201
|
Díaz M, Fabelo N, Ferrer I, Marín R. “Lipid raft aging” in the human frontal cortex during nonpathological aging: gender influences and potential implications in Alzheimer's disease. Neurobiol Aging 2018; 67:42-52. [DOI: 10.1016/j.neurobiolaging.2018.02.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/06/2018] [Accepted: 02/22/2018] [Indexed: 01/27/2023]
|
202
|
AbuZineh K, Joudeh LI, Al Alwan B, Hamdan SM, Merzaban JS, Habuchi S. Microfluidics-based super-resolution microscopy enables nanoscopic characterization of blood stem cell rolling. SCIENCE ADVANCES 2018; 4:eaat5304. [PMID: 30035228 PMCID: PMC6051739 DOI: 10.1126/sciadv.aat5304] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/04/2018] [Indexed: 05/06/2023]
Abstract
Hematopoietic stem/progenitor cell (HSPC) homing occurs via cell adhesion mediated by spatiotemporally organized ligand-receptor interactions. Although molecules and biological processes involved in this multistep cellular interaction with endothelium have been studied extensively, molecular mechanisms of this process, in particular the nanoscale spatiotemporal behavior of ligand-receptor interactions and their role in the cellular interaction, remain elusive. We introduce a microfluidics-based super-resolution fluorescence imaging platform and apply the method to investigate the initial essential step in the homing, tethering, and rolling of HSPCs under external shear stress that is mediated by selectins, expressed on endothelium, with selectin ligands (that is, CD44) expressed on HSPCs. Our new method reveals transient nanoscale reorganization of CD44 clusters during cell rolling on E-selectin. We demonstrate that this mechanical force-induced reorganization is accompanied by a large structural reorganization of actin cytoskeleton. The CD44 clusters were partly disrupted by disrupting lipid rafts. The spatial reorganization of CD44 and actin cytoskeleton was not observed for the lipid raft-disrupted cells, demonstrating the essential role of the spatial clustering of CD44 on its reorganization during cell rolling. The lipid raft disruption causes faster and unstable cell rolling on E-selectin compared with the intact cells. Together, our results demonstrate that the spatial reorganization of CD44 and actin cytoskeleton is the result of concerted effect of E-selectin-ligand interactions, external shear stress, and spatial clustering of the selectin ligands, and has significant effect on the tethering/rolling step in HSPC homing. Our new experimental platform provides a foundation for characterizing complicated HSPC homing.
Collapse
Affiliation(s)
- Karmen AbuZineh
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia
| | - Luay I. Joudeh
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia
| | - Bader Al Alwan
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia
| | - Samir M. Hamdan
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia
| | | | - Satoshi Habuchi
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
203
|
Kumeta M, Panina Y, Yamazaki H, Takeyasu K, Yoshimura SH. N-terminal dual lipidation-coupled molecular targeting into the primary cilium. Genes Cells 2018; 23:715-723. [PMID: 29900630 DOI: 10.1111/gtc.12603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/07/2018] [Accepted: 05/14/2018] [Indexed: 01/24/2023]
Abstract
The primary cilium functions as an "antenna" for cell signaling, studded with characteristic transmembrane receptors and soluble protein factors, raised above the cell surface. In contrast to the transmembrane proteins, targeting mechanisms of nontransmembrane ciliary proteins are poorly understood. We focused on a pathogenic mutation that abolishes ciliary localization of retinitis pigmentosa 2 protein and revealed a dual acylation-dependent ciliary targeting pathway. Short N-terminal sequences which contain myristoylation and palmitoylation sites are sufficient to target a marker protein into the cilium in a palmitoylation-dependent manner. A Golgi-localized palmitoyltransferase DHHC-21 was identified as the key enzyme controlling this targeting pathway. Rapid turnover of the targeted protein was ensured by cholesterol-dependent membrane fluidity, which balances highly and less-mobile populations of the molecules within the cilium. This targeting signal was found in a set of signal transduction molecules, suggesting a general role of this pathway in proper ciliary organization, and dysfunction in ciliary disorders.
Collapse
Affiliation(s)
- Masahiro Kumeta
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Yulia Panina
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Quantitative Biology Center (QBiC), Osaka, Japan
| | - Hiroya Yamazaki
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
204
|
Zeng J, Zhang H, Tan Y, Sun C, Liang Y, Yu J, Zou H. Aggregation of lipid rafts activates c-met and c-Src in non-small cell lung cancer cells. BMC Cancer 2018; 18:611. [PMID: 29848294 PMCID: PMC5977465 DOI: 10.1186/s12885-018-4501-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 05/11/2018] [Indexed: 11/30/2022] Open
Abstract
Background Activation of c-Met, a receptor tyrosine kinase, induces radiation therapy resistance in non-small cell lung cancer (NSCLC). The activated residual of c-Met is located in lipid rafts (Duhon et al. Mol Carcinog 49:739-49, 2010). Therefore, we hypothesized that disturbing the integrity of lipid rafts would restrain the activation of the c-Met protein and reverse radiation resistance in NSCLC. In this study, a series of experiments was performed to test this hypothesis. Methods NSCLC A549 and H1993 cells were incubated with methyl-β-cyclodextrin (MβCD), a lipid raft inhibitor, at different concentrations for 1 h before the cells were X-ray irradiated. The following methods were used: clonogenic (colony-forming) survival assays, flow cytometry (for cell cycle and apoptosis analyses), immunofluorescence microscopy (to show the distribution of proteins in lipid rafts), Western blotting, and biochemical lipid raft isolation (purifying lipid rafts to show the distribution of proteins in lipid rafts). Results Our results showed that X-ray irradiation induced the aggregation of lipid rafts in A549 cells, activated c-Met and c-Src, and induced c-Met and c-Src clustering to lipid rafts. More importantly, MβCD suppressed the proliferation of A549 and H1993 cells, and the combination of MβCD and radiation resulted in additive increases in A549 and H1993 cell apoptosis. Destroying the integrity of lipid rafts inhibited the aggregation of c-Met and c-Src to lipid rafts and reduced the expression of phosphorylated c-Met and phosphorylated c-Src in lipid rafts. Conclusions X-ray irradiation induced the aggregation of lipid rafts and the clustering of c-Met and c-Src to lipid rafts through both lipid raft-dependent and lipid raft-independent mechanisms. The lipid raft-dependent activation of c-Met and its downstream pathways played an important role in the development of radiation resistance in NSCLC cells mediated by c-Met. Further studies are still required to explore the molecular mechanisms of the activation of c-Met and c-Src in lipid rafts induced by radiation. Electronic supplementary material The online version of this article (10.1186/s12885-018-4501-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Juan Zeng
- The First Oncology Department, Shengjing Hospital affiliated with China Medical University, Shenyang, 110004, China
| | - Heying Zhang
- The First Oncology Department, Shengjing Hospital affiliated with China Medical University, Shenyang, 110004, China
| | - Yonggang Tan
- The First Oncology Department, Shengjing Hospital affiliated with China Medical University, Shenyang, 110004, China
| | - Cheng Sun
- The First Oncology Department, Shengjing Hospital affiliated with China Medical University, Shenyang, 110004, China
| | - Yusi Liang
- The First Oncology Department, Shengjing Hospital affiliated with China Medical University, Shenyang, 110004, China
| | - Jinyang Yu
- The First Oncology Department, Shengjing Hospital affiliated with China Medical University, Shenyang, 110004, China
| | - Huawei Zou
- The First Oncology Department, Shengjing Hospital affiliated with China Medical University, Shenyang, 110004, China.
| |
Collapse
|
205
|
Abstract
Neutrophils are essential to the homeostatic mission of safeguarding host tissues, responding rapidly and diversely to breaches of the host's barriers to infection, and returning tissues to a sterile state. In response to specific stimuli, neutrophils extrude modified chromatin structures decorated with specific cytoplasmic and granular proteins called neutrophil extracellular traps (NETs). Several pathways lead to this unique form of cell death (NETosis). Extracellular chromatin may have evolved to defend eukaryotic organisms against infection, and its release has at least three functions: trapping and killing of microbes, amplifying immune responses, and inducing coagulation. Here we review neutrophil development and heterogeneity with a focus on NETs, NET formation, and their relevance in host defense and disease.
Collapse
|
206
|
Applications of STED fluorescence nanoscopy in unravelling nanoscale structure and dynamics of biological systems. J Biosci 2018. [DOI: 10.1007/s12038-018-9764-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
207
|
Affiliation(s)
- Hans C. Leier
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, Oregon, United States of America
| | - William B. Messer
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, Oregon, United States of America
- Department of Medicine, Division of Infectious Diseases, OHSU, Portland, Oregon, United States of America
| | - Fikadu G. Tafesse
- Department of Molecular Microbiology & Immunology, Oregon Health & Science University (OHSU), Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
208
|
Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A, Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimer's disease. Pharmacol Res 2018; 131:87-101. [DOI: 10.1016/j.phrs.2018.03.010] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/09/2018] [Accepted: 03/14/2018] [Indexed: 12/12/2022]
|
209
|
Belin BJ, Busset N, Giraud E, Molinaro A, Silipo A, Newman DK. Hopanoid lipids: from membranes to plant-bacteria interactions. Nat Rev Microbiol 2018; 16:304-315. [PMID: 29456243 PMCID: PMC6087623 DOI: 10.1038/nrmicro.2017.173] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lipid research represents a frontier for microbiology, as showcased by hopanoid lipids. Hopanoids, which resemble sterols and are found in the membranes of diverse bacteria, have left an extensive molecular fossil record. They were first discovered by petroleum geologists. Today, hopanoid-producing bacteria remain abundant in various ecosystems, such as the rhizosphere. Recently, great progress has been made in our understanding of hopanoid biosynthesis, facilitated in part by technical advances in lipid identification and quantification. A variety of genetically tractable, hopanoid-producing bacteria have been cultured, and tools to manipulate hopanoid biosynthesis and detect hopanoids are improving. However, we still have much to learn regarding how hopanoid production is regulated, how hopanoids act biophysically and biochemically, and how their production affects bacterial interactions with other organisms, such as plants. The study of hopanoids thus offers rich opportunities for discovery.
Collapse
Affiliation(s)
- Brittany J. Belin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nicolas Busset
- Institut de Recherche pour le Développement, LSTM, UMR IRD, SupAgro, INRA, University of Montpellier, CIRAD, France
| | - Eric Giraud
- Institut de Recherche pour le Développement, LSTM, UMR IRD, SupAgro, INRA, University of Montpellier, CIRAD, France
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Napoli, Italy
| | - Dianne K. Newman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
210
|
Osborne C, West E, Bate C. The phospholipase A 2 pathway controls a synaptic cholesterol ester cycle and synapse damage. J Cell Sci 2018; 131:jcs.211789. [PMID: 29588394 DOI: 10.1242/jcs.211789] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
The cellular prion protein (PrPC) acts as a scaffold protein that organises signalling complexes. In synaptosomes, the aggregation of PrPC by amyloid-β (Aβ) oligomers attracts and activates cytoplasmic phospholipase A2 (cPLA2), leading to synapse degeneration. The signalling platform is dependent on cholesterol released from cholesterol esters by cholesterol ester hydrolases (CEHs). The activation of cPLA2 requires cholesterol released from cholesterol esters by cholesterol ester hydrolases (CEHs), enzymes dependent upon platelet activating factor (PAF) released by activated cPLA2 This demonstrates a positive feedback system in which activated cPLA2 increased cholesterol concentrations, which in turn facilitated cPLA2 activation. PAF was also required for the incorporation of the tyrosine kinase Fyn and cyclooxygenase (COX)-2 into Aβ-PrPC-cPLA2 complexes. As a failure to deactivate signalling complexes can lead to pathology, the mechanisms involved in their dispersal were studied. PAF facilitated the incorporation of acyl-coenzyme A:cholesterol acyltransferase (ACAT)-1 into Aβ-PrPC-cPLA2-COX-2-Fyn complexes. The esterification of cholesterol reduced cholesterol concentrations, causing dispersal of Aβ-PrPC-cPLA2-COX-2-Fyn complexes and the cessation of signalling. This study identifies PAF as a key mediator regulating the cholesterol ester cycle, activation of cPLA2 and COX-2 within synapses, and synapse damage.
Collapse
Affiliation(s)
- Craig Osborne
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, UK AL9 7TA
| | - Ewan West
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, UK AL9 7TA
| | - Clive Bate
- Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, UK AL9 7TA
| |
Collapse
|
211
|
Vladimirov VI, Zernii EY, Baksheeva VE, Wimberg H, Kazakov AS, Tikhomirova NK, Nemashkalova EL, Mitkevich VA, Zamyatnin AA, Lipkin VM, Philippov PP, Permyakov SE, Senin II, Koch KW, Zinchenko DV. Photoreceptor calcium sensor proteins in detergent-resistant membrane rafts are regulated via binding to caveolin-1. Cell Calcium 2018; 73:55-69. [PMID: 29684785 DOI: 10.1016/j.ceca.2018.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/07/2018] [Accepted: 04/10/2018] [Indexed: 01/25/2023]
Abstract
Rod cell membranes contain cholesterol-rich detergent-resistant membrane (DRM) rafts, which accumulate visual cascade proteins as well as proteins involved in regulation of phototransduction such as rhodopsin kinase and guanylate cyclases. Caveolin-1 is the major integral component of DRMs, possessing scaffolding and regulatory activities towards various signaling proteins. In this study, photoreceptor Ca2+-binding proteins recoverin, NCS1, GCAP1, and GCAP2, belonging to neuronal calcium sensor (NCS) family, were recognized as novel caveolin-1 interacting partners. All four NCS proteins co-fractionate with caveolin-1 in DRMs, isolated from illuminated bovine rod outer segments. According to pull-down assay, surface plasmon resonance spectroscopy and isothermal titration calorimetry data, they are capable of high-affinity binding to either N-terminal fragment of caveolin-1 (1-101), or its short scaffolding domain (81-101) via a novel structural site. In recoverin this site is localized in C-terminal domain in proximity to the third EF-hand motif and composed of aromatic amino acids conserved among NCS proteins. Remarkably, the binding of NCS proteins to caveolin-1 occurs only in the absence of calcium, which is in agreement with higher accessibility of the caveolin-1 binding site in their Ca2+-free forms. Consistently, the presence of caveolin-1 produces no effect on regulatory activity of Ca2+-saturated recoverin or NCS1 towards rhodopsin kinase, but upregulates GCAP2, which potentiates guanylate cyclase activity being in Ca2+-free conformation. In addition, the interaction with caveolin-1 decreases cooperativity and augments affinity of Ca2 + binding to recoverin apparently by facilitating exposure of its myristoyl group. We suggest that at low calcium NCS proteins are compartmentalized in photoreceptor rafts via binding to caveolin-1, which may enhance their activity or ensure their faster responses on Ca2+-signals thereby maintaining efficient phototransduction recovery and light adaptation.
Collapse
Affiliation(s)
- Vasiliy I Vladimirov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Evgeni Yu Zernii
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.
| | - Viktoriia E Baksheeva
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Hanna Wimberg
- Department of Neurosciences, Biochemistry Group, University of Oldenburg, Oldenburg, 26111 Germany
| | - Alexey S Kazakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Natalya K Tikhomirova
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Ekaterina L Nemashkalova
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Vladimir A Mitkevich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Andrey A Zamyatnin
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia; Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Valery M Lipkin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Pavel P Philippov
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Sergei E Permyakov
- Protein Research Group, Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| | - Ivan I Senin
- Department of Cell Signaling, Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992 Russia
| | - Karl-W Koch
- Department of Neurosciences, Biochemistry Group, University of Oldenburg, Oldenburg, 26111 Germany
| | - Dmitry V Zinchenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Pushchino, Moscow Region, 142290 Russia
| |
Collapse
|
212
|
Mundy C, Yang E, Takano H, Billings PC, Pacifici M. Heparan sulfate antagonism alters bone morphogenetic protein signaling and receptor dynamics, suggesting a mechanism in hereditary multiple exostoses. J Biol Chem 2018; 293:7703-7716. [PMID: 29622677 DOI: 10.1074/jbc.ra117.000264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 03/23/2018] [Indexed: 11/06/2022] Open
Abstract
Hereditary multiple exostoses (HME) is a pediatric disorder caused by heparan sulfate (HS) deficiency and is characterized by growth plate-associated osteochondromas. Previously, we found that osteochondroma formation in mouse models is preceded by ectopic bone morphogenetic protein (BMP) signaling in the perichondrium, but the mechanistic relationships between BMP signaling and HS deficiency remain unclear. Therefore, we used an HS antagonist (surfen) to investigate the effects of this HS interference on BMP signaling, ligand availability, cell-surface BMP receptor (BMPR) dynamics, and BMPR interactions in Ad-293 and C3H/10T1/2 cells. As observed previously, the HS interference rapidly increased phosphorylated SMAD family member 1/5/8 levels. FACS analysis and immunoblots revealed that the cells possessed appreciable levels of endogenous cell-surface BMP2/4 that were unaffected by the HS antagonist, suggesting that BMP2/4 proteins remained surface-bound but became engaged in BMPR interactions and SMAD signaling. Indeed, surface mobility of SNAP-tagged BMPRII, measured by fluorescence recovery after photobleaching (FRAP), was modulated during the drug treatment. This suggested that the receptors had transitioned to lipid rafts acting as signaling centers, confirmed for BMPRII via ultracentrifugation to separate membrane subdomains. In situ proximity ligation assays disclosed that the HS interference rapidly stimulates BMPRI-BMPRII interactions, measured by oligonucleotide-driven amplification signals. Our in vitro studies reveal that cell-associated HS controls BMP ligand availability and BMPR dynamics, interactions, and signaling, and largely restrains these processes. We propose that HS deficiency in HME may lead to extensive local BMP signaling and altered BMPR dynamics, triggering excessive cellular responses and osteochondroma formation.
Collapse
Affiliation(s)
- Christina Mundy
- From the Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, and
| | - Evan Yang
- From the Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, and
| | - Hajime Takano
- the Department of Pediatrics, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104
| | - Paul C Billings
- From the Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, and
| | - Maurizio Pacifici
- From the Translational Research Program in Pediatric Orthopaedics, Division of Orthopaedic Surgery, and
| |
Collapse
|
213
|
Toledo A, Huang Z, Coleman JL, London E, Benach JL. Lipid rafts can form in the inner and outer membranes of Borrelia burgdorferi and have different properties and associated proteins. Mol Microbiol 2018; 108:63-76. [PMID: 29377398 PMCID: PMC5867248 DOI: 10.1111/mmi.13914] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/03/2018] [Accepted: 01/21/2018] [Indexed: 01/23/2023]
Abstract
Lipid rafts are microdomains present in the membrane of eukaryotic organisms and bacterial pathogens. They are characterized by having tightly packed lipids and a subset of specific proteins. Lipid rafts are associated with a variety of important biological processes including signaling and lateral sorting of proteins. To determine whether lipid rafts exist in the inner membrane of Borrelia burgdorferi, we separated the inner and outer membranes and analyzed the lipid constituents present in each membrane fraction. We found that both the inner and outer membranes have cholesterol and cholesterol glycolipids. Fluorescence anisotropy and FRET showed that lipids from both membranes can form rafts but have different abilities to do so. The analysis of the biochemically defined proteome of lipid rafts from the inner membrane revealed a diverse set of proteins, different from those associated with the outer membrane, with functions in protein trafficking, chemotaxis and signaling.
Collapse
Affiliation(s)
- Alvaro Toledo
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Zhen Huang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - James L. Coleman
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA
| | - Jorge L. Benach
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
214
|
Sonnino S, Chiricozzi E, Grassi S, Mauri L, Prioni S, Prinetti A. Gangliosides in Membrane Organization. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 156:83-120. [PMID: 29747825 DOI: 10.1016/bs.pmbts.2017.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Since the structure of GM1 was elucidated 55years ago, researchers have been attracted by the sialylated glycans of gangliosides. Gangliosides head groups, protruding toward the extracellular space, significantly contribute to the cell glycocalyx; and in certain cells, such as neurons, are major determinants of the features of the cell surface. Expression of glycosyltransferases involved in the de novo biosynthesis of gangliosides is tightly regulated along cell differentiation and activation, and is regarded as the main metabolic mechanism responsible for the acquisition of cell-specific ganglioside patterns. The resulting sialooligosaccharides are characterized by a high degree of geometrical complexity and by highly dynamic properties, which seem to be functional for complex interactions with other molecules sitting on the same cellular membrane (cis-interactions) or soluble molecules present in the extracellular environment, or molecules associated with the surface of other cells (trans-interactions). There is no doubt that the multifaceted biological functions of gangliosides are largely dependent on oligosaccharide-mediated molecular interactions. However, gangliosides are amphipathic membrane lipids, and their chemicophysical, aggregational, and, consequently, biological properties are dictated by the properties of the monomers as a whole, which are not merely dependent on the structures of their polar head groups. In this chapter, we would like to focus on the peculiar chemicophysical features of gangliosides (in particular, those of the nervous system), that represent an important driving force determining the organization and properties of cellular membranes, and to emphasize the causal connections between altered ganglioside-dependent membrane organization and relevant pathological conditions.
Collapse
|
215
|
Viennois E, Pujada A, Zen J, Merlin D. Function, Regulation, and Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory Bowel Disease. Compr Physiol 2018; 8:731-760. [PMID: 29687900 DOI: 10.1002/cphy.c170032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammalian members of the proton-coupled oligopeptide transporter family are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs and couple substrate translocation to the movement of H+ , with the transmembrane electrochemical proton gradient providing the driving force. Peptide transporters are responsible for the (re)absorption of dietary and/or bacterial di- and tripeptides in the intestine and kidney and maintaining homeostasis of neuropeptides in the brain. These proteins additionally contribute to absorption of a number of pharmacologically important compounds. In this overview article, we have provided updated information on the structure, function, expression, localization, and activities of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4), and PhT2 (SLC15A3). Peptide transporters, in particular, PepT1 are discussed as drug-delivery systems in addition to their implications in health and disease. Particular emphasis has been placed on the involvement of PepT1 in the physiopathology of the gastrointestinal tract, specifically, its role in inflammatory bowel diseases. © 2018 American Physiological Society. Compr Physiol 8:731-760, 2018.
Collapse
Affiliation(s)
- Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Adani Pujada
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jane Zen
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.,Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
216
|
Al-Rekabi Z, Contera S. Multifrequency AFM reveals lipid membrane mechanical properties and the effect of cholesterol in modulating viscoelasticity. Proc Natl Acad Sci U S A 2018; 115:2658-2663. [PMID: 29483271 PMCID: PMC5856542 DOI: 10.1073/pnas.1719065115] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The physical properties of lipid bilayers comprising the cell membrane occupy the current spotlight of membrane biology. Their traditional representation as a passive 2D fluid has gradually been abandoned in favor of a more complex picture: an anisotropic time-dependent viscoelastic biphasic material, capable of transmitting or attenuating mechanical forces that regulate biological processes. In establishing new models, quantitative experiments are necessary when attempting to develop suitable techniques for dynamic measurements. Here, we map both the elastic and viscous properties of the model system 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers using multifrequency atomic force microscopy (AFM), namely amplitude modulation-frequency modulation (AM-FM) AFM imaging in an aqueous environment. Furthermore, we investigate the effect of cholesterol (Chol) on the DPPC bilayer in concentrations from 0 to 60%. The AM-AFM quantitative maps demonstrate that at low Chol concentrations, the lipid bilayer displays a distinct phase separation and is elastic, whereas at higher Chol concentration, the bilayer appears homogenous and exhibits both elastic and viscous properties. At low-Chol contents, the Estorage modulus (elastic) dominates. As the Chol insertions increases, higher energy is dissipated; and although the bilayer stiffens (increase in Estorage), the viscous component dominates (Eloss). Our results provide evidence that the lipid bilayer exhibits both elastic and viscous properties that are modulated by the presence of Chol, which may affect the propagation (elastic) or attenuation (viscous) of mechanical signals across the cell membrane.
Collapse
Affiliation(s)
- Zeinab Al-Rekabi
- Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU Oxford, United Kingdom
| | - Sonia Contera
- Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU Oxford, United Kingdom
| |
Collapse
|
217
|
Cholesterol ester hydrolase inhibitors reduce the production of synaptotoxic amyloid-β oligomers. Biochim Biophys Acta Mol Basis Dis 2018; 1864:649-659. [DOI: 10.1016/j.bbadis.2017.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 11/17/2017] [Accepted: 12/11/2017] [Indexed: 11/20/2022]
|
218
|
Bhojoo U, Chen M, Zou S. Temperature induced lipid membrane restructuring and changes in nanomechanics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:700-709. [DOI: 10.1016/j.bbamem.2017.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/17/2017] [Accepted: 12/08/2017] [Indexed: 11/26/2022]
|
219
|
Kathuria R, Chattopadhyay K. Vibrio choleraecytolysin: Multiple facets of the membrane interaction mechanism of aβ-barrel pore-forming toxin. IUBMB Life 2018; 70:260-266. [DOI: 10.1002/iub.1725] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Reema Kathuria
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences; Indian Institute of Science Education and Research Mohali; Manauli, Mohali Punjab India
| | - Kausik Chattopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences; Indian Institute of Science Education and Research Mohali; Manauli, Mohali Punjab India
| |
Collapse
|
220
|
Howie J, Wypijewski KJ, Plain F, Tulloch LB, Fraser NJ, Fuller W. Greasing the wheels or a spanner in the works? Regulation of the cardiac sodium pump by palmitoylation. Crit Rev Biochem Mol Biol 2018; 53:175-191. [PMID: 29424237 DOI: 10.1080/10409238.2018.1432560] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The ubiquitous sodium/potassium ATPase (Na pump) is the most abundant primary active transporter at the cell surface of multiple cell types, including ventricular myocytes in the heart. The activity of the Na pump establishes transmembrane ion gradients that control numerous events at the cell surface, positioning it as a key regulator of the contractile and metabolic state of the myocardium. Defects in Na pump activity and regulation elevate intracellular Na in cardiac muscle, playing a causal role in the development of cardiac hypertrophy, diastolic dysfunction, arrhythmias and heart failure. Palmitoylation is the reversible conjugation of the fatty acid palmitate to specific protein cysteine residues; all subunits of the cardiac Na pump are palmitoylated. Palmitoylation of the pump's accessory subunit phospholemman (PLM) by the cell surface palmitoyl acyl transferase DHHC5 leads to pump inhibition, possibly by altering the relationship between the pump catalytic α subunit and specifically bound membrane lipids. In this review, we discuss the functional impact of PLM palmitoylation on the cardiac Na pump and the molecular basis of recognition of PLM by its palmitoylating enzyme DHHC5, as well as effects of palmitoylation on Na pump cell surface abundance in the cardiac muscle. We also highlight the numerous unanswered questions regarding the cellular control of this fundamentally important regulatory process.
Collapse
Affiliation(s)
- Jacqueline Howie
- a Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| | | | - Fiona Plain
- b Molecular and Clinical Medicine , University of Dundee , Dundee , UK
| | - Lindsay B Tulloch
- b Molecular and Clinical Medicine , University of Dundee , Dundee , UK
| | - Niall J Fraser
- b Molecular and Clinical Medicine , University of Dundee , Dundee , UK
| | - William Fuller
- a Institute of Cardiovascular and Medical Sciences , University of Glasgow , Glasgow , UK
| |
Collapse
|
221
|
Wang K, Yu C, Liu Y, Zhang W, Sun Y, Chen Y. Enhanced Antiatherosclerotic Efficacy of Statin-Loaded Reconstituted High-Density Lipoprotein via Ganglioside GM1 Modification. ACS Biomater Sci Eng 2018; 4:952-962. [DOI: 10.1021/acsbiomaterials.7b00871] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
222
|
Chotiwan N, Andre BG, Sanchez-Vargas I, Islam MN, Grabowski JM, Hopf-Jannasch A, Gough E, Nakayasu E, Blair CD, Belisle JT, Hill CA, Kuhn RJ, Perera R. Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes. PLoS Pathog 2018; 14:e1006853. [PMID: 29447265 PMCID: PMC5814098 DOI: 10.1371/journal.ppat.1006853] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/04/2018] [Indexed: 01/01/2023] Open
Abstract
We describe the first comprehensive analysis of the midgut metabolome of Aedes aegypti, the primary mosquito vector for arboviruses such as dengue, Zika, chikungunya and yellow fever viruses. Transmission of these viruses depends on their ability to infect, replicate and disseminate from several tissues in the mosquito vector. The metabolic environments within these tissues play crucial roles in these processes. Since these viruses are enveloped, viral replication, assembly and release occur on cellular membranes primed through the manipulation of host metabolism. Interference with this virus infection-induced metabolic environment is detrimental to viral replication in human and mosquito cell culture models. Here we present the first insight into the metabolic environment induced during arbovirus replication in Aedes aegypti. Using high-resolution mass spectrometry, we have analyzed the temporal metabolic perturbations that occur following dengue virus infection of the midgut tissue. This is the primary site of infection and replication, preceding systemic viral dissemination and transmission. We identified metabolites that exhibited a dynamic-profile across early-, mid- and late-infection time points. We observed a marked increase in the lipid content. An increase in glycerophospholipids, sphingolipids and fatty acyls was coincident with the kinetics of viral replication. Elevation of glycerolipid levels suggested a diversion of resources during infection from energy storage to synthetic pathways. Elevated levels of acyl-carnitines were observed, signaling disruptions in mitochondrial function and possible diversion of energy production. A central hub in the sphingolipid pathway that influenced dihydroceramide to ceramide ratios was identified as critical for the virus life cycle. This study also resulted in the first reconstruction of the sphingolipid pathway in Aedes aegypti. Given conservation in the replication mechanisms of several flaviviruses transmitted by this vector, our results highlight biochemical choke points that could be targeted to disrupt transmission of multiple pathogens by these mosquitoes.
Collapse
Affiliation(s)
- Nunya Chotiwan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Barbara G. Andre
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Irma Sanchez-Vargas
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - M. Nurul Islam
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey M. Grabowski
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Entomology Department Purdue University, West Lafayette, Indiana, United States of America
| | - Amber Hopf-Jannasch
- Metabolite Profiling Facility (MPF), Bindley Bioscience Center, Purdue University, W. Lafayette, Indiana, United States of America
| | - Erik Gough
- Computational Life Sciences Core, Bindley Bioscience Center, Purdue University, W. Lafayette, Indiana, United States of America
| | - Ernesto Nakayasu
- Metabolite Profiling Facility (MPF), Bindley Bioscience Center, Purdue University, W. Lafayette, Indiana, United States of America
| | - Carol D. Blair
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - John T. Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Catherine A. Hill
- Entomology Department Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, United States of America
| | - Richard J. Kuhn
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, United States of America
| | - Rushika Perera
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
223
|
Mina JGM, Denny PW. Everybody needs sphingolipids, right! Mining for new drug targets in protozoan sphingolipid biosynthesis. Parasitology 2018; 145:134-147. [PMID: 28637533 PMCID: PMC5964470 DOI: 10.1017/s0031182017001081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/18/2022]
Abstract
Sphingolipids (SLs) are an integral part of all eukaryotic cellular membranes. In addition, they have indispensable functions as signalling molecules controlling a myriad of cellular events. Disruption of either the de novo synthesis or the degradation pathways has been shown to have detrimental effects. The earlier identification of selective inhibitors of fungal SL biosynthesis promised potent broad-spectrum anti-fungal agents, which later encouraged testing some of those agents against protozoan parasites. In this review we focus on the key enzymes of the SL de novo biosynthetic pathway in protozoan parasites of the Apicomplexa and Kinetoplastidae, outlining the divergence and interconnection between host and pathogen metabolism. The druggability of the SL biosynthesis is considered, alongside recent technology advances that will enable the dissection and analyses of this pathway in the parasitic protozoa. The future impact of these advances for the development of new therapeutics for both globally threatening and neglected infectious diseases is potentially profound.
Collapse
Affiliation(s)
- John G M Mina
- Department of Biosciences,Lower Mountjoy,Stockton Road,Durham DH1 3LE,UK
| | - P W Denny
- Department of Biosciences,Lower Mountjoy,Stockton Road,Durham DH1 3LE,UK
| |
Collapse
|
224
|
Tracey TJ, Steyn FJ, Wolvetang EJ, Ngo ST. Neuronal Lipid Metabolism: Multiple Pathways Driving Functional Outcomes in Health and Disease. Front Mol Neurosci 2018; 11:10. [PMID: 29410613 PMCID: PMC5787076 DOI: 10.3389/fnmol.2018.00010] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/08/2018] [Indexed: 12/12/2022] Open
Abstract
Lipids are a fundamental class of organic molecules implicated in a wide range of biological processes related to their structural diversity, and based on this can be broadly classified into five categories; fatty acids, triacylglycerols (TAGs), phospholipids, sterol lipids and sphingolipids. Different lipid classes play major roles in neuronal cell populations; they can be used as energy substrates, act as building blocks for cellular structural machinery, serve as bioactive molecules, or a combination of each. In amyotrophic lateral sclerosis (ALS), dysfunctions in lipid metabolism and function have been identified as potential drivers of pathogenesis. In particular, aberrant lipid metabolism is proposed to underlie denervation of neuromuscular junctions, mitochondrial dysfunction, excitotoxicity, impaired neuronal transport, cytoskeletal defects, inflammation and reduced neurotransmitter release. Here we review current knowledge of the roles of lipid metabolism and function in the CNS and discuss how modulating these pathways may offer novel therapeutic options for treating ALS.
Collapse
Affiliation(s)
- Timothy J Tracey
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Frederik J Steyn
- Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| | - Ernst J Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Shyuan T Ngo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia.,Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
225
|
Cormier N, McGlone JJ, Leszyk J, Hardy DM. Immunocontraceptive target repertoire defined by systematic identification of sperm membrane alloantigens in a single species. PLoS One 2018; 13:e0190891. [PMID: 29342175 PMCID: PMC5771590 DOI: 10.1371/journal.pone.0190891] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022] Open
Abstract
Sperm competence in animal fertilization requires the collective activities of numerous sperm-specific proteins that are typically alloimmunogenic in females. Consequently, sperm membrane alloantigens are potential targets for contraceptives that act by blocking the proteins' functions in gamete interactions. Here we used a targeted proteomics approach to identify the major alloantigens in swine sperm membranes and lipid rafts, and thereby systematically defined the repertoire of these sperm-specific proteins in a single species. Gilts with high alloantibody reactivity to proteins in sperm membranes or lipid rafts produced fewer offspring (73% decrease) than adjuvant-only or nonimmune control animals. Alloantisera recognized more than 20 potentially unique sperm membrane proteins and five sperm lipid raft proteins resolved on two-dimensional immunoblots with or without prior enrichment by anion exchange chromatography. Dominant sperm membrane alloantigens identified by mass spectrometry included the ADAMs fertilin α, fertilin ß, and cyritestin. Less abundant alloantigens included ATP synthase F1 β subunit, myo-inositol monophosphatase-1, and zymogen granule membrane glycoprotein-2. Immunodominant sperm lipid raft alloantigens included SAMP14, lymphocyte antigen 6K, and the epididymal sperm protein E12. Of the fifteen unique membrane alloantigens identified, eleven were known sperm-specific proteins with uncertain functions in fertilization, and four were not previously suspected to exist as sperm-specific isoforms. De novo sequences of tryptic peptides from sperm membrane alloantigen "M6" displayed no evident homology to known proteins, so is a newly discovered sperm-specific gene product in swine. We conclude that alloimmunizing gilts with sperm membranes or lipid rafts evokes formation of antibodies to a relatively small number of dominant alloantigens that include known and novel sperm-specific proteins with possible functions in fertilization and potential utility as targets for immunocontraception.
Collapse
Affiliation(s)
- Nathaly Cormier
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - John J. McGlone
- Department of Animal and Food Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - John Leszyk
- Proteomic and Mass Spectrometry Facility and Department of Biochemistry & Pharmacology, University of Massachusetts Medical School, Shrewsbury, Massachusetts, United States of America
| | - Daniel M. Hardy
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
226
|
Shishina AK, Kovrigina EA, Galiakhmetov AR, Rathore R, Kovrigin EL. Study of Förster Resonance Energy Transfer to Lipid Domain Markers Ascertains Partitioning of Semisynthetic Lipidated N-Ras in Lipid Raft Nanodomains. Biochemistry 2018; 57:872-881. [PMID: 29280621 DOI: 10.1021/acs.biochem.7b01181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cellular membranes are heterogeneous planar lipid bilayers displaying lateral phase separation with the nanometer-scale liquid-ordered phase (also known as "lipid rafts") surrounded by the liquid-disordered phase. Many membrane-associated proteins were found to permanently integrate into the lipid rafts, which is critical for their biological function. Isoforms H and N of Ras GTPase possess a unique ability to switch their lipid domain preference depending on the type of bound guanine nucleotide (GDP or GTP). This behavior, however, has never been demonstrated in vitro in model bilayers with recombinant proteins and therefore has been attributed to the action of binding of Ras to other proteins at the membrane surface. In this paper, we report the observation of the nucleotide-dependent switch of lipid domain preferences of the semisynthetic lipidated N-Ras in lipid raft vesicles in the absence of additional proteins. To detect segregation of Ras molecules in raft and disordered lipid domains, we measured Förster resonance energy transfer between the donor fluorophore, mant, attached to the protein-bound guanine nucleotides, and the acceptor, rhodamine-conjugated lipid, localized into the liquid-disordered domains. Herein, we established that N-Ras preferentially populated raft domains when bound to mant-GDP, while losing its preference for rafts when it was associated with a GTP mimic, mant-GppNHp. At the same time, the isolated lipidated C-terminal peptide of N-Ras was found to be localized outside of the liquid-ordered rafts, most likely in the bulk-disordered lipid. Substitution of the N-terminal G domain of N-Ras with a homologous G domain of H-Ras disrupted the nucleotide-dependent lipid domain switch.
Collapse
Affiliation(s)
- Anna K Shishina
- Chemistry Department, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Elizaveta A Kovrigina
- Chemistry Department, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Azamat R Galiakhmetov
- Chemistry Department, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Rajendra Rathore
- Chemistry Department, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Evgenii L Kovrigin
- Chemistry Department, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
227
|
Ichikawa S, Shimokawa N, Takagi M, Kitayama Y, Takeuchi T. Size-dependent uptake of electrically neutral amphipathic polymeric nanoparticles by cell-sized liposomes and an insight into their internalization mechanism in living cells. Chem Commun (Camb) 2018; 54:4557-4560. [DOI: 10.1039/c8cc00977e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The size-dependent uptake of amphipathic uncharged-nanoparticles in cell-sized liposomes is emerging as a new insight into their internalization mechanism in living cells.
Collapse
Affiliation(s)
- S. Ichikawa
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - N. Shimokawa
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Ishikawa 923-1292
- Japan
| | - M. Takagi
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Ishikawa 923-1292
- Japan
| | - Y. Kitayama
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - T. Takeuchi
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
- Medical Device Fabrication Engineering Center
| |
Collapse
|
228
|
Kocyła A, Adamczyk J, Krężel A. Interdependence of free zinc changes and protein complex assembly – insights into zinc signal regulation. Metallomics 2018; 10:120-131. [DOI: 10.1039/c7mt00301c] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Small and local changes in cellular free zinc concentration affect protein assembly.
Collapse
Affiliation(s)
- Anna Kocyła
- Department of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Justyna Adamczyk
- Department of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Artur Krężel
- Department of Chemical Biology
- Faculty of Biotechnology
- University of Wrocław
- 50-383 Wrocław
- Poland
| |
Collapse
|
229
|
OKAMOTO Y. Development of Separation Sciences Utilizing the Specific Properties of Microscopic Separation Fields. CHROMATOGRAPHY 2018. [DOI: 10.15583/jpchrom.2018.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yukihiro OKAMOTO
- Division of Chemical Engineering, Graduated School of Engineering Science, Osaka University
| |
Collapse
|
230
|
Zhang W, Yu CYY, Kwok RTK, Lam JWY, Tang BZ. A photostable AIE luminogen with near infrared emission for monitoring morphological change of plasma membrane. J Mater Chem B 2018; 6:1501-1507. [DOI: 10.1039/c7tb02947k] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The morphological changes of plasma membrane can be long-term monitored by an AIEgen with high photostability.
Collapse
Affiliation(s)
- Weijie Zhang
- Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction
- Department of Chemistry
- Institute for Advanced Study and Division of Life Science
- The Hong Kong University of Science and Technology
- Clear Water Bay
| | - Chris Y. Y. Yu
- Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction
- Department of Chemistry
- Institute for Advanced Study and Division of Life Science
- The Hong Kong University of Science and Technology
- Clear Water Bay
| | - Ryan T. K. Kwok
- Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction
- Department of Chemistry
- Institute for Advanced Study and Division of Life Science
- The Hong Kong University of Science and Technology
- Clear Water Bay
| | - Jacky W. Y. Lam
- Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction
- Department of Chemistry
- Institute for Advanced Study and Division of Life Science
- The Hong Kong University of Science and Technology
- Clear Water Bay
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction
- Department of Chemistry
- Institute for Advanced Study and Division of Life Science
- The Hong Kong University of Science and Technology
- Clear Water Bay
| |
Collapse
|
231
|
Chirality-Dependent Interaction of d- and l-Menthol with Biomembrane Models. MEMBRANES 2017; 7:membranes7040069. [PMID: 29244740 PMCID: PMC5746828 DOI: 10.3390/membranes7040069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 01/19/2023]
Abstract
Chirality plays a vital role in biological membranes and has a significant effect depending on the type and arrangement of the isomer. Menthol has two typical chiral forms, d- and l-, which exhibit different behaviours. l-Menthol is known for its physiological effect on sensitivity (i.e. a cooling effect), whereas d-menthol causes skin irritation. Menthol molecules may affect not only the thermoreceptors on biomembranes, but also the membrane itself. Membrane heterogeneity (lipid rafts, phase separation) depends on lipid packing and acyl chain ordering. Our interest is to elaborate the chirality dependence of d- and l-menthol on membrane heterogeneity. We revealed physical differences between the two optical isomers of menthol on membrane heterogeneity by studying model membranes using nuclear magnetic resonance and microscopic observation.
Collapse
|
232
|
Bate C, Nolan W, Williams A. Does the tail wag the dog? How the structure of a glycosylphosphatidylinositol anchor affects prion formation. Prion 2017; 10:127-30. [PMID: 26901126 DOI: 10.1080/19336896.2016.1148237] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
There is increasing interest in the role of the glycosylphosphatidylinositol (GPI) anchor attached to the cellular prion protein (PrP(C)). Since GPI anchors can alter protein targeting, trafficking and cell signaling, our recent study examined how the structure of the GPI anchor affected prion formation. PrP(C) containing a GPI anchor from which the sialic acid had been removed (desialylated PrP(C)) was not converted to PrP(Sc) in prion-infected neuronal cell lines and in scrapie-infected primary cortical neurons. In uninfected neurons desialylated PrP(C) was associated with greater concentrations of gangliosides and cholesterol than PrP(C). In addition, the targeting of desialylated PrP(C) to lipid rafts showed greater resistance to cholesterol depletion than PrP(C). The presence of desialylated PrP(C) caused the dissociation of cytoplasmic phospholipase A2 (cPLA2) from PrP-containing lipid rafts, reduced the activation of cPLA2 and inhibited PrP(Sc) production. We conclude that the sialic acid moiety of the GPI attached to PrP(C) modifies local membrane microenvironments that are important in PrP-mediated cell signaling and PrP(Sc) formation.
Collapse
Affiliation(s)
- Clive Bate
- a Department of Pathology and Pathogen Biology , Royal Veterinary College , North Mymms, Herts , UK
| | - William Nolan
- a Department of Pathology and Pathogen Biology , Royal Veterinary College , North Mymms, Herts , UK
| | - Alun Williams
- b Department of Veterinary Medicine , University of Cambridge , Cambridge , UK
| |
Collapse
|
233
|
Regmi R, Winkler PM, Flauraud V, Borgman KJE, Manzo C, Brugger J, Rigneault H, Wenger J, García-Parajo MF. Planar Optical Nanoantennas Resolve Cholesterol-Dependent Nanoscale Heterogeneities in the Plasma Membrane of Living Cells. NANO LETTERS 2017; 17:6295-6302. [PMID: 28926278 DOI: 10.1021/acs.nanolett.7b02973] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Optical nanoantennas can efficiently confine light into nanoscopic hotspots, enabling single-molecule detection sensitivity at biological relevant conditions. This innovative approach to breach the diffraction limit offers a versatile platform to investigate the dynamics of individual biomolecules in living cell membranes and their partitioning into cholesterol-dependent lipid nanodomains. Here, we present optical nanoantenna arrays with accessible surface hotspots to study the characteristic diffusion dynamics of phosphoethanolamine (PE) and sphingomyelin (SM) in the plasma membrane of living cells at the nanoscale. Fluorescence burst analysis and fluorescence correlation spectroscopy performed on nanoantennas of different gap sizes show that, unlike PE, SM is transiently trapped in cholesterol-enriched nanodomains of 10 nm diameter with short characteristic times around 100 μs. The removal of cholesterol led to the free diffusion of SM, consistent with the dispersion of nanodomains. Our results are consistent with the existence of highly transient and fluctuating nanoscale assemblies enriched by cholesterol and sphingolipids in living cell membranes, also known as lipid rafts. Quantitative data on sphingolipids partitioning into lipid rafts is crucial to understand the spatiotemporal heterogeneous organization of transient molecular complexes on the membrane of living cells at the nanoscale. The proposed technique is fully biocompatible and thus provides various opportunities for biophysics and live cell research to reveal details that remain hidden in confocal diffraction-limited measurements.
Collapse
Affiliation(s)
- Raju Regmi
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Barcelona, Spain
- Aix Marseille Univ , CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Pamina M Winkler
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Barcelona, Spain
| | - Valentin Flauraud
- Microsystems Laboratory, Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Kyra J E Borgman
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Barcelona, Spain
| | - Carlo Manzo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Barcelona, Spain
| | - Jürgen Brugger
- Microsystems Laboratory, Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Hervé Rigneault
- Aix Marseille Univ , CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - Jérôme Wenger
- Aix Marseille Univ , CNRS, Centrale Marseille, Institut Fresnel, Marseille, France
| | - María F García-Parajo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Barcelona, Spain
- ICREA , Pg. Lluı́s Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
234
|
Cholesterol metabolism and glaucoma: Modulation of Muller cell membrane organization by 24S-hydroxycholesterol. Chem Phys Lipids 2017; 207:179-191. [DOI: 10.1016/j.chemphyslip.2017.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/19/2017] [Accepted: 05/23/2017] [Indexed: 02/04/2023]
|
235
|
Smrt ST, Draney AW, Singaram I, Lorieau JL. Structure and Dynamics of Membrane Proteins and Membrane Associated Proteins with Native Bicelles from Eukaryotic Tissues. Biochemistry 2017; 56:5318-5327. [PMID: 28915027 DOI: 10.1021/acs.biochem.7b00575] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sean T. Smrt
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Adrian W. Draney
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Indira Singaram
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| | - Justin L. Lorieau
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States
| |
Collapse
|
236
|
Molugu TR, Lee S, Brown MF. Concepts and Methods of Solid-State NMR Spectroscopy Applied to Biomembranes. Chem Rev 2017; 117:12087-12132. [PMID: 28906107 DOI: 10.1021/acs.chemrev.6b00619] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Concepts of solid-state NMR spectroscopy and applications to fluid membranes are reviewed in this paper. Membrane lipids with 2H-labeled acyl chains or polar head groups are studied using 2H NMR to yield knowledge of their atomistic structures in relation to equilibrium properties. This review demonstrates the principles and applications of solid-state NMR by unifying dipolar and quadrupolar interactions and highlights the unique features offered by solid-state 2H NMR with experimental illustrations. For randomly oriented multilamellar lipids or aligned membranes, solid-state 2H NMR enables direct measurement of residual quadrupolar couplings (RQCs) due to individual C-2H-labeled segments. The distribution of RQC values gives nearly complete profiles of the segmental order parameters SCD(i) as a function of acyl segment position (i). Alternatively, one can measure residual dipolar couplings (RDCs) for natural abundance lipid samples to obtain segmental SCH order parameters. A theoretical mean-torque model provides acyl-packing profiles representing the cumulative chain extension along the normal to the aqueous interface. Equilibrium structural properties of fluid bilayers and various thermodynamic quantities can then be calculated, which describe the interactions with cholesterol, detergents, peptides, and integral membrane proteins and formation of lipid rafts. One can also obtain direct information for membrane-bound peptides or proteins by measuring RDCs using magic-angle spinning (MAS) in combination with dipolar recoupling methods. Solid-state NMR methods have been extensively applied to characterize model membranes and membrane-bound peptides and proteins, giving unique information on their conformations, orientations, and interactions in the natural liquid-crystalline state.
Collapse
Affiliation(s)
- Trivikram R Molugu
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Soohyun Lee
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| | - Michael F Brown
- Department of Chemistry & Biochemistry and ‡Department of Physics, University of Arizona , Tucson, Arizona 85721, United States
| |
Collapse
|
237
|
Russo G, Witos J, Rantamäki AH, Wiedmer SK. Cholesterol affects the interaction between an ionic liquid and phospholipid vesicles. A study by differential scanning calorimetry and nanoplasmonic sensing. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2361-2372. [PMID: 28912102 DOI: 10.1016/j.bbamem.2017.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/01/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
Abstract
The present work aims at studying the interactions between cholesterol-rich phosphatidylcholine-based lipid vesicles and trioctylmethylphosphonium acetate ([P8881][OAc]), a biomass dissolving ionic liquid (IL). The effect of cholesterol was assayed by using differential scanning calorimetry (DSC) and nanoplasmonic sensing (NPS) measurement techniques. Cholesterol-enriched dipalmitoyl-phosphatidylcholine vesicles were exposed to different concentrations of the IL, and the derived membrane perturbation was monitored by DSC. The calorimetric data could suggest that the binding and infiltration of the IL are delayed in the vesicles containing cholesterol. To clarify our findings, NPS was applied to quantitatively follow the resistance of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine incorporating 0, 10, and 50mol% of cholesterol toward the IL exposure over time. The membrane perturbation induced by different concentrations of IL was found to be a concentration dependent process on cholesterol-free lipid vesicles. Moreover, our results showed that lipid depletion in cholesterol-enriched lipid vesicles is inversely proportional to the increasing amount of cholesterol in the vesicles. These findings support that cholesterol-rich lipid bilayers are less susceptible toward membrane disrupting agents as compared to membranes that do not incorporate any sterols. This probably occurs because cholesterol tightens the phospholipid acyl chain packing of the plasma membranes, increasing their resistance and reducing their permeability.
Collapse
Affiliation(s)
- Giacomo Russo
- Department of Chemistry, P. O. Box 55, FIN-00014, University of Helsinki, Helsinki, Finland.
| | - Joanna Witos
- Department of Chemistry, P. O. Box 55, FIN-00014, University of Helsinki, Helsinki, Finland.
| | - Antti H Rantamäki
- Department of Chemistry, P. O. Box 55, FIN-00014, University of Helsinki, Helsinki, Finland.
| | - Susanne K Wiedmer
- Department of Chemistry, P. O. Box 55, FIN-00014, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
238
|
The Actin Cytoskeleton Is Involved in Glial Cell Line-Derived Neurotrophic Factor (GDNF)-Induced Ret Translocation into Lipid Rafts in Dopaminergic Neuronal Cells. Int J Mol Sci 2017; 18:ijms18091922. [PMID: 28880247 PMCID: PMC5618571 DOI: 10.3390/ijms18091922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/25/2017] [Accepted: 09/05/2017] [Indexed: 01/04/2023] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF), a potential therapeutic factor for Parkinson’s disease (PD), exerts its biological effects through the Ret receptor tyrosine kinase. The redistribution of Ret into lipid rafts substantially influences Ret signaling, but the mechanisms underlying Ret translocation remain unclear. The purpose of our study was to further explore the signaling mechanisms of GDNF and to determine whether the actin cytoskeleton is involved in the GDNF-induced Ret translocation into lipid rafts. In MN9D dopaminergic neuronal cells, we used density gradient centrifugation and immunofluorescence confocal microscopy to separate and visualize lipid rafts, co-immunoprecipitation to analyze protein-protein interactions, and latrunculin B (Lat B) and jasplakinolide (Jas) to disrupt and enhance the polymerization of the actin cytoskeleton, respectively. The results showed that Ret translocated into lipid rafts and coimmunoprecipitated with actin in response to GDNF treatment. After Lat B or Jas treatment, the Ret–F-actin association induced by GDNF was impaired or enhanced respectively and then the levels of Ret translocated into lipid rafts were correspondingly inhibited or promoted. These data indicate that actin polymerization and cytoskeletal remodeling are integral to GDNF-induced cell signaling in dopaminergic cells and define a new role of the actin cytoskeleton in promoting Ret redistribution into lipid rafts.
Collapse
|
239
|
Wong YLE, Chen X, Wu R, Hung YLW, Chan TWD. Structural Characterization of Intact Glycoconjugates by Tandem Mass Spectrometry Using Electron-Induced Dissociation. Anal Chem 2017; 89:10111-10117. [PMID: 28838234 DOI: 10.1021/acs.analchem.7b03128] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Characterizing the structures of glycoconjungates is important because of glycan heterogeneity and structural complexity of aglycon. The presence of relatively weak glycosidic linkages leads to preferential cleavages that limit the acquisition of structural information under typical mass spectrometry dissociation conditions, such as collision-induced dissociation (CID) and infrared multiphoton dissociation. In this paper, we explored the dissociation behaviors of different members of glycoconjugates, including glycopeptides, glycoalkaloids, and glycolipids, under electron-induced dissociation (EID) conditions. Using CID spectra as references, we found that EID is not only a complementary method to CID, but also a method that can generate extensive fragment ions for the structural characterization of all intact glycoconjugates studied. Furthermore, isomeric ganglioside species can be differentiated, and the double bond location in the ceramide moiety of the gangliosides can be identified through the MS3 approach involving sequential CID and EID processes.
Collapse
Affiliation(s)
- Y L Elaine Wong
- Department of Chemistry, The Chinese University of Hong Kong , Hong Kong SAR, People's Republic of China
| | - Xiangfeng Chen
- Department of Chemistry, The Chinese University of Hong Kong , Hong Kong SAR, People's Republic of China.,Shandong Analysis and Test Centre, Shandong Academy of Sciences, Qilu University of Technology , Jinan, Shandong, People's Republic of China
| | - Ri Wu
- Department of Chemistry, The Chinese University of Hong Kong , Hong Kong SAR, People's Republic of China
| | - Y L Winnie Hung
- Department of Chemistry, The Chinese University of Hong Kong , Hong Kong SAR, People's Republic of China
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong , Hong Kong SAR, People's Republic of China
| |
Collapse
|
240
|
Presence of Androgen Receptor Variant in Neuronal Lipid Rafts. eNeuro 2017; 4:eN-NWR-0109-17. [PMID: 28856243 PMCID: PMC5575139 DOI: 10.1523/eneuro.0109-17.2017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 11/21/2022] Open
Abstract
Fast, nongenomic androgen actions have been described in various cell types, including neurons. However, the receptor mediating this cell membrane–initiated rapid signaling remains unknown. This study found a putative androgen receptor splice variant in a dopaminergic N27 cell line and in several brain regions (substantia nigra pars compacta, entorhinal cortex, and hippocampus) from gonadally intact and gonadectomized (young and middle-aged) male rats. This putative splice variant protein has a molecular weight of 45 kDa and lacks an N-terminal domain, indicating it is homologous to the human AR45 splice variant. Interestingly, AR45 was highly expressed in all brain regions examined. In dopaminergic neurons, AR45 is localized to plasma membrane lipid rafts, a microdomain involved in cellular signaling. Further, AR45 protein interacts with membrane-associated G proteins Gαq and Gαo. Neither age nor hormone levels altered AR45 expression in dopaminergic neurons. These results provide the first evidence of AR45 protein expression in the brain, specifically plasma membrane lipid rafts. AR45 presence in lipid rafts indicates that it may function as a membrane androgen receptor to mediate fast, nongenomic androgen actions.
Collapse
|
241
|
Feeding-fasting dependent recruitment of membrane microdomain proteins to lipid droplets purified from the liver. PLoS One 2017; 12:e0183022. [PMID: 28800633 PMCID: PMC5553754 DOI: 10.1371/journal.pone.0183022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/30/2017] [Indexed: 01/23/2023] Open
Abstract
Lipid droplets (LDs) are cellular stores of neutral fat that facilitate lipid and protein trafficking in response to metabolic cues. Unlike other vesicles, the phospholipid membrane on the LD is a monolayer. Interestingly, this monolayer membrane has free cholesterol, and may therefore contain lipid microdomains that serve as a platform for assembling proteins involved in signal transduction, cell polarity, pathogen entry etc. In support of this, cell culture studies have detected microdomain-associated "raftophilic" proteins on LDs. However, the physiological significance of this observation has been unclear. Here we show that two proteins (Flotillin-1 and SNAP23) that bind to membrane microdomains associate differently with LDs purified from rat liver depending on the feeding/fasting state of the animal. Flotillin-1 increases on LDs in the fed state, possibly because LDs interact with the endoplasmic reticulum (ER), facilitating supply of flotillin-1 from ER to LDs. Interestingly, this increase in flotillin-1 is correlated with an increase in free cholesterol on the LDs in fed state. In opposite behaviour to flotillin-1, SNAP23 increases on LDs in the fasted state and this appears to mediate LD-mitochondria interactions. Such LD-mitochondria interactions may provide fatty acids to mitochondria for promoting beta-oxidation in hepatocytes in response to fasting. Our work brings out physiologically relevant aspects of lipid droplet biology that are different from, and may not be entirely possible to replicate and study in cell culture.
Collapse
|
242
|
Huang FC. The Role of Sphingolipids on Innate Immunity to Intestinal Salmonella Infection. Int J Mol Sci 2017; 18:1720. [PMID: 28783107 PMCID: PMC5578110 DOI: 10.3390/ijms18081720] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 02/06/2023] Open
Abstract
Salmonella spp. remains a major public health problem for the whole world. To reduce the use of antimicrobial agents and drug-resistant Salmonella, a better strategy is to explore alternative therapy rather than to discover another antibiotic. Sphingolipid- and cholesterol-enriched lipid microdomains attract signaling proteins and orchestrate them toward cell signaling and membrane trafficking pathways. Recent studies have highlighted the crucial role of sphingolipids in the innate immunity against infecting pathogens. It is therefore mandatory to exploit the role of the membrane sphingolipids in the innate immunity of intestinal epithelia infected by this pathogen. In the present review, we focus on the role of sphingolipids in the innate immunity of intestinal epithelia against Salmonella infection, including adhesion, autophagy, bactericidal effect, barrier function, membrane trafficking, cytokine and antimicrobial peptide expression. The intervention of sphingolipid-enhanced foods to make our life healthy or pharmacological agents regulating sphingolipids is provided at the end.
Collapse
Affiliation(s)
- Fu-Chen Huang
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan.
| |
Collapse
|
243
|
Bajimaya S, Frankl T, Hayashi T, Takimoto T. Cholesterol is required for stability and infectivity of influenza A and respiratory syncytial viruses. Virology 2017; 510:234-241. [PMID: 28750327 DOI: 10.1016/j.virol.2017.07.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/12/2017] [Accepted: 07/19/2017] [Indexed: 01/12/2023]
Abstract
Cholesterol-rich lipid raft microdomains in the plasma membrane are considered to play a major role in the enveloped virus lifecycle. However, the functional role of cholesterol in assembly, infectivity and stability of respiratory RNA viruses is not fully understood. We previously reported that depletion of cellular cholesterol by cholesterol-reducing agents decreased production of human parainfluenza virus type 1 (hPIV1) particles by inhibiting virus assembly. In this study, we analyzed the role of cholesterol on influenza A virus (IAV) and respiratory syncytial virus (RSV) production. Unlike hPIV1, treatment of human airway cells with the agents did not decrease virus particle production. However, the released virions were less homogeneous in density and unstable. Addition of exogenous cholesterol to the released virions restored virus stability and infectivity. Collectively, these data indicate a critical role of cholesterol in maintaining IAV and RSV membrane structure that is essential for sustaining viral stability and infectivity.
Collapse
Affiliation(s)
- Shringkhala Bajimaya
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Tünde Frankl
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Tsuyoshi Hayashi
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Toru Takimoto
- Department of Microbiology and Immunology, University of Rochester Medical Center, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
244
|
Winkler PM, Regmi R, Flauraud V, Brugger J, Rigneault H, Wenger J, García-Parajo MF. Transient Nanoscopic Phase Separation in Biological Lipid Membranes Resolved by Planar Plasmonic Antennas. ACS NANO 2017; 11:7241-7250. [PMID: 28696660 DOI: 10.1021/acsnano.7b03177] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoscale membrane assemblies of sphingolipids, cholesterol, and certain proteins, also known as lipid rafts, play a crucial role in facilitating a broad range of important cell functions. Whereas on living cell membranes lipid rafts have been postulated to have nanoscopic dimensions and to be highly transient, the existence of a similar type of dynamic nanodomains in multicomponent lipid bilayers has been questioned. Here, we perform fluorescence correlation spectroscopy on planar plasmonic antenna arrays with different nanogap sizes to assess the dynamic nanoscale organization of mimetic biological membranes. Our approach takes advantage of the highly enhanced and confined excitation light provided by the nanoantennas together with their outstanding planarity to investigate membrane regions as small as 10 nm in size with microsecond time resolution. Our diffusion data are consistent with the coexistence of transient nanoscopic domains in both the liquid-ordered and the liquid-disordered microscopic phases of multicomponent lipid bilayers. These nanodomains have characteristic residence times between 30 and 150 μs and sizes around 10 nm, as inferred from the diffusion data. Thus, although microscale phase separation occurs on mimetic membranes, nanoscopic domains also coexist, suggesting that these transient assemblies might be similar to those occurring in living cells, which in the absence of raft-stabilizing proteins are poised to be short-lived. Importantly, our work underscores the high potential of photonic nanoantennas to interrogate the nanoscale heterogeneity of native biological membranes with ultrahigh spatiotemporal resolution.
Collapse
Affiliation(s)
- Pamina M Winkler
- Institut de Ciencies Fotoniques (ICFO), The Barcelona Institute of Science and Technology , Barcelona, Spain
| | - Raju Regmi
- Institut de Ciencies Fotoniques (ICFO), The Barcelona Institute of Science and Technology , Barcelona, Spain
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel , Marseille, France
| | - Valentin Flauraud
- Microsystems Laboratory, Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Jürgen Brugger
- Microsystems Laboratory, Institute of Microengineering, Ecole Polytechnique Fédérale de Lausanne , 1015 Lausanne, Switzerland
| | - Hervé Rigneault
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel , Marseille, France
| | - Jérôme Wenger
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel , Marseille, France
| | - María F García-Parajo
- Institut de Ciencies Fotoniques (ICFO), The Barcelona Institute of Science and Technology , Barcelona, Spain
- ICREA , Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
245
|
Bhatia T, Cornelius F, Ipsen JH. Capturing suboptical dynamic structures in lipid bilayer patches formed from free-standing giant unilamellar vesicles. Nat Protoc 2017; 12:1563-1575. [DOI: 10.1038/nprot.2017.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
246
|
Clostridium perfringens α-toxin impairs erythropoiesis by inhibition of erythroid differentiation. Sci Rep 2017; 7:5217. [PMID: 28701754 PMCID: PMC5507896 DOI: 10.1038/s41598-017-05567-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/30/2017] [Indexed: 12/25/2022] Open
Abstract
Clostridium perfringens α-toxin induces hemolysis of erythrocytes from various species, but it has not been elucidated whether the toxin affects erythropoiesis. In this study, we treated bone marrow cells (BMCs) from mice with purified α-toxin and found that TER119+ erythroblasts were greatly decreased by the treatment. A variant α-toxin defective in enzymatic activities, phospholipase C and sphingomyelinase, had no effect on the population of erythroblasts, demonstrating that the decrease in erythroblasts was dependent of its enzymatic activities. α-Toxin reduced the CD71+TER119+ and CD71–TER119+ cell populations but not the CD71+TER119− cell population. In addition, α-toxin decreased the number of colony-forming unit erythroid colonies but not burst-forming unit erythroid colonies, indicating that α-toxin preferentially reduced mature erythroid cells compared with immature cells. α-Toxin slightly increased annexinV+ cells in TER119+ cells. Additionally, simultaneous treatment of BMCs with α-toxin and erythropoietin greatly attenuated the reduction of TER119+ erythroblasts by α-toxin. Furthermore, hemin-induced differentiation of human K562 erythroleukemia cells was impaired by α-toxin, whereas the treatment exhibited no apparent cytotoxicity. These results suggested that α-toxin mainly inhibited erythroid differentiation. Together, our results provide new insights into the biological activities of α-toxin, which might be important to understand the pathogenesis of C. perfringens infection.
Collapse
|
247
|
Huang Z, Toledo AM, Benach JL, London E. Ordered Membrane Domain-Forming Properties of the Lipids of Borrelia burgdorferi. Biophys J 2017; 111:2666-2675. [PMID: 28002743 DOI: 10.1016/j.bpj.2016.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/04/2016] [Accepted: 11/16/2016] [Indexed: 11/18/2022] Open
Abstract
Co-existing disordered and ordered (raft) membrane domains exist in Borrelia burgdorferi, the causative agent of Lyme disease. However, although B. burgdorferi contains cholesterol lipids, it lacks sphingolipids-a crucial component of rafts in eukaryotes. To define the principles of ordered lipid domain formation in Borrelia, the domain forming properties of vesicles composed of its three major lipids, acylated cholesteryl galactoside (ACGal), monogalactosyl diacyglycerol (MGalD), and phosphatidylcholine (PC) and/or their mixtures were studied. Anisotropy and fluorescence resonance energy transfer measurements were used to assay membrane order and ordered-domain formation. ACGal had the highest potential to form ordered domains. Interestingly, mixtures of ACGal with B. burgdorferi PC formed ordered domains more readily than mixtures of ACGal with MGalD. This appears to reflect the relatively high level of saturation observed for B. burgdorferi PC, as vesicles containing ACGal and PC, but in which the unsaturated lipid dioleoyl PC was substituted for Borrelia PC, failed to form ordered domains. In addition, the properties of ACGal were compared to those of cholesterol. Depending on what other lipids were present, ordered-domain formation in the presence of ACGal was greater than or equal to that in the presence of cholesterol. Giant unilamellar vesicles formed from ACGal-containing mixtures showed rounded domain shapes similar to those in analogous vesicles containing cholesterol, indicative of liquid-ordered state rather than solid-like gel-state domain formation. Over all, principles of ordered-domain formation in B. burgdorferi appear to be very similar to those in eukaryotes, with saturated PC taking the place of sphingolipids, but with ACGal being the main lipid component inducing ordered-domain formation.
Collapse
Affiliation(s)
- Zhen Huang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York
| | - Alvaro M Toledo
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York
| | - Jorge L Benach
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York.
| |
Collapse
|
248
|
Zhang T, Luo Q, Yang L, Jiang H, Yang H. Characterizing the interactions of two lipid modifications with lipid rafts: farnesyl anchors vs. palmitoyl anchors. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2017; 47:19-30. [PMID: 28585042 DOI: 10.1007/s00249-017-1217-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/27/2017] [Accepted: 05/22/2017] [Indexed: 11/30/2022]
Abstract
Farnesyl (Far) and palmitoyl (Pal) anchors play important roles in the traffic of many lipidated proteins. Herein, we show the distinctive interactions and influences of the two lipid modifications on lipid rafts (LRs) and non-raft-like membranes using molecular dynamics simulations. Palmitoyl anchors behave in a more ordered fashion, pack tighter with the lipids of LRs and diffuse at a slower rate than farnesyl anchors in LRs. When interacting with non-raft-like membranes these two types of anchors become less ordered, pack more loosely with lipids, and diffuse at a higher rate. By calculating both the number of contacts per chain and the number of contact atoms per carbon of the two anchors with the lipid components, we found that the palmitoyl chains preferred to associate with the saturated chains of lipids and cholesterol molecules in LRs, while farnesyl chains favored association with saturated chains and unsaturated chains. For non-raft-like membranes, these two lipid anchors had roughly the same preference for the three types of contact lipid chains. Additionally, palmitoyl anchors caused cholesterol to orient more perpendicular to the membrane surface, surrounding lipids to become more ordered, and lipid lateral fluidity to reduce significantly, compared to farnesyl anchors in LRs. By contrast, the POPE and DSPC became much less ordered, cholesterol became more tilted, and lipids became more fluid, when the two types lipid anchors were inserted in non-raft-like membranes. These findings are useful for understanding the traffic mechanisms of lipidated proteins with farnesyl and palmitoyl modifications in cell membranes.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qichao Luo
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, 555 Zuchongzhi Road, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Linlin Yang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, China
| | - Hualiang Jiang
- School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, 555 Zuchongzhi Road, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaiyu Yang
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Science, 555 Zuchongzhi Road, Shanghai, 201203, China.
| |
Collapse
|
249
|
Bera I, Klauda JB. Molecular Simulations of Mixed Lipid Bilayers with Sphingomyelin, Glycerophospholipids, and Cholesterol. J Phys Chem B 2017; 121:5197-5208. [DOI: 10.1021/acs.jpcb.7b00359] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Indrani Bera
- Department
of Chemical and Biomolecular Engineering and ‡Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
| | - Jeffery B. Klauda
- Department
of Chemical and Biomolecular Engineering and ‡Biophysics Program, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
250
|
Li L, Yu L, Hou X. Cholesterol-rich lipid rafts play a critical role in bovine parainfluenza virus type 3 (BPIV3) infection. Res Vet Sci 2017; 114:341-347. [PMID: 28654867 DOI: 10.1016/j.rvsc.2017.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/14/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022]
Abstract
Lipid rafts are specialized lipid domains enriched in cholesterol and sphingolipid, which can be utilized in the lifecycle of numerous enveloped viruses. Bovine parainfluenza virustype3 (BPIV3) entry to cell is mediated by receptor binding and membrane fusion, but how lipid rafts in host cell membrane and BPIV3 envelope affect virus infection remains unclear. In this study, we investigated the role of lipid rafts in the different stages of BPIV3 infection. The MDBK cells were treated by methyl-β-cyclodextrin (MβCD) to disrupt cellular lipid raft, and the virus infection was determined. The results showed that MβCD significantly inhibited BPIV3 infection in a dose-dependent manner, but didn't block the binding of virus to the cell membrane. Whereas, the MDBK cells treated by MβCD after virus-entry had no effects on the virus infection, to suggest that BPIV3 infection was associated with lipid rafts in cell membrane during viral entry stage. To further confirm lipid rafts in viral envelope also affected BPIV3 infection, we treated BPIV3 with MβCD to determine the virus titer. We found that disruption of the viral lipid raft caused a significant reduction of viral yield. Cholesterol reconstitution experiment showed that BPIV3 infection was successfully restored by cholesterol supplementation both in cellular membrane and viral envelope, which demonstrated that cholesterol-rich lipid rafts played a critical role in BPIV3 infection. These findings provide insights on our understanding of the mechanism of BPIV3 infection and imply that lipid raft might be a good potential therapeutic target to prevent virus infection.
Collapse
Affiliation(s)
- Liyang Li
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China; College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Liyun Yu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing 163319, China
| | - Xilin Hou
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing 163319, China.
| |
Collapse
|