201
|
Chen L, Cao Y, Zhang H, Lv D, Zhao Y, Liu Y, Ye G, Chai Y. Network pharmacology-based strategy for predicting active ingredients and potential targets of Yangxinshi tablet for treating heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:359-368. [PMID: 29366769 DOI: 10.1016/j.jep.2017.12.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 11/14/2017] [Accepted: 12/11/2017] [Indexed: 05/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yangxinshi tablet (YXST) is an effective treatment for heart failure and myocardial infarction; it consists of 13 herbal medicines formulated according to traditional Chinese Medicine (TCM) practices. It has been used for the treatment of cardiovascular disease for many years in China. MATERIALS AND METHODS In this study, a network pharmacology-based strategy was used to elucidate the mechanism of action of YXST for the treatment of heart failure. Cardiovascular disease-related protein target and compound databases were constructed for YXST. A molecular docking platform was used to predict the protein targets of YXST. The affinity between proteins and ingredients was determined using surface plasmon resonance (SPR) assays. The action modes between targets and representative ingredients were calculated using Glide docking, and the related pathways were predicted using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. RESULTS A protein target database containing 924 proteins was constructed; 179 compounds in YXST were identified, and 48 compounds with high relevance to the proteins were defined as representative ingredients. Thirty-four protein targets of the 48 representative ingredients were analyzed and classified into two categories: immune and cardiovascular systems. The SPR assay and molecular docking partly validated the interplay between protein targets and representative ingredients. Moreover, 28 pathways related to heart failure were identified, which provided directions for further research on YXST. CONCLUSIONS This study demonstrated that the cardiovascular protective effect of YXST mainly involved the immune and cardiovascular systems. Through the research strategy based on network pharmacology, we analysis the complex system of YXST and found 48 representative compounds, 34 proteins and 28 related pathways of YXST, which could help us understand the underlying mechanism of YSXT's anti-heart failure effect. The network-based investigation could help researchers simplify the complex system of YXSY. It may also offer a feasible approach to decipher the chemical and pharmacological bases of other TCM formulas.
Collapse
Affiliation(s)
- Langdong Chen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yan Cao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hai Zhang
- Department of Pharmacy, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China
| | - Diya Lv
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yahong Zhao
- Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 201203, China
| | - Yanjun Liu
- Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 201203, China
| | - Guan Ye
- Central Research Institute, Shanghai Pharmaceuticals Holding Co. Ltd., Shanghai 201203, China.
| | - Yifeng Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
202
|
Zhu HH, Wu DP, Du X, Zhang X, Liu L, Ma J, Shao ZH, Ren HY, Hu JD, Xu KL, Wang JW, Song YP, Fang MY, Li J, Yan XY, Huang XJ. Oral arsenic plus retinoic acid versus intravenous arsenic plus retinoic acid for non-high-risk acute promyelocytic leukaemia: a non-inferiority, randomised phase 3 trial. Lancet Oncol 2018; 19:871-879. [PMID: 29884593 DOI: 10.1016/s1470-2045(18)30295-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/31/2018] [Accepted: 04/11/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Intravenous arsenic trioxide plus all-trans retinoic acid (ATRA) without chemotherapy is the standard of care for non-high-risk acute promyelocytic leukaemia (white blood cell count ≤10 × 109 per L), resulting in cure in more than 95% of cases. However, a pilot study of treatment with oral arsenic realgar-Indigo naturalis formula (RIF) plus ATRA without chemotherapy, which has a more convenient route of administration than the standard intravenous regimen, showed high efficacy. In this study, we compare an oral RIF plus ATRA treatment regimen with the standard intravenous arsenic trioxide plus ATRA treatment regimen in patients with non-high-risk acute promyelocytic leukaemia. METHODS We did a multicentre, non-inferiority, open-label, randomised, controlled phase 3 trial at 14 centres in China. Patients aged 18-70 years with newly diagnosed (within 7 days) non-high-risk acute promyelocytic leukaemia, and a WHO performance status of 2 or less were eligible. Patients were randomly assigned (2:1) to receive treatment with RIF-ATRA or arsenic trioxide-ATRA as the induction and consolidation therapy. Randomisation was done centrally with permuted blocks and stratification according to trial centre and was implemented through an interactive web response system. RIF (60 mg/kg bodyweight daily in an oral divided dose) or arsenic trioxide (0·15 mg/kg daily in an intravenous dose) and ATRA (25 mg/m2 daily in an oral divided dose) were used until complete remission was achieved. The home-based consolidation therapy was RIF (60 mg/kg daily in an oral divided dose) or intravenous arsenic trioxide (0·15 mg/kg daily in an intravenous dose) in a 4-week on 4-week off regimen for four cycles and ATRA (25 mg/m2 daily in an oral divided dose) in a 2-week on 2-week off regimen for seven cycles. Patients and treating physicians were not masked to treatment allocation. The primary outcome was event-free survival at 2 years. A non-inferiority margin of -10% was used to assess non-inferiority. Primary analyses were done in a modified intention-to-treat population of all patients who received at least one dose of their assigned treatment and the per-protocol population. This study was registered with the Chinese Clinical Trial Registry (ChiCTR-TRC-13004054), and the trial is complete. FINDINGS Between Feb 13, 2014, and Aug 31, 2015, 109 patients were enrolled and assigned to RIF-ATRA (n=72) or arsenic trioxide-ATRA (n=37). Three patients in the RIF-ATRA and one in the arsenic trioxide-ATRA did not receive their assigned treatment. After a median follow-up of 32 months (IQR 27-36), 67 (97%) of 69 patients in the RIF-ATRA group and 34 (94%) of 36 in the arsenic trioxide-ATRA group had achieved 2-year event-free survival in the modified intention-to-treat population. The percentage difference in event-free survival was 2·7% (95% CI, -5·8 to 11·1). The lower limit of the 95% CI for the difference in event-free survival was greater than the -10% non-inferiority margin, confirming non-inferiority (p=0·0017). Non-inferiority was also confirmed in the per-protocol population. During induction therapy, grade 3-4 hepatic toxic effects (ie, increased liver aspartate aminotransferase or alanine transaminase concentrations) were reported in six (9%) of 69 patients in the RIF-ATRA group versus five (14%) of 36 patients in the arsenic trioxide-ATRA group; grade 3-4 infection was reported in 15 (23%) of 64 versus 15 (42%) of 36 patients. Two patients in the arsenic trioxide-ATRA group died during induction therapy (one from haemorrhage and one from thrombocytopenia). INTERPRETATION Oral RIF plus ATRA is not inferior to intravenous arsenic trioxide plus ATRA for the treatment of patients with non-high-risk acute promyelocytic leukaemia. This study suggests that a completely oral, chemotherapy-free model might be an alternative to the standard intravenous treatment for patients with non-high-risk acute promyelocytic leukaemia. FUNDING Foundation for innovative research group of the National Natural Science Foundation of China, the Beijing Municipal Science and Technology Commission, the National Key R&D Program of China, and the National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Hong-Hu Zhu
- Department of Hematology, Peking University People's Hospital, Beijing, China
| | - De-Pei Wu
- Department of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Du
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xi Zhang
- Department of Hematology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lin Liu
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Ma
- Harbin Institute of Hematology and Oncology, Harbin, China
| | - Zong-Hong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin, China
| | - Han-Yun Ren
- Department of Hematology, Peking University First Hospital, Beijing, China
| | - Jian-Da Hu
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Kai-Lin Xu
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jing-Wen Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yong-Ping Song
- The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Mei-Yun Fang
- Department of Hematology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Juan Li
- Department of Hematology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Yan Yan
- Department of Biostatistics, Peking University Clinical Research Institute, Beijing, China
| | - Xiao-Jun Huang
- Department of Hematology, Peking University People's Hospital, Beijing, China; Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
203
|
Wei X, Zhang K, Qin H, Zhu J, Qin Q, Yu Y, Wang H. GMDS knockdown impairs cell proliferation and survival in human lung adenocarcinoma. BMC Cancer 2018; 18:600. [PMID: 29843634 PMCID: PMC5975429 DOI: 10.1186/s12885-018-4524-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 05/18/2018] [Indexed: 01/05/2023] Open
Abstract
Background Lung adenocarcinoma is the most common type of lung cancer and one of the most lethal and prevalent cancers. Aberrant glycosylation was common and essential in tumorigenesis, with fucosylation as one of the most common types disrupted in cancers. However, it is still unknown whether genes involved in fucosylation are important for lung adenocarcinoma development and process. Methods GMDS is involved in cellular fucosylation. Here we examined GMDS expression level at both mRNA and protein level in lung adenocarcinoma. The impact of GMDS knockdown on lung adenocarcinoma in vitro and in vivo was investigated. Transcriptome changes with GMDS knockdown in lung adenocarcinoma cells were also examined to provide insights into related molecular mechanisms. Results GMDS expression is significantly upregulated in lung adenocarcinoma at both mRNA and protein levels. Lentivirus-mediated shRNA strategy inhibited GMDS expression efficiently in human lung adenocarcinoma cells A549 and H1299, and GMDS knockdown impaired cell proliferation, colony formation ability, induced cell cycle arrest, and apoptosis in both cell lines. Furthermore, GMDS knockdown inhibited tumorigenesis in a xenograft mice model of lung adenocarcinoma. Microarray analysis explored the GMDS-mediated molecular network and revealed that the CASP8-CDKN1A axis might be critical for lung adenocarcinoma development. Conclusions These findings suggest that GMDS upregulation is critical for cell proliferation and survival in human lung adenocarcinoma and might serve as a potential biomarker for lung adenocarcinoma diagnosis and treatment. Electronic supplementary material The online version of this article (10.1186/s12885-018-4524-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xing Wei
- Outpatient Department, Southern Theatre Command of People's Liberation Army, Guangzhou, 510080, Guangdong, China
| | - Kun Zhang
- Department of Lung Cancer, The Affiliated Hospital of Military Medical Sciences, The 307th Hospital of Chinese People's Liberation Army, Beijing, 100071, China
| | - Haifeng Qin
- Department of Lung Cancer, The Affiliated Hospital of Military Medical Sciences, The 307th Hospital of Chinese People's Liberation Army, Beijing, 100071, China
| | - Jinlong Zhu
- Department of Lung Cancer, The Affiliated Hospital of Military Medical Sciences, The 307th Hospital of Chinese People's Liberation Army, Beijing, 100071, China
| | - Qiaoxi Qin
- Department of Lung Cancer, The Affiliated Hospital of Military Medical Sciences, The 307th Hospital of Chinese People's Liberation Army, Beijing, 100071, China
| | - Yang Yu
- Department of Lung Cancer, The Affiliated Hospital of Military Medical Sciences, The 307th Hospital of Chinese People's Liberation Army, Beijing, 100071, China
| | - Hong Wang
- Department of Lung Cancer, The Affiliated Hospital of Military Medical Sciences, The 307th Hospital of Chinese People's Liberation Army, Beijing, 100071, China.
| |
Collapse
|
204
|
Combination of LC/MS and GC/MS based metabolomics to study the hepatotoxic effect of realgar nanoparticles in rats. Chin J Nat Med 2018; 15:684-694. [PMID: 28991530 DOI: 10.1016/s1875-5364(17)30098-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Indexed: 12/16/2022]
Abstract
Realgar nanoparticles (NPs) are increasingly used as therapeutic agents for their enhanced anti-proliferation effect and cytotoxicity on cancer cells. However, the alteration of particle size may enhance biological reactivity as well as toxicity. A LC/MS and GC/MS based metabolomics approach was employed to explore the mechanism of realgar NPs-induced hepatotoxicity and identify potential biomarkers. Male Sprague-Dawley rats were administrated intragastrically with realgar or realgar NPs at a dose of 1.0 g·kg-1·d-1 for 28 days and toxic effects of realgar NPs on liver tissues were examined by biochemical indicator analysis and histopathologic examination. Increased levels of serum enzymes and high hepatic steatosis were discovered in the realgar NPs treated group. Multivariate data analysis revealed that rats with realgar NPs-induced hepatotoxicity could be distinctively differentiated from the animals in the control and realgar treated groups. In addition, 21 and 32 endogenous metabolites were apparently changed in the serum and live extracts, respectively. Realgar NPs might induce free fatty acid and triglyceride accumulation, resulting in hepatotoxicity. In conclusion, the present study represents the first comprehensive LC/MS- and GC/MS-based metabolomics analysis of realgar NPs-induced hepatotoxicity, which may help further research of nanotoxicity.
Collapse
|
205
|
Jiang Z, Yang J, Wang Y. Discrimination and identification of Q-markers based on 'Spider-web' mode for quality control of traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 44:98-102. [PMID: 29373247 DOI: 10.1016/j.phymed.2017.12.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/26/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The safety and effectiveness of traditional Chinese medicine (TCM) in clinical practice is directly related to the quality of TCM. And, the quality control of TCM is a pivotal issue to the quality of TCM, but also an obstacle impeding the modernization of TCM. PURPOSE The purpose of this work is to compile and develop a strategy based on discrimination and identification of quality markers (Q-markers) for quality control of TCM. METHODS Mainly established by seven variables derived from four dimensions including content, stability, pharmacokinetics and pharmacology, the 'Spider-web' mode was undertaken to assess the Q-marker property of candidate compounds originated from TCM by taking regression area (A) and coefficient variation (CV) of the tested compounds into account. The importance index (ImI), ImI = A × 1/CV, was suggested to focus Q-markers. RESULTS The compounds with larger regression area (A) and less coefficient variation (CV) are preferentially adopted as Q-markers, which should possess the satisfactory properties of content, stability, pharmacokinetics and pharmacological activity. To the contrary, the compounds are excluded on the grounds of the unsatisfactory Q-markers' property, less regression area (A) and larger coefficient variation (CV), which cannot represent the quality of TCM. CONCLUSIONS The 'Spider-web' mode can filter out the redundant constituents and focus on the key indexes of quality control - Q-markers. The screened Q-markers possess the optimal integrated properties of content, stability, pharmacokinetics and pharmacology among the numerous and complicated ingredients of TCM, which can comprehensively characterize inherent quality of TCM. In summary, the novel strategy established in this work provides a valuable perspective for the quality control of TCM.
Collapse
Affiliation(s)
- Zhenzuo Jiang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, PR China
| | - Jing Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, PR China
| | - Yuefei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China; Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, PR China
| |
Collapse
|
206
|
Ubiquitin-dependent degradation of CDK2 drives the therapeutic differentiation of AML by targeting PRDX2. Blood 2018; 131:2698-2711. [PMID: 29720484 DOI: 10.1182/blood-2017-10-813139] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/27/2018] [Indexed: 12/23/2022] Open
Abstract
A distinct hallmark of acute myeloid leukemia (AML) is the arrest of leukemic myeloblasts at an immature stage of development. Therapies that overcome differentiation arrest have emerged as a powerful strategy for treating AML, but targeting leukemia differentiation remains challenging, mainly because of an incomplete mechanistic understanding of the process. Here, we unveil a new role for cyclin-dependent kinase 2 (CDK2) in blocking myeloid differentiation in AML. We show that among several interphase CDK, only CDK2 undergoes ubiquitin-dependent proteasome degradation, which is accompanied by AML cell differentiation. By using the yeast 2-hybrid system and functional analyses, KLHL6 was identified as a specific E3 ubiquitin ligase regulating the degradation of CDK2. Importantly, inhibiting CDK2, but not other cyclin-dependent kinases CDK1/4/6, effectively induced granulocytic differentiation in AML cell lines and 5 major subtypes of primary patient-derived AML samples. Mechanistically, CDK2 depletion led to the reactivation of differentiation pathway translation, and the differentiation blockade function of CDK2 may be achieved directly by maintaining the activity of PRDX2. Finally, CDK2 depletion arrested tumor growth of AML cells in nude mice and extended survival in both AML cell line and PDX-AML cells derived xenograft mouse models. Thus, our work not only provides experimental evidence for validating CDK2 as a potential therapeutic target for differentiation, but also uncovers the biological function of the CDK2-PRDX2 axis in blocking AML differentiation.
Collapse
|
207
|
Yan R, Yang Y, Chen Y. Pharmacokinetics of Chinese medicines: strategies and perspectives. Chin Med 2018; 13:24. [PMID: 29743935 PMCID: PMC5930430 DOI: 10.1186/s13020-018-0183-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 04/21/2018] [Indexed: 12/12/2022] Open
Abstract
The modernization and internationalization of Chinese medicines (CMs) are hampered by increasing concerns on the safety and the efficacy. Pharmacokinetic (PK) study is indispensable to establish concentration-activity/toxicity relationship and facilitate target identification and new drug discovery from CMs. To cope with tremendous challenges rooted from chemical complexity of CMs, the classic PK strategies have evolved rapidly from PK study focusing on marker/main drug components to PK-PD correlation study adopting metabolomics approaches to characterize associations between disposition of global drug-related components and host metabolic network shifts. However, the majority of PK studies of CMs have adopted the approaches tailored for western medicines and focused on the systemic exposures of drug-related components, most of which were found to be too low to account for the holistic benefits of CMs. With an area under concentration-time curve- or activity-weighted approach, integral PK attempts to understand the PK-PD relevance with the integrated PK profile of multiple co-existing structural analogs (prototyes/metabolites). Cellular PK-PD complements traditional PK-PD when drug targets localize inside the cells, instead of at the surface of cell membrane or extracellular space. Considering the validated clinical benefits of CMs, reverse pharmacology-based reverse PK strategy was proposed to facilitate target identification and new drug discovery. Recently, gut microbiota have demonstrated multifaceted roles in drug efficacy/toxicity. In traditional oral intake, the presystemic interactions of CMs with gut microbiota seem inevitable, which can contribute to the holistic benefits of CMs through biotransforming CMs components, acting as the peripheral target, and regulating host drug disposition. Hence, we propose a global PK-PD approach which includes the presystemic interaction of CMs with gut microbiota and combines omics with physiologically based pharmacokinetic modeling to offer a comprehensive understanding of the PK-PD relationship of CMs. Moreover, validated clinical benefits of CMs and poor translational potential of animal PK data urge more research efforts in human PK study.
Collapse
Affiliation(s)
- Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.,Zhuhai UM Science & Technology Research Institute, Zhuhai, 519080 China
| | - Ying Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| | - Yijia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China
| |
Collapse
|
208
|
Zhang JL, Qiu XM, Zhang N, Tang W, Gober HJ, Li DJ, Wang L. Bu‑Shen‑Ning‑Xin decoction suppresses osteoclastogenesis by modulating RANKL/OPG imbalance in the CD4+ T lymphocytes of ovariectomized mice. Int J Mol Med 2018; 42:299-308. [PMID: 29717766 PMCID: PMC5979942 DOI: 10.3892/ijmm.2018.3645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/22/2018] [Indexed: 02/05/2023] Open
Abstract
Postmenopausal osteoporosis (PMO) has been recognized as an inflammatory condition. CD4+ T cells serve a key role in the interaction between bone metabolism and the immune system. Bu-Shen-Ning-Xin decoction (BSNXD), a traditional Chinese medicine, has been ultilized as a remedy for PMO. In the present study, the aim was to investigate the immune modulatory effects of BSNXD on CD4+ T cells, receptor activation of nuclear factor κB ligand (RANKL)/osteoprotegerin (OPG) imbalance, skeletal parameters and osteoclastogenesis. Ovariectomized (OVX) mice were treated with a series of concentrations of BSNXD and then autopsied. The bone phenotype was analyzed by micro computed tomography. CD4+ T cells were isolated and their percentage was measured using flow cytometry (FCM). RANKL and OPG expression by the CD4+ T cells at the transcriptional and translational levels were quantified by reverse transcription-quantitative polymerase chain reaction, ELISA and FCM. CD4+ T cells were cultured with blood serum derived from BSNXD-treated OVX mice (BSNXD-derived serum) and the apoptosis rate was quantified by FCM. CD4+ T cells were co-cultured with bone marrow-derived macrophages and exposed to BSNXD-derived serum to whether CD4+ T cells are involved in BSNXD-modulated osteoclastogenesis and the results were quantified via tartrate-resistant acid phosphatase staining. The results revealed that BSNXD ameliorated OVX-induced bone loss, prevented the expansion of CD4+ T cells and restored the RANKL/OPG imbalance in the CD4+ T cells of OVX mice. In vitro, BSNXD-derived serum promoted the apoptosis of CD4+ T cells. The co-culture system demonstrated that CD4+ T cells from OVX mice increase osteoclastogenesis, while this effect was suppressed by BSNXD administration. The findings of the study collectively suggest that BSNXD exerts an immunoprotective effect on the bone phenotype of OVX mice by ameliorating RANKL/OPG imbalance in CD4+ T cells and attenuating osteoclastogenesis.
Collapse
Affiliation(s)
- Jia-Li Zhang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Xue-Min Qiu
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Na Zhang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Wei Tang
- Hepato‑Biliary‑Pancreatic Surgery Division, Department of Surgery, Graduate School of Medicine, University of Tokyo, Tokyo 113‑8655, Japan
| | - Hans-Jürgen Gober
- Department of Pharmacy, Neuromed Campus, Johannes Kepler University, 4020 Linz, Austria
| | - Da-Jin Li
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| | - Ling Wang
- Laboratory for Reproductive Immunology, Hospital and Institute of Obstetrics and Gynecology, IBS, Fudan University Shanghai Medical College, Shanghai 200011, P.R. China
| |
Collapse
|
209
|
Zhao Y, Onda K, Yuan B, Tanaka S, Kiyomi A, Sugiyama K, Sugiura M, Takagi N, Hirano T. Arsenic disulfide‑induced apoptosis and its potential mechanism in two‑ and three‑dimensionally cultured human breast cancer MCF‑7 cells. Int J Oncol 2018; 52:1959-1971. [PMID: 29620191 DOI: 10.3892/ijo.2018.4357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 02/27/2018] [Indexed: 11/05/2022] Open
Abstract
In China, arsenic disulfide (As2S2) has been used for the treatment of hematological malignancies. The present study aimed to evaluate the effects of As2S2 on the human breast cancer MCF‑7 cell line cultured in both two‑dimensional (2D) monolayers and three‑dimensional (3D) spheroids to explore its therapeutic potential in breast cancer treatment. Cellular viability and the induction of apoptosis were examined with a cell counting kit‑8 (CCK‑8) assay and flow cytometric analysis, respectively. Alterations in the expression levels of apoptosis‑associated proteins, including Bcl‑2‑associated X protein (Bax), B‑cell lymphoma 2 (Bcl‑2), p53, and caspase‑7, as well as the cell survival‑associated proteins, phosphatidylinositol 3‑kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR), were assessed by western blotting. Although a dose‑dependent reduction in cell viability, which occurred in association with the induction of apoptosis triggered by the addition of 2‑24 µM As2S2, was observed in both 2D‑ and 3D‑culture systems, 3D spheroids were less sensitive to the cytotoxic effect of As2S2 compared with the 2D cultured cells. A significant increase in the expression levels of Bax, p53, and caspase‑7 was observed in treated 2D‑cultured cells, whereas a similar increase in the expression levels of Bax was only confirmed in treated 3D spheroids, although there was a trend towards the increased expression of p53 and caspase‑7 in the 3D spheroids. These results suggested that these molecules are closely associated with As2S2‑mediated cytotoxicity in the two culture systems, and further suggested that the difference in the sensitivity to As2S2 between 2D monolayers and 3D spheroids may be attributed to the differential alterations in the expression levels of proteins associated with cell mortality. Significant downregulation of the expression levels of Bcl‑2, PI3K, Akt and mTOR was observed in the two culture systems. Taken together, the results of the present study demonstrated that As2S2 inhibits cell viability and induces apoptosis in both 2D‑ and 3D‑ cultured MCF‑7 cells, which may be associated with activation of the pro‑apoptotic pathway and the inhibition of pro‑survival signaling. These results have provided novel insights into clinical applications of As2S2 in the treatment of patients with breast cancer.
Collapse
Affiliation(s)
- Yuxue Zhao
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192‑0392, Japan
| | - Kenji Onda
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192‑0392, Japan
| | - Bo Yuan
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Sachiko Tanaka
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192‑0392, Japan
| | - Anna Kiyomi
- Department of Drug Safety and Risk Management, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kentaro Sugiyama
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192‑0392, Japan
| | - Munetoshi Sugiura
- Department of Drug Safety and Risk Management, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Toshihiko Hirano
- Department of Clinical Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192‑0392, Japan
| |
Collapse
|
210
|
A systems pharmacology-oriented discovery of a new therapeutic use of the TCM formula Liuweiwuling for liver failure. Sci Rep 2018; 8:5645. [PMID: 29618826 PMCID: PMC5884779 DOI: 10.1038/s41598-018-21515-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/06/2018] [Indexed: 02/08/2023] Open
Abstract
Multiple components of traditional Chinese medicine (TCM) formulae determine their treatment targets for multiple diseases as opposed to a particular disease. However, discovering the unexplored therapeutic potential of a TCM formula remains challenging and costly. Inspired by the drug repositioning methodology, we propose an integrated strategy to feasibly identify new therapeutic uses for a formula composed of six herbs, Liuweiwuling. First, we developed a comprehensive systems approach to enrich drug compound-liver disease networks to analyse the major predicted diseases of Liuweiwuling and discover its potential effect on liver failure. The underlying mechanisms were subsequently predicted to mainly attribute to a blockade of hepatocyte apoptosis via a synergistic combination of multiple effects. Next, a classical pharmacology experiment was designed to validate the effects of Liuweiwuling on different models of fulminant liver failure induced by D-galactosamine/lipopolysaccharide (GalN/LPS) or thioacetamide (TAA). The results indicated that pretreatment with Liuweiwuling restored liver function and reduced lethality induced by GalN/LPS or TAA in a dose-dependent manner, which was partially attributable to the abrogation of hepatocyte apoptosis by multiple synergistic effects. In summary, the integrated strategy discussed in this paper may provide a new approach for the more efficient discovery of new therapeutic uses for TCM formulae.
Collapse
|
211
|
Liu L, Zhang Y, Yun Z, He B, Zhang Q, Hu L, Jiang G. Speciation and bioaccessibility of arsenic in traditional Chinese medicines and assessment of its potential health risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1088-1097. [PMID: 29734587 DOI: 10.1016/j.scitotenv.2017.11.113] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/09/2017] [Accepted: 11/09/2017] [Indexed: 06/08/2023]
Abstract
Arsenic in traditional Chinese medicines (TCMs) has caused public concerns about its health risk in recent years due to the high toxicity of arsenic and widespread use of those medicines throughout the world. However, in previous studies the arsenic toxicity was usually overestimated by considering the total arsenic concentration only. This work investigated the total concentration, speciation and bioaccessibility of arsenic in 84 commonly used traditional Chinese patent medicines (CPMs) and Chinese herbal medicines (CHMs) to evaluate arsenic's potential health risks to human. Arsenic was found in all the CPMs and 88% of CHMs at concentrations ranging from 0.033 to 91,000mgkg-1 and 0.012 to 6.6mgkg-1, respectively. The bioaccessibility of arsenic varied significantly and was in the range of 0.21%-90% in the CPMs and 15%-96% in the CHMs, with inorganic arsenic as the predominant species. The average daily intake dose (ADD) and hazard quotient (HQ) of arsenic in most of medicines were within the safe limits, while in certain medicines, they exceeded the safe threshold level. These excesses remind us that the potential health risk by consumption of several medicines may not be negligible and more control and monitoring of arsenic in medicines should be carried out.
Collapse
Affiliation(s)
- Lihong Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Zhang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China
| | - Zhaojun Yun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Bin He
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
212
|
Xu HH, Ma ZC, Shi QL, Yang SH, Jiang L, Chen XM, Gao Y. Synergistic effect and different toxicities of adjuvant components of Realgar–Indigo Naturalis formula. CHINESE HERBAL MEDICINES 2018. [DOI: 10.1016/j.chmed.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
213
|
Dong J, Lu L, Le J, Yan C, Zhang H, Li L. Philosophical thinking of Chinese Traditional Medicine. TRADITIONAL MEDICINE AND MODERN MEDICINE 2018. [DOI: 10.1142/s2575900018100018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Traditional medicine is often an integration of ancient philosophy, clinical experiences, primitive knowledge of medicine, regional cultures and religious beliefs. Chinese Traditional Medicine (CTM) is the general appellation of all the traditional medicines of different ethnicities in China, which share great similarities of basic concept and philosophical basis, and conform to the development of empirical medicine, among which the medicine of Han ethnicity (Han medicine) is the most mature. The development of CTM is totally different from that of modern medicine, always revolving around the center of disease diagnosis and treatment, establishing the core theoretical system of Yin and Yang, Five Elements, Zang and Fu and Humoralism with the theoretical foundation of ancient Chinese philosophy, which represents the highest achievement of worldwide empirical medicine and philosophy form at that time. In general, the basic structure of CTM mainly consists of three parts as follows: the part that has already reached consensus with modern medicine, the part that is unconsciously ahead of modern medicine, and the part that needs to be reconsidered or abandoned.
Collapse
Affiliation(s)
- Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Linwei Lu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Jingjing Le
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Chen Yan
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Hongying Zhang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| | - Lulu Li
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, P. R. China
- Institute of Theories and Application, The Academy of Integrative Medicine, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
214
|
Ling C, Liang J, Zhang C, Li R, Mou Q, Qin J, Li X, Wang J. Synergistic Effects of Salvianolic Acid B and Puerarin on Cerebral Ischemia Reperfusion Injury. Molecules 2018; 23:molecules23030564. [PMID: 29498696 PMCID: PMC6017479 DOI: 10.3390/molecules23030564] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 02/25/2018] [Accepted: 02/28/2018] [Indexed: 11/16/2022] Open
Abstract
Ischemic stroke (IS) is characterized by the sudden loss of blood circulation to an area of the brain, resulting in a corresponding loss of neurologic function. It has been a worldwide critical disease threatening to the health and life of human beings. Despite significant progresses achieved, effective treatment still remains a formidable challenge due to the complexity of the disease. Salvianolic acid B (Sal-B) and Puerarin (Pue) are two active neuroprotectants isolated from traditional Chinese herbs, Salvia miltiorrhiza and Kudzu root respectively, which have been used for the prevention and treatment of IS for thousands of years in China. The activities of two compounds against cerebral ischemia reperfusion injury have been confirmed via various pathways. However, the therapeutic efficacy of any of the two components is still unsatisfied. In the present study, the effect of the combination of Sal-B and Pue on IS was evaluated and validated in vitro and in vivo. The ratio of two compounds was firstly optimized based on the results of CoCl₂ damaged PC12 cells model. The co-administration exhibited significantly protective effect in CoCl₂ induced PC12 cells injury model by reducing ROS, inhibiting apoptosis and improving mitochondrial membrane potential in vitro. Moreover, Sal-B + Pue significantly relieved neurological deficit scores and infarct area than Sal-B or Pue alone in vivo. The results indicated that neuroprotection mechanism of Sal-B + Pue was related to TLR4/MyD88 and SIRT1 activation signaling pathway to achieve synergistic effect, due to the inhibition of NF-κB transcriptional activity and expression of pro-inflammatory cytokine (TNF-α, IL-1β, IL-6). In conclusion, the combination of Sal-B and Pue exerted much stronger neuroprotective effect than Sal-B or Pue alone, which provides a potential new drug and has great significance for the treatment of IS.
Collapse
Affiliation(s)
- Chengli Ling
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Jianming Liang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Chun Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Ruixiang Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Qianqian Mou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jin Qin
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China.
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China.
| |
Collapse
|
215
|
Zhang Q, Wang J, Zhang C, Liao S, Li P, Xu D, Lv Y, Yang M, Kong L. The components of Huang-Lian-Jie-Du-Decoction act synergistically to exert protective effects in a rat ischemic stroke model. Oncotarget 2018; 7:80872-80887. [PMID: 27779107 PMCID: PMC5348361 DOI: 10.18632/oncotarget.12645] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/28/2016] [Indexed: 11/25/2022] Open
Abstract
Huang-Lian-Jie-Du-Decoction (HLJDD, Oren-gedoku-to in Japanese) is commonly used in traditional Chinese medicine (TCM) to treat ischemic stroke. This study investigated the efficacy of various combinations of the major components of HLJDD, berberine (A), baicalin (B), and jasminoidin (C), on the treatment of ischemic stroke modeled by middle cerebral artery occlusion (MCAO) in rats. The effects of A, B and C individually and their combinations were investigated using proton nuclear magnetic resonance (1H NMR)-based metabolomics complemented with neurologic deficit scoring, infarct volume measurement, biochemistry, histopathology and immunohistochemistry, as well as quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Ischemic stroke produces severe oxidative stress, which induces further damage. Our results show that the ABC combination treatment increased levels of cellular antioxidants that scavenged reactive oxygen species during ischemia-reperfusion via the nuclear erythroid 2-related factor 2 (Nrf2) signaling cascade. These protective effects were not observed with the other treatments. These results suggest that a combination of component herbs in HLJDD exhibit stronger effects than the individual herbs alone. Our integrated metabolomics approach also provides a tractable, powerful tool for understanding the science behind TCM formulations.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology, Nanjing, 210094, P.R. China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Shanting Liao
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Pei Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Dingqiao Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Yan Lv
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Minghua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, P.R. China
| |
Collapse
|
216
|
Metabolic engineering of Escherichia coli for the production of indirubin from glucose. J Biotechnol 2018; 267:19-28. [DOI: 10.1016/j.jbiotec.2017.12.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/22/2017] [Accepted: 12/31/2017] [Indexed: 11/19/2022]
|
217
|
Wang X, Chen B, Zhao L, Zhi D, Hai Y, Song P, Li Y, Xie Q, Inam U, Wu Z, Yu L, Li H. Autophagy enhanced antitumor effect in K562 and K562/ADM cells using realgar transforming solution. Biomed Pharmacother 2018; 98:252-264. [PMID: 29272786 DOI: 10.1016/j.biopha.2017.12.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/08/2017] [Accepted: 12/13/2017] [Indexed: 01/24/2023] Open
|
218
|
Jiang H, Yang L, Xing X, Yan M, Guo X, Yang B, Wang Q, Kuang H. HPLC-PDA Combined with Chemometrics for Quantitation of Active Components and Quality Assessment of Raw and Processed Fruits of Xanthium strumarium L. Molecules 2018; 23:molecules23020243. [PMID: 29370133 PMCID: PMC6017294 DOI: 10.3390/molecules23020243] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/17/2018] [Accepted: 01/24/2018] [Indexed: 01/08/2023] Open
Abstract
As a valuable herbal medicine, the fruits of Xanthium strumarium L. (Xanthii Fructus) have been widely used in raw and processed forms to achieve different therapeutic effects in practice. In this study, a comprehensive strategy was proposed for evaluating the active components in 30 batches of raw and processed Xanthii Fructus (RXF and PXF) samples, based on high-performance liquid chromatography coupled with photodiode array detection (HPLC-PDA). Twelve common peaks were detected and eight compounds of caffeoylquinic acids were simultaneously quantified in RXF and PXF. All the analytes were detected with satisfactory linearity (R2 > 0.9991) over wide concentration ranges. Simultaneously, the chemically latent information was revealed by hierarchical cluster analysis (HCA) and principal component analysis (PCA). The results suggest that there were significant differences between RXF and PXF from different regions in terms of the content of eight caffeoylquinic acids. Potential chemical markers for XF were found during processing by chemometrics.
Collapse
Affiliation(s)
- Hai Jiang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Liu Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Xudong Xing
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Meiling Yan
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Xinyue Guo
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Bingyou Yang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| | - Qiuhong Wang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 528458, China.
| | - Haixue Kuang
- Key Laboratory of Chinese Materia Medica, Heilongjiang University of Chinese Medicine, Ministry of Education, Harbin 150040, China.
| |
Collapse
|
219
|
Liu J, Wei LX, Wang Q, Lu YF, Zhang F, Shi JZ, Li C, Cherian MG. A review of cinnabar (HgS) and/or realgar (As 4S 4)-containing traditional medicines. JOURNAL OF ETHNOPHARMACOLOGY 2018; 210:340-350. [PMID: 28864167 DOI: 10.1016/j.jep.2017.08.037] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/27/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMOCOLOGICAL RELEVANCE Herbo-metallic preparations have a long history in the treatment of diseases, and are still used today for refractory diseases, as adjuncts to standard therapy, or for economic reasons in developing countries. AIM OF THE REVIEW This review uses cinnabar (HgS) and realgar (As4S4) as mineral examples to discuss their occurrence, therapeutic use, pharmacology, toxicity in traditional medicine mixtures, and research perspectives. MATERIALS AND METHODS A literature search on cinnabar and realgar from PubMed, Chinese pharmacopeia, Google and other sources was carried out. Traditional medicines containing both cinnabar and realgar (An-Gong-Niu-Huang Wan, Hua-Feng-Dan); mainly cinnabar (Zhu-Sha-An-Shen Wan; Zuotai and Dangzuo), and mainly realgar (Huang-Dai Pian; Liu-Shen Wan; Niu-Huang-Jie-Du) are discussed. RESULTS Both cinnabar and realgar used in traditional medicines are subjected to special preparation procedures to remove impurities. Metals in these traditional medicines are in the sulfide forms which are different from environmental mercurials (HgCl2, MeHg) or arsenicals (NaAsO2, NaH2AsO4). Cinnabar and/or realgar are seldom used alone, but rather as mixtures with herbs and/or animal products in traditional medicines. Advanced technologies are now used to characterize these preparations. The bioaccessibility, absorption, distribution, metabolism and elimination of these herbo-metallic preparations are different from environmental metals. The rationale of including metals in traditional remedies and their interactions with drugs need to be justified. At higher therapeutic doses, balance of the benefits and risks is critical. Surveillance of patients using these herbo-metallic preparations is desired. CONCLUSION Chemical forms of mercury and arsenic are a major determinant of their disposition, efficacy and toxicity, and the use of total Hg and As alone for risk assessment of metals in traditional medicines is insufficient.
Collapse
Affiliation(s)
- Jie Liu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China.
| | - Li-Xin Wei
- Key Lab of Pharmacology and Safety Evaluation of Tibetan Medicine, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Qi Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Yuan-Fu Lu
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Feng Zhang
- Key Lab for Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Jing-Zhen Shi
- Central Lab of Guiyang Traditional Medical College, Guiyang 550004, China
| | - Cen Li
- Key Lab of Pharmacology and Safety Evaluation of Tibetan Medicine, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | | |
Collapse
|
220
|
Zhao J, Nagle DG, Zhou Y, Zhang W. Network Pharmacology in the Study of TCM Formulae. SYSTEMS BIOLOGY AND ITS APPLICATION IN TCM FORMULAS RESEARCH 2018:69-95. [DOI: 10.1016/b978-0-12-812744-5.00004-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
221
|
Ma Q, Li PL, Hua YL, Ji P, Yao WL, Zhang XS, Zhong LJ, Wei YM. Effects of Tao-Hong-Si-Wu decoction on acute blood stasis in rats based on a LC-Q/TOF-MS metabolomics and network approach. Biomed Chromatogr 2017; 32. [PMID: 29149492 DOI: 10.1002/bmc.4144] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/27/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022]
Abstract
A novel approach using metabolomics coupled with a metabolic network was used to investigate the effects of Tao-Hong-Si-Wu decoction (THSWD) on the rat model of acute blood stasis syndrome. Acute blood stasis syndrome was induced by placing the rats in ice-cold water following two injections with epinephrine. The hemorheological indicators [whole blood viscosity (WBV) and plasma viscosity (PV)] and the blood coagulation indicators [thrombin time (TT), prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen (FIB)] were detected. The nonparametric univariate method and multivariate statistical analysis were performed for determining the potential biomarkers. A correlation map was structured between biochemical indicators and hub metabolites to explain the effects mechanism of THSWD. After the administration of THSWD, the levels of WBV, PV, TT, APTT and FIB returned to levels observed in the control group. According to metabolomics coupled with metabolic network analysis, the intervention of THSWD in rats with acute blood stasis syndrome induced substantial and characteristic changes in their metabolic profiles. Fifteen metabolites were screened, which mainly involved 10 pathways and five hub metabolites, namely, l-glutamate, l-phenylalanine, N-acylsphingosine, arachidonic acid and phosphatidate. The biochemical indicators and hub metabolites could be adjusted to close to normal levels by THSWD. Therefore, combining metabolomics and metabolic network helped to evaluate the effects of THSWD on acute blood stasis.
Collapse
Affiliation(s)
- Qi Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Peng-Ling Li
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Yong-Li Hua
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Peng Ji
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Wan-Ling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Xiao-Song Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Li-Jia Zhong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| | - Yan-Ming Wei
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu Province, China
| |
Collapse
|
222
|
Nutlin-3 plus tanshinone IIA exhibits synergetic anti-leukemia effect with imatinib by reactivating p53 and inhibiting the AKT/mTOR pathway in Ph+ ALL. Biochem J 2017; 474:4153-4170. [PMID: 29046392 DOI: 10.1042/bcj20170386] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/09/2017] [Accepted: 10/16/2017] [Indexed: 02/05/2023]
Abstract
Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) is triggered by BCR/ABL kinase. Recent efforts focused on the development of more potent tyrosine kinase inhibitors (TKIs) that also inhibit mutant tyrosine kinases such as nilotinib and dasatinib. Although major advances in the treatment of this aggressive disease with potent inhibitors of the BCR/ABL kinases, patients in remission frequently relapse due to drug resistance possibly mediated, at least in part, by compensatory activation of growth-signaling pathways and protective feedback signaling of leukemia cells in response to TKI treatment. Continuous activation of AKT/mTOR signaling and inactivation of p53 pathway were two mechanisms of TKI resistance. Here, we reported that nutlin-3 plus tanshinone IIA significantly potentiated the cytotoxic and apoptotic induction effects of imatinib by down-regulation of the AKT/mTOR pathway and reactivating the p53 pathway deeply in Ph+ ALL cell line. In primary samples from Ph+ ALL patients, nutlin-3 plus tanshinone IIA also exhibited synergetic cytotoxic effects with imatinib. Of note, three samples from Ph+ ALL patients harboring T315I mutation also showed sensitivity to the combined treatment of imatinib, nutlin-3 plus tanshinone IIA. In Ph+ ALL mouse models, imatinib combined with nutlin-3 plus tanshinone IIA also exhibited synergetic effects on reduction in leukemia burden. These results demonstrated that nutlin-3 plus tanshinone IIA combined TKI might be a promising treatment strategy for Ph+ ALL patients.
Collapse
|
223
|
Ye B, Xiong X, Deng X, Gu L, Wang Q, Zeng Z, Gao X, Gao Q, Wang Y. Meisoindigo, but not its core chemical structure indirubin, inhibits zebrafish interstitial leukocyte chemotactic migration. PHARMACEUTICAL BIOLOGY 2017; 55:673-679. [PMID: 27981893 PMCID: PMC6130669 DOI: 10.1080/13880209.2016.1238949] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/16/2016] [Indexed: 06/01/2023]
Abstract
CONTEXT Inflammatory disease is a big threat to human health. Leukocyte chemotactic migration is required for efficient inflammatory response. Inhibition of leukocyte chemotactic migration to the inflammatory site has been shown to provide therapeutic targets for treating inflammatory diseases. OBJECTIVE Our study was designed to discover effective and safe compounds that can inhibit leukocyte chemotactic migration, thus providing possible novel therapeutic strategy for treating inflammatory diseases. MATERIALS AND METHODS In this study, we used transgenic zebrafish model (Tg:zlyz-EGFP line) to visualize the process of leukocyte chemotactic migration. Then, we used this model to screen the hit compound and evaluate its biological activity on leukocyte chemotactic migration. Furthermore, western blot analysis was performed to evaluate the effect of the hit compound on the AKT or ERK-mediated pathway, which plays an important role in leukocyte chemotactic migration. RESULTS In this study, using zebrafish-based chemical screening, we identified that the hit compound meisoindigo (25 μM, 50 μM, 75 μM) can significantly inhibit zebrafish leukocyte chemotactic migration in a dose-dependent manner (p = 0.01, p = 0.0006, p < 0.0001). Also, we found that meisoindigo did not affect the process of leukocyte reverse migration (p = 0.43). Furthermore, our results unexpectedly showed that indirubin, the core structure of meisoindigo, had no significant effect on zebrafish leukocyte chemotactic migration (p = 0.6001). Additionally, our results revealed that meisoindigo exerts no effect on the Akt or Erk-mediated signalling pathway. DISCUSSION AND CONCLUSION Our results suggest that meisoindigo, but not indirubin, is effective for inhibiting leukocyte chemotactic migration, thus providing a potential therapeutic agent for treating inflammatory diseases.
Collapse
Affiliation(s)
- Baixin Ye
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xu Deng
- College of Chemistry and Molecular Science, Wuhan University, Wuhan, Hubei, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qiongyu Wang
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhi Zeng
- Department of Pathology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xiang Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qingping Gao
- Department of Hematology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yueying Wang
- State Key Laboratory of Medical Genomics and Shanghai Institute of Hematology, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
224
|
Shi HJ, Song HB, Wang L, Xiao SX, Bo KP, Ma W. The synergy of diammonium glycyrrhizinate remarkably reduces the toxicity of oxymatrine in ICR mice. Biomed Pharmacother 2017; 97:19-25. [PMID: 29080454 DOI: 10.1016/j.biopha.2017.09.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/31/2017] [Accepted: 09/10/2017] [Indexed: 12/11/2022] Open
Abstract
Most traditional Chinese medicine prescription dosages are imprecise. This study analyzes the toxicities and adverse effects of a combination the active ingredients of licorice and Kushen medicine: oxymatrine (OMT) and diammonium glycyrrhizinate (DG). The median lethal dose (LD50) and mortality were analyzed in single-dose OMT (or DG) intraperitoneally injected mice with or without combination DG (or OMT). Body weight changes as well as levels of serum sodium and potassium, alanine transaminase (ALT), aspartate transaminase (AST), creatinine, and urea were measured in mice treated with a daily dose of OMT and/or DG for 14days. This study showed that the LD50 of OMT for males and females were 347.44 and 429.15mg/kg, respectively. The LD50 of DG were 525.10 and 997.26mg/kg for males and females, respectively. DG significantly decreased the mice LD50-induced mortality of the OMT, however OMT did not succeed in reducing the LD50-induced mortality rate of DG. The combination of OMT and DG obviously attenuated the changes of the body weight, serum sodium, and potassium induced by DG or OMT alone. These results suggested that toxicity and adverse effects of the OMT was significantly attenuated by DG. The OMT neutralized the adverse effects of the DG, but not the toxicity.
Collapse
Affiliation(s)
- Hui-Juan Shi
- Department of Dermatovenereology, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shanxi Province, 710004, China; Department of Dermatovenereology, Ningxia Medical University General Hospital, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| | - Hong-Bin Song
- Department of Dermatology, Chinese PLA General Hospital, Beijing 100853, China.
| | - Le Wang
- Department of Dermatovenereology, Ningxia Medical University General Hospital, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| | - Sheng-Xiang Xiao
- Department of Dermatovenereology, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, Shanxi Province, 710004, China.
| | - Kai-Ping Bo
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| | - Wei Ma
- Department of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, China.
| |
Collapse
|
225
|
Cholujova D, Bujnakova Z, Dutkova E, Hideshima T, Groen RW, Mitsiades CS, Richardson PG, Dorfman DM, Balaz P, Anderson KC, Jakubikova J. Realgar nanoparticles versus ATO arsenic compounds induce in vitro and in vivo activity against multiple myeloma. Br J Haematol 2017; 179:756-771. [PMID: 29048129 DOI: 10.1111/bjh.14974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/01/2017] [Indexed: 12/11/2022]
Abstract
Multiple myeloma (MM), a B cell malignancy characterized by clonal proliferation of plasma cells in the bone marrow, remains incurable despite the use of novel and conventional therapies. In this study, we demonstrated MM cell cytotoxicity triggered by realgar (REA; As4 S4 ) nanoparticles (NREA) versus Arsenic trioxide (ATO) against MM cell lines and patient cells. Both NREA and ATO showed in vivo anti-MM activity, resulting in significantly decreased tumour burden. The anti-MM activity of NREA and ATO is associated with apoptosis, evidenced by DNA fragmentation, depletion of mitochondrial membrane potential, cleavage of caspases and anti-apoptotic proteins. NREA induced G2 /M cell cycle arrest and modulation of cyclin B1, p53 (TP53), p21 (CDKN1A), Puma (BBC3) and Wee-1 (WEE1). Moreover, NREA induced modulation of key regulatory molecules in MM pathogenesis including JNK activation, c-Myc (MYC), BRD4, and histones. Importantly, NREA, but not ATO, significantly depleted the proportion and clonogenicity of the MM stem-like side population, even in the context of the bone marrow stromal cells. Finally, our study showed that both NREA and ATO triggered synergistic anti-MM activity when combined with lenalidomide or melphalan. Taken together, the anti-MM activity of NREA was more potent compared to ATO, providing the preclinical framework for clinical trials to improve patient outcome in MM.
Collapse
Affiliation(s)
- Danka Cholujova
- Cancer Research Institute, Biomedical Research Center SAS, Bratislava, Slovakia
| | | | | | - Teru Hideshima
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Richard W Groen
- Department of Hematology, VU University Medical Center, Amsterdam, the Netherlands
| | - Constantine S Mitsiades
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Paul G Richardson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - David M Dorfman
- Department of Medicine, Harvard Medical School, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter Balaz
- Institute of Geotechnics SAS, Košice, Slovakia
| | - Kenneth C Anderson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jana Jakubikova
- Cancer Research Institute, Biomedical Research Center SAS, Bratislava, Slovakia.,Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana Farber Cancer Institute, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
226
|
Xu T, Pi Z, Liu S, Song F, Liu Z. Chemical Profiling Combined with "Omics" Technologies (CP-Omics): a Strategy to Understand the Compatibility Mechanisms and Simplify Herb Formulas in Traditional Chinese Medicines. PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:381-391. [PMID: 28387961 DOI: 10.1002/pca.2685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/20/2017] [Accepted: 03/03/2017] [Indexed: 06/07/2023]
Abstract
INTRODUCTION The compatibility mechanisms of formulas in traditional Chinese medicine (TCM) are indistinct. In order to better understand the compatibility mechanisms and the quality control of the formulas, it is necessary to simplify formulas in TCM research. OBJECTIVE Developing a novel method by multi-analysing the contents of different compounds in formula and inferred simplified formula simultaneously. METHODOLOGY Chemical profiling combined with "omics" technologies (CP-omics) was employed in the present study. Wu-tou Tang (WTT) was taken as an example to elucidate the workflow. We used high definition mass spectrometry combined with pattern recognition methods to analyse WTT and eight herb combinations derived from it. By analysing the content variation of the compounds, the inter compatibility mechanisms of WTT was explained. Cluster analysis classified the herb combinations and inferred a simplified formula. RESULTS It was found that Glycyrrhiza Radix Preparata and Ephedrae Herba could reduce the contents of diester-diterpenoid alkaloids; Ephedrae Herba could increase the contents of triterpene saponins and monoterpene glycosides in WTT. Through the overall comparison, Aconiti Radix Preparata combined with Glycyrrhiza Radix Preparata, Ephedrae Herba combined with Glycyrrhiza Radix Preparata have a similar chemical profiling with WTT. We inferred that a new simplified prescription composed of Aconiti Radix Preparata, Ephedrae Herba and Glycyrrhiza Radix Preparata should also have a good clinical effect. At last, pharmacological results confirmed that the new herb combination possesses similar anti-inflammatory activities to WTT. CONCLUSION Our results demonstrated that the CP-omics has great advantages in pharmaceutical discovery and optimising complex formulas in TCM. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Tengfei Xu
- State Key Laboratory of Electroanalytical Chemistry, National Centre for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Zifeng Pi
- State Key Laboratory of Electroanalytical Chemistry, National Centre for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shu Liu
- State Key Laboratory of Electroanalytical Chemistry, National Centre for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Fengrui Song
- State Key Laboratory of Electroanalytical Chemistry, National Centre for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Zhiqiang Liu
- State Key Laboratory of Electroanalytical Chemistry, National Centre for Mass Spectrometry in Changchun, Jilin Province Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
227
|
Duan S, Qi W, Zhang S, Huang K, Yuan D. Ultra high performance liquid chromatography coupled with electrospray ionization/quadrupole time-of-flight mass spectrometry for the rapid analysis of constituents in the traditional Chinese medicine formula Wu Ji Bai Feng Pill. J Sep Sci 2017; 40:3977-3986. [DOI: 10.1002/jssc.201700438] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/11/2017] [Accepted: 08/02/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Shengnan Duan
- Department of Traditional Chinese Medicine; Shenyang Pharmaceutical University; Shenyang China
| | - Wen Qi
- Department of Traditional Chinese Medicine; Shenyang Pharmaceutical University; Shenyang China
| | - Siwen Zhang
- Department of Traditional Chinese Medicine; Shenyang Pharmaceutical University; Shenyang China
| | - Kunkun Huang
- Department of Traditional Chinese Medicine; Shenyang Pharmaceutical University; Shenyang China
| | - Dan Yuan
- Department of Traditional Chinese Medicine; Shenyang Pharmaceutical University; Shenyang China
| |
Collapse
|
228
|
Chinese Herbal Formula, Modified Danggui Buxue Tang, Attenuates Apoptosis of Hematopoietic Stem Cells in Immune-Mediated Aplastic Anemia Mouse Model. J Immunol Res 2017; 2017:9786972. [PMID: 28951880 PMCID: PMC5603747 DOI: 10.1155/2017/9786972] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/01/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022] Open
Abstract
A derivative formula, DGBX, which is composed of three herbs (Radix astragali, Radix Angelicae sinensis, and Coptis chinensis Franch), is derived from a famous Chinese herbal formula, Danggui Buxue Tang (DBT) (Radix astragali and Radix Angelicae sinensis). We aimed to investigate the effects of DGBX on the regulation of the balance between proliferation and apoptosis of hematopoietic stem cells (HSCs) due to the aberrant immune response in a mouse model of aplastic anemia (AA). Cyclosporine (CsA), an immunosuppressor, was used as the positive control. Our results indicated that DGBX could downregulate the production of IFNγ in bone marrow cells by interfering with the binding between SLAM and SAP and the expressions of Fyn and T-bet. This herbal formula can also inhibit the activation of Fas-mediated apoptosis, interferon regulatory factor-1-induced JAK/Stat, and eukaryotic initiation factor 2 signaling pathways and thereby induce proliferation and attenuate apoptosis of HSCs. In conclusion, DGBX can relieve the immune-mediated destruction of HSCs, repair hematopoietic failure, and recover the hematopoietic function of HSCs in hematogenesis. Therefore, DGBX can be used in traditional medicine against AA as a complementary and alternative immunosuppressive therapeutic formula.
Collapse
|
229
|
Jin J, Tao J, Gu X, Yu Z, Wang R, Zuo G, Li Q, Lv X, Miao D. P16 INK4a Deletion Ameliorated Renal Tubulointerstitial Injury in a Stress-induced Premature Senescence Model of Bmi-1 Deficiency. Sci Rep 2017; 7:7502. [PMID: 28790310 PMCID: PMC5548892 DOI: 10.1038/s41598-017-06868-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 06/20/2017] [Indexed: 12/16/2022] Open
Abstract
To determine whether p16 INK4a deletion ameliorated renal tubulointerstitial injury by inhibiting a senescence-associated secretory phenotype (SASP) in Bmi-1-deficient (Bmi-1 -/-) mice, renal phenotypes were compared among 5-week-old Bmi-1 and p16 INK4a double-knockout, and Bmi-1 -/- and wild-type mice. Fifth-passage renal interstitial fibroblasts (RIFs) from the three groups were analyzed for senescence and proliferation. The effect of Bmi-1 deficiency on epithelial-to-mesenchymal transition (EMT) was examined in Bmi-1-knockdown human renal proximal tubular epithelial (HK2) cells, which were treated with concentrated conditioned medium (CM) from the fifth-passage renal interstitial fibroblasts (RIFs) of above three group mice or with exogenous TGF-β1. Our results demonstrated that p16 INK4a deletion largely rescued renal aging phenotypes caused by Bmi-1 deficiency, including impaired renal structure and function, decreased proliferation, increased apoptosis, senescence and SASP, DNA damage, NF-κB and TGF-β1/Smad signal activation, inflammatory cell infiltration, and tubulointerstitial fibrosis and tubular atrophy. P16 INK4a deletion also promoted proliferation, reduced senescence and SASP of RIFs and subsequently inhibited EMT of Bmi-1-knockdown HK2 cells. TGF-β1 further induced the EMT of Bmi-1-knockdown HK2 cells. Thus, p16 INK4a positive senescent cells would be a therapeutic target for preventing renal tubulointerstitial injury.
Collapse
MESH Headings
- Acute Kidney Injury/genetics
- Acute Kidney Injury/metabolism
- Acute Kidney Injury/pathology
- Acute Kidney Injury/prevention & control
- Animals
- Cell Line, Transformed
- Cell Proliferation
- Cellular Senescence
- Coculture Techniques
- Culture Media, Conditioned/pharmacology
- Cyclin-Dependent Kinase Inhibitor p16/deficiency
- Cyclin-Dependent Kinase Inhibitor p16/genetics
- Epithelial Cells/metabolism
- Epithelial Cells/pathology
- Epithelial-Mesenchymal Transition/genetics
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Gene Expression Regulation
- Humans
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/pathology
- Mice
- Mice, Knockout
- NF-kappa B/genetics
- NF-kappa B/metabolism
- Nephritis, Interstitial/genetics
- Nephritis, Interstitial/metabolism
- Nephritis, Interstitial/pathology
- Nephritis, Interstitial/prevention & control
- Polycomb Repressive Complex 1/antagonists & inhibitors
- Polycomb Repressive Complex 1/deficiency
- Polycomb Repressive Complex 1/genetics
- Polycomb Repressive Complex 1/metabolism
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Signal Transduction
- Smad Proteins/genetics
- Smad Proteins/metabolism
- Transforming Growth Factor beta1/genetics
- Transforming Growth Factor beta1/metabolism
- Transforming Growth Factor beta1/pharmacology
Collapse
Affiliation(s)
- Jianliang Jin
- The State Key Laboratory of Reproductive Medicine; Key Laboratory for Aging & Disease, Research Centre for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jianguo Tao
- The State Key Laboratory of Reproductive Medicine; Key Laboratory for Aging & Disease, Research Centre for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xin Gu
- The State Key Laboratory of Reproductive Medicine; Key Laboratory for Aging & Disease, Research Centre for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Zhenzhen Yu
- The State Key Laboratory of Reproductive Medicine; Key Laboratory for Aging & Disease, Research Centre for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Rong Wang
- The State Key Laboratory of Reproductive Medicine; Key Laboratory for Aging & Disease, Research Centre for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Guoping Zuo
- Laboratory Centre for Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Qing Li
- Department of Science and Technology, Jiangsu Jiankang Vocational College, Nanjing, Jiangsu, 210029, China
| | - Xianhui Lv
- The State Key Laboratory of Reproductive Medicine; Key Laboratory for Aging & Disease, Research Centre for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| | - Dengshun Miao
- The State Key Laboratory of Reproductive Medicine; Key Laboratory for Aging & Disease, Research Centre for Bone and Stem Cells, Department of Human Anatomy, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
| |
Collapse
|
230
|
The Anti-Inflammatory Effect of Guchangzhixie-Pill by Reducing Colonic EC Cell Hyperplasia and Serotonin Availability in an Ulcerative Colitis Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8547257. [PMID: 28845184 PMCID: PMC5563416 DOI: 10.1155/2017/8547257] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 04/05/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis (UC) is one of the major types of inflammatory bowel diseases (IBD). Abnormal colonic enterochromaffin (EC) cell hyperplasia and serotonin availability have been described in UC. Guchangzhixie-pill (GCZX-pill), a Chinese herbal formula composed of six herbs, is modified based on a traditional formula (Jiechangyan-pill) for inflammatory and ulcerative gastrointestinal disorders. This study aims to investigate the anti-inflammatory effect and the underlying mechanisms of GCZX-pill on trinitrobenzene sulfonic acid- (TNBS-) induced UC in rats. After orally administrating a GCZX-pill to UC rats for 14 days, the results of the inflammation evaluation, such as disease activity index (DAI), macroscopic score (MS), myeloperoxidase (MPO) activity, and other methods, suggested that the GCZX-pill showed remarkable anti-inflammatory results in UC rats. In addition, the abnormal EC cell numbers, colonic tryptophan hydroxylase (TPH) expression, and serotonin (5-HT) contents in TNBS-induced UC rats were significantly reduced by the GCZX-pill. This data demonstrates that the GCZX-pill can attenuate the inflammation in UC rats and the anti-inflammatory effect of the GCZX-pill may be medicated by reducing colonic EC cell hyperplasia and 5-HT availability.
Collapse
|
231
|
Yu J, Zhang W, Zhang Y, Wang Y, Zhang B, Fan G, Zhu Y. A critical courier role of volatile oils from Dalbergia odorifera for cardiac protection in vivo by QiShenYiQi. Sci Rep 2017; 7:7353. [PMID: 28779167 PMCID: PMC5544742 DOI: 10.1038/s41598-017-07659-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/30/2017] [Indexed: 11/25/2022] Open
Abstract
Component-based Chinese medicine (CCM) is derived from traditional Chinese medicine but produced with modern pharmaceutical standard and clearer clinical indications. However, it still faces challenges of defining individual component contribution in the complex formula. Using QiShenYiQi (QSYQ) as a model CCM, we investigated the role of Dalbergia odorifera (DO), an herbal component, in preventing myocardial damage. We showed that in vitro, QSYQ exerted considerable protective activities on cardiomyocytes from H2O2-induced mitochondrial dysfunction with or without DO. However, in isolated rat hearts, myocardial protection by QSYQ was significantly weakened without DO. In everted gut sac model, DO significantly enhanced absorption of the major QSYQ ingredients in different regions of rat intestine. Finally, in in vivo mouse model of doxorubicin (DOX)-induced myocardial damage, only QSYQ, but not QiShenYiQi without DO (QSYQ-DO), exerted a full protection. Taken together, our results showed that instead of directly contributing to the myocardial protection, Dalbergia odorifera facilitates the major active ingredients absorption and increases their efficacy, eventually enhancing the in vivo potency of QSYQ. These findings may shed new lights on our understanding of the prescription compatibility theory, as well as the impacts of “courier herbs” in component-based Chinese medicine.
Collapse
Affiliation(s)
- Jiahui Yu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Research and Development Center of CM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China
| | - Wen Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin Tasly Holding Group Co., Ltd., Tianjin, China
| | - Yiqian Zhang
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin Tasly Holding Group Co., Ltd., Tianjin, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yadong Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Boli Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guanwei Fan
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China. .,First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China. .,Research and Development Center of CM, Tianjin International Joint Academy of Biotechnology & Medicine, Tianjin, China.
| |
Collapse
|
232
|
Shao Y, Zhang W, Tong L, Huang J, Li D, Nie W, Zhu Y, Li Y, Lu T. Simultaneous determination of eight bioactive components of Qishen Yiqi dripping pills in rat plasma using UFLC-MS/MS and its application to a pharmacokinetic study. Biomed Chromatogr 2017; 31. [PMID: 28146302 DOI: 10.1002/bmc.3941] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/15/2017] [Accepted: 01/29/2017] [Indexed: 12/16/2023]
Abstract
In this study, a rapid and reliable ultra-fast liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous determination of eight active ingredients, including astragaloside IV, ononin, tanshinol, protocatechualdehyde, protocatechuic acid, salvianolic acid D, rosmarinic acid and ginsenoside Rg1 , in rat plasma. The plasma samples were pretreated by protein precipitation with acetonitrile. Chromatographic separation was performed on a Waters Acquity UPLC® BEH C18 column (1.7 μm particles, 2.1 × 100 mm). The mobile phase consisted of 0.1% aqueous formic acid (A)-acetonitrile with 0.1% formic acid (B) at a flow rate of 0.4 mL/min. Quantification was performed on a triple quadruple tandem mass spectrometry with electrospray ionization by multiple reaction monitoring both in the negative and in the positive ion mode. The lower limit of quantification of tanshinol was 2.0 ng/mL and the others were 5.0 ng/mL. The extraction recoveries, matrix effects, intra- and inter-day precision and accuracy of eight tested components were all within acceptable limits. The validated method was successfully applied to the pharmacokinetic study of the eight active constituents after intragastric administration of three doses (1.0, 3.0, 6.0 g/kg body weight) of Qishen Yiqi Dripping Pills to rats.
Collapse
Affiliation(s)
- Yaping Shao
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Wen Zhang
- Tasly Academy, Tianjin Tasly Holding Group Co. Ltd, Tianjin, People's Republic of China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Ling Tong
- Tasly Academy, Tianjin Tasly Holding Group Co. Ltd, Tianjin, People's Republic of China
| | - Jingyi Huang
- Tasly Academy, Tianjin Tasly Holding Group Co. Ltd, Tianjin, People's Republic of China
| | - Dongxiang Li
- Tasly Academy, Tianjin Tasly Holding Group Co. Ltd, Tianjin, People's Republic of China
| | - Wei Nie
- Tasly Academy, Tianjin Tasly Holding Group Co. Ltd, Tianjin, People's Republic of China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, People's Republic of China
- Research and Development Center of TCM, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, People's Republic of China
| | - Yunfei Li
- Tasly Academy, Tianjin Tasly Holding Group Co. Ltd, Tianjin, People's Republic of China
| | - Tao Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
233
|
Luo J, Han X, Dou X, Zhang L, Yang S, Yang M. Accumulation of Arsenic Speciation and In Vivo Toxicity Following Oral Administration of a Chinese Patent Medicine Xiao-Er-Zhi-Bao-Wan in Rats. Front Pharmacol 2017; 8:491. [PMID: 28790918 PMCID: PMC5524916 DOI: 10.3389/fphar.2017.00491] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/10/2017] [Indexed: 01/14/2023] Open
Abstract
Realgar-containing traditional Chinese medicines such as Xiao-Er-Zhi-Bao-Wan (XEZBW), have been widely used for thousands of years. However, events associated with arsenic-induced ailments have increasingly become a public concern. To address the toxicity of XEZBW, we studied the histopathology and blood biochemistry of rats exposed to XEZBW using technology like high-performance liquid chromatography-inductively coupled mass spectrometry to determine arsenic speciation. Our results demonstrated that dimethylarsinic acid (DMA) increased from 18.57 ± 7.45 to 22.74 ± 7.45 ng/g in rat kidney after oral administration for 7 and 14 days, which was 10-fold higher than the levels observed in controls. Trivalent arsenite As(III) showed a large increase on day 7 (26.99 ± 1.98 ng/g), followed by a slight decrease on day 14 (13.67 ± 6.48 ng/g). Total arsenic levels on day 7 (185.52 ± 24.56 ng/g) and day 14 (198.57 ± 26.26 ng/g) were nearly twofold higher than that in the control group (92.77 ± 14.98 ng/g). Histopathological analysis showed mild injury in the liver and kidney of rats subjected to oral administration of realgar for 14 days. As in the XEZBW groups, a mild injury in these organs was observed after administration for 14 days. This study inferred that the toxicity of arsenic was concentration- and time-dependent. The accumulation of DMA, a byproduct of choline metabolism, was responsible for inducing higher toxicity. Therefore, we concluded that measuring the levels of DMA, instead of total arsenic, might be more suitable for evaluating the toxicity of realgar-containing traditional Chinese medicines.
Collapse
Affiliation(s)
- Jiaoyang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Xu Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China.,College of Traditional Chinese Medicine, Jilin Agricultural UniversityChangchun, China
| | - Xiaowen Dou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Lei Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Shihai Yang
- College of Traditional Chinese Medicine, Jilin Agricultural UniversityChangchun, China
| | - Meihua Yang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| |
Collapse
|
234
|
How Can Synergism of Traditional Medicines Benefit from Network Pharmacology? Molecules 2017; 22:molecules22071135. [PMID: 28686181 PMCID: PMC6152294 DOI: 10.3390/molecules22071135] [Citation(s) in RCA: 297] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/14/2022] Open
Abstract
Many prescriptions of traditional medicines (TMs), whose efficacy has been tested in clinical practice, have great therapeutic value and represent an excellent resource for drug discovery. Research into single compounds of TMs, such as artemisinin from Artemisia annua L., has achieved great success; however, it has become evident that a TM prescription (which frequently contains various herbs or other components) has a synergistic effect in effecting a cure or reducing toxicity. Network pharmacology targets biological networks and analyzes the links among drugs, targets, and diseases in those networks. Comprehensive, systematic research into network pharmacology is consistent with the perspective of holisticity, which is a main characteristic of many TMs. By means of network pharmacology, research has demonstrated that many a TM show a synergistic effect by acting at different levels on multiple targets and pathways. This approach effectively bridges the gap between modern medicine and TM, and it greatly facilitates studies into the synergistic actions of TMs. There are different kinds of synergistic effects with TMs, such as synergy among herbs, effective parts, and pure compounds; however, for various reasons, new drug discovery should at present focus on synergy among pure compounds.
Collapse
|
235
|
The herbal decoction modified Danggui Buxue Tang attenuates immune-mediated bone marrow failure by regulating the differentiation of T lymphocytes in an immune-induced aplastic anemia mouse model. PLoS One 2017; 12:e0180417. [PMID: 28683082 PMCID: PMC5500321 DOI: 10.1371/journal.pone.0180417] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/22/2017] [Indexed: 12/12/2022] Open
Abstract
Angelicae Sinensis, Radix Astragali and Rhizoma Coptidis are all herbs of modified Danggui Buxue Tang (DGBX) and are extensively applied herbs in traditional Chinese medicine for the treatment of anemia and inflammation. In this study, immune-induced AA mice were used as an animal model, and the immunosuppressive agent, Ciclosporin A (CsA), was used as a positive control. Multiple pro-inflammatory cytokines were examined by bead-based multiplex flow cytometry. The T-cell subsets were assessed using a fluorescence-activated cell sorter (FACS). Western blot analysis was used to estimate the protein expression levels of specific transcription factors for T helper cells (Th1, Th2 and Th17) and key molecules of the Janus-activated kinase (Jak)/signal transducer and activator of transcription (Stat3) signaling pathway. DGBX treatment could significantly increase the production of whole blood cells in peripheral blood (PB); inhibit the expansion of Th1 and Th17 cells; increase the differentiation of Th2 and Tregs cells; regulate the expression levels of T-bet, GATA-3, RORγ and proinflammatory cytokines; and decrease the expression levels of key molecules in the Jak/Stat signaling pathway. These results indicate that DGBX can regulate the differentiation of T lymphocytes, resulting in immunosuppressive and hematogenic functions on AA mice. DGBX might be a good candidate for inclusion in a randomized study for AA with more data on the possible side effects and doses used in humans. Ultimately, it may be used for applications of traditional medicine against AA in modern complementary and alternative immunosuppressive therapeutics.
Collapse
|
236
|
Cui Y, Shen N, Dang J, Mei L, Tao Y, Liu Z. Anti-inflammatory bioactive equivalence of combinatorial components β-carboline alkaloids identified in Arenaria kansuensis by two-dimensional chromatography and solid-phase extraction coupled with liquid-liquid extraction enrichment technology. J Sep Sci 2017; 40:2895-2905. [PMID: 28493617 DOI: 10.1002/jssc.201700144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 04/10/2017] [Accepted: 05/03/2017] [Indexed: 11/08/2022]
Abstract
Bioactive equivalent combinatorial components play a critical role in herbal medicines. However, how to discover and enrich them efficiently is a question for herbal pharmaceuticals researchers. In our work, a novel two-dimensional reversed-phase/hydrophilic interaction high-performance liquid chromatography method was established to perform real-time components trapping and combining for preparation and isolation of coeluting components. Arenaria kansuensis was taken as an example, and solid-phase extraction coupled with liquid-liquid extraction as a simple and efficient method for enriching trace components, reversed phase column coupled with hydrophilic interaction liquid chromatography XAmide column as two-dimensional chromatography technology for isolation and preparation of coeluting constituents, enzyme-linked immune-sorbent assay as bio-guided assay, and anti-inflammatory bioactivity evaluation for bioactive constituents. A combination of 12 β-carboline alkaloids was identified as anti-inflammatory bioactive equivalent combinatorial components from A. kansuensis, which accounts for 1.9% w/w of original A. kansuensis. This work answers the key question of which are real anti-inflammatory components from A. kansuensis and provides a fast and efficient approach for discovering and enriching trace β-carboline alkaloids from herbal medicines for the first time. More importantly, the discovery of bioactive equivalent combinatorial components could improve the quality control of herbal products and inspire a herbal medicine based on combinatorial therapeutics.
Collapse
Affiliation(s)
- Yulei Cui
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, P.R. China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, Qinghai, P.R. China
- Key Laboratory of Tibetan Medicine Research of Qinghai Province, Xining, Qinghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Na Shen
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, P.R. China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, Qinghai, P.R. China
- Key Laboratory of Tibetan Medicine Research of Qinghai Province, Xining, Qinghai, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Jun Dang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, P.R. China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, Qinghai, P.R. China
- Key Laboratory of Tibetan Medicine Research of Qinghai Province, Xining, Qinghai, P.R. China
| | - Lijuan Mei
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, P.R. China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, Qinghai, P.R. China
- Key Laboratory of Tibetan Medicine Research of Qinghai Province, Xining, Qinghai, P.R. China
| | - Yanduo Tao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, P.R. China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, Qinghai, P.R. China
- Key Laboratory of Tibetan Medicine Research of Qinghai Province, Xining, Qinghai, P.R. China
| | - Zenggen Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, P.R. China
- Key Laboratory of Tibetan Medicine Research, Chinese Academy of Sciences, Xining, Qinghai, P.R. China
- Key Laboratory of Tibetan Medicine Research of Qinghai Province, Xining, Qinghai, P.R. China
| |
Collapse
|
237
|
Sun X, Cui XB, Wen HM, Shan CX, Wang XZ, Kang A, Chai C, Li W. Influence of sulfur fumigation on the chemical profiles of Atractylodes macrocephala Koidz. evaluated by UFLC–QTOF–MS combined with multivariate statistical analysis. J Pharm Biomed Anal 2017; 141:19-31. [DOI: 10.1016/j.jpba.2017.03.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 01/26/2023]
|
238
|
Zou Y, Aboshora W, Li J, Xiao T, Zhang L. Protective Effects of Lepidium meyenii
(Maca) Aqueous Extract and Lycopene on Testosterone Propionate-Induced Prostatic Hyperplasia in Mice. Phytother Res 2017. [DOI: 10.1002/ptr.5838] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ying Zou
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
| | - Waleed Aboshora
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- National Engineering Research Center for Functional Food; Jiangnan University; Wuxi 214122 China
- Department of Food Processing Engineering, Faculty of Engineering; University of Al-Imam Almahdi; PO Box 209 Kosti Sudan
| | - Jing Li
- School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- National Engineering Research Center for Functional Food; Jiangnan University; Wuxi 214122 China
| | - Tiancun Xiao
- Chemistry Department; Oxford University; South Parks Road OX1 3QR Oxford UK
| | - Lianfu Zhang
- State Key Laboratory of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- School of Food Science and Technology; Jiangnan University; Wuxi 214122 China
- National Engineering Research Center for Functional Food; Jiangnan University; Wuxi 214122 China
| |
Collapse
|
239
|
Chao J, Dai Y, Verpoorte R, Lam W, Cheng YC, Pao LH, Zhang W, Chen S. Major achievements of evidence-based traditional Chinese medicine in treating major diseases. Biochem Pharmacol 2017. [PMID: 28636884 DOI: 10.1016/j.bcp.2017.06.123] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A long history of use and extensive documentation of the clinical practices of traditional Chinese medicine resulted in a considerable number of classical preparations, which are still widely used. This heritage of our ancestors provides a unique resource for drug discovery. Already, a number of important drugs have been developed from traditional medicines, which in fact form the core of Western pharmacotherapy. Therefore, this article discusses the differences in drug development between traditional medicine and Western medicine. Moreover, the article uses the discovery of artemisinin as an example that illustrates the "bedside-bench-bedside" approach to drug discovery to explain that the middle way for drug development is to take advantage of the best features of these two distinct systems and compensate for certain weaknesses in each. This article also summarizes evidence-based traditional medicines and discusses quality control and quality assessment, the crucial steps in botanical drug development. Herbgenomics may provide effective tools to clarify the molecular mechanism of traditional medicines in the botanical drug development. The totality-of-the-evidence approach used by the U.S. Food and Drug Administration for botanical products provides the directions on how to perform quality control from the field throughout the entire production process.
Collapse
Affiliation(s)
- Jung Chao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing; Graduate Institute of Health-Industry Technology, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City; Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung
| | - Yuntao Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing
| | - Robert Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, Leiden
| | - Wing Lam
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT
| | - Yung-Chi Cheng
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT
| | - Li-Heng Pao
- Graduate Institute of Health-Industry Technology, Research Center for Food and Cosmetic Safety, and Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City
| | - Wei Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing
| | - Shilin Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing.
| |
Collapse
|
240
|
Zhong C, Zhang YF, Huang JH, Wang ZY, Chen QY, Su LT, Liu ZT, Xiong CM, Tao Z, Guo RP. The Chinese medicine, Jianpi Huayu Decoction, inhibits the epithelial mesenchymal transition via the regulation of the Smad3/Smad7 cascade. Am J Transl Res 2017; 9:2694-2711. [PMID: 28670362 PMCID: PMC5489874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/30/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common and aggressive malignant tumors in the world. In China, traditional medicine is commonly used in the treatment of cancer. Among these medicines, Jianpi Huayu Decoction (JHD) is a typical clinical prescription against multiple tumors. However, the exact function and targets of JHD are currently unknown. The aim of this study is to assess the efficacy of JHD against HCC. METHODS AND RESULTS Hepatic carcinoma SMMC7221 cells were treated with JHD drug-serum in a dose- and time-dependent manner. Real-time PCR (RT-PCR), western-blot (WB), and immunofluorescence microscopy revealed that JHD increased both the mRNA and protein levels of Smad7 and decreased the protein level of p-Smad3. It subsequently increased the E-cadherin expression level and decreased those of N-cadherin and Vimentin. Metastasis and invasion were eventually inhibited, as determined by the wound healing and transwell invasion assays. Treatment of Tanshinone IIA (Tan IIA) showed similar results as JHD, indicating that it is most likely the main functional drug monomer of JHD. The in vivo assay in nude mice also revealed the efficacy of JHD to inhibit epithelial mesenchymal transition (EMT). CONCLUSION JHD was shown to be an effective therapeutic strategy against HCC.
Collapse
Affiliation(s)
- Chong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Yong-Fa Zhang
- Department of Hepatobiliary Oncology, Cancer Center of Sun Yat-sen UniversityGuangzhou 510060, China
- Department of Liver Surgery, Fudan University Shanghai Cancer CenterShanghai, China
- Department of Oncology, Shanghai Medical College, Fudan UniversityShanghai, China
| | - Jun-Hai Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Zi-Yu Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Qiu-Yuan Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Li-Tian Su
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Zhen-Tao Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Cheng-Ming Xiong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Zhi Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou 510405, China
| | - Rong-Ping Guo
- Department of Hepatobiliary Oncology, Cancer Center of Sun Yat-sen UniversityGuangzhou 510060, China
| |
Collapse
|
241
|
Li J, Zhang S, Zhou R, Zhang J, Li ZF. Perspectives of traditional Chinese medicine in pancreas protection for acute pancreatitis. World J Gastroenterol 2017; 23:3615-3623. [PMID: 28611514 PMCID: PMC5449418 DOI: 10.3748/wjg.v23.i20.3615] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/13/2017] [Accepted: 05/04/2017] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common diseases. AP is associated with significant morbidity and mortality, but it lacks specific and effective therapies. Traditional Chinese medicine (TCM) is one of the most popular complementary and alternative medicine modalities worldwide for the treatment of AP. The current evidence from basic research and clinical studies has shown that TCM has good therapeutic effects on AP. This review summarizes the widely used formulas, single herbs and monomers that are used to treat AP and the potential underlying mechanisms of TCM. Because of the abundance, low cost, and safety of TCM as well as its ability to target various aspects of the pathogenesis, TCM provides potential clinical benefits and a new avenue with tremendous potential for the future treatment of AP.
Collapse
|
242
|
Chu H, Shi Y, Jiang S, Zhong Q, Zhao Y, Liu Q, Ma Y, Shi X, Ding W, Zhou X, Cui J, Jin L, Guo G, Wang J. Treatment effects of the traditional Chinese medicine Shenks in bleomycin-induced lung fibrosis through regulation of TGF-beta/Smad3 signaling and oxidative stress. Sci Rep 2017; 7:2252. [PMID: 28533545 PMCID: PMC5440393 DOI: 10.1038/s41598-017-02293-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
Pulmonary fibrosis is a kind of devastating interstitial lung disease due to the limited therapeutic strategies. Traditional Chinese medicine (TCM) practices have put forth Shenks as a promising treatment approach. Here, we performed in vivo study and in vitro study to delineate the anti-fibrotic mechanisms behind Shenks treatment for pulmonary fibrosis. We found that regardless of the prophylactic or therapeutic treatment, Shenks was able to attenuate BLM-induced-fibrosis in mice, down regulate extracellular matrix genes expression, and reduce collagen production. The aberrantly high Smad3 phosphorylation levels and SBE activity in TGF-β-induced fibroblasts were dramatically decreased as a result of Shenks treatment. At the same time, Shenks was able to increase the expression of antioxidant-related genes, including Gclc and Ec-sod, while reduce the transcription levels of oxidative-related genes, such as Rac1 and Nox4 demonstrated by both in vivo and in vitro studies. Further investigations found that Shenks could decrease the oxidative productions of protein (3-nitrotyrosine) and lipid (malondialdehyde) and increase GSH content both in bleomycin treated mouse lungs and TGF-β stimulated fibroblasts, as well as inhibit the production of ROS stimulated by TGF-β to fight against oxidative stress. Overall, Shenks inhibited fibrosis by blocking TGF-β pathway and modulating the oxidant/antioxidant balance.
Collapse
Affiliation(s)
- Haiyan Chu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Ying Shi
- Department of Rheumatology and Immunology, Yiling Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050091, China
- Department of Traditional Chinese Medicine, Geriatric Hospital of Hebei Province, Shijiazhuang, 050011, China
| | - Shuai Jiang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Qicheng Zhong
- Department of Rheumatology and Immunology, Yiling Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050091, China
| | - Yongqiang Zhao
- Department of Rheumatology and Immunology, Yiling Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050091, China
| | - Qingmei Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Xiangguang Shi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Weifeng Ding
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Xiaodong Zhou
- University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, Texas, 77030, USA
| | - Jimin Cui
- Department of Rheumatology and Immunology, Yiling Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050091, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Gang Guo
- Department of Rheumatology and Immunology, Yiling Affiliated Hospital of Hebei Medical University, Shijiazhuang, 050091, China.
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China.
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, 200040, P. R. China.
| |
Collapse
|
243
|
Zhu ML, Lu JX, Pan GP, Ping S, Zhao FR, Qi HT, Yu HY, Jian X, Wan GR, Li P. Traditional Chinese medicine Ka-Sai-Ping suppresses the growths of gastric cancers via induction of autophagy. Oncotarget 2017; 8:95075-95082. [PMID: 29221112 PMCID: PMC5707006 DOI: 10.18632/oncotarget.18041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/10/2017] [Indexed: 11/25/2022] Open
Abstract
Traditional Chinese medication is increasingly used to treat a wide range of human chronic diseases like cardiovascular diseases and cancers. This study was designed to explore whether ka-sai-ping (KSP), a novel traditional Chinese medicine developed by us, prevents gastric cancer growths and to investigate the underlying mechanism. The xenograft model of mouse gastric cancer was established by injecting MFCs into nude mouse subcutaneously. Cell autophagy was assessed by MDC staining. Lysosome and mitochondria were detected by Lyso-Tracker Red and Mito-Traker Green staining. Incubation of cultured mouse gastric cancer cell line MFCs with KSP for 48 hours, concentration-dependently reduced cell survivals and activated autophagy, which were accompanied with damaged lysosomes and mitochondria. In vivo studies indicated that KSP therapy (20 ml/kg/day) for two weeks suppressed the growth of gastric cancer, increased the protein levels of LC3-II, beclin-1, cathepsin L, bcl-2, p53, and capase-3 in tumor tissues from the xenograft model of mouse gastric cancer. Importantly, all these effects induced by KSP were abolished by co-administration of autophagy inhibitor 3-MA. In conclusion, KSP activates cell autophagy to suppress gastric cancer growths. Clinically, KSP is potentially considered as a medicine to treat patients with gastric cancer.
Collapse
Affiliation(s)
- Mo-Li Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Jun-Xiu Lu
- Department of Histology and Embryology, Xinxiang Medical University, Xinxiang, China
| | - Guo-Pin Pan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Song Ping
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Fan-Rong Zhao
- San-Quan College of Xinxiang Medical University, Xinxiang, China
| | - Heng-Tian Qi
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Hai-Ya Yu
- Department of Neurology, The People's Hospital of Xishui County, Huangang, Hubei, China
| | - Xu Jian
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Guang-Rui Wan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
244
|
Tong K, Li ZL, Sun X, Yan S, Jiang MJ, Deng MS, Chen J, Li JW, Tian ML. Metabolomics approach reveals annual metabolic variation in roots of Cyathula officinalis Kuan based on gas chromatography-mass spectrum. Chin Med 2017; 12:12. [PMID: 28469699 PMCID: PMC5414129 DOI: 10.1186/s13020-017-0133-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 04/18/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Herbal quality is strongly influenced by harvest time. It is therefore one of crucial factors that should be well respected by herbal producers when optimizing cultivation techniques, so that to obtain herbal products of high quality. In this work, we paid attention on one of common used Chinese herbals, Cyathula officinalis Kuan. According to previous studies, its quality may be related with growth years because of the variation of several main bioactive components in different growth years. However, information about the whole chemical composition is still scarce, which may jointly determine the herbal quality. METHODS Cyathula officinalis samples were collected in 1-4 growth years after sowing. To obtain a global insight on chemical profile of herbs, we applied a metabolomics approach based on gas chromatography-mass spectrum. Analysis of variance, principal component analysis, partial least squares discriminant analysis and hierarchical cluster analysis were combined to explore the significant difference in different growth years. RESULTS 166 metabolites were identified by using gas chromatography-mass spectrum method. 63 metabolites showed significant change in different growth years in terms of analysis of variance. Those metabolites then were grouped into 4 classes by hierarchical cluster analysis, characterizing the samples of different growth ages. Samples harvested in the earliest years (1-2) were obviously differ with the latest years (3-4) as reported by principal component analysis. Further, partial least squares discriminant analysis revealed the detail difference in each growth year. Gluconic acid, xylitol, glutaric acid, pipecolinic acid, ribonic acid, mannose, oxalic acid, digalacturonic acid, lactic acid, 2-deoxyerythritol, acetol, 3-hydroxybutyric acid, citramalic acid, N-carbamylglutamate, and cellobiose are the main 15 discrimination metabolites between different growth years. CONCLUSION Harvest time should be well considered when producing C. officinalis. In order to boost the consistency of herbal quality, C. officinalis is recommended to harvest in 4th growth year. The method of GC-MS combined with multivariate analysis was a powerful tool to evaluate the herbal quality.
Collapse
Affiliation(s)
- Kai Tong
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Zhao-ling Li
- Maize Institute, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Xu Sun
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Shen Yan
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Mei-jie Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Meng-sheng Deng
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
| | - Jing-wei Li
- Institute for New Rural Development, Sichuan Agricultural University, 608 Room, No. 1 building, 211 Huiming Road, Wenjiang District, Chengdu City, 611130 Sichuan Province People’s Republic of China
| | - Meng-liang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130 People’s Republic of China
- Institute for New Rural Development, Sichuan Agricultural University, 608 Room, No. 1 building, 211 Huiming Road, Wenjiang District, Chengdu City, 611130 Sichuan Province People’s Republic of China
| |
Collapse
|
245
|
Wang C, Yan J, Du M, Burlison JA, Li C, Sun Y, Zhao D, Liu J. One step synthesis of indirubins by reductive coupling of isatins with KBH 4. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.03.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
246
|
Antiaging and Anxiolytic Effects of Combinatory Formulas Based on Four Medicinal Herbs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4624069. [PMID: 28458714 PMCID: PMC5387814 DOI: 10.1155/2017/4624069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 01/26/2017] [Accepted: 02/19/2017] [Indexed: 02/04/2023]
Abstract
The objective of the present study was to search for medicinal-herb combinations based on Radix Bupleurum chinense DC (“B”), Rhizoma Corydalis yanhusuo WT Wang (“Y”), Caulis Polygonum multiflorum Thunb (“P”), and Flos Albizia julibrissin Durazz (“A”) for antiaging, anxiolytic, and sedative effects. Application of the D-galactose induced accelerated-aging model employing male ICR mice showed that oral administration of some combinations of B, Y, P, and A significantly improved spatial memory in Y-maze test and reduced brain levels of tumor necrosis factor-α and interleukin-6 based on immunoassays and oxidative stress marker malondialdehyde, based on the thiobarbituric acid test, and the loss of whiskers, indicating antiaging and antineurodegeneration effects. In addition, some of the combinatory formulas induced anxiolysis measured using the elevated plus-maze test and/or sedative effects measured using the hole-board test. Over the range of dosages examined, all possible combinations of the four herbs were devoid of any significant side effects in the form of altered locomotor activity, decreased muscle coordination, or anterograde amnesia assessed using the photobeam and rotarod and step-through passive avoidance methods, respectively. The results suggest that various combinations of the B, Y, P, and A herbs could be useful as nonsedative, antiaging and/or antineurodegenerative agents, or anxiolytic agents.
Collapse
|
247
|
Zhang Q, Wang J, Liao S, Li P, Xu D, Lv Y, Yang M, Kong L. Optimization of Huang-Lian-Jie-Du-Decoction for Ischemic Stroke Treatment and Mechanistic Study by Metabolomic Profiling and Network Analysis. Front Pharmacol 2017; 8:165. [PMID: 28400733 PMCID: PMC5368223 DOI: 10.3389/fphar.2017.00165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 03/13/2017] [Indexed: 11/29/2022] Open
Abstract
Optimal drug proportions and mechanism deciphering of multicomponent drugs are critical for developing novel therapies to cope with complex diseases, such as stroke. In the present study, orthogonal experimental design was applied to explore the optimal proportion of the four component herbs in Huang-Lian-Jie-Du-Decoction (HLJDD) on the treatment of ischemic stroke. The treatment efficacies and mechanisms were assessed using global and amino acids (AAs) targeted metabolomics, as well as correlation network analysis. The global NMR metabolomics results revealed that AAs metabolism was significantly perturbed in middle cerebral artery occlusion rats. The levels of 23 endogenous AAs were then subjected to HPLC-QTOF-MS/MS analysis. These results complemented with neurobehavioral evaluations, cerebral infarct assessments, biochemical evaluations, histological inspections and immunohistochemistry observations strongly demonstrated that HLJDD with optimal proportion of 6 (Rhizoma coptidis): 4 (Radix scutellariae): 1 (Cortex phellodendr): 3 (Fructus Gardeniae) had the best efficacy on ischemic stroke, which could be ascribed to its modulation on AA metabolism. This integrated metabolomics approach showed the potential and applicable in deciphering the complex mechanisms of traditional Chinese medicine formulae on the treatment of complicated diseases, which provided new means to assess the treatment effects of herb combinations and to further development of drugs or therapies based on these formulae.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University Nanjing, China
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science and Technology Nanjing, China
| | - Shanting Liao
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University Nanjing, China
| | - Pei Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University Nanjing, China
| | - Dingqiao Xu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University Nanjing, China
| | - Yan Lv
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University Nanjing, China
| | - Minghua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University Nanjing, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University Nanjing, China
| |
Collapse
|
248
|
The gene expression profiles in response to 102 traditional Chinese medicine (TCM) components: a general template for research on TCMs. Sci Rep 2017; 7:352. [PMID: 28336967 PMCID: PMC5428649 DOI: 10.1038/s41598-017-00535-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 02/28/2017] [Indexed: 12/19/2022] Open
Abstract
Traditional Chinese medicines (TCMs) have important therapeutic value in long-term clinical practice. However, because TCMs contain diverse ingredients and have complex effects on the human body, the molecular mechanisms of TCMs are poorly understood. In this work, we determined the gene expression profiles of cells in response to TCM components to investigate TCM activities at the molecular and cellular levels. MCF7 cells were separately treated with 102 different molecules from TCMs, and their gene expression profiles were compared with the Connectivity Map (CMAP). To demonstrate the reliability and utility of our approach, we used nitidine chloride (NC) from the root of Zanthoxylum nitidum, a topoisomerase I/II inhibitor and α-adrenoreceptor antagonist, as an example to study the molecular function of TCMs using CMAP data as references. We successfully applied this approach to the four ingredients in Danshen and analyzed the synergistic mechanism of TCM components. The results demonstrate that our newly generated TCM data and related methods are valuable in the analysis and discovery of the molecular actions of TCM components. This is the first work to establish gene expression profiles for the study of TCM components and serves as a template for general TCM research.
Collapse
|
249
|
Xu HH, Hao FR, Wang MX, Ren SJ, Li M, Tan HL, Wang YG, Tang XL, Xiao CR, Liang QD, Gao Y, Ma ZC. Influences of Realgar- Indigo naturalis, A Traditional Chinese Medicine Formula, on the Main CYP450 Activities in Rats Using a Cocktail Method. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:2374624. [PMID: 28421119 PMCID: PMC5379094 DOI: 10.1155/2017/2374624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/19/2017] [Indexed: 11/18/2022]
Abstract
The purpose of this work was to study the influences of Realgar-Indigo naturalis (RIF) and its principal element realgar on 4 main cytochrome P450 enzymes activities in rats. A simple and efficient cocktail method was developed to detect the four probe drugs simultaneously. In this study, Wistar rats were administered intragastric RIF and realgar for 14 days; mixed probe drugs were injected into rats by caudal vein. Through analyzing the pharmacokinetic parameter of mixed probe drugs in rats, we can calculate the CYPs activities. The results showed that RIF could inhibit CYP1A2 enzyme activity and induce CYP2C11 enzyme activity significantly. Interestingly, in realgar high dosage group, CYP3A1/2 enzyme activity was inhibited significantly, and different dosage of realgar manifested a good dose-dependent manner. The RIF results indicated that drug coadministrated with RIF may need to be paid attention in relation to drug-drug interactions (DDIs). Realgar, a toxic traditional Chinese medicine (TCM), does have curative effect on acute promyelocytic leukemia (APL). Its toxicity studies should be focused on. We found that, in realgar high dosage group, CYP3A1/2 enzymes activity was inhibited. This phenomenon may explain its potential toxicity mechanism.
Collapse
Affiliation(s)
- Huan-Hua Xu
- Guangdong Pharmaceutical University, Guangzhou 510006, China
- Institute of Radiation Medicine, AMMS, Beijing 100850, China
| | - Fei-Ran Hao
- Institute of Radiation Medicine, AMMS, Beijing 100850, China
| | - Mei-Xi Wang
- Guangdong Pharmaceutical University, Guangzhou 510006, China
- Institute of Radiation Medicine, AMMS, Beijing 100850, China
| | - Si-Jia Ren
- Institute of Radiation Medicine, AMMS, Beijing 100850, China
| | - Ming Li
- Institute of Radiation Medicine, AMMS, Beijing 100850, China
| | - Hong-Ling Tan
- Institute of Radiation Medicine, AMMS, Beijing 100850, China
| | - Yu-Guang Wang
- Institute of Radiation Medicine, AMMS, Beijing 100850, China
| | - Xiang-Lin Tang
- Institute of Radiation Medicine, AMMS, Beijing 100850, China
| | - Cheng-Rong Xiao
- Institute of Radiation Medicine, AMMS, Beijing 100850, China
| | - Qian-De Liang
- Institute of Radiation Medicine, AMMS, Beijing 100850, China
| | - Yue Gao
- Guangdong Pharmaceutical University, Guangzhou 510006, China
- Institute of Radiation Medicine, AMMS, Beijing 100850, China
| | - Zeng-Chun Ma
- Guangdong Pharmaceutical University, Guangzhou 510006, China
- Institute of Radiation Medicine, AMMS, Beijing 100850, China
| |
Collapse
|
250
|
McCulloch D, Brown C, Iland H. Retinoic acid and arsenic trioxide in the treatment of acute promyelocytic leukemia: current perspectives. Onco Targets Ther 2017; 10:1585-1601. [PMID: 28352191 PMCID: PMC5359123 DOI: 10.2147/ott.s100513] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acute promyelocytic leukemia (APL) is a distinct subtype of acute myeloid leukemia (AML) with a unique morphological appearance, associated coagulopathy and canonical balanced translocation of genetic material between chromosomes 15 and 17. APL was first described as a distinct subtype of AML in 1957 by Dr Leif Hillestad who recognized the pattern of an acute leukemia associated with fibrinolysis, hypofibrinogenemia and catastrophic hemorrhage. In the intervening years, the characteristic morphology of APL has been described fully with both classical hypergranular and variant microgranular forms. Both are characterized by a balanced translocation between the long arms of chromosomes 15 and 17, [t(15;17)(q24;q21)], giving rise to a unique fusion gene PML-RARA and an abnormal chimeric transcription factor (PML-RARA), which disrupts normal myeloid differentiation programs. The success of current treatments for APL is in marked contrast to the vast majority of patients with non-promyelocytic AML. The overall prognosis in non-promyelocytic AML is poor, and although there has been an improvement in overall survival in patients aged <60 years, only 30%-40% of younger patients are still alive 5 years after diagnosis. APL therapy has diverged from standard AML therapy through the empirical discovery of two agents that directly target the molecular basis of the disease. The evolution of treatment over the last 4 decades to include all-trans retinoic acid and arsenic trioxide, with chemotherapy limited to patients with high-risk disease, has led to complete remission in 90%-100% of patients in trials and rates of overall survival between 86% and 97%.
Collapse
Affiliation(s)
- Derek McCulloch
- Institute of Hematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Christina Brown
- Institute of Hematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Harry Iland
- Institute of Hematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| |
Collapse
|