201
|
Young CM, Beziaud L, Dessen P, Madurga Alonso A, Santamaria-Martínez A, Huelsken J. Metabolic dependencies of metastasis-initiating cells in female breast cancer. Nat Commun 2023; 14:7076. [PMID: 37925484 PMCID: PMC10625534 DOI: 10.1038/s41467-023-42748-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 10/20/2023] [Indexed: 11/06/2023] Open
Abstract
Understanding the mechanisms that enable cancer cells to metastasize is essential in preventing cancer progression. Here we examine the metabolic adaptations of metastasis-initiating cells (MICs) in female breast cancer and how those shape their metastatic phenotype. We find that endogenous MICs depend on the oxidative tricarboxylic acid cycle and fatty acid usage. Sorting tumor cells based upon solely mitochondrial membrane potential or lipid storage is sufficient at identifying MICs. We further identify that mitochondrially-generated citrate is exported to the cytoplasm to yield acetyl-CoA, and this is crucial to maintaining heightened levels of H3K27ac in MICs. Blocking acetyl-CoA generating pathways or H3K27ac-specific epigenetic writers and readers reduces expression of epithelial-to-mesenchymal related genes, MIC frequency, and metastatic potential. Exogenous supplementation of a short chain carboxylic acid, acetate, increases MIC frequency and metastasis. In patient cohorts, we observe that higher expression of oxidative phosphorylation related genes is associated with reduced distant relapse-free survival. These data demonstrate that MICs specifically and precisely alter their metabolism to efficiently colonize distant organs.
Collapse
Affiliation(s)
- C Megan Young
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Laurent Beziaud
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Pierre Dessen
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Angela Madurga Alonso
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland
- Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Albert Santamaria-Martínez
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland.
- Swiss Cancer Center Léman, Lausanne, Switzerland.
| | - Joerg Huelsken
- École Polytechnique Fédérale de Lausanne (EPFL), ISREC (Swiss Institute for Experimental Cancer Research), 1015, Lausanne, Switzerland.
- Agora Cancer Research Center, Rue du Bugnon 25A, 1011, Lausanne, Switzerland.
- Swiss Cancer Center Léman, Lausanne, Switzerland.
| |
Collapse
|
202
|
Song K, Ma C, Gu B, Wang B, Ma H, Deng X, Chen H. Molecular mechanism underlying epithelial-mesenchymal transformation and cisplatin resistance in esophageal squamous cell carcinoma. Thorac Cancer 2023; 14:3069-3079. [PMID: 37718469 PMCID: PMC10626249 DOI: 10.1111/1759-7714.15094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Esophageal cancer (EC) occupies the seventh spot of the most prevalent malignancy cancer ailments worldwide and the sixth leading cause of cancer-related death. Esophageal squamous cell carcinoma (ESCC) is also the most predominant histological subtype of EC, and cisplatin (DDP) is commonly used as a first-line chemotherapeutic drug for the late advanced stages of the disease. However, the emergence of drug resistance during clinical treatment possesses a significant challenge to the therapeutic success and patient outcomes. Collectively, the epithelial-mesenchymal transformation (EMT) is a process in which transcription factors are induced to regulate the expression of epithelial and stromal markers to promote the differentiation of epithelial cells into stromal cells. Recent studies have demonstrated a close association between EMT and chemotherapy resistance in tumor cells, with concrete evidence of reciprocal reinforcement. Therefore, in this review, we elucidate the molecular mechanism underlying ESCC, shed light on the mechanisms driving DDP resistance, and provide insights into the intricate interplay between EMT and ESCC. We have aimed to provide some new hypotheses and perspectives that may address-inform future therapeutic strategies for ESCC treatment.
Collapse
Affiliation(s)
- Kewei Song
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
- Department of Public HealthJining No.1 People's HospitalJiningChina
| | - Chenhui Ma
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Baohong Gu
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Bofang Wang
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Huanhuan Ma
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Xiaobo Deng
- The Second Clinical Medical College, Lanzhou UniversityLanzhouChina
| | - Hao Chen
- Department of Tumor SurgeryLanzhou University Second HospitalLanzhouChina
- Key Laboratory of Digestive System Tumors of Gansu ProvinceLanzhouChina
| |
Collapse
|
203
|
Mazarei M, Åström J, Westerholm J, Karttunen M. Effect of substrate heterogeneity and topology on epithelial tissue growth dynamics. Phys Rev E 2023; 108:054405. [PMID: 38115499 DOI: 10.1103/physreve.108.054405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 09/20/2023] [Indexed: 12/21/2023]
Abstract
Tissue growth kinetics and interface dynamics depend on the properties of the tissue environment and cell-cell interactions. In cellular environments, substrate heterogeneity and geometry arise from a variety factors, such as the structure of the extracellular matrix and nutrient concentration. We used the CellSim3D model, a kinetic cell division simulator, to investigate the growth kinetics and interface roughness dynamics of epithelial tissue growth on heterogeneous substrates with varying topologies. The results show that the presence of quenched disorder has a clear effect on the colony morphology and the roughness scaling of the interface in the moving interface regime. In a medium with quenched disorder, the tissue interface has a smaller interface roughness exponent, α, and a larger growth exponent, β. The scaling exponents also depend on the topology of the substrate and cannot be categorized by well-known universality classes.
Collapse
Affiliation(s)
- Mahmood Mazarei
- Department of Physics and Astronomy, Western University, 1151 Richmond Street, London, Ontario, Canada N6A 3K7
| | - Jan Åström
- CSC Scientific Computing Ltd, Kägelstranden 14, 02150 Esbo, Finland
| | - Jan Westerholm
- Faculty of Science and Engineering, Åbo Akademi University, Vattenborgsvägen 3, FI-20500 Åbo, Finland
| | - Mikko Karttunen
- Department of Physics and Astronomy, Western University, 1151 Richmond Street, London, Ontario, Canada N6A 3K7
- Department of Chemistry, Western University, 1151 Richmond Street, London, Ontario, Canada N6A 5B7
| |
Collapse
|
204
|
Bhatia S, Gunter JH, Burgess JT, Adams MN, O'Byrne K, Thompson EW, Duijf PH. Stochastic epithelial-mesenchymal transitions diversify non-cancerous lung cell behaviours. Transl Oncol 2023; 37:101760. [PMID: 37611490 PMCID: PMC10466920 DOI: 10.1016/j.tranon.2023.101760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Epithelial-mesenchymal plasticity (EMP) is a hallmark of cancer. By enabling cells to shift between different morphological and functional states, EMP promotes invasion, metastasis and therapy resistance. We report that near-diploid non-cancerous human epithelial lung cells spontaneously shift along the EMP spectrum without genetic changes. Strikingly, more than half of single cell-derived clones adopt a mesenchymal morphology. We independently characterise epithelial-like and mesenchymal-like clones. Mesenchymal clones lose epithelial markers, display larger cell aspect ratios and lower motility, with mostly unaltered proliferation rates. Stemness marker expression and metabolic rewiring diverge independently of phenotypes. In 3D culture, more epithelial clones become mesenchymal-like. Thus, non-cancerous epithelial cells may acquire cancer metastasis-associated features prior to genetic alterations and cancerous transformation.
Collapse
Affiliation(s)
- Sugandha Bhatia
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia.
| | - Jennifer H Gunter
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia; Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Queensland University of Technology, Woolloongabba 4102, Australia
| | - Joshua T Burgess
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia
| | - Mark N Adams
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia
| | - Kenneth O'Byrne
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia; Princess Alexandra Hospital, Woolloongabba 4102, QLD, Australia
| | - Erik W Thompson
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia
| | - Pascal Hg Duijf
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia; Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia and SA Pathology, Adelaide SA, 5001, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
205
|
Jain P, Pillai M, Duddu AS, Somarelli JA, Goyal Y, Jolly MK. Dynamical hallmarks of cancer: Phenotypic switching in melanoma and epithelial-mesenchymal plasticity. Semin Cancer Biol 2023; 96:48-63. [PMID: 37788736 DOI: 10.1016/j.semcancer.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023]
Abstract
Phenotypic plasticity was recently incorporated as a hallmark of cancer. This plasticity can manifest along many interconnected axes, such as stemness and differentiation, drug-sensitive and drug-resistant states, and between epithelial and mesenchymal cell-states. Despite growing acceptance for phenotypic plasticity as a hallmark of cancer, the dynamics of this process remains poorly understood. In particular, the knowledge necessary for a predictive understanding of how individual cancer cells and populations of cells dynamically switch their phenotypes in response to the intensity and/or duration of their current and past environmental stimuli remains far from complete. Here, we present recent investigations of phenotypic plasticity from a systems-level perspective using two exemplars: epithelial-mesenchymal plasticity in carcinomas and phenotypic switching in melanoma. We highlight how an integrated computational-experimental approach has helped unravel insights into specific dynamical hallmarks of phenotypic plasticity in different cancers to address the following questions: a) how many distinct cell-states or phenotypes exist?; b) how reversible are transitions among these cell-states, and what factors control the extent of reversibility?; and c) how might cell-cell communication be able to alter rates of cell-state switching and enable diverse patterns of phenotypic heterogeneity? Understanding these dynamic features of phenotypic plasticity may be a key component in shifting the paradigm of cancer treatment from reactionary to a more predictive, proactive approach.
Collapse
Affiliation(s)
- Paras Jain
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Maalavika Pillai
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA
| | | | - Jason A Somarelli
- Department of Medicine, Duke Cancer Institute, Duke University, Durham, NC 27710, USA
| | - Yogesh Goyal
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Center for Synthetic Biology, Northwestern University, Chicago, IL 60611, USA; Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
206
|
Fazilaty H, Basler K. Reactivation of embryonic genetic programs in tissue regeneration and disease. Nat Genet 2023; 55:1792-1806. [PMID: 37904052 DOI: 10.1038/s41588-023-01526-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023]
Abstract
Embryonic genetic programs are reactivated in response to various types of tissue damage, providing cell plasticity for tissue regeneration or disease progression. In acute conditions, these programs remedy the damage and then halt to allow a return to homeostasis. In chronic situations, including inflammatory diseases, fibrosis and cancer, prolonged activation of embryonic programs leads to disease progression and tissue deterioration. Induction of progenitor identity and cell plasticity, for example, epithelial-mesenchymal plasticity, are critical outcomes of reactivated embryonic programs. In this Review, we describe molecular players governing reactivated embryonic genetic programs, their role during disease progression, their similarities and differences and lineage reversion in pathology and discuss associated therapeutics and drug-resistance mechanisms across many organs. We also discuss the diversity of reactivated programs in different disease contexts. A comprehensive overview of commonalities between development and disease will provide better understanding of the biology and therapeutic strategies.
Collapse
Affiliation(s)
- Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
207
|
Bhattacharyya S, Ehsan SF, Karacosta LG. Phenotypic maps for precision medicine: a promising systems biology tool for assessing therapy response and resistance at a personalized level. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1256104. [PMID: 37964768 PMCID: PMC10642209 DOI: 10.3389/fnetp.2023.1256104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/28/2023] [Indexed: 11/16/2023]
Abstract
In this perspective we discuss how tumor heterogeneity and therapy resistance necessitate a focus on more personalized approaches, prompting a shift toward precision medicine. At the heart of the shift towards personalized medicine, omics-driven systems biology becomes a driving force as it leverages high-throughput technologies and novel bioinformatics tools. These enable the creation of systems-based maps, providing a comprehensive view of individual tumor's functional plasticity. We highlight the innovative PHENOSTAMP program, which leverages high-dimensional data to construct a visually intuitive and user-friendly map. This map was created to encapsulate complex transitional states in cancer cells, such as Epithelial-Mesenchymal Transition (EMT) and Mesenchymal-Epithelial Transition (MET), offering a visually intuitive way to understand disease progression and therapeutic responses at single-cell resolution in relation to EMT-related single-cell phenotypes. Most importantly, PHENOSTAMP functions as a reference map, which allows researchers and clinicians to assess one clinical specimen at a time in relation to their phenotypic heterogeneity, setting the foundation on constructing phenotypic maps for personalized medicine. This perspective argues that such dynamic predictive maps could also catalyze the development of personalized cancer treatment. They hold the potential to transform our understanding of cancer biology, providing a foundation for a future where therapy is tailored to each patient's unique molecular and cellular tumor profile. As our knowledge of cancer expands, these maps can be continually refined, ensuring they remain a valuable tool in precision oncology.
Collapse
Affiliation(s)
- Sayantan Bhattacharyya
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shafqat F. Ehsan
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Loukia G. Karacosta
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
208
|
Behnam B, Fazilaty H, Ghadyani M, Fadavi P, Taghizadeh-Hesary F. Ciliated, Mitochondria-Rich Postmitotic Cells are Immune-privileged, and Mimic Immunosuppressive Microenvironment of Tumor-Initiating Stem Cells: From Molecular Anatomy to Molecular Pathway. FRONT BIOSCI-LANDMRK 2023; 28:261. [PMID: 37919090 DOI: 10.31083/j.fbl2810261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/15/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023]
Abstract
Cancer whose major problems are metastasis, treatment resistance, and recurrence is the leading cause of death worldwide. Tumor-initiating stem cells (TiSCs) are a subset of the tumor population responsible for tumor resistance and relapse. Understanding the characteristics and shared features between tumor-initiating stem cells (TiSCs) and long-lived postmitotic cells may hold a key to better understanding the biology of cancer. Postmitotic cells have exited the cell cycle and are transitioned into a non-dividing and terminally differentiated state with a specialized function within a tissue. Conversely, a cancer cell with TiSC feature can divide and produce a variety of progenies, and is responsible for disease progression, tumor resistance to therapy and immune system and disease relapse. Surprisingly, our comprehensive evaluation of TiSCs suggests common features with long-lived post-mitotic cells. They are similar in structure (primary cilia, high mitochondrial content, and being protected by a barrier), metabolism (autophagy and senescence), and function (immunoescape and/or immune-privileged by a blood barrier). In-depth exploration showed how mitochondrial metabolism contributes to these shared features, including high energy demands arising from ciliary and microtubular functionality, increased metabolic activity, and movement. These findings can assist in decoding the remaining properties which offer insights into the biology of TiSCs, with potential implications for enhancing cancer treatment strategies and patient prognosis.
Collapse
Affiliation(s)
- Babak Behnam
- Department of Regulatory Affairs, Amarex Clinical Research, NSF International, Germantown, MD 20874, USA
| | - Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Mobina Ghadyani
- School of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Pedram Fadavi
- Department of Radiation Oncology, Iran University of Medical Sciences, 1445613131 Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- Department of Radiation Oncology, Iran University of Medical Sciences, 1445613131 Tehran, Iran
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, 1445613131 Tehran, Iran
| |
Collapse
|
209
|
Singh S, Gouri V, Samant M. TGF-β in correlation with tumor progression, immunosuppression and targeted therapy in colorectal cancer. Med Oncol 2023; 40:335. [PMID: 37855975 DOI: 10.1007/s12032-023-02204-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/25/2023] [Indexed: 10/20/2023]
Abstract
Colorectal cancer (CRC) is a complex malignancy responsible for the second-highest cancer deaths worldwide. TGF-β maintains normal cellular homeostasis by inhibiting the cell cycle and inducing apoptosis, but its elevated level is correlated with colorectal cancer progression, as TGF-β is a master regulator of the epithelial-to-mesenchymal transition, a critical step of metastasis. Tumors, including CRC, use elevated TGF-β levels to avoid immune surveillance by modulating immune cell differentiation, proliferation, and effector function. Presently, the treatment of advanced CRC is mainly based on chemotherapy, with multiple adverse effects. Thus, there is a need to develop alternate tactics because CRC continue to be mostly resistant to the present therapeutic regimen. TGF-β blockade has emerged as a promising therapeutic target in cancer therapy. Blocking TGF-β with phytochemicals and other molecules, such as antisense oligonucleotides, monoclonal antibodies, and bifunctional traps, alone or in combination, may be a safer and more effective way to treat CRC. Furthermore, combination immunotherapy comprising TGF-β blockers and immune checkpoint inhibitors is gaining popularity because both molecules work synergistically to suppress the immune system. Here, we summarize the current understanding of TGF-β as a therapeutic target for managing CRC and its context-dependent tumor-promoting or tumor-suppressing nature.
Collapse
Affiliation(s)
- Sumeet Singh
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
| | - Vinita Gouri
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India
- Department of Zoology, Kumaun University, Nainital, Uttarakhand, India
| | - Mukesh Samant
- Cell and Molecular Biology Laboratory, Department of Zoology, Soban Singh Jeena University, Almora, Uttarakhand, India.
| |
Collapse
|
210
|
Kurilla A, László L, Takács T, Tilajka Á, Lukács L, Novák J, Pancsa R, Buday L, Vas V. Studying the Association of TKS4 and CD2AP Scaffold Proteins and Their Implications in the Partial Epithelial-Mesenchymal Transition (EMT) Process. Int J Mol Sci 2023; 24:15136. [PMID: 37894817 PMCID: PMC10606890 DOI: 10.3390/ijms242015136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Colon cancer is a leading cause of death worldwide. Identification of new molecular factors governing the invasiveness of colon cancer holds promise in developing screening and targeted therapeutic methods. The Tyrosine Kinase Substrate with four SH3 domains (TKS4) and the CD2-associated protein (CD2AP) have previously been linked to dynamic actin assembly related processes and cancer cell migration, although their co-instructive role during tumor formation remained unknown. Therefore, this study was designed to investigate the TKS4-CD2AP interaction and study the interdependent effect of TKS4/CD2AP on oncogenic events. We identified CD2AP as a novel TKS4 interacting partner via co-immunoprecipitation-mass spectrometry methods. The interaction was validated via Western blot (WB), immunocytochemistry (ICC) and proximity ligation assay (PLA). The binding motif of CD2AP was explored via peptide microarray. To uncover the possible cooperative effects of TKS4 and CD2AP in cell movement and in epithelial-mesenchymal transition (EMT), we performed gene silencing and overexpressing experiments. Our results showed that TKS4 and CD2AP form a scaffolding protein complex and that they can regulate migration and EMT-related pathways in HCT116 colon cancer cells. This is the first study demonstrating the TKS4-CD2AP protein-protein interaction in vitro, their co-localization in intact cells, and their potential interdependent effects on partial-EMT in colon cancer.
Collapse
Affiliation(s)
- Anita Kurilla
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Loretta László
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Tamás Takács
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Álmos Tilajka
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Laura Lukács
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Julianna Novák
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Rita Pancsa
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - László Buday
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Virág Vas
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| |
Collapse
|
211
|
Cammareri P, Myant KB. Be like water, my cells: cell plasticity and the art of transformation. Front Cell Dev Biol 2023; 11:1272730. [PMID: 37886398 PMCID: PMC10598658 DOI: 10.3389/fcell.2023.1272730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Cellular plasticity defines the capacity of cells to adopt distinct identities during development, tissue homeostasis and regeneration. Dynamic fluctuations between different states, within or across lineages, are regulated by changes in chromatin accessibility and in gene expression. When deregulated, cellular plasticity can contribute to cancer initiation and progression. Cancer cells are remarkably plastic which contributes to phenotypic and functional heterogeneity within tumours as well as resistance to targeted therapies. It is for these reasons that the scientific community has become increasingly interested in understanding the molecular mechanisms governing cancer cell plasticity. The purpose of this mini-review is to discuss different examples of cellular plasticity associated with metaplasia and epithelial-mesenchymal transition with a focus on therapy resistance.
Collapse
Affiliation(s)
| | - Kevin B. Myant
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
212
|
Rago V, Perri A, Di Agostino S. New Therapeutic Perspectives in Prostate Cancer: Patient-Derived Organoids and Patient-Derived Xenograft Models in Precision Medicine. Biomedicines 2023; 11:2743. [PMID: 37893116 PMCID: PMC10604340 DOI: 10.3390/biomedicines11102743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/06/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
One of the major goals in the advancement of basic cancer research focuses on the development of new anticancer therapies. To understand the molecular mechanisms of cancer progression, acquired drug resistance, and the metastatic process, the use of preclinical in vitro models that faithfully summarize the properties of the tumor in patients is still a necessity. The tumor is represented by a diverse group of cell clones, and in recent years, to reproduce in vitro preclinical tumor models, monolayer cell cultures have been supplanted by patient-derived xenograft (PDX) models and cultured organoids derived from the patient (PDO). These models have proved indispensable for the study of the tumor microenvironment (TME) and its interaction with tumor cells. Prostate cancer (PCa) is the most common neoplasia in men in the world. It is characterized by genomic instability and resistance to conventional therapies. Despite recent advances in diagnosis and treatment, PCa remains a leading cause of cancer death. Here, we review the studies of the last 10 years as the number of papers is growing very fast in the field. We also discuss the discovered limitations and the new challenges in using the organoid culture system and in using PDXs in studying the prostate cancer phenotype, performing drug testing, and developing anticancer molecular therapies.
Collapse
Affiliation(s)
- Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Anna Perri
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Silvia Di Agostino
- Department of Health Sciences, Magna Græcia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
213
|
Voss G, Cassidy JR, Ceder Y. Functional consequences of A-to-I editing of miR-379 in prostate cancer cells. Sci Rep 2023; 13:16602. [PMID: 37789115 PMCID: PMC10547749 DOI: 10.1038/s41598-023-43775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/28/2023] [Indexed: 10/05/2023] Open
Abstract
Prostate cancer is the predominant cause of cancer in men, but there is still a lack of biomarkers and treatments for metastatic spread. The initial promise of microRNAs to provide avenues to solve these problems has been dampened by the realisation that microRNAs co-exist in multiple functionally distinct isoforms, for example due to A-to-I editing. We recently found that A-to-I-editing of microRNA-379 (miR-379) was associated with prostate cancer, and that only the unedited isoform was negatively correlated with aggressive disease. Here, we set out to decipher the biological effects of unedited and edited miR-379 in prostate cancer cells. After transfection of four different prostate cancer cell lines with isoform-specific miR-379 mimics, we performed assays for cell growth, colony formation, migration, cell-cell adhesion, and analysed epithelial-mesenchymal transition (EMT) and stemness markers. We found that unedited miR-379 affected cell growth, with a promoting function in androgen receptor (AR)-negative cells and an inhibiting effect in AR-positive cells. This is supported by our in silico analysis that found unedited miR-379 targets are predicted to be predominantly involved in cellular proliferation whereas the targets of edited miR-379 are not. We further found that both miR-379 isoforms could promote colony formation, migration, and cell-cell adhesion. Overall, our data suggests that editing of miR-379 attenuates the growth-suppressive function of unedited miR-379 in androgen-sensitive prostate cancer cells, thereby promoting tumor growth.
Collapse
Affiliation(s)
- Gjendine Voss
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - James R Cassidy
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Yvonne Ceder
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
214
|
Sahoo S, Ramu S, Nair MG, Pillai M, San Juan BP, Milioli HZ, Mandal S, Naidu CM, Mavatkar AD, Subramaniam H, Neogi AG, Chaffer CL, Prabhu JS, Somarelli JA, Jolly MK. Multi-modal transcriptomic analysis unravels enrichment of hybrid epithelial/mesenchymal state and enhanced phenotypic heterogeneity in basal breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.558960. [PMID: 37873432 PMCID: PMC10592858 DOI: 10.1101/2023.09.30.558960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Intra-tumoral phenotypic heterogeneity promotes tumor relapse and therapeutic resistance and remains an unsolved clinical challenge. It manifests along multiple phenotypic axes and decoding the interconnections among these different axes is crucial to understand its molecular origins and to develop novel therapeutic strategies to control it. Here, we use multi-modal transcriptomic data analysis - bulk, single-cell and spatial transcriptomics - from breast cancer cell lines and primary tumor samples, to identify associations between epithelial-mesenchymal transition (EMT) and luminal-basal plasticity - two key processes that enable heterogeneity. We show that luminal breast cancer strongly associates with an epithelial cell state, but basal breast cancer is associated with hybrid epithelial/mesenchymal phenotype(s) and higher phenotypic heterogeneity. These patterns were inherent in methylation profiles, suggesting an epigenetic crosstalk between EMT and lineage plasticity in breast cancer. Mathematical modelling of core underlying gene regulatory networks representative of the crosstalk between the luminal-basal and epithelial-mesenchymal axes recapitulate and thus elucidate mechanistic underpinnings of the observed associations from transcriptomic data. Our systems-based approach integrating multi-modal data analysis with mechanism-based modeling offers a predictive framework to characterize intra-tumor heterogeneity and to identify possible interventions to restrict it.
Collapse
Affiliation(s)
- Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Soundharya Ramu
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Madhumathy G Nair
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | - Maalavika Pillai
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
- Current affiliation: Feinberg School of Medicine, Northwestern University, Chicago, 60611, USA
| | - Beatriz P San Juan
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | | | - Susmita Mandal
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Chandrakala M Naidu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | - Apoorva D Mavatkar
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | - Harini Subramaniam
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Arpita G Neogi
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| | - Christine L Chaffer
- Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- University of New South Wales, UNSW Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore, 560012, India
| | | | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
215
|
Khan SU, Fatima K, Malik F, Kalkavan H, Wani A. Cancer metastasis: Molecular mechanisms and clinical perspectives. Pharmacol Ther 2023; 250:108522. [PMID: 37661054 DOI: 10.1016/j.pharmthera.2023.108522] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Metastatic progression combined with non-responsiveness towards systemic therapy often shapes the course of disease for cancer patients and commonly determines its lethal outcome. The complex molecular events that promote metastasis are a combination of both, the acquired pro-metastatic properties of cancer cells and a metastasis-permissive or -supportive tumor micro-environment (TME). Yet, dissemination is a challenging process for cancer cells that requires a series of events to enable cancer cell survival and growth. Metastatic cancer cells have to initially detach themselves from primary tumors, overcome the challenges of their intravasal journey and colonize distant sites that are suited for their metastases. The implicated obstacles including anoikis and immune surveillance, can be overcome by intricate intra- and extracellular signaling pathways, which we will summarize and discuss in this review. Further, emerging modulators of metastasis, like the immune-microenvironment, microbiome, sublethal cell death engagement, or the nervous system will be integrated into the existing working model of metastasis.
Collapse
Affiliation(s)
- Sameer Ullah Khan
- The University of Texas MD Anderson Cancer Center, Division of Genitourinary Medical Oncology, Holcombe Blvd, Houston, TX 77030, USA; Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India
| | - Kaneez Fatima
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India
| | - Fayaz Malik
- Division of Cancer Pharmacology, CSIR-Indian Institute of Integrative Medicine, Jammu and Kashmir, India; Academy of Scientific and Innovative Research (ASIR), Ghaziabad 201002, India.
| | - Halime Kalkavan
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany.
| | - Abubakar Wani
- St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN 38105, United States.
| |
Collapse
|
216
|
Sarogni P, Zamborlin A, Mapanao AK, Logghe T, Brancato L, van Zwol E, Menicagli M, Giannini N, Gonnelli A, Linsalata S, Colenbier R, Van den Bossche J, Paiar F, Bogers J, Voliani V. Hyperthermia Reduces Irradiation-Induced Tumor Repopulation in an In Vivo Pancreatic Carcinoma Model. Adv Biol (Weinh) 2023; 7:e2200229. [PMID: 36861331 DOI: 10.1002/adbi.202200229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 12/19/2022] [Indexed: 03/03/2023]
Abstract
Pancreatic cancer has a poor prognosis due to its aggressive nature and ability to metastasize at an early stage. Currently, its management is still a challenge because this neoplasm is resistant to conventional treatment approaches, among which is chemo-radiotherapy (CRT), due to the abundant stromal compartment involved in the mechanism of hypoxia. Hyperthermia, among other effects, counteracts hypoxia by promoting blood perfusion and thereby can enhance the therapeutic effect of radiotherapy (RT). Therefore, the establishment of integrated treatments would be a promising strategy for the management of pancreatic carcinoma. Here, the effects of joint radiotherapy/hyperthermia (RT/HT) on optimized chick embryo chorioallantoic membrane (CAM) pancreatic tumor models are investigated. This model enables a thorough assessment of the tumor-arresting effect of the combined approach as well as the quantitative evaluation of hypoxia and cell cycle-associated mechanisms by both gene expression analysis and histology. The analysis of the lower CAM allows to investigate the variation of the metastatic behaviors of the cancer cells associated with the treatments. Overall, this study provides a potentially effective combined strategy for the non-invasive management of pancreatic carcinoma.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Agata Zamborlin
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- NEST-Scuola Normale Superiore, Piazza San Silvestro 12, Pisa, 56127, Italy
| | - Ana Katrina Mapanao
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Center for Radiopharmaceutical Sciences, Paul Scherrer Institute, 5232 Villigen-PSI, Forschungsstrasse, Switzerland
| | - Tine Logghe
- ElmediX NV, Dellingstraat 34-1, Mechelen, 2800, Belgium
| | | | - Eke van Zwol
- ElmediX NV, Dellingstraat 34-1, Mechelen, 2800, Belgium
| | - Michele Menicagli
- Fondazione Pisana per la Scienza ONLUS, via Ferruccio Giovannini 13, S. Giuliano Terme, Pisa, 56017, Italy
| | - Noemi Giannini
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy
| | - Alessandra Gonnelli
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy
| | - Stefania Linsalata
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, 56126, Italy
| | - Robin Colenbier
- University of Antwerp, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerpen, 2610, Belgium
| | | | - Fabiola Paiar
- Radiation Oncology Unit, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Via Roma 67, 56126, Pisa, Italy
| | - Johannes Bogers
- ElmediX NV, Dellingstraat 34-1, Mechelen, 2800, Belgium
- University of Antwerp, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerpen, 2610, Belgium
| | - Valerio Voliani
- Center for Nanotechnology Innovation@NEST, Istituto Italiano di Tecnologia, Piazza San Silvestro 12, Pisa, 56127, Italy
- Department of Pharmacy, University of Genoa, Viale Cembrano, 4, Genoa, 16148, Italy
| |
Collapse
|
217
|
Ildiz ES, Gvozdenovic A, Kovacs WJ, Aceto N. Travelling under pressure - hypoxia and shear stress in the metastatic journey. Clin Exp Metastasis 2023; 40:375-394. [PMID: 37490147 PMCID: PMC10495280 DOI: 10.1007/s10585-023-10224-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/05/2023] [Indexed: 07/26/2023]
Abstract
Cancer cell invasion, intravasation and survival in the bloodstream are early steps of the metastatic process, pivotal to enabling the spread of cancer to distant tissues. Circulating tumor cells (CTCs) represent a highly selected subpopulation of cancer cells that tamed these critical steps, and a better understanding of their biology and driving molecular principles may facilitate the development of novel tools to prevent metastasis. Here, we describe key research advances in this field, aiming at describing early metastasis-related processes such as collective invasion, shedding, and survival of CTCs in the bloodstream, paying particular attention to microenvironmental factors like hypoxia and mechanical stress, considered as important influencers of the metastatic journey.
Collapse
Affiliation(s)
- Ece Su Ildiz
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Ana Gvozdenovic
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Werner J Kovacs
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland.
| |
Collapse
|
218
|
Dou R, Han L, Yang C, Fang Y, Zheng J, Liang C, Song J, Wei C, Huang G, Zhong P, Liu K, Peng Q, Peng C, Xiong B, Wang S. Upregulation of LINC00501 by H3K27 acetylation facilitates gastric cancer metastasis through activating epithelial-mesenchymal transition and angiogenesis. Clin Transl Med 2023; 13:e1432. [PMID: 37867401 PMCID: PMC10591115 DOI: 10.1002/ctm2.1432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND The molecular mechanism of the significant role of long noncoding RNAs (lncRNAs) in the progression and metastasis of gastric cancer (GC) remains largely elusive. Our objective is to detect overexpressed lncRNA in GC and investigate its role in promoting epithelial-mesenchymal transition and tumour microenvironment remodel. METHODS LncRNA differential expression profile in GC was analysed using RNA microarrays. The level of LINC00501 was evaluated in both GC patient tissues and GC cell lines by quantitative reverse transcription PCR and large-scale (n = 304) tissue microarray. To explore the biological role and regulatory driver of LINC00501 in GC, various experimental techniques including Chromatin isolation by RNA purification (ChIRP), RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP) assay, dual luciferase assays were performed. RESULTS Clinically, it was observed that LINC00501 level was abnormal overexpression in GC tissue and was associated with GC progression and distant metastasis. Gain and loss molecular biological experiments suggested that LINC00501, promoted EMT process and angiogenesis of GC. Mechanically, the enrichment of H3K27 acetylation in LINC00501 promoter region contributed to the increase of LINC00501 in GC. LINC00501 transactivated transcription of SLUG, by recruiting hnRNPR to its promoter. The growth of GC was inhibited both in vitro and in vivo by suppressing the level of LINC00501 using pharmacological intervention from the histone acetyltransferase (HAT) inhibitor -C646. CONCLUSIONS This study suggests that LINC00501 promotes GC progression via hnRNPR/SLUG pathway, which indicates a promising biomarker and target for GC.
Collapse
Affiliation(s)
- Rongzhang Dou
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Lei Han
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Yan Fang
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, China
| | - Jinsen Zheng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Chenxi Liang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Jialin Song
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Chen Wei
- Department of Internal Medicine, Affiliated Tumor Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Guoquan Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Panyi Zhong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Keshu Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Qian Peng
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Chunwei Peng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Bin Xiong
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| | - Shuyi Wang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Wuhan, Hubei, China
| |
Collapse
|
219
|
Feakins RM, Loughrey MB, Silver A. Buds, clusters, and transitions in 21st century colorectal carcinoma: revolution or reinvention? †. J Pathol 2023; 261:121-124. [PMID: 37565277 DOI: 10.1002/path.6173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Tumour budding (TB) describes single or small groups of neoplastic cells that lack continuity with an advancing tumour front. Poorly differentiated clusters (PDCs) are larger and qualitatively different. TB grade and PDCs may predict a worse outcome in colorectal carcinoma and other cancers and fall into the category of 'invasive front prognostic markers' that also includes intratumoural stroma type. Epithelial-mesenchymal transition (EMT) allows the adoption by epithelial cells of mesenchymal characteristics such as dyscohesion, migration, and stromal invasion. TB and PDCs harbor alterations in EMT-related proteins and RNAs and may be morphological manifestations of EMT. However, persistence of epithelioid features and absence of a full complement of typical alterations in TB and PDCs may indicate 'partial EMT', i.e. an intermediate/hybrid state. Recently, Pavlič et al asserted that TB and PDCs in colorectal cancer represent different manifestations of partial EMT and, perhaps controversially, that TB is closer than PDCs to complete transition. In clinical practice, low inter-observer agreement for invasive front prognostic markers is a potential problem. The UK colorectal cancer pathology dataset advises assessment of TB and recommends the use of an international consensus system, but time will tell if we are adopting reliable prognostic markers or reinventing the wheel. Additional studies of TB, PDCs, and EMT will presumably allow greater insight into their role in tumour development and progression. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Roger M Feakins
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
- University College London, London, UK
| | - Maurice B Loughrey
- Patrick G Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
- Department of Cellular Pathology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast, UK
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
220
|
Clarkson-Paredes C, Karl MT, Popratiloff A, Miller RH. A unique cell population expressing the Epithelial-Mesenchymal Transition-transcription factor Snail moderates microglial and astrocyte injury responses. PNAS NEXUS 2023; 2:pgad334. [PMID: 37901440 PMCID: PMC10612478 DOI: 10.1093/pnasnexus/pgad334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023]
Abstract
Insults to the central nervous system (CNS) elicit common glial responses including microglial activation evidenced by functional, morphological, and phenotypic changes, as well as astrocyte reactions including hypertrophy, altered process orientation, and changes in gene expression and function. However, the cellular and molecular mechanisms that initiate and modulate such glial response are less well-defined. Here we show that an adult cortical lesion generates a population of ultrastructurally unique microglial-like cells that express Epithelial-Mesenchymal Transcription factors including Snail. Knockdown of Snail with antisense oligonucleotides results in a postinjury increase in activated microglial cells, elevation in astrocyte reactivity with increased expression of C3 and phagocytosis, disruption of astrocyte junctions and neurovascular structure, increases in neuronal cell death, and reduction in cortical synapses. These changes were associated with alterations in pro-inflammatory cytokine expression. By contrast, overexpression of Snail through microglia-targeted an adeno-associated virus (AAV) improved many of the injury characteristics. Together, our results suggest that the coordination of glial responses to CNS injury is partly mediated by epithelial-mesenchymal transition-factors (EMT-Fsl).
Collapse
Affiliation(s)
- Cheryl Clarkson-Paredes
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street NW, Ross 735, Washington, DC 20052, USA
- Nanofabrication and Imaging Center, The George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Molly T Karl
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street NW, Ross 735, Washington, DC 20052, USA
| | - Anastas Popratiloff
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street NW, Ross 735, Washington, DC 20052, USA
- Nanofabrication and Imaging Center, The George Washington University, 800 22nd Street NW, Washington, DC 20052, USA
| | - Robert H Miller
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, George Washington University, 2300 Eye Street NW, Ross 735, Washington, DC 20052, USA
| |
Collapse
|
221
|
Freed IM, Kasi A, Fateru O, Hu M, Gonzalez P, Weatherington N, Pathak H, Hyter S, Sun W, Al-Rajabi R, Baranda J, Hupert ML, Chalise P, Godwin AK, A. Witek M, Soper SA. Circulating Tumor Cell Subpopulations Predict Treatment Outcome in Pancreatic Ductal Adenocarcinoma (PDAC) Patients. Cells 2023; 12:2266. [PMID: 37759489 PMCID: PMC10526802 DOI: 10.3390/cells12182266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/06/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
There is a high clinical unmet need to improve outcomes for pancreatic ductal adenocarcinoma (PDAC) patients, either with the discovery of new therapies or biomarkers that can track response to treatment more efficiently than imaging. We report an innovative approach that will generate renewed interest in using circulating tumor cells (CTCs) to monitor treatment efficacy, which, in this case, used PDAC patients receiving an exploratory new therapy, poly ADP-ribose polymerase inhibitor (PARPi)-niraparib-as a case study. CTCs were enumerated from whole blood using a microfluidic approach that affinity captures epithelial and mesenchymal CTCs using anti-EpCAM and anti-FAPα monoclonal antibodies, respectively. These antibodies were poised on the surface of two separate microfluidic devices to discretely capture each subpopulation for interrogation. The isolated CTCs were enumerated using immunophenotyping to produce a numerical ratio consisting of the number of mesenchymal to epithelial CTCs (denoted "Φ"), which was used as an indicator of response to therapy, as determined using computed tomography (CT). A decreasing value of Φ during treatment was indicative of tumor response to the PARPi and was observed in 88% of the enrolled patients (n = 31). Changes in Φ during longitudinal testing were a better predictor of treatment response than the current standard CA19-9. We were able to differentiate between responders and non-responders using ΔΦ (p = 0.0093) with higher confidence than CA19-9 (p = 0.033). For CA19-9 non-producers, ΔΦ correctly predicted the outcome in 72% of the PDAC patients. Sequencing of the gDNA extracted from affinity-selected CTC subpopulations provided information that could be used for patient enrollment into the clinical trial based on their tumor mutational status in DNA repair genes.
Collapse
Affiliation(s)
- Ian M. Freed
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA; (I.M.F.); (O.F.); (M.H.); (P.G.); (N.W.); (M.A.W.)
- Center of Bio-Modular Multiscale Systems for Precision Medicine (CBM), The University of Kansas, Lawrence, KS 66047, USA;
| | - Anup Kasi
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (W.S.); (R.A.-R.); (J.B.); (P.C.)
| | - Oluwadamilola Fateru
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA; (I.M.F.); (O.F.); (M.H.); (P.G.); (N.W.); (M.A.W.)
- Center of Bio-Modular Multiscale Systems for Precision Medicine (CBM), The University of Kansas, Lawrence, KS 66047, USA;
| | - Mengjia Hu
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA; (I.M.F.); (O.F.); (M.H.); (P.G.); (N.W.); (M.A.W.)
- Center of Bio-Modular Multiscale Systems for Precision Medicine (CBM), The University of Kansas, Lawrence, KS 66047, USA;
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.P.); (S.H.)
- Department of Cancer Biology, The University of Kansas Medical Center, Cancer Center, Kansas City, KS 66160, USA
| | - Phasin Gonzalez
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA; (I.M.F.); (O.F.); (M.H.); (P.G.); (N.W.); (M.A.W.)
- Center of Bio-Modular Multiscale Systems for Precision Medicine (CBM), The University of Kansas, Lawrence, KS 66047, USA;
| | - Nyla Weatherington
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA; (I.M.F.); (O.F.); (M.H.); (P.G.); (N.W.); (M.A.W.)
- Center of Bio-Modular Multiscale Systems for Precision Medicine (CBM), The University of Kansas, Lawrence, KS 66047, USA;
| | - Harsh Pathak
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.P.); (S.H.)
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Stephen Hyter
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.P.); (S.H.)
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Weijing Sun
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (W.S.); (R.A.-R.); (J.B.); (P.C.)
| | - Raed Al-Rajabi
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (W.S.); (R.A.-R.); (J.B.); (P.C.)
| | - Joaquina Baranda
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (W.S.); (R.A.-R.); (J.B.); (P.C.)
| | | | - Prabhakar Chalise
- Division of Medical Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA; (W.S.); (R.A.-R.); (J.B.); (P.C.)
| | - Andrew K. Godwin
- Center of Bio-Modular Multiscale Systems for Precision Medicine (CBM), The University of Kansas, Lawrence, KS 66047, USA;
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.P.); (S.H.)
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA; (I.M.F.); (O.F.); (M.H.); (P.G.); (N.W.); (M.A.W.)
- Center of Bio-Modular Multiscale Systems for Precision Medicine (CBM), The University of Kansas, Lawrence, KS 66047, USA;
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.P.); (S.H.)
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047, USA; (I.M.F.); (O.F.); (M.H.); (P.G.); (N.W.); (M.A.W.)
- Center of Bio-Modular Multiscale Systems for Precision Medicine (CBM), The University of Kansas, Lawrence, KS 66047, USA;
- Kansas Institute for Precision Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (H.P.); (S.H.)
- Department of Cancer Biology, The University of Kansas Medical Center, Cancer Center, Kansas City, KS 66160, USA
- BioFluidica, Inc., San Diego, CA 92121, USA;
- Bioengineering Program, The University of Kansas, Lawrence, KS 66045, USA
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
222
|
Zhang Y, Wang X, Duan X, Du T, Chen X. The synergistic effect of EMT regulators and m6A modification on prognosis-related immunological signatures for ovarian cancer. Sci Rep 2023; 13:14872. [PMID: 37684273 PMCID: PMC10491820 DOI: 10.1038/s41598-023-41554-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Recently, there has been growing interest among researchers in exploring the effects of epithelial-mesenchymal transformation (EMT) or N6-Methyladenosine (m6A) modification regulators on tumor development. However, the synergistic efficiency of these regulators in relation to ovarian cancer development remains unclear. This study aims to explore the transcription patterns of main regulators, including 19 EMT and 22 m6A, in ovarian cancer samples from TCGA datasets and normal samples from GTEx datasets. After conducting a LASSO regression analysis, ten prognostic signatures were identified, namely KIAA1429, WTAP, SNAI1, AXL, IGF2BP1, ELAVL1, CBLL1, CDH2, NANOG and ALKBH5. These signatures were found to have a comprehensive effect on immune infiltrating signatures and the final prognostic outcome. Next, utilizing the ssGSEA algorithm and conducting overall survival analyses, we have identified the key prognosis-related immunological signatures in ovarian cancer to be ALKBH5, WTAP, ELAVL1, and CDH2 as the regulators. The characteristic immune response and related genetic expression have revealed a significant correlation between the alteration of m6A regulators and EMT regulators, indicating a synergistic effect between these two factors in the development of ovarian cancer. In summary, our research offers a novel perspective and strategy to enhance the occurrence, progression, and prognosis of ovarian cancer.
Collapse
Affiliation(s)
- Yanna Zhang
- Department of Blood Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, People's Republic of China
| | - Xun Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China
| | - Xiaogang Duan
- Chengdu Eighth People's Hospital/Geriatric Hospital of Chengdu Medical College, Chengdu, 610000, Sichuan, People's Republic of China
| | - Ting Du
- Noncoding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu Medical College, Chengdu, 610000, Sichuan, People's Republic of China.
| | - Xiancheng Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
223
|
Wang W, Zheng Z, Lei J. CTC, ctDNA, and Exosome in Thyroid Cancers: A Review. Int J Mol Sci 2023; 24:13767. [PMID: 37762070 PMCID: PMC10530859 DOI: 10.3390/ijms241813767] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Thyroid cancer has become more common in recent years all around the world. Many issues still need to be urgently addressed in the diagnosis, treatment, and prognosis of thyroid cancer. Liquid biopsy (mainly circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), and circulating exosomes) may provide a novel and ideal approach to solve these issues, allows us to assess the features of diseases more comprehensively, and has a function in a variety of malignancies. Recently, liquid biopsy has been shown to be critical in thyroid cancer diagnosis, treatment, and prognosis in numerous previous studies. In this review, by testing CTCs, ctDNA, and exosomes, we focus on the possible clinical role of liquid biopsy in thyroid cancer, including diagnostic and prognostic biomarkers and response to therapy. We briefly review how liquid biopsy components have progressed in thyroid cancer by consulting the existing public information. We also discuss the clinical potential of liquid biopsy in thyroid cancer and provide a reference for liquid biopsy research. Liquid biopsy has the potential to be a useful tool in the early detection, monitoring, or prediction of response to therapies and prognosis in thyroid cancer, with promising clinical applications.
Collapse
Affiliation(s)
- Wenwen Wang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyao Zheng
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianyong Lei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
224
|
Lei PJ, Pereira ER, Andersson P, Amoozgar Z, Van Wijnbergen JW, O’Melia MJ, Zhou H, Chatterjee S, Ho WW, Posada JM, Kumar AS, Morita S, Menzel L, Chung C, Ergin I, Jones D, Huang P, Beyaz S, Padera TP. Cancer cell plasticity and MHC-II-mediated immune tolerance promote breast cancer metastasis to lymph nodes. J Exp Med 2023; 220:e20221847. [PMID: 37341991 PMCID: PMC10286805 DOI: 10.1084/jem.20221847] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 04/10/2023] [Accepted: 05/25/2023] [Indexed: 06/22/2023] Open
Abstract
Tumor-draining lymph nodes (TDLNs) are important for tumor antigen-specific T cell generation and effective anticancer immune responses. However, TDLNs are often the primary site of metastasis, causing immune suppression and worse outcomes. Through cross-species single-cell RNA-Seq analysis, we identified features defining cancer cell heterogeneity, plasticity, and immune evasion during breast cancer progression and lymph node metastasis (LNM). A subset of cancer cells in the lymph nodes exhibited elevated MHC class II (MHC-II) gene expression in both mice and humans. MHC-II+ cancer cells lacked costimulatory molecule expression, leading to regulatory T cell (Treg) expansion and fewer CD4+ effector T cells in TDLNs. Genetic knockout of MHC-II reduced LNM and Treg expansion, while overexpression of the MHC-II transactivator, Ciita, worsened LNM and caused excessive Treg expansion. These findings demonstrate that cancer cell MHC-II expression promotes metastasis and immune evasion in TDLNs.
Collapse
Affiliation(s)
- Pin-Ji Lei
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ethel R. Pereira
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Patrik Andersson
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Zohreh Amoozgar
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jan Willem Van Wijnbergen
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Meghan J. O’Melia
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Hengbo Zhou
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sampurna Chatterjee
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - William W. Ho
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jessica M. Posada
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Ashwin S. Kumar
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Harvard–MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Satoru Morita
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lutz Menzel
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Charlie Chung
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Ilgin Ergin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Dennis Jones
- Department of Pathology and Laboratory Medicine, School of Medicine, Boston University, Boston, MA, USA
| | - Peigen Huang
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Semir Beyaz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Timothy P. Padera
- Department of Radiation Oncology, Edwin L. Steele Laboratories, Massachusetts General Hospital Cancer Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
225
|
Cazzola A, Calzón Lozano D, Menne DH, Dávila Pedrera R, Liu J, Peña-Jiménez D, Fontenete S, Halin C, Perez-Moreno M. Lymph Vessels Associate with Cancer Stem Cells from Initiation to Malignant Stages of Squamous Cell Carcinoma. Int J Mol Sci 2023; 24:13615. [PMID: 37686421 PMCID: PMC10488284 DOI: 10.3390/ijms241713615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Tumor-associated lymph vessels and lymph node involvement are critical staging criteria in several cancers. In skin squamous cell carcinoma, lymph vessels play a role in cancer development and metastatic spread. However, their relationship with the cancer stem cell niche at early tumor stages remains unclear. To address this gap, we studied the lymph vessel localization at the cancer stem cell niche and observed an association from benign skin lesions to malignant stages of skin squamous cell carcinoma. By co-culturing lymphatic endothelial cells with cancer cell lines representing the initiation and promotion stages, and conducting RNA profiling, we observed a reciprocal induction of cell adhesion, immunity regulation, and vessel remodeling genes, suggesting dynamic interactions between lymphatic and cancer cells. Additionally, imaging analyses of the cultured cells revealed the establishment of heterotypic contacts between cancer cells and lymph endothelial cells, potentially contributing to the observed distribution and maintenance at the cancer stem cell niche, inducing downstream cellular responses. Our data provide evidence for an association of lymph vessels from the early stages of skin squamous cell carcinoma development, opening new avenues for better comprehending their involvement in cancer progression.
Collapse
Affiliation(s)
- Anna Cazzola
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - David Calzón Lozano
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Dennis Hirsch Menne
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Raquel Dávila Pedrera
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jingcheng Liu
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Daniel Peña-Jiménez
- Unidad de Investigación Biomédica, Universidad Alfonso X el Sabio (UAX), Avenida de la Universidad 1, Villanueva de la Cañada, 28691 Madrid, Spain
| | - Silvia Fontenete
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zurich, Switzerland;
| | - Mirna Perez-Moreno
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
226
|
Nojszewska N, Idilli O, Sarkar D, Ahouiyek Z, Arroyo-Berdugo Y, Sandoval C, Amin-Anjum MS, Bowers S, Greaves D, Saeed L, Khan M, Salti S, Al-Shami S, Topoglu H, Punzalan JK, Farias JG, Calle Y. Bone marrow mesenchymal/fibroblastic stromal cells induce a distinctive EMT-like phenotype in AML cells. Eur J Cell Biol 2023; 102:151334. [PMID: 37354622 DOI: 10.1016/j.ejcb.2023.151334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023] Open
Abstract
The development of epithelial-to-mesenchymal transition (EMT) like features is emerging as a critical factor involved in the pathogenesis of acute myeloid leukaemia (AML). However, the extracellular signals and the signalling pathways in AML that may regulate EMT remain largely unstudied. We found that the bone marrow (BM) mesenchymal/fibroblastic cell line HS5 induces an EMT-like migratory phenotype in AML cells. AML cells underwent a strong increase of vimentin (VIM) levels that was not mirrored to the same extent by changes of expression of the other EMT core proteins SNAI1 and SNAI2. We validated these particular pattern of co-expression of core-EMT markers in AML cells by performing an in silico analysis using datasets of human tumours. Our data showed that in AML the expression levels of VIM does not completely correlate with the co-expression of core EMT markers observed in epithelial tumours. We also found that vs epithelial tumours, AML cells display a distinct patterns of co-expression of VIM and the actin binding and adhesion regulatory proteins that regulate F-actin dynamics and integrin-mediated adhesions involved in the invasive migration in cells undergoing EMT. We conclude that the BM stroma induces an EMT related pattern of migration in AML cells in a process involving a distinctive regulation of EMT markers and of regulators of cell adhesion and actin dynamics that should be further investigated. Understanding the tumour specific signalling pathways associated with the EMT process may contribute to the development of new tailored therapies for AML as well as in different types of cancers.
Collapse
Affiliation(s)
- N Nojszewska
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - O Idilli
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - D Sarkar
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - Z Ahouiyek
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - Y Arroyo-Berdugo
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - C Sandoval
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - M S Amin-Anjum
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - S Bowers
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - D Greaves
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - L Saeed
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - M Khan
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - S Salti
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - S Al-Shami
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - H Topoglu
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - J K Punzalan
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK
| | - J G Farias
- Department of Chemical Engineering, Universidad de La Frontera, Temuco, Chile
| | - Y Calle
- School of Life and Health Sciences, University of Roehampton, London SW15 4JD, UK.
| |
Collapse
|
227
|
Zhu J, Chu P, Fu X. Unbalanced response to growth variations reshapes the cell fate decision landscape. Nat Chem Biol 2023; 19:1097-1104. [PMID: 36959461 DOI: 10.1038/s41589-023-01302-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/27/2023] [Indexed: 03/25/2023]
Abstract
The global regulation of cell growth rate on gene expression perturbs the performance of gene networks, which would impose complex variations on the cell-fate decision landscape. Here we use a simple synthetic circuit of mutual repression that allows a bistable landscape to examine how such global regulation would affect the stability of phenotypic landscape and the accompanying dynamics of cell-fate determination. We show that the landscape experiences a growth-rate-induced bifurcation between monostability and bistability. Theoretical and experimental analyses reveal that this bifurcating deformation of landscape arises from the unbalanced response of gene expression to growth variations. The path of growth transition across the bifurcation would reshape cell-fate decisions. These results demonstrate the importance of growth regulation on cell-fate determination processes, regardless of specific molecular signaling or regulation.
Collapse
Affiliation(s)
- Jingwen Zhu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pan Chu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiongfei Fu
- CAS Key Laboratory for Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
228
|
Tsai CY, Ko HJ, Chiou SJ, Lin XY, Chuang TH, Cheng JT, Su YF, Loh JK, Hong YR. GSKIP modulates cell aggregation through EMT/MET signaling rather than differentiation in SH-SY5Y human neuroblastoma cells. J Cell Commun Signal 2023; 17:1039-1054. [PMID: 37133713 PMCID: PMC10409706 DOI: 10.1007/s12079-023-00752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 04/18/2023] [Indexed: 05/04/2023] Open
Abstract
GSK3β interacting protein (GSKIP) is a small A-kinase anchor protein previously reported to mediate the N-cadherin/β-catenin pool for differentiation in SH-SY5Y cells through overexpression of GSKIP to present the neuron outgrowth phenotype. To further investigate how GSKIP functions in neurons, CRISPR/Cas9 technology was utilized to knock out GSKIP (GSKIP-KO) in SH-SY5Y. Several GSKIP-KO clones resulted in an aggregation phenotype and reduced cell growth without retinoic acid (RA) treatment. However, neuron outgrowth was still observed in GSKIP-KO clones treated with RA. The GSKIP-KO clones exhibited an aggregation phenotype through suppression of GSK3β/β-catenin pathways and cell cycle progression rather than cell differentiation. Gene set enrichment analysis indicated that GSKIP-KO was related to epithelial mesenchymal transition/mesenchymal epithelial transition (EMT/MET) and Wnt/β-catenin/cadherin signaling pathways, suppressing cell migration and tumorigenesis through the inhibition of Wnt/β-catenin mediated EMT/MET. Conversely, reintroduction of GSKIP into GSKIP-KO clones restored cell migration and tumorigenesis. Notably, phosphor-β-catenin (S675) and β-catenin (S552) but not phosphor-β-catenin (S33/S37/T41) translocated into the nucleus for further gene activation. Collectively, these results suggested that GSKIP may function as an oncogene to form an aggregation phenotype for cell survival in harsh environments through EMT/MET rather than differentiation in the GSKIP-KO of SH-SY5Y cells. GSKIP Implication in Signaling Pathways with Potential Impact on SHSY-5Y Cell Aggregation.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Huey-Jiun Ko
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Shean-Jaw Chiou
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Xin-Yi Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan
| | - Yu-Feng Su
- Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Joon-Khim Loh
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan.
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
229
|
Yang Y, Ma B, Djamshidi M, Zhang Q, Sarkar A, Chanda A, Tran U, Soh J, Sandall C, Chen HM, MacDonald JA, Bonni S, Sensen CW, Zheng J, Riabowol K. ING1 inhibits Twist1 expression to block EMT and is antagonized by the HDAC inhibitor vorinostat. Eur J Cell Biol 2023; 102:151341. [PMID: 37459799 DOI: 10.1016/j.ejcb.2023.151341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 09/22/2023] Open
Abstract
ING1 is a chromatin targeting subunit of the Sin3a histone deacetylase (HDAC) complex that alters chromatin structure to subsequently regulate gene expression. We find that ING1 knockdown increases expression of Twist1, Zeb 1&2, Snai1, Bmi1 and TSHZ1 drivers of EMT, promoting EMT and cell motility. ING1 expression had the opposite effect, promoting epithelial cell morphology and inhibiting basal and TGF-β-induced motility in 3D organoid cultures. ING1 binds the Twist1 promoter and Twist1 was largely responsible for the ability of ING1 to reduce cell migration. Consistent with ING1 inhibiting Twist1 expression in vivo, an inverse relationship between ING1 and Twist1 levels was seen in breast cancer samples from The Cancer Genome Atlas (TCGA). The HDAC inhibitor vorinostat is approved for treatment of multiple myeloma and cutaneous T cell lymphoma and is in clinical trials for solid tumours as adjuvant therapy. One molecular target of vorinostat is INhibitor of Growth 2 (ING2), that together with ING1 serve as targeting subunits of the Sin3a HDAC complex. Treatment with sublethal (LD25-LD50) levels of vorinostat promoted breast cancer cell migration several-fold, which increased further upon ING1 knockout. These observations indicate that correct targeting of the Sin3a HDAC complex, and HDAC activity in general decreases luminal and basal breast cancer cell motility, suggesting that use of HDAC inhibitors as adjuvant therapies in breast cancers that are prone to metastasize may not be optimal and requires further investigation.
Collapse
Affiliation(s)
- Yang Yang
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada; Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Biao Ma
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Mahbod Djamshidi
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Qingrun Zhang
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Anusi Sarkar
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Ayan Chanda
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Uyen Tran
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Jung Soh
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Christina Sandall
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Huey-Miin Chen
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Justin A MacDonald
- Libin Cardiovascular Institute of Alberta, Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Shirin Bonni
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada
| | | | - Jianhua Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, PR China
| | - Karl Riabowol
- Arnie Charbonneau Cancer Institute, Departments of Biochemistry and Molecular Biology and Oncology, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
230
|
Król W, Machelak W, Zielińska M. GDF11 as a friend or an enemy in the cancer biology? Biochim Biophys Acta Rev Cancer 2023; 1878:188944. [PMID: 37356738 DOI: 10.1016/j.bbcan.2023.188944] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/21/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
The Growth and Differential Factor 11 (GDF11) is a recently discovered representative of Transforming Growth Factor β superfamily. The highest expression of GDF11 is detected in the nervous system, bladder, seminal vesicles and muscles whereas the lowest in the testis, liver or breast. GDF11 role in physiology is still not clear. GDF11 is a crucial factor in embryogenesis, cell cycle control and apoptosis, inasmuch it mainly targets cell retain stemness features, managing to the cell differentiation and the maturation. GDF11 is entangled in lipid metabolism, inflammatory processes and aging. GDF11 is strongly related to carcinogenesis and its expression in tumors is intruded. GDF11 can promote cancer growth in the colon or inhibit the cell proliferation in breast cancer. The aberrated expression is probably allied with the impaired maturation. In this article we summarized an impact of GDF11 on the tumor cells and review the all attitudes connecting GDF11 with carcinogenesis.
Collapse
Affiliation(s)
- Wojciech Król
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Weronika Machelak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marta Zielińska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
231
|
Haerinck J, Goossens S, Berx G. The epithelial-mesenchymal plasticity landscape: principles of design and mechanisms of regulation. Nat Rev Genet 2023; 24:590-609. [PMID: 37169858 DOI: 10.1038/s41576-023-00601-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) enables cells to interconvert between several states across the epithelial-mesenchymal landscape, thereby acquiring hybrid epithelial/mesenchymal phenotypic features. This plasticity is crucial for embryonic development and wound healing, but also underlies the acquisition of several malignant traits during cancer progression. Recent research using systems biology and single-cell profiling methods has provided novel insights into the main forces that shape EMP, which include the microenvironment, lineage specification and cell identity, and the genome. Additionally, key roles have emerged for hysteresis (cell memory) and cellular noise, which can drive stochastic transitions between cell states. Here, we review these forces and the distinct but interwoven layers of regulatory control that stabilize EMP states or facilitate epithelial-mesenchymal transitions (EMTs) and discuss the therapeutic potential of manipulating the EMP landscape.
Collapse
Affiliation(s)
- Jef Haerinck
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Steven Goossens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Unit for Translational Research in Oncology, Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
232
|
Bailey P, Ridgway RA, Cammareri P, Treanor-Taylor M, Bailey UM, Schoenherr C, Bone M, Schreyer D, Purdie K, Thomson J, Rickaby W, Jackstadt R, Campbell AD, Dimonitsas E, Stratigos AJ, Arron ST, Wang J, Blyth K, Proby CM, Harwood CA, Sansom OJ, Leigh IM, Inman GJ. Driver gene combinations dictate cutaneous squamous cell carcinoma disease continuum progression. Nat Commun 2023; 14:5211. [PMID: 37626054 PMCID: PMC10457401 DOI: 10.1038/s41467-023-40822-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The molecular basis of disease progression from UV-induced precancerous actinic keratosis (AK) to malignant invasive cutaneous squamous cell carcinoma (cSCC) and potentially lethal metastatic disease remains unclear. DNA sequencing studies have revealed a massive mutational burden but have yet to illuminate mechanisms of disease progression. Here we perform RNAseq transcriptomic profiling of 110 patient samples representing normal sun-exposed skin, AK, primary and metastatic cSCC and reveal a disease continuum from a differentiated to a progenitor-like state. This is accompanied by the orchestrated suppression of master regulators of epidermal differentiation, dynamic modulation of the epidermal differentiation complex, remodelling of the immune landscape and an increase in the preponderance of tumour specific keratinocytes. Comparative systems analysis of human cSCC coupled with the generation of genetically engineered murine models reveal that combinatorial sequential inactivation of the tumour suppressor genes Tgfbr2, Trp53, and Notch1 coupled with activation of Ras signalling progressively drives cSCC progression along a differentiated to progenitor axis. Taken together we provide a comprehensive map of the cSCC disease continuum and reveal potentially actionable events that promote and accompany disease progression.
Collapse
Affiliation(s)
- Peter Bailey
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
- Department of Surgery, University of Heidelberg, Heidelberg, 69120, Germany.
- Section Surgical Research, University Clinic Heidelberg, Heidelberg, 69120, Germany.
| | | | - Patrizia Cammareri
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Mairi Treanor-Taylor
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- Edinburgh Medical School, University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | | | | | - Max Bone
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Daniel Schreyer
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Karin Purdie
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 1BB, UK
| | - Jason Thomson
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 1BB, UK
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK
| | - William Rickaby
- St John's Institute of Dermatology, St Thomas's Hospital, London, SE1 7EP, UK
| | - Rene Jackstadt
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
- German Cancer Research Centre (DKFZ), Heidelberg, 61920, Germany
| | | | - Emmanouil Dimonitsas
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital, Medical School, National and Kapodistrian University of Athens, Athens, 16121, Greece
| | - Alexander J Stratigos
- 1st Department of Dermatology and Venereology, Andreas Sygros Hospital, Medical School, National and Kapodistrian University of Athens, Athens, 16121, Greece
| | - Sarah T Arron
- Department of Dermatology, University of of California at San Francisco, San Francisco, CA, USA
| | - Jun Wang
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 1BB, UK
| | - Karen Blyth
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Charlotte M Proby
- Molecular and Clinical Medicine, School of Medicine, University of Dundee, Dundee, DD1 4HN, UK
| | - Catherine A Harwood
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 1BB, UK
- Department of Dermatology, Royal London Hospital, Barts Health NHS Trust, London, E1 1BB, UK
| | - Owen J Sansom
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK
| | - Irene M Leigh
- Faculty of Medicine and Dentistry, Queen Mary University of London, London, E1 1BB, UK.
| | - Gareth J Inman
- School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
- Cancer Research UK Beatson Institute, Glasgow, G61 1BD, UK.
| |
Collapse
|
233
|
Davies A, Zoubeidi A, Beltran H, Selth LA. The Transcriptional and Epigenetic Landscape of Cancer Cell Lineage Plasticity. Cancer Discov 2023; 13:1771-1788. [PMID: 37470668 PMCID: PMC10527883 DOI: 10.1158/2159-8290.cd-23-0225] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 06/09/2023] [Indexed: 07/21/2023]
Abstract
Lineage plasticity, a process whereby cells change their phenotype to take on a different molecular and/or histologic identity, is a key driver of cancer progression and therapy resistance. Although underlying genetic changes within the tumor can enhance lineage plasticity, it is predominantly a dynamic process controlled by transcriptional and epigenetic dysregulation. This review explores the transcriptional and epigenetic regulators of lineage plasticity and their interplay with other features of malignancy, such as dysregulated metabolism, the tumor microenvironment, and immune evasion. We also discuss strategies for the detection and treatment of highly plastic tumors. SIGNIFICANCE Lineage plasticity is a hallmark of cancer and a critical facilitator of other oncogenic features such as metastasis, therapy resistance, dysregulated metabolism, and immune evasion. It is essential that the molecular mechanisms of lineage plasticity are elucidated to enable the development of strategies to effectively target this phenomenon. In this review, we describe key transcriptional and epigenetic regulators of cancer cell plasticity, in the process highlighting therapeutic approaches that may be harnessed for patient benefit.
Collapse
Affiliation(s)
- Alastair Davies
- Oncology Research Discovery, Pfizer Worldwide Research and Development, San Diego, CA, USA
| | - Amina Zoubeidi
- Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Luke A. Selth
- Flinders Health and Medical Research Institute and Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, South Australia, 5042 Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, 5005 Australia
| |
Collapse
|
234
|
Pérez-González A, Bévant K, Blanpain C. Cancer cell plasticity during tumor progression, metastasis and response to therapy. NATURE CANCER 2023; 4:1063-1082. [PMID: 37537300 PMCID: PMC7615147 DOI: 10.1038/s43018-023-00595-y] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 06/01/2023] [Indexed: 08/05/2023]
Abstract
Cell plasticity represents the ability of cells to be reprogrammed and to change their fate and identity, enabling homeostasis restoration and tissue regeneration following damage. Cell plasticity also contributes to pathological conditions, such as cancer, enabling cells to acquire new phenotypic and functional features by transiting across distinct cell states that contribute to tumor initiation, progression, metastasis and resistance to therapy. Here, we review the intrinsic and extrinsic mechanisms driving cell plasticity that promote tumor growth and proliferation as well as metastasis and drug tolerance. Finally, we discuss how cell plasticity could be exploited for anti-cancer therapy.
Collapse
Affiliation(s)
- Andrea Pérez-González
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Kevin Bévant
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WELBIO, ULB, Bruxelles, Belgium.
| |
Collapse
|
235
|
Lengrand J, Pastushenko I, Vanuytven S, Song Y, Venet D, Sarate RM, Bellina M, Moers V, Boinet A, Sifrim A, Rama N, Ducarouge B, Van Herck J, Dubois C, Scozzaro S, Lemaire S, Gieskes S, Bonni S, Collin A, Braissand N, Allard J, Zindy E, Decaestecker C, Sotiriou C, Salmon I, Mehlen P, Voet T, Bernet A, Blanpain C. Pharmacological targeting of netrin-1 inhibits EMT in cancer. Nature 2023; 620:402-408. [PMID: 37532929 PMCID: PMC7615210 DOI: 10.1038/s41586-023-06372-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/26/2023] [Indexed: 08/04/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) regulates tumour initiation, progression, metastasis and resistance to anti-cancer therapy1-7. Although great progress has been made in understanding the role of EMT and its regulatory mechanisms in cancer, no therapeutic strategy to pharmacologically target EMT has been identified. Here we found that netrin-1 is upregulated in a primary mouse model of skin squamous cell carcinoma (SCC) exhibiting spontaneous EMT. Pharmacological inhibition of netrin-1 by administration of NP137, a netrin-1-blocking monoclonal antibody currently used in clinical trials in human cancer (ClinicalTrials.gov identifier NCT02977195 ), decreased the proportion of EMT tumour cells in skin SCC, decreased the number of metastases and increased the sensitivity of tumour cells to chemotherapy. Single-cell RNA sequencing revealed the presence of different EMT states, including epithelial, early and late hybrid EMT, and full EMT states, in control SCC. By contrast, administration of NP137 prevented the progression of cancer cells towards a late EMT state and sustained tumour epithelial states. Short hairpin RNA knockdown of netrin-1 and its receptor UNC5B in EPCAM+ tumour cells inhibited EMT in vitro in the absence of stromal cells and regulated a common gene signature that promotes tumour epithelial state and restricts EMT. To assess the relevance of these findings to human cancers, we treated mice transplanted with the A549 human cancer cell line-which undergoes EMT following TGFβ1 administration8,9-with NP137. Netrin-1 inhibition decreased EMT in these transplanted A549 cells. Together, our results identify a pharmacological strategy for targeting EMT in cancer, opening up novel therapeutic interventions for anti-cancer therapy.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- A549 Cells
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/pathology
- Cell Line, Tumor
- Disease Models, Animal
- Epithelial Cell Adhesion Molecule/metabolism
- Epithelial-Mesenchymal Transition/drug effects
- Neoplasm Metastasis/drug therapy
- Netrin Receptors/antagonists & inhibitors
- Netrin Receptors/deficiency
- Netrin Receptors/genetics
- Netrin-1/antagonists & inhibitors
- Netrin-1/deficiency
- Netrin-1/genetics
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- RNA-Seq
- Single-Cell Gene Expression Analysis
- Skin Neoplasms/drug therapy
- Skin Neoplasms/pathology
- Transforming Growth Factor beta1/pharmacology
- Xenograft Model Antitumor Assays
- Antibodies, Monoclonal, Humanized/pharmacology
Collapse
Affiliation(s)
- Justine Lengrand
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
- NETRIS Pharma, Lyon, France
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | - Ievgenia Pastushenko
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sebastiaan Vanuytven
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- Laboratory of Multi-omic Integrative Bioinformatics, Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Yura Song
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - David Venet
- Laboratory of Breast Cancer Translational Research J.-C. Heuson, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Rahul M Sarate
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Melanie Bellina
- NETRIS Pharma, Lyon, France
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | - Virginie Moers
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alice Boinet
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alejandro Sifrim
- Laboratory of Multi-omic Integrative Bioinformatics, Center for Human Genetics, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single-cell Omics, KU Leuven, Leuven, Belgium
| | - Nicolas Rama
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | | | - Jens Van Herck
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
| | - Christine Dubois
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Samuel Scozzaro
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sophie Lemaire
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sarah Gieskes
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Sophie Bonni
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Amandine Collin
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Jumet, Belgium
| | - Nicolas Braissand
- NETRIS Pharma, Lyon, France
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France
| | - Justine Allard
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Jumet, Belgium
| | - Egor Zindy
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Jumet, Belgium
| | - Christine Decaestecker
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Jumet, Belgium
- Laboratory of Image Synthesis and Analysis, Ecole Polytechnique-Université libre de Bruxelles (EPB-ULB), Gosselies, Belgium
| | - Christos Sotiriou
- Laboratory of Breast Cancer Translational Research J.-C. Heuson, Institut Jules Bordet, Hôpital Universitaire de Bruxelles (H.U.B), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Isabelle Salmon
- DIAPath, Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles (ULB), Jumet, Belgium
- Centre Universitaire Inter Régional d'Expertise en Anatomie pathologique Hospitalière (CurePath), Brussels, Belgium
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Patrick Mehlen
- NETRIS Pharma, Lyon, France.
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France.
| | - Thierry Voet
- Department of Human Genetics, University of Leuven, KU Leuven, Leuven, Belgium
- KU Leuven Institute for Single-cell Omics, KU Leuven, Leuven, Belgium
| | - Agnès Bernet
- NETRIS Pharma, Lyon, France.
- Laboratory Apoptosis, Cancer and Development, Equipe labellisee 'La Ligue', LabEx DEVweCAN, Institute PLAsCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Lyon, France.
| | - Cédric Blanpain
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WEL (Wallon ExceLlence) Research Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.
| |
Collapse
|
236
|
Katipally RR, Pitroda SP, Weichselbaum RR, Hellman S. Oligometastases: Characterizing the Role of Epigenetic Regulation of Epithelial-Mesenchymal Transition. Clin Cancer Res 2023; 29:2761-2766. [PMID: 37115507 PMCID: PMC10687742 DOI: 10.1158/1078-0432.ccr-23-0376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/30/2023] [Accepted: 04/25/2023] [Indexed: 04/29/2023]
Abstract
The "oligometastasis" hypothesis proposes that metastases exist as a spectrum and are not always disseminated. According to this theory, a subset of patients with metastatic disease could benefit from aggressive local therapies. However, the identification of patients most likely to exhibit an oligometastatic phenotype remains challenging. Recent literature focusing on basic and translational studies has identified novel epigenetic regulators of epithelial-mesenchymal transition (EMT) and the emergence of a spectrum of metastatic behavior. Herein, we review these scientific advances and suggest that the spectrum of metastatic virulence produced by these epigenetic mechanisms broadly contributes to the emergence of clinically evident "oligometastases." Epigenetic regulation of EMT programs can result in a spectrum of cell trajectories (e.g., quasi-mesenchymal and highly mesenchymal states) with differential propensity to develop metastases. We propose that quasi-mesenchymal cell states may be associated with a polymetastatic phenotype, whereas highly mesenchymal cell states may be associated with a more oligometastatic phenotype. The mechanisms governing epigenetic regulation of EMT and its array of intermediate states are multifaceted and may contribute to the development of the metastatic spectrum observed clinically. Within this context, translational studies that support the role of EMT and its epigenetic regulation are discussed. Continued translation of these mechanistic discoveries into novel biomarkers may help optimally select patients most likely to exhibit an oligometastatic phenotype and benefit from aggressive local therapies, such as surgery, radiotherapy, and other ablative procedures.
Collapse
Affiliation(s)
- Rohan R. Katipally
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, IL, USA
| | - Sean P. Pitroda
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, IL, USA
| | - Ralph R. Weichselbaum
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, IL, USA
| | - Samuel Hellman
- Department of Radiation and Cellular Oncology, University of Chicago Medicine, Chicago, IL, USA
| |
Collapse
|
237
|
Chen S, Du Y, Guan XY, Yan Q. The current status of tumor microenvironment and cancer stem cells in sorafenib resistance of hepatocellular carcinoma. Front Oncol 2023; 13:1204513. [PMID: 37576900 PMCID: PMC10412930 DOI: 10.3389/fonc.2023.1204513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous and aggressive liver cancer that presents limited treatment options. Despite being the standard therapy for advanced HCC, sorafenib frequently encounters resistance, emphasizing the need to uncover the underlying mechanisms and develop effective treatments. This comprehensive review highlights the crucial interplay between the tumor microenvironment, cancer stem cells (CSCs), and epithelial-mesenchymal transition (EMT) in the context of sorafenib resistance. The tumor microenvironment, encompassing hypoxia, immune cells, stromal cells, and exosomes, exerts a significant impact on HCC progression and therapy response. Hypoxic conditions and immune cell infiltration create an immunosuppressive milieu, shielding tumor cells from immune surveillance and hindering therapeutic efficacy. Additionally, the presence of CSCs emerges as a prominent contributor to sorafenib resistance, with CD133+ CSCs implicated in drug resistance and tumor initiation. Moreover, CSCs undergo EMT, a process intimately linked to tumor progression, CSC activation, and further promotion of sorafenib resistance, metastasis, and tumor-initiating capacity. Elucidating the correlation between the tumor microenvironment, CSCs, and sorafenib resistance holds paramount importance in the quest to develop reliable biomarkers capable of predicting therapeutic response. Novel therapeutic strategies must consider the influence of the tumor microenvironment and CSC activation to effectively overcome sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Siqi Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Du
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qian Yan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
238
|
He Y, Zhang Q, Chen Y, Wu Y, Quan Y, Chen W, Yao J, Zhang P. ZHX2 deficiency enriches hybrid MET cells through regulating E-cadherin expression. Cell Death Dis 2023; 14:444. [PMID: 37460540 DOI: 10.1038/s41419-023-05974-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/18/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
Growing evidence indicates that the epithelial to mesenchymal (E/M) hybrid state plays a key role in tumorigenesis. Importantly, a hybrid mesenchymal to epithelial transition (MET) state in which individual cells express both epithelial and mesenchymal markers was recently identified in vivo, further strengthening the bonds between the hybrid EMT state and cancer progression. However, the role and the molecular mechanisms by which the hybrid MET state is maintained in triple-negative breast cancer cells (TNBC) remain elusive. Here, we find that loss of ZHX2 expression results in the hybrid MET phenotype in mesenchymal TNBC cells. Mechanistically, through directly binding to the CDH1 promoter, depletion of ZHX2 specifically reactivates expression of CDH1 encoding E-cadherin, an epithelial marker that is crucial for maintaining epithelial phenotype. Functionally, loss of ZHX2 expression enriches the hybrid MET cells and inhibits the migration and dissemination of TNBC cells or organoids, which could be reversed by restoration of E-cadherin. Moreover, depletion of ZHX2 suppresses lung metastasis in preclinical models of TNBC. In patients with TNBC, ZHX2 expression was amplified and negatively correlated with the expression of E-cadherin. These findings suggest that loss of ZHX2 promotes the hybrid MET state to impair TNBC progression.
Collapse
Affiliation(s)
- Yan He
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qimin Zhang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhong Chen
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yingjian Wu
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Quan
- Stem Cell Laboratory, the Second Affiliated Hospital, Fujian Medical University, Quanzhou, China.
| | - Weihua Chen
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peijing Zhang
- National Engineering Research Center for Nanomedicine, Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Department of Oncology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
239
|
Shen X, Jin X, Fang S, Chen J. EFEMP2 upregulates PD-L1 expression via EGFR/ERK1/2/c-Jun signaling to promote the invasion of ovarian cancer cells. Cell Mol Biol Lett 2023; 28:53. [PMID: 37420173 DOI: 10.1186/s11658-023-00471-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Fibulin-like extracellular matrix protein 2 (EFEMP2) has been reported to be related to the progression of various cancers. We have previously reported that EFEMP2 was highly expressed in ovarian cancer and was strongly associated with poor prognosis in patients. This study intends to further explore its interacting proteins and possible downstream signaling pathways. METHOD The expression of EFEMP2 was detected by RT-qPCR, ICC and western blot in 4 kinds of ovarian cancer cells with different migration and invasion ability. Cell models with strong or weak EFEMP2 expression were constructed by lentivirus transfection. The effects of the down-regulation and up-regulation of EFEMP2 on the biological behavior of ovarian cancer cells were studied through in-vitro and in-vivo functional tests. The phosphorylation pathway profiling array and KEGG database analyses identified the downstream EGFR/ERK1/2/c-Jun signaling pathway and the programmed death-1 (PD-L1) pathway enrichment. Additionally, the protein interaction between EFEMP2 and EGFR was detected by immunoprecipitation. RESULT EFEMP2 was positively correlated with the invasion ability of ovarian cancer cells, its down-regulation inhibited the migrative, invasive and cloning capacity of cancer cells in vitro and suppressed the tumor proliferation and intraperitoneal diffusion in vivo, while its up-regulation did the opposite. Moreover, EFEMP2 could bind to EGFR to induce PD-L1 regulation in ovarian cancer, which was caused by the activation of EGFR/ERK1/2/c-Jun signaling. Similar to EFEMP2, PD-L1 was also highly expressed in aggressive cells and had the ability to promote the invasion and metastasis of ovarian cancer cells both in vitro and in vivo, and PD-L1 upregulation was partly caused by EFEMP2 activation. Afatinib combined with trametinib had an obvious effect of inhibiting the intraperitoneal diffusion of ovarian cancer cells, especially in the group with low expression of EFEMP2, while overexpression of PD-L1 could reverse this phenomenon. CONCLUSION EFEMP2 could bind to EGFR to activate ERK1/2/c-Jun pathway and regulate PD-L1 expression, furthermore PD-L1 was extremely essential for EFEMP2 to promote ovarian cancer cells invasion and dissemination in vitro and in vivo. Targeted therapy against the source gene EFEMP2 is our future research direction, which may better inhibit the invasion and metastasis of ovarian cancer cells.
Collapse
Affiliation(s)
- Xin Shen
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Xuli Jin
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Shuang Fang
- Jinan Medical Center Management Committee, Jinan, 250000, China
| | - Jie Chen
- Department of Maternal and Child Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
240
|
O'Connell I, Dongre A. Immune Checkpoint Blockade Therapy for Breast Cancer: Lessons from Epithelial-Mesenchymal Transition. Mol Diagn Ther 2023; 27:433-444. [PMID: 37193859 PMCID: PMC10299941 DOI: 10.1007/s40291-023-00652-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 05/18/2023]
Abstract
Immune checkpoint blockade therapies have generated efficacious responses in certain tumor types; however, the responses of breast carcinomas have been largely limited. Moreover, the identity of various parameters that can predict responses to immunotherapies, and at the same time, serve as putative biomarkers that can be therapeutically targeted to enhance the effectiveness of immunotherapies for breast cancers, remains to be comprehensively delineated. Activation of epithelial-mesenchymal plasticity in cancer cells, including those of the breast, increases their tumor-initiating potential and promotes their aggressiveness and resistance to multiple treatment regimens. Moreover, the residence of cancer cells in alternating epithelial or mesenchymal plastic phenotypic states can also influence their immuno-modulatory properties and susceptibilities to immune checkpoint blockade therapies. In this current opinion, we discuss the lessons that can be learnt from epithelial-mesenchymal transition to potentiate the efficacy of immunotherapy for breast cancers. We also discuss strategies to sensitize more-mesenchymal cancer cells to anti-tumor immunity and immune checkpoint blockade therapies, with the hope that these can serve as new translational avenues for the treatment of human breast tumors.
Collapse
Affiliation(s)
- Isabel O'Connell
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, T7-012A VRT, 930 Campus Road, Ithaca, NY, 14853, USA
| | - Anushka Dongre
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, T7-012A VRT, 930 Campus Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
241
|
Wang H, Chen X, Jin Y, Liu T, Song Y, Zhu X, Zhu X. The role of DYNLT3 in breast cancer proliferation, migration, and invasion via epithelial-to-mesenchymal transition. Cancer Med 2023; 12:15289-15303. [PMID: 37260179 PMCID: PMC10417059 DOI: 10.1002/cam4.6173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023] Open
Abstract
PURPOSE DYNLT3 is identified as an age-related gene. Nevertheless, the specific mechanism of its carcinogenesis in breast tumor has not been clarified. This research aims to elucidate the role and the underlying molecular pathways of DYNLT3 on breast cancer tumorigenesis. METHODS The differential expression of DYNLT3 among breast cancer, breast fibroids, and normal tissues, as well as in various breast cancer cell lines were detected by immunohistochemical staining, real-time quantitative reverse transcription-PCR and Western blotting, respectively. Additionally, the role of DYNLT3 on cell viability and proliferation were observed through cell counting kit-8, bromodeoxyuridine, and colony formation experiments. Migratory and invasive abilities was envaulted by wound healing and Transwell methods. Apoptotic cells rate was examined by flow cytometry. Furthermore, nude mice xenograft models were established to confirm the role of DYNLT3 in tumor formation in vivo. RESULTS DYNLT3 expression was highly rising in both breast cancer tissues and cells. DYNLT3 knockdown obviously suppressed cell growth, migration and invasion, and induced cell apoptosis in MDA-MB-231 and MCF-7 breast cancer cells. The overexpression of DYNLT3 exerted the opposite effect in MDA-MB-231 cells. Moreover, DYNLT3 knockdown inhibited tumor formation in vivo. Mechanistically, an elevation of N-cadherin and vimentin levels and a decline of E-cadherin were observed when DYNLT3 was upregulated, which was reversed when DYNLT3 knockdown was performed. CONCLUSION DYNLT3 may function as a tumor-promotor of age-associated breast cancer, which is expected to provide experimental basis for new treatment options.
Collapse
Affiliation(s)
- Han Wang
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xin Chen
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yanshan Jin
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Tingxian Liu
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Yizuo Song
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xuejie Zhu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| | - Xueqiong Zhu
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina
| |
Collapse
|
242
|
Zhang Y, Luo L, Fu C, Hu W, Li Y, Xiong J. CDC23 knockdown suppresses the proliferation, migration and invasion of liver cancer via the EMT process. Oncol Lett 2023; 26:291. [PMID: 37274472 PMCID: PMC10236262 DOI: 10.3892/ol.2023.13877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/29/2023] [Indexed: 06/06/2023] Open
Abstract
Liver cancer (LC) is a malignant tumour that is associated with high mortality rates worldwide. Cell division cycle 23 (CDC23) acts as an oncogene in papillary thyroid cancer. In addition, epithelial-mesenchymal transition (EMT) is frequently involved in the malignant metastasis of various cancer types. Therefore, we hypothesized that CDC23 may regulate the malignant biological behaviours of LC cells through EMT. Proliferation, colony formation and Transwell assays, western blotting and xenograft experiments were performed. The results of the present study showed that CDC23 was highly expressed in LC cell lines. In addition, it was found via multiple in vitro assays that CDC23 knockdown reduced the proliferation, migration and invasion of LC cell lines. Finally, an in vivo study confirmed that CDC23 knockdown inhibited the growth of xenograft LC in nude mice. More importantly, the changes in the levels of EMT-related marker proteins were analysed in the sh-CDC23 group compared with the sh-NC group of cells and xenografts. E-cadherin was upregulated, and N-cadherin and vimentin were significantly downregulated after CDC23 silencing. Taken together, these results revealed that the knockdown of CDC23 inhibits the progression of LC by regulating EMT and that CDC23 may be a novel therapeutic target for LC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lianghua Luo
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chengchao Fu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wang Hu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yong Li
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jianbo Xiong
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
- Laboratory of Digestive Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
243
|
Sample RA, Nogueira MF, Mitra RD, Puram SV. Epigenetic regulation of hybrid epithelial-mesenchymal cell states in cancer. Oncogene 2023; 42:2237-2248. [PMID: 37344626 PMCID: PMC10578205 DOI: 10.1038/s41388-023-02749-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process by which cells lose their epithelial characteristics and gain mesenchymal phenotypes. In cancer, EMT is thought to drive tumor invasion and metastasis. Recent efforts to understand EMT biology have uncovered that cells undergoing EMT attain a spectrum of intermediate "hybrid E/M" states, which exist along an epithelial-mesenchymal continuum. Here, we summarize recent studies characterizing the epigenetic drivers of hybrid E/M states. We focus on the histone-modification writers, erasers, and readers that assist or oppose the canonical hybrid E/M transcription factors that modulate hybrid E/M state transitions. We also examine the role of chromatin remodelers and DNA methylation in hybrid E/M states. Finally, we highlight the challenges of targeting hybrid E/M pharmacologically, and we propose future directions that might reveal the specific and targetable mechanisms by which hybrid E/M drives metastasis in patients.
Collapse
Affiliation(s)
- Reilly A Sample
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Marina F Nogueira
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Sidharth V Puram
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
244
|
Gao X, Yu Y, Wang H, Liu G, Sun X, Wang Z, Jiang X. Emerging roles of circ_NRIP1 in tumor development and cancer therapy (Review). Oncol Lett 2023; 26:321. [PMID: 37332333 PMCID: PMC10272956 DOI: 10.3892/ol.2023.13907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 05/15/2023] [Indexed: 06/20/2023] Open
Abstract
Circular RNA (circRNA) is a class of endogenous non-coding RNA, a type of single-stranded covalently closed RNA molecule formed by alternative splicing of exons or introns. Previous studies have demonstrated that circRNA participates in modulating biological processes such as cell proliferation, differentiation and apoptosis, and plays key roles in tumor occurrence and development. CircRNA nuclear receptor interacting protein 1 (circ_NRIP1), a form of circRNA, is abnormally expressed in certain human tumor types. It is present at a higher abundance compared with cognate linear transcripts and can regulate malignant biological behaviors such as tumor proliferation, invasion and migration, revealing a currently unexplored frontier in cancer progression. The present review presents a pattern of circ_NRIP1 expression in various malignant tumor types and highlights its significance in cancer development, in addition to its potential as a disease indicator or future therapeutic agent.
Collapse
Affiliation(s)
- Xin Gao
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yongbo Yu
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Haicun Wang
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Guanglin Liu
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xinyu Sun
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zhidong Wang
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xingming Jiang
- General Surgery Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
245
|
Sanchez-Sandoval AL, Hernández-Plata E, Gomora JC. Voltage-gated sodium channels: from roles and mechanisms in the metastatic cell behavior to clinical potential as therapeutic targets. Front Pharmacol 2023; 14:1206136. [PMID: 37456756 PMCID: PMC10348687 DOI: 10.3389/fphar.2023.1206136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
During the second half of the last century, the prevalent knowledge recognized the voltage-gated sodium channels (VGSCs) as the proteins responsible for the generation and propagation of action potentials in excitable cells. However, over the last 25 years, new non-canonical roles of VGSCs in cancer hallmarks have been uncovered. Their dysregulated expression and activity have been associated with aggressive features and cancer progression towards metastatic stages, suggesting the potential use of VGSCs as cancer markers and prognostic factors. Recent work has elicited essential information about the signalling pathways modulated by these channels: coupling membrane activity to transcriptional regulation pathways, intracellular and extracellular pH regulation, invadopodia maturation, and proteolytic activity. In a promising scenario, the inhibition of VGSCs with FDA-approved drugs as well as with new synthetic compounds, reduces cancer cell invasion in vitro and cancer progression in vivo. The purpose of this review is to present an update regarding recent advances and ongoing efforts to have a better understanding of molecular and cellular mechanisms on the involvement of both pore-forming α and auxiliary β subunits of VGSCs in the metastatic processes, with the aim at proposing VGSCs as new oncological markers and targets for anticancer treatments.
Collapse
Affiliation(s)
- Ana Laura Sanchez-Sandoval
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Medicina Genómica, Hospital General de México “Dr Eduardo Liceaga”, Mexico City, Mexico
| | - Everardo Hernández-Plata
- Consejo Nacional de Humanidades, Ciencias y Tecnologías and Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
246
|
Saini M, Schmidleitner L, Moreno HD, Donato E, Falcone M, Bartsch JM, Klein C, Vogel V, Würth R, Pfarr N, Espinet E, Lehmann M, Königshoff M, Reitberger M, Haas S, Graf E, Schwarzmayr T, Strom TM, Spaich S, Sütterlin M, Schneeweiss A, Weichert W, Schotta G, Reichert M, Aceto N, Sprick MR, Trumpp A, Scheel CH. Resistance to mesenchymal reprogramming sustains clonal propagation in metastatic breast cancer. Cell Rep 2023; 42:112533. [PMID: 37257449 DOI: 10.1016/j.celrep.2023.112533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/04/2022] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
The acquisition of mesenchymal traits is considered a hallmark of breast cancer progression. However, the functional relevance of epithelial-to-mesenchymal transition (EMT) remains controversial and context dependent. Here, we isolate epithelial and mesenchymal populations from human breast cancer metastatic biopsies and assess their functional potential in vivo. Strikingly, progressively decreasing epithelial cell adhesion molecule (EPCAM) levels correlate with declining disease propagation. Mechanistically, we find that persistent EPCAM expression marks epithelial clones that resist EMT induction and propagate competitively. In contrast, loss of EPCAM defines clones arrested in a mesenchymal state, with concomitant suppression of tumorigenicity and metastatic potential. This dichotomy results from distinct clonal trajectories impacting global epigenetic programs that are determined by the interplay between human ZEB1 and its target GRHL2. Collectively, our results indicate that susceptibility to irreversible EMT restrains clonal propagation, whereas resistance to mesenchymal reprogramming sustains disease spread in multiple models of human metastatic breast cancer, including patient-derived cells in vivo.
Collapse
Affiliation(s)
- Massimo Saini
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany; Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland.
| | - Laura Schmidleitner
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany; Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Center for Functional Protein Assemblies (CPA), Technical University of Munich (TUM), Garching, Germany; Center for Organoid Systems (COS), Technical University of Munich (TUM), Garching, Germany; Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), Garching, Germany
| | - Helena Domínguez Moreno
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilian University of Munich (LMU), Munich, Germany
| | - Elisa Donato
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Mattia Falcone
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Johanna M Bartsch
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany
| | - Corinna Klein
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Vanessa Vogel
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Roberto Würth
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Nicole Pfarr
- Institute of Pathology, Technical University of Munich (TUM), Munich, Germany
| | - Elisa Espinet
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Mareike Lehmann
- Institute for Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC), Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Munich, Germany; Institute for Lung Research, Philipps-University Marburg, Member of the German Center for Lung Research (DZL), Marburg, Germany
| | - Melanie Königshoff
- Research Unit Lung Repair and Regeneration, Helmholtz Center Munich, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Manuel Reitberger
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Simon Haas
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Thomas Schwarzmayr
- Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Tim-Matthias Strom
- Institute of Human Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Saskia Spaich
- Department of Gynaecology and Obstetrics, University Women's Clinic, University Medical Centre Mannheim, Mannheim, Germany
| | - Marc Sütterlin
- Department of Gynaecology and Obstetrics, University Women's Clinic, University Medical Centre Mannheim, Mannheim, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, University Hospital and German Cancer Research Center, Heidelberg, Germany
| | - Wilko Weichert
- Institute of Pathology, Technical University of Munich (TUM), Munich, Germany; German Cancer Consortium (DKTK), Germany
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilian University of Munich (LMU), Munich, Germany
| | - Maximilian Reichert
- Translational Pancreatic Cancer Research Center, Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Center for Functional Protein Assemblies (CPA), Technical University of Munich (TUM), Garching, Germany; Center for Organoid Systems (COS), Technical University of Munich (TUM), Garching, Germany; Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), Garching, Germany; German Cancer Consortium (DKTK), Germany
| | - Nicola Aceto
- Department of Biology, Institute of Molecular Health Sciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - Martin R Sprick
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; German Cancer Consortium (DKTK), Germany.
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), and DKFZ-ZMBH Alliance, Heidelberg, Germany; Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany; German Cancer Consortium (DKTK), Germany.
| | - Christina H Scheel
- Institute of Stem Cell Research, Helmholtz Center Munich, Neuherberg, Germany.
| |
Collapse
|
247
|
Subramani A, Cui W, Zhang Y, Friman T, Zhao Z, Huang W, Fonseca P, Lui WO, Narayanan V, Bobrowska J, Lekka M, Yan J, Conway DE, Holmgren L. Modulation of E-Cadherin Function through the AmotL2 Isoforms Promotes Ameboid Cell Invasion. Cells 2023; 12:1682. [PMID: 37443716 PMCID: PMC10340588 DOI: 10.3390/cells12131682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
The spread of tumor cells and the formation of distant metastasis remain the main causes of mortality in cancer patients. However, the mechanisms governing the release of cells from micro-environmental constraints remain unclear. E-cadherin negatively controls the invasion of epithelial cells by maintaining cell-cell contacts. Furthermore, the inactivation of E-cadherin triggers invasion in vitro. However, the role of E-cadherin is complex, as metastasizing cells maintain E-cadherin expression, which appears to have a positive role in the survival of tumor cells. In this report, we present a novel mechanism delineating how E-cadherin function is modulated to promote invasion. We have previously shown that E-cadherin is associated with p100AmotL2, which is required for radial actin formation and the transmission of mechanical force. Here, we present evidence that p60AmotL2, which is expressed in invading tumor cells, binds to the p100AmotL2 isoform and uncouples the mechanical constraint of radial actin filaments. We show for the first time that the coupling of E-cadherin to the actin cytoskeleton via p100AmotL2 is directly connected to the nuclear membrane. The expression of p60AmotL2 inactivates this connection and alters the properties of the nuclear lamina, potentiating the invasion of cells into micropores of the extracellular matrix. In summary, we propose that the balance of the two AmotL2 isoforms is important in the modulation of E-cadherin function and that an imbalance of this axis promotes ameboid cell invasion.
Collapse
Affiliation(s)
- Aravindh Subramani
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Weiyingqi Cui
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Yuanyuan Zhang
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Tomas Friman
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Zhihai Zhao
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore; (Z.Z.); (W.H.); (J.Y.)
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Wenmao Huang
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore; (Z.Z.); (W.H.); (J.Y.)
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Pedro Fonseca
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Weng-Onn Lui
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| | - Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA; (V.N.); (D.E.C.)
| | - Justyna Bobrowska
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (J.B.); (M.L.)
| | - Małgorzata Lekka
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krakow, Poland; (J.B.); (M.L.)
| | - Jie Yan
- Department of Physics, Faculty of Science: 2 Science Drive 3, S7-01-10, Lower Kent Ridge Road, Singapore 117542, Singapore; (Z.Z.); (W.H.); (J.Y.)
- Mechanobiology Institute (MBI): T-Lab, #10-02, 5A Engineering Drive 1, National University of Singapore, Singapore 117411, Singapore
| | - Daniel E. Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, 401 West Main Street, Richmond, VA 23284, USA; (V.N.); (D.E.C.)
| | - Lars Holmgren
- Department of Oncology and Pathology, U2, Bioclinicum J6:20, Solnavägen 30 Karolinska Institutet, Solna, 171 64 Stockholm, Sweden; (A.S.); (W.C.); (Y.Z.); (T.F.); (P.F.); (W.-O.L.)
| |
Collapse
|
248
|
Liu H, Li Z, Zhang L, Zhang M, Liu S, Wang J, Yang C, Peng Q, Du C, Jiang N. Necroptosis-Related Prognostic Model for Pancreatic Carcinoma Reveals Its Invasion and Metastasis Potential through Hybrid EMT and Immune Escape. Biomedicines 2023; 11:1738. [PMID: 37371833 DOI: 10.3390/biomedicines11061738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Necroptosis, pro-inflammatory programmed necrosis, has been reported to exert momentous roles in pancreatic cancer (PC). Herein, the objective of this study is to construct a necroptosis-related prognostic model for detecting pancreatic cancer. In this study, the intersection between necroptosis-related genes and differentially expressed genes (DEGs) of pancreatic ductal adenocarcinoma (PDAC) was obtained based on GeneCards database, GEO database (GSE28735 and GSE15471), and verified using The Cancer Genome Atlas (TCGA). Next, a prognostic model with Cox and LASSO regression analysis, and divided the patients into high-risk and low-risk groups. Subsequently, the Kaplan-Meier (KM) survival curve and the receiver operating characteristic (ROC) curves were generated to assess the predictive ability of overall survival (OS) of PC patients. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to predict the potential biofunction and possible mechanical pathways. The EMTome database and an immune analysis were applied to further explore underlying mechanism. Finally, clinical samples of PDAC patients were utilized to verify the expression of model genes via immunohistochemistry (IHC), and the normal human pancreatic ductal cell line, hTERT-HPNE as well as human pancreatic ductal carcinoma cell lines, PANC-1 and PL45, were used to identify the levels of model genes by Western blot (WB) and immunofluorescence (IF) in vitro. The results showed that 13 necroptosis-related DEGs (NRDEGs) were screened based on GEO database, and finally four of five prognostic genes, including KRT7, KRT19, IGF2BP3, CXCL5, were further identified by TCGA to successfully construct a prognostic model. Univariate and multivariate Cox analysis ultimately confirmed that this prognostic model has independent prognostic significance, KM curve suggested that the OS of low-risk group was longer than high-risk group, and the area under receiver (AUC) of ROC for 1, 3, 5 years was 0.733, 0.749 and 0.667, respectively. A GO analysis illustrated that model genes may participate in cell-cell junction, cadherin binding, cell adhesion molecule binding, and neutrophil migration and chemotaxis, while KEGG showed involvement in PI3K-Akt signaling pathway, ECMreceptor interaction, IL-17 signaling pathway, TNF signaling pathway, etc. Moreover, our results showed KRT7 and KRT19 were closely related to EMT markers, and EMTome database manifested that KRT7 and KRT19 are highly expressed in both primary and metastatic pancreatic cancer, declaring that model genes promoted invasion and metastasis potential through EMT. In addition, four model genes were positively correlated with Th2, which has been reported to take part in promoting immune escape, while model genes except CXCL5 were negatively correlated with TFH cells, indicating that model genes may participate in immunity. Additionally, IHC results showed that model genes were higher expressed in PC tissues than that in adjacent tumor tissues, and WB and IF also suggested that model genes were more highly expressed in PANC-1 and PL45 than in hTERT-HPNE. Tracing of a necroptosis-related prognostic model for pancreatic carcinoma reveals its invasion and metastasis potential through EMT and immunity. The construction of this model and the possible mechanism of necroptosis in PDAC was preliminarily explored to provide reliable new biomarkers for the early diagnosis, treatment, and prognosis for pancreatic cancer patients.
Collapse
Affiliation(s)
- Haichuan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zhenghang Li
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mi Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shanshan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jianwei Wang
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing 400016, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing 400016, China
| | - Chengyou Du
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
249
|
Giordano F, D'Amico M, Montalto FI, Malivindi R, Chimento A, Conforti FL, Pezzi V, Panno ML, Andò S, De Amicis F. Cdk4 Regulates Glioblastoma Cell Invasion and Stemness and Is Target of a Notch Inhibitor Plus Resveratrol Combined Treatment. Int J Mol Sci 2023; 24:10094. [PMID: 37373242 DOI: 10.3390/ijms241210094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/09/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive types of cancer characterized by poor patient outcomes. To date, it is believed that the major cause of its recurrence and chemoresistance is represented by the enrichment of GBM stem cells (GSCs) sustained by the abnormal activation of a number of signaling pathways. In this study, we found that in GBM cells, treatment with low toxicity doses of the γ-secretase inhibitor RO4929097 (GSI), blocking the Notch pathway activity, in combination with resveratrol (RSV) was able to reverse the basal mesenchymal phenotype to an epithelial-like phenotype, affecting invasion and stemness interplay. The mechanism was dependent on cyclin D1 and cyclin-dependent kinase (CDK4), leading to a reduction of paxillin (Pxn) phosphorylation. Consequently, we discovered the reduced interaction of Pxn with vinculin (Vcl), which, during cell migration, transmits the intracellular forces to the extracellular matrix. The exogenous expression of a constitutively active Cdk4 mutant prevented the RSV + GSI inhibitory effects in GBM cell motility/invasion and augmented the expression of stemness-specific markers, as well as the neurosphere sizes/forming abilities in untreated cells. In conclusion, we propose that Cdk4 is an important regulator of GBM stem-like phenotypes and invasive capacity, highlighting how the combined treatment of Notch inhibitors and RSV could be prospectively implemented in the novel therapeutic strategies to target Cdk4 for these aggressive brain tumors.
Collapse
Affiliation(s)
- Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria D'Amico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Francesca Ida Montalto
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Adele Chimento
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Vincenzo Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Maria Luisa Panno
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| | - Francesca De Amicis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
- Health Center, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
250
|
Waryah C, Alves E, Mazzieri R, Dolcetti R, Thompson EW, Redfern A, Blancafort P. Unpacking the Complexity of Epithelial Plasticity: From Master Regulator Transcription Factors to Non-Coding RNAs. Cancers (Basel) 2023; 15:3152. [PMID: 37370762 DOI: 10.3390/cancers15123152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular plasticity in cancer enables adaptation to selective pressures and stress imposed by the tumor microenvironment. This plasticity facilitates the remodeling of cancer cell phenotype and function (such as tumor stemness, metastasis, chemo/radio resistance), and the reprogramming of the surrounding tumor microenvironment to enable immune evasion. Epithelial plasticity is one form of cellular plasticity, which is intrinsically linked with epithelial-mesenchymal transition (EMT). Traditionally, EMT has been regarded as a binary state. Yet, increasing evidence suggests that EMT involves a spectrum of quasi-epithelial and quasi-mesenchymal phenotypes governed by complex interactions between cellular metabolism, transcriptome regulation, and epigenetic mechanisms. Herein, we review the complex cross-talk between the different layers of epithelial plasticity in cancer, encompassing the core layer of transcription factors, their interacting epigenetic modifiers and non-coding RNAs, and the manipulation of cancer immunogenicity in transitioning between epithelial and mesenchymal states. In examining these factors, we provide insights into promising therapeutic avenues and potential anti-cancer targets.
Collapse
Affiliation(s)
- Charlene Waryah
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Eric Alves
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Roberta Mazzieri
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Riccardo Dolcetti
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Microbiology and Immunology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Erik W Thompson
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Andrew Redfern
- School of Medicine, University of Western Australia, Perth, WA 6009, Australia
| | - Pilar Blancafort
- Cancer Epigenetics Group, Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
- School of Human Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|