: 10.1016/j.taap.2021.115699] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Cancer stem cells (CSC) are the most common causes of lung cancer relapse and mouse resistance to chemotherapy. CD166 was identified as CSC marker for lung cancer. Our study aimed to detect the effect of dendritic cell vaccine loaded with tumor cell lysate (TCL-DCV) on percentage of CD166+ CSC in lung of mice exposed to Benzo(a)Pyrene (BP). METHODS Female albino mice were divided into 5 groups (22 mice per group): normal control (NC), lung cancer control (LCC) (50 mg/kg BP orally, twice weekly for four weeks), dendritic cell (DC), TCL-DCV and cisplatin. Cisplatin (6 mg/kg, intraperitoneal) was given in two doses (18th and 20th week). 1 × 106 cells of each of DC and TCL-DCV was given subcutaneously as cisplatin. At the end of experiment (22 weeks), lung tissue was used for evaluation of cytotoxic T lymphocyte antigen-4 (Ctla-4), transforming growth factor-β (Tgf-β), forkhead box protein P3 (Foxp3), programmed death ligand 1 (Pd-l1) and interleukin 12 (Il-12) gene expression using quantitative RT-PCR. The percentage of CD83+, CD8+ and CD166+ cells in lung tissue were measured using flow cytometry. RESULTS The results revealed that TCL-DCV reversed the tumorigenic effect of BP in the lung as evidenced by histopathological examination. Compared to cisplatin, dendritic cell vaccination (TCL-DCV) significantly decreased percentage of CD166+ CSC. This anticancer stemness effect was attributed to the immune-stimulatory effect as indicated by increased percentage of CD83+ and CD8+ cells, upregulation of Il-12, and downregulation of Tgf-β, Ctla-4, Pd-l1 and Foxp3 gene expression compared to LCC group. CONCLUSIONS TCL-DCV ameliorated cancer stemness through modulating tumor immune archetypes which make it a potent therapeutic alternative to chemotherapy resistant cases.
Collapse
Affiliation(s)
- N E El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - M L Salem
- Department of Zoology, Faculty of Science, Tanta University, Tanta, Egypt; Center of Excellence in Cancer Research, Tanta University, Tanta, Egypt
| | - E E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt..
| | - E G Khedr
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
244
|
Ma W, Liang J, Mo J, Zhang S, Hu N, Tian D, Chen Z. Butyrophilin-like 9 expression is associated with outcome in lung adenocarcinoma. BMC Cancer 2021; 21:1096. [PMID: 34635082 PMCID: PMC8507344 DOI: 10.1186/s12885-021-08790-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 09/17/2021] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is the most prevalent non-small cell lung cancer (NSCLC). Patients with LUAD have a poor 5-year survival rate. The use of immune checkpoint inhibitors (ICIs) for the treatment of LUAD has been on the rise in the past decade. This study explored the prognostic role of butyrophilin-like 9 (BTNL9) in LUAD. METHODS Gene expression profile of buytrophilins (BTNs) was determined using the GEPIA database. The effect of BTNL9 on the survival of LUAD patients was assessed using Kaplan-Meier plotter and OncoLnc. Correlation between BTNL9 expression and tumor-infiltrating immune cells (TILs) was explored using TIMER and GEPIA databases. Further, the relationship between BTNL9 expression and drug response was evaluated using CARE. Besides, construction and evaluation of nomogram based on BTNL9 expression and TNM stage. RESULTS BTNL9 expression was downregulated in LUAD and was associated with a poor probability of 1, 3, 5-years overall survival (OS). In addition, BTNL9 expression was regulated at epigenetic and post-transcriptional modification levels. Moreover, BTNL9 expression was significantly positively correlated with ImmuneScore and ESTIMATEScore. Furthermore, BTNL9 expression was positively associated with infiltration levels of B cells, CD4+ T cells, and macrophages. Kaplan-Meier analysis showed that BTNL9 expression in B cells and dendritic cells (DCs) was significantly associated with OS. BTNL9 expression was significantly positively correlated with CARE scores. CONCLUSIONS These findings show that BTNL9 is a potential prognostic biomarker for LUAD. Low BTNL9 expression levels associated with low infiltration levels of naïve B cells, and DCs in the tumor microenvironment are unfavorable for OS in LUAD patients.
Collapse
Affiliation(s)
- Weishuang Ma
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan People's Hospital, Qingyuan, China
- Zhouxin Community Health Service, Qingcheng District, Qingyuan, China
| | - Jiaming Liang
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Junjian Mo
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan People's Hospital, Qingyuan, China
| | - Siyuan Zhang
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan People's Hospital, Qingyuan, China
| | - Ningdong Hu
- Department of Thoracic Surgery, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Dongbo Tian
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan People's Hospital, Qingyuan, China.
| | - Zisheng Chen
- Department of Respiratory Medicine, The Sixth Affiliated Hospital of Guangzhou Medical University Qingyuan People's Hospital, Qingyuan, China.
| |
Collapse
|
245
|
El-Ashmawy N, Salem M, Abd El-Fattah E, Khedr E. Targeting CD166+ lung cancer stem cells: Molecular study using murine dendritic cell vaccine. Toxicol Appl Pharmacol 2021. [DOI: https://doi.org/10.1016/j.taap.2021.115699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
246
|
Jang H, Kim EH, Chi SG, Kim SH, Yang Y. Nanoparticles Targeting Innate Immune Cells in Tumor Microenvironment. Int J Mol Sci 2021; 22:10009. [PMID: 34576180 PMCID: PMC8468472 DOI: 10.3390/ijms221810009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
A variety of innate immune cells such as macrophages, dendritic cells, myeloid-derived suppressor cells, natural killer cells, and neutrophils in the tumor microenvironments, contribute to tumor progression. However, while several recent reports have studied the use of immune checkpoint-based cancer immunotherapy, little work has focused on modulating the innate immune cells. This review focuses on the recent studies and challenges of using nanoparticles to target innate immune cells. In particular, we also examine the immunosuppressive properties of certain innate immune cells that limit clinical benefits. Understanding the cross-talk between tumors and innate immune cells could contribute to the development of strategies for manipulating the nanoparticles targeting tumor microenvironments.
Collapse
Affiliation(s)
- Hochung Jang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| | - Eun Hye Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
| | - Yoosoo Yang
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (H.J.); (E.H.K.)
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
247
|
Miao L, Zhang Z, Ren Z, Li Y. Application of Immunotherapy in Hepatocellular Carcinoma. Front Oncol 2021; 11:699060. [PMID: 34513678 PMCID: PMC8426571 DOI: 10.3389/fonc.2021.699060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma is one of the most common malignancies globally. It not only has a hidden onset but also progresses rapidly. Most HCC patients are already in the advanced stage of cancer when they are diagnosed, and have even lost the opportunity for surgical treatment. As an inflammation-related tumor, the immunosuppressive microenvironment of HCC can promote immune tolerance through a variety of mechanisms. Immunotherapy can activate tumor-specific immune responses, which brings a new hope for the treatment of HCC. At the present time, main immunotherapy strategies of HCC include immune checkpoint inhibitors, tumor vaccines, adoptive cell therapy, and so on. This article reviews the application and research progress of immune checkpoint inhibitors, tumor vaccines, and adoptive cell therapy in the treatment of HCC.
Collapse
Affiliation(s)
- Lele Miao
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhengchao Zhang
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhijian Ren
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| | - Yumin Li
- Department of General Surgery, Second Hospital of Lanzhou University, Lanzhou, China.,Key Laboratory of the Digestive System Tumors of Gansu Province, Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
248
|
Daly S, O’Sullivan A, MacLoughlin R. Cellular Immunotherapy and the Lung. Vaccines (Basel) 2021; 9:1018. [PMID: 34579255 PMCID: PMC8473388 DOI: 10.3390/vaccines9091018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 02/07/2023] Open
Abstract
The new era of cellular immunotherapies has provided state-of-the-art and efficient strategies for the prevention and treatment of cancer and infectious diseases. Cellular immunotherapies are at the forefront of innovative medical care, including adoptive T cell therapies, cancer vaccines, NK cell therapies, and immune checkpoint inhibitors. The focus of this review is on cellular immunotherapies and their application in the lung, as respiratory diseases remain one of the main causes of death worldwide. The ongoing global pandemic has shed a new light on respiratory viruses, with a key area of concern being how to combat and control their infections. The focus of cellular immunotherapies has largely been on treating cancer and has had major successes in the past few years. However, recent preclinical and clinical studies using these immunotherapies for respiratory viral infections demonstrate promising potential. Therefore, in this review we explore the use of multiple cellular immunotherapies in treating viral respiratory infections, along with investigating several routes of administration with an emphasis on inhaled immunotherapies.
Collapse
Affiliation(s)
- Sorcha Daly
- College of Medicine, Nursing & Health Sciences, National University of Ireland, H91 TK33 Galway, Ireland;
| | - Andrew O’Sullivan
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland;
| | - Ronan MacLoughlin
- Research and Development, Science and Emerging Technologies, Aerogen Limited, Galway Business Park, H91 HE94 Galway, Ireland;
- School of Pharmacy and Pharmaceutical Sciences, Trinity College, D02 PN40 Dublin, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| |
Collapse
|
249
|
Zhang L, Xia H, Xia K, Liu X, Zhang X, Dai J, Zeng Z, Jia Y. Selenium Regulation of the Immune Function of Dendritic Cells in Mice Through the ERK, Akt and RhoA/ROCK Pathways. Biol Trace Elem Res 2021; 199:3360-3370. [PMID: 33107016 DOI: 10.1007/s12011-020-02449-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/18/2020] [Indexed: 10/23/2022]
Abstract
Selenium levels can regulate the function of T cells, macrophages, B cells, natural killer cells and other immune cells. However, the effect of selenium on the immune function of dendritic cells (DCs) isolated from selenium-supplemented mice is unknown. In this study, C57BL/6J mice were randomly divided into three groups and fed diets containing low (0.08 ppm), medium (0.25 ppm) or high (1 ppm) selenium levels for 8 weeks. Immature (imDCs) and mature (mDCs) dendritic cells were then isolated from the bone marrow. Next, the migration, phagocytic capacity and mixed lymphocyte reaction (MLR) for imDCs and mDCs were detected by transwell and flow cytometry. The levels of C-C chemokine receptor type 7 (CCR7), major histocompatibility complex II (MHCII) and reactive oxygen species (ROS) were assayed by flow cytometry. F-actin and superoxide dismutase (SOD) activity was detected by fluorescence microscopy and SOD assay kit, respectively. In addition, the extracellular signal-regulated kinase (ERK), Akt, Ras homolog gene family member A/Rho-associated protein kinase (RhoA/ROCK) signalling, selenoprotein K (SELENOK) and glutathione peroxidase 1 (GPX1) levels were measured by western blot analysis. The results indicated that selenium deficiency enhanced the migration of imDCs by ROS and SELENOK-mediated ERK, Akt and RhoA/ROCK pathways but impaired the antigen uptake of imDCs. Although a high selenium level inhibited the migration of imDCs, it had no effect on phagocytic capacity. For mDCs, low selenium levels impaired free migration, and high levels inhibited the chemotactic migration involved in F-actin and CCR7, respectively. Low and high selenium levels impaired the MLR by inhibiting MHCII surface localisation, which might be related to ROS- and SELENOK-mediated ERK, Akt and RhoA/ROCK signalling pathways. In summary, selenium may regulate the immune function of mouse DCs through the ROS- and SELENOK-mediated ERK, Akt and RhoA/ROCK signalling.
Collapse
Affiliation(s)
- Liangliang Zhang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Huan Xia
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Kaide Xia
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xianmei Liu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin Zhang
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Jie Dai
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
| | - Zhu Zeng
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China
- School of Basic Medical Science, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yi Jia
- Immune Cells and Antibody Engineering Research Center of Guizhou Province/Key Laboratory of Biology and Medical Engineering, Guizhou Medical University, Guiyang, Guizhou, China.
- School of Biology and Engineering, Guizhou Medical University, Guiyang, Guizhou, China.
| |
Collapse
|
250
|
Fukuda K, Okamura K, Riding RL, Fan X, Afshari K, Haddadi NS, McCauley SM, Guney MH, Luban J, Funakoshi T, Yaguchi T, Kawakami Y, Khvorova A, Fitzgerald KA, Harris JE. AIM2 regulates anti-tumor immunity and is a viable therapeutic target for melanoma. J Exp Med 2021; 218:212521. [PMID: 34325468 PMCID: PMC8329870 DOI: 10.1084/jem.20200962] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/24/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
The STING and absent in melanoma 2 (AIM2) pathways are activated by the presence of cytosolic DNA, and STING agonists enhance immunotherapeutic responses. Here, we show that dendritic cell (DC) expression of AIM2 within human melanoma correlates with poor prognosis and, in contrast to STING, AIM2 exerts an immunosuppressive effect within the melanoma microenvironment. Vaccination with AIM2-deficient DCs improves the efficacy of both adoptive T cell therapy and anti–PD-1 immunotherapy for “cold tumors,” which exhibit poor therapeutic responses. This effect did not depend on prolonged survival of vaccinated DCs, but on tumor-derived DNA that activates STING-dependent type I IFN secretion and subsequent production of CXCL10 to recruit CD8+ T cells. Additionally, loss of AIM2-dependent IL-1β and IL-18 processing enhanced the treatment response further by limiting the recruitment of regulatory T cells. Finally, AIM2 siRNA-treated mouse DCs in vivo and human DCs in vitro enhanced similar anti-tumor immune responses. Thus, targeting AIM2 in tumor-infiltrating DCs is a promising new treatment strategy for melanoma.
Collapse
Affiliation(s)
- Keitaro Fukuda
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA.,Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Ken Okamura
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| | - Rebecca L Riding
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| | - Xueli Fan
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| | - Khashayar Afshari
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| | - Nazgol-Sadat Haddadi
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| | - Sean M McCauley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Mehmet H Guney
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Katherine A Fitzgerald
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA
| | - John E Harris
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|