201
|
Andersen SL, Teicher MH. Stress, sensitive periods and maturational events in adolescent depression. Trends Neurosci 2008; 31:183-91. [DOI: 10.1016/j.tins.2008.01.004] [Citation(s) in RCA: 674] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 01/04/2008] [Accepted: 01/08/2008] [Indexed: 10/22/2022]
|
202
|
Grassi-Oliveira R, Ashy M, Stein LM. Psychobiology of childhood maltreatment: effects of allostatic load? BRAZILIAN JOURNAL OF PSYCHIATRY 2008; 30:60-8. [DOI: 10.1590/s1516-44462008000100012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Accepted: 01/15/2008] [Indexed: 11/22/2022]
Abstract
OBJECTIVE: Facing an adverse physical or psychosocial situation, an individual is forced to adapt in order to survive. Allostasis is the term used to refer to adapting processes used to maintain the stability of an organism through active processes. When allostatic response is excessive or inefficient, the organism develops an allostatic load. The cascade of molecular and neurobiological effects associated with childhood abuse and neglect could be an example of allostatic response that could precipitate allostatic load in organism still vulnerable during its development. This article reviews the psychobiological consequences related to childhood abuse and neglect. METHOD: A selective review with a systematic procedure was performed to investigate studies showing explicit association between childhood maltreatment and psychobiological/neurobiological consequences. We searched electronic database MedLine-PubMed to identify English-language articles from 1990 to 2007. RESULTS: From 115 articles we selected 55 studies from MedLine and 30 from their reference lists, in a total of 85 articles (JCR IF range: 1-31.4; median: 5.88). Only 29 studies showed direct and explicit association between them. CONCLUSION: Structural consequences of childhood maltreatment include disruptive development of corpus callosum, left neocortex, hippocampus, and amygdale; functional consequences include increased electrical irritability in limbic areas, frontal lobe dysfunctions and reduced functional activity of the cerebellar vermis; and neurohumoral consequences include the reprogramming activity of hypothalamo-pituitary-adrenal (HPA) axis and subsequently the stress response.
Collapse
Affiliation(s)
| | - Majed Ashy
- Mclean Hospital, USA; Harvard Medical School, USA
| | | |
Collapse
|
203
|
Heida JG, Velísková J, Moshé SL. Blockade of androgen receptors is sufficient to alter the sexual differentiation of the substantia nigra pars reticulata seizure-controlling network. Epileptic Disord 2008; 10:8-12. [PMID: 18367425 PMCID: PMC2746950 DOI: 10.1684/epd.2008.0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 12/16/2007] [Indexed: 11/17/2022]
Abstract
The substantia nigra pars reticulata (SNR) controls seizures in a sex-specific manner. At postnatal day 15 (P15), SNR infusion of GABA(A) receptor agonist muscimol have proconvulsant effects in males but not in females. In males, administration of an androgen receptor antagonist flutamide between P0-P2 led to the disappearance of the proconvulsant muscimol effects at P15. Thus, activation of androgen receptors is important for the presence of proconvulsant SNR muscimol responses.
Collapse
Affiliation(s)
- James G Heida
- Saul R. Korey Department of Neurology, Laboratory of Developemental Epilepsy, The Montefiore/Einstein Epilepsy Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | |
Collapse
|
204
|
Abstract
Adolescence is a developmental period characterized by suboptimal decisions and actions that are associated with an increased incidence of unintentional injuries, violence, substance abuse, unintended pregnancy, and sexually transmitted diseases. Traditional neurobiological and cognitive explanations for adolescent behavior have failed to account for the nonlinear changes in behavior observed during adolescence, relative to both childhood and adulthood. This review provides a biologically plausible model of the neural mechanisms underlying these nonlinear changes in behavior. We provide evidence from recent human brain imaging and animal studies that there is a heightened responsiveness to incentives and socioemotional contexts during this time, when impulse control is still relatively immature. These findings suggest differential development of bottom-up limbic systems, implicated in incentive and emotional processing, to top-down control systems during adolescence as compared to childhood and adulthood. This developmental pattern may be exacerbated in those adolescents prone to emotional reactivity, increasing the likelihood of poor outcomes.
Collapse
Affiliation(s)
- B J Casey
- Sackler Institute, Weill Cornell Medical College of Cornell University, 1300 York Avenue, Box 140, New York, NY 10021, USA.
| | | | | |
Collapse
|
205
|
Leussis MP, Andersen SL. Is adolescence a sensitive period for depression? Behavioral and neuroanatomical findings from a social stress model. Synapse 2008; 62:22-30. [PMID: 17957735 DOI: 10.1002/syn.20462] [Citation(s) in RCA: 159] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Sex differences in depressive symptoms emerge during adolescence, with females more at risk than males. However, adverse life events during development have greater impact on males. An animal model that incorporates behavioral and anatomical changes following adolescent stress is needed. EXPERIMENTAL DESIGN Sprague-Dawley rats were exposed to social stress (SS; isolation housing during P30-35) or remained group-housed (GRP) and tested in the forced swim test (FST), the triadic learned helplessness model (LH), and the elevated plus maze. Western immunoblots of myelin basic protein (MBP) and synaptophysin (SVP) and spinophillin indexed synaptic and dendritic plasticity, respectively. PRINCIPAL OBSERVATIONS At P36, SS increased climbing behavior in both sexes, and decreased the latency to immobility in females following a 15 min inescapable swim in the FST. Depressive-like behaviors were differentially elevated in both sexes 24 h later. GRP females exhibited higher levels of depression-related behaviors than GRP males in both FST and LH paradigms. SS significantly increased depressive behaviors in the FST in males, and impaired their ability to escape shock previously conditioned to be controllable. SS decreased open arm time in females only. The greatest reductions in synaptic plasticity proteins were observed in the prefrontal cortex: spinophillin (19.1%), SVP (7.9%), and MBP (48.7%, males only). Smaller reductions in spinophillin were observed in the hippocampus and amygdala. CONCLUSIONS Adolescent separation produces both behavioral and neural changes associated with stress-related depression and anxiety. Additional work is needed to improve our understanding of stress as it relates to depression during this vulnerable period of development.
Collapse
Affiliation(s)
- Melanie P Leussis
- Laboratory of Developmental Neuropharmacology, Department of Psychiatry, Harvard Medical School and McLean Hospital, Belmont, Massachusetts 02478, USA
| | | |
Collapse
|
206
|
Seckfort DL, Paul R, Grieve SM, Vandenberg B, Bryant RA, Williams LM, Clark CR, Cohen RA, Bruce S, Gordon E. Early Life Stress on Brain Structure and Function Across the Lifespan: A Preliminary Study. Brain Imaging Behav 2008. [DOI: 10.1007/s11682-007-9015-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
207
|
Bock J, Murmu RP, Ferdman N, Leshem M, Braun K. Refinement of dendritic and synaptic networks in the rodent anterior cingulate and orbitofrontal cortex: Critical impact of early and late social experience. Dev Neurobiol 2008; 68:685-95. [DOI: 10.1002/dneu.20622] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
208
|
Leussis MP, Lawson K, Stone K, Andersen SL. The enduring effects of an adolescent social stressor on synaptic density, part II: Poststress reversal of synaptic loss in the cortex by adinazolam and MK-801. Synapse 2008; 62:185-92. [DOI: 10.1002/syn.20483] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
209
|
Andersen SL, Tomada A, Vincow ES, Valente E, Polcari A, Teicher MH. Preliminary evidence for sensitive periods in the effect of childhood sexual abuse on regional brain development. J Neuropsychiatry Clin Neurosci 2008; 20:292-301. [PMID: 18806232 PMCID: PMC4270804 DOI: 10.1176/jnp.2008.20.3.292] [Citation(s) in RCA: 423] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Volumetric MRI scans from 26 women with repeated episodes of childhood sexual abuse and 17 healthy female comparison subjects (ages 18-22 years) were analyzed for sensitive period effects on hippocampal and amygdala volume, frontal cortex gray matter volume and corpus callosum area. Hippocampal volume was reduced in association with childhood sexual abuse at ages 3-5 years and ages 11-13 years. Corpus callosum was reduced with childhood sexual abuse at ages 9-10 years, and frontal cortex was attenuated in subjects with childhood sexual abuse at ages 14-16 years. Brain regions have unique windows of vulnerability to the effects of traumatic stress.
Collapse
Affiliation(s)
- Susan L. Andersen
- Department of Psychiatry, Harvard Medical School, Belmont MA 02478,Developmental Biopsychiatry Research Program, McLean Hospital, Belmont MA 02478
| | - Akemi Tomada
- Department of Psychiatry, Harvard Medical School, Belmont MA 02478,Developmental Biopsychiatry Research Program, McLean Hospital, Belmont MA 02478
| | - Evelyn S. Vincow
- Department of Psychiatry and Behavioral Sciences and Harborview Medical Center, University of Washington, Seattle, Washington 98195
| | - Elizabeth Valente
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont MA 02478
| | - Ann Polcari
- Developmental Biopsychiatry Research Program, McLean Hospital, Belmont MA 02478
| | - Martin H. Teicher
- Department of Psychiatry, Harvard Medical School, Belmont MA 02478,Developmental Biopsychiatry Research Program, McLean Hospital, Belmont MA 02478
| |
Collapse
|
210
|
Toledo-Rodriguez M, Sandi C. Stress before puberty exerts a sex- and age-related impact on auditory and contextual fear conditioning in the rat. Neural Plast 2007; 2007:71203. [PMID: 17671613 PMCID: PMC1931496 DOI: 10.1155/2007/71203] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 02/27/2007] [Accepted: 04/04/2007] [Indexed: 11/20/2022] Open
Abstract
Adolescence is a period of major physical, hormonal, and psychological changes. It is also characterized by a significant increase in the incidence of psychopathologies and this increase is gender-specific. Stress during adolescence is associated with the development of psychiatric disorders later in life. In this study, we evaluated the impact of psychogenic stress (exposure to predator odor followed by placement on an elevated platform) experienced before puberty (days 28–30) on fear memories and hormonal response of male and female rats during adolescence and early adulthood. Stress before puberty impacted in a sex- and age-specific way on the responses to auditory and contextual fear conditioning in adolescence and adulthood: (a) increased conditioned fear to the tone in males during adolescence but not during adulthood; (b) impaired extinction to the tone in adult males; and (c) reduced freezing responses to the context in adolescent females. Stress before puberty did not influence the corticosterone levels 30 minutes after an additional stressor given in adulthood. These results indicate that stress experienced prior to puberty can exert a sex-related differential impact on fear-related behaviors displayed by individuals during late adolescence and early adulthood.
Collapse
Affiliation(s)
- Maria Toledo-Rodriguez
- Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- *Maria Toledo-Rodriguez:
| | - Carmen Sandi
- Brain Mind Institute, Ecole Polytechnique Federale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
211
|
Kosten TA, Karanian DA, Yeh J, Haile CN, Kim JJ, Kehoe P, Bahr BA. Memory impairments and hippocampal modifications in adult rats with neonatal isolation stress experience. Neurobiol Learn Mem 2007; 88:167-76. [PMID: 17543553 DOI: 10.1016/j.nlm.2007.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 11/25/2022]
Abstract
Early life events have profound consequences. Our research demonstrates that the early life stress of neonatal isolation (1-h individual isolation on postnatal days 2-9) in rats has immediate and enduring neural and behavioral effects. Recently, we showed neonatal isolation impaired hippocampal-dependent context conditioned fear in adult rats. We now expand upon this finding to test whether neonatal isolation impairs performance in inhibitory avoidance and in the non-aversive, hippocampal-dependent object recognition task. In addition to assessments of hippocampal-dependent memory, we examined if neonatal isolation results in cellular alterations in the adult hippocampus. This was measured with antibodies that selectively label calpain-mediated spectrin breakdown product (BDP), a marker of cytoskeletal modification that can have neuronal consequences. Neonatally isolated male and female rats showed impaired performance in both memory tasks as well as elevated BDP levels in hippocampal immunoblot samples. In tissue sections stained for BDP, the cytoskeletal fragmentation was localized to pyramidal neurons and their proximal dendrites. Interestingly, the hippocampal samples also exhibited reduced staining for the postsynaptic marker, GluR1. Neonatal isolation may render those neurons involved in memory encoding to be vulnerable to calpain deregulation and synaptic compromise as shown previously with brain injury. Together with our prior research showing enhanced striatal-dependent learning and neurochemical responsivity, these results indicate that the early experience of neonatal isolation causes enduring yet opposing region-specific neural and behavioral alterations.
Collapse
Affiliation(s)
- Therese A Kosten
- Menninger Department of Psychiatry, Baylor College of Medicine and the Michael E. DeBakey VA Medical Center, Research Service Line (151), 2002 Holcombe Blvd., Houston, TX 77030, USA.
| | | | | | | | | | | | | |
Collapse
|
212
|
Abstract
During adolescence the brain shows remarkable changes in both structure and function. The plasticity exhibited by the brain during this pubertal period may make individuals more vulnerable to perturbations, such as stress. Although much is known about how exposure to stress and stress hormones during perinatal development and adulthood affect the structure and function of the brain, relatively little is known about how the pubertal brain responds to stress. Furthermore, it is not clear whether stressors experienced during adolescence lead to altered physiological and behavioral potentials in adulthood, as has been shown for perinatal development. The purpose of this review is to present what is currently known about the pubertal maturation of the hypothalamic-pituitary-adrenal (HPA) axis, the neuroendocrine axis that mediates the stress response, and discuss what is currently known about how stressors affect the adolescent brain. Our dearth of knowledge regarding the effects of stress on the pubertal brain will be discussed in the context of our accumulating knowledge regarding stress-induced neuronal remodeling in the adult. Finally, as the adolescent brain is capable of such profound plasticity during this developmental stage, we will also explore the possibility of adolescence as a period of interventions and opportunities to mitigate negative consequences from earlier developmental insults.
Collapse
Affiliation(s)
- Russell D Romeo
- Laboratory of Neuroendocrinology, The Rockefeller University, Box 165, New York, NY 10021, USA.
| | | |
Collapse
|
213
|
Schotte CKW, Van Den Bossche B, De Doncker D, Claes S, Cosyns P. A biopsychosocial model as a guide for psychoeducation and treatment of depression. Depress Anxiety 2007; 23:312-24. [PMID: 16688730 DOI: 10.1002/da.20177] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Effective treatment of severe or chronic unipolar depression requires the combination of pharmacological and psychotherapeutic interventions, and demands a theoretical paradigm integrating biological and psychosocial aspects of depression. Supported by recent research, we propose in our article a biopsychosocial diathesis-stress model of depression. Its basic aim is psychoeducational: to provide therapists, patients, and their environment a constructive conceptual framework to understand depressive complaints, vulnerability, and stress. The core of the model consists of the concept of psychobiological vulnerability, which is determined by risk factors-of a biogenetic, psychological, somatic, and societal nature-and by protective factors. Life events with an idiosyncratic, stress-inducing value interact with this vulnerability, triggering severe or chronic distress that affects the individual's resilience and leads to symptoms of depression. The pathogenesis of depression is symbolized by a negative downward loop, in which interactions among symptoms, vulnerability, and stressors drive the patient toward a depressive condition. Moreover, experiencing recurrent depression influences psychobiological vulnerability, the occurrence of stressors, and tremendously increases the risk of further relapse. The model stresses the self-evident integration of biological and psychological therapeutic interventions that need to focus on symptom reduction and on relapse prevention. Moreover, it offers the patient and therapist a psychoeducational context in which the individual's vulnerability and depressive symptoms can be treated. Finally, applications of the depression model as a therapeutic approach to severe depression in the phases of remoralization, symptom reduction, and relapse prevention are presented.
Collapse
Affiliation(s)
- Chris K W Schotte
- UZA, University Hospital Antwerp, Department of Psychiatry, Edegem, Belgium.
| | | | | | | | | |
Collapse
|
214
|
Tsoory M, Cohen H, Richter-Levin G. Juvenile stress induces a predisposition to either anxiety or depressive-like symptoms following stress in adulthood. Eur Neuropsychopharmacol 2007; 17:245-56. [PMID: 16889944 DOI: 10.1016/j.euroneuro.2006.06.007] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 05/30/2006] [Accepted: 06/20/2006] [Indexed: 02/02/2023]
Abstract
Epidemiological studies indicate that childhood trauma is predominantly associated with later emergence of several stress-related psychopathologies. While most 'early-stress' animal models focus on pre-weaning exposure, we examined the consequences of exposure to stress during the early pre-pubertal period, "juvenile stress", on adulthood stress responses. Following two different juvenile stress protocols, predator scent or short-term variable stress, we examined adulthood stress responses using the elevated plus-maze and startle response or exploration and avoidance learning. Employing Cut-off Behavioral Criteria analyses of clustering symptoms on the rats' altered stress responses discriminated between different patterns of maladaptive behaviors. Exposure to either juvenile stress protocols resulted in lasting alteration of stress responses with the majority of rats exhibiting anxiety-like behaviors, while the remaining third displayed depressive-like behaviors. The results suggest that the presented "Juvenile stress" model may be relevant to the reported predisposition to develop both anxiety and depression following childhood trauma.
Collapse
Affiliation(s)
- Michael Tsoory
- Department of Psychology and The Brain and Behavior Research Center, University of Haifa, Mount Carmel, 31905 Haifa, Israel
| | | | | |
Collapse
|
215
|
Fumagalli F, Molteni R, Racagni G, Riva MA. Stress during development: Impact on neuroplasticity and relevance to psychopathology. Prog Neurobiol 2007; 81:197-217. [PMID: 17350153 DOI: 10.1016/j.pneurobio.2007.01.002] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/23/2006] [Accepted: 01/23/2007] [Indexed: 02/05/2023]
Abstract
Development represents a critical moment for shaping adult behavior and may set the stage to disease vulnerability later in life. There is now compelling evidence that stressful experiences during gestation or early in life can lead to enhanced susceptibility for mental illness. In this paper we review the data from experimental studies aimed at investigating behavioral, hormonal, functional and molecular consequences of exposure to stressful events during prenatal or early postnatal life that might contribute to later psychopathology. The use of the newest methodology in the field and the intensive efforts produced by researchers have opened the possibility to reveal the complex, finely tuned and previously unappreciated sets of molecular interactions between different factors that are critical for neurodevelopment thus leading to important discoveries regarding perinatal life. The major focus of our work has been to revise and discuss data from animal studies supporting the role of neuronal plasticity in the long-term effects produced by developmental adversities on brain function as well as the possible implications for disease vulnerability. We believe these studies might prove useful for the identification of novel targets for more effective pharmacological treatments of mental illnesses.
Collapse
Affiliation(s)
- Fabio Fumagalli
- Center of Neuropharmacology, Department of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy
| | | | | | | |
Collapse
|
216
|
Carrion VG, Weems CF, Reiss AL. Stress predicts brain changes in children: a pilot longitudinal study on youth stress, posttraumatic stress disorder, and the hippocampus. Pediatrics 2007; 119:509-16. [PMID: 17332204 DOI: 10.1542/peds.2006-2028] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Does stress damage the brain? Studies of adults with posttraumatic stress disorder have demonstrated smaller hippocampal volumes when compared with the volumes of adults with no posttraumatic stress disorder. Studies of children with posttraumatic stress disorder have not replicated the smaller hippocampal findings in adults, which suggests that smaller hippocampal volume may be caused by neurodevelopmental experiences with stress. Animal research has demonstrated that the glucocorticoids secreted during stress can be neurotoxic to the hippocampus, but this has not been empirically demonstrated in human samples. We hypothesized that cortisol volumes would predict hippocampal volume reduction in patients with posttraumatic symptoms. PATIENTS AND METHODS We report data from a pilot longitudinal study of children (n = 15) with history of maltreatment who underwent clinical evaluation for posttraumatic stress disorder, cortisol, and neuroimaging. RESULTS Posttraumatic stress disorder symptoms and cortisol at baseline predicted hippocampal reduction over an ensuing 12- to 18-month interval. CONCLUSIONS Results from this pilot study suggest that stress is associated with hippocampal reduction in children with posttraumatic stress disorder symptoms and provide preliminary human evidence that stress may indeed damage the hippocampus. Additional studies seem to be warranted.
Collapse
Affiliation(s)
- Victor G Carrion
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, USA.
| | | | | |
Collapse
|
217
|
Crews F, He J, Hodge C. Adolescent cortical development: a critical period of vulnerability for addiction. Pharmacol Biochem Behav 2007; 86:189-99. [PMID: 17222895 PMCID: PMC11646682 DOI: 10.1016/j.pbb.2006.12.001] [Citation(s) in RCA: 691] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 11/20/2006] [Accepted: 12/04/2006] [Indexed: 01/04/2023]
Abstract
Cortical growth and remodeling continues from birth through youth and adolescence to stable adult levels changing slowly into senescence. There are critical periods of cortical development when specific experiences drive major synaptic rearrangements and learning that only occur during the critical period. For example, visual cortex is characterized by a critical period of plasticity involved in establishing visual acuity. Adolescence is defined by characteristic behaviors that include high levels of risk taking, exploration, novelty and sensation seeking, social interaction and play behaviors. In addition, adolescence is the final period of development of the adult during which talents, reasoning and complex adult behaviors mature. This maturation of behaviors corresponds with periods of marked changes in neurogenesis, cortical synaptic remodeling, neurotransmitter receptors and transporters, as well as major changes in hormones. Frontal cortical development is later in adolescence and likely contributes to refinement of reasoning, goal and priority setting, impulse control and evaluating long and short term rewards. Adolescent humans have high levels of binge drinking and experimentation with other drugs. This review presents findings supporting adolescence as a critical period of cortical development important for establishing life long adult characteristics that are disrupted by alcohol and drug use.
Collapse
Affiliation(s)
- Fulton Crews
- Bowles Center for Alcohol Studies, School of Medecine, University of North Carolina at Chapel Hill, NC 27599, USA.
| | | | | |
Collapse
|
218
|
He J, Crews FT. Neurogenesis decreases during brain maturation from adolescence to adulthood. Pharmacol Biochem Behav 2007; 86:327-33. [PMID: 17169417 DOI: 10.1016/j.pbb.2006.11.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 10/27/2006] [Accepted: 11/01/2006] [Indexed: 11/24/2022]
Abstract
Adolescence is an important stage of brain development. Recent studies have indicated that neurogenesis in the brain occurs throughout life prompting comparisons of adolescent and adult neurogenesis. Since insulin-like growth factor 1 (IGF-1) has been implicated in promoting neurogenesis we investigated the levels of neurogenesis in adolescents (PND30) and adults (PND120) using IGF-1 over-expressing mice and IGFBP-1 (IGF binding protein-1) over-expressing mice. Proliferation and differentiation of neuroprogenitors were determined using bromodeoxyuridine (BrdU)- and doublecortin (DCX)-labeling. High levels of neurogenesis were found in both the hippocampal dentate gyrus (DG) and the forebrain subventricular zone (SVZ) of the adolescents as compared with the adults. Both adolescent IGF-1 and IGFBP-1 transgenic mice as well as their wildtype controls have significantly higher expression of BrdU and DCX in the hippocampus and SVZ when compared with their adult counterparts. However, no significant differences on BrdU-labeling were found when either of transgenic mice were compared with their wildtype littermates in both age groups. These studies indicate that adolescent mice have high levels of neurogenesis compared to adults suggesting a dramatic loss of neurogenesis during the transition from adolescence to adulthood. However, the role of IGF-1 during adolescent development is still unclear.
Collapse
Affiliation(s)
- Jun He
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
219
|
Eastwood SL, Weickert CS, Webster MJ, Herman MM, Kleinman JE, Harrison PJ. Synaptophysin protein and mRNA expression in the human hippocampal formation from birth to old age. Hippocampus 2007; 16:645-54. [PMID: 16807900 DOI: 10.1002/hipo.20194] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the human neocortex, progressive synaptogenesis in early postnatal life is followed by a decline in synaptic density, then stability from adolescence until middle age. No comparable data are available in the hippocampus. In this study, the integral synaptic vesicle protein synaptophysin, measured immunoautoradiographically, was used as an index of synaptic terminal abundance in the hippocampal formation of 37 subjects from 5 weeks to 86 yr old, divided into 4 age groups (10 infants, 15 adolescents/young adults, 6 adults, and 6 elderly). In all hippocampal subfields, synaptophysin was lowest in infancy, but did not differ significantly between the older age groups, except in dentate gyrus (DG) where the rise was delayed until adulthood. A similar developmental profile was found in the rat hippocampus. We also measured synaptophysin mRNA in the human subjects and found no age-related changes, except in parahippocampal gyrus wherein the mRNA declined from infancy to adolescence, and again in old age. The synaptophysin protein data demonstrate a significant presynaptic component to human postnatal hippocampal development. In so far as synaptophysin abundance reflects synaptic density, the findings support an increase in hippocampal and parahippocampal synapse formation during early childhood, but provide no evidence for adolescent synaptic pruning. The mRNA data indicate that the maturational increases in synaptophysin protein are either translational rather than transcriptional in origin, or else are secondary to mRNA increases in neurons, the cell bodies of which lie outside the hippocampal formation.
Collapse
Affiliation(s)
- Sharon L Eastwood
- Department of Psychiatry of the University of Oxford, Neurosciences Building, Warneford Hospital, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
220
|
Teicher MH, Tomoda A, Andersen SL. Neurobiological consequences of early stress and childhood maltreatment: are results from human and animal studies comparable? Ann N Y Acad Sci 2006; 1071:313-23. [PMID: 16891580 DOI: 10.1196/annals.1364.024] [Citation(s) in RCA: 245] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recent studies have reported an association between exposure to childhood abuse or neglect and alterations in brain structure or function. One limitation of these studies is that they are correlational and do not provide evidence of a cause-effect relationship. Preclinical studies on the effects of exposure to early life stress can demonstrate causality, and can enrich our understanding of the clinical research if we hypothesize that the consequences of early abuse are predominantly mediated through the induction of stress responses. Exposure to early abuse and early stress has each been associated with the emergence of epileptiform electroencephalogram (EEG) abnormalities, alterations in corpus callosum area, and reduced volume or synaptic density of the hippocampus. Further, there is evidence that different brain regions have unique periods when they are maximally sensitive to the effects of early stress. To date, preclinical studies have guided clinical investigations and will continue to provide important insight into studies on molecular mechanisms and gene-environment interactions.
Collapse
Affiliation(s)
- Martin H Teicher
- Developmental Biopsychiatry Research Program, McLean Hospital, 115 Mill Street Belmont, MA 02478, USA.
| | | | | |
Collapse
|
221
|
Pickering C, Gustafsson L, Cebere A, Nylander I, Liljequist S. Repeated maternal separation of male Wistar rats alters glutamate receptor expression in the hippocampus but not the prefrontal cortex. Brain Res 2006; 1099:101-8. [PMID: 16784730 DOI: 10.1016/j.brainres.2006.04.136] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 04/19/2006] [Accepted: 04/20/2006] [Indexed: 11/20/2022]
Abstract
Stress early in life puts the individual at a greater risk for developing mental disorders in adulthood. The animal model of maternal separation involves daily removal of pups from their mother over the early postnatal period and leads to several behavioral deficits in adults. Since this period corresponds to a time of extensive developmental changes in the glutamatergic system, glutamate receptor mRNA expression was studied in the hippocampus and prefrontal cortex. Male Wistar rats were either separated from their mother for 15 min (MS15 or 'handling') or 360 min (MS360) once a day from pnd 1-21 and glutamate receptor expression levels were measured at 25 weeks of age using real-time RT-PCR analysis. A third group of animal facility reared (AFR) rats was included as a control for the handling group. In the hippocampus, mRNA expression of NMDA NR2B and AMPA GluR1 and GluR2 receptors was significantly lower in MS360 rats relative to MS15. In addition, expression of the glutamate transporter GLAST was increased in MS360 relative to MS15. No differences were observed for AFR rats relative to MS15, which indicates that the hippocampal effects were not a result of handling or maternal care. For the prefrontal cortex, no difference in mRNA expression was observed for NMDA NR2A and NR2B or AMPA GluR1 and GluR2. These findings suggest that prolonged maternal separation produces neuroadaptive changes in the hippocampus that may, at least partially, account for the behavioral deficits previously observed in this animal model.
Collapse
Affiliation(s)
- Chris Pickering
- Department of Clinical Neuroscience, Division of Drug Dependence Research, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
222
|
Slotten HA, Kalinichev M, Hagan JJ, Marsden CA, Fone KCF. Long-lasting changes in behavioural and neuroendocrine indices in the rat following neonatal maternal separation: Gender-dependent effects. Brain Res 2006; 1097:123-32. [PMID: 16730678 DOI: 10.1016/j.brainres.2006.04.066] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/12/2006] [Accepted: 04/14/2006] [Indexed: 11/20/2022]
Abstract
Neonatal maternal separation (MS) has been used to model long-term changes in neurochemistry and behaviour associated with exposure to early-life stress. This study characterises changes in behavioural and neuroendocrine parameters following MS. On postnatal days (PND) 3-15, male and female Long-Evans rats underwent 3 h daily MS. Non-handled (NH) control offspring remained with the dams. Starting at PND 90, behaviour was assessed at weekly intervals in the elevated plus-maze, elevated T-maze, and locomotor activity boxes, and body weight monitored throughout. At the end of the study, adrenals were weighed and blood collected for analysis of plasma corticosterone and adrenocorticotropic hormone (ACTH) under basal conditions and following restraint stress. As adults, MS weighed more than NH animals. Activity on the open arms of the plus-maze was similar between MS and NH animals. In the T-maze, MS males had shorter emergence latencies than their NH counterparts. Spontaneous ambulation in a novel environment was significantly higher in MS than in NH animals, and males exhibited overall lower activity than females. Basal plasma corticosterone was lower in MS than in NH females, but no rearing condition difference was observed following restraint stress. Females had higher corticosterone and ACTH levels than males, whereas adrenal glands of MS animals weighed less than those of NH controls. The MS paradigm caused long-term gender dependent effects on behaviour and HPA axis status. The consistent gender differences confirm and expand existing results showing altered anxiety and stress reactivity in male and female rats.
Collapse
Affiliation(s)
- Helge A Slotten
- Institute of Neuroscience, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, NG7 2UH, Nottingham, UK.
| | | | | | | | | |
Collapse
|
223
|
Abstract
Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family and plays an important role in neuronal survival and plasticity in the CNS. The proform of BDNF (pro-BDNF) is secreted and cleaved extracellularly by the serine protease plasmin to mature BDNF, which potentiates synaptic plasticity and long-term potentiation. Recent findings in animal models suggest an involvement of BDNF and its genetic functional single nucleotide polymorphism in the pathogenesis of different psychiatric diseases including depression, mania, schizophrenia, eating disorders, dementia, and Huntington's disease. In the brain and serum, BDNF is modulated by different factors. It is downregulated by stress and upregulated by learning processes, several antidepressive treatments, physical activity, and dietary restriction. Measurement of BDNF serum concentrations may be of diagnostic value. Additionally, the influence of different strategies for BDNF allocation seems to be relevant for the treatment and prevention of the above psychiatric disorders.
Collapse
Affiliation(s)
- C Laske
- Universitätsklinik für Psychiatrie und Psychotherapie Tübingen.
| | | |
Collapse
|
224
|
Heide KM, Solomon EP. Biology, childhood trauma, and murder: rethinking justice. INTERNATIONAL JOURNAL OF LAW AND PSYCHIATRY 2006; 29:220-33. [PMID: 16516292 DOI: 10.1016/j.ijlp.2005.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 10/21/2005] [Accepted: 10/24/2005] [Indexed: 05/06/2023]
Abstract
This article reviews recent findings in the developmental neurophysiology of children subjected to psychological trauma. Studies link extreme neglect and abuse with long-term changes in the nervous and endocrine systems. A growing body of research literature indicates that individuals with severe trauma histories are at higher risk of behaving violently than those without such histories. This article links these two research areas by discussing how severe and protracted child abuse and/or neglect can lead to biological changes, putting these individuals at greater risk for committing homicide and other forms of violence than those without child maltreatment histories. The implications of these biological findings for forensic evaluations are discussed. Based on new understanding of the effects of child maltreatment, the authors invite law and mental health professionals to rethink their notions of justice and offender accountability, and they challenge policymakers to allocate funds for research into effective treatment and for service delivery.
Collapse
Affiliation(s)
- Kathleen M Heide
- University of South Florida, Department of Criminology, Social Sciences Building 107, 4202 E. Fowler Avenue, Tampa, Florida 33620-8100, USA.
| | | |
Collapse
|
225
|
Zehr JL, Todd BJ, Schulz KM, McCarthy MM, Sisk CL. Dendritic pruning of the medial amygdala during pubertal development of the male Syrian hamster. JOURNAL OF NEUROBIOLOGY 2006; 66:578-90. [PMID: 16555234 DOI: 10.1002/neu.20251] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The medial amygdala (Me), a brain region essential for mating behavior, changes in size during puberty. In pre-, mid-, and late pubertal (21, 35, and 49 days of age) male Syrian hamsters, we examined neuronal structure in Me and protein levels of spinophilin and synaptophysin in the amygdaloid complex for evidence of synaptic plasticity coincident with behavioral and physiological development. Body weight, testes weight, and testosterone levels increased during puberty. Mounting behavior, including ectopic, nonintromittive, and intromittive mounts, also increased. Neuronal structure in the posterodorsal medial amygdala (MePD) was assessed in Golgi-impregnated neurons. Pruning occurred during puberty in the number of dendrites emanating from the cell body and in terminal dendritic spine densities. Approximately half of all MePD neurons analyzed had an axon emanating from a dendrite rather than the cell body. However, prepubertal males were more likely to have the axon emanating from a higher order dendritic segment (secondary or tertiary) than were mid- and late pubertal males. Finally, protein levels in the amygdaloid complex varied with pubertal age. Spinophilin decreased, while synaptophysin and GAPDH protein levels increased. These results suggest that puberty is a period of dramatic synaptic plasticity in Me. Specifically, pruning of dendrites and spines, in combination with axonal changes, is likely to modify the afferent influences and electrophysiological properties of Me neurons. Because the Me is an integral component of a social behavior neural network, these changes may be related not only to sexual behavior, but also to other behaviors that mature during puberty, including aggressive, risk-taking, fear-related, and parental behaviors.
Collapse
Affiliation(s)
- Julia L Zehr
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | |
Collapse
|
226
|
Abstract
It is now well-documented that exposures to uncontrollable (inescapable and unpredictable) stress in adulthood can have profound effects on brain and behavior. Converging lines of evidence from human and animal studies indicate that stress interferes with subsequent performances on a variety of hippocampal-dependent memory tasks. Animal studies further revealed that stress impedes ensuing induction of long-term potentiation (LTP) in the hippocampus. Because the hippocampus is important for key aspects of memory formation and because LTP has qualities congruent to an information storage mechanism, it is hypothesized that stress-induced modifications in hippocampal plasticity contribute to memory impairments associated with stress. Recent studies provide evidence that the amygdala, a structure important in stress- and emotion-related behaviors, plays a necessary role in the emergence of stress-associated changes in hippocampal LTP and memory. Early life stress also alters hippocampal plasticity and memory in a manner largely consistent with effects of adult stress exposure. This review focuses on endocrine-system-level mechanisms of stress effects in the hippocampus, and how stress, by altering the property of hippocampal plasticity, can subsequently influence hippocampal memory.
Collapse
Affiliation(s)
- Jeansok J Kim
- Department of Psychology, University of Washington, Seattle, WA 98195-1520, USA.
| | | | | |
Collapse
|
227
|
Lavretsky H. Stress and depression in informal family caregivers of patients with Alzheimer’s disease. ACTA ACUST UNITED AC 2005. [DOI: 10.2217/1745509x.1.1.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Family caregiving of older individuals with Alzheimer’s disease is becoming widespread in the USA and around the world because of the aging of the population. As a result, family members are increasingly being asked to perform complex tasks similar to those carried out by paid health or social service providers. Dementia caregiving presents unique and extreme challenges associated with caring for someone with cognitive and behavioral impairment. This article summarizes the extensive literature on dementia caregiving, identifies key issues and major findings regarding the definition and prevalence of caregiving, and reviews the epidemiological, cultural, individual and biological factors contributing to caregiver stress and depression. The author describes the psychiatric and physical health effects of caregiving and reviews various intervention approaches to improving caregiver burden, depression and quality of life. The author offers a perspective on future directions in dementia caregiver research and development of more effective interventions.
Collapse
Affiliation(s)
- Helen Lavretsky
- University of California, Department of Psychiatry and Biobehavioral Sciences, Neuropsychiatric Institute and Hospital, 760 Westwood Pl., Los Angeles, CA 90095, USA
| |
Collapse
|
228
|
Brown RW, Thompson KN, Click IA, Best RAC, Thacker SK, Perna MK. The effects of eticlopride on Morris water task performance in male and female rats neonatally treated with quinpirole. Psychopharmacology (Berl) 2005; 180:234-40. [PMID: 15696328 DOI: 10.1007/s00213-005-2148-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
RATIONALE Previous studies have shown that neonatal quinpirole treatment which results in long-term dopamine D2 receptor supersensitization (D2 receptor priming) produces cognitive deficits in preweanling and adult rats behaviorally tested on the Morris water task (MWT). OBJECTIVE This study was designed to analyze whether pretraining administration of the D2 antagonist eticlopride alleviates cognitive deficits produced by neonatal quinpirole treatment. METHODS Both male and female Sprague-Dawley rats were treated with quinpirole HCl (1 mg/kg) or saline from postnatal days 1 to 21. From P22 to P24, rats were tested on the place version of the MWT in which a hidden platform remains stationary throughout training. From P25 to P28, rats were tested on the match-to-place version of the MWT, and rats are given a pair of daily training trials to locate the hidden platform that was moved to a new location each day. Fifteen minutes before each training session, rats were intraperitoneally administered with eticlopride (0.01 or 0.02 mg/kg) or saline. RESULTS Pretraining eticlopride treatment alleviated cognitive deficits produced by neonatal quinpirole treatment in both male and female rats on the place version of the MWT, as well as in males tested on the match-to-place version of the MWT. However, there were no significant deficits produced by neonatal quinpirole treatment in females tested on the match-to-place version of the MWT, and control males demonstrated superiority over control females on this version of the task. CONCLUSIONS Pretraining administration of the dopamine D2 antagonist eticlopride alleviated cognitive deficits produced by neonatal quinpirole treatment. However, it appears that the dopamine D2 receptor may have a more important influence on cognitive performance in males than in females, which may be related to increased sensitivity of the D2 receptor in males.
Collapse
Affiliation(s)
- Russell W Brown
- Department of Psychology, East Tennessee State University, 100 C.R. Drive, Box 70649, Johnson City, TN 37614, USA.
| | | | | | | | | | | |
Collapse
|
229
|
Welch MG, Ruggiero DA. Predicted role of secretin and oxytocin in the treatment of behavioral and developmental disorders: implications for autism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 71:273-315. [PMID: 16512355 DOI: 10.1016/s0074-7742(05)71012-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Martha G Welch
- Department of Psychiatry, Division of Neuroscience, Columbia University College of Physicians & Surgeons, New York, New York 10032, USA
| | | |
Collapse
|
230
|
Andersen SL, Navalta CP. Altering the course of neurodevelopment: a framework for understanding the enduring effects of psychotropic drugs. Int J Dev Neurosci 2004; 22:423-40. [PMID: 15380841 DOI: 10.1016/j.ijdevneu.2004.06.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Revised: 06/07/2004] [Accepted: 06/07/2004] [Indexed: 12/13/2022] Open
Abstract
Childhood is a time filled with wondrous changes, as brain plasticity permits experiences to shape the immature brain to meet the demands of the environment. Change occurs at various levels--from neuroanatomy, including within a given region and its connectivity to other regions, to the function of neurotransmitter systems and their reactivity to pharmacological agents in the short- and long-term. The nature and degree to which drug exposure influences the final adult topography is influenced greatly by the maturational phase of these critical factors. Moreover, evidence is slowly emerging that suggests that the long-term effects of drug exposure are delayed and expressed once the vulnerable system reaches maturation (i.e., typically during adulthood). This phenomenon is known as neuronal imprinting and occurs when the effects of drug exposure outlast the drug itself. Thus, understanding the persistent effects critically depends on the window of observation. Embracing this concept should influence how we conduct preclinical assessments of developmental drug exposure, and ultimately how we conduct clinical assessments of drug efficacy, effectiveness, and safety for the treatment of childhood psychiatric disorders. In this article, we present a model to provide a heuristic framework for making predictions about imprinted effects of childhood drug exposure. We then review epidemiological data on attention deficit hyperactivity disorder (ADHD) and childhood depression, prescription practices, and what is known regarding the long-term consequences of drug exposure in these populations. We conclude with a discussion of the current status of preclinical studies on juvenile stimulant exposure.
Collapse
Affiliation(s)
- Susan L Andersen
- Department of Psychiatry, McLean Hospital and Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA.
| | | |
Collapse
|