201
|
Bonuccelli L, Rossi L, Lena A, Scarcelli V, Rainaldi G, Evangelista M, Iacopetti P, Gremigni V, Salvetti A. An RbAp48-like gene regulates adult stem cells in planarians. J Cell Sci 2010; 123:690-8. [DOI: 10.1242/jcs.053900] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Retinoblastoma-associated proteins 46 and 48 (RbAp46 and RbAp48) are factors that are components of different chromatin-modelling complexes, such as polycomb repressive complex 2, the activity of which is related to epigenetic gene regulation in stem cells. To date, no direct findings are available on the in vivo role of RbAp48 in stem-cell biology. We recently identified DjRbAp48 — a planarian (Dugesia japonica) homologue of human RBAP48 — expression of which is restricted to the neoblasts, the adult stem cells of planarians. In vivo silencing of DjRbAp48 induces lethality and inability to regenerate, even though neoblasts proliferate and accumulate after wounding. Despite a partial reduction in neoblast number, we were always able to detect a significant number of these cells in DjRbAp48 RNAi animals. Parallel to the decrease in neoblasts, a reduction in the number of differentiated cells and the presence of apoptotic-like neoblasts were detectable in RNAi animals. These findings suggest that DjRbAp48 is not involved in neoblast maintenance, but rather in the regulation of differentiation of stem-cell progeny. We discuss our data, taking into account the possibility that DjRbAp48 might control the expression of genes necessary for cell differentiation by influencing chromatin architecture.
Collapse
Affiliation(s)
- Lucia Bonuccelli
- Dipartimento di Morfologia Umana e Biologia Applicata, Università di Pisa, Pisa, Italy
| | - Leonardo Rossi
- Dipartimento di Morfologia Umana e Biologia Applicata, Università di Pisa, Pisa, Italy
| | - Annalisa Lena
- Dipartimento di Morfologia Umana e Biologia Applicata, Università di Pisa, Pisa, Italy
| | - Vittoria Scarcelli
- Dipartimento di Morfologia Umana e Biologia Applicata, Università di Pisa, Pisa, Italy
| | - Giuseppe Rainaldi
- Istituto di Fisiologia Clinica, Laboratorio di Terapia Genica e Molecolare, CNR, Pisa, Italy
| | - Monica Evangelista
- Istituto di Fisiologia Clinica, Laboratorio di Terapia Genica e Molecolare, CNR, Pisa, Italy
| | - Paola Iacopetti
- Dipartimento di Morfologia Umana e Biologia Applicata, Università di Pisa, Pisa, Italy
| | - Vittorio Gremigni
- Dipartimento di Morfologia Umana e Biologia Applicata, Università di Pisa, Pisa, Italy
| | - Alessandra Salvetti
- Dipartimento di Morfologia Umana e Biologia Applicata, Università di Pisa, Pisa, Italy
| |
Collapse
|
202
|
Dejeans N, Maier JAM, Tauveron I, Milenkovic D, Mazur A. Modulation of gene expression in endothelial cells by hyperlipaemic postprandial serum from healthy volunteers. GENES AND NUTRITION 2010; 5:263-74. [PMID: 21052530 DOI: 10.1007/s12263-010-0166-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 01/03/2010] [Indexed: 02/06/2023]
Abstract
UNLABELLED A single high-fat challenge induces plasmatic pro-inflammatory and pro-oxidative responses in the postprandial state, even in healthy men. This period is also associated with vascular endothelial dysfunction, which is an early event in the development of cardiovascular diseases. However, knowledge about the mechanisms involved in postprandial hyperlipaemia-induced endothelial dysfunction is sparse. An objective of our study was to characterize the behaviour and gene expression of vascular endothelial cells exposed to postprandial hyperlipaemic sera. Human umbilical vein endothelial cells (HUVECs) were cultured in media containing 10% serum from healthy men withdrawn either before or 4 h after a high-fat challenge. Endothelial cell proliferation, adhesion and migration were then assessed. The transcriptomic profiles of endothelial cells exposed to pre and postprandial sera were also compared. Exposure to postprandial hyperlipaemic sera significantly decreased HUVEC proliferation when compared to preprandial serum (P < 0.0001), while no changes in migration or endothelial/monocyte interactions were observed. The transcriptomic analysis revealed changes in the expression of 675 genes, of which 431 have a known function. Among them, a set of differentially expressed genes was linked to cell cycle regulation and apoptosis and are regulated in favour of cell cycle arrest or death. This result was confirmed by measuring the induction of apoptosis after postprandial sera exposure (P = 0.011). Taken together, the transcriptomic results and pathway analysis showed that postprandial serum promotes apoptosis in HUVECs, potentially through the activation of the p53 network. We conclude that upon postprandial serum exposure, vascular endothelial cells transcriptionally regulate genes involved in the control of cell cycle and death to favour growth arrest and apoptosis. These findings support the hypothesis that postprandial hyperlipaemia is associated with vascular dysfunction and offer new insights into the mechanisms involved. ELECTRONIC SUPPLEMENTARY MATERIAL The online version of this article (doi:10.1007/s12263-010-0166-x) contains supplementary material, which is available to authorized users.
Collapse
|
203
|
Hiramatsu M, Ninomiya H, Inamura K, Nomura K, Takeuchi K, Satoh Y, Okumura S, Nakagawa K, Yamori T, Matsuura M, Morikawa T, Ishikawa Y. Activation status of receptor tyrosine kinase downstream pathways in primary lung adenocarcinoma with reference of KRAS and EGFR mutations. Lung Cancer 2010; 70:94-102. [PMID: 20117855 DOI: 10.1016/j.lungcan.2010.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/02/2009] [Accepted: 01/05/2010] [Indexed: 01/05/2023]
Abstract
The activation status of signal transduction pathways involving receptor tyrosine kinases and its association with EGFR or KRAS mutations have been widely studied using cancer cell lines, although it is still uncertain in primary tumors. To study the activation status of main components of growth factor-induced pathways, phosphorylated Akt (pAkt), extracellular signal-regulated kinases 1 and 2 (pERK) and other downstream proteins were immunohistochemically examined using surgical samples of 193 primary lung adenocarcinomas. Also, thyroid transcription factor-1 (TTF-1) expression and mutation status of EGFR and KRAS were examined. Advanced tumor stages (p<0.001), negative TTF-1 expression (p<0.001) and Akt activation (p=0.015) were independent and significant poor prognostic markers. Akt activation related to advanced stage (p=0.021), invasiveness (p=0.004), and not to mutations. TTF-1 expression associated with never-smoker (p=0.013), pre- or minimally invasiveness (p<0.001) and EGFR mutations (p=0.017) as well as with pERK (p=0.039) expression. EGFR mutations did not correlated with pAkt and pERK expression, which was different from the results based on cultured cells, while KRAS mutations were solely and significantly linked to ERK activation (p=0.009). In lung adenocarcinoma, tumors with TTF-1 expression have distinct characteristics regarding mutations, signal protein activation and clinical issues. Moreover, this property was revealed to be important in outcome estimation at any tumor stage, whereas Akt activation is abnormally affected according to the tumor stage regardless of their cell origin. The signal proteins were differently related to mutation status from cultured cells.
Collapse
Affiliation(s)
- Miyako Hiramatsu
- Division of Pathology, The Cancer Institute, Japanese Foundation for Cancer Research (JFCR), 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Kimple RJ, Vaseva AV, Cox AD, Baerman KM, Calvo BF, Tepper JE, Shields JM, Sartor CI. Radiosensitization of epidermal growth factor receptor/HER2-positive pancreatic cancer is mediated by inhibition of Akt independent of ras mutational status. Clin Cancer Res 2010; 16:912-23. [PMID: 20103665 DOI: 10.1158/1078-0432.ccr-09-1324] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Epidermal growth factor receptor (EGFR) family members (e.g., EGFR, HER2, HER3, and HER4) are commonly overexpressed in pancreatic cancer. We investigated the effects of inhibition of EGFR/HER2 signaling on pancreatic cancer to elucidate the role(s) of EGFR/HER2 in radiosensitization and to provide evidence in support of further clinical investigations. EXPERIMENTAL DESIGN Expression of EGFR family members in pancreatic cancer lines was assessed by quantitative reverse transcription-PCR. Cell growth inhibition was determined by MTS assay. The effects of inhibition of EGFR family receptors and downstream signaling pathways on in vitro radiosensitivity were evaluated using clonogenic assays. Growth delay was used to evaluate the effects of nelfinavir on in vivo tumor radiosensitivity. RESULTS Lapatinib inhibited cell growth in four pancreatic cancer cell lines, but radiosensitized only wild-type K-ras-expressing T3M4 cells. Akt activation was blocked in a wild-type K-ras cell line, whereas constitutive phosphorylation of Akt and extracellular signal-regulated kinase (ERK) was seen in lines expressing mutant K-ras. Overexpression of constitutively active K-ras (G12V) abrogated lapatinib-mediated inhibition of both Akt phosphorylation and radiosensitization. Inhibition of MAP/ERK kinase/ERK signaling with U0126 had no effect on radiosensitization, whereas inhibition of activated Akt with LY294002 (enhancement ratio, 1.2-1.8) or nelfinavir (enhancement ratio, 1.2-1.4) radiosensitized cells regardless of K-ras mutation status. Oral nelfinavir administration to mice bearing mutant K-ras-containing Capan-2 xenografts resulted in a greater than additive increase in radiation-mediated tumor growth delay (synergy assessment ratio of 1.5). CONCLUSIONS Inhibition of EGFR/HER2 enhances radiosensitivity in wild-type K-ras pancreatic cancer. Nelfinavir, and other phosphoinositide 3-kinase/Akt inhibitors, are effective pancreatic radiosensitizers regardless of K-ras mutation status.
Collapse
Affiliation(s)
- Randall J Kimple
- Department of Radiation Oncology, University of North Carolina, Chapel Hill, NC, USA.
| | | | | | | | | | | | | | | |
Collapse
|
205
|
Abstract
Heparan sulphate proteoglycans (HSPGs) consist of a core protein and several heparan sulphate (HS) side chains covalently linked. HS also binds a great deal of growth factors, chemokines, cytokines and enzymes to the extracellular matrix and cell surface. Heparanase can specially cleave HS side chains from HSPGs. There are a lot of conflicting reports about the role of heparanase in hepatocellular carcinoma (HCC). Heparanase is involved in hepatitis B virus infection and hepatitis C virus infection, the activation of signal pathways, metastasis and apoptosis of HCC. Heparanase is synthesized as an inactive precursor within late endosomes and lysosomes. Then heparanase undergoes proteolytic cleavage to form an active enzyme in lysosomes. Active heparanase translocates to the nucleus, cell surface or extracellular matrix. Different locations of heparanase may exert different activities on tumor progression. Furthermore, enzymatic activities and non-enzymatic activities of heparanase may play different roles during HCC development. The expression level of heparanase may also contribute to the discrepant effects of heparanase. Growth promoting as well as growth inhibiting sequences are contained within the tumor cell surface heparan sulfate. Degrading different HSPGs by heparanase may play different roles in HCC. Systemic studies examining the processing, expression, localization and function of heparanase should shed a light on the role of heparanase in HCC.
Collapse
|
206
|
Castellano E, Downward J. Role of RAS in the regulation of PI 3-kinase. Curr Top Microbiol Immunol 2010; 346:143-69. [PMID: 20563706 DOI: 10.1007/82_2010_56] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ras proteins are key regulators of signalling cascades, controlling many processes such as proliferation, differentiation and apoptosis. Mutations in these proteins or in their effectors, activators and regulators are associated with pathological conditions, particularly the development of various forms of human cancer. RAS proteins signal through direct interaction with a number of effector enzymes, one of the best characterized being type I phosphatidylinositol (PI) 3-kinases. Although the ability of RAS to control PI 3-kinase has long been well established in cultured cells, evidence for a role of the interaction of endogenous RAS with PI 3-kinase in normal and malignant cell growth in vivo has only been obtained recently. Mice with mutations in the PI 3-kinase catalytic p110a isoform that block its ability to interact with RAS are highly resistant to endogenous KRAS oncogene induced lung tumourigenesis and HRAS oncogene induced skin carcinogenesis. Cells from these mice show proliferative defects and selective disruption of signalling from certain growth factors to PI 3-kinase, while the mice also display delayed development of the lymphatic vasculature. The interaction of RAS with p110a is thus required in vivo for some normal growth factor signalling and also for RAS-driven tumour formation. RAS family members were among the first oncogenes identified over 40 years ago. In the late 1960s, the rat-derived Harvey and Kirsten murine sarcoma retroviruses were discovered and subsequently shown to promote cancer formation through related oncogenes, termed RAS (from rat sarcoma virus). The central role of RAS proteins in human cancer is highlighted by the large number of tumours in which they are activated by mutation: approximately 20% of human cancers carry a mutation in RAS proteins. Because of the complex signalling network in which RAS operates, with multiple activators and effectors, each with a different pattern of tissue-specific expression and a distinct set of intracellular functions, one of the critical issues concerns the specific role of each effector in RAS-driven oncogenesis. In this chapter, we summarize current knowledge about how RAS regulates one of its best-known effectors, phosphoinositide 3-kinase (PI3K).
Collapse
Affiliation(s)
- Esther Castellano
- Signal Transduction Laboratory, Cancer Research UK London Research Institute, London, WC2A 3PX, UK
| | | |
Collapse
|
207
|
Aurora-A overexpression enhances cell-aggregation of Ha-ras transformants through the MEK/ERK signaling pathway. BMC Cancer 2009; 9:435. [PMID: 20003375 PMCID: PMC2803196 DOI: 10.1186/1471-2407-9-435] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Accepted: 12/12/2009] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Overexpression of Aurora-A and mutant Ras (RasV12) together has been detected in human bladder cancer tissue. However, it is not clear whether this phenomenon is a general event or not. Although crosstalk between Aurora-A and Ras signaling pathways has been reported, the role of these two genes acting together in tumorigenesis remains unclear. METHODS Real-time PCR and sequence analysis were utilized to identify Ha- and Ki-ras mutation (Gly -> Val). Immunohistochemistry staining was used to measure the level of Aurora-A expression in bladder and colon cancer specimens. To reveal the effect of overexpression of the above two genes on cellular responses, mouse NIH3T3 fibroblast derived cell lines over-expressing either RasV12 and wild-type Aurora-A (designated WT) or RasV12 and kinase-inactivated Aurora-A (KD) were established. MTT and focus formation assays were conducted to measure proliferation rate and focus formation capability of the cells. Small interfering RNA, pharmacological inhibitors and dominant negative genes were used to dissect the signaling pathways involved. RESULTS Overexpression of wild-type Aurora-A and mutation of RasV12 were detected in human bladder and colon cancer tissues. Wild-type Aurora-A induces focus formation and aggregation of the RasV12 transformants. Aurora-A activates Ral A and the phosphorylation of AKT as well as enhances the phosphorylation of MEK, ERK of WT cells. Finally, the Ras/MEK/ERK signaling pathway is responsible for Aurora-A induced aggregation of the RasV12 transformants. CONCLUSION Wild-type-Aurora-A enhances focus formation and aggregation of the RasV12 transformants and the latter occurs through modulating the Ras/MEK/ERK signaling pathway.
Collapse
|
208
|
Abubaker J, Bavi P, Al-Haqawi W, Sultana M, Al-Harbi S, Al-Sanea N, Abduljabbar A, Ashari LH, Alhomoud S, Al-Dayel F, Uddin S, Al-Kuraya KS. Prognostic significance of alterations in KRAS isoforms KRAS-4A/4B and KRAS mutations in colorectal carcinoma. J Pathol 2009; 219:435-445. [PMID: 19824059 DOI: 10.1002/path.2625] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Accepted: 09/03/2009] [Indexed: 12/12/2022]
Abstract
Somatic KRAS mutation is an early well-known event in colorectal carcinogenesis but a complete understanding of RAS function and dysfunction in colorectal cancer is still to come. Our aim was to study the incidence of KRAS mutation; KRAS splice variants: KRAS4A and KRAS4B; and their relationships with various clinico-pathological characteristics in colorectal cancer (CRC).In this study, 285 CRC cases were analysed for KRAS mutation by direct DNA sequencing followed by immunohistochemical analysis after validation with real-time PCR assay, to study the protein expression of KRAS4A and -4B isoforms. KRAS gene mutations were seen in 80/285 CRCs (28.1%) and of the mutated cases, the majority of the mutations were seen in codon 12 (81.2%) as opposed to codon 13 (18.8%). CRCs with KRAS mutations were associated with a poor overall survival (p = 0.0009). Furthermore, KRAS mutations at codon 12 were associated with a poor overall survival of 64.4% at 5 years compared with a 5-year overall survival of 75.8% and 78.2% with codon 13 mutation and absence of KRAS mutations, respectively (p = 0.0025). KRAS4A protein expression was predominantly seen in the cytoplasm, while KRAS4B protein was nuclear. KRAS4A overexpression was significantly associated with left colon, histology subtype of adenocarcinoma, p27kip1, and cleaved caspase3 expression. Interestingly, KRAS4A overexpression was associated with a better overall survival (p = 0.0053). On the other hand, KRAS4B overexpression (33.2%) was significantly associated with larger tumour size (p = 0.0234) and inversely correlated with p27kip1 protein (p = 0.0159). Both KRAS mutation and KRAS4A were independent prognostic markers in a multivariate analysis with age, gender, stage, differentiation, and MSI status. Our results highlight the differential role of KRAS isoforms in CRC, their utility as a prognostic biomarker, and underline the importance of KRAS alterations as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Jehad Abubaker
- Human Cancer Genomic Research, Research Center, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Lau KS, Haigis KM. Non-redundancy within the RAS oncogene family: insights into mutational disparities in cancer. Mol Cells 2009; 28:315-20. [PMID: 19812895 PMCID: PMC3976423 DOI: 10.1007/s10059-009-0143-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 09/11/2009] [Indexed: 12/11/2022] Open
Abstract
The RAS family of oncoproteins has been studied extensively for almost three decades. While we know that activation of RAS represents a key feature of malignant transformation for many cancers, we are only now beginning to understand the complex underpinnings of RAS biology. Here, we will discuss emerging cancer genome sequencing data in the context of what is currently known about RAS function. Taken together, retrospective studies of primary human tissues and prospective studies of experimental models support the notion that the variable mutation frequencies exhibited by the RAS oncogenes reflect unique functions of the RAS oncoproteins.
Collapse
Affiliation(s)
- Ken S. Lau
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, USA
| | - Kevin M. Haigis
- Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital and Department of Pathology, Harvard Medical School, USA
| |
Collapse
|
210
|
Jiang D, Gu H, Wu Q, Wang X, Zhang M, Song B. Impact of the transfer of sFlt-1 gene fragments on the ERK1/2 pathway of VEGF in vitro. Curr Eye Res 2009; 34:800-8. [PMID: 19839874 DOI: 10.1080/02713680903090176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE To investigate whether various sFlt-1 gene fragments affect the biological functions and ERK1/2 pathway of vascular endothelial growth factor (VEGF) under conditions of hypoxia or in the presence of high glucose concentrations in vitro. METHODS Plasmids expressing loops 2-3 and loops 2-4 of sFlt-1 were packed in carboxymethylated dextran-coated nanoparticles and transferred into human umbilical vein endothelial cells (HUVECs), which were then cultured under hypoxia or in a high-glucose environment. The proliferation and migration of HUVECs were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay and low-power microscopy, respectively. Western blot analyses were performed to detect p-ERK1/2 protein expression. RESULTS After transfection with the sFlt-1(2-3) or sFlt-1(2-4) gene fragment, the proliferation and migration of HUVECs were markedly reduced, and p-ERK1/2 protein expression was down-regulated under both hypoxic and high-glucose conditions. The impacts on the proliferation, migration of HUVECs, and on p-ERK1/2 protein expression did not differ significantly between the sFlt-1(2-3) and sFlt-1(2-4) gene fragments. CONCLUSIONS Both sFlt-1(2-3) and sFlt-1(2-4) gene fragments inhibited the proliferation and migration of HUVECs, as well as signal transduction in the ERK1/2 pathway of VEGF.
Collapse
Affiliation(s)
- Dan Jiang
- Department of Ophthalmology, Shanghai No. 6 People's Hospital, Shanghai, PR China
| | | | | | | | | | | |
Collapse
|
211
|
Newell P, Toffanin S, Villanueva A, Chiang DY, Minguez B, Cabellos L, Savic R, Hoshida Y, Lim KH, Melgar-Lesmes P, Yea S, Peix J, Deniz K, Fiel MI, Thung S, Alsinet C, Tovar V, Mazzaferro V, Bruix J, Roayaie S, Schwartz M, Friedman SL, Llovet JM. Ras pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo. J Hepatol 2009; 51:725-33. [PMID: 19665249 PMCID: PMC2970800 DOI: 10.1016/j.jhep.2009.03.028] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/04/2009] [Accepted: 03/16/2009] [Indexed: 02/08/2023]
Abstract
BACKGROUND/AIMS The success of sorafenib in the treatment of advanced hepatocellular carcinoma (HCC) has focused interest on the role of Ras signaling in this malignancy. We investigated the molecular alterations of the Ras pathway in HCC and the antineoplastic effects of sorafenib in combination with rapamycin, an inhibitor of mTOR pathway, in experimental models. METHODS Gene expression (qRT-PCR, oligonucleotide microarray), DNA copy number changes (SNP-array), methylation of tumor suppressor genes (methylation-specific PCR) and protein activation (immunohistochemistry) were analysed in 351 samples. Anti-tumoral effects of combined therapy targeting the Ras and mTOR pathways were evaluated in cell lines and HCC xenografts. RESULTS Different mechanisms accounted for Ras pathway activation in HCC. H-ras was up-regulated during different steps of hepatocarcinogenesis. B-raf was overexpressed in advanced tumors and its expression was associated with genomic amplification. Partial methylation of RASSF1A and NORE1A was detected in 89% and 44% of tumors respectively, and complete methylation was found in 11 and 4% of HCCs. Activation of the pathway (pERK immunostaining) was identified in 10.3% of HCC. Blockade of Ras and mTOR pathways with sorafenib and rapamycin reduced cell proliferation and induced apoptosis in cell lines. In vivo, the combination of both compounds enhanced tumor necrosis and ulceration when compared with sorafenib alone. CONCLUSIONS Ras activation results from several molecular alterations, such as methylation of tumor suppressors and amplification of oncogenes (B-raf). Sorafenib blocks signaling and synergizes with rapamycin in vivo, preventing tumor progression. These data provide the rationale for testing this combination in clinical studies.
Collapse
MESH Headings
- Animals
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Benzenesulfonates/administration & dosage
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- DNA Methylation/drug effects
- Drug Synergism
- Female
- Gene Dosage/drug effects
- Genes, ras/drug effects
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/pathology
- Mice
- Mice, Nude
- Neoplasm Transplantation
- Niacinamide/analogs & derivatives
- Phenylurea Compounds
- Promoter Regions, Genetic/drug effects
- Protein Kinases/drug effects
- Pyridines/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Signal Transduction/drug effects
- Sirolimus/administration & dosage
- Sorafenib
- TOR Serine-Threonine Kinases
- Transplantation, Heterologous
- ras Proteins/metabolism
Collapse
Affiliation(s)
- Pippa Newell
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases and Hemato/Oncology; Department of Medicine; Surgical Oncology, Department of Surgery; Department of Pathology), Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | - Sara Toffanin
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases and Hemato/Oncology; Department of Medicine; Surgical Oncology, Department of Surgery; Department of Pathology), Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, IRCSS Foundation, Milan, Italy
| | - Augusto Villanueva
- BCLC Group [HCC Translational Research Laboratory, Liver Unit, and Department of Pathology], IDIBAPS, CIBERehd, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Derek Y. Chiang
- Department of Medical Oncology and Center for Cancer Genome Discovery, Dana-Farber Cancer Institute, Boston, MA, USA
- Cancer Program, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Beatriz Minguez
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases and Hemato/Oncology; Department of Medicine; Surgical Oncology, Department of Surgery; Department of Pathology), Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | - Laia Cabellos
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases and Hemato/Oncology; Department of Medicine; Surgical Oncology, Department of Surgery; Department of Pathology), Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | - Radoslav Savic
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases and Hemato/Oncology; Department of Medicine; Surgical Oncology, Department of Surgery; Department of Pathology), Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | - Yujin Hoshida
- Cancer Program, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kiat Hon Lim
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases and Hemato/Oncology; Department of Medicine; Surgical Oncology, Department of Surgery; Department of Pathology), Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | - Pedro Melgar-Lesmes
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases and Hemato/Oncology; Department of Medicine; Surgical Oncology, Department of Surgery; Department of Pathology), Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | - Steven Yea
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases and Hemato/Oncology; Department of Medicine; Surgical Oncology, Department of Surgery; Department of Pathology), Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | - Judit Peix
- BCLC Group [HCC Translational Research Laboratory, Liver Unit, and Department of Pathology], IDIBAPS, CIBERehd, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Kemal Deniz
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases and Hemato/Oncology; Department of Medicine; Surgical Oncology, Department of Surgery; Department of Pathology), Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | - M. Isabel Fiel
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases and Hemato/Oncology; Department of Medicine; Surgical Oncology, Department of Surgery; Department of Pathology), Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | - Swan Thung
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases and Hemato/Oncology; Department of Medicine; Surgical Oncology, Department of Surgery; Department of Pathology), Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | - Clara Alsinet
- BCLC Group [HCC Translational Research Laboratory, Liver Unit, and Department of Pathology], IDIBAPS, CIBERehd, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Victoria Tovar
- BCLC Group [HCC Translational Research Laboratory, Liver Unit, and Department of Pathology], IDIBAPS, CIBERehd, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Vincenzo Mazzaferro
- Gastrointestinal Surgery and Liver Transplantation Unit, National Cancer Institute, IRCSS Foundation, Milan, Italy
| | - Jordi Bruix
- BCLC Group [HCC Translational Research Laboratory, Liver Unit, and Department of Pathology], IDIBAPS, CIBERehd, Hospital Clínic, Barcelona, Catalonia, Spain
| | - Sasan Roayaie
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases and Hemato/Oncology; Department of Medicine; Surgical Oncology, Department of Surgery; Department of Pathology), Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | - Myron Schwartz
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases and Hemato/Oncology; Department of Medicine; Surgical Oncology, Department of Surgery; Department of Pathology), Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | - Scott L. Friedman
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases and Hemato/Oncology; Department of Medicine; Surgical Oncology, Department of Surgery; Department of Pathology), Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
| | - Josep M. Llovet
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases and Hemato/Oncology; Department of Medicine; Surgical Oncology, Department of Surgery; Department of Pathology), Mount Sinai School of Medicine, 1425 Madison Avenue, New York, NY 10029, USA
- BCLC Group [HCC Translational Research Laboratory, Liver Unit, and Department of Pathology], IDIBAPS, CIBERehd, Hospital Clínic, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| |
Collapse
|
212
|
Yoo BH, Wu X, Li Y, Haniff M, Sasazuki T, Shirasawa S, Eskelinen EL, Rosen KV. Oncogenic ras-induced down-regulation of autophagy mediator Beclin-1 is required for malignant transformation of intestinal epithelial cells. J Biol Chem 2009; 285:5438-49. [PMID: 19778902 DOI: 10.1074/jbc.m109.046789] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Detachment of non-malignant epithelial cells from the extracellular matrix causes their growth arrest and, ultimately, death. By contrast, cells composing carcinomas, cancers of epithelial origin, can survive and proliferate without being attached to the extracellular matrix. These properties of tumor cells represent hallmarks of malignant transformation and are critical for cancer progression. Previously we identified several mechanisms by which ras, a major oncogene, blocks detachment-induced apoptosis of intestinal epithelial cells, but mechanisms by which Ras promotes proliferation of those cells that remain viable following detachment are unknown. We show here that detachment of non-malignant intestinal epithelial cells promotes formation of autophagosomes, vacuole-like structures that mediate autophagy (a process of cellular self-cannibalization), and that oncogenic ras prevents this autophagosome formation. We also found that ras activates a GTPase RhoA, that RhoA promotes activation of a protease calpain, and that calpain triggers degradation of Beclin-1, a critical mediator of autophagy, in these cells. The reversal of the effect of ras on Beclin-1 (achieved by expression of exogenous Beclin-1) promoted autophagosome formation following cell detachment, significantly reduced the fraction of detached cells in the S phase of the cell cycle and their rate of proliferation without affecting their viability. Furthermore, RNA interference-induced Beclin-1 down-regulation in non-malignant intestinal epithelial cells prevented detachment-dependent reduction of the fraction of these cells in the S phase of the cell cycle. Thus, ras oncogene promotes proliferation of those malignant intestinal epithelial cells that remain viable following detachment via a distinct novel mechanism that involves Ras-induced down-regulation of Beclin-1.
Collapse
Affiliation(s)
- Byong Hoon Yoo
- Department of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Kiel C, Filchtinski D, Spoerner M, Schreiber G, Kalbitzer HR, Herrmann C. Improved binding of raf to Ras.GDP is correlated with biological activity. J Biol Chem 2009; 284:31893-902. [PMID: 19776012 DOI: 10.1074/jbc.m109.031153] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The GTP-binding protein Ras plays a central role in the regulation of various cellular processes, acting as a molecular switch that triggers signaling cascades. Only Ras bound to GTP is able to interact strongly with effector proteins like Raf kinase, phosphatidylinositol 3-kinase, and RalGDS, whereas in the GDP-bound state, the stability of the complex is strongly decreased, and signaling is interrupted. To determine whether this process is only controlled by the stability of the complex, we used computer-aided protein design to improve the interaction between Ras and effector. We challenged the Ras.Raf complex in this study because Raf among all effectors shows the highest Ras affinity and the fastest association kinetics. The proposed mutations were characterized as to their changes in dynamics and binding strength. We demonstrate that Ras-Raf interaction can only be improved at the cost of a loss in specificity of Ras.GTP versus Ras.GDP. As shown by NMR spectroscopy, the Raf mutation A85K leads to a shift of Ras switch I in the GTP-bound as well as in the GDP-bound state, thereby increasing the complex stability. In a luciferase-based reporter gene assay, Raf A85K is associated with higher signaling activity, which appears to be a mere matter of Ras-Raf affinity.
Collapse
Affiliation(s)
- Christina Kiel
- Abteilung Strukturelle Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
214
|
Systems biology modeling of the radiation sensitivity network: a biomarker discovery platform. Int J Radiat Oncol Biol Phys 2009; 75:497-505. [PMID: 19735874 DOI: 10.1016/j.ijrobp.2009.05.056] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 05/28/2009] [Accepted: 05/29/2009] [Indexed: 02/05/2023]
Abstract
PURPOSE The discovery of effective biomarkers is a fundamental goal of molecular medicine. Developing a systems-biology understanding of radiosensitivity can enhance our ability of identifying radiation-specific biomarkers. METHODS AND MATERIALS Radiosensitivity, as represented by the survival fraction at 2 Gy was modeled in 48 human cancer cell lines. We applied a linear regression algorithm that integrates gene expression with biological variables, including ras status (mut/wt), tissue of origin and p53 status (mut/wt). RESULTS The biomarker discovery platform is a network representation of the top 500 genes identified by linear regression analysis. This network was reduced to a 10-hub network that includes c-Jun, HDAC1, RELA (p65 subunit of NFKB), PKC-beta, SUMO-1, c-Abl, STAT1, AR, CDK1, and IRF1. Nine targets associated with radiosensitization drugs are linked to the network, demonstrating clinical relevance. Furthermore, the model identified four significant radiosensitivity clusters of terms and genes. Ras was a dominant variable in the analysis, as was the tissue of origin, and their interaction with gene expression but not p53. Overrepresented biological pathways differed between clusters but included DNA repair, cell cycle, apoptosis, and metabolism. The c-Jun network hub was validated using a knockdown approach in 8 human cell lines representing lung, colon, and breast cancers. CONCLUSION We have developed a novel radiation-biomarker discovery platform using a systems biology modeling approach. We believe this platform will play a central role in the integration of biology into clinical radiation oncology practice.
Collapse
|
215
|
Kofer-Geles M, Gottfried I, Haklai R, Elad-Zefadia G, Kloog Y, Ashery U. Rasosomes spread Ras signals from plasma membrane 'hotspots'. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1691-702. [PMID: 19695294 DOI: 10.1016/j.bbamcr.2009.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 07/28/2009] [Accepted: 08/10/2009] [Indexed: 12/31/2022]
Abstract
Ras proteins regulate cell growth, differentiation, and apoptosis from various cellular platforms. We have recently identified a novel potential signaling platform, the rasosome, which moves rapidly near the plasma membrane (PM) and in the cytosol, carrying multiple copies of palmitoylated Ras proteins. In the present study we demonstrate that rasosomes are unique entities distinct from PM nanoclusters or from endocytotic compartments. In addition, we examine whether rasosomes can act as regulated Ras signaling platforms. We show that a single rasosome simultaneously carries different types of Ras molecules in their active and inactive state, suggesting that rasosomes can upload and download Ras signals. Total internal reflection fluorescence (TIRF) microscopy combined with fast time-lapse and a new spatial analysis algorithm demonstrate that rasosome movement near the PM is restricted to distinctive areas, rasosomal 'hotspots', localized between actin filament cages. In addition, Ras-binding domain of Raf-1 (RBD) is recruited to Ras in rasosomal hotspots as revealed by bimolecular fluorescence complementation experiments. Interestingly, epidermal growth factor stimulates H/NRas activation on rasosomes and the subsequent recruitment of RBD to rasosomes. Moreover, we show that rasosomes are loaded with Ras downstream effectors and modulators. These findings establish that physiological stimulation originating from PM hotspots is transduced to rasosomes, which appear to serve as robust Ras signaling platforms that spread signals across the cell.
Collapse
Affiliation(s)
- Merav Kofer-Geles
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
| | | | | | | | | | | |
Collapse
|
216
|
Du X, Sprang SR. Transition state structures and the roles of catalytic residues in GAP-facilitated GTPase of Ras as elucidated by (18)O kinetic isotope effects. Biochemistry 2009; 48:4538-47. [PMID: 19610677 DOI: 10.1021/bi802359b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ras-catalyzed guanosine 5' triphosphate (GTP) hydrolysis proceeds through a loose transition state as suggested in our previous study of (18)O kinetic isotope effects (KIE) [ Du , X. et al. ( 2004 ) Proc. Natl. Acad. Sci. U.S.A. 101 , 8858 - 8863 ]. To probe the mechanisms of GTPase activation protein (GAP)-facilitated GTP hydrolysis reactions, we measured the (18)O KIEs in GTP hydrolysis catalyzed by Ras in the presence of GAP(334) or NF1(333), the catalytic fragment of p120GAP or NF1. The KIEs in the leaving group oxygens (the beta nonbridge and the beta-gamma bridge oxygens) reveal that chemistry is rate-limiting in GAP(334)-facilitated GTP hydrolysis but only partially rate-limiting in the NF1(333)-facilitated GTP hydrolysis reaction. The KIEs in the gamma nonbridge oxygens and the leaving group oxygens reveal that the GAP(334) or NF1(333)-facilitated GTP hydrolysis reaction proceeds through a loose transition state that is similar in nature to the transition state of the GTP hydrolysis catalyzed by Ras alone. However, the KIEs in the pro-S beta, pro-R beta, and beta-gamma oxygens suggest that charge increase on the beta-gamma bridge oxygen is more prominent in the transition states of GAP(334)- and NF1(333)-facilitated reactions than that catalyzed by the intrinsic GTPase activity of Ras. The charge distribution on the two beta nonbridge oxygens is also very asymmetric. The catalytic roles of active site residues were inferred from the effect of mutations on the reaction rate and KIEs. Our results suggest that the arginine finger of GAP and amide protons in the P-loop of Ras stabilize the negative charge on the beta-gamma bridge oxygen and the pro-S beta nonbridge oxygen of a loose transition state, whereas Lys-16 of Ras and Mg(2+) are only involved in substrate binding.
Collapse
Affiliation(s)
- Xinlin Du
- Department of Biochemistry, University of Texas, Southwestern Medical Center, 6001 Forest Park, Room ND10.300, Dallas, Texas 75390-9050, USA
| | | |
Collapse
|
217
|
Kono SA, Marshall ME, Ware KE, Heasley LE. The fibroblast growth factor receptor signaling pathway as a mediator of intrinsic resistance to EGFR-specific tyrosine kinase inhibitors in non-small cell lung cancer. Drug Resist Updat 2009; 12:95-102. [PMID: 19501013 PMCID: PMC2763047 DOI: 10.1016/j.drup.2009.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 05/09/2009] [Accepted: 05/11/2009] [Indexed: 01/25/2023]
Abstract
The EGFR has been targeted through the development of selective tyrosine kinase inhibitors (TKIs) that have proven effective in a subset of non-small cell lung cancer (NSCLC) patients, many bearing gain-of-function EGFR mutations or egfr gene amplification. However, the majority ( approximately 80-90%) of NSCLC patients do not respond to EGFR-specific TKIs and a high rate of acquired resistance to these therapeutics is observed in those that do respond. Thus, EGFR-specific TKIs will not, as single agents, make a high impact on overall lung cancer survival. A number of studies support the activities of other receptor tyrosine kinase pathways including cMet, IGF-1R and FGFRs as mechanisms for both intrinsic and acquired resistance to EGFR TKIs. While the role of cMet and IGF-1R signaling systems as mechanisms of resistance to EGFR TKIs has been widely reviewed in recent years, the potential role of FGFR-dependent signaling as a mechanism for EGFR TKI resistance has more recently emerged and will be highlighted herein. Due to the high degree of homology of FGFRs with VEGFRs and PDGFRs, FGFR-active TKIs already exist via development of VEGFR-targeted TKIs as angiogenesis inhibitors. Thus, these agents could be rapidly advanced into clinical investigations as FGFR inhibitors, either alone or in combination with TKIs selective for EGFR, cMet or IGF-1R as a means to expand the spectrum of NSCLC patients that can be effectively targeted with TKI-directed therapies.
Collapse
Affiliation(s)
- Scott A. Kono
- Department of Medicine, University of Colorado at Denver Anschutz Medical Campus, Aurora, CO 80045
| | - Marianne E. Marshall
- Department of Craniofacial Biology, University of Colorado at Denver Anschutz Medical Campus, Aurora, CO 80045
| | - Kathryn E. Ware
- Department of Craniofacial Biology, University of Colorado at Denver Anschutz Medical Campus, Aurora, CO 80045
| | - Lynn E. Heasley
- Department of Craniofacial Biology, University of Colorado at Denver Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
218
|
Batsi C, Markopoulou S, Vartholomatos G, Georgiou I, Kanavaros P, Gorgoulis VG, Marcu KB, Kolettas E. Chronic NF-kappaB activation delays RasV12-induced premature senescence of human fibroblasts by suppressing the DNA damage checkpoint response. Mech Ageing Dev 2009; 130:409-19. [PMID: 19406145 PMCID: PMC2765928 DOI: 10.1016/j.mad.2009.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 03/31/2009] [Accepted: 04/17/2009] [Indexed: 01/08/2023]
Abstract
Normal cells divide for a limited number of generations, after which they enter a state of irreversible growth arrest termed replicative senescence. While replicative senescence is due to telomere erosion, normal human fibroblasts can undergo stress-induced senescence in response to oncogene activation, termed oncogene-induced senescence (OIS). Both, replicative and OIS, initiate a DNA damage checkpoint response (DDR) resulting in the activation of the p53-p21(Cip1/Waf1) pathway. However, while the nuclear factor-kappaB (NF-kappaB) signaling pathway has been implicated in DDR, its role in OIS has not been investigated. Here, we show that oncogenic Ha-RasV12 promoted premature senescence of IMR-90 normal human diploid fibroblasts by activating DDR, hence verifying the classical model of OIS. However, enforced expression of a constitutively active IKKbeta T-loop mutant protein (IKKbetaca), significantly delayed OIS of IMR-90 cells by suppressing Ha-RasV12 instigated DDR. Thus, our experiments have uncovered an important selective advantage in chronically activating canonical NF-kappaB signaling to overcome the anti-proliferative OIS response of normal primary human fibroblasts.
Collapse
Affiliation(s)
- Christina Batsi
- Cell and Molecular Physiology Unit, Laboratory of Physiology, School of Medicine, University of Ioannina, Ioannina, Greece
| | | | | | | | | | | | | | | |
Collapse
|
219
|
Calvisi DF, Donninger H, Vos MD, Birrer MJ, Gordon L, Leaner V, Clark GJ. NORE1A tumor suppressor candidate modulates p21CIP1 via p53. Cancer Res 2009; 69:4629-37. [PMID: 19435914 PMCID: PMC6957251 DOI: 10.1158/0008-5472.can-08-3672] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NORE1A (RASSF5) is a proapoptotic Ras effector that is frequently inactivated by promoter methylation in human tumors. It is structurally related to the RASSF1A tumor suppressor and is itself implicated as a tumor suppressor. In the presence of activated Ras, NORE1A is a potent inducer of apoptosis. However, when expressed at lower levels in the absence of activated Ras, NORE1A seems to promote cell cycle arrest rather than apoptosis. The mechanisms underlying NORE1A action are poorly understood. We have used microarray analysis of an inducible NORE1A system to screen for physiologic signaling targets of NORE1A action. Using this approach, we have identified several potential signaling pathways modulated by NORE1A. In particular, we identify the cyclin-dependent kinase inhibitor p21(CIP1) as a target for NORE1A activation and show that it is a vital component of NORE1A-mediated growth inhibition. In primary human hepatocellular carcinomas (HCC), loss of NORE1A expression is frequent and correlates tightly with loss of p21(CIP1) expression. NORE1A down-regulation in HCC also correlates with poor prognosis, enhanced proliferation, survival, and angiogenic tumor characteristics. Experimental inactivation of NORE1A results in the loss of p21(CIP1) expression and promotes proliferation. The best characterized activator of p21(CIP1) is the p53 master tumor suppressor. Further experiments showed that NORE1A activates p21(CIP1) via promoting p53 nuclear localization. Thus, we define the molecular basis of NORE1A-mediated growth inhibition and implicate NORE1A as a potential component of the ill-defined connection between Ras and p53.
Collapse
Affiliation(s)
- Diego F Calvisi
- Institut für Pathologie, Ernst-Moritz-Arndt-Universität, Greifswald, Germany
| | | | | | | | | | | | | |
Collapse
|
220
|
Pando R, Cheporko Y, Haklai R, Maysel-Auslender S, Keren G, George J, Porat E, Sagie A, Kloog Y, Hochhauser E. Ras inhibition attenuates myocardial ischemia–reperfusion injury. Biochem Pharmacol 2009; 77:1593-601. [DOI: 10.1016/j.bcp.2009.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/17/2009] [Accepted: 02/17/2009] [Indexed: 11/26/2022]
|
221
|
Tanaka Y, Ikeda T, Kishi Y, Masuda S, Shibata H, Takeuchi K, Komura M, Iwanaka T, Muramatsu SI, Kondo Y, Takahashi K, Yamanaka S, Hanazono Y. ERas is Expressed in Primate Embryonic Stem Cells but not Related to Tumorigenesis. Cell Transplant 2009; 18:381-9. [DOI: 10.3727/096368909788809794] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The ERas gene promotes the proliferation of and formation of teratomas by mouse embryonic stem (ES) cells. However, its human orthologue is not expressed in human ES cells. This implies that the behavior of transplanted mouse ES cells would not accurately reflect the behavior of transplanted human ES cells and that the use of nonhuman primate models might be more appropriate to demonstrate the safety of human ES cell-based therapies. However, the expression of the ERas gene has not been examined in nonhuman primate ES cells. In this study, we cloned the cynomolgus homologue and showed that the ERas gene is expressed in cynomolgus ES cells. Notably, it is also expressed in cynomolgus ES cell-derived differentiated progeny as well as cynomolgus adult tissues. The ERas protein is detectable in various cynomolgus tissues as assessed by immunohistochemisty. Cynomolgus ES cell-derived teratoma cells, which also expressed the ERas gene at higher levels than the undifferentiated cynomolgus ES cells, did not develop tumors in NOD/Shi- scid, IL-2Rγnull (NOG) mice. Even when the ERas gene was overexpressed in cynomolgus stromal cells, only the plating efficiency was improved and the proliferation was not promoted. Thus, it is unlikely that ERas contributes to the tumorigenicity of cynomolgus cells. Therefore, cynomolgus ES cells are more similar to human than mouse ES cells despite that ERas is expressed in cynomolgus and mouse ES cells but not in human ES cells.
Collapse
Affiliation(s)
- Yujiro Tanaka
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
- Department of Pediatric Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tamako Ikeda
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Yukiko Kishi
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Shigeo Masuda
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiroaki Shibata
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
- Tsukuba Primate Research Center, National Institute of Biomedical Innovation, Ibaraki, Japan
| | - Kengo Takeuchi
- Department of Pathology, Cancer Institute Hospital, Tokyo, Japan
| | - Makoto Komura
- Department of Pediatric Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tadashi Iwanaka
- Department of Pediatric Surgery, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Tochigi, Japan
| | | | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Yamanaka
- Center for iPS Cell Research and Application, Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Yutaka Hanazono
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
222
|
Herr I, Büchler MW, Mattern J. Glucocorticoid-mediated apoptosis resistance of solid tumors. Results Probl Cell Differ 2009; 49:191-218. [PMID: 19132324 DOI: 10.1007/400_2008_20] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
More than a quarter of a century ago, the phenomenon of glucocorticoid-induced apoptosis in the majority of hematological cells was first recognized. More recently, glucocorticoid-induced antiapoptotic signaling associated with apoptosis resistance towards cytotoxic therapy has been identified in cells of epithelial origin, most of malignant solid tumors and some other tissues. Despite these huge amounts of data demonstrating differential pro- and anti-apoptotic effects of glucocorticoids, the underlying mechanisms of cell type-specific glucocorticoid signaling are just beginning to be described. This review summarizes our present understanding of cell type-specific pro- and anti-apoptotic signaling induced by glucocorticoids. We shortly introduce mechanisms of glucocorticoid resistance of hematological cells. We highlight and discuss the emerging molecular evidence of a general induction of survival signaling in epithelial cells and carcinoma cells by glucocorticoids. We give a summary of our current knowledge of decreased proliferation rates in response to glucocorticoid pre- and combination treatment, which are suspicious to be involved not only in protection of normal tissues, but also in protection of solid tumors from cytotoxic effects of anticancer agents.
Collapse
Affiliation(s)
- Ingrid Herr
- Department of Surgery, University of Heidelberg, Germany.
| | | | | |
Collapse
|
223
|
Veeranki S, Kim B, Kim L. The GPI-anchored superoxide dismutase SodC is essential for regulating basal Ras activity and for chemotaxis of Dictyostelium discoideum. J Cell Sci 2008; 121:3099-108. [PMID: 18768936 DOI: 10.1242/jcs.030056] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genetic screen for Dictyostelium mutant displaying high level of constitutive phosphatidylinositol (3,4,5)-trisphosphate led to the finding that the glycosylphosphatidylinositol (GPI)-anchored superoxide dismutase SodC regulates small GTPase Ras. Cells that lack SodC exhibited constitutively high levels of active Ras, more membrane localization of GFP-PHcrac, and defects in chemoattractant sensing, cell polarization and motility. These defects of SodC-lacking cells were partially restored by expression of wild-type SodC but not by the catalytically inactive mutant SodC (H245R, H247Q). Furthermore, an inhibition of PI3K activity in SodC-deficient cells by LY294002 only partially restored chemoattractant sensing and cell polarization, consistent with the fact that SodC-deficient cells have aberrantly high level of active Ras, which functions upstream of PI3K. A higher level of active GFP-RasG was observed in SodC-deficient cells, which significantly decreased upon incubation of SodC-deficient cells with the superoxide scavenger XTT. Having constitutively high levels of active Ras proteins and more membrane localization of GFP-PHcrac, SodC-deficient cells exhibited severe defects in chemoattractant sensing, cell polarization and motility.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Biological Sciences, Florida International University, Miami, FL 33199, USA
| | | | | |
Collapse
|
224
|
Feo F, Frau M, Pascale RM. Interaction of major genes predisposing to hepatocellular carcinoma with genes encoding signal transduction pathways influences tumor phenotype and prognosis. World J Gastroenterol 2008; 14:6601-15. [PMID: 19034960 PMCID: PMC2773299 DOI: 10.3748/wjg.14.6601] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies on rodents and humans demonstrate an inherited predisposition to hepatocellular carcinoma (HCC). Analysis of the molecular alterations involved in the acquisition of a phenotype resistant or susceptible to hepatocarcinogenesis showed a deregulation of G1 and S phases in HCC of genetically susceptible F344 rats and a G1-S block in lesions of resistant Brown norway (BN) rats. Unrestrained extracellular signal-regulated kinase (ERK) activity linked to proteasomal degradation of dual-specificity phosphatase 1 (DUSP1), a specific ERK inhibitor, by the CKS1-SKP2 ubiquitin ligase complex occurs in more aggressive HCC of F344 rats and humans. This mechanism is less active in HCC of BN rats and human HCC with better prognosis. Upregulation of iNos cross-talk with IKK/NF-κB and RAS/ERK pathways occurs in rodent liver lesions at higher levels in the most aggressive models represented by HCC of F344 rats and c-Myc-TGF-α transgenic mice. iNOS, IKK/NF-κB, and RAS/ERK upregulation is highest in human HCC with a poorer prognosis and positively correlates with tumor proliferation, genomic instability and microvascularization, and negatively with apoptosis. Thus, cell cycle regulation and the activity of signal transduction pathways seem to be modulated by HCC modifier genes, and differences in their efficiency influence the susceptibility to hepatocarcinogenesis and probably the prognosis of human HCC.
Collapse
|
225
|
Co NN, Tsang WP, Wong TWL, Cheung HH, Tsang TY, Kong SK, Kwok TT. Oncogene AF1q enhances doxorubicin-induced apoptosis through BAD-mediated mitochondrial apoptotic pathway. Mol Cancer Ther 2008; 7:3160-8. [PMID: 18852119 DOI: 10.1158/1535-7163.mct-08-0416] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
AF1q is an oncogenic factor involved in leukemia development, thyroid tumorigenesis, and breast cancer metastasis. In the present study, AF1q was found to be down-regulated in a doxorubicin-resistant subline of human squamous carcinoma A431 cells. Knockdown of AF1q decreased the apoptosis induced by doxorubicin, Taxol, gamma-radiation, IFN-alpha, and IFN-gamma in A431 cells. On the other hand, overexpression of AF1q increased the doxorubicin-induced apoptosis in A431 cells as well as in HepG2 and HL60 cells. Both exogenous and ectopic expression of AF1q in A431 cells increased the mRNA and protein levels of BAD, a proapoptotic BCL-2 family protein. Gene silencing of BAD by small interfering RNA suppressed the AF1q enhancement of apoptosis, suggesting that BAD is downstream of AF1q in regulation of apoptosis. Furthermore, AF1q enhanced the mitochondrial membrane depolarization, mitochondrial cytochrome c release, and activation of caspase-9 and caspase-3 on doxorubicin treatment. Collectively, AF1q increases doxorubicin-induced apoptosis in cells through activation of BAD-mediated apoptotic pathway. The study provides the first evidence that AF1q plays a critical role in the regulation of apoptosis and drug resistance.
Collapse
Affiliation(s)
- Ngai Na Co
- Department of Biochemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
226
|
Calvisi DF, Pinna F, Pellegrino R, Sanna V, Sini M, Daino L, Simile MM, De Miglio MR, Frau M, Tomasi ML, Seddaiu MA, Muroni MR, Feo F, Pascale RM. Ras-driven proliferation and apoptosis signaling during rat liver carcinogenesis is under genetic control. Int J Cancer 2008; 123:2057-64. [DOI: 10.1002/ijc.23720] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
227
|
Ji H, Erfani N, Tauro BJ, Kapp EA, Zhu HJ, Moritz RL, Lim JWE, Simpson RJ. Difference gel electrophoresis analysis of Ras-transformed fibroblast cell-derived exosomes. Electrophoresis 2008; 29:2660-71. [PMID: 18494037 DOI: 10.1002/elps.200800015] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Exosomes are membrane vesicles of endocytic origin released by many cell types. The molecular composition of exosomes reflects the specialised functions of their original cells. For example, these vesicles can mediate communication through their ability to bind to target cells, facilitating processes such as vascular homeostasis and antigen presentation. Although the proteomes of exosomes from several cell types are known, exploration of exosomes from additional cell types may improve our understanding of their potential physiological roles. Here, we describe the isolation and characterisation of exosomes isolated from the culture medium of murine fibroblast NIH3T3 cells and Ras-transformed NIH3T3 cells. The vesicular nature and size (30-100 nm) of the purified fibroblast exosomes was confirmed by electron microscopy. 2-D difference gel electrophoresis (DIGE) was used to compare protein profiles of exosomes secreted from NIH3T3 cells and Ras-transformed NIH3T3 cells. LC-MS/MS sequencing identified proteins in 188 protein spots in the exosomes from the two cell lines, many of which have been previously identified in exosomes from other cell types. However, some proteins identified are novel for fibroblast exosomes, such as Serpin B6. Over 34 proteins, including milk fat globule EGF factor 8 (lactadherin), collagen alpha-1 (VI), 14-3-3 isoforms, guanine nucleotide-binding proteins (G proteins), the eukaryotic translation initiation factors elF-3 gamma and elF-5A accumulated (>2-fold) in exosomes upon Ras-induced oncogenic transformation. Significantly, the 10.4-fold increase in v-Ha-Ras p21 protein in exosomes derived from Ras-transformed NIH3T3 cells suggests that exosome secretion may be implicated in eradication of obsolete proteins.
Collapse
Affiliation(s)
- Hong Ji
- Joint ProteomicS Laboratory, Ludwig Institute for Cancer Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Martin AP, Miller A, Emad L, Rahmani M, Walker T, Mitchell C, Hagan MP, Park MA, Yacoub A, Fisher PB, Grant S, Dent P. Lapatinib resistance in HCT116 cells is mediated by elevated MCL-1 expression and decreased BAK activation and not by ERBB receptor kinase mutation. Mol Pharmacol 2008; 74:807-22. [PMID: 18544666 PMCID: PMC2574656 DOI: 10.1124/mol.108.047365] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We have defined some of the mechanisms by which the kinase inhibitor lapatinib kills HCT116 cells. Lapatinib inhibited radiation-induced activation of ERBB1/2, extracellular signal-regulated kinases 1/2, and AKT, and radiosensitized HCT116 cells. Prolonged incubation of HCT116 cells with lapatinib caused cell killing followed by outgrowth of lapatinib-adapted cells. Adapted cells were resistant to serum starvation-induced cell killing and were cross-resistant to multiple therapeutic drugs. Lapatinib was competent to inhibit basal and epidermal growth factor (EGF)-stimulated ERBB1 phosphorylation in adapted cells. Coexpression of dominant-negative ERBB1 and dominant-negative ERBB2 inhibited basal and EGF-stimulated ERBB1 and ERBB2 phosphorylation in parental and adapted cells. However, in neither parental nor adapted cells did expression of dominant-negative ERBB1 and dominant-negative ERBB2 recapitulate the cell death-promoting effects of lapatinib. Adapted cells had increased expression of MCL-1, decreased expression of BAX, and decreased activation of BAX and BAK. Overexpression of BCL-XL protected parental cells from lapatinib toxicity. Knockdown of MCL-1 expression enhanced lapatinib toxicity in adapted cells that was reverted by knockdown of BAK expression. Inhibition of caspase function modestly reduced lapatinib toxicity in parental cells, whereas knockdown of apoptosis-inducing factor expression suppressed lapatinib toxicity. Thus, in HCT116 cells, lapatinib adaptation can be mediated by altered expression of pro- and antiapoptotic proteins that maintain mitochondrial function.
Collapse
Affiliation(s)
- Aditi Pandya Martin
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Anna Miller
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Luni Emad
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Mohammed Rahmani
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Teneille Walker
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Clint Mitchell
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Michael P. Hagan
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Margaret A. Park
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Adly Yacoub
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Paul B. Fisher
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Steven Grant
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| | - Paul Dent
- Departments of Biochemistry (PD, AM, MAP, CM), Medicine (MR, SG), Pharmacology and Toxicology (APM, TW), Radiation Oncology (AY, MPH), Human Genetics (LE, PBF), Virginia Commonwealth University, 401 College St., Richmond, VA 23298
| |
Collapse
|
229
|
Matos P, Oliveira C, Velho S, Gonçalves V, da Costa LT, Moyer MP, Seruca R, Jordan P. B-Raf(V600E) cooperates with alternative spliced Rac1b to sustain colorectal cancer cell survival. Gastroenterology 2008; 135:899-906. [PMID: 18602919 DOI: 10.1053/j.gastro.2008.05.052] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2007] [Revised: 05/14/2008] [Accepted: 05/16/2008] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS In colorectal tumors, activating BRAF mutations occur alternative to KRAS oncogenic mutations, but in cell culture possess a much lower transforming capacity. Rac1b, a hyperactive Rac1 spliced variant, is over expressed in some colorectal tumors and activates the transcription factor nuclear factor-kappaB, which initiates a transcriptional response that promotes cell cycle progression and inhibits apoptosis. The aim of this study was to determine whether Rac1b overexpression is associated with B-Raf(V600E) in primary colorectal tumors and whether a functional cooperation between these 2 proteins exists in colorectal cells with a wild-type KRAS genotype. METHODS Screening of BRAF and KRAS mutations by direct sequencing and Rac1b mRNA expression analysis by quantitative real-time polymerase chain reaction were conducted in 74 samples (13 normal colonic mucosa, 45 primary colorectal tumors, and 16 colorectal cancer [CRC] cell lines). RNA interference and focus formation assays were used to assess the cooperation between Rac1b and B-Raf(V600E) in cancer cell viability. RESULTS Rac1b overexpression and B-Raf(V600E) are significantly associated in primary colorectal tumors (P = .008) and colorectal cell lines. The simultaneous suppression of both proteins dramatically decreased CRC cell viability through impaired cell-cycle progression and increased apoptosis. CONCLUSIONS Our data demonstrate that Rac1b and B-Raf(V600E) functionally cooperate to sustain colorectal cell viability and suggest they constitute an alternative survival pathway to oncogenic K-Ras. These results reveal a novel molecular characteristic of colon tumors containing B-Raf mutations and should help in defining novel targets for cancer therapy.
Collapse
Affiliation(s)
- Paulo Matos
- Centre of Human Genetics, National Health Institute Dr Ricardo Jorge, Lisbon, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
230
|
Filchtinski D, Bee C, Savopol T, Engelhard M, Becker CFW, Herrmann C. Probing Ras Effector Interactions on Nanoparticle Supported Lipid Bilayers. Bioconjug Chem 2008; 19:1938-44. [DOI: 10.1021/bc800099p] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Daniel Filchtinski
- Physikalische Chemie 1, Ruhr-Universität-Bochum, Fakultät für Chemie and Biochemie, Universitätsstr. 150, 44780 Bochum, Germany, and Max-Planck Institut für Molekulare Physiologie, Abt. Physikalische Biochemie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Christine Bee
- Physikalische Chemie 1, Ruhr-Universität-Bochum, Fakultät für Chemie and Biochemie, Universitätsstr. 150, 44780 Bochum, Germany, and Max-Planck Institut für Molekulare Physiologie, Abt. Physikalische Biochemie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Tudor Savopol
- Physikalische Chemie 1, Ruhr-Universität-Bochum, Fakultät für Chemie and Biochemie, Universitätsstr. 150, 44780 Bochum, Germany, and Max-Planck Institut für Molekulare Physiologie, Abt. Physikalische Biochemie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Martin Engelhard
- Physikalische Chemie 1, Ruhr-Universität-Bochum, Fakultät für Chemie and Biochemie, Universitätsstr. 150, 44780 Bochum, Germany, and Max-Planck Institut für Molekulare Physiologie, Abt. Physikalische Biochemie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Christian F. W. Becker
- Physikalische Chemie 1, Ruhr-Universität-Bochum, Fakultät für Chemie and Biochemie, Universitätsstr. 150, 44780 Bochum, Germany, and Max-Planck Institut für Molekulare Physiologie, Abt. Physikalische Biochemie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Christian Herrmann
- Physikalische Chemie 1, Ruhr-Universität-Bochum, Fakultät für Chemie and Biochemie, Universitätsstr. 150, 44780 Bochum, Germany, and Max-Planck Institut für Molekulare Physiologie, Abt. Physikalische Biochemie, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| |
Collapse
|
231
|
Shalom-Feuerstein R, Plowman SJ, Rotblat B, Ariotti N, Tian T, Hancock JF, Kloog Y. K-ras nanoclustering is subverted by overexpression of the scaffold protein galectin-3. Cancer Res 2008; 68:6608-16. [PMID: 18701484 PMCID: PMC2587079 DOI: 10.1158/0008-5472.can-08-1117] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The spatial organization of K-Ras proteins into nanoclusters on the plasma membrane is essential for high-fidelity signal transduction. The mechanism underlying K-Ras nanoclustering is unknown. We show here that K-Ras.GTP recruits Galectin-3 (Gal-3) from the cytosol to the plasma membrane where it becomes an integral nanocluster component. Importantly, we show that the cytosolic level of Gal-3 determines the magnitude of K-Ras.GTP nanoclustering and signal output. The beta-sheet layers of the Gal-3 carbohydrate recognition domain contain a hydrophobic pocket that may accommodate the farnesyl group of K-Ras. V125A substitution within this hydrophobic pocket yields a dominant negative Gal-3(V125A) mutant that inhibits K-Ras activity. Gal-3(V125A) interaction with K-Ras.GTP reduces K-Ras.GTP nanocluster formation, which abrogates signal output from the Raf/mitogen-activated protein (MAP)/extracellular signal-regulated kinase (ERK; MEK) pathway. Gal-3(V125A) negatively regulates cell growth and reduces cellular transformation. Thus, regulation of K-Ras nanocluster formation and signal output by Gal-3 critically depends on the integrity of the Gal-3 hydrophobic pocket. These results show that Gal-3 overexpression in breast cancer cells, which increases K-Ras signal output, represents oncogenic subversion of plasma membrane nanostructure.
Collapse
Affiliation(s)
- Ruby Shalom-Feuerstein
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sarah J. Plowman
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Barak Rotblat
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nicholas Ariotti
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Tianhai Tian
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - John F. Hancock
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Yoel Kloog
- Department of Neurobiology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
232
|
Vahey MT, Wang Z, Su Z, Nau ME, Krambrink A, Skiest DJ, Margolis DM. CD4+ T-cell decline after the interruption of antiretroviral therapy in ACTG A5170 is predicted by differential expression of genes in the ras signaling pathway. AIDS Res Hum Retroviruses 2008; 24:1047-66. [PMID: 18724805 DOI: 10.1089/aid.2008.0059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Patterns of expressed genes examined in cryopreserved peripheral blood mononuclear cells (PBMCs) of seropositive persons electing to stop antiretroviral therapy in the AIDS Clinical Trials Group Study A5170 were scrutinized to identify markers capable of predicting the likelihood of CD4+ T-cell depletion after cessation of antiretroviral therapy (ART). A5170 was a multicenter, 96-week, prospective study of HIV-infected patients with immunological preservation on ART who elected to interrupt therapy. Study entry required that the CD4 count was greater than 350 cells/mm(3) within 6 months of ART initiation. Median nadir CD4 count of enrollees was 436 cells/mm(3). Two cohorts, matched for clinical characteristics, were selected from A5170. Twenty-four patients with an absolute CD4 cell decline of less that 20% at week 24 (good outcome group) and 24 with a CD4 cell decline of >20% (poor outcome group) were studied. The good outcome group had a decline in CD4+ Tcell count that was 50% less than the poor outcome group. Significance analysis of microarrays identified differential gene expression (DE) in the two groups in data obtained from Affymetrix Human FOCUS GeneChips. DE was significantly higher in the poor outcome group than in the good outcome group. Prediction analysis of microarrays (PAM-R) identified genes that classified persons as to progression with greater than 80% accuracy at therapy interruption (TI) as well as at 24 weeks after TI. Gene set enrichment analysis (GSEA) identified a set of genes in the Ras signaling pathway, associated with the downregulation of apoptosis, as significantly upregulated in the good outcome group at cessation of ART. These observations identify specific host cell processes associated with differential outcome in this cohort after TI.
Collapse
Affiliation(s)
- Maryanne T. Vahey
- Division of Retrovirology, The Walter Reed Army Institute of Research, Rockville, Maryland 20850
| | - Zhining Wang
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland 20850
| | - Zhaohui Su
- Statistical and Data Analysis Center, Harvard School of Public Health, Boston, Massachusetts
| | - Martin E. Nau
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, Maryland 20850
| | - Amy Krambrink
- Statistical and Data Analysis Center, Harvard School of Public Health, Boston, Massachusetts
| | - Daniel J. Skiest
- Baystate Medical Center, Springfield, MA and Tufts University School of Medicine, Medford, Massachusetts
| | - David M. Margolis
- The Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
233
|
McIntyre A, Gilbert D, Goddard N, Looijenga L, Shipley J. Genes, chromosomes and the development of testicular germ cell tumors of adolescents and adults. Genes Chromosomes Cancer 2008; 47:547-57. [PMID: 18381640 DOI: 10.1002/gcc.20562] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Testicular germ cell tumors (TGCTs) of adults and adolescents are thought to be derived from primordial germ cells or gonocytes. TGCTs develop postpuberty from precursor lesions known as intratubular germ cell neoplasia undifferentiated. The tumors can be divided into two groups based on their histology and clinical behavior; seminomas resemble primordial germ cells or gonocytes and nonseminomas resemble embryonic or extraembryonic tissues at various stages of differentiation. The most undifferentiated form of nonseminoma, embryonal carcinoma, resembles embryonic stem cells in terms of morphology and expression profiling, both mRNAs and microRNAs. Evidence supports both environmental factors and genetic predisposition underlying the development of TGCTs. Various models of development have been proposed and are discussed. In TGCTs, gain of material from the short arm of chromosome 12 is invariable: genes from this region include the proto-oncogene KRAS, which has activating mutations in approximately 10% of tumors or is frequently overexpressed. A number of different approaches to increase the understanding of the development and progression of TGCTs have highlighted the involvement of KIT, RAS/RAF/MAPK, STAT, and PI3K/AKT signaling. We review the role of these signaling pathways in this process and the potential influence of environmental factors in the development of TGCTs.
Collapse
Affiliation(s)
- Alan McIntyre
- Molecular Cytogenetics, Section of Molecular Carcinogenesis, The Institute of Cancer Research, Sutton, Surrey, SM2 5NG, UK
| | | | | | | | | |
Collapse
|
234
|
Zhou L, Jiang Y, Tan A, Greenlee AR, Shen Y, Liu L, Yang Q. Silencing of N-Ras Gene Expression Using shRNA Decreases Transformation Efficiency and Tumor Growth in Transformed Cells Induced by Anti-BPDE. Toxicol Sci 2008; 105:286-94. [DOI: 10.1093/toxsci/kfn122] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
235
|
Overmeyer JH, Kaul A, Johnson EE, Maltese WA. Active ras triggers death in glioblastoma cells through hyperstimulation of macropinocytosis. Mol Cancer Res 2008; 6:965-77. [PMID: 18567800 PMCID: PMC2994605 DOI: 10.1158/1541-7786.mcr-07-2036] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Expression of activated Ras in glioblastoma cells induces accumulation of large phase-lucent cytoplasmic vacuoles, followed by cell death. This was previously described as autophagic cell death. However, unlike autophagosomes, the Ras-induced vacuoles are not bounded by a double membrane and do not sequester organelles or cytoplasm. Moreover, they are not acidic and do not contain the autophagosomal membrane protein LC3-II. Here we show that the vacuoles are enlarged macropinosomes. They rapidly incorporate extracellular fluid-phase tracers but do not sequester transferrin or the endosomal protein EEA1. Ultimately, the cells expressing activated Ras detach from the substratum and rupture, coincident with the displacement of cytoplasm with huge macropinosome-derived vacuoles. These changes are accompanied by caspase activation, but the broad-spectrum caspase inhibitor carbobenzoxy-Val-Ala-Asp-fluoromethylketone does not prevent cell death. Moreover, the majority of degenerating cells do not exhibit chromatin condensation typical of apoptosis. These observations provide evidence for a necrosis-like form of cell death initiated by dysregulation of macropinocytosis, which we have dubbed "methuosis." An activated form of the Rac1 GTPase induces a similar form of cell death, suggesting that Ras acts through Rac-dependent signaling pathways to hyperstimulate macropinocytosis in glioblastoma. Further study of these signaling pathways may lead to the identification of other chemical and physiologic triggers for this unusual form of cell death.
Collapse
Affiliation(s)
| | | | - Erin E. Johnson
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, USA
| | - William A. Maltese
- Department of Biochemistry and Cancer Biology, University of Toledo College of Medicine, Toledo, Ohio, USA
| |
Collapse
|
236
|
Calcagno SR, Li S, Colon M, Kreinest PA, Thompson EA, Fields AP, Murray NR. Oncogenic K-ras promotes early carcinogenesis in the mouse proximal colon. Int J Cancer 2008; 122:2462-70. [PMID: 18271008 DOI: 10.1002/ijc.23383] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Oncogenic K-ras mutations are frequently observed in colon cancers and contribute to transformed growth. Oncogenic K-ras is detected in aberrant crypt foci (ACF), precancerous colonic lesions, demonstrating that acquisition of a K-ras mutation is an early event in colon carcinogenesis. Here, we investigate the role of oncogenic K-ras in neoplastic initiation and progression. Transgenic mice in which an oncogenic K-ras(G12D) allele is activated in the colonic epithelium by sporadic recombination (K-rasLA2 mice) develop spontaneous ACF that are morphologically indistinguishable from those induced by the colon carcinogen azoxymethane (AOM). Similar neoplastic changes involving the entire colon are induced in transgenic mice constitutively expressing K-ras(G12D) throughout the colon (LSL-K-ras(G12D)/Villin-Cre mice). However, the biochemistry and fate of K-ras-induced lesions differ depending upon their location within the colon in these mice. In the proximal colon, K-ras(G12D) induces increased expression of procarcinogenic protein kinase C beta II (PKC beta II), activation of the MEK/ERK signaling axis and increased epithelial cell proliferation. In contrast, in the distal colon, K-ras(G12D) inhibits expression of procarcinogenic PKC beta II and induces apoptosis. Treatment of K-rasLA2 mice with AOM leads to neoplastic progression of small ACF to large, dysplastic microadenomas in the proximal, but not the distal colon. Thus, oncogenic K-ras functions differently in the proximal and distal colon of mice, inducing ACF capable of neoplastic progression in the proximal colon, and ACF with little or no potential for progression in the distal colon. Our data indicate that acquisition of a K-ras mutation is an initiating neoplastic event in proximal colon cancer development in mice.
Collapse
Affiliation(s)
- Shelly R Calcagno
- Department of Cancer Biology, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | | | | | | | | | | | | |
Collapse
|
237
|
The nitric oxide-sensitive p21Ras–ERK pathway mediates S-nitrosoglutathione-induced apoptosis. Biochem Biophys Res Commun 2008; 369:1001-6. [DOI: 10.1016/j.bbrc.2008.02.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Accepted: 02/21/2008] [Indexed: 12/20/2022]
|
238
|
Imai T, Toyota M, Suzuki H, Akino K, Ogi K, Sogabe Y, Kashima L, Maruyama R, Nojima M, Mita H, Sasaki Y, Itoh F, Imai K, Shinomura Y, Hiratsuka H, Tokino T. Epigenetic inactivation of RASSF2 in oral squamous cell carcinoma. Cancer Sci 2008; 99:958-66. [PMID: 18294275 PMCID: PMC11158976 DOI: 10.1111/j.1349-7006.2008.00769.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Genetic and epigenetic alterations in tumor-suppressor genes play important roles in human neoplasia. Ras signaling is often activated in oral squamous cell carcinoma (OSCC), although Ras mutations are rarely detected in Japanese OSCC patients, and the mechanisms underlying the gene's activation remain unclear. Here, we examined the expression of Ras association family (RASSF) genes in a panel of OSCC cell lines and found that RASSF2 is often downregulated by DNA methylation in OSCC cells. In addition, aberrant methylation of RASSF2 was detected in 12 of 46 (26%) primary OSCC, and 18 (39%) of those OSCC showed methylation of at least one RASSF gene. Ectopic expression of RASSF2 in OSCC cells suppressed cell growth and induced apoptosis. A RASSF2 deletion mutant lacking the Ras-association domain, which was therefore unable to interact with Ras, exhibited less pro-apoptotic activity than the full-length protein, indicating that the pro-apoptotic activity of RASSF2 is related to its association with Ras. Genomic screening of genes regulated by RASSF2 showed that genes involved in immune responses, angiogenesis, and metastasis are suppressed by RASSF2. Our results suggest that epigenetic inactivation of RASSF2 plays an important role in OSCC tumorigenesis, and that RASSF2 may be a useful molecular target for the diagnosis and treatment of OSCC.
Collapse
Affiliation(s)
- Takashi Imai
- Department of Molecular Biology, Cancer Research Institute, Sapporo Medical University, Sapporo 060-8543, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Zhang G, Njauw CN, Park JM, Naruse C, Asano M, Tsao H. EphA2 is an essential mediator of UV radiation-induced apoptosis. Cancer Res 2008; 68:1691-6. [PMID: 18339848 DOI: 10.1158/0008-5472.can-07-2372] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
One of the physiologic consequences of excessive UV radiation (UVR) exposure is apoptosis. This critical response serves to eliminate genetically injured cells and arises, in part, from activation of DNA damage and p53 signaling. Other contributory pathways, however, likely exist but have not been fully characterized. In a recent global screen of UVR response genes in melanocytes, we identified the receptor tyrosine kinase EPHA2. Using a combination of genetic and pharmacologic approaches, we set out to investigate the upstream regulation of EphA2 by UVR and the functional consequences of this effect. We found that the UVR-associated increase in EphA2 occurs in melanocytes, keratinocytes, and fibroblasts from both human and murine sources. More specifically, UVR effectively up-regulated EphA2 individually in p53-null, p63-null, and p73-null murine embryonic fibroblasts (MEF), suggesting that the p53 family of transcription factors is not essential for the observed effect. However, inhibition of mitogen-activated protein kinase (MAPK) signaling by U0126 and PD98059 significantly reduced the UVR response whereas overexpression of oncogenic NRAS led to an increase in EphA2. These results confirm that UVR induces EphA2 by a p53-independent, but MAPK-dependent, mechanism. In response to UV irradiation, Epha2(-/-) MEFs were highly resistant to UVR-mediated cytotoxicity and apoptosis whereas introduction of EphA2 into both wild-type and p53-null MEFs led to activation of an apoptotic program that can be blocked by caspase-8 inhibition. These functional findings suggest that EphA2 is in fact an essential p53-independent, caspase-8-dependent proapoptotic factor induced by UVR.
Collapse
Affiliation(s)
- Guoqi Zhang
- Wellman Center for Photomedicine, Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
240
|
Belanis L, Plowman SJ, Rotblat B, Hancock JF, Kloog Y. Galectin-1 is a novel structural component and a major regulator of h-ras nanoclusters. Mol Biol Cell 2008; 19:1404-14. [PMID: 18234837 PMCID: PMC2291398 DOI: 10.1091/mbc.e07-10-1053] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 12/17/2007] [Accepted: 01/17/2008] [Indexed: 11/11/2022] Open
Abstract
The organization of Ras proteins into nanoclusters on the inner plasma membrane is essential for Ras signal transduction, but the mechanisms that drive nanoclustering are unknown. Here we show that epidermal growth factor receptor activation stimulates the formation of H-Ras.GTP-Galectin-1 (Gal-1) complexes on the plasma membrane that are then assembled into transient nanoclusters. Gal-1 is therefore an integral structural component of the H-Ras-signaling nanocluster. Increasing Gal-1 levels increases the stability of H-Ras nanoclusters, leading to enhanced effector recruitment and signal output. Elements in the H-Ras C-terminal hypervariable region and an activated G-domain are required for H-Ras-Gal-1 interaction. Palmitoylation is not required for H-Ras-Gal-1 complex formation, but is required to anchor H-Ras-Gal-1 complexes to the plasma membrane. Our data suggest a mechanism for H-Ras nanoclustering that involves a dual role for Gal-1 as a critical scaffolding protein and a molecular chaperone that contributes to H-Ras trafficking by returning depalmitoylated H-Ras to the Golgi complex for repalmitoylation.
Collapse
Affiliation(s)
- Liron Belanis
- *Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; and
| | - Sarah J. Plowman
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Barak Rotblat
- *Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; and
| | - John F. Hancock
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, QLD 4072, Australia
| | - Yoel Kloog
- *Department of Neurobiochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, 69978 Tel Aviv, Israel; and
| |
Collapse
|
241
|
Sethi G, Sung B, Aggarwal BB. Nuclear factor-kappaB activation: from bench to bedside. Exp Biol Med (Maywood) 2008; 233:21-31. [PMID: 18156302 DOI: 10.3181/0707-mr-196] [Citation(s) in RCA: 320] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nuclear factor-kappaB (NF-kappaB) is a proinflammatory transcription factor that has emerged as an important player in the development and progression of malignant cancers. NF-kappaB targets genes that promote tumor cell proliferation, survival, metastasis, inflammation, invasion, and angiogenesis. Constitutive or aberrant activation of NF-kappa is frequently encountered in many human tumors and is associated with a resistant phenotype and poor prognosis. The mechanism of such persistent NF-kappaB activation is not clear but may involve defects in signaling pathways, mutations, or chromosomal rearrangements. Suppression of constitutive NF-kappaB activation inhibits the oncogenic potential of transformed cells and thus makes NF-kappaB an interesting new therapeutic target in cancer.
Collapse
Affiliation(s)
- Gautam Sethi
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Box 143, Houston, TX 77030, USA
| | | | | |
Collapse
|
242
|
Cooper WN, Dickinson RE, Dallol A, Grigorieva EV, Pavlova TV, Hesson LB, Bieche I, Broggini M, Maher ER, Zabarovsky ER, Clark GJ, Latif F. Epigenetic regulation of the ras effector/tumour suppressor RASSF2 in breast and lung cancer. Oncogene 2008; 27:1805-11. [PMID: 17891178 PMCID: PMC2948550 DOI: 10.1038/sj.onc.1210805] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Revised: 08/18/2007] [Accepted: 08/20/2007] [Indexed: 12/30/2022]
Abstract
RASSF2 is a recently identified member of a class of novel tumour suppressor genes, all containing a ras-association domain. RASSF2 resides at 20p13, a region frequently lost in human cancers. In this report we investigated methylation status of the RASSF2 promoter CpG island in a series of breast, ovarian and non-small cell lung cancers (NSCLC). RASSF2 was frequently methylated in breast tumour cell lines (65%, 13/20) and in primary breast tumours (38%, 15/40). RASSF2 expression could be switched back on in methylated breast tumour cell lines after treatment with 5'-aza-2'deoxycytidine. RASSF2 was also frequently methylated in NSCLC tumours (44%, (22/50). The small number of corresponding normal breast and lung tissue DNA samples analysed were unmethylated. We also did not detect RASSF2 methylation in ovarian tumours (0/17). Furthermore no mutations were found in the coding region of RASSF2 in these ovarian tumours. We identified a highly conserved putative bipartite nuclear localization signal (NLS) and demonstrated that endogenous RASSF2 localized to the nucleus. Mutation of the putative NLS abolished the nuclear localization. RASSF2 suppressed breast tumour cell growth in vitro and in vivo, while the ability of NLS-mutant RASSF2 to suppress growth was much diminished. Hence we demonstrate that RASSF2 has a functional NLS that is important for its tumour suppressor gene function. Our data from this and a previous report indicate that RASSF2 is frequently methylated in colorectal, breast and NSCLC tumours. We have identified RASSF2 as a novel methylation marker for multiple malignancies and it has the potential to be developed into a valuable marker for screening several cancers in parallel using promoter hypermethylation profiles.
Collapse
Affiliation(s)
- W N Cooper
- Department of Medical and Molecular Genetics, Division of Reproductive and Child Health, Institute of Biomedical Research, University of Birmingham, Edgbaston, Birmingham, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Kaler P, Sasazuki T, Shirasawa S, Augenlicht L, Klampfer L. HDAC2 deficiency sensitizes colon cancer cells to TNFalpha-induced apoptosis through inhibition of NF-kappaB activity. Exp Cell Res 2008; 314:1507-18. [PMID: 18314102 DOI: 10.1016/j.yexcr.2008.01.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 12/24/2007] [Accepted: 01/11/2008] [Indexed: 12/17/2022]
Abstract
HDAC inhibitors exert potent anti-tumorigenic and anti-inflammatory activity. Their effects are selective for transformed cells, and we recently demonstrated that transformation of epithelial cells with k-Ras sensitizes cells to HDACi induced apoptosis. The aim of this study was to determine whether the ability of HDACi to modulate signaling by a major pro-inflammatory cytokine, TNFalpha, is also restricted to cells that harbor mutant k-Ras. We used the system of two isogenic cell lines that differ by the presence of mutant k-Ras, HCT116 and Hke3 cells. Treatment of cells with TNFalpha alone did not induce apoptosis; however HDACi potentiated TNFalpha-induced apoptosis in both HCT116 and Hke3 cells. Thus, the ability of HDACi to sensitize cells to TNFalpha-induced apoptosis appears to be k-Ras independent. We demonstrated that HDACi inhibited TNFalpha-induced NF-kappaB transcriptional and DNA binding activity in both cell lines, underlying the increased apoptosis in cells treated with both agents. We showed that overexpression of HDAC2 enhanced TNFalpha-induced NF-kappaB activity and that silencing of HDAC2 decreased NF-kappaB activity. Finally, silencing of HDAC2 expression was sufficient to sensitize colon cancer cells to TNFalpha-induced apoptosis. The ability of HDACi to interfere with NF-kappaB activity is likely to contribute to their potent anti-tumorigenic and anti-inflammatory activity.
Collapse
Affiliation(s)
- Pawan Kaler
- Department of Oncology, Albert Einstein Cancer Center, Montefiore Medical Center, Bronx, NY 10467, USA
| | | | | | | | | |
Collapse
|
244
|
Ball DW, Jin N, Rosen DM, Dackiw A, Sidransky D, Xing M, Nelkin BD. Selective growth inhibition in BRAF mutant thyroid cancer by the mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244. J Clin Endocrinol Metab 2007; 92:4712-8. [PMID: 17878251 DOI: 10.1210/jc.2007-1184] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Activating mutations in the BRAF gene, primarily at V600E, are associated with poorer outcomes in patients with papillary thyroid cancer. MAPK kinase (MEK), immediately downstream of BRAF, is a promising target for ras-raf-MEK-ERK pathway inhibition. OBJECTIVE The objective of the investigation was to study the efficacy of a MEK1/2 inhibitor in thyroid cancer preclinical models with defined BRAF mutation status. EXPERIMENTAL DESIGN After treatment with the potent MEK 1/2 inhibitor AZD6244, MEK inhibition and cell growth were examined in four BRAF mutant (V600E) and two BRAF wild-type thyroid cancer cell lines and in xenografts from a BRAF mutant cell line. RESULTS AZD6244 potently inhibited MEK 1/2 activity in thyroid cancer cell lines regardless of BRAF mutation status, as evidenced by reduced ERK phosphorylation. Four BRAF mutant lines exhibited growth inhibition at low doses of the drug, with GI50 concentrations ranging from 14 to 50 nm, predominantly via a G0/G1 arrest, comparable with findings in a sensitive BRAF mutant melanoma cell line. In contrast, two BRAF wild-type lines were significantly less sensitive, with GI50 values greater than 200 nm. Nude mouse xenograft tumors derived from the BRAF mutant line ARO exhibited dose-dependent growth inhibition by AZD6244, with effective treatment at 10 mg/kg by oral gavage. This effect was primarily cytostatic and associated with marked inhibition of ERK phosphorylation. CONCLUSION AZD6244 inhibits the MEK-ERK pathway across a spectrum of thyroid cancer cells. MEK inhibition is cytostatic in papillary thyroid cancer and anaplastic thyroid cancer cells bearing a BRAF mutation and may have less impact on thyroid cancer cells lacking this mutation.
Collapse
Affiliation(s)
- Douglas W Ball
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, 1650 Orleans Street, Room 553, Baltimore, Maryland 21231-1000, USA.
| | | | | | | | | | | | | |
Collapse
|
245
|
Abstract
RASSF1A (Ras association domain family 1 isoform A) is a recently discovered tumor suppressor whose inactivation is implicated in the development of many human cancers. Although it can be inactivated by gene deletion or point mutations, the most common contributor to loss or reduction of RASSF1A function is transcriptional silencing of the gene by inappropriate promoter methylation. This epigenetic mechanism can inactivate numerous tumor suppressors and is now recognized as a major contributor to the development of cancer. RASSF1A lacks apparent enzymatic activity but contains a Ras association (RA) domain and is potentially an effector of the Ras oncoprotein. RASSF1A modulates multiple apoptotic and cell cycle checkpoint pathways. Current evidence supports the hypothesis that it serves as a scaffold for the assembly of multiple tumor suppressor complexes and may relay pro-apoptotic signaling by K-Ras.
Collapse
Affiliation(s)
- Howard Donninger
- Molecular Targets Group, Department of Medicine, J. G. Brown Cancer Center, University of Louisville, 119C Baxter Boulevard, 580 S. Preston Street, Louisville, KY 40202, USA
| | | | | |
Collapse
|
246
|
Scuto A, Zhang H, Zhao H, Rivera M, Yeatman TJ, Jove R, Torres-Roca JF. RbAp48 Regulates Cytoskeletal Organization and Morphology by Increasing K-Ras Activity and Signaling through Mitogen-Activated Protein Kinase. Cancer Res 2007; 67:10317-24. [DOI: 10.1158/0008-5472.can-06-3313] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
247
|
Abstract
Mitogen-activated protein (MAP) kinases belong to a highly conserved family of Ser-Thr protein kinases in the human kinome and have diverse roles in broad physiological functions. The 4 best-characterized MAP kinase pathways, ERK1/2, JNK, p38, and ERK5, have been implicated in different aspects of cardiac regulation, from development to pathological remodeling. Recent advancements in the development of kinase-specific inhibitors and genetically engineered animal models have revealed significant new insights about MAP kinase pathways in the heart. However, this explosive body of new information also has yielded many controversies about the functional role of specific MAP kinases as either detrimental promoters or critical protectors of the heart during cardiac pathological processes. These uncertainties have raised questions on whether/how MAP kinases can be targeted to develop effective therapies against heart diseases. In this review, recent studies examining the role of MAP kinase subfamilies in cardiac development, hypertrophy, and survival are summarized.
Collapse
Affiliation(s)
- Yibin Wang
- Department of Anesthesiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
248
|
Freilinger A, Rosner M, Hanneder M, Hengstschläger M. Ras mediates cell survival by regulating tuberin. Oncogene 2007; 27:2072-83. [PMID: 17922028 DOI: 10.1038/sj.onc.1210844] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutational activation of Ras promotes oncogenesis by controlling cell cycle regulation and cell survival. Ras-mediated activation of both, the PI3K/AKT pathway and the MEK/ERK pathway, can trigger downregulation of the function of tuberin to block the activities of mTOR and p70S6K. Here we demonstrate that Ras-induced cell survival is accompanied by upregulation of p70S6K activity. Ras harbors the potential to negatively affect tuberin-induced apoptosis and p70S6K inactivation. These effects of Ras were found to depend on its potential to regulate the MEK/ERK pathway. Experiments using tuberin-negative fibroblasts revealed that the potential of Ras to counteract apoptosis depends on functional tuberin. Taken together, we provide evidence that the function of Ras to trigger inactivation of tuberin plays a major role in the regulation of cell survival upon mutational activation of the oncogene Ras. This is the first description of a functional interaction between the tumor suppressor tuberin and the oncogene Ras in regulating apoptosis.
Collapse
Affiliation(s)
- A Freilinger
- Medical Genetics, Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
249
|
Peng H, Sohara Y, Moats RA, Nelson MD, Groshen SG, Ye W, Reynolds CP, DeClerck YA. The Activity of Zoledronic Acid on Neuroblastoma Bone Metastasis Involves Inhibition of Osteoclasts and Tumor Cell Survival and Proliferation. Cancer Res 2007; 67:9346-55. [PMID: 17909043 DOI: 10.1158/0008-5472.can-06-4508] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Metastasis to the bone is seen in 56% of patients with neuroblastoma and contributes to morbidity and mortality. Using a murine model of bone invasion, we have reported previously that neuroblastoma cells invade the bone by activating osteoclasts. Here, we investigated the antitumoral and antiosteolytic activities of zoledronic acid, a bisphosphonate inhibitor of osteoclasts, in combination with cytotoxic chemotherapy in our model. We first show that zoledronic acid given at the same time (early prevention) or 2 weeks after tumor cell injection (late prevention) significantly prevented the formation of severe osteolytic lesions. It also prevented formation of these lesions when given 4 weeks after tumor cell injection (intervention) when combined with chemotherapy including cyclophosphamide and topotecan. The combination of zoledronic acid + cyclophosphamide/topotecan also significantly improved survival (P < 0.001). In mice treated with zoledronic acid, we observed a marked inhibition of osteoclasts inside the bone associated with a decrease in tumor cell proliferation and increase in tumor cell apoptosis. In vitro, zoledronic acid inhibited neuroblastoma cell proliferation and induced apoptosis, and these effects were significantly enhanced by the addition of 4-hydroxyperoxycyclophosphamide (4-HC). The proapoptotic effect of zoledronic acid and zoledronic acid in combination with 4-HC on tumor cells was associated with an increase in caspase-3 activity and a decrease in phosphorylated Bcl-2, Bcl-2, and Bcl-X(L) expression. Zoledronic acid inhibited the association of Ras with the plasma membrane and activation of c-Raf, Akt, and extracellular signal-regulated kinase 1/2. The data indicate that zoledronic acid, in addition to inhibiting osteoclasts, is active against tumor cells and suggest that zoledronic acid in combination with cytotoxic chemotherapy may be effective in children with neuroblastoma that has metastasized to the bone.
Collapse
Affiliation(s)
- Hongjun Peng
- Division of Hematology-Oncology, Department of Pediatrics, University of Southern California, USA
| | | | | | | | | | | | | | | |
Collapse
|
250
|
Miertzschke M, Stanley P, Bunney TD, Rodrigues-Lima F, Hogg N, Katan M. Characterization of Interactions of Adapter Protein RAPL/Nore1B with RAP GTPases and Their Role in T Cell Migration. J Biol Chem 2007; 282:30629-42. [PMID: 17716979 DOI: 10.1074/jbc.m704361200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Using a model of integrin-triggered random migration of T cells, we show that stimulation of LFA-1 integrins leads to the activation of Rap1 and Rap2 small GTPases. We further show that Rap1 and Rap2 have distinct roles in adhesion and random migration of these cells and that an adapter protein from the Ras association domain family (Rassf), RAPL, has a role downstream of Rap2 in addition to its link to Rap1. Further characterization of the RAPL protein and its interactions with small GTPases from the Ras family shows that RAPL forms more stable complexes with Rap2 and classical Ras proteins compared with Rap1. The different interaction pattern of RAPL with Rap1 and Rap2 is not affected by the disruption of the C-terminal SARAH domain that we identified as the alpha-helical region responsible for RAPL dimerization in vitro and in cells. Based on mutagenesis and three-dimensional modeling, we propose that interaction surfaces in RAPL-Rap1 and RAPL-Rap2 complexes are different and that a single residue in the switch I region of Rap proteins (residue 39) contributes considerably to the different kinetics of these protein-protein interactions. Furthermore, the distinct role of Rap2 in migration of T cells is lost when this critical residue is converted to the residue present in Rap1. Together, these observations suggest a wider role for Rassf adapter protein RAPL and Rap GTPases in cell motility and show that subtle differences between highly similar Rap proteins could be reflected in distinct interactions with common effectors and their cellular function.
Collapse
Affiliation(s)
- Mandy Miertzschke
- Cancer Research UK Centre for Cell and Molecular Biology, Chester Beatty Laboratories, The Institute of Cancer Research, Fulham Road, London SW3 6JB, United Kingdom
| | | | | | | | | | | |
Collapse
|