201
|
Gavello D, Vandael DHF, Cesa R, Premoselli F, Marcantoni A, Cesano F, Scarano D, Fubini B, Carbone E, Fenoglio I, Carabelli V. Altered excitability of cultured chromaffin cells following exposure to multi-walled carbon nanotubes. Nanotoxicology 2011; 6:47-60. [DOI: 10.3109/17435390.2011.553294] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
202
|
Düfer M, Neye Y, Hörth K, Krippeit-Drews P, Hennige A, Widmer H, McClafferty H, Shipston MJ, Häring HU, Ruth P, Drews G. BK channels affect glucose homeostasis and cell viability of murine pancreatic beta cells. Diabetologia 2011; 54:423-32. [PMID: 20981405 PMCID: PMC4005923 DOI: 10.1007/s00125-010-1936-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 09/08/2010] [Indexed: 01/04/2023]
Abstract
AIMS/HYPOTHESIS Evidence is accumulating that Ca(2+)-regulated K(+) (K(Ca)) channels are important for beta cell function. We used BK channel knockout (BK-KO) mice to examine the role of these K(Ca) channels for glucose homeostasis, beta cell function and viability. METHODS Glucose and insulin tolerance were tested with male wild-type and BK-KO mice. BK channels were detected by single-cell RT-PCR, cytosolic Ca(2+) concentration ([Ca(2+)](c)) by fura-2 fluorescence, and insulin secretion by radioimmunoassay. Electrophysiology was performed with the patch-clamp technique. Apoptosis was detected via caspase 3 or TUNEL assay. RESULTS BK channels were expressed in murine pancreatic beta cells. BK-KO mice were normoglycaemic but displayed markedly impaired glucose tolerance. Genetic or pharmacological deletion of the BK channel reduced glucose-induced insulin secretion from isolated islets. BK-KO and BK channel inhibition (with iberiotoxin, 100 nmol/l) broadened action potentials and abolished the after-hyperpolarisation in glucose-stimulated beta cells. However, BK-KO did not affect action potential frequency, the plateau potential at which action potentials start or glucose-induced elevation of [Ca(2+)](c). BK-KO had no direct influence on exocytosis. Importantly, in BK-KO islet cells the fraction of apoptotic cells and the rate of cell death induced by oxidative stress (H(2)O(2), 10-100 μmol/l) were significantly increased compared with wild-type controls. Similar effects were obtained with iberiotoxin. Determination of H(2)O(2)-induced K(+) currents revealed that BK channels contribute to the hyperpolarising K(+) current activated under conditions of oxidative stress. CONCLUSIONS/INTERPRETATION Ablation or inhibition of BK channels impairs glucose homeostasis and insulin secretion by interfering with beta cell stimulus-secretion coupling. In addition, BK channels are part of a defence mechanism against apoptosis and oxidative stress.
Collapse
Affiliation(s)
- M Düfer
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
203
|
Lin M, Hatcher JT, Chen QH, Wurster RD, Li L, Cheng ZJ. Maternal diabetes increases large conductance Ca2+-activated K+ outward currents that alter action potential properties but do not contribute to attenuated excitability of parasympathetic cardiac motoneurons in the nucleus ambiguus of neonatal mice. Am J Physiol Regul Integr Comp Physiol 2011; 300:R1070-8. [PMID: 21248308 DOI: 10.1152/ajpregu.00470.2010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, we demonstrated that maternal diabetes reduced the excitability and increased small-conductance Ca(2+)-activated K(+) (SK) currents of parasympathetic cardiac motoneurons (PCMNs) in the nucleus ambiguus (NA). In addition, blockade of SK channels with apamin completely abolished this reduction. In the present study, we examined whether maternal diabetes affects large-conductance Ca(2+)-activated K(+) (BK) channels and whether BK channels contribute to the attenuation of PCMN excitability observed in neonates of diabetic mothers. Neonatal mice from OVE26 diabetic mothers (NMDM) and normal FVB mothers (control) were used. The pericardial sac of neonatal mice at postnatal days 7-9 was injected with the tracer X-rhodamine-5 (and 6)-isothiocyanate 2 days prior to the experiment to retrogradely label PCMNs in the NA. Whole cell current- and voltage-clamps were used to measure spike frequency, action potential (AP) repolarization (half-width), afterhyperpolarization potential (AHP), transient outward currents, and afterhyperpolarization currents (I(AHP)). In whole cell voltage clamp mode, we confirmed that maternal diabetes increased transient outward currents and I(AHP) compared with normal cells. Using BK channel blockers charybdotoxin (CTx) and paxilline, we found that maternal diabetes increased CTx- and paxilline-sensitive transient outward currents but did not change CTx- and paxilline-sensitive I(AHP). In whole cell current-clamp mode, we confirmed that maternal diabetes increased AP half-width and AHP, and reduced excitability of PCMNs. Furthermore, we found that after blockade of BK channels with CTx or paxilline, maternal diabetes induced a greater increase of AP half-width but similarly decreased fast AHP without affecting medium AHP. Finally, blockade of BK channels decreased spike frequency in response to current injection in both control and NMDM without reducing the difference of spike frequency between the two groups. Therefore, we conclude that although BK transient outward currents, which may alter AP repolarization, are increased in NMDM, BK channels do not directly contribute to maternal diabetes-induced attenuation of PCMN excitability. In contrast, based on evidence from our previous and present studies, reduction of PCMN excitability in neonates of diabetic mothers is largely dependent on altered SK current associated with maternal diabetes.
Collapse
Affiliation(s)
- Min Lin
- Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 4000 Central Florida Blvd., Orlando, FL 32816, USA
| | | | | | | | | | | |
Collapse
|
204
|
Liao Y, Kristiansen AM, Oksvold CP, Tuvnes FA, Gu N, Rundén-Pran E, Ruth P, Sausbier M, Storm JF. Neuronal Ca2+-activated K+ channels limit brain infarction and promote survival. PLoS One 2010; 5:e15601. [PMID: 21209897 PMCID: PMC3012709 DOI: 10.1371/journal.pone.0015601] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 11/16/2010] [Indexed: 11/18/2022] Open
Abstract
Neuronal calcium-activated potassium channels of the BK type are activated by membrane depolarization and intracellular Ca(2+) ions. It has been suggested that these channels may play a key neuroprotective role during and after brain ischemia, but this hypothesis has so far not been tested by selective BK-channel manipulations in vivo. To elucidate the in vivo contribution of neuronal BK channels in acute focal cerebral ischemia, we performed middle cerebral artery occlusion (MCAO) in mice lacking BK channels (homozygous mice lacking the BK channel alpha subunit, BK(-/-)). MCAO was performed in BK(-/-) and WT mice for 90 minutes followed by a 7-hour-reperfusion period. Coronal 1 mm thick sections were stained with 2,3,5-triphenyltetrazolium chloride to reveal the infarction area. We found that transient focal cerebral ischemia by MCAO produced larger infarct volume, more severe neurological deficits, and higher post-ischemic mortality in BK(-/-) mice compared to WT littermates. However, the regional cerebral blood flow was not significantly different between genotypes as measured by Laser Doppler (LD) flowmetry pre-ischemically, intra-ischemically, and post-ischemically, suggesting that the different impact of MCAO in BK(-/-) vs. WT was not due to vascular BK channels. Furthermore, when NMDA was injected intracerebrally in non-ischemic mice, NMDA-induced neurotoxicity was found to be larger in BK(-/-) mice compared to WT. Whole-cell patch clamp recordings from CA1 pyramidal cells in organotypic hippocampal slice cultures revealed that BK channels contribute to rapid action potential repolarization, as previously found in acute slices. When these cultures were exposed to ischemia-like conditions this induced significantly more neuronal death in BK(-/-) than in WT cultures. These results indicate that neuronal BK channels are important for protection against ischemic brain damage.
Collapse
Affiliation(s)
- Yiliu Liao
- Pharmacology and Toxicology, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Ase-Marit Kristiansen
- Centre of Molecular Biology and Neuroscience, and Institute of Basal Medical Sciences, University of Oslo, Oslo, Norway
| | - Cecilie P. Oksvold
- Centre of Molecular Biology and Neuroscience, and Institute of Basal Medical Sciences, University of Oslo, Oslo, Norway
| | - Frode A. Tuvnes
- Centre of Molecular Biology and Neuroscience, and Institute of Basal Medical Sciences, University of Oslo, Oslo, Norway
| | - Ning Gu
- Centre of Molecular Biology and Neuroscience, and Institute of Basal Medical Sciences, University of Oslo, Oslo, Norway
| | - Elise Rundén-Pran
- Centre of Molecular Biology and Neuroscience, and Institute of Basal Medical Sciences, University of Oslo, Oslo, Norway
| | - Peter Ruth
- Pharmacology and Toxicology, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Matthias Sausbier
- Pharmacology and Toxicology, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
- * E-mail: (MS); (JS)
| | - Johan F. Storm
- Centre of Molecular Biology and Neuroscience, and Institute of Basal Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail: (MS); (JS)
| |
Collapse
|
205
|
Xu H, Qi J, Wang G, Deng H, Qi Z. The effect of single cerebroside compounds on activation of BKCa channels. Mol Membr Biol 2010; 28:145-54. [PMID: 21190430 DOI: 10.3109/09687688.2010.538731] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We have previously shown that a mixture of cerebrosides obtained from dried tubers of herb Typhonium giganteum Engl. plays a neuroprotective role in the ischemic brain through its effect on activation of BK(Ca) channels. It is very curious to know whether a single pure cerebroside compound could activate the BK(Ca) channel as well. This study explored the possible effects of pure cerebroside compounds, termitomycesphins A and B, on the BK(Ca) channel activation. Both termitomycesphins A and B activated the BK(Ca) channels at micromole concentration without significant difference. Termitomycesphin A increased the single channel open probability of the BK(Ca) channels in a dose-dependent manner without modifying the single channel conductance. Termitomycesphin A activated BK(Ca) channel more efficiently when it was applied to the cytoplasmic face of the membrane, suggesting that binding site for termitomycesphin A is located at the cytoplasmic side. Termitomycesphin A shifted the voltage-dependent activation curve to less positive membrane potentials and the Ca(2+)-dependent activation curve of the channel upwards, suggesting that termitomycesphin A could activate the channels even without intracellular free Ca(2+). Furthermore, STREX-deleted BK(Ca) channels were completely insensitive to termitomycesphin A, indicating that STREX domain is required for the activation of the BK(Ca) channel. These data provide evidence that termitomycesphins are potent in stimulating the activity of the BK(Ca) channels. As BK(Ca) channels are associated with pathology of many diseases, termitomycesphins might be used as therapeutic agents for treating these diseases through its regulatory effect on the BK(Ca) channels.
Collapse
Affiliation(s)
- Huina Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | |
Collapse
|
206
|
Kaffashian M, Shabani M, Goudarzi I, Behzadi G, Zali A, Janahmadi M. Profound alterations in the intrinsic excitability of cerebellar Purkinje neurons following neurotoxin 3-acetylpyridine (3-AP)-induced ataxia in rat: new insights into the role of small conductance K+ channels. Physiol Res 2010; 60:355-65. [PMID: 21114365 DOI: 10.33549/physiolres.932032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Alterations in the intrinsic properties of Purkinje cells (PCs) may contribute to the abnormal motor performance observed in ataxic rats. To investigate whether such changes in the intrinsic neuronal excitability could be attributed to the role of Ca(2+)-activated K(+) channels (K(Ca)), whole cell current clamp recordings were made from PCs in cerebellar slices of control and ataxic rats. 3-AP induced profound alterations in the intrinsic properties of PCs, as evidenced by a significant increase in both the membrane input resistance and the initial discharge frequency, along with the disruption of the firing regularity. In control PCs, the blockade of small conductance K(Ca) channels by UCL1684 resulted in a significant increase in the membrane input resistance, action potential (AP) half-width, time to peak of the AP and initial discharge frequency. SK channel blockade also significantly decreased the neuronal discharge regularity, the peak amplitude of the AP, the amplitude of the afterhyperpolarization and the spike frequency adaptation ratio. In contrast, in ataxic rats, both the firing regularity and the initial firing frequency were significantly increased by the blockade of SK channels. In conclusion, ataxia may arise from alterations in the functional contribution of SK channels, to the intrinsic properties of PCs.
Collapse
Affiliation(s)
- M Kaffashian
- Neuroscience Research Centre and Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
207
|
Vandael DH, Marcantoni A, Mahapatra S, Caro A, Ruth P, Zuccotti A, Knipper M, Carbone E. Ca(v)1.3 and BK channels for timing and regulating cell firing. Mol Neurobiol 2010; 42:185-98. [PMID: 21088933 DOI: 10.1007/s12035-010-8151-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Accepted: 11/09/2010] [Indexed: 12/20/2022]
Abstract
L-type Ca(2+) channels (LTCCs, Ca(v)1) open readily during membrane depolarization and allow Ca(2+) to enter the cell. In this way, LTCCs regulate cell excitability and trigger a variety of Ca(2+)-dependent physiological processes such as: excitation-contraction coupling in muscle cells, gene expression, synaptic plasticity, neuronal differentiation, hormone secretion, and pacemaker activity in heart, neurons, and endocrine cells. Among the two major isoforms of LTCCs expressed in excitable tissues (Ca(v)1.2 and Ca(v)1.3), Ca(v)1.3 appears suitable for supporting a pacemaker current in spontaneously firing cells. It has steep voltage dependence and low threshold of activation and inactivates slowly. Using Ca(v)1.3(-/-) KO mice and membrane current recording techniques such as the dynamic and the action potential clamp, it has been possible to resolve the time course of Ca(v)1.3 pacemaker currents that regulate the spontaneous firing of dopaminergic neurons and adrenal chromaffin cells. In several cell types, Ca(v)1.3 is selectively coupled to BK channels within membrane nanodomains and controls both the firing frequency and the action potential repolarization phase. Here we review the most critical aspects of Ca(v)1.3 channel gating and its coupling to large conductance BK channels recently discovered in spontaneously firing neurons and neuroendocrine cells with the aim of furnishing a converging view of the role that these two channel types play in the regulation of cell excitability.
Collapse
Affiliation(s)
- David Henry Vandael
- Department of Neuroscience, NIS Centre, CNISM, Corso Raffaello 30, 10125 Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
208
|
Wu RS, Marx SO. The BK potassium channel in the vascular smooth muscle and kidney: α- and β-subunits. Kidney Int 2010; 78:963-74. [DOI: 10.1038/ki.2010.325] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
209
|
Jeffries O, Geiger N, Rowe ICM, Tian L, McClafferty H, Chen L, Bi D, Knaus HG, Ruth P, Shipston MJ. Palmitoylation of the S0-S1 linker regulates cell surface expression of voltage- and calcium-activated potassium (BK) channels. J Biol Chem 2010; 285:33307-33314. [PMID: 20693285 PMCID: PMC2963414 DOI: 10.1074/jbc.m110.153940] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/14/2010] [Indexed: 11/18/2022] Open
Abstract
S-palmitoylation is rapidly emerging as an important post-translational mechanism to regulate ion channels. We have previously demonstrated that large conductance calcium- and voltage-activated potassium (BK) channels are palmitoylated within an alternatively spliced (STREX) insert. However, these studies also revealed that additional site(s) for palmitoylation must exist outside of the STREX insert, although the identity or the functional significance of these palmitoylated cysteine residues are unknown. Here, we demonstrate that BK channels are palmitoylated at a cluster of evolutionary conserved cysteine residues (Cys-53, Cys-54, and Cys-56) within the intracellular linker between the S0 and S1 transmembrane domains. Mutation of Cys-53, Cys-54, and Cys-56 completely abolished palmitoylation of BK channels lacking the STREX insert (ZERO variant). Palmitoylation allows the S0-S1 linker to associate with the plasma membrane but has no effect on single channel conductance or the calcium/voltage sensitivity. Rather, S0-S1 linker palmitoylation is a critical determinant of cell surface expression of BK channels, as steady state surface expression levels are reduced by ∼55% in the C53:54:56A mutant. STREX variant channels that could not be palmitoylated in the S0-S1 linker also displayed significantly reduced cell surface expression even though STREX insert palmitoylation was unaffected. Thus our work reveals the functional independence of two distinct palmitoylation-dependent membrane interaction domains within the same channel protein and demonstrates the critical role of S0-S1 linker palmitoylation in the control of BK channel cell surface expression.
Collapse
Affiliation(s)
- Owen Jeffries
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Nina Geiger
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom; Pharmacology and Toxicology, Institute of Pharmacy, University Tuebingen, 72076 Tuebingen, Germany
| | - Iain C M Rowe
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Lijun Tian
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Heather McClafferty
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Lie Chen
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Danlei Bi
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom
| | - Hans Guenther Knaus
- Division for Molecular and Cellular Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, Peter-Mayr Strasse 1, 6020 Innsbruck, Austria
| | - Peter Ruth
- Pharmacology and Toxicology, Institute of Pharmacy, University Tuebingen, 72076 Tuebingen, Germany
| | - Michael J Shipston
- From the Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, Hugh Robson Building, University of Edinburgh, Edinburgh EH8 9XD, United Kingdom.
| |
Collapse
|
210
|
Shabani M, Hosseinmardi N, Haghani M, Shaibani V, Janahmadi M. Maternal exposure to the CB1 cannabinoid agonist WIN 55212-2 produces robust changes in motor function and intrinsic electrophysiological properties of cerebellar Purkinje neurons in rat offspring. Neuroscience 2010; 172:139-52. [PMID: 20969930 DOI: 10.1016/j.neuroscience.2010.10.031] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 10/07/2010] [Accepted: 10/09/2010] [Indexed: 01/18/2023]
Abstract
The cerebellum, which controls coordinated and rapid movements, is a potential target for the deleterious effects of drugs of abuse including cannabis (i.e. marijuana, cannabinoids). Prenatal exposure to cannabinoids has been documented to cause abnormalities in motor and cognitive development, but the exact mechanism of this effect at the cellular level has not been fully elucidated. Previous studies indicate that cannabinoids are capable of modulating synaptic neurotransmission. In addition to altering synaptic activity, cannabinoid exposure may also change intrinsic neuronal properties. In the present study several different approaches including behavioral assays, extracellular field potential recordings and whole-cell patch clamp recordings, were used to address whether maternal exposure to the CB1 cannabinoid receptor agonist WIN 55-212-2 (WIN) affects the intrinsic electrophysiological properties of Purkinje neurons. WIN treatment of pregnant rats produced a significant decrease in the rearing frequency, total distance moved and mobility of the offspring, but significantly increased the time of the righting reflex, the grooming frequency and immobility. Neuromotor function, as assessed in the grip test and balance beam test, was also significantly impaired in prenatally WIN-treated group. Prenatal exposure to WIN increased the amplitude of population spikes (PS) recorded from the cerebellar Purkinje cell layer of offspring following synaptic blockage. WIN treatment of pregnant rats also profoundly affected the intrinsic properties of Purkinje neurons in offspring. This treatment increased the firing regularity, firing frequency, amplitude of afterhyperpolarization (AHP), the peak amplitude of action potential and the first spike latency, but decreased significantly the time to peak and duration of action potentials, the instantaneous firing frequency, the rate of rebound action potential and the voltage "sag" ratio. These results raise the possibility that maternal exposure to cannabinoids may profoundly affect the intrinsic membrane properties of cerebellar Purkinje neurons of offspring by altering the membrane excitability through modulation of intrinsic ion channels.
Collapse
Affiliation(s)
- M Shabani
- Neuroscience Research Centre and Department of Physiology, Medical School, Shahid Beheshti University of Medical Sciences, Evin, Tehran, Islamic Republic of Iran
| | | | | | | | | |
Collapse
|
211
|
Belmeguenai A, Hosy E, Bengtsson F, Pedroarena CM, Piochon C, Teuling E, He Q, Ohtsuki G, De Jeu MTG, Elgersma Y, De Zeeuw CI, Jörntell H, Hansel C. Intrinsic plasticity complements long-term potentiation in parallel fiber input gain control in cerebellar Purkinje cells. J Neurosci 2010; 30:13630-43. [PMID: 20943904 PMCID: PMC2968711 DOI: 10.1523/jneurosci.3226-10.2010] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/06/2010] [Accepted: 08/09/2010] [Indexed: 11/21/2022] Open
Abstract
Synaptic gain control and information storage in neural networks are mediated by alterations in synaptic transmission, such as in long-term potentiation (LTP). Here, we show using both in vitro and in vivo recordings from the rat cerebellum that tetanization protocols for the induction of LTP at parallel fiber (PF)-to-Purkinje cell synapses can also evoke increases in intrinsic excitability. This form of intrinsic plasticity shares with LTP a requirement for the activation of protein phosphatases 1, 2A, and 2B for induction. Purkinje cell intrinsic plasticity resembles CA1 hippocampal pyramidal cell intrinsic plasticity in that it requires activity of protein kinase A (PKA) and casein kinase 2 (CK2) and is mediated by a downregulation of SK-type calcium-sensitive K conductances. In addition, Purkinje cell intrinsic plasticity similarly results in enhanced spine calcium signaling. However, there are fundamental differences: first, while in the hippocampus increases in excitability result in a higher probability for LTP induction, intrinsic plasticity in Purkinje cells lowers the probability for subsequent LTP induction. Second, intrinsic plasticity raises the spontaneous spike frequency of Purkinje cells. The latter effect does not impair tonic spike firing in the target neurons of inhibitory Purkinje cell projections in the deep cerebellar nuclei, but lowers the Purkinje cell signal-to-noise ratio, thus reducing the PF readout. These observations suggest that intrinsic plasticity accompanies LTP of active PF synapses, while it reduces at weaker, nonpotentiated synapses the probability for subsequent potentiation and lowers the impact on the Purkinje cell output.
Collapse
Affiliation(s)
- Amor Belmeguenai
- Department of Neuroscience, Erasmus University Medical Center, 3000CA Rotterdam, The Netherlands
- Université de Lyon, Université Lyon 1, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5123, Villeurbanne, France
- CTRS-IDEE, Hospices Civils de Lyon, Lyon, France
| | - Eric Hosy
- Department of Neuroscience, Erasmus University Medical Center, 3000CA Rotterdam, The Netherlands
| | - Fredrik Bengtsson
- Department of Experimental Medical Science, Section for Neuroscience, Lund University, 22184 Lund, Sweden
| | - Christine M. Pedroarena
- Department of Cognitive Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany
| | - Claire Piochon
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, and
| | - Eva Teuling
- Department of Neuroscience, Erasmus University Medical Center, 3000CA Rotterdam, The Netherlands
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, and
| | - Qionger He
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, and
| | - Gen Ohtsuki
- Department of Neuroscience, Erasmus University Medical Center, 3000CA Rotterdam, The Netherlands
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, and
| | - Marcel T. G. De Jeu
- Department of Neuroscience, Erasmus University Medical Center, 3000CA Rotterdam, The Netherlands
| | - Ype Elgersma
- Department of Neuroscience, Erasmus University Medical Center, 3000CA Rotterdam, The Netherlands
| | - Chris I. De Zeeuw
- Department of Neuroscience, Erasmus University Medical Center, 3000CA Rotterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Academy of Sciences (KNAW), 1105 BA Amsterdam, The Netherlands
| | - Henrik Jörntell
- Department of Experimental Medical Science, Section for Neuroscience, Lund University, 22184 Lund, Sweden
| | - Christian Hansel
- Department of Neuroscience, Erasmus University Medical Center, 3000CA Rotterdam, The Netherlands
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637, and
| |
Collapse
|
212
|
Martire M, Barrese V, D'Amico M, Iannotti FA, Pizzarelli R, Samengo I, Viggiano D, Ruth P, Cherubini E, Taglialatela M. Pre-synaptic BK channels selectively control glutamate versus GABA release from cortical and hippocampal nerve terminals. J Neurochem 2010; 115:411-22. [PMID: 20681950 DOI: 10.1111/j.1471-4159.2010.06938.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study, by means of genetic, biochemical, morphological, and electrophysiological approaches, the role of large-conductance voltage- and Ca(2+)-dependent K(+) channels (BK channels) in the release of excitatory and non-excitatory neurotransmitters at hippocampal and non-hippocampal sites has been investigated. The results obtained show that the pharmacological modulation of pre-synaptic BK channels selectively regulates [(3)H]D-aspartate release from cortical and hippocampal rat synaptosomes, but it fails to influence the release of excitatory neurotransmitters from cerebellar nerve endings or that of [(3)H]GABA, [(3)H]Noradrenaline, or [(3)H]Dopamine from any of the brain regions investigated. Confocal immunofluorescence experiments in hippocampal or cerebrocortical nerve terminals revealed that the main pore-forming BK α subunit was more abundantly expressed in glutamatergic (vGLUT1(+)) versus GABAergic (GAD(65-67)(+)) nerve terminals. Double patch recordings in monosynaptically connected hippocampal neurons in culture confirmed a preferential control exerted by BK channels on glutamate over GABA release. Altogether, the present results highlight a high degree of specificity in the regulation of the release of various neurotransmitters from distinct brain regions by BK channels, supporting the concept that BK channel modulators can be used to selectively limit excessive excitatory amino acid release, a major pathogenetic mechanism in several neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria Martire
- Institute of Pharmacology, Catholic University of Sacred Heart, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Goudarzi I, Kaffashian M, Shabani M, Haghdoost-Yazdi H, Behzadi G, Janahmadi M. In vivo 4-aminopyridine treatment alters the neurotoxin 3-acetylpyridine-induced plastic changes in intrinsic electrophysiological properties of rat cerebellar Purkinje neurones. Eur J Pharmacol 2010; 642:56-65. [DOI: 10.1016/j.ejphar.2010.05.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 04/29/2010] [Accepted: 05/25/2010] [Indexed: 12/30/2022]
|
214
|
α-Catulin CTN-1 is required for BK channel subcellular localization in C. elegans body-wall muscle cells. EMBO J 2010; 29:3184-95. [PMID: 20700105 DOI: 10.1038/emboj.2010.194] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 07/20/2010] [Indexed: 11/09/2022] Open
Abstract
The BK channel, a voltage- and Ca(2+)-gated large-conductance potassium channel with many important functions, is often localized at specific subcellular domains. Although proper subcellular localization is likely a prerequisite for the channel to perform its physiological functions, little is known about the molecular basis of localization. Here, we show that CTN-1, a homologue of mammalian α-catulin, is required for subcellular localization of SLO-1, the Caenorhabditis elegans BK channel α-subunit, in body-wall muscle cells. CTN-1 was identified in a genetic screen for mutants that suppressed a lethargic phenotype caused by expressing a gain-of-function (gf) isoform of SLO-1. In body-wall muscle cells, CTN-1 coclusters with SLO-1 at regions of dense bodies, which are Z-disk analogs of mammalian skeletal muscle. In ctn-1 loss-of-function (lf) mutants, SLO-1 was mislocalized in body-wall muscle but its transcription and protein level were unchanged. Targeted rescue of ctn-1(lf) in muscle was sufficient to reinstate the lethargic phenotype in slo-1(gf);ctn-1(lf). These results suggest that CTN-1 plays an important role in BK channel function by mediating channel subcellular localization.
Collapse
|
215
|
Chen L, Jeffries O, Rowe ICM, Liang Z, Knaus HG, Ruth P, Shipston MJ. Membrane trafficking of large conductance calcium-activated potassium channels is regulated by alternative splicing of a transplantable, acidic trafficking motif in the RCK1-RCK2 linker. J Biol Chem 2010; 285:23265-75. [PMID: 20479001 PMCID: PMC2906319 DOI: 10.1074/jbc.m110.139758] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Indexed: 01/26/2023] Open
Abstract
Trafficking of the pore-forming alpha-subunits of large conductance calcium- and voltage-activated potassium (BK) channels to the cell surface represents an important regulatory step in controlling BK channel function. Here, we identify multiple trafficking signals within the intracellular RCK1-RCK2 linker of the cytosolic C terminus of the channel that are required for efficient cell surface expression of the channel. In particular, an acidic cluster-like motif was essential for channel exit from the endoplasmic reticulum and subsequent cell surface expression. This motif could be transplanted onto a heterologous nonchannel protein to enhance cell surface expression by accelerating endoplasmic reticulum export. Importantly, we identified a human alternatively spliced BK channel variant, hSloDelta(579-664), in which these trafficking signals are excluded because of in-frame exon skipping. The hSloDelta(579-664) variant is expressed in multiple human tissues and cannot form functional channels at the cell surface even though it retains the putative RCK domains and downstream trafficking signals. Functionally, the hSloDelta(579-664) variant acts as a dominant negative subunit to suppress cell surface expression of BK channels. Thus alternative splicing of the intracellular RCK1-RCK2 linker plays a critical role in determining cell surface expression of BK channels by controlling the inclusion/exclusion of multiple trafficking motifs.
Collapse
Affiliation(s)
- Lie Chen
- From the
Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Owen Jeffries
- From the
Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Iain C. M. Rowe
- From the
Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Zhi Liang
- From the
Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Hans-Guenther Knaus
- the
Division for Molecular and Cellular Pharmacology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University Innsbruck, Peter-Mayr Strasse 1, 6020 Innsbruck, Austria, and
| | - Peter Ruth
- Pharmacology and Toxicology, Institute of Pharmacy, University Tuebingen, 72076 Tuebingen, Germany
| | - Michael J. Shipston
- From the
Centre for Integrative Physiology, College of Medicine & Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9XD, Scotland, United Kingdom
| |
Collapse
|
216
|
Pedroarena CM. Mechanisms supporting transfer of inhibitory signals into the spike output of spontaneously firing cerebellar nuclear neurons in vitro. THE CEREBELLUM 2010; 9:67-76. [PMID: 20148319 DOI: 10.1007/s12311-009-0153-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cerebellar cortical signals are carried to their principal target, the deep cerebellar nuclear neurons (DCNs), via the inhibitory pathway formed by Purkinje cell (PC) axons. Two different intrinsic properties of DCNs, rebound excitation and automatic firing, have been proposed to support ensuing mechanisms for information transfer via inhibitory synapses. The efficacy of these mechanisms was investigated using whole-cell recordings of spontaneously firing DCNs in cerebellar slices. Results using current injection revealed that both mechanisms are effective in spontaneously firing DCNs but operate at different ranges of membrane potential. Rebound frequency was well correlated to the duration and amplitude of the preceding hyperpolarization. Activation of PC synapses with trains of stimuli few seconds long elicited rebound firing in all tested neurons, demonstrating that inhibition can elicit rebounds in DCNs held at their spontaneous membrane potential. Rebounds could be also elicited by single stimulus in a subset of neurons. The rebound frequency was significantly correlated to the synaptic stimulus strength, supporting the idea that rebound frequency may encode the amplitude of inhibition and thus serve to transfer inhibitory signals in the cerebellar circuit.
Collapse
Affiliation(s)
- Christine M Pedroarena
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried Müller Str. 27, Tübingen, Germany.
| |
Collapse
|
217
|
Song X, Su W, Chen L, Ji JJ. Functional expression of large-conductance Ca2+-activated potassium channels in lateral globus pallidus neurons. Neuroscience 2010; 169:1548-56. [PMID: 20600663 DOI: 10.1016/j.neuroscience.2010.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
Abstract
The presence of large-conductance Ca(2+)-activated potassium (BK) channels, which are considered to play an important role in the excitability of neurons, in the highly-excitable lateral globus pallidus (LGP) neurons has yet to be confirmed. In this study, we confirmed the functional expression of BK channels in mouse LGP neurons and investigated the characteristics of their single-channel currents using inside-out patch-clamp recordings. These BK channels had a conductance of 276 pS, were activated by the elevation of both the transmembrane potential and intracellular calcium concentration ([Ca(2+)](i)), and were completely blocked by the BK channel-specific blocker paxilline (100 nM). In addition, the channel currents were sensitive to high-energy phosphate compounds and low internal pH. The cellular function of these BK channels was then investigated by nystatin-perforated whole-cell recording. Paxilline (100 nM) had no effect on the frequency and half-width of the action potential (AP) in LGP neurons under control conditions, but significantly attenuated the hyperpolarization that was caused by carbonyl cyanide m-chlorophenylhydrazone (CCCP), an inhibitor of ATP synthesis. In addition, the pancreatic beta-cell type ATP-sensitive potassium channel (K(ATP) channel) blocker tolbutamide (0.25 mM) also attenuated the hyperpolarization, in a manner similar to paxilline. The voltage-dependent potassium channel blocker tetraethylammonium (TEA, 2 mM) significantly decreased the frequency and increased the half-width of the AP in LGP neurons under control conditions, and attenuated CCCP-induced hyperpolarization to an extent close to that of paxilline. The results presented here suggest that functional BK channels are present in LGP neurons, and may behave as partners of K(ATP) channels in the regulation of neuronal activity under metabolic stress conditions.
Collapse
Affiliation(s)
- X Song
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, PR China
| | | | | | | |
Collapse
|
218
|
Disruption of the olivo-cerebellar circuit by Purkinje neuron-specific ablation of BK channels. Proc Natl Acad Sci U S A 2010; 107:12323-8. [PMID: 20566869 DOI: 10.1073/pnas.1001745107] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The large-conductance voltage- and calcium-activated potassium (BK) channels are ubiquitously expressed in the brain and play an important role in the regulation of neuronal excitation. Previous work has shown that the total deletion of these channels causes an impaired motor behavior, consistent with a cerebellar dysfunction. Cellular analyses showed that a decrease in spike firing rate occurred in at least two types of cerebellar neurons, namely in Purkinje neurons (PNs) and in Golgi cells. To determine the relative role of PNs, we developed a cell-selective mouse mutant, which lacked functional BK channels exclusively in PNs. The behavioral analysis of these mice revealed clear symptoms of ataxia, indicating that the BK channels of PNs are of major importance for normal motor coordination. By using combined two-photon imaging and patch-clamp recordings in these mutant mice, we observed a unique type of synaptic dysfunction in vivo, namely a severe silencing of the climbing fiber-evoked complex spike activity. By performing targeted pharmacological manipulations combined with simultaneous patch-clamp recordings in PNs, we obtained direct evidence that this silencing of climbing fiber activity is due to a malfunction of the tripartite olivo-cerebellar feedback loop, consisting of the inhibitory synaptic connection of PNs to the deep cerebellar nuclei (DCN), followed by a projection of inhibitory DCN afferents to the inferior olive, the origin of climbing fibers. Taken together, our results establish an essential role of BK channels of PNs for both cerebellar motor coordination and feedback regulation in the olivo-cerebellar loop.
Collapse
|
219
|
Higgins JJ, Tal AL, Sun X, Hauck SCR, Hao J, Kosofosky BE, Rajadhyaksha AM. Temporal and spatial mouse brain expression of cereblon, an ionic channel regulator involved in human intelligence. J Neurogenet 2010; 24:18-26. [PMID: 20131966 DOI: 10.3109/01677060903567849] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A mild form of autosomal recessive, nonsyndromal intellectual disability (ARNSID) in humans is caused by a homozygous nonsense mutation in the cereblon gene (mutCRBN). Rodent crbn protein binds to the intracellular C-terminus of the large conductance Ca(2+)-activated K(+)channel (BK(Ca)). An mRNA variant (human SITE 2 INSERT or mouse strex) of the BK(Ca) gene (KCNMA1) that is normally expressed during embryonic development is aberrantly expressed in mutCRBN human lymphoblastoid cell lines (LCLs) as compared to wild-type (wt) LCLs. The present study analyzes the temporal and spatial distribution of crbn and kcnma1 mRNAs in the mouse brain by the quantitative real-time reverse transcriptase-polymerase chain reaction (qPCR). The spatial expression pattern of endogenous and exogenous crbn proteins is characterized by immunostaining. The results show that neocortical (CTX) crbn and kcnma1 mRNA expression increases from embryonic stages to adulthood. The strex mRNA variant is >3.5-fold higher in embryos and decreases rapidly postnatally. Mouse crbn mRNA is abundant in the cerebellum (CRBM), with less expression in the CTX, hippocampus (HC), and striatum (Str) in adult mice. The intracytoplasmic distribution of endogenous crbn protein in the mouse CRBM, CTX, HC, and Str is similar to the immunostaining pattern described previously for the BK(Ca) channel. Exogenous hemagglutinin (HA) epitope-tagged human wt- and mutCRBN proteins using cDNA transfection in HEK293T cell lines showed the same intracellular expression distribution as endogenous mouse crbn protein. The results suggest that mutCRBN may cause ARNSID by disrupting the developmental regulation of BK(Ca) in brain regions that are critical for memory and learning.
Collapse
Affiliation(s)
- Joseph J Higgins
- Department of Pediatrics, Division of Pediatric Neurology, York Presbyterian Hospital, Weill Cornell Medical College, New York, New York 10065, USA.
| | | | | | | | | | | | | |
Collapse
|
220
|
Abstract
The goals of this short review are to familiarize readers with the stargazer mouse and to outline the major functional defects associated with this mutant. The roles of the stargazin protein in calcium channel function and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-receptor trafficking are discussed; focus is placed on studies regarding the thalamus, whence absence seizures potentially originate, and the cerebellum, which is associated with the ataxic phenotype. Finally, two additional alleles of stargazer, waggler and stargazer 3Jackson (3J), illustrate the value of an allelic series for understanding stargazin function.
Collapse
|
221
|
Kaufmann WA, Kasugai Y, Ferraguti F, Storm JF. Two distinct pools of large-conductance calcium-activated potassium channels in the somatic plasma membrane of central principal neurons. Neuroscience 2010; 169:974-86. [PMID: 20595025 PMCID: PMC2923744 DOI: 10.1016/j.neuroscience.2010.05.070] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 01/07/2023]
Abstract
Although nerve cell membranes are often assumed to be uniform with respect to electrical properties, there is increasing evidence for compartmentalization into subdomains with heterogeneous impacts on the overall cell function. Such microdomains are characterized by specific sets of proteins determining their functional properties. Recently, clustering of large-conductance calcium-activated potassium (BKCa) channels was shown at sites of subsurface membrane cisterns in cerebellar Purkinje cells (PC), where they likely participate in building a subcellular signaling unit, the 'PLasmERosome'. By applying SDS-digested freeze-fracture replica labeling (SDS-FRL) and postembedding immunogold electron microscopy, we have now studied the spatial organization of somatic BKCa channels in neocortical layer 5 pyramidal neurons, principal neurons of the central and basolateral amygdaloid nuclei, hippocampal pyramidal neurons and dentate gyrus (DG) granule cells to establish whether there is a common organizational principle in the distribution of BKCa channels in central principal neurons. In all cell types analyzed, somatic BKCa channels were found to be non-homogenously distributed in the plasma membrane, forming two pools of channels with one pool consisting of clustered channels and the other of scattered channels in the extrasynaptic membrane. Quantitative analysis by means of SDS-FRL revealed that about two-thirds of BKCa channels belong to the scattered pool and about one-third to the clustered pool in principal cell somata. Overall densities of channels in both pools differed in the different cell types analyzed, although being considerably lower compared to cerebellar PC. Postembedding immunogold labeling revealed association of clustered channels with subsurface membrane cisterns and confirmed extrasynaptic localization of scattered channels. This study indicates a common organizational principle for somatic BKCa channels in central principal neurons with the formation of a clustered and a scattered pool of channels, and a cell-type specific density of this channel type.
Collapse
Affiliation(s)
- W A Kaufmann
- Department of Pharmacology, Innsbruck Medical University, Peter-Mayr Strasse 1a, 6020 Innsbruck, Austria.
| | | | | | | |
Collapse
|
222
|
Sørensen MV, Sausbier M, Ruth P, Seidler U, Riederer B, Praetorius HA, Leipziger J. Adrenaline-induced colonic K+ secretion is mediated by KCa1.1 (BK) channels. J Physiol 2010; 588:1763-77. [PMID: 20351045 PMCID: PMC2887993 DOI: 10.1113/jphysiol.2009.181933] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 03/29/2010] [Indexed: 11/08/2022] Open
Abstract
Colonic epithelial K(+) secretion is a two-step transport process with initial K(+) uptake over the basolateral membrane followed by K(+) channel-dependent exit into the lumen. In this process the large-conductance, Ca(2+)-activated K(Ca)1.1 (BK) channel has been identified as the only apparent secretory K(+) channel in the apical membrane of the murine distal colon. The BK channel is responsible for both resting and Ca(2+)-activated colonic K(+) secretion and is up-regulated by aldosterone. Agonists (e.g. adrenaline) that elevate cAMP are potent activators of distal colonic K(+) secretion. However, the secretory K(+) channel responsible for cAMP-induced K(+) secretion remains to be defined. In this study we used the Ussing chamber to identify adrenaline-induced electrogenic K(+) secretion. We found that the adrenaline-induced electrogenic ion secretion is a compound effect dominated by anion secretion and a smaller electrically opposing K(+) secretion. Using tissue from (i) BK wildtype (BK(+/+)) and knockout (BK(/)) and (ii) cystic fibrosis transmembrane regulator (CFTR) wildtype (CFTR(+/+)) and knockout (CFTR(/)) mice we were able to isolate the adrenaline-induced K(+) secretion. We found that adrenaline-induced K(+) secretion: (1) is absent in colonic epithelia from BK(/) mice, (2) is greatly up-regulated in mice on a high K(+) diet and (3) is present as sustained positive current in colonic epithelia from CFTR(/) mice. We identified two known C-terminal BK alpha-subunit splice variants in colonic enterocytes (STREX and ZERO). Importantly, the ZERO variant known to be activated by cAMP is differentially up-regulated in enterocytes from animals on a high K(+) diet. In summary, these results strongly suggest that the adrenaline-induced distal colonic K(+) secretion is mediated by the BK channel and probably involves aldosterone-induced ZERO splice variant up-regulation.
Collapse
Affiliation(s)
- Mads V Sørensen
- Department of Physiology and Biophysics, The Water and Salt Research Center, Aarhus University, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
223
|
Abstract
Large conductance voltage- and Ca(2+)-activated potassium channels (BK channels) are important feedback regulators in excitable cells and are potently regulated by protein kinases. The present study reveals a dual role of protein kinase C (PKC) on BK channel regulation. Phosphorylation of S(695) by PKC, located between the two regulators of K(+) conductance (RCK1/2) domains, inhibits BK channel open-state probability. This PKC-dependent inhibition depends on a preceding phosphorylation of S(1151) in the C terminus of the channel alpha-subunit. Phosphorylation of only one alpha-subunit at S(1151) and S(695) within the tetrameric pore is sufficient to inhibit BK channel activity. We further detected that protein phosphatase 1 is associated with the channel, constantly counteracting phosphorylation of S(695). PKC phosphorylation at S(1151) also influences stimulation of BK channel activity by protein kinase G (PKG) and protein kinase A (PKA). Though the S(1151)A mutant channel is activated by PKA only, the phosphorylation of S(1151) by PKC renders the channel responsive to activation by PKG but prevents activation by PKA. Phosphorylation of S(695) by PKC or introducing a phosphomimetic aspartate at this position (S(695)D) renders BK channels insensitive to the stimulatory effect of PKG or PKA. Therefore, our findings suggest a very dynamic regulation of the channel by the local PKC activity. It is shown that this complex regulation is not only effective in recombinant channels but also in native BK channels from tracheal smooth muscle.
Collapse
|
224
|
Perkins EM, Clarkson YL, Sabatier N, Longhurst DM, Millward CP, Jack J, Toraiwa J, Watanabe M, Rothstein JD, Lyndon AR, Wyllie DJA, Dutia MB, Jackson M. Loss of beta-III spectrin leads to Purkinje cell dysfunction recapitulating the behavior and neuropathology of spinocerebellar ataxia type 5 in humans. J Neurosci 2010; 30:4857-67. [PMID: 20371805 PMCID: PMC2857506 DOI: 10.1523/jneurosci.6065-09.2010] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 01/19/2010] [Accepted: 02/06/2010] [Indexed: 12/22/2022] Open
Abstract
Mutations in SPTBN2, the gene encoding beta-III spectrin, cause spinocerebellar ataxia type 5 in humans (SCA5), a neurodegenerative disorder resulting in loss of motor coordination. How these mutations give rise to progressive ataxia and what the precise role beta-III spectrin plays in normal cerebellar physiology are unknown. We developed a mouse lacking full-length beta-III spectrin and found that homozygous mice reproduced features of SCA5 including gait abnormalities, tremor, deteriorating motor coordination, Purkinje cell loss, and cerebellar atrophy (molecular layer thinning). In vivo analysis reveals an age-related reduction in simple spike firing rate in surviving beta-III(-/-) Purkinje cells, whereas in vitro studies show these neurons to have reduced spontaneous firing, smaller sodium currents, and dysregulation of glutamatergic neurotransmission. Our data suggest an early loss of EAAT4- (protein interactor of beta-III spectrin) and a subsequent loss of GLAST-mediated uptake may play a role in neuronal pathology. These findings implicate a loss of beta-III spectrin function in SCA5 pathogenesis and indicate that there are at least two physiological effects of beta-III spectrin loss that underpin a progressive loss of inhibitory cerebellar output, namely an intrinsic Purkinje cell membrane defect due to reduced sodium currents and alterations in glutamate signaling.
Collapse
Affiliation(s)
- Emma M. Perkins
- The Centre for Integrative Physiology, The University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | - Yvonne L. Clarkson
- The Centre for Integrative Physiology, The University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | - Nancy Sabatier
- The Centre for Integrative Physiology, The University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | - David M. Longhurst
- The Centre for Integrative Physiology, The University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | - Christopher P. Millward
- The Centre for Integrative Physiology, The University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | - Jennifer Jack
- The Centre for Integrative Physiology, The University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | - Junko Toraiwa
- The Centre for Integrative Physiology, The University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | - Mitsunori Watanabe
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki 036-8562, Japan
| | - Jeffrey D. Rothstein
- Department of Neurology and Neuroscience, Johns Hopkins University, Baltimore, Maryland 21287, and
| | - Alastair R. Lyndon
- School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, United Kingdom
| | - David J. A. Wyllie
- The Centre for Integrative Physiology, The University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | - Mayank B. Dutia
- The Centre for Integrative Physiology, The University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| | - Mandy Jackson
- The Centre for Integrative Physiology, The University of Edinburgh, George Square, Edinburgh EH8 9XD, United Kingdom
| |
Collapse
|
225
|
Chiu YH, Alvarez-Baron C, Kim EY, Dryer SE. Dominant-negative regulation of cell surface expression by a pentapeptide motif at the extreme COOH terminus of an Slo1 calcium-activated potassium channel splice variant. Mol Pharmacol 2010; 77:497-507. [PMID: 20051533 PMCID: PMC2845944 DOI: 10.1124/mol.109.061929] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Accepted: 01/04/2010] [Indexed: 11/22/2022] Open
Abstract
Large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels regulate the physiology of many cell types. A single vertebrate gene variously known as Slo1, KCa1.1, or KCNMA1 encodes the pore-forming subunits of BK(Ca) channel but is expressed in a potentially very large number of alternative splice variants. Two splice variants of Slo1, Slo1(VEDEC) and Slo1(QEERL), which differ at the extreme COOH terminus, show markedly different steady-state expression levels on the cell surface. Here we show that Slo1(VEDEC) and Slo1(QEERL) can reciprocally coimmunoprecipitate, indicating that they form heteromeric complexes. Moreover, coexpression of even small amounts of Slo1(VEDEC) markedly reduces surface expression of Slo1(QEERL) and total Slo1 as indicated by cell-surface biotinylation assays. The effects of Slo1(VEDEC) on steady-state surface expression can be attributed primarily to the last five residues of the protein based on surface expression of motif-swapped constructs of Slo1 in human embryonic kidney (HEK) 293T cells. In addition, the presence of the VEDEC motif at the COOH terminus of Slo1 channels is sufficient to confer a dominant-negative effect on cell surface expression of itself or other types of Slo1 subunits. Treating cells with short peptides containing the VEDEC motif increased surface expression of Slo1(VEDEC) channels transiently expressed in HEK293T cells and increased current through endogenous BK(Ca) channels in mouse podocytes. Slo1(VEDEC) and Slo1(QEERL) channels are removed from the HEK293T cell surface with similar kinetics and to a similar extent, which suggests that the inhibitory effect of the VEDEC motif is exerted primarily on forward trafficking into the plasma membrane.
Collapse
Affiliation(s)
- Yu-Hsin Chiu
- Department of Biology and Biochemistry, University of Houston, 4800 Calhoun, Houston, TX 77204-5001, USA
| | | | | | | |
Collapse
|
226
|
Luján R. Organisation of potassium channels on the neuronal surface. J Chem Neuroanat 2010; 40:1-20. [PMID: 20338235 DOI: 10.1016/j.jchemneu.2010.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 11/30/2022]
Abstract
Potassium channels are a family of ion channels that govern the intrinsic electrical properties of neurons in the brain. Molecular cloning has revealed over 100 genes encoding the pore-forming alpha subunits of potassium channels in mammals, making them the most diverse subset of ion channels. Multiplicity in this ion channel family is further generated through alternative splicing. The precise location of potassium channels along the dendro-somato-axonic surface of the neurons is an important factor in determining its functional impact. Today, it is widely accepted that potassium channels can be located at any subcellular compartment on the neuronal surface, at synaptic and extrasynaptic sites, from somata to dendritic shafts, dendritic spines, axons or axon terminals. However, they are not evenly distributed on the neuronal surface and depending on the potassium channel subtype, are instead concentrated at different compartments. This selective localization of ion channels to specific neuronal compartments has many different functional implications. One factor necessary to understand the role of potassium channels in neuronal function is to unravel their specialized distribution and subcellular localization within a cell, and this can only be achieved by electron microscopy. In this review, I summarize anatomical findings, describing their distribution in the central nervous system. The distinct regional, cellular and subcellular distribution of potassium channels in the brain will be discussed in view of their possible functional implications.
Collapse
Affiliation(s)
- Rafael Luján
- Departamento de Ciencias Médicas, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain.
| |
Collapse
|
227
|
Abstract
Voltage-gated sodium channels initiate action potentials in brain neurons, and sodium channel blockers are used in therapy of epilepsy. Mutations in sodium channels are responsible for genetic epilepsy syndromes with a wide range of severity, and the NaV1.1 channel encoded by the SCN1A gene is the most frequent target of mutations. Complete loss-of-function mutations in NaV1.1 cause severe myoclonic epilepsy of infancy (SMEI or Dravet's Syndrome), which includes severe, intractable epilepsy and comorbidities of ataxia and cognitive impairment. Mice with loss-of-function mutations in NaV1.1 channels have severely impaired sodium currents and action potential firing in hippocampal GABAergic inhibitory neurons without detectable effect on the excitatory pyramidal neurons, which would cause hyperexcitability and contribute to seizures in SMEI. Similarly, the sodium currents and action potential firing are also impaired in the GABAergic Purkinje neurons of the cerebellum, which is likely to contribute to ataxia. The imbalance between excitatory and inhibitory transmission in these mice can be partially corrected by compensatory loss-of-function mutations of NaV1.6 channels, and thermally induced seizures in these mice can be prevented by drug combinations that enhance GABAergic neurotransmission. Generalized epilepsy with febrile seizures plus (GEFS+) is caused by missense mutations in NaV1.1 channels, which have variable biophysical effects on sodium channels expressed in non-neuronal cells, but may primarily cause loss of function when expressed in mice. Familial febrile seizures is caused by mild loss-of-function mutations in NaV1.1 channels; mutations in these channels are implicated in febrile seizures associated with vaccination; and impaired alternative splicing of the mRNA encoding these channels may also predispose some children to febrile seizures. We propose a unified loss-of-function hypothesis for the spectrum of epilepsy syndromes caused by genetic changes in NaV1.1 channels, in which mild impairment predisposes to febrile seizures, intermediate impairment leads to GEFS+ epilepsy, and severe or complete loss of function leads to the intractable seizures and comorbidities of SMEI.
Collapse
Affiliation(s)
- William A Catterall
- University of Washington, Department of Pharmacology, SJ-30, Seattle, WA 98195-7280, USA.
| | | | | |
Collapse
|
228
|
Abstract
The sarcoplasmic reticulum (SR) of smooth muscles presents many intriguing facets and questions concerning its roles, especially as these change with development, disease, and modulation of physiological activity. The SR's function was originally perceived to be synthetic and then that of a Ca store for the contractile proteins, acting as a Ca amplification mechanism as it does in striated muscles. Gradually, as investigators have struggled to find a convincing role for Ca-induced Ca release in many smooth muscles, a role in controlling excitability has emerged. This is the Ca spark/spontaneous transient outward current coupling mechanism which reduces excitability and limits contraction. Release of SR Ca occurs in response to inositol 1,4,5-trisphosphate, Ca, and nicotinic acid adenine dinucleotide phosphate, and depletion of SR Ca can initiate Ca entry, the mechanism of which is being investigated but seems to involve Stim and Orai as found in nonexcitable cells. The contribution of the elemental Ca signals from the SR, sparks and puffs, to global Ca signals, i.e., Ca waves and oscillations, is becoming clearer but is far from established. The dynamics of SR Ca release and uptake mechanisms are reviewed along with the control of luminal Ca. We review the growing list of the SR's functions that still includes Ca storage, contraction, and relaxation but has been expanded to encompass Ca homeostasis, generating local and global Ca signals, and contributing to cellular microdomains and signaling in other organelles, including mitochondria, lysosomes, and the nucleus. For an integrated approach, a review of aspects of the SR in health and disease and during development and aging are also included. While the sheer versatility of smooth muscle makes it foolish to have a "one model fits all" approach to this subject, we have tried to synthesize conclusions wherever possible.
Collapse
Affiliation(s)
- Susan Wray
- Department of Physiology, School of Biomedical Sciences, University of Liverpool, Liverpool, Merseyside L69 3BX, United Kingdom.
| | | |
Collapse
|
229
|
Abstract
The heart generates and propagates action potentials through synchronized activation of ion channels allowing inward Na(+) and Ca(2+) and outward K(+) currents. There are a number of K(+) channel types expressed in the heart that play key roles in regulating the cardiac cycle. Large conductance calcium-activated potassium (BK) ion channels are not thought to be directly involved in heart function. Here we present evidence that heart rate can be significantly reduced by inhibiting the activity of BK channels. Agents that specifically inhibit BK channel activity, including paxilline and lolitrem B, slowed heart rate in conscious wild-type mice by 30% and 42%, respectively. Heart rate of BK channel knock-out mice (Kcnma1(-/-)) was not affected by these BK channel inhibitors, suggesting that the changes to heart rate were specifically mediated through BK channels. The possibility that these effects were mediated through BK channels peripheral to the heart was ruled out with experiments using isolated, perfused rat hearts, which showed a significant reduction in heart rate when treated with the BK channel inhibitors paxilline (1 microM), lolitrem B (1 microM), and iberiotoxin (0.23 microM), of 34%, 60%, and 42%, respectively. Furthermore, paxilline was shown to decrease heart rate in a dose-dependent manner. These results implicate BK channels located in the heart to be directly involved in the regulation of heart rate.
Collapse
|
230
|
Pietrzykowski AZ. The role of microRNAs in drug addiction: a big lesson from tiny molecules. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:1-24. [PMID: 20813238 DOI: 10.1016/s0074-7742(10)91001-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alcoholism is a multifactorial disease of unclear molecular underpinnings. Currently, we are witnessing a major shift in our understanding of the functional elements of the genome, which could help us to discover novel insights into the nature of alcoholism. In humans, the vast majority of the genome encodes non-protein-coding DNA with unclear function. Recent research has started to unveil this mystery by describing the functional relevance of microRNAs, and examining which genes are regulated by non-protein-coding DNA. Here, I describe alcohol regulation of microRNAs and provide examples of microRNAs that control the expression of alcohol-relevant genes. Emphasis is put on the potential of microRNAs in explaining the polygenic nature of alcoholism and prospects of microRNA research and future directions of this burgeoning field.
Collapse
|
231
|
Single-nucleotide polymorphisms in vascular Ca2+-activated K+-channel genes and cardiovascular disease. Pflugers Arch 2009; 460:343-51. [PMID: 20043229 DOI: 10.1007/s00424-009-0768-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2009] [Accepted: 11/27/2009] [Indexed: 12/24/2022]
Abstract
In the cardiovascular system, Ca2+-activated K+-channels (KCa) are considered crucial mediators in the control of vascular tone and blood pressure by modulating the membrane potential and shaping Ca2+-dependent contraction. Vascular smooth muscle cells express the BKCa channel which fine-tunes contractility by providing a negative feedback on Ca2+-elevations. BKCa channel's ion-conducting alpha-subunit is encoded by the KCa1.1 gene, and the accessory and Ca2+-sensitivity modulating beta1-subunit is encoded by the KCNMB1 gene. Vascular endothelial cells express the calmodulin-gated KCa channels IKCa (encoded by the KCa3.1 gene) and SKCa (encoded by the KCa2.3 gene). These two channels mediate endothelial hyperpolarization and initiate the endothelium-derived hyperpolarizing factor-dilator response. Considering these essential roles of KCa in arterial function, mutations in KCa genes have been suspected to contribute to cardiovascular disease in humans. So far, DNA sequence analysis in the population and patient cohorts has identified single-nucleotide polymorphisms (SNPs) in the BKCa beta1-subunit gene as well as in the alpha-subunit gene (KCa1.1). Some of these SNPs produce amino acid exchanges and evoke alterations of channel functions ("gain-of-function" as well as "loss-of-function"). Moreover, the epidemiological studies showed that the presence of the E65K polymorphism in, e.g., BKCa beta1-subunit gene (producing a "gain-of-function") lowers the prevalence for severe hypertension and myocardial infarction. Other SNPs in the BKCa alpha-subunit gene and also in the KCa3.1 gene expressed in the endothelium have been suggested to increase the risk of cardiovascular disease. These findings from sequence analysis of human KCa genes, and epidemiological studies thus provide evidence that genetic variations and mutations in KCa channel genes contribute to human cardiovascular disease.
Collapse
|
232
|
Abstract
The K+ channel, one of the determinants for neuronal excitability, is genetically heterogeneous, and various K+ channel genes are expressed in the CNS. The therapeutic potential of K+ channel blockers for cognitive enhancement has been discussed, but the contribution each K+ channel gene makes to cognitive function remains obscure. BEC1 (KCNH3) is a member of the K+ channel superfamily that shows forebrain-preferential distribution. Here, we show the critical involvement of BEC1 in cognitive function. BEC1 knock-out mice performed behavioral tasks related to working memory, reference memory, and attention better than their wild-type littermates. Enhanced performance was also observed in heterozygous mutants. The knock-out mice had neither the seizures nor the motor dysfunction that are often observed in K+ channel-deficient mice. In contrast to when it is disrupted, overexpression of BEC1 in the forebrain caused the impaired performance of those tasks. It was also found that altering BEC1 expression could change hippocampal neuronal excitability and synaptic plasticity. The results indicate that BEC1 may represent the first K+ channel that contributes preferentially and bidirectionally to cognitive function.
Collapse
|
233
|
Cheron G, Sausbier M, Sausbier U, Neuhuber W, Ruth P, Dan B, Servais L. BK channels control cerebellar Purkinje and Golgi cell rhythmicity in vivo. PLoS One 2009; 4:e7991. [PMID: 19956720 PMCID: PMC2776494 DOI: 10.1371/journal.pone.0007991] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 10/23/2009] [Indexed: 12/02/2022] Open
Abstract
Calcium signaling plays a central role in normal CNS functioning and dysfunction. As cerebellar Purkinje cells express the major regulatory elements of calcium control and represent the sole integrative output of the cerebellar cortex, changes in neural activity- and calcium-mediated membrane properties of these cells are expected to provide important insights into both intrinsic and network physiology of the cerebellum. We studied the electrophysiological behavior of Purkinje cells in genetically engineered alert mice that do not express BK calcium-activated potassium channels and in wild-type mice with pharmacological BK inactivation. We confirmed BK expression in Purkinje cells and also demonstrated it in Golgi cells. We demonstrated that either genetic or pharmacological BK inactivation leads to ataxia and to the emergence of a beta oscillatory field potential in the cerebellar cortex. This oscillation is correlated with enhanced rhythmicity and synchronicity of both Purkinje and Golgi cells. We hypothesize that the temporal coding modification of the spike firing of both Purkinje and Golgi cells leads to the pharmacologically or genetically induced ataxia.
Collapse
Affiliation(s)
- Guy Cheron
- Laboratory of Electrophysiology, Université Mons-Hainaut (UMH), Mons, Belgium
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Matthias Sausbier
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Universität Tübingen, Tübingen, Germany
| | - Ulrike Sausbier
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Universität Tübingen, Tübingen, Germany
| | - Winfried Neuhuber
- Institute of Anatomy, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Ruth
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Universität Tübingen, Tübingen, Germany
| | - Bernard Dan
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Department of Neurology, Hôpital Universitaire des Enfants Reine Fabiola, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Laurent Servais
- Laboratory of Electrophysiology, Université Mons-Hainaut (UMH), Mons, Belgium
- Department of child neurology, Hôpital Robert Debré, Paris, France
- * E-mail:
| |
Collapse
|
234
|
Mayer CA, Macklin WB, Avishai N, Balan K, Wilson CG, Miller MJ. Mutation in the myelin proteolipid protein gene alters BK and SK channel function in the caudal medulla. Respir Physiol Neurobiol 2009; 169:303-14. [PMID: 19808102 DOI: 10.1016/j.resp.2009.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 09/24/2009] [Accepted: 09/25/2009] [Indexed: 12/31/2022]
Abstract
Proteolipid protein (Plp) gene mutation in rodents causes severe CNS dysmyelination, early death, and lethal hypoxic ventilatory depression (Miller et al., 2004). To determine if Plp mutation alters neuronal function critical for control of breathing, the nucleus tractus solitarii (nTS) of four rodent strains were studied: myelin deficient rats (MD), myelin synthesis deficient (Plp(msd)), and Plp(null) mice, as well as shiverer (Mbp(shi)) mice, a myelin basic protein mutant. Current-voltage relationships were analyzed using whole-cell patch-clamp in 300 microm brainstem slices. Voltage steps were applied, and inward and outward currents quantified. MD, Plp(msd), and Plp(null), but not Mbp(shi) neurons exhibited reduced outward current in nTS at P21. Apamin blockade of SK calcium-dependent currents and iberiotoxin blockade of BK calcium-dependent currents in the P21 MD rat demonstrated reduced outward current due to dysfunction of these channels. These results provide evidence that Plp mutation specifically alters neuronal excitability through calcium-dependent potassium channels in nTS.
Collapse
Affiliation(s)
- Catherine A Mayer
- Department of Pediatrics, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106, United States.
| | | | | | | | | | | |
Collapse
|
235
|
Kim EY, Chiu YH, Dryer SE. Neph1 regulates steady-state surface expression of Slo1 Ca(2+)-activated K(+) channels: different effects in embryonic neurons and podocytes. Am J Physiol Cell Physiol 2009; 297:C1379-88. [PMID: 19794150 DOI: 10.1152/ajpcell.00354.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels encoded by the Slo1 gene are often components of large multiprotein complexes in excitable and nonexcitable cells. Here we show that Slo1 proteins interact with Neph1, a member of the immunoglobulin superfamily expressed in slit diaphragm domains of podocytes and in vertebrate and invertebrate nervous systems. This interaction was established by reciprocal coimmunoprecipitation of endogenous proteins from differentiated cells of a podocyte cell line, from parasympathetic neurons of the embryonic chick ciliary ganglion, and from HEK293T cells heterologously expressing both proteins. Neph1 can interact with all three extreme COOH-terminal variants of Slo1 (Slo1(VEDEC), Slo1(QEERL), and Slo1(EMVYR)) as ascertained by glutathione S-transferase (GST) pull-down assays and by coimmunoprecipitation. Neph1 is partially colocalized in intracellular compartments with endogenous Slo1 in podocytes and ciliary ganglion neurons. Coexpression in HEK293T cells of Neph1 with any of the Slo1 extreme COOH-terminal splice variants suppresses their steady-state expression on the cell surface, as assessed by cell surface biotinylation assays, confocal microscopy, and whole cell recordings. Consistent with this, small interfering RNA (siRNA) knockdown of endogenous Neph1 in embryonic day 10 ciliary ganglion neurons causes an increase in steady-state surface expression of Slo1 and an increase in whole cell Ca(2+)-dependent K(+) current. Surprisingly, a comparable Neph1 knockdown in podocytes causes a decrease in surface expression of Slo1 and a decrease in whole cell BK(Ca) currents. In podocytes, Neph1 siRNA also caused a decrease in nephrin, even though the Neph1 siRNA had no sequence homology with nephrin. However, we could not detect nephrin in ciliary ganglion neurons.
Collapse
Affiliation(s)
- Eun Young Kim
- Dept. of Biology and Biochemistry, Univ. of Houston, TX 77204-5001, USA
| | | | | |
Collapse
|
236
|
Womack MD, Hoang C, Khodakhah K. Large conductance calcium-activated potassium channels affect both spontaneous firing and intracellular calcium concentration in cerebellar Purkinje neurons. Neuroscience 2009; 162:989-1000. [PMID: 19446607 PMCID: PMC2723190 DOI: 10.1016/j.neuroscience.2009.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 04/17/2009] [Accepted: 05/08/2009] [Indexed: 10/20/2022]
Abstract
We investigated the contribution of large conductance calcium-activated potassium (BK) channels to spontaneous activity of cerebellar Purkinje neurons in mice and rats. In Purkinje neurons which fire tonically, block of BK channels increased the firing rate and caused the neurons to fire irregularly. In Purkinje neurons which exhibited a trimodal pattern of activity, present primarily in mature animals, block of BK channels had little effect on firing rate or regularity but shortened the single cycle duration of the trimodal pattern. The contribution of BK channels to the action potential waveform was also examined. BK channels contributed a brief afterhyperpolarization (AHP) of approximately 3 mV which followed each action potential, but made little contribution to action potential repolarization. The amplitude of the BK-dependent AHP did not change with age although there was an increase in the total AHP. The difference in the contribution of BK channels to the firing rate among the two populations of Purkinje neurons was the consequence of the decrease in the fractional contribution of BK channels to the AHP. We also found that block of BK channels increases intracellular calcium concentration during spontaneous firing. Thus, although BK channels do not affect action potential repolarization, they nevertheless control calcium entry with each action potential by contributing to the AHP.
Collapse
Affiliation(s)
- M D Womack
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, 506 Kennedy Center, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | | | | |
Collapse
|
237
|
Wulf-Johansson H, Hay-Schmidt A, Poulsen AN, Klaerke DA, Olesen J, Jansen-Olesen I. Expression of BKCa channels and the modulatory β-subunits in the rat and porcine trigeminal ganglion. Brain Res 2009; 1292:1-13. [DOI: 10.1016/j.brainres.2009.07.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Revised: 06/25/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
|
238
|
Roth M, Rupp M, Hofmann S, Mittal M, Fuchs B, Sommer N, Parajuli N, Quanz K, Schubert D, Dony E, Schermuly RT, Ghofrani HA, Sausbier U, Rutschmann K, Wilhelm S, Seeger W, Ruth P, Grimminger F, Sausbier M, Weissmann N. Heme Oxygenase-2 and Large-Conductance Ca2+-activated K+Channels. Am J Respir Crit Care Med 2009; 180:353-64. [DOI: 10.1164/rccm.200806-848oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
239
|
Maltecca F, Magnoni R, Cerri F, Cox GA, Quattrini A, Casari G. Haploinsufficiency of AFG3L2, the gene responsible for spinocerebellar ataxia type 28, causes mitochondria-mediated Purkinje cell dark degeneration. J Neurosci 2009; 29:9244-54. [PMID: 19625515 PMCID: PMC6665556 DOI: 10.1523/jneurosci.1532-09.2009] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 06/10/2009] [Accepted: 06/13/2009] [Indexed: 11/21/2022] Open
Abstract
Paraplegin and AFG3L2 are ubiquitous nuclear-encoded mitochondrial proteins that form hetero-oligomeric paraplegin-AFG3L2 and homo-oligomeric AFG3L2 complexes in the inner mitochondrial membrane, named m-AAA proteases. These complexes ensure protein quality control in the inner membrane, jointly with a chaperone-like activity on the respiratory chain complexes. Despite coassembling in the same complex, mutations of either paraplegin or AFG3L2 cause two different neurodegenerative disorders. Indeed, mutations of paraplegin are responsible for a recessive form of hereditary spastic paraplegia, whereas mutations of AFG3L2 have been recently associated to a dominant form of spinocerebellar ataxia (SCA28). In this work, we report that the mouse model haploinsufficient for Afg3l2 recapitulates important pathophysiological features of the human disease, thus representing the first SCA28 model. Furthermore, we propose a pathogenetic mechanism in which respiratory chain dysfunction and increased reactive oxygen species production caused by Afg3l2 haploinsufficiency lead to dark degeneration of Purkinje cells and cerebellar dysfunction.
Collapse
Affiliation(s)
- Francesca Maltecca
- Human Molecular Genetics Unit, Center for Genomics, Bioinformatics, and Biostatistics
- San Raffaele University, 20132 Milan, Italy, and
| | - Raffaella Magnoni
- Human Molecular Genetics Unit, Center for Genomics, Bioinformatics, and Biostatistics
- San Raffaele University, 20132 Milan, Italy, and
| | - Federica Cerri
- Unit of Neuropathology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, and
| | | | - Angelo Quattrini
- Unit of Neuropathology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, and
| | - Giorgio Casari
- Human Molecular Genetics Unit, Center for Genomics, Bioinformatics, and Biostatistics
- San Raffaele University, 20132 Milan, Italy, and
| |
Collapse
|
240
|
Kaufmann WA, Ferraguti F, Fukazawa Y, Kasugai Y, Shigemoto R, Laake P, Sexton JA, Ruth P, Wietzorrek G, Knaus HG, Storm JF, Ottersen OP. Large-conductance calcium-activated potassium channels in purkinje cell plasma membranes are clustered at sites of hypolemmal microdomains. J Comp Neurol 2009; 515:215-30. [PMID: 19412945 DOI: 10.1002/cne.22066] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Calcium-activated potassium channels have been shown to be critically involved in neuronal function, but an elucidation of their detailed roles awaits identification of the microdomains where they are located. This study was undertaken to unravel the precise subcellular distribution of the large-conductance calcium-activated potassium channels (called BK, KCa1.1, or Slo1) in the somatodendritic compartment of cerebellar Purkinje cells by means of postembedding immunogold cytochemistry and SDS-digested freeze-fracture replica labeling (SDS-FRL). We found BK channels to be unevenly distributed over the Purkinje cell plasma membrane. At distal dendritic compartments, BK channels were scattered over the plasma membrane of dendritic shafts and spines but absent from postsynaptic densities. At the soma and proximal dendrites, BK channels formed two distinct pools. One pool was scattered over the plasma membrane, whereas the other pool was clustered in plasma membrane domains overlying subsurface cisterns. The labeling density ratio of clustered to scattered channels was about 60:1, established in SDS-FRL. Subsurface cisterns, also called hypolemmal cisterns, are subcompartments of the endoplasmic reticulum likely representing calciosomes that unload and refill Ca2+ independently. Purkinje cell subsurface cisterns are enriched in inositol 1,4,5-triphosphate receptors that mediate the effects of several neurotransmitters, hormones, and growth factors by releasing Ca2+ into the cytosol, generating local Ca2+ sparks. Such increases in cytosolic [Ca2+] may be sufficient for BK channel activation. Clustered BK channels in the plasma membrane may thus participate in building a functional unit (plasmerosome) with the underlying calciosome that contributes significantly to local signaling in Purkinje cells.
Collapse
Affiliation(s)
- Walter A Kaufmann
- Department of Pharmacology, Innsbruck Medical University, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Li J, Deng CL, Gao F, Cheng JH, Yu ZB, Liu L, Xie MJ. Coexpression and characterization of the human large-conductance Ca2+-activated K+ channel α + β1 subunits in HEK293 cells. Mol Cell Biochem 2009; 331:117-26. [DOI: 10.1007/s11010-009-0149-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Accepted: 04/23/2009] [Indexed: 12/30/2022]
|
242
|
Janahmadi M, Goudarzi I, Kaffashian MR, Behzadi G, Fathollahi Y, Hajizadeh S. Co-treatment with riluzole, a neuroprotective drug, ameliorates the 3-acetylpyridine-induced neurotoxicity in cerebellar Purkinje neurones of rats: Behavioural and electrophysiological evidence. Neurotoxicology 2009; 30:393-402. [DOI: 10.1016/j.neuro.2009.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 01/03/2009] [Accepted: 02/18/2009] [Indexed: 01/22/2023]
|
243
|
Abstract
Large conductance, Ca(2+)-activated potassium (BK) channels are widely expressed throughout the animal kingdom and play important roles in many physiological processes, such as muscle contraction, neural transmission and hearing. These physiological roles derive from the ability of BK channels to be synergistically activated by membrane voltage, intracellular Ca(2+) and other ligands. Similar to voltage-gated K(+) channels, BK channels possess a pore-gate domain (S5-S6 transmembrane segments) and a voltage-sensor domain (S1-S4). In addition, BK channels contain a large cytoplasmic C-terminal domain that serves as the primary ligand sensor. The voltage sensor and the ligand sensor allosterically control K(+) flux through the pore-gate domain in response to various stimuli, thereby linking cellular metabolism and membrane excitability. This review summarizes the current understanding of these structural domains and their mutual interactions in voltage-, Ca(2+)- and Mg(2+)-dependent activation of the channel.
Collapse
Affiliation(s)
- J Cui
- Department of Biomedical Engineering and Cardiac Bioelectricity and Arrhythmia Center, Washington University, 1 Brookings Drive, St. Louis, Missouri 63130, USA.
| | | | | |
Collapse
|
244
|
Saitow F, Murano M, Suzuki H. Modulatory effects of serotonin on GABAergic synaptic transmission and membrane properties in the deep cerebellar nuclei. J Neurophysiol 2009; 101:1361-74. [PMID: 19144744 DOI: 10.1152/jn.90750.2008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebellar outputs from the deep cerebellar nuclei (DCN) are critical for generating and controlling movement. DCN neuronal activity is primarily controlled by GABAergic inhibitory transmission by Purkinje cells in the cerebellar cortex and is also modulated by nerve inputs originating from other brain regions within and outside the cerebellum. In this study, we examined the modulatory effects of 5-HT on GABAergic synapses in the DCN. 5-HT decreased the amplitude of stimulation-evoked inhibitory postsynaptic currents (eIPSCs) in DCN neurons, and this effect was abolished by a 5-HT(1B) antagonist, SB 224289. The decrease in IPSC amplitude was associated with an increased paired-pulse ratio of the IPSC. 5-HT also decreased the frequency of miniature IPSCs without altering the amplitude. These data suggest that 5-HT presynaptically inhibited GABA release. Furthermore, 5-HT elicited a slow inward current in DCN neurons. Pharmacological studies showed that 5-HT activated the 5-HT(5) receptor, which is positively coupled to G protein and elicited the slow inward current through enhancement of hyperpolarization-activated cation channel activation. Finally, we examined the effects of 5-HT on the spike generation that accompanies repetitive stimulation of inhibitory synapses. 5-HT increased the spontaneous firing rate in DCN neurons caused by depolarization. Increase in the 5-HT-induced tonic firing relatively decreased the contrast difference from the rebound depolarization-induced firing. However, the inhibitory transmission-induced silencing of DCN firing remained during the conditioning stimulus. These results suggest that 5-HT plays a regulatory role in spike generation and contributes to the gain control of inhibitory GABAergic synapses in DCN neurons.
Collapse
Affiliation(s)
- Fumihito Saitow
- Department of Pharmacology, Nippon Medical School, Tokyo, Japan.
| | | | | |
Collapse
|
245
|
Structural determinants of lolitrems for inhibition of BK large conductance Ca2+-activated K+ channels. Eur J Pharmacol 2009; 605:36-45. [PMID: 19210977 DOI: 10.1016/j.ejphar.2008.12.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/12/2008] [Accepted: 12/23/2008] [Indexed: 01/28/2023]
Abstract
Lolitrem B is an indole-diterpenoid neurotoxin which is the main causative agent of ryegrass staggers, an animal disease associated with tremors and incoordination. It is also a potent inhibitor of large conductance calcium-activated potassium (BK) channel activity (IC(50)=4 nM). Furthermore, we have recently shown that the motor function deficits induced by lolitrem B are specifically mediated by BK channels, making the toxin a valuable tool for investigating the molecular function and physiological roles of these channels. To determine what structural features of BK channel agents are required for high potency, the effect of lolitrem B and seven structurally-related lolitrems on BK channel activity has been measured. Concentration-responses and conductance-voltage (G-V) relationships were determined for each compound and related to the different structure types. This study has identified seven new BK channel inhibitors and has allowed the identification of two key structural features required for high potency BK channel activity by lolitrems.
Collapse
|
246
|
Shakkottai VG, Xiao M, Xu L, Wong M, Nerbonne JM, Ornitz DM, Yamada KA. FGF14 regulates the intrinsic excitability of cerebellar Purkinje neurons. Neurobiol Dis 2009; 33:81-8. [PMID: 18930825 PMCID: PMC2652849 DOI: 10.1016/j.nbd.2008.09.019] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/08/2008] [Accepted: 09/12/2008] [Indexed: 11/29/2022] Open
Abstract
A missense mutation in the fibroblast growth factor 14 (FGF14) gene underlies SCA27, an autosomal dominant spinocerebellar ataxia in humans. Mice with a targeted disruption of the Fgf14 locus (Fgf14(-/-)) develop ataxia resembling human SCA27. We tested the hypothesis that loss of FGF14 affects the firing properties of Purkinje neurons, which play an important role in motor control and coordination. Current clamp recordings from Purkinje neurons in cerebellar slices revealed attenuated spontaneous firing in Fgf14(-/-) neurons. Unlike in the wild type animals, more than 80% of Fgf14(-/-) Purkinje neurons were quiescent and failed to fire repetitively in response to depolarizing current injections. Immunohistochemical examination revealed reduced expression of Nav1.6 protein in Fgf14(-/-) Purkinje neurons. Together, these observations suggest that FGF14 is required for normal Nav1.6 expression in Purkinje neurons, and that the loss of FGF14 impairs spontaneous and repetitive firing in Purkinje neurons by altering the expression of Nav1.6 channels.
Collapse
Affiliation(s)
- Vikram G Shakkottai
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | |
Collapse
|
247
|
Abstract
Signalling of cGK (cGMP-dependent protein kinases) are mediated through phosphorylation of specific substrates. Several substrates of cGKI and cGKII were identified meanwhile. Some cGKI substrates are specifically regulated by the cGKIalpha or the cGKIbeta isozyme. In various cells and tissues, different cGK substrates exist that are essential for the regulation of diverse functions comprising tissue contractility, cell motility, cell contact, cellular secretion, cell proliferation, and cell differentiation. On the molecular level, cGKI substrates fulfill various cellular functions regulating e.g. the intracellular calcium and potassium concentration, the calcium sensitivity, and the organisation of the intracellular cytoskeleton. cGKII substrates are involved e.g. in chloride transport, sodium/proton transport and transcriptional regulation. The understanding of cGK signalling and function depends strongly on the identification of further specific substrates. In the last years, diverse approaches ranging from biochemistry to genetic deletion lead to the identification and establishment of several substrates, which raised new insights in the molecular mechanisms of cGK functions and elucidated new cellular cGK functions. However, the analysis of the dynamic signalling of cGK in tissues and cells will be necessary to discover new signalling pathways and substrates.
Collapse
Affiliation(s)
- Jens Schlossmann
- Institut für Pharmakologie und Toxikologie, Universität Regensburg, Regensburg, 93055, Germany.
| | | |
Collapse
|
248
|
Tian L, Jeffries O, McClafferty H, Molyvdas A, Rowe ICM, Saleem F, Chen L, Greaves J, Chamberlain LH, Knaus HG, Ruth P, Shipston MJ. Palmitoylation gates phosphorylation-dependent regulation of BK potassium channels. Proc Natl Acad Sci U S A 2008; 105:21006-11. [PMID: 19098106 PMCID: PMC2605631 DOI: 10.1073/pnas.0806700106] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Indexed: 02/05/2023] Open
Abstract
Large conductance calcium- and voltage-gated potassium (BK) channels are important regulators of physiological homeostasis and their function is potently modulated by protein kinase A (PKA) phosphorylation. PKA regulates the channel through phosphorylation of residues within the intracellular C terminus of the pore-forming alpha-subunits. However, the molecular mechanism(s) by which phosphorylation of the alpha-subunit effects changes in channel activity are unknown. Inhibition of BK channels by PKA depends on phosphorylation of only a single alpha-subunit in the channel tetramer containing an alternatively spliced insert (STREX) suggesting that phosphorylation results in major conformational rearrangements of the C terminus. Here, we define the mechanism of PKA inhibition of BK channels and demonstrate that this regulation is conditional on the palmitoylation status of the channel. We show that the cytosolic C terminus of the STREX BK channel uniquely interacts with the plasma membrane via palmitoylation of evolutionarily conserved cysteine residues in the STREX insert. PKA phosphorylation of the serine residue immediately upstream of the conserved palmitoylated cysteine residues within STREX dissociates the C terminus from the plasma membrane, inhibiting STREX channel activity. Abolition of STREX palmitoylation by site-directed mutagenesis or pharmacological inhibition of palmitoyl transferases prevents PKA-mediated inhibition of BK channels. Thus, palmitoylation gates BK channel regulation by PKA phosphorylation. Palmitoylation and phosphorylation are both dynamically regulated; thus, cross-talk between these 2 major posttranslational signaling cascades provides a mechanism for conditional regulation of BK channels. Interplay of these distinct signaling cascades has important implications for the dynamic regulation of BK channels and physiological homeostasis.
Collapse
Affiliation(s)
- Lijun Tian
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH89XD, Untied Kingdom
| | - Owen Jeffries
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH89XD, Untied Kingdom
| | - Heather McClafferty
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH89XD, Untied Kingdom
| | - Adam Molyvdas
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH89XD, Untied Kingdom
| | - Iain C. M. Rowe
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH89XD, Untied Kingdom
| | - Fozia Saleem
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH89XD, Untied Kingdom
| | - Lie Chen
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH89XD, Untied Kingdom
| | - Jennifer Greaves
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH89XD, Untied Kingdom
| | - Luke H. Chamberlain
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH89XD, Untied Kingdom
| | - Hans-Guenther Knaus
- Division for Molecular and Cellular Pharmacology, Medical University Innsbruck, 6020 Innsbruck, Austria; and
| | - Peter Ruth
- Department of Pharmacology and Toxicology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Michael J. Shipston
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH89XD, Untied Kingdom
| |
Collapse
|
249
|
Abstract
Oxygen-dependent antimicrobial activity of human polymorphonuclear leukocytes (PMNs) relies on the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase to generate oxidants. As the oxidase transfers electrons from NADPH the membrane will depolarize and concomitantly terminate oxidase activity, unless there is charge translocation to compensate. Most experimental data implicate proton channels as the effectors of this charge compensation, although large-conductance Ca2+-activated K+ (BK) channels have been suggested to be essential for normal PMN antimicrobial activity. To test this latter notion, we directly assessed the role of BK channels in phagocyte function, including the NADPH oxidase. PMNs genetically lacking BK channels (BK(-/-)) had normal intracellular and extracellular NADPH oxidase activity in response to both receptor-independent and phagocytic challenges. Furthermore, NADPH oxidase activity of human PMNs and macrophages was normal after treatment with BK channel inhibitors. Although BK channel inhibitors suppressed endotoxin-mediated tumor necrosis factor-alpha secretion by bone marrow-derived macrophages (BMDMs), BMDMs of BK(-/-) and wild-type mice responded identically and exhibited the same ERK, PI3K/Akt, and nuclear factor-kappaB activation. Based on these data, we conclude that the BK channel is not required for NADPH oxidase activity in PMNs or macrophages or for endotoxin-triggered tumor necrosis factor-alpha release and signal transduction BMDMs.
Collapse
|
250
|
Saleem F, Rowe ICM, Shipston MJ. Characterization of BK channel splice variants using membrane potential dyes. Br J Pharmacol 2008; 156:143-52. [PMID: 19068078 DOI: 10.1111/j.1476-5381.2008.00011.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Large conductance calcium- and voltage-activated potassium (BK) channels are encoded by a single gene that displays extensive pre-mRNA splicing. Here we exploited a membrane potential assay to investigate the sensitivity of different BK splice variants to elevations in intracellular free calcium and their inhibition by the BK channel blocker paxilline. EXPERIMENTAL APPROACH Murine BK channel splice variants were expressed in human embryonic kidney 293 cells and their properties analysed in response to ionomycin-induced calcium influx in both fluorescent membrane potential (fluorescent-imaging plate reader) and patch clamp electrophysiological assays. The dose-dependent inhibition of distinct splice variants by the BK channel-specific blocker paxilline was also investigated. KEY RESULTS Ionomycin-induced calcium influx induced a robust hyperpolarization of human embryonic kidney 293 cells expressing distinct BK channel splice variants: stress regulated exon (STREX), e22 and ZERO. Splice variant expression resulted in membrane hyperpolarization that displayed a rank order of potency in response to calcium influx of STREX > e22 > ZERO. The BK channel inhibitor paxilline exhibited very similar potency on all three splice variants with IC(50)s in membrane potential assays of 0.35 +/- 0.04, 0.37 +/- 0.03 and 0.70 +/- 0.02 micromol x L(-1) for STREX, ZERO and e22 respectively. CONCLUSIONS AND IMPLICATIONS BK channel splice variants can be rapidly discriminated using membrane potential based assays, based on their sensitivity to calcium. BK channel splice variants are inhibited by the specific blocker paxilline with similar IC(50)s. Thus, paxilline may be used in functional assays to inhibit BK channel function, irrespective of the variant expressed.
Collapse
Affiliation(s)
- F Saleem
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|