201
|
Wicaksono WA, Cernava T, Wassermann B, Abdelfattah A, Soto-Giron MJ, Toledo GV, Virtanen SM, Knip M, Hyöty H, Berg G. The edible plant microbiome: evidence for the occurrence of fruit and vegetable bacteria in the human gut. Gut Microbes 2023; 15:2258565. [PMID: 37741805 PMCID: PMC10519362 DOI: 10.1080/19490976.2023.2258565] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/08/2023] [Indexed: 09/25/2023] Open
Abstract
Diversity of the gut microbiota is crucial for human health. However, whether fruit and vegetable associated bacteria contribute to overall gut bacterial diversity is still unknown. We reconstructed metagenome-assembled genomes from 156 fruit and vegetable metagenomes to investigate the prevalence of associated bacteria in 2,426 publicly available gut metagenomes. The microbiomes of fresh fruits and vegetables and the human gut are represented by members in common such as Enterobacterales, Burkholderiales, and Lactobacillales. Exposure to bacteria via fruit and vegetable consumption potentially has a beneficial impact on the functional diversity of gut microbiota particularly due to the presence of putative health-promoting genes for the production of vitamin and short-chain fatty acids. In the human gut, they were consistently present, although at a low abundance, approx. 2.2%. Host age, vegetable consumption frequency, and the diversity of plants consumed were drivers favoring a higher proportion. Overall, these results provide one of the primary links between the human microbiome and the environmental microbiome. This study revealed evidence that fruit and vegetable-derived microbes could be found in the human gut and contribute to gut microbiome diversity.
Collapse
Affiliation(s)
- Wisnu Adi Wicaksono
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Birgit Wassermann
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
| | | | | | - Suvi M. Virtanen
- Finnish Institute for Health and Welfare, Helsinki, Finland
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
- Faculty of Social Sciences, Tampere University, Tampere, Finland
- Research, Development and Innovation Center, Tampere University Hospital, Tampere, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Pediatric Research Center, Children’s Hospital, University of Helsinki, Helsinki, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories, Tampere, Finland
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Potsdam, Germany
- Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
202
|
Konstantinidis KT. Sequence-discrete species for prokaryotes and other microbes: A historical perspective and pending issues. MLIFE 2023; 2:341-349. [PMID: 38818268 PMCID: PMC10989153 DOI: 10.1002/mlf2.12088] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/04/2023] [Accepted: 10/08/2023] [Indexed: 06/01/2024]
Abstract
Whether prokaryotes, and other microorganisms, form distinct clusters that can be recognized as species remains an issue of paramount theoretical as well as practical consequence in identifying, regulating, and communicating about these organisms. In the past decade, comparisons of thousands of genomes of isolates and hundreds of metagenomes have shown that prokaryotic diversity may be predominantly organized in such sequence-discrete clusters, albeit organisms of intermediate relatedness between the identified clusters are also frequently found. Accumulating evidence suggests, however, that the latter "intermediate" organisms show enough ecological and/or functional distinctiveness to be considered different species. Notably, the area of discontinuity between clusters often-but not always-appears to be around 85%-95% genome-average nucleotide identity, consistently among different taxa. More recent studies have revealed remarkably similar diversity patterns for viruses and microbial eukaryotes as well. This high consistency across taxa implies a specific mechanistic process that underlies the maintenance of the clusters. The underlying mechanism may be a substantial reduction in the efficiency of homologous recombination, which mediates (successful) horizontal gene transfer, around 95% nucleotide identity. Deviations from the 95% threshold (e.g., species showing lower intraspecies diversity) may be caused by ecological differentiation that imposes barriers to otherwise frequent gene transfer. While this hypothesis that clusters are driven by ecological differentiation coupled to recombination frequency (i.e., higher recombination within vs. between groups) is appealing, the supporting evidence remains anecdotal. The data needed to rigorously test the hypothesis toward advancing the species concept are also outlined.
Collapse
Affiliation(s)
- Konstantinos T. Konstantinidis
- School of Civil and Environmental Engineering, and School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
203
|
Yang S, Wu J, Wang H, Yang Q, Zhang H, Yang L, Li D, Deng Y, Zhong Y, Peng P. New dechlorination products and mechanisms of tris(2-chloroethyl) phosphate by an anaerobic enrichment culture from a vehicle dismantling site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122704. [PMID: 37806429 DOI: 10.1016/j.envpol.2023.122704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/15/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
End-of-life vehicles (ELVs) dismantling sites are the notorious hotspots of chlorinated organophosphate esters (Cl-OPEs). However, the microbial-mediated dechlorination of Cl-OPEs at such sites has not yet been explored. Herein, the dechlorination products, pathways and mechanisms of tris(2-chloroethyl) phosphate (TCEP, a representative Cl-OPE) by an anaerobic enrichment culture (ZNE) from an ELVs dismantling plant were investigated. Our results showed that dechlorination of TCEP can be triggered by reductive transformation to form bis(2-chloroethyl) phosphate (BCEP), mono-chloroethyl phosphate (MCEP) and by hydrolytic dechlorination to form bis(2-chloroethyl) 2-hydroxyethyl phosphate (TCEP-OH), 2-chloroethyl bis(2-hydroxyethyl) phosphate (TCEP-2OH), 2-chloroethyl (2-hydroxyethyl) hydrogen phosphate (BCEP-OH). The combination of 16S rRNA gene amplicon sequencing, quantitative real-time PCR (qPCR) and metagenomics revealed that the Dehalococcoides played an important role in the reductive transformation of TCEP to BCEP and MCEP. A high-quality metagenome-assembled genome (completeness >99% and contamination <1%) of Dehalococcoides was obtained. The sulfate-reducing bacteria harboring haloacid dehalogenase genes (had) may be responsible for the hydrolytic dechlorination of TCEP. These findings provide insights into microbial-mediated anaerobic transformation products and mechanisms of TCEP at ELVs dismantling sites, having implications for the environmental fate and risk assessment of Cl-OPEs at those sites.
Collapse
Affiliation(s)
- Sen Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Junhong Wu
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Heli Wang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian Yang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huanheng Zhang
- Guangzhou Environmental Protection Investment Group Co., Ltd., Guangzhou, 510016, China
| | - Lihua Yang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Dan Li
- School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Yirong Deng
- Guangdong Key Laboratory of Contaminated Sites Environmental Management and Remediation, Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Yin Zhong
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China.
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Maco Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou, 510640, China
| |
Collapse
|
204
|
Morlino MS, Serna García R, Savio F, Zampieri G, Morosinotto T, Treu L, Campanaro S. Cupriavidus necator as a platform for polyhydroxyalkanoate production: An overview of strains, metabolism, and modeling approaches. Biotechnol Adv 2023; 69:108264. [PMID: 37775073 DOI: 10.1016/j.biotechadv.2023.108264] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
Cupriavidus necator is a bacterium with a high phenotypic diversity and versatile metabolic capabilities. It has been extensively studied as a model hydrogen oxidizer, as well as a producer of polyhydroxyalkanoates (PHA), plastic-like biopolymers with a high potential to substitute petroleum-based materials. Thanks to its adaptability to diverse metabolic lifestyles and to the ability to accumulate large amounts of PHA, C. necator is employed in many biotechnological processes, with particular focus on PHA production from waste carbon sources. The large availability of genomic information has enabled a characterization of C. necator's metabolism, leading to the establishment of metabolic models which are used to devise and optimize culture conditions and genetic engineering approaches. In this work, the characteristics of available C. necator strains and genomes are reviewed, underlining how a thorough comprehension of the genetic variability of C. necator is lacking and it could be instrumental for wider application of this microorganism. The metabolic paradigms of C. necator and how they are connected to PHA production and accumulation are described, also recapitulating the variety of carbon substrates used for PHA accumulation, highlighting the most promising strategies to increase the yield. Finally, the review describes and critically analyzes currently available genome-scale metabolic models and reduced metabolic network applications commonly employed in the optimization of PHA production. Overall, it appears that the capacity of C. necator of performing CO2 bioconversion to PHA is still underexplored, both in biotechnological applications and in metabolic modeling. However, the accurate characterization of this organism and the efforts in using it for gas fermentation can help tackle this challenging perspective in the future.
Collapse
Affiliation(s)
- Maria Silvia Morlino
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Rebecca Serna García
- CALAGUA - Unidad Mixta UV-UPV, Departament d'Enginyeria Química, Universitat de València, Avinguda de la Universitat s/n, 46100 Burjassot, Valencia, Spain
| | - Filippo Savio
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Guido Zampieri
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Tomas Morosinotto
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| | - Laura Treu
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131 Padova, Italy
| |
Collapse
|
205
|
Liu L, Chen Y, Shen J, Pan Y, Lin W. Metabolic versatility of soil microbial communities below the rocks of the hyperarid Dalangtan Playa. Appl Environ Microbiol 2023; 89:e0107223. [PMID: 37902391 PMCID: PMC10686078 DOI: 10.1128/aem.01072-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/22/2023] [Indexed: 10/31/2023] Open
Abstract
IMPORTANCE The hyperarid Dalangtan Playa in the western Qaidam Basin, northwestern China, is a unique terrestrial analog of Mars. Despite the polyextreme environments of this area, habitats below translucent rocks capable of environmental buffering could serve as refuges for microbial life. In this study, the hybrid assembly of Illumina short reads and Nanopore long reads recovered high-quality and high-continuity genomes, allowing for high-accuracy analysis and a deeper understanding of extremophiles in the sheltered soils of the Dalangtan Playa. Our findings reveal self-supporting and metabolically versatile sheltered soil communities adapted to a hyperarid and hypersaline playa, which provides implications for the search for life signals on Mars.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Chen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianxun Shen
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Yongxin Pan
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
206
|
Oliver A, Podell S, Kelly LW, Sparagon WJ, Plominsky AM, Nelson RS, Laurens LML, Augyte S, Sims NA, Nelson CE, Allen EE. Enrichable consortia of microbial symbionts degrade macroalgal polysaccharides in Kyphosus fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568905. [PMID: 38076955 PMCID: PMC10705383 DOI: 10.1101/2023.11.28.568905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Coastal herbivorous fishes consume macroalgae, which is then degraded by microbes along their digestive tract. However, there is scarce foundational genomic work on the microbiota that perform this degradation. This study explores the potential of Kyphosus gastrointestinal microbial symbionts to collaboratively degrade and ferment polysaccharides from red, green, and brown macroalgae through in silico study of carbohydrate-active enzyme and sulfatase sequences. Recovery of metagenome-assembled genomes (MAGs) reveals differences in enzymatic capabilities between the major microbial taxa in Kyphosus guts. The most versatile of the recovered MAGs were from the Bacteroidota phylum, whose MAGs house enzymes able to decompose a variety of algal polysaccharides. Unique enzymes and predicted degradative capacities of genomes from the Bacillota (genus Vallitalea) and Verrucomicrobiota (order Kiritimatiellales) suggest the potential for microbial transfer between marine sediment and Kyphosus digestive tracts. Few genomes contain the required enzymes to fully degrade any complex sulfated algal polysaccharide alone. The distribution of suitable enzymes between MAGs originating from different taxa, along with the widespread detection of signal peptides in candidate enzymes, is consistent with cooperative extracellular degradation of these carbohydrates. This study leverages genomic evidence to reveal an untapped diversity at the enzyme and strain level among Kyphosus symbionts and their contributions to macroalgae decomposition. Bioreactor enrichments provide a genomic foundation for degradative and fermentative processes central to translating the knowledge gained from this system to the aquaculture and bioenergy sectors.
Collapse
Affiliation(s)
- Aaron Oliver
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Sheila Podell
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Linda Wegley Kelly
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Wesley J. Sparagon
- Daniel K. Inouye Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Alvaro M. Plominsky
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | - Craig E. Nelson
- Daniel K. Inouye Center for Microbial Oceanography, School of Ocean and Earth Science and Technology, University of Hawai’i at Mānoa, Honolulu, HI, USA
| | - Eric E. Allen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
207
|
Al KF, Joris BR, Daisley BA, Chmiel JA, Bjazevic J, Reid G, Gloor GB, Denstedt JD, Razvi H, Burton JP. Multi-site microbiota alteration is a hallmark of kidney stone formation. MICROBIOME 2023; 11:263. [PMID: 38007438 PMCID: PMC10675928 DOI: 10.1186/s40168-023-01703-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 10/17/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND Inquiry of microbiota involvement in kidney stone disease (KSD) has largely focussed on potential oxalate handling abilities by gut bacteria and the increased association with antibiotic exposure. By systematically comparing the gut, urinary, and oral microbiota of 83 stone formers (SF) and 30 healthy controls (HC), we provide a unified assessment of the bacterial contribution to KSD. RESULTS Amplicon and shotgun metagenomic sequencing approaches were consistent in identifying multi-site microbiota disturbances in SF relative to HC. Biomarker taxa, reduced taxonomic and functional diversity, functional replacement of core bioenergetic pathways with virulence-associated gene markers, and community network collapse defined SF, but differences between cohorts did not extend to oxalate metabolism. CONCLUSIONS We conclude that multi-site microbiota alteration is a hallmark of SF, and KSD treatment should consider microbial functional restoration and the avoidance of aberrant modulators such as poor diet and antibiotics where applicable to prevent stone recurrence. Video Abstract.
Collapse
Affiliation(s)
- Kait F Al
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Benjamin R Joris
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - Brendan A Daisley
- Molecular and Cellular Biology Department, University of Guelph, Guelph, ON, Canada
| | - John A Chmiel
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
| | - Jennifer Bjazevic
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Gregor Reid
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Gregory B Gloor
- Department of Biochemistry, The University of Western Ontario, London, ON, Canada
| | - John D Denstedt
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Hassan Razvi
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada
| | - Jeremy P Burton
- Centre for Human Microbiome and Probiotic Research, Lawson Health Research Institute, London, ON, Canada.
- Department of Microbiology and Immunology, The University of Western Ontario, London, ON, Canada.
- Division of Urology, Department of Surgery, The University of Western Ontario, London, ON, Canada.
| |
Collapse
|
208
|
Lang H, Liu Y, Duan H, Zhang W, Hu X, Zheng H. Identification of peptides from honeybee gut symbionts as potential antimicrobial agents against Melissococcus plutonius. Nat Commun 2023; 14:7650. [PMID: 38001079 PMCID: PMC10673953 DOI: 10.1038/s41467-023-43352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Eusocial pollinators are crucial elements in global agriculture. The honeybees and bumblebees are associated with a simple yet host-restricted gut community, which protect the hosts against pathogen infections. Recent genome mining has led to the discovery of biosynthesis pathways of bioactive natural products mediating microbe-microbe interactions from the gut microbiota. Here, we investigate the diversity of biosynthetic gene clusters in the bee gut microbiota by analyzing 477 genomes from cultivated bacteria and metagenome-assembled genomes. We identify 744 biosynthetic gene clusters (BGCs) covering multiple chemical classes. While gene clusters for the post-translationally modified peptides are widely distributed in the bee guts, the distribution of the BGC classes varies significantly in different bee species among geographic locations, which is attributed to the strain-level variation of bee gut members in the chemical repertoire. Interestingly, we find that Gilliamella strains possessing a thiopeptide-like BGC show potent activity against the pathogenic Melissococcus plutonius. The spectrometry-guided genome mining reveals a RiPP-encoding BGC from Gilliamella with a 10 amino acid-long core peptide exhibiting antibacterial potentials. This study illustrates the widespread small-molecule-encoding BGCs in the bee gut symbionts and provides insights into the bacteria-derived natural products as potential antimicrobial agents against pathogenic infections.
Collapse
Affiliation(s)
- Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Yuwen Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Huijuan Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Wenhao Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083, Beijing, China.
| |
Collapse
|
209
|
Mills KB, Maciag JJ, Wang C, Crawford JA, Enroth TJ, Keim KC, Dufrêne YF, Robinson DA, Fey PD, Herr AB, Horswill AR. Staphylococcus aureus skin colonization is mediated by SasG lectin variation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.20.567970. [PMID: 38045275 PMCID: PMC10690190 DOI: 10.1101/2023.11.20.567970] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Staphylococcus aureus causes the majority of skin and soft tissue infections, but this pathogen only transiently colonizes healthy skin. However, this transient skin exposure enables S. aureus to transition to infection. Initial adhesion of S. aureus to skin corneocytes is mediated by surface protein G (SasG). Here, phylogenetic analyses reveal the presence of two major divergent SasG alleles in S. aureus, SasG-I and SasG-II. Structural analyses of SasG-II identified a unique non-aromatic arginine in the binding pocket of the lectin subdomain that mediates adhesion to corneocytes. Atomic force microscopy and corneocyte adhesion assays indicated SasG-II can bind to a broader variety of ligands than SasG-I. Glycosidase treatment resulted in different binding profiles between SasG-I and SasG-II on skin cells. Additionally, SasG-mediated adhesion was recapitulated using differentiated N/TERT keratinocytes. Our findings indicate that SasG-II has evolved to adhere to multiple ligands, conferring a distinct advantage to S. aureus during skin colonization.
Collapse
Affiliation(s)
- Krista B. Mills
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joseph J. Maciag
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Can Wang
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - John A. Crawford
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Timothy J. Enroth
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Klara C. Keim
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - D. Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew B. Herr
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Veterans Affairs, VA Eastern Colorado Healthcare System, Aurora, CO, USA
| |
Collapse
|
210
|
Salmaso N, Boscaini A, Cerasino L, Pindo M, Pinto F, Segata N, Donati C. Draft genome sequence of the anatoxin-a producing cyanobacterium Tychonema bourrellyi B0820 isolated from the epilimnion of the deep Alpine Lake Garda. Microbiol Resour Announc 2023; 12:e0084423. [PMID: 37855624 PMCID: PMC10652907 DOI: 10.1128/mra.00844-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
We report the draft genome sequence of strain B0820 of the cyanobacterium Tychonema bourrellyi isolated from the epilimnion of Lake Garda and assembled from a metagenome of a non-axenic culture. The strain analyzed was shown to produce anatoxin-a, a potent neurotoxin that can cause fatal intoxication in exposed organisms.
Collapse
Affiliation(s)
- Nico Salmaso
- Research and Innovation Centre, Fondazione Edmund Mach , San Michele all'Adige, Italy
- NBFC, National Biodiversity Future Center , Palermo, Italy
| | - Adriano Boscaini
- Research and Innovation Centre, Fondazione Edmund Mach , San Michele all'Adige, Italy
| | - Leonardo Cerasino
- Research and Innovation Centre, Fondazione Edmund Mach , San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach , San Michele all'Adige, Italy
| | - Federica Pinto
- Department of Cellular, Computational and Integrative Biology, University of Trento , Trento, Italy
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento , Trento, Italy
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach , San Michele all'Adige, Italy
- NBFC, National Biodiversity Future Center , Palermo, Italy
| |
Collapse
|
211
|
Ma B, Lu C, Wang Y, Yu J, Zhao K, Xue R, Ren H, Lv X, Pan R, Zhang J, Zhu Y, Xu J. A genomic catalogue of soil microbiomes boosts mining of biodiversity and genetic resources. Nat Commun 2023; 14:7318. [PMID: 37951952 PMCID: PMC10640626 DOI: 10.1038/s41467-023-43000-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Soil harbors a vast expanse of unidentified microbes, termed as microbial dark matter, presenting an untapped reservo)ir of microbial biodiversity and genetic resources, but has yet to be fully explored. In this study, we conduct a large-scale excavation of soil microbial dark matter by reconstructing 40,039 metagenome-assembled genome bins (the SMAG catalogue) from 3304 soil metagenomes. We identify 16,530 of 21,077 species-level genome bins (SGBs) as unknown SGBs (uSGBs), which expand archaeal and bacterial diversity across the tree of life. We also illustrate the pivotal role of uSGBs in augmenting soil microbiome's functional landscape and intra-species genome diversity, providing large proportions of the 43,169 biosynthetic gene clusters and 8545 CRISPR-Cas genes. Additionally, we determine that uSGBs contributed 84.6% of previously unexplored viral-host associations from the SMAG catalogue. The SMAG catalogue provides an useful genomic resource for further studies investigating soil microbial biodiversity and genetic resources.
Collapse
Affiliation(s)
- Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Caiyu Lu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Yiling Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Jingwen Yu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Ran Xue
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Hao Ren
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Ronghui Pan
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yongguan Zhu
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
212
|
Blanco-Míguez A, Gálvez EJC, Pasolli E, De Filippis F, Amend L, Huang KD, Manghi P, Lesker TR, Riedel T, Cova L, Punčochář M, Thomas AM, Valles-Colomer M, Schober I, Hitch TCA, Clavel T, Berry SE, Davies R, Wolf J, Spector TD, Overmann J, Tett A, Ercolini D, Segata N, Strowig T. Extension of the Segatella copri complex to 13 species with distinct large extrachromosomal elements and associations with host conditions. Cell Host Microbe 2023; 31:1804-1819.e9. [PMID: 37883976 PMCID: PMC10635906 DOI: 10.1016/j.chom.2023.09.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
The Segatella copri (formerly Prevotella copri) complex (ScC) comprises taxa that are key members of the human gut microbiome. It was previously described to contain four distinct phylogenetic clades. Combining targeted isolation with large-scale metagenomic analysis, we defined 13 distinct Segatella copri-related species, expanding the ScC complex beyond four clades. Complete genome reconstruction of thirteen strains from seven species unveiled the presence of genetically diverse large circular extrachromosomal elements. These elements are consistently present in most ScC species, contributing to intra- and inter-species diversities. The nine species-level clades present in humans display striking differences in prevalence and intra-species genetic makeup across human populations. Based on a meta-analysis, we found reproducible associations between members of ScC and the male sex and positive correlations with lower visceral fat and favorable markers of cardiometabolic health. Our work uncovers genomic diversity within ScC, facilitating a better characterization of the human microbiome.
Collapse
Affiliation(s)
| | - Eric J C Gálvez
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany; Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Lena Amend
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Kun D Huang
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | - Till-Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Linda Cova
- Department CIBIO, University of Trento, Trento, Italy
| | | | | | | | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Thomas C A Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | | | | | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany; Technical University of Braunschweig, Braunschweig, Germany
| | - Adrian Tett
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Wien, Austria
| | - Danilo Ercolini
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy; Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany; Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany; Centre for Individualized Infection Medicine, Hannover, Germany.
| |
Collapse
|
213
|
Ahmed NA, Khattab RA, Ragab YM, Hassan M. Safety assessment of Enterococcus lactis strains complemented with comparative genomics analysis reveals probiotic and safety characteristics of the entire species. BMC Genomics 2023; 24:667. [PMID: 37932698 PMCID: PMC10626658 DOI: 10.1186/s12864-023-09749-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The gut microbiota is considered a rich source for potential novel probiotics. Enterococcus genus is a normal component of a healthy gut microbiota, suggesting its vital role. Nosocomial infections caused mainly by E. facalis and E. faecium have been attributed to the plasticity of the Enterococcus genomes. In this study, we assessed the probiotic and safety characteristics of two E. lactis strains isolated from the human gut microbiota using in-vitro and in silico approaches. Additionally, the safety of the E. lactis species was evaluated using comparative genomics analysis. RESULTS The two E. lactis strains 10NA and 50NA showed resistance to bile salts and acid tolerance with antibacterial activity against Escherichia coli, Salmonella typhi, and Clostridioides difficile. For safety assays, the two strains did not display any type of hemolysis on blood agar, and the survival of Caco-2 cells was not significantly different (P-value > 0.05) compared to the control using cell free supernatants at 100% (v/v), 50% (v/v), 10% (v/v), and 5% (v/v) concentrations. Regarding antibiotic susceptibility, both strains were sensitive to vancomycin, tetracycline, and chloramphenicol. Comprehensive whole-genome analysis revealed no concerning associations between virulence or antibiotic resistance genes and any of the identified mobile genetic elements. Comparative genome analysis with closely related E. faecium species genomes revealed the distinctive genomic safety of the E. lactis species. CONCLUSIONS Our two E. lactis strains showed promising probiotic properties in-vitro. Their genomes were devoid of any transferable antibiotic resistance genes. In silico comparative analysis confirmed the safety of the E. lactis species. These results suggest that E. lactis species could be a potential source for safer Enterococcus probiotic supplements.
Collapse
Affiliation(s)
- Noha A Ahmed
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
| | - Rania Abdelmonem Khattab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Yasser M Ragab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, 43511, Egypt.
| |
Collapse
|
214
|
Nori SRC, McGuire TK, Lawton EM, McAuliffe FM, Sinderen DV, Walsh CJ, Cotter PD, Feehily C. Profiling of vaginal Lactobacillus jensenii isolated from preterm and full-term pregnancies reveals strain-specific factors relating to host interaction. Microb Genom 2023; 9. [PMID: 38010361 DOI: 10.1099/mgen.0.001137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Each year, 15 million infants are born preterm (<37 weeks gestation), representing the leading cause of mortality for children under the age of five. Whilst there is no single cause, factors such as maternal genetics, environmental interactions, and the vaginal microbiome have been associated with an increased risk of preterm birth. Previous studies show that a vaginal microbiota dominated by Lactobacillus is, in contrast to communities containing a mixture of genera, associated with full-term birth. However, this binary principle does not fully consider more nuanced interactions between bacterial strains and the host. Here, through a combination of analyses involving genome-sequenced isolates and strain-resolved metagenomics, we identify that L. jensenii strains from preterm pregnancies are phylogenetically distinct from strains from full-term pregnancies. Detailed analysis reveals several genetic signatures that distinguish preterm birth strains, including genes predicted to be involved in cell wall synthesis, and lactate and acetate metabolism. Notably, we identify a distinct gene cluster involved in cell surface protein synthesis in our preterm strains, and profiling the prevalence of this gene cluster in publicly available genomes revealed it to be predominantly present in the preterm-associated clade. This study contributes to the ongoing search for molecular biomarkers linked to preterm birth and opens up new avenues for exploring strain-level variations and mechanisms that may contribute to preterm birth.
Collapse
Affiliation(s)
- Sai Ravi Chandra Nori
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- SFI Centre for Research Training in Genomics Data Science, School of Mathematics, Statistics & Applied Mathematics, University of Galway, Galway, Ireland
| | | | | | - Fionnuala M McAuliffe
- UCD Perinatal Research Centre, School of Medicine, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - Douwe Van Sinderen
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Calum J Walsh
- Department of Microbiology & Immunology, Peter Doherty Institute for Infection & Immunity, University of Melbourne, Melbourne, Australia
| | - Paul D Cotter
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Conor Feehily
- Teagasc Food Research Centre, Fermoy, Co. Cork, Ireland
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
215
|
Timms VJ, Hassan KA, Pearson LA, Neilan BA. Cyanobacteria as a critical reservoir of the environmental antimicrobial resistome. Environ Microbiol 2023; 25:2266-2276. [PMID: 37365851 DOI: 10.1111/1462-2920.16453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/04/2023] [Indexed: 06/28/2023]
Abstract
Antimicrobial resistance (AMR) is predicted to cause a worldwide annual toll of 10 million deaths by 2050. This looming public health threat has been linked to antibiotic overuse and pollution, which places selective pressures on AMR maintenance and transfer in and between microbial populations. We examined the distribution, diversity and potential mobility of AMR genes in cyanobacteria. While cyanobacteria are not pathogenic, we hypothesised that they could be a major environmental reservoir for AMR genes. Genes encoding AMR to seven antimicrobial drug classes were found in 10% of cyanobacterial genomes. AMR genes were found in 13% of freshwater, 19% of terrestrial, 34% of symbiotic, 2% of thermal spring, and 3% of marine genomes. AMR genes were found in five cyanobacterial orders with 23% of Nostocales and 8% of Oscillatoriales strains containing AMR genes. The most frequently observed alleles were ansamycin resistance genes, which were present in 7% of strains. AMR genes responsible for resistance to broad-spectrum β-lactams, chloramphenicols, tetracyclines, macrolides, and aminoglycosides were associated with mobile genetic elements or plasmid replicons or both. These results suggest that cyanobacteria are an extensive reservoir, and potential vector, for AMR genes in diverse terrestrial and aquatic habitats.
Collapse
Affiliation(s)
- V J Timms
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - K A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - L A Pearson
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - B A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
216
|
Walsh LH, Coakley M, Walsh AM, O'Toole PW, Cotter PD. Bioinformatic approaches for studying the microbiome of fermented food. Crit Rev Microbiol 2023; 49:693-725. [PMID: 36287644 DOI: 10.1080/1040841x.2022.2132850] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/11/2022] [Accepted: 09/28/2022] [Indexed: 11/03/2022]
Abstract
High-throughput DNA sequencing-based approaches continue to revolutionise our understanding of microbial ecosystems, including those associated with fermented foods. Metagenomic and metatranscriptomic approaches are state-of-the-art biological profiling methods and are employed to investigate a wide variety of characteristics of microbial communities, such as taxonomic membership, gene content and the range and level at which these genes are expressed. Individual groups and consortia of researchers are utilising these approaches to produce increasingly large and complex datasets, representing vast populations of microorganisms. There is a corresponding requirement for the development and application of appropriate bioinformatic tools and pipelines to interpret this data. This review critically analyses the tools and pipelines that have been used or that could be applied to the analysis of metagenomic and metatranscriptomic data from fermented foods. In addition, we critically analyse a number of studies of fermented foods in which these tools have previously been applied, to highlight the insights that these approaches can provide.
Collapse
Affiliation(s)
- Liam H Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- School of Microbiology, University College Cork, Ireland
| | - Mairéad Coakley
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Aaron M Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Paul W O'Toole
- School of Microbiology, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Cork, Ireland
| |
Collapse
|
217
|
Blanco-Míguez A, Beghini F, Cumbo F, McIver LJ, Thompson KN, Zolfo M, Manghi P, Dubois L, Huang KD, Thomas AM, Nickols WA, Piccinno G, Piperni E, Punčochář M, Valles-Colomer M, Tett A, Giordano F, Davies R, Wolf J, Berry SE, Spector TD, Franzosa EA, Pasolli E, Asnicar F, Huttenhower C, Segata N. Extending and improving metagenomic taxonomic profiling with uncharacterized species using MetaPhlAn 4. Nat Biotechnol 2023; 41:1633-1644. [PMID: 36823356 PMCID: PMC10635831 DOI: 10.1038/s41587-023-01688-w] [Citation(s) in RCA: 409] [Impact Index Per Article: 204.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023]
Abstract
Metagenomic assembly enables new organism discovery from microbial communities, but it can only capture few abundant organisms from most metagenomes. Here we present MetaPhlAn 4, which integrates information from metagenome assemblies and microbial isolate genomes for more comprehensive metagenomic taxonomic profiling. From a curated collection of 1.01 M prokaryotic reference and metagenome-assembled genomes, we define unique marker genes for 26,970 species-level genome bins, 4,992 of them taxonomically unidentified at the species level. MetaPhlAn 4 explains ~20% more reads in most international human gut microbiomes and >40% in less-characterized environments such as the rumen microbiome and proves more accurate than available alternatives on synthetic evaluations while also reliably quantifying organisms with no cultured isolates. Application of the method to >24,500 metagenomes highlights previously undetected species to be strong biomarkers for host conditions and lifestyles in human and mouse microbiomes and shows that even previously uncharacterized species can be genetically profiled at the resolution of single microbial strains.
Collapse
Affiliation(s)
| | | | - Fabio Cumbo
- Department CIBIO, University of Trento, Trento, Italy
| | - Lauren J McIver
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kelsey N Thompson
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Moreno Zolfo
- Department CIBIO, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department CIBIO, University of Trento, Trento, Italy
| | | | - Kun D Huang
- Department CIBIO, University of Trento, Trento, Italy
| | | | - William A Nickols
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Elisa Piperni
- Department CIBIO, University of Trento, Trento, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | | | | - Adrian Tett
- Department CIBIO, University of Trento, Trento, Italy
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | | | | | | | - Sarah E Berry
- Department of Nutritional Sciences, King's College London, London, UK
| | - Tim D Spector
- Department of Twin Research, King's College London, London, UK
| | - Eric A Franzosa
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples, Naples, Italy
| | | | - Curtis Huttenhower
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy.
- IEO, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
218
|
Teullet S, Tilak MK, Magdeleine A, Schaub R, Weyer NM, Panaino W, Fuller A, Loughry WJ, Avenant NL, de Thoisy B, Borrel G, Delsuc F. Metagenomics uncovers dietary adaptations for chitin digestion in the gut microbiota of convergent myrmecophagous mammals. mSystems 2023; 8:e0038823. [PMID: 37650612 PMCID: PMC10654083 DOI: 10.1128/msystems.00388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Myrmecophagous mammals are specialized in the consumption of ants and/or termites. They do not share a direct common ancestor and evolved convergently in five distinct placental orders raising questions about the underlying adaptive mechanisms involved and the relative contribution of natural selection and phylogenetic constraints. Understanding how these species digest their prey can help answer these questions. More specifically, the role of their gut microbial symbionts in the digestion of the insect chitinous exoskeleton has not been investigated in all myrmecophagous orders. We generated 29 new gut metagenomes from nine myrmecophagous species to reconstruct more than 300 bacterial genomes in which we identified chitin-degrading enzymes. Studying the distribution of these chitinolytic bacteria among hosts revealed both shared and specific bacteria between ant-eating species. Overall, our results highlight the potential role of gut symbionts in the convergent dietary adaptation of myrmecophagous mammals and the evolutionary mechanisms shaping their gut microbiota.
Collapse
Affiliation(s)
- Sophie Teullet
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Marie-Ka Tilak
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Amandine Magdeleine
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Roxane Schaub
- CIC AG/Inserm 1424, Centre Hospitalier de Cayenne Andrée Rosemon, Cayenne, French Guiana, France
- Tropical Biome and immunopathology, Université de Guyane, Labex CEBA, DFR Santé, Cayenne, French Guiana, France
| | - Nora M. Weyer
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Wendy Panaino
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for African Ecology, School of Animals, Plant, and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - W. J. Loughry
- Department of Biology, Valdosta State University, Valdosta, Georgia, USA
| | - Nico L. Avenant
- National Museum and Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| | - Benoit de Thoisy
- Institut Pasteur de la Guyane, Cayenne, French Guiana, France
- Kwata NGO, Cayenne, French Guiana, France
| | - Guillaume Borrel
- Evolutionary Biology of the Microbial Cell, Institut Pasteur, Université Paris Cité, Paris, France
| | - Frédéric Delsuc
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
219
|
Walsh LH, Coakley M, Walsh AM, Crispie F, O’Toole PW, Cotter PD. Analysis of the milk kefir pan-metagenome reveals four community types, core species, and associated metabolic pathways. iScience 2023; 26:108004. [PMID: 37841598 PMCID: PMC10568436 DOI: 10.1016/j.isci.2023.108004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/14/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
A comprehensive metagenomics-based investigation of the microorganisms present within milk kefir communities from across the globe was carried out with a view to defining the milk kefir pan-metagenome, including details relating to core and non-core components. Milk kefir samples, generated by inoculating full fat, pasteurized cow's milk with 64 kefir grains sourced from 25 different countries, were analyzed. We identified core features, including a consistent pattern of domination by representatives from the species Lactobacillus helveticus or the sub-species Lactobacillus kefiranofaciens subsp. kefiranofaciens, Lactococcus lactis subsp. lactis or Lla. cremoris subsp. cremoris in each kefir. Notably, even in kefirs where the lactococci did not dominate, they and 51 associated metabolic pathways were identified across all metagenomes. These insights can contribute to future efforts to create tailored kefir-based microbial communities for different applications and assist regulators and producers to ensure that kefir products have a microbial composition that reflects the artisanal beverage.
Collapse
Affiliation(s)
- Liam H. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- School of Microbiology, University College Cork, Ireland
| | - Mairéad Coakley
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Aaron M. Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Paul W. O’Toole
- School of Microbiology, University College Cork, Ireland
- APC Microbiome Ireland SFI Research Centre, University College Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
- APC Microbiome Ireland SFI Research Centre, University College Cork, Ireland
- VistaMilk SFI Research Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
220
|
Yu J, Park MJ, Lee J, Kwon SJ, Lim JK, Lee HS, Kang SG, Lee JH, Kwon KK, Kim YJ. Genomic potential and physiological characteristics of C1 metabolism in novel acetogenic bacteria. Front Microbiol 2023; 14:1279544. [PMID: 37933250 PMCID: PMC10625859 DOI: 10.3389/fmicb.2023.1279544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/05/2023] [Indexed: 11/08/2023] Open
Abstract
Acetogenic bacteria can utilize C1 compounds, such as carbon monoxide (CO), formate, and methanol, via the Wood-Ljungdahl pathway (WLP) to produce biofuels and biochemicals. Two novel acetogenic bacteria of the family Eubacteriaceae ES2 and ES3 were isolated from Eulsukdo, a delta island in South Korea. We conducted whole genome sequencing of the ES strains and comparative genome analysis on the core clusters of WLP with Acetobacterium woodii DSM1030T and Eubacterium limosum ATCC8486T. The methyl-branch cluster included a formate transporter and duplicates or triplicates copies of the fhs gene, which encodes formyl-tetrahydrofolate synthetase. The formate dehydrogenase cluster did not include the hydrogenase gene, which might be replaced by a functional complex with a separate electron bifurcating hydrogenase (HytABCDE). Additionally, duplicated copies of the acsB gene, encoding acetyl-CoA synthase, are located within or close to the carbonyl-branch cluster. The serum bottle culture showed that ES strains can utilize a diverse range of C1 compounds, including CO, formate, and methanol, as well as CO2. Notably, ES2 exhibited remarkable resistance to high concentrations of C1 substrates, such as 100% CO (200 kPa), 700 mM formate, and 500 mM methanol. Moreover, ES2 demonstrated remarkable growth rates under 50% CO (0.45 h-1) and 200 mM formate (0.34 h-1). These growth rates are comparable to or surpassing those previously reported in other acetogenic bacteria. Our study introduces novel acetogenic ES strains and describes their genetic and physiological characteristics, which can be utilized in C1-based biomanufacturing.
Collapse
Affiliation(s)
- Jihyun Yu
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Mi-Jeong Park
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Joungmin Lee
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Soo Jae Kwon
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Jae Kyu Lim
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Hyun Sook Lee
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Sung Gyun Kang
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Jung-Hyun Lee
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Kae Kyoung Kwon
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Yun Jae Kim
- Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
221
|
Zhang P, Wang X, Li S, Cao X, Zou J, Fang Y, Shi Y, Xiang F, Shen B, Li Y, Fang B, Zhang Y, Guo R, Lv Q, Zhang L, Lu Y, Wang Y, Yu J, Xie Y, Wang R, Chen X, Yu J, Zhang Z, He J, Zhan J, Lv W, Nie Y, Cai J, Xu X, Hu J, Zhang Q, Gao T, Jiang X, Tan X, Xue N, Wang Y, Ren Y, Wang L, Zhang H, Ning Y, Chen J, Zhang L, Jin S, Ren F, Ehrlich SD, Zhao L, Ding X. Metagenome-wide analysis uncovers gut microbial signatures and implicates taxon-specific functions in end-stage renal disease. Genome Biol 2023; 24:226. [PMID: 37828586 PMCID: PMC10571392 DOI: 10.1186/s13059-023-03056-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The gut microbiota plays a crucial role in regulating host metabolism and producing uremic toxins in patients with end-stage renal disease (ESRD). Our objective is to advance toward a holistic understanding of the gut ecosystem and its functional capacity in such patients, which is still lacking. RESULTS Herein, we explore the gut microbiome of 378 hemodialytic ESRD patients and 290 healthy volunteers from two independent cohorts via deep metagenomic sequencing and metagenome-assembled-genome-based characterization of their feces. Our findings reveal fundamental alterations in the ESRD microbiome, characterized by a panel of 348 differentially abundant species, including ESRD-elevated representatives of Blautia spp., Dorea spp., and Eggerthellaceae, and ESRD-depleted Prevotella and Roseburia species. Through functional annotation of the ESRD-associated species, we uncover various taxon-specific functions linked to the disease, such as antimicrobial resistance, aromatic compound degradation, and biosynthesis of small bioactive molecules. Additionally, we show that the gut microbial composition can be utilized to predict serum uremic toxin concentrations, and based on this, we identify the key toxin-contributing species. Furthermore, our investigation extended to 47 additional non-dialyzed chronic kidney disease (CKD) patients, revealing a significant correlation between the abundance of ESRD-associated microbial signatures and CKD progression. CONCLUSION This study delineates the taxonomic and functional landscapes and biomarkers of the ESRD microbiome. Understanding the role of gut microbiota in ESRD could open new avenues for therapeutic interventions and personalized treatment approaches in patients with this condition.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Xifan Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Xuesen Cao
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jianzhou Zou
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yiqin Shi
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Fangfang Xiang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Ruochun Guo
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Qingbo Lv
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Liwen Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yufei Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yaqiong Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jinbo Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yeqing Xie
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Xiaohong Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jiawei Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Zhen Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jingjing He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Wenlv Lv
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yuxin Nie
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jieru Cai
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jiachang Hu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Qi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Ting Gao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Xiaotian Jiang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Xiao Tan
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Ning Xue
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yimei Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yimei Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Li Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Han Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yichun Ning
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Lin Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Shi Jin
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Stanislav Dusko Ehrlich
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3RX, UK.
| | - Liang Zhao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China.
| |
Collapse
|
222
|
Sang X, Li S, Guo R, Yan Q, Liu C, Zhang Y, Lv Q, Wu L, Ma J, You W, Feng L, Sun W. Dynamics and ecological reassembly of the human gut microbiome and the host metabolome in response to prolonged fasting. Front Microbiol 2023; 14:1265425. [PMID: 37854337 PMCID: PMC10579591 DOI: 10.3389/fmicb.2023.1265425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Prolonged fasting is an intervention approach with potential benefits for individuals with obesity or metabolic disorders. Changes in gut microbiota during and after fasting may also have significant effects on the human body. Methods Here we conducted a 7-days medically supervised water-only fasting for 46 obese volunteers and characterized their gut microbiota based on whole-metagenome sequencing of feces at five timepoints. Results Substantial changes in the gut microbial diversity and composition were observed during fasting, with rapid restoration after fasting. The ecological pattern of the microbiota was also reassembled during fasting, reflecting the reduced metabolic capacity of diet-derived carbohydrates, while other metabolic abilities such as degradation of glycoproteins, amino acids, lipids, and organic acid metabolism, were enhanced. We identified a group of species that responded significantly to fasting, including 130 fasting-resistant (consisting of a variety of members of Bacteroidetes, Proteobacteria, and Fusobacteria) and 140 fasting-sensitive bacteria (mainly consisting of Firmicutes members). Functional comparison of the fasting-responded bacteria untangled the associations of taxon-specific functions (e.g., pentose phosphate pathway modules, glycosaminoglycan degradation, and folate biosynthesis) with fasting. Furthermore, we found that the serum and urine metabolomes of individuals were also substantially changed across the fasting procedure, and particularly, these changes were largely affected by the fasting-responded bacteria in the gut microbiota. Discussion Overall, our findings delineated the patterns of gut microbiota alterations under prolonged fasting, which will boost future mechanistic and clinical intervention studies.
Collapse
Affiliation(s)
- Xiaopu Sang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | | | | | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Changxi Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qingbo Lv
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lili Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Health Cultivation, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei You
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ling Feng
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wen Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Health Cultivation, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
223
|
Guo XY, Wu KC, Dong CZ, Zhang QM, Qiu LH. Paraburkholderia flagellata sp. nov. and Paraburkholderia adhaesiva sp. nov., two novel species isolated from forest soil in Dinghushan Biosphere Reserve in Guangdong, China. Antonie Van Leeuwenhoek 2023; 116:1023-1035. [PMID: 37592017 DOI: 10.1007/s10482-023-01867-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/05/2023] [Indexed: 08/19/2023]
Abstract
Two Gram-stain-negative, aerobic, motile and short rod strains, designated 4D117T and ZD32-2T, were isolated from the forest soils. Strains 4D117T and ZD32-2T grew optimally at pH 4.0-6.5, 20-33 °C and pH 4.5-7.0, 33 °C, respectively, and both at 0.5% (w/v) NaCl concentration. Strains 4D117T and ZD32-2T shared the highest 16S rRNA gene sequence similarity with P. acidiphila 7Q-K02T (99.1%) and P. ferrariae NBRC 106233T (98.7%), respectively. The genome size and G + C contents of strains 4D117T and ZD32-2T were 9,002,095 bp, 62.9% and 6,974,420 bp, 61.7%, respectively. The dDDH and ANI values between strains 4D117T, ZD32-2T and closely related Paraburkholderia species were in the ranges of 21.9-51.6% and 82.9-94.4%, and 81.7% and 25.4% between themself, respectively. Functional genomic analysis showed both strains were capable of degrading contaminants, such as benzoate, anthranilic acid and catechol for 4D117T, and benzene and catechol for ZD32-2T, indicating that they may have potentials for soil pollutant treatment. The main polar lipids of strains 4D117T and ZD32-2T were phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Strain 4D117T contained C16:0, C19:0 cyclo ω8c and C18:1 ω7c and/or C18:1 ω6c, while strain ZD32-2T had C16:0 and C17:0 cyclo as their major cellular fatty acids (> 10%). Based on the phenotypic characters and genomic data, strains 4D117T and ZD32-2T represent two novel species of genus Paraburkholderia, for which the names Paraburkholderia flagellata sp. nov. (type strain 4D117T = GDMCC 1.2617T = NBRC 115278T) and Paraburkholderia adhaesiva sp. nov. (type strain ZD32-2T = GDMCC 1.2622T = NBRC 115282T) are proposed.
Collapse
Affiliation(s)
- Xiu-Yin Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Ke-Cheng Wu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Cheng-Zhi Dong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Qiu-Mei Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Li-Hong Qiu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
224
|
Eladawy M, Thomas JC, Hoyles L. Phenotypic and genomic characterization of Pseudomonas aeruginosa isolates recovered from catheter-associated urinary tract infections in an Egyptian hospital. Microb Genom 2023; 9:001125. [PMID: 37902186 PMCID: PMC10634444 DOI: 10.1099/mgen.0.001125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/12/2023] [Indexed: 10/31/2023] Open
Abstract
Catheter-associated urinary tract infections (CAUTIs) represent one of the major healthcare-associated infections, and Pseudomonas aeruginosa is a common Gram-negative bacterium associated with catheter infections in Egyptian clinical settings. The present study describes the phenotypic and genotypic characteristics of 31 P. aeruginosa isolates recovered from CAUTIs in an Egyptian hospital over a 3 month period. Genomes of isolates were of good quality and were confirmed to be P. aeruginosa by comparison to the type strain (average nucleotide identity, phylogenetic analysis). Clonal diversity among the isolates was determined; eight different sequence types were found (STs 244, 357, 381, 621, 773, 1430, 1667 and 3765), of which ST357 and ST773 are considered to be high-risk clones. Antimicrobial resistance (AMR) testing according to European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines showed that the isolates were highly resistant to quinolones [ciprofloxacin (12/31, 38.7 %) and levofloxacin (9/31, 29 %) followed by tobramycin (10/31, 32.5 %)] and cephalosporins (7/31, 22.5 %). Genotypic analysis of resistance determinants predicted all isolates to encode a range of AMR genes, including those conferring resistance to aminoglycosides, β-lactamases, fluoroquinolones, fosfomycin, sulfonamides, tetracyclines and chloramphenicol. One isolate was found to carry a 422 938 bp pBT2436-like megaplasmid encoding OXA-520, the first report from Egypt of this emerging family of clinically important mobile genetic elements. All isolates were able to form biofilms and were predicted to encode virulence genes associated with adherence, antimicrobial activity, anti-phagocytosis, phospholipase enzymes, iron uptake, proteases, secretion systems and toxins. The present study shows how phenotypic analysis alongside genomic analysis may help us understand the AMR and virulence profiles of P. aeruginosa contributing to CAUTIs in Egypt.
Collapse
Affiliation(s)
- Mohamed Eladawy
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Jonathan C. Thomas
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Lesley Hoyles
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
225
|
Zhu J, Song Y, Xiao Y, Ma L, Hu C, Yang H, Wang X, Lyu W. Metagenomic reconstructions of caecal microbiome in Landes, Roman and Zhedong White geese. Br Poult Sci 2023; 64:565-576. [PMID: 37493577 DOI: 10.1080/00071668.2023.2239172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023]
Abstract
1. The caecal microbiota in geese play a crucial role in determining the host's health, disease status and behaviour, as evidenced by extensive epidemiological data. The present investigation conducted 10× metagenomic sequencing of caecal content samples obtained from three distinct goose species, namely Landes geese, Roman geese and Zhedong White geese (n = 5), to explore the contribution of the gut microbiome to carbohydrate metabolism.2. In total, 337GB of Illumina data were generated, which identified 1,048,575 complete genes and construction of 331 metagenomic bins, encompassing 78 species from nine phyla. Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria and Bacteria were identified as the dominant phyla while Prevotella, Bacteroides, Streptococcus, and Subdoligranulum were the most abundant genera in the caecum of geese.3. The genes were allocated to 375 pathways using the Kyoto Encyclopedia of Genes and Genome (KEGG) analysis. The most abundant classes in the caecum of geese were confirmed to be glycoside hydrolases (GHs), glycosyl transferases (GTs), as identified through the carbohydrate-active enzyme (CAZyme) database mapping. Subdoligranulum variabile and Mediterraneibacter glycyrrhizinilyticus were discovered to potentially facilitate carbohydrate digestion in geese.4. Notwithstanding, further investigation and validation are required to establish a connection between these species and CAZymes. Based on binning analysis, Mediterraneibacter glycyrrhizinilyticus and Ruminococcus sp. CAG:177 are potential species in LD geese that contribute to the production of fatty liver.
Collapse
Affiliation(s)
- J Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - Y Song
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Y Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - L Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - C Hu
- College of Animal Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, China
| | - H Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - X Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - W Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
226
|
Chatzis A, Orellana E, Gaspari M, Kontogiannopoulos K, Treu L, Zouboulis A, Kougias PG. Comparative study on packing materials for improved biological methanation in trickle Bed reactors. BIORESOURCE TECHNOLOGY 2023; 385:129456. [PMID: 37406828 DOI: 10.1016/j.biortech.2023.129456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/29/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
Packing materials improve biological methanation efficiency in Trickle Bed Reactors. The present study, which lies in the field of energy production and biotechnology, entailed the evaluation of commercial pelletized activated carbon and Raschig rings as packing materials. The evaluation focused on monitoring process indicators and examining the composition of the microbial community. Activated carbon resulted in enhanced methane purity, achieving a two-fold higher methane percentage than Raschig rings, maintaining a stable pH level within a range of 7-8 and reducing gas retention time from 6 h to 90 min. Additionally, the digestate derived from biogas plant was found to be a sufficient nutrient source for the process. Fermentative species with genes for β-oxidation, such as Amaricoccus sp. and Caloramator australicus could explain the production of hexanoic and valerate acids during reactor operation. Based on the physical properties of packing materials, the efficiency of biological methanation could be maximized.
Collapse
Affiliation(s)
- Alexandros Chatzis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece; Soil and Water Resources Institute, Hellenic Agricultural Organisation Dimitra, Thermi-Thessaloniki 57001, Greece
| | - Esteban Orellana
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy
| | - Maria Gaspari
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Dimitra, Thermi-Thessaloniki 57001, Greece
| | | | - Laura Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy
| | - Anastasios Zouboulis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Panagiotis G Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Dimitra, Thermi-Thessaloniki 57001, Greece.
| |
Collapse
|
227
|
Nedashkovskaya O, Otstavnykh N, Balabanova L, Bystritskaya E, Kim SG, Zhukova N, Tekutyeva L, Isaeva M. Rhodoalgimonas zhirmunskyi gen. nov., sp. nov., a Marine Alphaproteobacterium Isolated from the Pacific Red Alga Ahnfeltia tobuchiensis: Phenotypic Characterization and Pan-Genome Analysis. Microorganisms 2023; 11:2463. [PMID: 37894121 PMCID: PMC10608839 DOI: 10.3390/microorganisms11102463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
A novel Gram-staining negative, strictly aerobic, rod-shaped, and non-motile bacterium, designated strain 10Alg 79T, was isolated from the red alga Ahnfeltia tobuchiensis. A phylogenetic analysis based on 16S rRNA gene sequences placed the novel strain within the family Roseobacteraceae, class Alphaproteobacteria, phylum Pseudomonadota, where the nearest neighbor was Shimia sediminis ZQ172T (97.33% of identity). However, a phylogenomic study clearly showed that strain 10Alg 79T forms a distinct evolutionary lineage at the genus level within the family Roseobacteraceae combining with strains Aquicoccus porphyridii L1 8-17T, Marimonas arenosa KCTC 52189T, and Lentibacter algarum DSM 24677T. The ANI, AAI, and dDDH values between them were 75.63-78.15%, 67.41-73.08%, and 18.8-19.8%, respectively. The genome comprises 3,754,741 bp with a DNA GC content of 62.1 mol%. The prevalent fatty acids of strain 10Alg 79T were C18:1 ω7c and C16:0. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, an unidentified aminolipid, an unidentified phospholipid and an unidentified lipid. A pan-genome analysis showed that the unique part of the 10Alg 79T genome consists of 13 genus-specific clusters and 413 singletons. The annotated singletons were more often related to transport protein systems, transcriptional regulators, and enzymes. A functional annotation of the draft genome sequence revealed that this bacterium could be a source of a new phosphorylase, which may be used for phosphoglycoside synthesis. A combination of the genotypic and phenotypic data showed that the bacterial isolate represents a novel species and a novel genus, for which the name Rhodoalgimonas zhirmunskyi gen. nov., sp. nov. is proposed. The type strain is 10Alg 79T (=KCTC 72611T = KMM 6723T).
Collapse
Affiliation(s)
- Olga Nedashkovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (N.O.); (L.B.); (E.B.)
| | - Nadezhda Otstavnykh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (N.O.); (L.B.); (E.B.)
| | - Larissa Balabanova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (N.O.); (L.B.); (E.B.)
| | - Evgenia Bystritskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (N.O.); (L.B.); (E.B.)
| | - Song-Gun Kim
- Korean Collection for Type Cultures, Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-gil, Jeongeup-si 56212, Republic of Korea;
| | - Natalia Zhukova
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Palchevskogo Street 17, Vladivostok 690041, Russia;
| | - Liudmila Tekutyeva
- Innovative Technology Center, Far Eastern Federal University, 8 Suhanova St., Vladivostok 690950, Russia;
- ARNIKA, Territory of PDA Nadezhdinskaya, Centralnaya St. 42, Volno-Nadezhdinskoye, Vladivostok 692481, Russia
| | - Marina Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Prospect 100 Let Vladivostoku, 159, Vladivostok 690022, Russia; (N.O.); (L.B.); (E.B.)
| |
Collapse
|
228
|
Mujakić I, Cabello-Yeves PJ, Villena-Alemany C, Piwosz K, Rodriguez-Valera F, Picazo A, Camacho A, Koblížek M. Multi-environment ecogenomics analysis of the cosmopolitan phylum Gemmatimonadota. Microbiol Spectr 2023; 11:e0111223. [PMID: 37732776 PMCID: PMC10581226 DOI: 10.1128/spectrum.01112-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 09/22/2023] Open
Abstract
Gemmatimonadota is a diverse bacterial phylum commonly found in environments such as soils, rhizospheres, fresh waters, and sediments. So far, the phylum contains just six cultured species (five of them sequenced), which limits our understanding of their diversity and metabolism. Therefore, we analyzed over 400 metagenome-assembled genomes (MAGs) and 5 culture-derived genomes representing Gemmatimonadota from various aquatic environments, hydrothermal vents, sediments, soils, and host-associated (with marine sponges and coral) species. The principal coordinate analysis based on the presence/absence of genes in Gemmatimonadota genomes and phylogenomic analysis documented that marine and host-associated Gemmatimonadota were the most distant from freshwater and wastewater species. A smaller genome size and coding sequences (CDS) number reduction were observed in marine MAGs, pointing to an oligotrophic environmental adaptation. Several metabolic pathways are restricted to specific environments. For example, genes for anoxygenic phototrophy were found only in freshwater, wastewater, and soda lake sediment genomes. There were several genomes from soda lake sediments and wastewater containing type IC/ID ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Various genomes from wastewater harbored bacterial type II RuBisCO, whereas RuBisCO-like protein was found in genomes from fresh waters, soil, host-associated, and marine sediments. Gemmatimonadota does not contain nitrogen fixation genes; however, the nosZ gene, involved in the reduction of N2O, was present in genomes from most environments, missing only in marine water and host-associated Gemmatimonadota. The presented data suggest that Gemmatimonadota evolved as an organotrophic species relying on aerobic respiration and then remodeled its genome inventory when adapting to particular environments. IMPORTANCE Gemmatimonadota is a rarely studied bacterial phylum consisting of a handful of cultured species. Recent culture-independent studies documented that these organisms are distributed in many environments, including soil, marine, fresh, and waste waters. However, due to the lack of cultured species, information about their metabolic potential and environmental role is scarce. Therefore, we collected Gemmatimonadota metagenome-assembled genomes (MAGs) from different habitats and performed a systematic analysis of their genomic characteristics and metabolic potential. Our results show how Gemmatimonadota have adapted their genomes to different environments.
Collapse
Affiliation(s)
- Izabela Mujakić
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Pedro J. Cabello-Yeves
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Cristian Villena-Alemany
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Kasia Piwosz
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, Gdynia, Poland
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Alicante, Spain
| | - Antonio Picazo
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - Antonio Camacho
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Paterna, Valencia, Spain
| | - Michal Koblížek
- Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czechia
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| |
Collapse
|
229
|
Ricci L, Selma-Royo M, Golzato D, Nabinejad A, Servais C, Armanini F, Asnicar F, Pinto F, Tamburini S, Segata N. Draft genome sequence of a representative strain of the Catenibacterium genus isolated from human feces. Microbiol Resour Announc 2023; 12:e0032923. [PMID: 37493508 PMCID: PMC10508147 DOI: 10.1128/mra.00329-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/27/2023] [Indexed: 07/27/2023] Open
Abstract
A strain from a previously undescribed species belonging to the Catenibacterium genus was isolated from the stool of a healthy volunteer. The strain is strictly anaerobic, and the genome encodes a CRISPR-Cas system and genes related to trimethylamine production.
Collapse
Affiliation(s)
- Liviana Ricci
- Department CIBIO, University of Trento, Trento, Italy
| | | | | | | | | | | | | | | | | | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
230
|
Qian X, Wu Y, Zuo X, Peng X, Guo Y, Yang R, Zhang X, Cui Y. mStrain: strain-level identification of Yersinia pestis using metagenomic data. BIOINFORMATICS ADVANCES 2023; 3:vbad115. [PMID: 37745000 PMCID: PMC10516513 DOI: 10.1093/bioadv/vbad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Motivation High-resolution target pathogen detection using metagenomic sequencing data represents a major challenge due to the low concentration of target pathogens in samples. We introduced mStrain, a novel Yesinia pestis strain/lineage-level identification tool that utilizes metagenomic data. mStrain successfully identified Y. pestis at the strain/lineage level by extracting sufficient information regarding single-nucleotide polymorphisms (SNPs), which can therefore be an effective tool for identification and source tracking of Y. pestis based on metagenomic data during a plague outbreak. Definition . Strain-level identification Assigning the reads in the metagenomic sequencing data to an exactly known or most closely representative Y. pestis strain. Lineage-level identification Assigning the reads in the metagenomic sequencing data to a specific lineage on the phylogenetic tree. canoSNPs The unique and typical SNPs present in all representative strains. Ancestor/derived state An SNP is defined as the ancestor state when consistent with the allele of Yersinia pseudotuberculosis strain IP32953; otherwise, the SNP is defined as the derived state. Availability and implementation The code for running mStrain, the test dataset, and instructions for running the code can be found at the following GitHub repository: https://github.com/xwqian1123/mStrain.
Collapse
Affiliation(s)
- Xiuwei Qian
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiujuan Zuo
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xin Peng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yan Guo
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xianglilan Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yujun Cui
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| |
Collapse
|
231
|
Rios Galicia B, Sáenz JS, Yergaliyev T, Camarinha-Silva A, Seifert J. Host specific adaptations of Ligilactobacillus aviarius to poultry. CURRENT RESEARCH IN MICROBIAL SCIENCES 2023; 5:100199. [PMID: 37727231 PMCID: PMC10505982 DOI: 10.1016/j.crmicr.2023.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023] Open
Abstract
The genus Ligilactobacillus encompasses species adapted to vertebrate hosts and fermented food. Their genomes encode adaptations to the host lifestyle. Reports of gut microbiota from chicken and turkey gastrointestinal tract have shown a high persistence of Ligilactobacillus aviarius along the digestive system compared to other species found in the same host. However, its adaptations to poultry as a host has not yet been described. In this work, the pan-genome of Ligilactobacillus aviarius was explored to describe the functional adaptability to the gastrointestinal environment. The core genome is composed of 1179 gene clusters that are present at least in one copy that codifies to structural, ribosomal and biogenesis proteins. The rest of the identified regions were classified into three different functional clusters of orthologous groups (clusters) that codify carbohydrate metabolism, envelope biogenesis, viral defence mechanisms, and mobilome inclusions. The pan-genome of Ligilactobacillus aviarius is a closed pan-genome, frequently found in poultry and highly prevalent across chicken faecal samples. The genome of L. aviarius codifies different clusters of glycoside hydrolases and glycosyltransferases that mediate interactions with the host cells. Accessory features, such as antiviral mechanisms and prophage inclusions, variate amongst strains from different GIT sections. This information provides hints about the interaction of this species with viral particles and other bacterial species. This work highlights functional adaptability traits present in L. aviarius that make it a dominant key member of the poultry gut microbiota and enlightens the convergent ecological relation of this species to the poultry gut environment.
Collapse
Affiliation(s)
- Bibiana Rios Galicia
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Johan Sebastian Sáenz
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Timur Yergaliyev
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Amélia Camarinha-Silva
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 6-10, Stuttgart 70593, Germany
- HoLMiR-Hohenheim Center for Livestock Microbiome Research, University of Hohenheim, Leonore-Blosser-Reisen Weg 3, Stuttgart 70593, Germany
| |
Collapse
|
232
|
Baker JL. Illuminating the oral microbiome and its host interactions: recent advancements in omics and bioinformatics technologies in the context of oral microbiome research. FEMS Microbiol Rev 2023; 47:fuad051. [PMID: 37667515 PMCID: PMC10503653 DOI: 10.1093/femsre/fuad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 09/06/2023] Open
Abstract
The oral microbiota has an enormous impact on human health, with oral dysbiosis now linked to many oral and systemic diseases. Recent advancements in sequencing, mass spectrometry, bioinformatics, computational biology, and machine learning are revolutionizing oral microbiome research, enabling analysis at an unprecedented scale and level of resolution using omics approaches. This review contains a comprehensive perspective of the current state-of-the-art tools available to perform genomics, metagenomics, phylogenomics, pangenomics, transcriptomics, proteomics, metabolomics, lipidomics, and multi-omics analysis on (all) microbiomes, and then provides examples of how the techniques have been applied to research of the oral microbiome, specifically. Key findings of these studies and remaining challenges for the field are highlighted. Although the methods discussed here are placed in the context of their contributions to oral microbiome research specifically, they are pertinent to the study of any microbiome, and the intended audience of this includes researchers would simply like to get an introduction to microbial omics and/or an update on the latest omics methods. Continued research of the oral microbiota using omics approaches is crucial and will lead to dramatic improvements in human health, longevity, and quality of life.
Collapse
Affiliation(s)
- Jonathon L Baker
- Department of Oral Rehabilitation & Biosciences, School of Dentistry, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97202, United States
- Genomic Medicine Group, J. Craig Venter Institute, La Jolla, CA 92037, United States
- Department of Pediatrics, UC San Diego School of Medicine, La Jolla, CA 92093, United States
| |
Collapse
|
233
|
McGuire PM, Butkevich N, Saksena AV, Walter MT, Shapleigh JP, Reid MC. Oxic-anoxic cycling promotes coupling between complex carbon metabolism and denitrification in woodchip bioreactors. Environ Microbiol 2023; 25:1696-1712. [PMID: 37105180 DOI: 10.1111/1462-2920.16387] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Denitrifying woodchip bioreactors (WBRs) are increasingly used to manage the release of non-point source nitrogen (N) by stimulating microbial denitrification. Woodchips serve as a renewable organic carbon (C) source, yet the recalcitrance of organic C in lignocellulosic biomass causes many WBRs to be C-limited. Prior studies have observed that oxic-anoxic cycling increased the mobilization of organic C, increased nitrate (NO3 - ) removal rates, and attenuated production of nitrous oxide (N2 O). Here, we use multi-omics approaches and amplicon sequencing of fungal 5.8S-ITS2 and prokaryotic 16S rRNA genes to elucidate the microbial drivers for enhanced NO3 - removal and attenuated N2 O production under redox-dynamic conditions. Transient oxic periods stimulated the expression of fungal ligninolytic enzymes, increasing the bioavailability of woodchip-derived C and stimulating the expression of denitrification genes. Nitrous oxide reductase (nosZ) genes were primarily clade II, and the ratio of clade II/clade I nosZ transcripts during the oxic-anoxic transition was strongly correlated with the N2 O yield. Analysis of metagenome-assembled genomes revealed that many of the denitrifying microorganisms also have a genotypic ability to degrade complex polysaccharides like cellulose and hemicellulose, highlighting the adaptation of the WBR microbiome to the ecophysiological niche of the woodchip matrix.
Collapse
Affiliation(s)
- Philip M McGuire
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Natalie Butkevich
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Aryaman V Saksena
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - M Todd Walter
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - James P Shapleigh
- Department of Microbiology, Cornell University, Ithaca, New York, USA
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
234
|
Pan X, Raaijmakers JM, Carrión VJ. Importance of Bacteroidetes in host-microbe interactions and ecosystem functioning. Trends Microbiol 2023; 31:959-971. [PMID: 37173204 DOI: 10.1016/j.tim.2023.03.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 05/15/2023]
Abstract
Bacteroidetes are prevalent in soil ecosystems and are associated with various eukaryotic hosts, including plants, animals, and humans. The ubiquity and diversity of Bacteroidetes exemplify their impressive versatility in niche adaptation and genomic plasticity. Over the past decade, a wealth of knowledge has been obtained on the metabolic functions of clinically relevant Bacteroidetes, but much less attention has been given to Bacteroidetes living in close association with plants. To improve our understanding of the functional roles of Bacteroidetes for plants and other hosts, we review the current knowledge of their taxonomy and ecology, in particular their roles in nutrient cycling and host fitness. We highlight their environmental distribution, stress resilience, genomic diversity, and functional importance in diverse ecosystems, including, but not limited to, plant-associated microbiomes.
Collapse
Affiliation(s)
- Xinya Pan
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands; Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands; Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands
| | - Víctor J Carrión
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB, Wageningen, The Netherlands; Institute of Biology, Leiden University, Sylviusweg 72, 2333, BE, Leiden, The Netherlands; Departamento de Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain; Department of Microbiology and Plant Protection, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", IHSM-UMA-CSIC, Málaga, Spain.
| |
Collapse
|
235
|
Chen L, Hong T, Wu Z, Song W, Chen SX, Liu Y, Shen L. Genomic analyses reveal a low-temperature adapted clade in Halorubrum, a widespread haloarchaeon across global hypersaline environments. BMC Genomics 2023; 24:508. [PMID: 37653415 PMCID: PMC10468875 DOI: 10.1186/s12864-023-09597-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Cold-adapted archaea have diverse ecological roles in a wide range of low-temperature environments. Improving our knowledge of the genomic features that enable psychrophiles to grow in cold environments helps us to understand their adaptive responses. However, samples from typical cold regions such as the remote Arctic and Antarctic are rare, and the limited number of high-quality genomes available leaves us with little data on genomic traits that are statistically associated with cold environmental conditions. RESULTS In this study, we examined the haloarchaeal genus Halorubrum and defined a new clade that represents six isolates from polar and deep earth environments ('PD group' hereafter). The genomic G + C content and amino acid composition of this group distinguishes it from other Halorubrum and the trends are consistent with the established genomic optimization of psychrophiles. The cold adaptation of the PD group was further supported by observations of increased flexibility of proteins encoded across the genome and the findings of a growth test. CONCLUSIONS The PD group Halorubrum exhibited denser genome packing, which confers higher metabolic potential with constant genome size, relative to the reference group, resulting in significant differences in carbon, nitrogen and sulfur metabolic patterns. The most marked feature was the enrichment of genes involved in sulfur cycling, especially the production of sulfite from organic sulfur-containing compounds. Our study provides an updated view of the genomic traits and metabolic potential of Halorubrum and expands the range of sources of cold-adapted haloarchaea.
Collapse
Affiliation(s)
- Liangzhong Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, China
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, and Auhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, Anhui Normal University, Wuhu, 241000, China
| | - Tao Hong
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Zirui Wu
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China
| | - Weizhi Song
- Centre for Marine Bio-Innovation, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shaoxing X Chen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
| | - Yongqin Liu
- Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Tibetan Plateau Earth System Science, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100085, Beijing, China
| | - Liang Shen
- College of Life Sciences, Anhui Normal University, Wuhu, 241000, China.
- Anhui Provincial Key Laboratory of Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, 241000, China.
- State Key Laboratory of Tibetan Plateau Earth System Science, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, 100085, Beijing, China.
| |
Collapse
|
236
|
Aldeguer-Riquelme B, Antón J, Santos F. Distribution, abundance, and ecogenomics of the Palauibacterales, a new cosmopolitan thiamine-producing order within the Gemmatimonadota phylum. mSystems 2023; 8:e0021523. [PMID: 37345931 PMCID: PMC10469786 DOI: 10.1128/msystems.00215-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/19/2023] [Indexed: 06/23/2023] Open
Abstract
The phylum Gemmatimonadota comprises mainly uncultured microorganisms that inhabit different environments such as soils, freshwater lakes, marine sediments, sponges, or corals. Based on 16S rRNA gene studies, the group PAUC43f is one of the most frequently retrieved Gemmatimonadota in marine samples. However, its physiology and ecological roles are completely unknown since, to date, not a single PAUC43f isolate or metagenome-assembled genome (MAG) has been characterized. Here, we carried out a broad study of the distribution, abundance, ecotaxonomy, and metabolism of PAUC43f, for which we propose the name of Palauibacterales. This group was detected in 4,965 16S rRNA gene amplicon datasets, mainly from marine sediments, sponges, corals, soils, and lakes, reaching up to 34.3% relative abundance, which highlights its cosmopolitan character, mainly salt-related. The potential metabolic capabilities inferred from 52 Palauibacterales MAGs recovered from marine sediments, sponges, and saline soils suggested a facultative aerobic and chemoorganotrophic metabolism, although some members may also oxidize hydrogen. Some Palauibacterales species might also play an environmental role as N2O consumers as well as suppliers of serine and thiamine. When compared to the rest of the Gemmatimonadota phylum, the biosynthesis of thiamine was one of the key features of the Palauibacterales. Finally, we show that polysaccharide utilization loci (PUL) are widely distributed within the Gemmatimonadota so that they are not restricted to Bacteroidetes, as previously thought. Our results expand the knowledge about this cryptic phylum and provide new insights into the ecological roles of the Gemmatimonadota in the environment. IMPORTANCE Despite advances in molecular and sequencing techniques, there is still a plethora of unknown microorganisms with a relevant ecological role. In the last years, the mostly uncultured Gemmatimonadota phylum is attracting scientific interest because of its widespread distribution and abundance, but very little is known about its ecological role in the marine ecosystem. Here we analyze the global distribution and potential metabolism of the marine Gemmatimonadota group PAUC43f, for which we propose the name of Palauibacterales order. This group presents a saline-related character and a chemoorganoheterotrophic and facultatively aerobic metabolism, although some species might oxidize H2. Given that Palauibacterales is potentially able to synthesize thiamine, whose auxotrophy is the second most common in the marine environment, we propose Palauibacterales as a key thiamine supplier to the marine communities. This finding suggests that Gemmatimonadota could have a more relevant role in the marine environment than previously thought.
Collapse
Affiliation(s)
- Borja Aldeguer-Riquelme
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| | - Josefa Antón
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
- Multidisciplinary Institute of Environmental Studies Ramón Margalef, University of Alicante, Alicante, Spain
| | - Fernando Santos
- Department of Physiology, Genetics, and Microbiology, University of Alicante, Alicante, Spain
| |
Collapse
|
237
|
Hibberd MC, Webber DM, Rodionov DA, Henrissat S, Chen RY, Zhou C, Lynn HM, Wang Y, Chang HW, Lee EM, Lelwala-Guruge J, Kazanov MD, Arzamasov AA, Leyn SA, Lombard V, Terrapon N, Henrissat B, Castillo JJ, Couture G, Bacalzo NP, Chen Y, Lebrilla CB, Mostafa I, Das S, Mahfuz M, Barratt MJ, Osterman AL, Ahmed T, Gordon JI. Bioactive glycans in a microbiome-directed food for malnourished children. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.14.23293998. [PMID: 37645824 PMCID: PMC10462212 DOI: 10.1101/2023.08.14.23293998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Evidence is accumulating that perturbed postnatal development of the gut microbiome contributes to childhood malnutrition1-4. Designing effective microbiome-directed therapeutic foods to repair these perturbations requires knowledge about how food components interact with the microbiome to alter its expressed functions. Here we use biospecimens from a randomized, controlled trial of a microbiome-directed complementary food prototype (MDCF-2) that produced superior rates of weight gain compared to a conventional ready-to-use supplementary food (RUSF) in 12-18-month-old Bangladeshi children with moderate acute malnutrition (MAM)4. We reconstructed 1000 bacterial genomes (metagenome-assembled genomes, MAGs) present in their fecal microbiomes, identified 75 whose abundances were positively associated with weight gain (change in weight-for-length Z score, WLZ), characterized gene expression changes in these MAGs as a function of treatment type and WLZ response, and used mass spectrometry to quantify carbohydrate structures in MDCF-2 and feces. The results reveal treatment-induced changes in expression of carbohydrate metabolic pathways in WLZ-associated MAGs. Comparing participants consuming MDCF-2 versus RUSF, and MDCF-2-treated children in the upper versus lower quartiles of WLZ responses revealed that two Prevotella copri MAGs positively associated with WLZ were principal contributors to MDCF-2-induced expression of metabolic pathways involved in utilization of its component glycans. Moreover, the predicted specificities of carbohydrate active enzymes expressed by polysaccharide utilization loci (PULs) in these two MAGs correlate with the (i) in vitro growth of Bangladeshi P. copri strains, possessing differing degrees of PUL and overall genomic content similarity to these MAGs, cultured in defined medium containing different purified glycans representative of those in MDCF-2, and (ii) levels of carbohydrate structures identified in feces from clinical trial participants. In the accompanying paper5, we use a gnotobiotic mouse model colonized with age- and WLZ-associated bacterial taxa cultured from this study population, and fed diets resembling those consumed by study participants, to directly test the relationship between P. copri, MDCF-2 glycan metabolism, host ponderal growth responses, and intestinal gene expression and metabolism. The ability to identify bioactive glycan structures in MDCFs that are metabolized by growth-associated bacterial taxa will help guide recommendations about use of this MDCF for children with acute malnutrition representing different geographic locales and ages, as well as enable development of bioequivalent, or more efficacious, formulations composed of culturally acceptable and affordable ingredients.
Collapse
Affiliation(s)
- Matthew C. Hibberd
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, MO 63110 USA
| | - Daniel M. Webber
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, MO 63110 USA
| | - Dmitry A. Rodionov
- Infectious and Inflammatory Disease Center, Sanford Burnham
Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Suzanne Henrissat
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
- Architecture et Fonction des Macromolécules Biologiques,
CNRS, Aix-Marseille University, F-13288, Marseille, France
| | - Robert Y. Chen
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
| | - Cyrus Zhou
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
| | - Hannah M. Lynn
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
| | - Yi Wang
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
| | - Hao-Wei Chang
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
| | - Evan M. Lee
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
| | - Janaki Lelwala-Guruge
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
| | - Marat D. Kazanov
- Faculty of Engineering and Natural Sciences, Sabanci University,
Istanbul, Turkey, 34956
| | - Aleksandr A. Arzamasov
- Infectious and Inflammatory Disease Center, Sanford Burnham
Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Semen A. Leyn
- Infectious and Inflammatory Disease Center, Sanford Burnham
Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Vincent Lombard
- Architecture et Fonction des Macromolécules Biologiques,
CNRS, Aix-Marseille University, F-13288, Marseille, France
| | - Nicolas Terrapon
- Architecture et Fonction des Macromolécules Biologiques,
CNRS, Aix-Marseille University, F-13288, Marseille, France
| | - Bernard Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering),
Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University,
Jeddah, Saudi Arabia
| | - Juan J. Castillo
- Department of Chemistry, University of California, Davis, CA
95616, USA
| | - Garret Couture
- Department of Chemistry, University of California, Davis, CA
95616, USA
| | - Nikita P. Bacalzo
- Department of Chemistry, University of California, Davis, CA
95616, USA
| | - Ye Chen
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
- Department of Chemistry, University of California, Davis, CA
95616, USA
| | | | - Ishita Mostafa
- International Centre for Diarrhoeal Disease Research,
Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Subhasish Das
- International Centre for Diarrhoeal Disease Research,
Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Mustafa Mahfuz
- International Centre for Diarrhoeal Disease Research,
Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Michael J. Barratt
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, MO 63110 USA
| | - Andrei L. Osterman
- Infectious and Inflammatory Disease Center, Sanford Burnham
Prebys Medical Discovery Institute, La Jolla, CA 92037 USA
| | - Tahmeed Ahmed
- International Centre for Diarrhoeal Disease Research,
Bangladesh (icddr,b), Dhaka 1212, Bangladesh
| | - Jeffrey I. Gordon
- Edison Family Center for Genome Sciences and Systems Biology,
Washington University School of Medicine, St. Louis, MO 63110 USA
- Center for Gut Microbiome and Nutrition Research, Washington
University School of Medicine, St. Louis, MO 63110 USA
- Department of Pathology and Immunology, Washington University
School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
238
|
Teichman S, Lee MD, Willis AD. Analyzing microbial evolution through gene and genome phylogenies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553440. [PMID: 37645842 PMCID: PMC10462103 DOI: 10.1101/2023.08.15.553440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Microbiome scientists critically need modern tools to explore and analyze microbial evolution. Often this involves studying the evolution of microbial genomes as a whole. However, different genes in a single genome can be subject to different evolutionary pressures, which can result in distinct gene-level evolutionary histories. To address this challenge, we propose to treat estimated gene-level phylogenies as data objects, and present an interactive method for the analysis of a collection of gene phylogenies. We use a local linear approximation of phylogenetic tree space to visualize estimated gene trees as points in low-dimensional Euclidean space, and address important practical limitations of existing related approaches, allowing an intuitive visualization of complex data objects. We demonstrate the utility of our proposed approach through microbial data analyses, including by identifying outlying gene histories in strains of Prevotella, and by contrasting Streptococcus phylogenies estimated using different gene sets. Our method is available as an open-source R package, and assists with estimating, visualizing and interacting with a collection of bacterial gene phylogenies. dimension reduction, microbiome, non-Euclidean, statistical genetics, visualization.
Collapse
Affiliation(s)
| | - Michael D Lee
- NASA Ames Research Center and Blue Marble Space Institute of Science
| | - Amy D Willis
- Department of Biostatistics, University of Washington
| |
Collapse
|
239
|
Ferrocino I, Biasato I, Dabbou S, Colombino E, Rantsiou K, Squara S, Gariglio M, Capucchio MT, Gasco L, Cordero CE, Liberto E, Schiavone A, Cocolin L. Lactiplantibacillus plantarum, lactiplantibacillus pentosus and inulin meal inclusion boost the metagenomic function of broiler chickens. Anim Microbiome 2023; 5:36. [PMID: 37537673 PMCID: PMC10399007 DOI: 10.1186/s42523-023-00257-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The inclusion of alternative ingredients in poultry feed is foreseen to impact poultry gut microbiota. New feeding strategies (probiotics/prebiotics) must be adopted to allow sustainable productions. Therefore, the current study aimed to use metagenomics approaches to determine how dietary inclusion of prebiotic (inulin) plus a multi-strain probiotic mixture of Lactiplantibacillus plantarum and Lactiplantibacillus pentosus affected microbiota composition and functions of the gastro-intestinal tract of the broilers during production. Fecal samples were collected at the beginning of the trial and after 5, 11 and 32 days for metataxonomic analysis. At the end of the trial, broilers were submitted to anatomo-pathological investigations and caecal content was subjected to volatilome analysis and DNAseq. RESULTS Probiotic plus prebiotic inclusion did not significantly influence bird performance and did not produce histopathological alterations or changes in blood measurements, which indicates that the probiotic did not impair the overall health status of the birds. The multi-strain probiotic plus inulin inclusion in broilers increased the abundance of Blautia, Faecalibacterium and Lachnospiraceae and as a consequence an increased level of butyric acid was observed. In addition, the administration of probiotics plus inulin modified the gut microbiota composition also at strain level since probiotics alone or in combination with inulin select specific Faecalibacterium prausnitzi strain populations. The metagenomic analysis showed in probiotic plus prebiotic fed broilers a higher number of genes required for branched-chain amino acid biosynthesis belonging to selected F. prausnitzi strains, which are crucial in increasing immune function resistance to pathogens. In the presence of the probiotic/prebiotic a reduction in the occurrence of antibiotic resistance genes belonging to aminoglycoside, beta-lactamase and lincosamide family was observed. CONCLUSIONS The positive microbiome modulation observed is particularly relevant, since the use of these alternative ingredients could promote a healthier status of the broiler's gut.
Collapse
Affiliation(s)
- Ilario Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Ilaria Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Sihem Dabbou
- Center Agriculture Food Environment (C3A), University of Trento, Turin, Italy
| | - Elena Colombino
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Kalliopi Rantsiou
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Simone Squara
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Marta Gariglio
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | | | - Laura Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | | | - Erica Liberto
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Achille Schiavone
- Department of Veterinary Sciences, University of Turin, Turin, Italy.
| | - Luca Cocolin
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
240
|
von Strempel A, Weiss AS, Wittmann J, Salvado Silva M, Ring D, Wortmann E, Clavel T, Debarbieux L, Kleigrewe K, Stecher B. Bacteriophages targeting protective commensals impair resistance against Salmonella Typhimurium infection in gnotobiotic mice. PLoS Pathog 2023; 19:e1011600. [PMID: 37603558 PMCID: PMC10470868 DOI: 10.1371/journal.ppat.1011600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/31/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023] Open
Abstract
Gut microbial communities protect the host against a variety of major human gastrointestinal pathogens. Bacteriophages (phages) are ubiquitous in nature and frequently ingested via food and drinking water. Moreover, they are an attractive tool for microbiome engineering due to the lack of known serious adverse effects on the host. However, the functional role of phages within the gastrointestinal microbiome remain poorly understood. Here, we investigated the effects of microbiota-directed phages on infection with the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm), using a gnotobiotic mouse model (OMM14) for colonization resistance (CR). We show, that phage cocktails targeting Escherichia coli and Enterococcus faecalis acted in a strain-specific manner. They transiently reduced the population density of their respective target before establishing coexistence for up to 9 days. Infection susceptibility to S. Tm was markedly increased at an early time point after challenge with both phage cocktails. Surprisingly, OMM14 mice were also susceptible 7 days after a single phage inoculation, when the targeted bacterial populations were back to pre-phage administration density. Concluding, our work shows that phages that dynamically modulate the density of protective members of the gut microbiota can provide opportunities for invasion of bacterial pathogens, in particular at early time points after phage application. This suggests, that phages targeting protective members of the microbiota may increase the risk for Salmonella infection.
Collapse
Affiliation(s)
- Alexandra von Strempel
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Anna S. Weiss
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Marta Salvado Silva
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Diana Ring
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Esther Wortmann
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen, Germany
| | - Laurent Debarbieux
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Bacteriophage Bacterium Host, Paris, France
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany
| |
Collapse
|
241
|
Pérez-Quintero AL, Rodriguez-R LM, Cuesta-Morrondo S, Hakalová E, Betancurt-Anzola D, Valera LCC, Cardenas LAC, Matiz-Céron L, Jacobs JM, Roman-Reyna V, Muñoz AR, Giraldo AJB, Koebnik R. Comparative Genomics Identifies Conserved and Variable TAL Effectors in African Strains of the Cotton Pathogen Xanthomonas citri pv. malvacearum. PHYTOPATHOLOGY 2023; 113:1387-1393. [PMID: 37081724 DOI: 10.1094/phyto-12-22-0477-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Strains of Xanthomonas citri pv. malvacearum cause bacterial blight of cotton, a potentially serious threat to cotton production worldwide, including in sub-Saharan countries. Development of disease symptoms, such as water soaking, has been linked to the activity of a class of type 3 effectors, called transcription activator-like (TAL) effectors, which induce susceptibility genes in the host's cells. To gain further insight into the global diversity of the pathogen, to elucidate their repertoires of TAL effector genes, and to better understand the evolution of these genes in the cotton-pathogenic xanthomonads, we sequenced the genomes of three African strains of X. citri pv. malvacearum using nanopore technology. We show that the cotton-pathogenic pathovar of X. citri is a monophyletic lineage containing at least three distinct genetic subclades, which appear to be mirrored by their repertoires of TAL effectors. We observed an atypical level of TAL effector gene pseudogenization, which might be related to resistance genes that are deployed to control the disease. Our work thus contributes to a better understanding of the conservation and importance of TAL effectors in the interaction with the host plant, which can inform strategies for improving resistance against bacterial blight in cotton.
Collapse
Affiliation(s)
- Alvaro L Pérez-Quintero
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Luis M Rodriguez-R
- Department of Microbiology and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Sara Cuesta-Morrondo
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Centro Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), 28040, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | | | - Daniela Betancurt-Anzola
- Universidad de Los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Laura Carolina Camelo Valera
- Universidad de Los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Luis Alberto Chica Cardenas
- Universidad de Los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Luisa Matiz-Céron
- Universidad de Los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | - Jonathan M Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, OH, U.S.A
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, U.S.A
| | - Veronica Roman-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, OH, U.S.A
- Infectious Diseases Institute, The Ohio State University, Columbus, OH, U.S.A
| | - Alejandro Reyes Muñoz
- Universidad de Los Andes, Bogotá, Colombia
- Max Planck Tandem Group in Computational Biology, Department of Biological Sciences, Universidad de los Andes, Bogotá, Colombia
| | | | - Ralf Koebnik
- Plant Health Institute of Montpellier (PHIM), University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
242
|
Randall JR, Groover KE, O'Donnell AC, Garza JM, Cole TJ, Davies BW. Adapting antibacterial display to identify serum-active macrocyclic peptide antibiotics. PNAS NEXUS 2023; 2:pgad270. [PMID: 37637199 PMCID: PMC10449418 DOI: 10.1093/pnasnexus/pgad270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
The lack of available treatments for many antimicrobial-resistant infections highlights the critical need for antibiotic discovery innovation. Peptides are an underappreciated antibiotic scaffold because they often suffer from proteolytic instability and toxicity toward human cells, making in vivo use challenging. To investigate sequence factors related to serum activity, we adapt an antibacterial display technology to screen a library of peptide macrocycles for antibacterial potential directly in human serum. We identify dozens of new macrocyclic peptide antibiotic sequences and find that serum activity within our library is influenced by peptide length, cationic charge, and the number of disulfide bonds present. Interestingly, an optimized version of our most active lead peptide permeates the outer membrane of Gram-negative bacteria without strong inner-membrane disruption and kills bacteria slowly while causing cell elongation. This contrasts with traditional cationic antimicrobial peptides, which kill rapidly via lysis of both bacterial membranes. Notably, this optimized variant is not toxic to mammalian cells and retains its function in vivo, suggesting therapeutic promise. Our results support the use of more physiologically relevant conditions when screening peptides for antimicrobial activity which retain in vivo functionality.
Collapse
Affiliation(s)
- Justin R Randall
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Kyra E Groover
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Angela C O'Donnell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Joseph M Garza
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - T Jeffrey Cole
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Bryan W Davies
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
243
|
He Y, Pan J, Huang D, Sanford RA, Peng S, Wei N, Sun W, Shi L, Jiang Z, Jiang Y, Hu Y, Li S, Li Y, Li M, Dong Y. Distinct microbial structure and metabolic potential shaped by significant environmental gradient impacted by ferrous slag weathering. ENVIRONMENT INTERNATIONAL 2023; 178:108067. [PMID: 37393724 DOI: 10.1016/j.envint.2023.108067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Alkaline ferrous slags pose global environmental issues and long-term risks to ambient environments. To explore the under-investigated microbial structure and biogeochemistry in such unique ecosystems, combined geochemical, microbial, ecological and metagenomic analyses were performed in the areas adjacent to a ferrous slag disposal plant in Sichuan, China. Different levels of exposure to ultrabasic slag leachate had resulted in a significant geochemical gradient of pH (8.0-12.4), electric potential (-126.9 to 437.9 mV), total organic carbon (TOC, 1.5-17.3 mg/L), and total nitrogen (TN, 0.17-1.01 mg/L). Distinct microbial communities were observed depending on their exposure to the strongly alkaline leachate. High pH and Ca2+ concentrations were associated with low microbial diversity and enrichment of bacterial classes Gamma-proteobacteria and Deinococci in the microbial communities exposed to the leachate. Combined metagenomic analyses of 4 leachate-unimpacted and 2-impacted microbial communities led to the assembly of one Serpentinomonas pangenome and 81 phylogenetically diversified metagenome assembled genomes (MAGs). The prevailing taxa in the leachate-impacted habitats (e.g., Serpentinomonas and Meiothermus spp.) were phylogenetically related to those in active serpentinizing ecosystems, suggesting the analogous processes between the man-made and natural systems. More importantly, they accounted for significant abundance of most functional genes associated with environmental adaptation and major element cycling. Their metabolic potential (e.g., cation/H+ antiporters, carbon fixation on lithospheric carbon source, and respiration coupling sulfur oxidization and oxygen or nitrate reduction) may support these taxa to survive and prosper in these unique geochemical niches. This study provides fundamental understandings of the adaptive strategies of microorganisms in response to the strong environmental perturbation by alkali tailings. It also contributes to a better comprehension of how to remediate environments affected by alkaline industrial material.
Collapse
Affiliation(s)
- Yu He
- School of Environmental Studies, China University of Geosciences, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, China
| | - Dongmei Huang
- School of Environmental Studies, China University of Geosciences, China; Yejin Geological Team of Hubei Geological Bureau, China
| | - Robert A Sanford
- Department of Earth Science & Environmental Change, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Shuming Peng
- Institute of Ecological Environment, Chengdu University of Technology, China
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Weimin Sun
- Guangdong Institute of Eco-environmental and Soil Science, Guangdong, China
| | - Liang Shi
- School of Environmental Studies, China University of Geosciences, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China
| | - Zhou Jiang
- School of Environmental Studies, China University of Geosciences, China
| | - Yongguang Jiang
- School of Environmental Studies, China University of Geosciences, China
| | - Yidan Hu
- School of Environmental Studies, China University of Geosciences, China
| | - Shuyi Li
- School of Environmental Studies, China University of Geosciences, China
| | - Yongzhe Li
- School of Environmental Studies, China University of Geosciences, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Studies, Shenzhen University, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, China.
| | - Yiran Dong
- School of Environmental Studies, China University of Geosciences, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China; Hubei Key Laboratory of Wetland Evolution and Ecology Restoration, China.
| |
Collapse
|
244
|
Randall JR, Groover KE, O’Donnell AC, Garza JM, Cole TJ, Davies BW. Adapting antibacterial display to identify serum active macrocyclic peptide antibiotics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.28.550711. [PMID: 37546850 PMCID: PMC10402130 DOI: 10.1101/2023.07.28.550711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The lack of available treatments for many antimicrobial resistant infections highlights the critical need for antibiotic discovery innovation. Peptides are an underappreciated antibiotic scaffold because they often suffer from proteolytic instability and toxicity towards human cells, making in vivo use challenging. To investigate sequence factors related to serum activity, we adapt an antibacterial display technology to screen a library of peptide macrocycles for antibacterial potential directly in human serum. We identify dozens of new macrocyclic peptide antibiotic sequences and find that serum activity within our library is influenced by peptide length, cationic charge, and the number of disulfide bonds present. Interestingly, an optimized version of our most active lead peptide permeates the outer membrane of gram-negative bacteria without strong inner membrane disruption and kills bacteria slowly while causing cell elongation. This contrasts with traditional cationic antimicrobial peptides, which kill rapidly via lysis of both bacterial membranes. Notably, this optimized variant is not toxic to mammalian cells and retains its function in vivo , suggesting therapeutic promise. Our results support the use of more physiologically relevant conditions when screening peptides for antimicrobial activity which retain in vivo functionality. Significance Traditional methods of natural antibiotic discovery are low throughput and cannot keep pace with the development of antimicrobial resistance. Synthetic peptide display technologies offer a high-throughput means of screening drug candidates, but rarely consider functionality beyond simple target binding and do not consider retention of function in vivo . Here, we adapt a function-based, antibacterial display technology to screen a large library of peptide macrocycles directly for bacterial growth inhibition in human serum. This screen identifies an optimized non-toxic macrocyclic peptide antibiotic retaining in vivo function, suggesting this advancement could increase clinical antibiotic discovery efficiency.
Collapse
Affiliation(s)
- Justin R. Randall
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712
| | - Kyra E. Groover
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712
| | - Angela C. O’Donnell
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712
| | - Joseph M. Garza
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712
| | - T. Jeffrey Cole
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712
| | - Bryan W. Davies
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
245
|
Romanenko L, Otstavnykh N, Kurilenko V, Velansky P, Eremeev V, Mikhailov V, Isaeva MP. Description and genome-wide analysis of Profundicola chukchiensis gen. nov., sp. nov., marine bacteria isolated from bottom sediments of the Chukchi Sea. PLoS One 2023; 18:e0287346. [PMID: 37494411 PMCID: PMC10370774 DOI: 10.1371/journal.pone.0287346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/04/2023] [Indexed: 07/28/2023] Open
Abstract
Two Gram-negative, aerobic halophilic non-motile strains designated KMM 9713 and KMM 9724T were isolated from the bottom sediments sampled from the Chukchi Sea in the Arctic Ocean, Russia. The novel strains grew in 0.5-5% NaCl, at 7-42°C, and pH 5.5-10.5. Phylogenetic analyses based on 16S rRNA gene and whole genome sequences revealed that strains KMM 9713 and KMM 9724T were close to each other and shared the highest 16S rRNA gene sequence similarity of 91.28% with the type strain Ornithobacterium rhinotracheale DSM 15997T and 90.15-90.92% with the members of the genus Empedobacter in the family Weeksellaceae. Phylogenetic trees indicated that strains KMM 9713 and KMM 9724T formed a distinct line adjacent to their relative O. rhinotracheale DSM 15997T. The average nucleotide identity values between strain KMM 9724T and O. rhinotracheale DSM 15997T, Empedobacter brevis NBRC 14943T, and Moheibacter sediminis CGMCC 1.12708T were 76.73%, 75.78%, and 74.65%, respectively. The novel strains contained the predominant menaquinone MK-6 and the major fatty acids of iso-C17:0 3-OH, iso-C15:0 followed by iso-C17:1ω6. Polar lipids consisted of phosphatidylethanolamine, one an unidentified aminophospholipid, two unidentified aminolipids, and two or three unidentified lipids. The DNA G+C contents of 34.5% and 34.7% were calculated from genome sequence of the strains KMM 9713 and KMM 9724T, respectively. Based on the phylogenetic evidence and distinctive phenotypic characteristics, strains KMM 9713 and KMM 9724T are proposed to be classified as a novel genus and species Profundicola chukchiensis gen. nov., sp. nov. The type strain of Profundicola chukchiensis gen. nov., sp. nov. is strain KMM 9724T (= KACC 22806T).
Collapse
Affiliation(s)
- Lyudmila Romanenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Nadezhda Otstavnykh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Valeriya Kurilenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Peter Velansky
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Viacheslav Eremeev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Valery Mikhailov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| | - Marina P Isaeva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
| |
Collapse
|
246
|
Wang H, Min C, Xia F, Xia Y, Tang M, Li J, Hu Y, Zou M. Metagenomic analysis reveals the short-term influences on conjugation of bla NDM-1 and microbiome in hospital wastewater by silver nanoparticles at environmental-related concentration. ENVIRONMENTAL RESEARCH 2023; 228:115866. [PMID: 37037312 DOI: 10.1016/j.envres.2023.115866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/04/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023]
Abstract
Hospital wastewater contains large amounts of antibiotic-resistant bacteria and serves as an important reservoir for horizontal gene transfer (HGT). However, the response of the microbiome in hospital wastewater to silver remains unclear. In this study, the short-term impacts of silver on the microbiome in hospital wastewater were investigated by metagenome next-generation sequencing. The influence of silver on the conjugation of plasmid carrying blaNDM-1 was further examined. Our results showed that in hospital wastewater, high abundances of antibiotic resistance genes (ARGs) were detected. The distribution tendencies of certain ARG types on chromosomes or plasmids were different. Clinically important ARGs were identified in phage-like contigs, indicating potential transmission via transduction. Pseudomonadales, Enterobacterales, and Bacteroidales were the major ARG hosts. Mobile genetic elements were mainly detected in plasmids and associated with various types of ARGs. The binning approach identified 29 bins that were assigned to three phyla. Various ARGs and virulence factors were identified in 14 and 11 bins, respectively. MetaCHIP identified 49 HGT events. The transferred genes were annotated as ARGs, mobile genetic elements, and functional genes, and they mainly originated from donors belonging to Bacteroides and Pseudomonadales. In addition, 20 nm AgNPs reduced microbial diversity and enhanced the relative abundance of Acinetobacter. The changes induced by 20 nm AgNPs included increases in the abundances of ARGs and genes involved lipid metabolism pathway. Conjugation experiments showed that Ag+ and 20 nm AgNPs caused 2.38-, 3.31-, 4.72-, and 4.57-fold and 1.46-, 1.61-, 3.86-, and 2.16-fold increases in conjugation frequencies of plasmid with blaNDM-1 at 0.1, 1, 10, and 100 μg/L, respectively. Our findings provide insight into the response of the microbiome in hospital wastewater to silver, emphasize the adaptation capability of Acinetobacter inhabiting hospitals against adverse environments, and highlight the promotion of silver for antibiotic resistance.
Collapse
Affiliation(s)
- Haichen Wang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Changhang Min
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Fengjun Xia
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yubing Xia
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Mengli Tang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jun Li
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yongmei Hu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Mingxiang Zou
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China; Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
247
|
Świecimska M, Golinska P, Sangal V, Wachnowicz B, Goodfellow M. Streptantibioticus silvisoli sp. nov., acidotolerant actinomycetes from pine litter, reclassification of Streptomyces cocklensis, Streptomyces ferralitis, Streptomyces parmotrematis and Streptomyces rubrisoli as Actinacidiphila cocklensis comb. nov., Streptantibioticus ferralitis comb. nov., Streptantibioticus parmotrematis comb. nov. and Streptantibioticus rubrisoli comb. nov., and emended descriptions of the genus Streptantibioticus, the family Streptomycetaceae and Streptomyces iconiensis. Int J Syst Evol Microbiol 2023; 73. [PMID: 37486349 DOI: 10.1099/ijsem.0.005978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Filamentous actinomycetes, designated SL13 and SL54T, were isolated from pine litter and their taxonomic status resolved using a polyphasic approach. The isolates exhibit chemotaxonomic and morphological properties consistent with their classification in the family Streptomycetaceae. They form extensively branched substrate mycelia bearing aerial hyphae that differentiate into straight chains of cylindrical spores. The whole-organism hydrolysates contain ll-diaminopimelic acid, glucose, mannose and ribose, the predominant isoprenologue is MK-9(H8), the polar lipids are diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol and glycophospholipids, and the major fatty acids are anteiso-C15 : 0, iso-C15 : 0, iso-C16 : 0 and anteiso-C17 : 0. Phylogenetic trees based on 16S rRNA gene sequences and multilocus gene sequences of conserved housekeeping genes show that the isolates form a well-supported lineage that is most closely related to Streptomyces parmotrematis NBRC 115203T. All of these strains form a well-defined clade in the multilocus sequence analysis tree together with Streptantibioticus cattleyicolor DSM 46488T, Streptomyces ferralitis DSM 41836T and Streptomyces rubrisoli DSM 42083T. Draft genomes assemblies of the isolates are rich in biosynthetic gene clusters predicted to produce novel specialized metabolites and stress-related genes which provide an insight into how they have adapted to the harsh conditions that prevail in pine litter. Phylogenomically, both isolates belong to the same lineage as the type strains of S. cattleyicolor, S. ferralitis, S. parmotrematis and S. rubrisoli; these relationships are underpinned by high average amino acid identity, average nucleotide identity and genomic DNA-DNA hybridization values. These metrics confirm that isolates SL13 and SL54T belong to a novel species that is most closely related to S. parmotrematis NBRC 115203T and that these strains together with S. ferralitis DSM 41836T, S. rubrisoli DSM 42083T belong to the genus Streptantibioticus. Consequently, it is proposed that the isolates be recognized as a new Streptantibioticus species, Streptantibioticus silvisoli comb. nov., with isolate SL54T (=DSM 111111T=PCM3044T) as the type strain, and that S. ferralitis, S. parmotrematis and S. rubrisoli be transferred to the genus Streptantibioticus as Streptantibioticus ferralitis comb. nov., Streptantibioticus parmotrematis comb. nov. and Streptantibioticus rubrisoli comb. nov. Emended descriptions are given for the genus Streptantibioticus, the family Streptomycetaceae and for Streptomyces iconiensis which was found to be a close relative of the isolates in the 16S rRNA gene sequence analyses. It is also proposed that Streptomyces cocklensis be transferred to the genus Actinacidiphila as Actinacidiphila cocklensis comb. nov based on its position in the MLSA and phylogenomic trees and associated genomic data.
Collapse
Affiliation(s)
- Magdalena Świecimska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87 100 Torun, Poland
| | - Patrycja Golinska
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87 100 Torun, Poland
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Bartosz Wachnowicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87 100 Torun, Poland
| | - Michael Goodfellow
- School of Natural and Environmental Sciences, Ridley Building 2, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
248
|
Holman DB, Gzyl KE, Kommadath A. The gut microbiome and resistome of conventionally vs. pasture-raised pigs. Microb Genom 2023; 9:mgen001061. [PMID: 37439777 PMCID: PMC10438820 DOI: 10.1099/mgen.0.001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/12/2023] [Indexed: 07/14/2023] Open
Abstract
Conventional swine production typically houses pigs indoors and in large groups, whereas pasture-raised pigs are reared outdoors at lower stocking densities. Antimicrobial use also differs, with conventionally raised pigs often being exposed to antimicrobials directly or indirectly to control and prevent infectious disease. However, antimicrobial use can be associated with the development and persistence of antimicrobial resistance. In this study, we used shotgun metagenomic sequencing to compare the gut microbiomes and resistomes of pigs raised indoors on a conventional farm with those raised outdoors on pasture. The microbial compositions as well as the resistomes of both groups of pigs were significantly different from each other. Bacterial species such as Intestinibaculum porci, Pseudoscardovia radai and Sharpea azabuensis were relatively more abundant in the gut microbiomes of pasture-raised pigs and Hallella faecis and Limosilactobacillus reuteri in the conventionally raised swine. The abundance of antimicrobial resistance genes (ARGs) was significantly higher in the conventionally raised pigs for nearly all antimicrobial classes, including aminoglycosides, beta-lactams, macrolides-lincosamides-streptogramin B, and tetracyclines. Functionally, the gut microbiomes of the two group of pigs also differed significantly based on their carbohydrate-active enzyme (CAZyme) profiles, with certain CAZyme families associated with host mucin degradation enriched in the conventional pig microbiomes. We also recovered 1043 dereplicated strain-level metagenome-assembled genomes (≥90 % completeness and <5 % contamination) to provide taxonomic context for specific ARGs and metabolic functions. Overall, the study provides insights into the differences between the gut microbiomes and resistomes of pigs raised under two very different production systems.
Collapse
Affiliation(s)
- Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB, T4L1W1, Canada
| | - Katherine E. Gzyl
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB, T4L1W1, Canada
| | - Arun Kommadath
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C&E Trail, Lacombe, AB, T4L1W1, Canada
| |
Collapse
|
249
|
Zhao B, Osbelt L, Lesker TR, Wende M, Galvez EJC, Hönicke L, Bublitz A, Greweling-Pils MC, Grassl GA, Neumann-Schaal M, Strowig T. Helicobacter spp. are prevalent in wild mice and protect from lethal Citrobacter rodentium infection in the absence of adaptive immunity. Cell Rep 2023; 42:112549. [PMID: 37245209 DOI: 10.1016/j.celrep.2023.112549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 05/30/2023] Open
Abstract
Transfer of the gut microbiota from wild to laboratory mice alters the host's immune status and enhances resistance to infectious and metabolic diseases, but understanding of which microbes and how they promote host fitness is only emerging. Our analysis of metagenomic sequencing data reveals that Helicobacter spp. are enriched in wild compared with specific-pathogen-free (SPF) and conventionally housed mice, with multiple species commonly co-colonizing their hosts. We create laboratory mice harboring three non-SPF Helicobacter spp. to evaluate their effect on mucosal immunity and colonization resistance to the enteropathogen Citrobacter rodentium. Our experiments reveal that Helicobacter spp. interfere with C. rodentium colonization and attenuate C. rodentium-induced gut inflammation in wild-type (WT) mice, even preventing lethal infection in Rag2-/- SPF mice. Further analyses suggest that Helicobacter spp. interfere with tissue attachment of C. rodentium, putatively by reducing the availability of mucus-derived sugars. These results unveil pivotal protective functions of wild mouse microbiota constituents against intestinal infection.
Collapse
Affiliation(s)
- Bei Zhao
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Lisa Osbelt
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany; ESF International Graduate School on Analysis, Imaging, and Modelling of Neuronal and Inflammatory Processes, Otto von Guericke University, Magdeburg, Germany
| | - Till Robin Lesker
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Marie Wende
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany; ESF International Graduate School on Analysis, Imaging, and Modelling of Neuronal and Inflammatory Processes, Otto von Guericke University, Magdeburg, Germany
| | - Eric J C Galvez
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Lisa Hönicke
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Arne Bublitz
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | - Guntram A Grassl
- Department of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Bacterial Metabolomics, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Till Strowig
- Department of Microbial Immune Regulation, Helmholtz Center for Infection Research, Braunschweig, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany; Centre for Individualized Infection Medicine (CiiM), A Joint Venture Between the Helmholtz Center for Infection Research (HZI) and Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
250
|
Pu J, Yang J, Lu S, Jin D, Luo X, Xiong Y, Bai X, Zhu W, Huang Y, Wu S, Niu L, Liu L, Xu J. Species-Level Taxonomic Characterization of Uncultured Core Gut Microbiota of Plateau Pika. Microbiol Spectr 2023; 11:e0349522. [PMID: 37067438 PMCID: PMC10269723 DOI: 10.1128/spectrum.03495-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/13/2023] [Indexed: 04/18/2023] Open
Abstract
Rarely has the vast diversity of bacteria on Earth been profiled, particularly on inaccessible plateaus. These uncultured microbes, which are also known as "microbial dark matter," may play crucial roles in maintaining the ecosystem and are linked to human health, regarding pathogenicity and prebioticity. The plateau pika (Ochotona curzoniae) is a small burrowing steppe lagomorph that is endemic to the Qinghai-Tibetan Plateau and is a keystone species in the maintenance of ecological balance. We used a combination of full-length 16S rRNA amplicon sequencing, shotgun metagenomics, and metabolomics to elucidate the species-level community structure and the metabolic potential of the gut microbiota of the plateau pika. Using a full-length 16S rRNA metataxonomic approach, we clustered 618 (166 ± 35 per sample) operational phylogenetic units (OPUs) from 105 plateau pika samples and assigned them to 215 known species, 226 potentially new species, and 177 higher hierarchical taxa. Notably, 39 abundant OPUs (over 60% total relative abundance) are found in over 90% of the samples, thereby representing a "core microbiota." They are all classified as novel microbial lineages, from the class to the species level. Using metagenomic reads, we independently assembled and binned 109 high-quality, species-level genome bins (SGBs). Then, a precise taxonomic assignment was performed to clarify the phylogenetic consistency of the SGBs and the 16S rRNA amplicons. Thus, the majority of the core microbes possess their genomes. SGBs belonging to the genus Treponema, the families Muribaculaceae, Lachnospiraceae, and Oscillospiraceae, and the order Eubacteriales are abundant in the metagenomic samples. In addition, multiple CAZymes are detected in these SGBs, indicating their efficient utilization of plant biomass. As the most widely connected metabolite with the core microbiota, tryptophan may relate to host environmental adaptation. Our investigation allows for a greater comprehension of the composition and functional capacity of the gut microbiota of the plateau pika. IMPORTANCE The great majority of microbial species remain uncultured, severely limiting their taxonomic characterization and biological understanding. The plateau pika (Ochotona curzoniae) is a small burrowing steppe lagomorph that is endemic to the Qinghai-Tibetan Plateau and is considered to be the keystone species in the maintenance of ecological stability. We comprehensively investigated the gut microbiota of the plateau pika via a multiomics endeavor. Combining full-length 16S rRNA metataxonomics, shotgun metagenomics, and metabolomics, we elucidated the species-level taxonomic assignment of the core uncultured intestinal microbiota of the plateau pika and revealed their correlation to host nutritional metabolism and adaptation. Our findings provide insights into the microbial diversity and biological significance of alpine animals.
Collapse
Affiliation(s)
- Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Yang
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Shan Lu
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Dong Jin
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
| | - Xuelian Luo
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wentao Zhu
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuyuan Huang
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shusheng Wu
- Yushu Prefecture Center for Disease Control and Prevention, Yushu, China
| | - Lina Niu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianguo Xu
- State Key Laboratory of Infectious Disease Prevention and Control and National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, China
- Institute of Public Health, Nankai University, Tianjing, China
| |
Collapse
|