201
|
Bashir S, AL-Ayadhi L. Role of serum levels of neurotensin in children with autism spectrum disorder. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.npbr.2013.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
202
|
Altered cytokine and BDNF levels in autism spectrum disorder. Neurotox Res 2013; 24:491-501. [PMID: 23604965 DOI: 10.1007/s12640-013-9393-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 01/08/2023]
Abstract
The contribution of neuroimmune functioning and brain-derived neurotrophic factor (BDNF) to functional dysregulation in autism spectrum disorder was assessed in 29 patients under treatment in two specialized centers of Basilicata (Chiaromonte and Matera), Southern Italy, through analysis of serum levels of cytokines and BDNF. Elevated levels of the pro-inflammatory cytokine, including interleukin-1, interleukin-6, interleukin-12, interleukin-23, tumor necrosis factor-α and BDNF were observed, regardless of age and gender. Comparisons were made with age- and gender-related healthy controls. The present findings reinforce current notions regarding immunoexcitotoxic mechanisms contributing to the pathophysiology of autistic disorder.
Collapse
|
203
|
Schendel DE, Diguiseppi C, Croen LA, Fallin MD, Reed PL, Schieve LA, Wiggins LD, Daniels J, Grether J, Levy SE, Miller L, Newschaffer C, Pinto-Martin J, Robinson C, Windham GC, Alexander A, Aylsworth AS, Bernal P, Bonner JD, Blaskey L, Bradley C, Collins J, Ferretti CJ, Farzadegan H, Giarelli E, Harvey M, Hepburn S, Herr M, Kaparich K, Landa R, Lee LC, Levenseller B, Meyerer S, Rahbar MH, Ratchford A, Reynolds A, Rosenberg S, Rusyniak J, Shapira SK, Smith K, Souders M, Thompson PA, Young L, Yeargin-Allsopp M. The Study to Explore Early Development (SEED): a multisite epidemiologic study of autism by the Centers for Autism and Developmental Disabilities Research and Epidemiology (CADDRE) network. J Autism Dev Disord 2013; 42:2121-40. [PMID: 22350336 DOI: 10.1007/s10803-012-1461-8] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Study to Explore Early Development (SEED), a multisite investigation addressing knowledge gaps in autism phenotype and etiology, aims to: (1) characterize the autism behavioral phenotype and associated developmental, medical, and behavioral conditions and (2) investigate genetic and environmental risks with emphasis on immunologic, hormonal, gastrointestinal, and sociodemographic characteristics. SEED uses a case-control design with population-based ascertainment of children aged 2-5 years with an autism spectrum disorder (ASD) and children in two control groups-one from the general population and one with non-ASD developmental problems. Data from parent-completed questionnaires, interviews, clinical evaluations, biospecimen sampling, and medical record abstraction focus on the prenatal and early postnatal periods. SEED is a valuable resource for testing hypotheses regarding ASD characteristics and causes.
Collapse
Affiliation(s)
- Diana E Schendel
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Zeidán-Chuliá F, Rybarczyk-Filho JL, Salmina AB, de Oliveira BHN, Noda M, Moreira JCF. Exploring the Multifactorial Nature of Autism Through Computational Systems Biology: Calcium and the Rho GTPase RAC1 Under the Spotlight. Neuromolecular Med 2013; 15:364-83. [DOI: 10.1007/s12017-013-8224-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 02/16/2013] [Indexed: 01/08/2023]
|
205
|
Blatt GJ. The neuropathology of autism. SCIENTIFICA 2012; 2012:703675. [PMID: 24278731 PMCID: PMC3820437 DOI: 10.6064/2012/703675] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/07/2012] [Indexed: 06/02/2023]
Abstract
Autism is a behaviorally defined neurodevelopmental disorder that affects over 1% of new births in the United States and about 2% of boys. The etiologies are unknown and they are genetically complex. There may be epigenetic effects, environmental influences, and other factors that contribute to the mechanisms and affected neural pathway(s). The underlying neuropathology of the disorder has been evolving in the literature to include specific brain areas in the cerebellum, limbic system, and cortex. Part(s) of structures appear to be affected most rather than the entire structure, for example, select nuclei of the amygdala, the fusiform face area, and so forth. Altered cortical organization characterized by more frequent and narrower minicolumns and early overgrowth of the frontal portion of the brain, affects connectivity. Abnormalities include cytoarchitectonic laminar differences, excess white matter neurons, decreased numbers of GABAergic cerebellar Purkinje cells, and other events that can be traced developmentally and cause anomalies in circuitry. Problems with neurotransmission are evident by recent receptor and binding site studies especially in the inhibitory GABA system likely contributing to an imbalance of excitatory/inhibitory transmission. As postmortem findings are related to core behavior symptoms, and technology improves, researchers are gaining a much better perspective of contributing factors to the disorder.
Collapse
Affiliation(s)
- Gene J. Blatt
- Department of Anatomy & Neurobiology, School of Medicine, Boston University, 72 East Concord Street L 1004, Boston, MA 02118, USA
| |
Collapse
|
206
|
|
207
|
Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci 2012; 35:369-89. [PMID: 22715882 DOI: 10.1146/annurev-neuro-061010-113810] [Citation(s) in RCA: 778] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An unexpected role for the classical complement cascade in the elimination of central nervous system (CNS) synapses has recently been discovered. Complement proteins are localized to developing CNS synapses during periods of active synapse elimination and are required for normal brain wiring. The function of complement proteins in the brain appears analogous to their function in the immune system: clearance of cellular material that has been tagged for elimination. Similarly, synapses tagged with complement proteins may be eliminated by microglial cells expressing complement receptors. In addition, developing astrocytes release signals that induce the expression of complement components in the CNS. In the mature brain, early synapse loss is a hallmark of several neurodegenerative diseases. Complement proteins are profoundly upregulated in many CNS diseases prior to signs of neuron loss, suggesting a reactivation of similar developmental mechanisms of complement-mediated synapse elimination potentially driving disease progression.
Collapse
Affiliation(s)
- Alexander H Stephan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305-5125, USA.
| | | | | |
Collapse
|
208
|
O'Driscoll C, Kaufmann WE, Bressler J. Relationship between Mecp2 and NFκb signaling during neural differentiation of P19 cells. Brain Res 2012; 1490:35-42. [PMID: 23123205 DOI: 10.1016/j.brainres.2012.10.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 09/28/2012] [Accepted: 10/21/2012] [Indexed: 01/20/2023]
Abstract
The pluripotent P19 embryo carcinoma cell line was studied to determine a signaling pathway regulating MeCP2 expression. P19 cells were induced to differentiate into neurons by RA and express β-III tubulin at one day after induction and synaptophysin by 7 days. MeCP2 was first observed after β-III tubulin expression was detected and continued to rise over the course of differentiation. Both Mecp2 e1 and e2 mRNA forms progressively increased in differentiating cells. MeCP2 expression was increased by tumor necrosis factor (TNF) in early differentiating cells, which was blocked by NFκB inhibitors. TNF did not increase MeCP2 expression in naïve cells. Moreover, TNF did not increase NFκB reporter gene activity in naïve cells even though increases were observed in early differentiating cells. The protein kinase C activator phorbol 12-myristate 13-acetate (PMA) increased MeCP2 expression in naïve P19 cells, which was also blocked by NFκB inhibitors. Interestingly, PMA increased NFκB reporter gene activity in naïve cells. Finally, PMA, but not TNF, induced IκBα degradation in naïve P19 cells. Taken together, our data indicates that MeCP2 expression is regulated in part by signaling pathways involving NFκB.
Collapse
|
209
|
Enriched pathways for major depressive disorder identified from a genome-wide association study. Int J Neuropsychopharmacol 2012; 15:1401-11. [PMID: 22243633 DOI: 10.1017/s1461145711001891] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Major depressive disorder (MDD) has caused a substantial burden of disease worldwide with moderate heritability. Despite efforts through conducting numerous association studies and now, genome-wide association (GWA) studies, the success of identifying susceptibility loci for MDD has been limited, which is partially attributed to the complex nature of depression pathogenesis. A pathway-based analytic strategy to investigate the joint effects of various genes within specific biological pathways has emerged as a powerful tool for complex traits. The present study aimed to identify enriched pathways for depression using a GWA dataset for MDD. For each gene, we estimated its gene-wise p value using combined and minimum p value, separately. Canonical pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) and BioCarta were used. We employed four pathway-based analytic approaches (gene set enrichment analysis, hypergeometric test, sum-square statistic, sum-statistic). We adjusted for multiple testing using Benjamini & Hochberg's method to report significant pathways. We found 17 significantly enriched pathways for depression, which presented low-to-intermediate crosstalk. The top four pathways were long-term depression (p⩽1×10-5), calcium signalling (p⩽6×10-5), arrhythmogenic right ventricular cardiomyopathy (p⩽1.6×10-4) and cell adhesion molecules (p⩽2.2×10-4). In conclusion, our comprehensive pathway analyses identified promising pathways for depression that are related to neurotransmitter and neuronal systems, immune system and inflammatory response, which may be involved in the pathophysiological mechanisms underlying depression. We demonstrated that pathway enrichment analysis is promising to facilitate our understanding of complex traits through a deeper interpretation of GWA data. Application of this comprehensive analytic strategy in upcoming GWA data for depression could validate the findings reported in this study.
Collapse
|
210
|
Kumar B, Prakash A, Sewal RK, Medhi B, Modi M. Drug therapy in autism: a present and future perspective. Pharmacol Rep 2012; 64:1291-304. [DOI: 10.1016/s1734-1140(12)70927-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 08/03/2012] [Indexed: 10/25/2022]
|
211
|
Brain water channel proteins in health and disease. Mol Aspects Med 2012; 33:562-78. [DOI: 10.1016/j.mam.2012.03.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 03/28/2012] [Accepted: 03/31/2012] [Indexed: 02/07/2023]
|
212
|
Safety and observations in a pilot study of lenalidomide for treatment in autism. AUTISM RESEARCH AND TREATMENT 2012; 2012:291601. [PMID: 22997574 PMCID: PMC3446644 DOI: 10.1155/2012/291601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 06/18/2012] [Accepted: 07/06/2012] [Indexed: 11/17/2022]
Abstract
Autism affects 1 : 88 children in the United States. Familial history of autoimmune disease, autoantibodies in the serum of mothers when there is more than one autistic offspring, and neuroglial response in CSF and brain tissue in autistic patients suggest an immunological variable may be associated with this condition. Lenalidomide has the potential to invoke changes in TNF-α with less toxicity than thalidomide. This pilot study evaluated lenalidomide at reduction of TNF-α and improvement of behavior and language in children with autism with elevated TNF-α. Subjects with elevated TNF-α were given 2.5 mgs lenalidomide daily for 12-weeks. Pharmacodynamics and safety was evaluated. Changes in language and autistic behaviors after six and twelve weeks were measured. Although statistical significance was not achieved for most measures, there were trends toward improvement. After 6-weeks, mean receptive language increased: 60.67 ± 12.06 to 65.00 ± 15.10 (P = 0.11) and symptoms of autism decreased (40.75 ± 5.96 versus 38.67 ± 7.90, P = 0.068). After 12-weeks, CSF-TNF-α declined 57% ± 25% from 80.5 ± 41.03 to 38.0 ± 31.27 (P = 0.068). Serum TNF-α declined 57% (92.50 ± 68.92 to 40.25 ± 44.53 (P = 0.048). This study suggests that lenalidomide is tolerated as a treatment by children with autism and should be further studied as a potential agent for cytockine inflammation.
Collapse
|
213
|
Antar LN, Ferretti CJ, Hollander E. Immune Response and Inflammation in Autism Spectrum Disorder. Psychiatr Ann 2012. [DOI: 10.3928/00485713-20120906-08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
214
|
Ji L, Chauhan A, Chauhan V. Reduced activity of protein kinase C in the frontal cortex of subjects with regressive autism: relationship with developmental abnormalities. Int J Biol Sci 2012; 8:1075-84. [PMID: 22949890 PMCID: PMC3432855 DOI: 10.7150/ijbs.4742] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/19/2012] [Indexed: 11/19/2022] Open
Abstract
Autism is a neurodevelopmental disorder with unknown etiology. In some cases, typically developing children regress into clinical symptoms of autism, a condition known as regressive autism. Protein kinases are essential for G-protein-coupled receptor-mediated signal transduction, and are involved in neuronal functions, gene expression, memory, and cell differentiation. Recently, we reported decreased activity of protein kinase A (PKA) in the frontal cortex of subjects with regressive autism. In the present study, we analyzed the activity of protein kinase C (PKC) in the cerebellum and different regions of cerebral cortex from subjects with regressive autism, autistic subjects without clinical history of regression, and age-matched control subjects. In the frontal cortex of subjects with regressive autism, PKC activity was significantly decreased by 57.1% as compared to age-matched control subjects (p = 0.0085), and by 65.8% as compared to non-regressed autistic subjects (p = 0.0048). PKC activity was unaffected in the temporal, parietal and occipital cortices, and in the cerebellum in both autism groups, i.e., regressive and non-regressed autism as compared to control subjects. These results suggest brain region-specific alteration of PKC activity in the frontal cortex of subjects with regressive autism. Further studies showed a negative correlation between PKC activity and restrictive, repetitive and stereotyped pattern of behavior (r= -0.084, p = 0.0363) in autistic individuals, suggesting involvement of PKC in behavioral abnormalities in autism. These findings suggest that regression in autism may be attributed, in part, to alterations in G-protein-coupled receptor-mediated signal transduction involving PKA and PKC in the frontal cortex.
Collapse
Affiliation(s)
- Lina Ji
- NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, New York 10314, USA
| | | | | |
Collapse
|
215
|
Schafer DP, Lehrman EK, Stevens B. The "quad-partite" synapse: microglia-synapse interactions in the developing and mature CNS. Glia 2012; 61:24-36. [PMID: 22829357 DOI: 10.1002/glia.22389] [Citation(s) in RCA: 406] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/21/2012] [Indexed: 01/04/2023]
Abstract
Microglia are the resident immune cells and phagocytes of our central nervous system (CNS). While most work has focused on the rapid and robust responses of microglia during CNS disease and injury, emerging evidence suggests that these mysterious cells have important roles at CNS synapses in the healthy, intact CNS. Groundbreaking live imaging studies in the anesthetized, adult mouse demonstrated that microglia processes dynamically survey their environment and interact with other brain cells including neurons and astrocytes. More recent imaging studies have revealed that microglia dynamically interact with synapses where they appear to serve as "synaptic sensors," responding to changes in neural activity and neurotransmitter release. In the following review, we discuss the most recent work demonstrating that microglia play active roles at developing and mature synapses. We first discuss the important imaging studies that have led us to better understand the physical relationship between microglia and synapses in the healthy brain. Following this discussion, we review known molecular mechanisms and functional consequences of microglia-synapse interactions in the developing and mature CNS. Our current knowledge sheds new light on the critical functions of these mysterious cells in synapse development and function in the healthy CNS, but has also incited several new and interesting questions that remain to be explored. We discuss these open questions, and how the most recent findings in the healthy CNS may be related to pathologies associated with abnormal and/or loss of neural circuits.
Collapse
Affiliation(s)
- Dorothy P Schafer
- Department of Neurology, F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
216
|
Evidence of microglial activation in autism and its possible role in brain underconnectivity. ACTA ACUST UNITED AC 2012; 7:205-13. [PMID: 22874006 PMCID: PMC3523548 DOI: 10.1017/s1740925x12000142] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Evidence indicates that children with autism spectrum disorder (ASD) suffer from an
ongoing neuroinflammatory process in different regions of the brain involving microglial
activation. When microglia remain activated for an extended period, the production of
mediators is sustained longer than usual and this increase in mediators contributes to
loss of synaptic connections and neuronal cell death. Microglial activation can then
result in a loss of connections or underconnectivity. Underconnectivity is reported in
many studies in autism. One way to control neuroinflammation is to reduce or inhibit
microglial activation. It is plausible that by reducing brain inflammation and microglial
activation, the neurodestructive effects of chronic inflammation could be reduced and
allow for improved developmental outcomes. Future studies that examine treatments that may
reduce microglial activation and neuroinflammation, and ultimately help to mitigate
symptoms in ASD, are warranted.
Collapse
|
217
|
Is autism a member of a family of diseases resulting from genetic/cultural mismatches? Implications for treatment and prevention. AUTISM RESEARCH AND TREATMENT 2012; 2012:910946. [PMID: 22928103 PMCID: PMC3420574 DOI: 10.1155/2012/910946] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/18/2012] [Accepted: 04/10/2012] [Indexed: 12/20/2022]
Abstract
Several lines of evidence support the view that autism is a typical member of a large family of immune-related, noninfectious, chronic diseases associated with postindustrial society. This family of diseases includes a wide range of inflammatory, allergic, and autoimmune diseases and results from consequences of genetic/culture mismatches which profoundly destabilize the immune system. Principle among these consequences is depletion of important components, particularly helminths, from the ecosystem of the human body, the human biome. Autism shares a wide range of features in common with this family of diseases, including the contribution of genetics/epigenetics, the identification of disease-inducing triggers, the apparent role of immunity in pathogenesis, high prevalence, complex etiologies and manifestations, and potentially some aspects of epidemiology. Fortunately, using available resources and technology, modern medicine has the potential to effectively reconstitute the human biome, thus treating or even avoiding altogether the consequences of genetic/cultural mismatches which underpin this entire family of disease. Thus, if indeed autism is an epidemic of postindustrial society associated with immune hypersensitivity, we can expect that the disease is readily preventable.
Collapse
|
218
|
Prenatal and Postnatal Epigenetic Programming: Implications for GI, Immune, and Neuronal Function in Autism. AUTISM RESEARCH AND TREATMENT 2012; 2012:190930. [PMID: 22934169 PMCID: PMC3420412 DOI: 10.1155/2012/190930] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 05/03/2012] [Indexed: 12/13/2022]
Abstract
Although autism is first and foremost a disorder of the central nervous system, comorbid dysfunction of the gastrointestinal (GI) and immune systems is common, suggesting that all three systems may be affected by common molecular mechanisms. Substantial systemic deficits in the antioxidant glutathione and its precursor, cysteine, have been documented in autism in association with oxidative stress and impaired methylation. DNA and histone methylation provide epigenetic regulation of gene expression during prenatal and postnatal development. Prenatal epigenetic programming (PrEP) can be affected by the maternal metabolic and nutritional environment, whereas postnatal epigenetic programming (PEP) importantly depends upon nutritional support provided through the GI tract. Cysteine absorption from the GI tract is a crucial determinant of antioxidant capacity, and systemic deficits of glutathione and cysteine in autism are likely to reflect impaired cysteine absorption. Excitatory amino acid transporter 3 (EAAT3) provides cysteine uptake for GI epithelial, neuronal, and immune cells, and its activity is decreased during oxidative stress. Based upon these observations, we propose that neurodevelopmental, GI, and immune aspects of autism each reflect manifestations of inadequate antioxidant capacity, secondary to impaired cysteine uptake by the GI tract. Genetic and environmental factors that adversely affect antioxidant capacity can disrupt PrEP and/or PEP, increasing vulnerability to autism.
Collapse
|
219
|
Brief report: life history and neuropathology of a gifted man with Asperger syndrome. J Autism Dev Disord 2012; 42:460-7. [PMID: 21516432 DOI: 10.1007/s10803-011-1259-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Despite recent interest in the pathogenesis of the autism spectrum disorders (pervasive developmental disorders), neuropathological descriptions of brains of individuals with well documented clinical information and without potentially confounding symptomatology are exceptionally rare. Asperger syndrome differs from classic autism by lack of cognitive impairment or delay in expressive language acquisition. We examined the 1,570 g brain of a 63 year old otherwise healthy mathematician with an Autistic Spectrum Disorder of Asperger subtype. Except for an atypical gyral pattern and megalencephaly, we detected no specific neuropathologic abnormality. Taken together, the behavioral data and pathological findings in this case are compatible with an early neurodevelopmental process affecting multiple neuroanatomic networks, but without a convincing morphologic signature detectable with routine neuropathologic technology.
Collapse
|
220
|
Young AMH, Campbell EC, Lynch S, Dunn MH, Powis SJ, Suckling J. Regional susceptibility to TNF-α induction of murine brain inflammation via classical IKK/NF-κB signalling. PLoS One 2012; 7:e39049. [PMID: 22701747 PMCID: PMC3372464 DOI: 10.1371/journal.pone.0039049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 05/16/2012] [Indexed: 11/18/2022] Open
Abstract
It is becoming clear that inflammation plays a significant role in a number of neurological and psychiatric conditions. Post mortem brain samples in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, schizophrenia and most recently autism spectrum condition, all exhibit neuroglial activation and inflammatory markers within the CSF. Many questions remain about the underlying molecular mechanisms. By adding the pro-inflammatory cytokine, TNF-α, to mouse brain tissue we demonstrated that the frontal lobes and temporal region, areas involved in higher functions such as memory and learning, are most susceptible to cytokine-induced inflammation via the NF-κB signalling pathway. We observed direct correlations between the volumetric increase and molecular expression indicating that therapeutic targets in these lobes may require different approaches when treating conditions with a central neuroinflammatory component.
Collapse
Affiliation(s)
- Adam M. H. Young
- School of Medicine, University of St. Andrews, Fife, Scotland, United Kingdom
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Elaine C. Campbell
- School of Medicine, University of St. Andrews, Fife, Scotland, United Kingdom
| | - Sarah Lynch
- School of Medicine, University of St. Andrews, Fife, Scotland, United Kingdom
| | - Malcolm H. Dunn
- School of Physics and Astronomy, University of St. Andrews, Fife, Scotland, United Kingdom
| | - Simon J. Powis
- School of Medicine, University of St. Andrews, Fife, Scotland, United Kingdom
| | - John Suckling
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
221
|
Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74:691-705. [PMID: 22632727 PMCID: PMC3528177 DOI: 10.1016/j.neuron.2012.03.026] [Citation(s) in RCA: 2881] [Impact Index Per Article: 221.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2012] [Indexed: 02/06/2023]
Abstract
Microglia are the resident CNS immune cells and active surveyors of the extracellular environment. While past work has focused on the role of these cells during disease, recent imaging studies reveal dynamic interactions between microglia and synaptic elements in the healthy brain. Despite these intriguing observations, the precise function of microglia at remodeling synapses and the mechanisms that underlie microglia-synapse interactions remain elusive. In the current study, we demonstrate a role for microglia in activity-dependent synaptic pruning in the postnatal retinogeniculate system. We show that microglia engulf presynaptic inputs during peak retinogeniculate pruning and that engulfment is dependent upon neural activity and the microglia-specific phagocytic signaling pathway, complement receptor 3(CR3)/C3. Furthermore, disrupting microglia-specific CR3/C3 signaling resulted in sustained deficits in synaptic connectivity. These results define a role for microglia during postnatal development and identify underlying mechanisms by which microglia engulf and remodel developing synapses.
Collapse
Affiliation(s)
- Dorothy P Schafer
- Department of Neurology, F.M. Kirby Neurobiology Center, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Abstract
Autism spectrum disorders (ASDs) including classic autism is a group of complex developmental disabilities with core deficits of impaired social interactions, communication difficulties and repetitive behaviors. Although the neurobiology of ASDs has attracted much attention in the last two decades, the role of microglia has been ignored. Existing data are focused on their recognized role in neuroinflammation, which only covers a small part of the pathological repertoire of microglia. This review highlights recent findings on the broader roles of microglia, including their active surveillance of brain microenvironments and regulation of synaptic connectivity, maturation of brain circuitry and neurogenesis. Emerging evidence suggests that microglia respond to pre- and postnatal environmental stimuli through epigenetic interface to change gene expression, thus acting as effectors of experience-dependent synaptic plasticity. Impairments of these microglial functions could substantially contribute to several major etiological factors of autism, such as environmental toxins and cortical underconnectivity. Our recent study on Rett syndrome, a syndromic autistic disorder, provides an example that intrinsic microglial dysfunction due to genetic and epigenetic aberrations could detrimentally affect the developmental trajectory without evoking neuroinflammation. We propose that ASDs provide excellent opportunities to study the influence of microglia on neurodevelopment, and this knowledge could lead to novel therapies.
Collapse
|
223
|
Hu VW. From genes to environment: using integrative genomics to build a "systems-level" understanding of autism spectrum disorders. Child Dev 2012; 84:89-103. [PMID: 22497667 DOI: 10.1111/j.1467-8624.2012.01759.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Autism spectrum disorders (ASD) are pervasive neurodevelopmental disorders that affect an estimated 1 in 110 individuals. Although there is a strong genetic component associated with these disorders, this review focuses on the multifactorial nature of ASD and how different genome-wide (genomic) approaches contribute to our understanding of autism. Emphasis is placed on the need to study defined ASD phenotypes as well as to integrate large-scale "omics" data in order to develop a "systems-level" perspective of ASD, which in turn is necessary to allow predictions regarding responses to specific perturbations and interventions.
Collapse
Affiliation(s)
- Valerie W Hu
- The George Washington University, School of Medicine and Health Sciences.
| |
Collapse
|
224
|
Lee TL, Raygada MJ, Rennert OM. Integrative gene network analysis provides novel regulatory relationships, genetic contributions and susceptible targets in autism spectrum disorders. Gene 2012; 496:88-96. [PMID: 22306264 PMCID: PMC3303594 DOI: 10.1016/j.gene.2012.01.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 01/11/2012] [Accepted: 01/17/2012] [Indexed: 01/23/2023]
Abstract
Autism spectrum disorders (ASDs) are a group of diseases exhibiting impairment in social drive, communication/language skills and stereotyped behaviors. Though an increased number of candidate genes and molecular interactions have been identified by various approaches, the pathogenesis remains elusive. Based on clinical observations, data from accessible GWAS and expression datasets we identified ASDs gene candidates. Integrative gene network and a novel CNV-centric Node Network (CNN) analysis method highlighted ASDs-associated key elements and biological processes. Functional analysis identified neurological functions including synaptic cholinergic receptor (CHRNA) families, dopamine receptor (DRD2), and correlations between social behavior and oxytocin related pathways. CNN analysis of genome-wide genetic and expression data identified inheritance-related clusters related to PTEN/TSC1/FMR1 and mTor/PI3K regulation. Integrative analysis identified potential regulators of networks, specifically TNF and beta-estradiol, suggesting a potential central role in ASDs. Our data provide information on potential disease mechanisms, and key regulators that may generate novel postulations, and diagnostic molecular biomarkers.
Collapse
Affiliation(s)
- Tin-Lap Lee
- Laboratory of Clinical and Developmental Genomics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
225
|
Ceylan MF, Sener S, Bayraktar AC, Kavutcu M. Changes in oxidative stress and cellular immunity serum markers in attention-deficit/hyperactivity disorder. Psychiatry Clin Neurosci 2012; 66:220-6. [PMID: 22443244 DOI: 10.1111/j.1440-1819.2012.02330.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS Attention-deficit/hyperactivity disorder (ADHD) is a developmental disorder with an etiopathogeny not fully understood. According to the prevailing view, the main factors contributing to the disorder are prefrontal dopamine deficiency and central dopaminergic dysfunction, but the factors/mechanisms involved in the brain dysfunction and its consequences are not well known. We suggest that changes in oxidative metabolism and cellular immunity may be involved. In this study, we aimed to investigate whether there are associations between ADHD and changes in serum levels of nitric oxide synthase (NOS), xanthine oxidase (XO), glutathione S-transferase (GST) and paraoxonase-1 (PON-1) activities, which are important markers of oxidative stress, and adenosine deaminase (ADA) activity, marker of cellular immunity. METHODS The study sample consisted of 35 child or adolescent patients diagnosed with ADHD according to DSM-IV-TR criteria. Thirty-five healthy subjects were also included in the study as controls. Venous blood samples were collected, and NOS, XO, GST, PON-1 and ADA activities were measured. RESULTS NOS, XO and ADA activities of the patients were significantly higher than those of the controls. GST and PON-1 activities of the patients were significantly lower than those of the controls. CONCLUSIONS Changes in oxidative metabolism and cellular immunity may have a role in the etiopathogenesis of ADHD.
Collapse
Affiliation(s)
- Mehmet Fatih Ceylan
- Department of Child and Adolescent Psychiatry, Dr Sami Ulus Children's Hospital, Ankara, Turkey.
| | | | | | | |
Collapse
|
226
|
Rossignol DA, Frye RE. A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures. Mol Psychiatry 2012; 17:389-401. [PMID: 22143005 PMCID: PMC3317062 DOI: 10.1038/mp.2011.165] [Citation(s) in RCA: 378] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Recent studies have implicated physiological and metabolic abnormalities in autism spectrum disorders (ASD) and other psychiatric disorders, particularly immune dysregulation or inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures ('four major areas'). The aim of this study was to determine trends in the literature on these topics with respect to ASD. A comprehensive literature search from 1971 to 2010 was performed in these four major areas in ASD with three objectives. First, publications were divided by several criteria, including whether or not they implicated an association between the physiological abnormality and ASD. A large percentage of publications implicated an association between ASD and immune dysregulation/inflammation (416 out of 437 publications, 95%), oxidative stress (all 115), mitochondrial dysfunction (145 of 153, 95%) and toxicant exposures (170 of 190, 89%). Second, the strength of evidence for publications in each area was computed using a validated scale. The strongest evidence was for immune dysregulation/inflammation and oxidative stress, followed by toxicant exposures and mitochondrial dysfunction. In all areas, at least 45% of the publications were rated as providing strong evidence for an association between the physiological abnormalities and ASD. Third, the time trends in the four major areas were compared with trends in neuroimaging, neuropathology, theory of mind and genetics ('four comparison areas'). The number of publications per 5-year block in all eight areas was calculated in order to identify significant changes in trends. Prior to 1986, only 12 publications were identified in the four major areas and 51 in the four comparison areas (42 for genetics). For each 5-year period, the total number of publications in the eight combined areas increased progressively. Most publications (552 of 895, 62%) in the four major areas were published in the last 5 years (2006-2010). Evaluation of trends between the four major areas and the four comparison areas demonstrated that the largest relative growth was in immune dysregulation/inflammation, oxidative stress, toxicant exposures, genetics and neuroimaging. Research on mitochondrial dysfunction started growing in the last 5 years. Theory of mind and neuropathology research has declined in recent years. Although most publications implicated an association between the four major areas and ASD, publication bias may have led to an overestimation of this association. Further research into these physiological areas may provide insight into general or subset-specific processes that could contribute to the development of ASD and other psychiatric disorders.
Collapse
Affiliation(s)
- D A Rossignol
- International Child Development Resource Center, Melbourne, FL 32934, USA.
| | | |
Collapse
|
227
|
Abstract
That vaccines do not cause autism is now a widely accepted proposition, though a few dissenters remain. An 8-year court process in the US federal vaccine injury compensation court ended in 2010 with rulings that autism was not an adverse reaction to vaccination. There were two sets of trials: one against the measles-mumps-rubella (MMR) vaccine and one against the mercury-based preservative thimerosal. The MMR story is more widely known because of publicity surrounding the main proponent of an MMR-autism link, British doctor Andrew Wakefield, but the story of thimerosal in court is largely untold. This study examines the credibility battles and boundary work in the two cases, illuminating the sustaining world of alternative science that supported the parents, lawyers, researchers, and expert witnesses against vaccines. After the loss in court, the families and their advocates transformed their scientific arguments into an indictment of procedural injustice in the vaccine court. I argue that the very efforts designed to produce legitimacy in this type of lopsided dispute will be counter-mobilized as evidence of injustice, helping us understand why settling a scientific controversy in court does not necessarily mean changing anyone's mind.
Collapse
Affiliation(s)
- Anna Kirkland
- Women's Studies and Political Science, University of Michigan, Ann Arbor, MI 48104-1290, USA.
| |
Collapse
|
228
|
Abstract
Autism spectrum disorders (ASD) are classified as neurological developmental disorders. Several studies have been carried out to find a candidate biomarker linked to the development of these disorders, but up to date no reliable biomarker is available. Mass spectrometry techniques have been used for protein profiling of blood plasma of children with such disorders in order to identify proteins/peptides that may be used as biomarkers for detection of the disorders. Three differentially expressed peptides with mass-charge (m/z) values of 2020 ± 1, 1864 ± 1 and 1978 ± 1 Da in the heparin plasma of children with ASD that were significantly changed as compared with the peptide pattern of the non-ASD control group are reported here. This novel set of biomarkers allows for a reliable blood-based diagnostic tool that may be used in diagnosis and potentially, in prognosis of ASD.
Collapse
|
229
|
Tomljenovic L, Shaw CA. Mechanisms of aluminum adjuvant toxicity and autoimmunity in pediatric populations. Lupus 2012; 21:223-30. [DOI: 10.1177/0961203311430221] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Immune challenges during early development, including those vaccine-induced, can lead to permanent detrimental alterations of the brain and immune function. Experimental evidence also shows that simultaneous administration of as little as two to three immune adjuvants can overcome genetic resistance to autoimmunity. In some developed countries, by the time children are 4 to 6 years old, they will have received a total of 126 antigenic compounds along with high amounts of aluminum (Al) adjuvants through routine vaccinations. According to the US Food and Drug Administration, safety assessments for vaccines have often not included appropriate toxicity studies because vaccines have not been viewed as inherently toxic. Taken together, these observations raise plausible concerns about the overall safety of current childhood vaccination programs. When assessing adjuvant toxicity in children, several key points ought to be considered: (i) infants and children should not be viewed as “small adults” with regard to toxicological risk as their unique physiology makes them much more vulnerable to toxic insults; (ii) in adult humans Al vaccine adjuvants have been linked to a variety of serious autoimmune and inflammatory conditions (i.e., “ASIA”), yet children are regularly exposed to much higher amounts of Al from vaccines than adults; (iii) it is often assumed that peripheral immune responses do not affect brain function. However, it is now clearly established that there is a bidirectional neuro-immune cross-talk that plays crucial roles in immunoregulation as well as brain function. In turn, perturbations of the neuro-immune axis have been demonstrated in many autoimmune diseases encompassed in “ASIA” and are thought to be driven by a hyperactive immune response; and (iv) the same components of the neuro-immune axis that play key roles in brain development and immune function are heavily targeted by Al adjuvants. In summary, research evidence shows that increasing concerns about current vaccination practices may indeed be warranted. Because children may be most at risk of vaccine-induced complications, a rigorous evaluation of the vaccine-related adverse health impacts in the pediatric population is urgently needed.
Collapse
Affiliation(s)
- L Tomljenovic
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC, Canada
| | - CA Shaw
- Departments of Ophthalmology and Visual Sciences and Experimental Medicine and the Graduate Program in Neuroscience, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
230
|
Abdallah MW, Larsen N, Grove J, Nørgaard-Pedersen B, Thorsen P, Mortensen EL, Hougaard DM. Amniotic fluid chemokines and autism spectrum disorders: an exploratory study utilizing a Danish Historic Birth Cohort. Brain Behav Immun 2012; 26:170-6. [PMID: 21933705 DOI: 10.1016/j.bbi.2011.09.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 08/17/2011] [Accepted: 09/02/2011] [Indexed: 01/24/2023] Open
Abstract
INTRODUCTION Elevated levels of chemokines have been reported in plasma and brain tissue of individuals with Autism Spectrum Disorders (ASD). The aim of this study was to examine chemokine levels in amniotic fluid (AF) samples of individuals diagnosed with ASD and their controls. MATERIAL AND METHODS A Danish Historic Birth Cohort (HBC) kept at Statens Serum Institute, Copenhagen was utilized. Using data from Danish nation-wide health registers, a case-control study design of 414 cases and 820 controls was adopted. Levels of MCP-1, MIP-1α and RANTES were analyzed using Luminex xMAP technology. Case-control differences were assessed as dichotomized at below the 10th percentile or above the 90th percentile cut-off points derived from the control biomarker distributions (logistic regression) or continuous measures (tobit regression). RESULTS AND CONCLUSION AF volume for 331 cases and 698 controls was sufficient for Luminex analysis. Including all individuals in the cohort yielded no significant differences in chemokine levels in cases versus controls. Logistic regression analyses, performed on individuals diagnosed using ICD-10 only, showed increased risk for ASD with elevated MCP-1 (elevated 90th percentile adjusted OR: 2.32 [95% CI: 1.17-4.61]) compared to controls. An increased risk for infantile autism with elevated MCP-1 was also found (adjusted OR: 2.28 [95% CI: 1.16-4.48]). Elevated levels of MCP-1 may decipher an etiologic immunologic dysfunction or play rather an indirect role in the pathophysiology of ASD. Further studies to confirm its role and to identify the potential pathways through which MCP-1 may contribute to the development of ASD are necessary.
Collapse
Affiliation(s)
- Morsi W Abdallah
- Department of Epidemiology, Aarhus University School of Public Health, Aarhus, Denmark.
| | | | | | | | | | | | | |
Collapse
|
231
|
Abstract
Autism is a neurodevelopmental disorders characterized by impairments in communication and social behavior, and by repetitive behaviors. Although genetic factors might be largely responsible for the occurrence of autism they cannot fully account for all cases and it is likely that in addition to a certain combination of autism-related genes, specific environmental factors might act as risk factors triggering the development of autism. Thus, the role of environmental factors in autism is an important area of research and recent data will be discussed in this review. Interestingly, the results show that many environmental risk factors are interrelated and their identification and comparison might unveil a common scheme of alterations on a contextual as well as molecular level. For example, both, disruption in the immune system and in zinc homeostasis may affect synaptic transmission in autism. Thus, here, a model is proposed that interconnects the most important and scientifically recognized environmental factors. Moreover, similarities in how these risk factors impact synapse function are discussed and a possible influence on an already well described genetic pathway leading to the development of autism via zinc homeostasis is proposed.
Collapse
Affiliation(s)
- Andreas M Grabrucker
- WG Molecular Analysis of Synaptopathies, Neurology Department, Neurocenter of Ulm University Ulm, Germany
| |
Collapse
|
232
|
Tobiasova Z, van der Lingen KHB, Scahill L, Leckman JF, Zhang Y, Chae W, McCracken JT, McDougle CJ, Vitiello B, Tierney E, Aman MG, Arnold LE, Katsovich L, Hoekstra PJ, Volkmar F, Bothwell ALM, Kawikova I. Risperidone-related improvement of irritability in children with autism is not associated with changes in serum of epidermal growth factor and interleukin-13. J Child Adolesc Psychopharmacol 2011; 21:555-64. [PMID: 22070180 PMCID: PMC3279715 DOI: 10.1089/cap.2010.0134] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Risperidone has been shown to improve serious behavioral problems in children with autism. Here we asked whether risperidone-associated improvement was related to changes in concentrations of inflammatory molecules in the serum of these subjects. Seven molecules were identified as worthy of further assessment by performing a pilot analysis of 31 inflammatory markers in 21 medication-free subjects with autism versus 15 healthy controls: epidermal growth factor (EGF), interferon-γ (IFN-γ), interleukin (IL)-13, IL-17, monocyte chemoattractant protein-1 (MCP-1), IL-1 and IL-1-receptor antagonist. Serum concentrations of these markers were then established in a different set of subjects that participated in a double-blind, clinical trial and an expanded group of healthy subjects. In the first analysis, samples obtained from subjects with autism at baseline visits were compared to visits after 8-week treatment with placebo (n=37) or risperidone (n=40). The cytokine concentrations remained stable over the 8-week period for both risperidone and placebo groups. In the second analysis, we explored further the differences between medication-free subjects with autism (n=77) and healthy controls (recruited independently; n=19). Serum levels of EGF were elevated in subjects with autism (median=103 pg/mL, n=75) in comparison to healthy controls (75 pg/mL, n=19; p<0.05), and levels of IL-13 were decreased in autism (median=0.8 pg/mL, n=77) in comparison to controls (9.8 pg/mL, n=19; p=0.0003). These changes did not correlate with standardized measures used for a diagnosis of autism. In summary, risperidone-induced clinical improvement in subjects with autism was not associated with changes in the serum inflammatory markers measured. Whether altered levels of EGF and IL-13 play a role in the pathogenesis or phenotype of autism requires further investigation.
Collapse
Affiliation(s)
- Zuzana Tobiasova
- Authors with equal contribution
- Department of Immunobiology, Child Study Center of Yale University School of Medicine, New Haven, CT
| | - Klaas H. B. van der Lingen
- Authors with equal contribution
- Department of Immunobiology, Child Study Center of Yale University School of Medicine, New Haven, CT
- Child Study Center of Yale University School of Medicine, New Haven, CT
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Netherlands
| | - Lawrence Scahill
- Authors with equal contribution
- Yale University School of Nursing, New Haven, CT
| | - James F. Leckman
- Child Study Center of Yale University School of Medicine, New Haven, CT
| | - Yan Zhang
- Department of Immunobiology, Child Study Center of Yale University School of Medicine, New Haven, CT
| | - Wookjin Chae
- Department of Immunobiology, Child Study Center of Yale University School of Medicine, New Haven, CT
| | - James T. McCracken
- Division of Child and Adolescent Psychiatry, Semel Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | | | | | - Elaine Tierney
- Department of Psychiatry, Kennedy Krieger Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - Liliya Katsovich
- Child Study Center of Yale University School of Medicine, New Haven, CT
| | - Pieter J. Hoekstra
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Netherlands
| | - Fred Volkmar
- Child Study Center of Yale University School of Medicine, New Haven, CT
| | - Alfred L. M. Bothwell
- Department of Immunobiology, Child Study Center of Yale University School of Medicine, New Haven, CT
| | - Ivana Kawikova
- Department of Immunobiology, Child Study Center of Yale University School of Medicine, New Haven, CT
| |
Collapse
|
233
|
Anagnostou E, Hansen R. Medical treatment overview: traditional and novel psycho-pharmacological and complementary and alternative medications. Curr Opin Pediatr 2011; 23:621-7. [PMID: 22001766 PMCID: PMC4871706 DOI: 10.1097/mop.0b013e32834cba3e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Up to 35% of children and youth with autism spectrum disorder (ASD) receive at least one psychotropic medication. 50-70% of this population also receives biologically based complementary and alternative medicine (CAM). The data evaluating such practices are being reviewed. RECENT FINDINGS There are accumulating data to suggest that atypical antipsychotics and stimulants may be useful for the treatment of irritability and hyperactivity in children and youth with ASD. The data for the use of selective serotonin reuptake inhibitors are less promising. New avenues of pharmacologic research targeting molecular targets identified by genomics, animal models and neuropathology are being evaluated. Areas of interest include glutamate/gamma-aminobutyric acid systems, neuropeptides such as oxytocin, and immune dysfunction, among others. In the case of biologically based CAM, a few compounds have been shown to be well tolerated, although efficacy is still being evaluated, such as melatonin, certain vitamins, and omega 3 fatty acids. Others have safety concerns without demonstrated efficacy, such as chelation therapies. SUMMARY Accumulating data suggest a series of existing medications may be useful in ASD and large randomized clinical trials are necessary to evaluate safety and efficacy of both pharmaceuticals and alternative treatments.
Collapse
Affiliation(s)
- Evdokia Anagnostou
- Bloorview Research Institute, Department of Pediatrics, University of Toronto, 555 University Avenue, Toronto, Canada.
| | | |
Collapse
|
234
|
Expression profiling of autism candidate genes during human brain development implicates central immune signaling pathways. PLoS One 2011; 6:e24691. [PMID: 21935439 PMCID: PMC3174192 DOI: 10.1371/journal.pone.0024691] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 08/18/2011] [Indexed: 11/19/2022] Open
Abstract
The Autism Spectrum Disorders (ASD) represent a clinically heterogeneous set of conditions with strong hereditary components. Despite substantial efforts to uncover the genetic basis of ASD, the genomic etiology appears complex and a clear understanding of the molecular mechanisms underlying Autism remains elusive. We hypothesized that focusing gene interaction networks on ASD-implicated genes that are highly expressed in the developing brain may reveal core mechanisms that are otherwise obscured by the genomic heterogeneity of the disorder. Here we report an in silico study of the gene expression profile from ASD-implicated genes in the unaffected developing human brain. By implementing a biologically relevant approach, we identified a subset of highly expressed ASD-candidate genes from which interactome networks were derived. Strikingly, immune signaling through NFκB, Tnf, and Jnk was central to ASD networks at multiple levels of our analysis, and cell-type specific expression suggested glia--in addition to neurons--deserve consideration. This work provides integrated genomic evidence that ASD-implicated genes may converge on central cytokine signaling pathways.
Collapse
|
235
|
Thomas Curtis J, Chen Y, Buck DJ, Davis RL. Chronic inorganic mercury exposure induces sex-specific changes in central TNFα expression: importance in autism? Neurosci Lett 2011; 504:40-4. [PMID: 21906657 DOI: 10.1016/j.neulet.2011.08.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 08/22/2011] [Accepted: 08/24/2011] [Indexed: 11/19/2022]
Abstract
Mercury is neurotoxic and increasing evidence suggests that environmental exposure to mercury may contribute to neuropathologies including Alzheimer's disease and autism spectrum disorders. Mercury is known to disrupt immunocompetence in the periphery, however, little is known about the effects of mercury on neuroimmune signaling. Mercury-induced effects on central immune function are potentially very important given that mercury exposure and neuroinflammation both are implicated in certain neuropathologies (i.e., autism). Furthermore, mounting evidence points to the involvement of glial activation in autism. Therefore, we utilized an in vivo model to assess the effects of mercury exposure on neuroimmune signaling. In prairie voles, 10 week mercury exposure (60ppm HgCl(2) in drinking water) resulted in a male-specific increase in TNFα protein expression in the cerebellum and hippocampus. These findings are consistent with our previously reported male-specific mercury-induced deficits in social behavior and further support a role for heavy metals exposure in neuropathologies such as autism. Subsequent studies should further evaluate the mechanism of action and biological consequences of heavy metals exposure. Additionally, these observations highlight the potential of neuroimmune markers in male voles as biomarkers of environmental mercury toxicity.
Collapse
Affiliation(s)
- J Thomas Curtis
- Department of Pharmacology/Physiology, Oklahoma State University Center for Health Sciences, 1111 West 17th Street, Tulsa, OK 74107, United States
| | | | | | | |
Collapse
|
236
|
Tomljenovic L, Shaw CA. Do aluminum vaccine adjuvants contribute to the rising prevalence of autism? J Inorg Biochem 2011; 105:1489-99. [PMID: 22099159 DOI: 10.1016/j.jinorgbio.2011.08.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/13/2011] [Accepted: 08/14/2011] [Indexed: 12/26/2022]
Abstract
Autism spectrum disorders (ASD) are serious multisystem developmental disorders and an urgent global public health concern. Dysfunctional immunity and impaired brain function are core deficits in ASD. Aluminum (Al), the most commonly used vaccine adjuvant, is a demonstrated neurotoxin and a strong immune stimulator. Hence, adjuvant Al has the potential to induce neuroimmune disorders. When assessing adjuvant toxicity in children, two key points ought to be considered: (i) children should not be viewed as "small adults" as their unique physiology makes them much more vulnerable to toxic insults; and (ii) if exposure to Al from only few vaccines can lead to cognitive impairment and autoimmunity in adults, is it unreasonable to question whether the current pediatric schedules, often containing 18 Al adjuvanted vaccines, are safe for children? By applying Hill's criteria for establishing causality between exposure and outcome we investigated whether exposure to Al from vaccines could be contributing to the rise in ASD prevalence in the Western world. Our results show that: (i) children from countries with the highest ASD prevalence appear to have the highest exposure to Al from vaccines; (ii) the increase in exposure to Al adjuvants significantly correlates with the increase in ASD prevalence in the United States observed over the last two decades (Pearson r=0.92, p<0.0001); and (iii) a significant correlation exists between the amounts of Al administered to preschool children and the current prevalence of ASD in seven Western countries, particularly at 3-4 months of age (Pearson r=0.89-0.94, p=0.0018-0.0248). The application of the Hill's criteria to these data indicates that the correlation between Al in vaccines and ASD may be causal. Because children represent a fraction of the population most at risk for complications following exposure to Al, a more rigorous evaluation of Al adjuvant safety seems warranted.
Collapse
Affiliation(s)
- Lucija Tomljenovic
- Neural Dynamics Research Group, Department of Ophthalmology and Visual Sciences, University of British Columbia, 828 W. 10th Ave, Vancouver, BC, Canada V5Z 1L8.
| | | |
Collapse
|
237
|
Jepson B, Granpeesheh D, Tarbox J, Olive ML, Stott C, Braud S, Yoo JH, Wakefield A, Allen MS. Controlled evaluation of the effects of hyperbaric oxygen therapy on the behavior of 16 children with autism spectrum disorders. J Autism Dev Disord 2011; 41:575-88. [PMID: 20680427 DOI: 10.1007/s10803-010-1075-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hyperbaric oxygen therapy (HBOT) has been used to treat individuals with autism. However, few studies of its effectiveness have been completed. The current study examined the effects of 40 HBOT sessions at 24% oxygen at 1.3 ATA on 11 topographies of directly observed behavior. Five replications of multiple baselines were completed across a total of 16 participants with autism spectrum disorders. No consistent effects were observed across any group or within any individual participant, demonstrating that HBOT was not an effective treatment for the participants in this study. This study represents the first relatively large-scale controlled study evaluating the effects of HBOT at the level of the individual participant, on a wide array of behaviors.
Collapse
Affiliation(s)
- Bryan Jepson
- Thoughtful House Center for Children, Austin, TX, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
238
|
Rossi CC, Van de Water J, Rogers SJ, Amaral DG. Detection of plasma autoantibodies to brain tissue in young children with and without autism spectrum disorders. Brain Behav Immun 2011; 25:1123-35. [PMID: 21420487 PMCID: PMC3313674 DOI: 10.1016/j.bbi.2011.02.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 02/11/2011] [Accepted: 02/17/2011] [Indexed: 01/24/2023] Open
Abstract
Autism spectrum disorders (ASDs) are characterized by impaired language and social skills, often with restricted interests and stereotyped behaviors. A previous investigation of blood plasma from children with ASDs (mean age=5½ years) demonstrated that 21% of samples contained autoantibodies that reacted intensely with GABAergic Golgi neurons of the cerebellum while no samples from non-sibling, typically developing children showed similar staining (Wills et al., 2009). In order to characterize the clinical features of children positive for these autoantibodies, we analyzed plasma samples from children enrolled in the Autism Phenome Project, a multidisciplinary project aimed at identifying subtypes of ASD. Plasma from male and female children (mean age=3.2 years) was analyzed immunohistochemically for the presence of autoantibodies using histological sections of macaque monkey brain. Immunoreactivity to cerebellar Golgi neurons and other presumed interneurons was observed for some samples but there was no difference in the rate of occurrence of these autoantibodies between children with ASD and their typically developing peers. Staining of neurons, punctate profiles in the molecular layer of the dentate gyrus, and neuronal nuclei were also observed. Taken together, 42% of controls and subjects with ASD demonstrated immunoreactivity to some neural element. Interestingly, children whose plasma reacted to brain tissue had scores on the Child Behavior Checklist (CBCL) that indicated increased behavioral and emotional problems. Children whose plasma was immunoreactive with neuronal cell bodies scored higher on multiple CBCL scales. These studies indicate that additional research into the genesis and prevalence of brain-directed autoantibodies is warranted.
Collapse
Affiliation(s)
- Christy C. Rossi
- Department of Psychiatry and Behavioral Sciences, University of California, Davis.
,The M.I.N.D Institute, University of California, Davis.
| | - Judy Van de Water
- The M.I.N.D Institute, University of California, Davis.
,Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis.
,NIEHS Center for Children’s Environmental Health, University of California, Davis.
| | - Sally J. Rogers
- Department of Psychiatry and Behavioral Sciences, University of California, Davis.
,The M.I.N.D Institute, University of California, Davis.
| | - David G. Amaral
- Department of Psychiatry and Behavioral Sciences, University of California, Davis.
,The M.I.N.D Institute, University of California, Davis.
,Center for Neuroscience and California National Primate Research Center, University of California, Davis.
,Corresponding author: University of California, Davis The M.I.N.D Institute 2825 50th Street Sacramento, CA 95817 Phone: (916) 703-0225 Fax: (916) 703-0287
| |
Collapse
|
239
|
Bambini-Junior V, Rodrigues L, Behr GA, Moreira JCF, Riesgo R, Gottfried C. Animal model of autism induced by prenatal exposure to valproate: Behavioral changes and liver parameters. Brain Res 2011; 1408:8-16. [DOI: 10.1016/j.brainres.2011.06.015] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 01/14/2023]
|
240
|
Heo Y, Zhang Y, Gao D, Miller VM, Lawrence DA. Aberrant immune responses in a mouse with behavioral disorders. PLoS One 2011; 6:e20912. [PMID: 21799730 PMCID: PMC3140472 DOI: 10.1371/journal.pone.0020912] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 05/16/2011] [Indexed: 12/25/2022] Open
Abstract
BTBR T+tf/J (BTBR) mice have recently been reported to have behaviors that resemble those of autistic individuals, in that this strain has impairments in social interactions and a restricted repetitive and stereotyped pattern of behaviors. Since immune responses, including autoimmune responses, are known to affect behavior, and individuals with autism have aberrant immune activities, we evaluated the immune system of BTBR mice, and compared their immunity and degree of neuroinflammation with that of C57BL/6 (B6) mice, a highly social control strain, and with F1 offspring. Mice were assessed at postnatal day (pnd) 21 and after behavioral analysis at pnd70. BTBR mice had significantly higher amounts of serum IgG and IgE, of IgG anti-brain antibodies (Abs), and of IgG and IgE deposited in the brain, elevated expression of cytokines, especially IL-33 IL-18, and IL-1β in the brain, and an increased proportion of MHC class II-expressing microglia compared to B6 mice. The F1 mice had intermediate levels of Abs and cytokines as well as social activity. The high Ab levels of BTBR mice are in agreement with their increased numbers of CD40(hi)/I-A(hi) B cells and IgG-secreting B cells. Upon immunization with KLH, the BTBR mice produced 2-3 times more anti-KLH Abs than B6 mice. In contrast to humoral immunity, BTBR mice are significantly more susceptible to listeriosis than B6 or BALB/c mice. The Th2-like immune profile of the BTBR mice and their constitutive neuroinflammation suggests that an autoimmune profile is implicated in their aberrant behaviors, as has been suggested for some humans with autism.
Collapse
Affiliation(s)
- Yong Heo
- College of Natural Sciences, Catholic University of Daegu, Kyongsan-si, Republic of Korea
| | - Yubin Zhang
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- University at Albany School of Public Health, Albany, New York, United States of America
| | - Donghong Gao
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Veronica M. Miller
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - David A. Lawrence
- Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- University at Albany School of Public Health, Albany, New York, United States of America
| |
Collapse
|
241
|
Mandal M, Marzouk AC, Donnelly R, Ponzio NM. Maternal immune stimulation during pregnancy affects adaptive immunity in offspring to promote development of TH17 cells. Brain Behav Immun 2011; 25:863-71. [PMID: 20854892 DOI: 10.1016/j.bbi.2010.09.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 01/09/2023] Open
Abstract
Behavioral abnormalities in offspring of murine dams that receive immune stimulation with (poly)I:C during pregnancy are well-documented. In this prenatal model, (poly)I:C-induced maternal cytokines, particularly IL-6, appear involved in the etiology of the behavioral abnormalities. While much has been published on the abnormal behaviors of offspring in this model, much less is known about how maternal immune stimulation affects the adaptive immune system of the offspring, and its possible role in the observed pathophysiology. In the present study, pregnant dams were stimulated with (poly)I:C at E12, and 24h later cytokine levels were measured in maternal sera and amniotic fluids. Lymphocytes from offspring were also analyzed for T Helper (TH) cell subsets. The results demonstrate that lymphocytes from offspring of pregnant dams stimulated with (poly)I:C develop into TH17 cells upon in vitro activation. This preferential TH17 cell differentiation occurs in offspring of pregnant dams with an immunological "memory" phenotype, but not in offspring of immunologically "naive" dams. Comparable levels of IL-6 were found in the sera of immune and naïve pregnant dams, however, there was a disparity between levels of IL-6 in maternal sera and amniotic fluids of (poly)I:C-injected dams. In matings between IL-6 KO dams (IL-6-/-) and wild-type males (IL-6+/+) there was no IL-6 in sera from (poly)I:C-injected dams, but there were high levels of IL-6 in their amniotic fluids. Analysis of supernatants of cultured placental cell preparations from these IL-6 KO dams confirmed that the IL-6 was produced from the fetal (IL-6+/-) component, and heterozygous IL-6+/- offspring could also produce IL-6.
Collapse
Affiliation(s)
- Mili Mandal
- UMDNJ - Graduate School of Biomedical Sciences, NJ, USA
| | | | | | | |
Collapse
|
242
|
Developing a Deeper Understanding of Autism: Connecting Knowledge through Literature Mining. AUTISM RESEARCH AND TREATMENT 2011; 2011:307152. [PMID: 22937244 PMCID: PMC3420468 DOI: 10.1155/2011/307152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 04/13/2011] [Indexed: 02/07/2023]
Abstract
In the field of autism, an enormous increase in available information makes it very difficult to connect fragments of knowledge into a more coherent picture. We present a literature mining method, RaJoLink, to search for matched themes in unrelated literature that may contribute to a better understanding of complex pathological conditions, such as autism. 214 full text articles on autism, published in PubMed, served as a source of data. Using ontology construction, we identified the main concepts of what is already known about autism. Then, the RaJoLink method, based on Swanson's ABC model, was used to reveal potentially interesting, but not yet investigated, connections between different concepts in research. Among the more interesting concepts identified with RaJoLink in our study were calcineurin and NF-kappaB. Both terms can be linked to neuro-immune abnormalities in the brain of patients with autism. Further research is needed to provide stronger evidence about calcineurin and NF-kappaB involvement in autism. However, the analysis presented confirms that this method could support experts on their way towards discovering hidden relationships and towards a better understanding of the disorder.
Collapse
|
243
|
Albertini R, Bianchi R. Aquaporins and glia. Curr Neuropharmacol 2011; 8:84-91. [PMID: 21119878 DOI: 10.2174/157015910791233178] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2009] [Revised: 03/01/2010] [Accepted: 04/07/2010] [Indexed: 01/12/2023] Open
Abstract
Glial cells coordinate the differentiation, metabolism, and excitability of neurons; they modulate synaptic transmission and integrate signals emanating from neurons and other glial cells. Several evidences underlying the relation between these pathways and the regulatory mechanisms of ion concentration, supporting the role of Aquaporins (AQPs) in these processes. The goal of this review is to summarize the localization of different isoforms of AQPs in relation to glial cells both in central and peripheral nervous system, underlying AQP involvement in physiological and in pathophysiological conditions such as brain edema, glioma and epilepsy.
Collapse
Affiliation(s)
- Roberta Albertini
- Division of Human Anatomy, Department of Biomedical Sciences and Biotechnologies, University of Brescia, V.le Europa 11, 25123 Brescia, Italy.
| | | |
Collapse
|
244
|
Naik US, Gangadharan C, Abbagani K, Nagalla B, Dasari N, Manna SK. A study of nuclear transcription factor-kappa B in childhood autism. PLoS One 2011; 6:e19488. [PMID: 21573053 PMCID: PMC3090385 DOI: 10.1371/journal.pone.0019488] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 04/08/2011] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Several children with autism show regression in language and social development while maintaining normal motor milestones. A clear period of normal development followed by regression and subsequent improvement with treatment, suggests a multifactorial etiology. The role of inflammation in autism is now a major area of study. Viral and bacterial infections, hypoxia, or medication could affect both foetus and infant. These stressors could upregulate transcription factors like nuclear factor kappa B (NF-κB), a master switch for many genes including some implicated in autism like tumor necrosis factor (TNF). On this hypothesis, it was proposed to determine NF-κB in children with autism. METHODS Peripheral blood samples of 67 children with autism and 29 control children were evaluated for NF-κB using electrophoretic mobility shift assay (EMSA). A phosphor imaging technique was used to quantify values. The fold increase over the control sample was calculated and statistical analysis was carried out using SPSS 15. RESULTS We have noted significant increase in NF-κB DNA binding activity in peripheral blood samples of children with autism. When the fold increase of NF-κB in cases (n = 67) was compared with that of controls (n = 29), there was a significant difference (3.14 vs. 1.40, respectively; p<0.02). CONCLUSION This finding has immense value in understanding many of the known biochemical changes reported in autism. As NF-κB is a response to stressors of several kinds and a master switch for many genes, autism may then arise at least in part from an NF-κB pathway gone awry.
Collapse
Affiliation(s)
- Usha S. Naik
- Department of Psychiatry, Osmania Medical College, Hyderabad,
India
| | - Charitha Gangadharan
- Laboratory of Immunology, Centre for DNA Fingerprinting and Diagnostics,
Nampally, Hyderabad, India
| | | | | | - Niranjan Dasari
- Department of Psychiatry, Osmania Medical College, Hyderabad,
India
| | - Sunil K. Manna
- Laboratory of Immunology, Centre for DNA Fingerprinting and Diagnostics,
Nampally, Hyderabad, India
| |
Collapse
|
245
|
Hsiao EY, Patterson PH. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav Immun 2011; 25:604-15. [PMID: 21195166 PMCID: PMC3081363 DOI: 10.1016/j.bbi.2010.12.017] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 02/08/2023] Open
Abstract
Activation of the maternal immune system in rodent models sets in motion a cascade of molecular pathways that ultimately result in autism- and schizophrenia-related behaviors in offspring. The finding that interleukin-6 (IL-6) is a crucial mediator of these effects led us to examine the mechanism by which this cytokine influences fetal development in vivo. Here we focus on the placenta as the site of direct interaction between mother and fetus and as a principal modulator of fetal development. We find that maternal immune activation (MIA) with a viral mimic, synthetic double-stranded RNA (poly(I:C)), increases IL-6 mRNA as well as maternally-derived IL-6 protein in the placenta. Placentas from MIA mothers exhibit increases in CD69+ decidual macrophages, granulocytes and uterine NK cells, indicating elevated early immune activation. Maternally-derived IL-6 mediates activation of the JAK/STAT3 pathway specifically in the spongiotrophoblast layer of the placenta, which results in expression of acute phase genes. Importantly, this parallels an IL-6-dependent disruption of the growth hormone-insulin-like growth factor (GH-IGF) axis that is characterized by decreased GH, IGFI and IGFBP3 levels. In addition, we observe an IL-6-dependent induction in pro-lactin-like protein-K (PLP-K) expression as well as MIA-related alterations in other placental endocrine factors. Together, these IL-6-mediated effects of MIA on the placenta represent an indirect mechanism by which MIA can alter fetal development.
Collapse
|
246
|
Garrecht M, Austin DW. The plausibility of a role for mercury in the etiology of autism: a cellular perspective. TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY 2011; 93:1251-1273. [PMID: 22163375 PMCID: PMC3173748 DOI: 10.1080/02772248.2011.580588] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 04/10/2011] [Indexed: 05/23/2023]
Abstract
Autism is defined by a behavioral set of stereotypic and repetitious behavioral patterns in combination with social and communication deficits. There is emerging evidence supporting the hypothesis that autism may result from a combination of genetic susceptibility and exposure to environmental toxins at critical moments in development. Mercury (Hg) is recognized as a ubiquitous environmental neurotoxin and there is mounting evidence linking it to neurodevelopmental disorders, including autism. Of course, the evidence is not derived from experimental trials with humans but rather from methods focusing on biomarkers of Hg damage, measurements of Hg exposure, epidemiological data, and animal studies. For ethical reasons, controlled Hg exposure in humans will never be conducted. Therefore, to properly evaluate the Hg-autism etiological hypothesis, it is essential to first establish the biological plausibility of the hypothesis. This review examines the plausibility of Hg as the primary etiological agent driving the cellular mechanisms by which Hg-induced neurotoxicity may result in the physiological attributes of autism. Key areas of focus include: (1) route and cellular mechanisms of Hg exposure in autism; (2) current research and examples of possible genetic variables that are linked to both Hg sensitivity and autism; (3) the role Hg may play as an environmental toxin fueling the oxidative stress found in autism; (4) role of mitochondrial dysfunction; and (5) possible role of Hg in abnormal neuroexcitory and excitotoxity that may play a role in the immune dysregulation found in autism. Future research directions that would assist in addressing the gaps in our knowledge are proposed.
Collapse
Affiliation(s)
- Matthew Garrecht
- Swinburne Autism Bio-Research Initiative, Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - David W. Austin
- Swinburne Autism Bio-Research Initiative, Faculty of Life and Social Sciences, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
247
|
COMPOSITION, PROPERTIES AND NUTRITIONAL ASPECTS OF MILK FAT GLOBULE MEMBRANE – A REVIEW. POL J FOOD NUTR SCI 2011. [DOI: 10.2478/v10222-011-0001-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
248
|
Glutathione pathway gene variation and risk of autism spectrum disorders. J Neurodev Disord 2011; 3:132-43. [PMID: 21484198 PMCID: PMC3188290 DOI: 10.1007/s11689-011-9077-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 02/05/2011] [Indexed: 12/22/2022] Open
Abstract
Despite evidence that autism is highly heritable with estimates of 15 or more genes involved, few studies have directly examined associations of multiple gene interactions. Since inability to effectively combat oxidative stress has been suggested as a mechanism of autism, we examined genetic variation 42 genes (308 single-nucleotide polymorphisms (SNPs)) related to glutathione, the most important antioxidant in the brain, for both marginal association and multi-gene interaction among 318 case–parent trios from The Autism Genetic Resource Exchange. Models of multi-SNP interactions were estimated using the trio Logic Regression method. A three-SNP joint effect was observed for genotype combinations of SNPs in glutaredoxin, glutaredoxin 3 (GLRX3), and cystathione gamma lyase (CTH); OR = 3.78, 95% CI: 2.36, 6.04. Marginal associations were observed for four genes including two involved in the three-way interaction: CTH, alcohol dehydrogenase 5, gamma-glutamylcysteine synthetase, catalytic subunit and GLRX3. These results suggest that variation in genes involved in counterbalancing oxidative stress may contribute to autism, though replication is necessary.
Collapse
|
249
|
Goines P, Haapanen L, Boyce R, Duncanson P, Braunschweig D, Delwiche L, Hansen R, Hertz-Picciotto I, Ashwood P, Van de Water J. Autoantibodies to cerebellum in children with autism associate with behavior. Brain Behav Immun 2011; 25:514-23. [PMID: 21134442 PMCID: PMC3039058 DOI: 10.1016/j.bbi.2010.11.017] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/18/2010] [Accepted: 11/30/2010] [Indexed: 11/24/2022] Open
Abstract
Autism is a heterogeneous disorder with a poorly understood biological basis. Some children with autism harbor plasma autoantibodies that target brain proteins. Similarly, some mothers of children with autism produce antibodies specific to autism that target pairs of fetal brain proteins at 37/73 and 39/73 kDa. We explored the relationship between the presence of brain-specific autoantibodies and several behavioral characteristics of autism in 277 children with an autism spectrum disorder and 189 typically developing age-matched controls. Further, we used maternal autoantibody data to investigate potential familial relationships for the production of brain-directed autoantibodies. We demonstrated by Western blot that autoantibodies specific for a 45 kDa cerebellar protein in children were associated with a diagnosis of autism (p=0.017) while autoantibodies directed towards a 62 kDa protein were associated with the broader diagnosis of autism spectrum disorder (ASD) (p=0.043). Children with such autoantibodies had lower adaptive (p=0.0008) and cognitive function (p=0.005), as well as increased aberrant behaviors (p<0.05) compared to children without these antibodies. No correlation was noted for those mothers with the most specific pattern of anti-fetal brain autoantibodies and children with the autoantibodies to either the 45 or 62 kDa bands. Collectively, these data suggest that antibodies towards brain proteins in children are associated with lower adaptive and cognitive function as well as core behaviors associated with autism. It is unclear whether these antibodies have direct pathologic significance, or if they are merely a response to previous injury. Future studies are needed to determine the identities of the protein targets and explore their significance in autism.
Collapse
Affiliation(s)
- Paula Goines
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
- M.I.N.D. Institute, University of California at Davis
| | - Lori Haapanen
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
- M.I.N.D. Institute, University of California at Davis
| | - Robert Boyce
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
- M.I.N.D. Institute, University of California at Davis
| | - Paul Duncanson
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
- M.I.N.D. Institute, University of California at Davis
| | - Daniel Braunschweig
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
- M.I.N.D. Institute, University of California at Davis
| | - Lora Delwiche
- Department of Public Health Sciences, University of California at Davis
- Children’s Center for Environmental Health
| | - Robin Hansen
- M.I.N.D. Institute, University of California at Davis
- Children’s Center for Environmental Health
- Department of Pediatrics, University of California at Davis
| | - Irva Hertz-Picciotto
- M.I.N.D. Institute, University of California at Davis
- Department of Public Health Sciences, University of California at Davis
- Children’s Center for Environmental Health
| | - Paul Ashwood
- M.I.N.D. Institute, University of California at Davis
- Department of Medical Microbiology and Immunology, UC Davis, Davis, CA
| | - Judy Van de Water
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis
- M.I.N.D. Institute, University of California at Davis
| |
Collapse
|
250
|
Deng MY, Lam S, Meyer U, Feldon J, Li Q, Wei R, Luk L, Chua SE, Sham P, Wang Y, McAlonan GM. Frontal-subcortical protein expression following prenatal exposure to maternal inflammation. PLoS One 2011; 6:e16638. [PMID: 21347362 PMCID: PMC3037372 DOI: 10.1371/journal.pone.0016638] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 12/30/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Maternal immune activation (MIA) during prenatal life is a risk factor for neurodevelopmental disorders including schizophrenia and autism. Such conditions are associated with alterations in fronto-subcortical circuits, but their molecular basis is far from clear. METHODOLOGY/PRINCIPAL FINDINGS Using two-dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry, with targeted western blot analyses for confirmation, we investigated the impact of MIA on the prefrontal and striatal proteome from an established MIA mouse model generated in C57B6 mice, by administering the viral analogue PolyI:C or saline vehicle (control) intravenously on gestation day (GD) 9. In striatum, 11 proteins were up-regulated and 4 proteins were down-regulated in the PolyI:C mice, while 10 proteins were up-regulated and 7 proteins down-regulated in prefrontal cortex (PFC). These were proteins involved in the mitogen-activated protein kinase (MAPK) signaling pathway, oxidation and auto-immune targets, including dual specificity mitogen-activated protein kinase kinase 1 (MEK), eukaryotic initiation factor (eIF) 4A-II, creatine kinase (CK)-B, L-lactate dehydrogenase (LDH)-B, WD repeat-containing protein and NADH dehydrogenase in the striatum; and guanine nucleotide-binding protein (G-protein), 14-3-3 protein, alpha-enolase, olfactory maker protein and heat shock proteins (HSP) 60, and 90-beta in the PFC. CONCLUSIONS/SIGNIFICANCE This data fits with emerging evidence for disruption of critical converging intracellular pathways involving MAPK pathways in neurodevelopmental conditions and it shows considerable overlap with protein pathways identified by genetic modeling and clinical post-mortem studies. This has implications for understanding causality and may offer potential biomarkers and novel treatment targets for neurodevelopmental conditions.
Collapse
Affiliation(s)
- Michelle Y. Deng
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Sylvia Lam
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Urs Meyer
- Laboratory and Behavioral Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schwerzenbach, Switzerland
| | - Joram Feldon
- Laboratory and Behavioral Neurobiology, Swiss Federal Institute of Technology Zurich (ETH), Schwerzenbach, Switzerland
| | - Qi Li
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Ran Wei
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Lawrence Luk
- Genome Research Centre, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Siew Eng Chua
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
- State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Pak Sham
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
- State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Yu Wang
- Department of Pharmacology, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
| | - Grainne Mary McAlonan
- Department of Psychiatry, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
- State Key Laboratory for Brain and Cognitive Sciences, University of Hong Kong, Hong Kong, Special Administrative Region, People's Republic of China
- * E-mail:
| |
Collapse
|