201
|
Risueño RM, Ortiz AR, Alarcón B. Conformational Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:103-12. [DOI: 10.1007/978-0-387-09789-3_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
202
|
Signaling Chain Homooligomerization (SCHOOL) Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:121-63. [DOI: 10.1007/978-0-387-09789-3_12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
203
|
Abstract
Ligand binding to the multichain immune recognition receptors (MIRRs) leads to receptor triggering and subsequent lymphocyte activation. MIRR signal transduction pathways have been extensively studied, but it is still not clear how binding of the ligand to the receptor is initially communicated across the plasma membrane to the cells interior. Models proposed for MIRR triggering can be grouped into three categories. Firstly, ligand binding invokes receptor clustering, resulting in the approximation of kinases to the MIRR and receptor phosphorylation. Secondly, ligand binding induces a conformational change of the receptor. Thirdly, upon ligand-binding, receptors and kinases are segregated from phosphatases, leading to a net phosphorylation of the receptor. In this review, we focus on the homodclustering induced by multivalent ligands, the heterodustering induced by simultaneous binding of the ligand to the MIRR and a coreceptor and the pseudodimer model.
Collapse
|
204
|
Minguet S, Schamel WWA. Permissive geometry model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 640:113-20. [PMID: 19065789 DOI: 10.1007/978-0-387-09789-3_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ligand binding to the T-cell antigen receptor (TCR) evokes receptor triggering and subsequent T-lymphocyte activation. Although TCR signal transduction pathways have been extensively studied, a satisfactory mechanism that rationalizes how the information of ligand binding to the receptor is transmitted into the cell remains elusive. Models proposed for TCR triggering can be grouped into two main conceptual categories: receptor clustering by ligand binding and induction of conformational changes within the TCR. None of these models or their variations (see Chapter 6 for details) can satisfactorily account for the diverse experimental observations regarding TCR triggering. Clustering models are not compatible with the presence of preformed oligomeric receptors on the surface of resting cells. Models based on conformational changes induced as a direct effect of ligand binding, are not consistent with the requirement for multivalent ligand to initiate TCR signaling. In this chapter, we discuss the permissive geometry model. This model integrates receptor clustering and conformational change models, together with the existence of preformed oligomeric receptors, providing a mechanism to explain TCR signal initiation.
Collapse
Affiliation(s)
- Susana Minguet
- Department of Molecular Immunology, Max Planck-Institute for Immunobiology, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
205
|
Rosshart S, Hofmann M, Schweier O, Pfaff AK, Yoshimoto K, Takeuchi T, Molnar E, Schamel WW, Pircher H. Interaction of KLRG1 with E-cadherin: New functional and structural insights. Eur J Immunol 2008; 38:3354-64. [DOI: 10.1002/eji.200838690] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
206
|
Wittig I, Schägger H. Features and applications of blue-native and clear-native electrophoresis. Proteomics 2008; 8:3974-90. [DOI: 10.1002/pmic.200800017] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
207
|
He HT, Marguet D. T-cell antigen receptor triggering and lipid rafts: a matter of space and time scales. Talking Point on the involvement of lipid rafts in T-cell activation. EMBO Rep 2008; 9:525-30. [PMID: 18516087 DOI: 10.1038/embor.2008.78] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 04/21/2008] [Indexed: 11/09/2022] Open
Abstract
T-cell antigen receptor triggering mechanisms and lipid rafts are of broad interest, but are also controversial topics. Here, we review some recent progress in these two research fields, which has been accomplished mostly in live cells and with the use of advanced technologies. We then discuss the potential relationship between membrane-domain organization and T-cell antigen receptor-triggering mechanisms. On the basis of the relevant experimental observations, we argue that the key to achieving a better understanding of both processes is the ability to monitor the molecular dynamics and interactions taking place in the membrane of T cells at a spatial scale of tens to hundreds of nanometres, with a subsecond-to-second temporal resolution.
Collapse
Affiliation(s)
- Hai-Tao He
- Centre d'Immunologie de Marseille-Luminy, Case 906, F13288 Marseille Cedex 09, France.
| | | |
Collapse
|
208
|
Rossi NE, Reine J, Pineda-Lezamit M, Pulgar M, Meza NW, Swamy M, Risueno R, Schamel WWA, Bonay P, Fernandez-Malave E, Regueiro JR. Differential antibody binding to the surface TCR{middle dot}CD3 complex of CD4+ and CD8+ T lymphocytes is conserved in mammals and associated with differential glycosylation. Int Immunol 2008; 20:1247-58. [DOI: 10.1093/intimm/dxn081] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
209
|
Cairo CW, Golan DE. T cell adhesion mechanisms revealed by receptor lateral mobility. Biopolymers 2008; 89:409-19. [PMID: 18041065 DOI: 10.1002/bip.20898] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell surface receptors mediate the exchange of information between cells and their environment. In the case of adhesion receptors, the spatial distribution and molecular associations of the receptors are critical to their function. Therefore, understanding the mechanisms regulating the distribution and binding associations of these molecules is necessary to understand their functional regulation. Experiments characterizing the lateral mobility of adhesion receptors have revealed a set of common mechanisms that control receptor function and thus cellular behavior. The T cell provides one of the most dynamic examples of cellular adhesion. An individual T cell makes innumerable intercellular contacts with antigen presenting cells, the vascular endothelium, and many other cell types. We review here the mechanisms that regulate T cell adhesion receptor lateral mobility as a window into the molecular regulation of these systems, and we present a general framework for understanding the principles and mechanisms that are likely to be common among these and other cellular adhesion systems. We suggest that receptor lateral mobility is regulated via four major mechanisms-reorganization, recruitment, dispersion, and anchoring-and we review specific examples of T cell adhesion receptor systems that utilize one or more of these mechanisms.
Collapse
Affiliation(s)
- Christopher W Cairo
- Department of Chemistry, Alberta Ingenuity Centre for Carbohydrate Science, University of Alberta, Edmonton, Alberta, Canada T6G 2G2.
| | | |
Collapse
|
210
|
Miller JL, Coq JL, Hodes A, Barbalat R, Miller JF, Ghosh P. Selective ligand recognition by a diversity-generating retroelement variable protein. PLoS Biol 2008; 6:e131. [PMID: 18532877 PMCID: PMC2408619 DOI: 10.1371/journal.pbio.0060131] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 04/17/2008] [Indexed: 01/28/2023] Open
Abstract
Diversity-generating retroelements (DGRs) recognize novel ligands through massive protein sequence variation, a property shared uniquely with the adaptive immune response. Little is known about how recognition is achieved by DGR variable proteins. Here, we present the structure of the Bordetella bacteriophage DGR variable protein major tropism determinant (Mtd) bound to the receptor pertactin, revealing remarkable adaptability in the static binding sites of Mtd. Despite large dissimilarities in ligand binding mode, principles underlying selective recognition were strikingly conserved between Mtd and immunoreceptors. Central to this was the differential amplification of binding strengths by avidity (i.e., multivalency), which not only relaxed the demand for optimal complementarity between Mtd and pertactin but also enhanced distinctions among binding events to provide selectivity. A quantitatively similar balance between complementarity and avidity was observed for Bordetella bacteriophage DGR as occurs in the immune system, suggesting that variable repertoires operate under a narrow set of conditions to recognize novel ligands.
Collapse
Affiliation(s)
- Jason L Miller
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Johanne Le Coq
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Asher Hodes
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America
- The Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Roman Barbalat
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America
- The Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jeff F Miller
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, California, United States of America
- The Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Section of Molecular Biology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
211
|
Abstract
Much effort has been devoted to the design of vaccines that induce adaptive cellular immunity, in particular CD8+ T cells, which have a central role in the host response to viral infections and cancers. To date, however, the development of effective T cell vaccines remains elusive. This is due, in part, to the lack of clearly defined correlates of protection and the inherent difficulties that hinder full characterization of the determinants of successful T cell immunity in humans. Recent data from the disparate fields of infectious disease and tumor immunology have converged, with an emphasis on the functional attributes of individual antigen-specific T cell clonotypes, to provide a better understanding of CD8+ T cell efficacy. This new knowledge paves the way to the design of more effective T cell vaccines and highlights the importance of comprehensive immunomonitoring.
Collapse
Affiliation(s)
- Victor Appay
- Cellular Immunology Laboratory, Institut Nationale de la Santé et de la Recherche Médicale U543, Avenir Group, Hôpital Pitié-Salpêtrière, Université Pierre et Marie Curie Paris 06, 91 Boulevard de l'hôpital, 75013 Paris, France.
| | | | | |
Collapse
|
212
|
|
213
|
Rubin B. Reply. Scand J Immunol 2008. [DOI: 10.1111/j.1365-3083.2008.02084.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
214
|
Schamel WW. Two‐Dimensional Blue Native Polyacrylamide Gel Electrophoresis. ACTA ACUST UNITED AC 2008; Chapter 6:Unit 6.10. [DOI: 10.1002/0471143030.cb0610s38] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wolfgang W.A. Schamel
- Max Planck‐Institut fµr Immunbiologie und Universität Freiburg, Biologie III Freiburg Germany
| |
Collapse
|
215
|
The extracellular part of ζ is buried in the T cell antigen receptor complex. Immunol Lett 2008; 116:203-10. [DOI: 10.1016/j.imlet.2007.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 11/27/2007] [Accepted: 11/30/2007] [Indexed: 11/22/2022]
|
216
|
Swamy M, Dopfer EP, Molnar E, Alarcón B, Schamel WWA. The 450 kDa TCR Complex has a Stoichiometry of alphabetagammaepsilondeltaepsilonzetazeta. Scand J Immunol 2008; 67:418-20; author reply 421. [PMID: 18282230 DOI: 10.1111/j.1365-3083.2008.02082.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
217
|
A permissive geometry model for TCR–CD3 activation. Trends Biochem Sci 2008; 33:51-7. [DOI: 10.1016/j.tibs.2007.10.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Revised: 10/09/2007] [Accepted: 10/19/2007] [Indexed: 01/23/2023]
|
218
|
Abstract
Protein-protein interactions play a central role in biological processes and thus are an appealing target for innovative drug design a nd development. They can be targeted bysmall molecule inhibitors, peptides and peptidomimetics, which represent an alternative to protein therapeutics that carry many disadvantages. In this chapter, I describe specific protein-protein interactions suggested by a novel model of immune signaling, the Signaling Chain HOmoOLigomerization (SCHOOL) model, to be critical for cell activation mediated by multichain immune recognition receptors (MIRRs) expressed on different cells of the hematopoietic system. Unraveling a long-standing mystery of MIRR triggering and transmembrane signaling, the SCHOOL model reveals the intrareceptor transmembrane interactions and interreceptor cytoplasmic homointeractions as universal therapeutic targets for a diverse variety of disorders mediated by immune cells. Further, assuming that the general principles underlying MIRR-mediated transmembrane signaling mechanisms are similar, the SCHOOL model can be applied to any particular receptor of the MIRR family. Thus, an important application of the SCHOOL model is that global therapeutic strategies targeting key protein-protein interactions involved in MIRR triggering and transmembrane signal transduction may be used to treat a diverse set of immune-mediated diseases. This assumes that clinical knowledge and therapeutic strategies can be transferred between seemingly disparate disorders, such as T-cell-mediated skin diseases and platelet disorders, or combined to develop novel pharmacological approaches. Intriguingly, the SCHOOL model unravels the molecular mechanisms underlying ability of different human viruses such as human immunodeficiency virus, cytomegalovirus and severe acute respiratory syndrome coronavirus to modulate and/or escape the host immune response. It also demonstrates how the lessons learned from viral pathogenesis can be used practically for rational drug design. Application of this model to platelet collagen receptor signaling has already led to the development of a novel concept of platelet inhibition and the invention of new platelet inhibitors, thus proving the suggested hypothesis and highlighting the importance and broad perspectives of the SCHOOL model in the development of new targeting strategies.
Collapse
|
219
|
|
220
|
Common themes in the assembly and architecture of activating immune receptors. Nat Rev Immunol 2007; 7:841-50. [PMID: 17960150 DOI: 10.1038/nri2186] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Each of the many different cell types of the immune system expresses one or several activating receptors which serve a central role in the cell's surveillance function. Many of these cell-surface receptors share a distinctive modular design that consists of a ligand-binding module with no intrinsic signalling capability that is non-covalently associated with one or more dimeric signalling modules. Receptor assembly is directed by unique polar contacts within the transmembrane domains, whereas extracellular contacts can contribute to stability and specificity. This Review discusses the structural basis of receptor assembly and the implications of these findings for the mechanisms of receptor triggering.
Collapse
|
221
|
James JR, White SS, Clarke RW, Johansen AM, Dunne PD, Sleep DL, Fitzgerald WJ, Davis SJ, Klenerman D. Single-molecule level analysis of the subunit composition of the T cell receptor on live T cells. Proc Natl Acad Sci U S A 2007; 104:17662-7. [PMID: 17971442 PMCID: PMC2077052 DOI: 10.1073/pnas.0700411104] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Indexed: 11/18/2022] Open
Abstract
The T cell receptor (TCR) expressed on most T cells is a protein complex consisting of TCRalphabeta heterodimers that bind antigen and cluster of differentiation (CD) 3epsilondelta, epsilongamma, and zetazeta dimers that initiate signaling. A long-standing controversy concerns whether there is one, or more than one, alphabeta heterodimer per complex. We used a form of single-molecule spectroscopy to investigate this question on live T cell hybridomas. The method relies on detecting coincident fluorescence from single molecules labeled with two different fluorophores, as the molecules diffuse through a confocal volume. The fraction of events that are coincident above the statistical background is defined as the "association quotient," Q. In control experiments, Q was significantly higher for cells incubated with wheat germ agglutinin dual-labeled with Alexa488 and Alexa647 than for cells incubated with singly labeled wheat germ agglutinin. Similarly, cells expressing the homodimer, CD28, gave larger values of Q than cells expressing the monomer, CD86, when incubated with mixtures of Alexa488- and Alexa647-labeled antibody Fab fragments. T cell hybridomas incubated with mixtures of anti-TCRbeta Fab fragments labeled with each fluorophore gave a Q value indistinguishable from the Q value for CD86, indicating that the dominant form of the TCR comprises single alphabeta heterodimers. The values of Q obtained for CD86 and the TCR were low but nonzero, suggesting that there is transient or nonrandom confinement, or diffuse clustering of molecules at the T cell surface. This general method for analyzing the subunit composition of protein complexes could be extended to other cell surface or intracellular complexes, and other living cells.
Collapse
MESH Headings
- Animals
- B7-2 Antigen/chemistry
- CD28 Antigens/chemistry
- Dimerization
- Hybridomas/immunology
- Mice
- Models, Molecular
- Peptide Fragments/chemistry
- Protein Subunits/chemistry
- Receptor-CD3 Complex, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- John R. James
- *Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom
| | - Samuel S. White
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Richard W. Clarke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Adam M. Johansen
- The Signal Processing and Communications Laboratory, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
| | - Paul D. Dunne
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David L. Sleep
- *Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom
| | - William J. Fitzgerald
- The Signal Processing and Communications Laboratory, Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom
| | - Simon J. Davis
- *Nuffield Department of Clinical Medicine and Medical Research Council Human Immunology Unit, The Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford OX3 9DS, United Kingdom
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
222
|
Rufer E, Leonhardt RM, Knittler MR. Molecular Architecture of the TAP-Associated MHC Class I Peptide-Loading Complex. THE JOURNAL OF IMMUNOLOGY 2007; 179:5717-27. [DOI: 10.4049/jimmunol.179.9.5717] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
223
|
Siegers GM, Swamy M, Fernández-Malavé E, Minguet S, Rathmann S, Guardo AC, Pérez-Flores V, Regueiro JR, Alarcón B, Fisch P, Schamel WWA. Different composition of the human and the mouse gammadelta T cell receptor explains different phenotypes of CD3gamma and CD3delta immunodeficiencies. ACTA ACUST UNITED AC 2007; 204:2537-44. [PMID: 17923503 PMCID: PMC2118495 DOI: 10.1084/jem.20070782] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The γδ T cell receptor for antigen (TCR) comprises the clonotypic TCRγδ, the CD3 (CD3γε and/or CD3δε), and the ζζ dimers. γδ T cells do not develop in CD3γ-deficient mice, whereas human patients lacking CD3γ have abundant peripheral blood γδ T cells expressing high γδ TCR levels. In an attempt to identify the molecular basis for these discordant phenotypes, we determined the stoichiometries of mouse and human γδ TCRs using blue native polyacrylamide gel electrophoresis and anti-TCR–specific antibodies. The γδ TCR isolated in digitonin from primary and cultured human γδ T cells includes CD3δ, with a TCRγδCD3ε2δγζ2 stoichiometry. In CD3γ-deficient patients, this may allow substitution of CD3γ by the CD3δ chain and thereby support γδ T cell development. In contrast, the mouse γδ TCR does not incorporate CD3δ and has a TCRγδCD3ε2γ2ζ2 stoichiometry. CD3γ-deficient mice exhibit a block in γδ T cell development. A human, but not a mouse, CD3δ transgene rescues γδ T cell development in mice lacking both mouse CD3δ and CD3γ chains. This suggests important structural and/or functional differences between human and mouse CD3δ chains during γδ T cell development. Collectively, our results indicate that the different γδ T cell phenotypes between CD3γ-deficient humans and mice can be explained by differences in their γδ TCR composition.
Collapse
Affiliation(s)
- Gabrielle M Siegers
- Max-Planck-Institute of Immunobiology and University of Freiburg, 79108 Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Trautmann A. A new light on T cell activation shed by a photoactivatable agonist. Immunity 2007; 27:6-7. [PMID: 17663979 DOI: 10.1016/j.immuni.2007.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Which molecular events control the initiation of a T cell response? In this issue of Immunity, Huse et al. (2007) describe a photoactivatable agonist that will substantially improve our ability to investigate this phenomenon.
Collapse
Affiliation(s)
- Alain Trautmann
- Institut Cochin, Université Paris Descartes, CNRS (UMR 8104), Paris, France; Inserm, U567, Paris, France.
| |
Collapse
|
225
|
Krogsgaard M, Juang J, Davis MM. A role for "self" in T-cell activation. Semin Immunol 2007; 19:236-44. [PMID: 17548210 PMCID: PMC2731063 DOI: 10.1016/j.smim.2007.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 11/24/2022]
Abstract
The mechanisms by which alphabeta T-cells are selected in the thymus and then recognize peptide MHC (pMHC) complexes in the periphery remain an enigma. Recent work particularly with respect to quantification of T-cell sensitivity and the role of self-ligands in T-cell activation has provided some important clues to the details of how TCR signaling might be initiated. Here, we highlight recent experimental data that provides insights into the initiation of T-cell activation and also discuss the main controversies and uncertainties in this area.
Collapse
Affiliation(s)
- Michelle Krogsgaard
- Department of Pathology and NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA.
| | | | | |
Collapse
|
226
|
Choudhuri K, van der Merwe PA. Molecular mechanisms involved in T cell receptor triggering. Semin Immunol 2007; 19:255-61. [PMID: 17560121 DOI: 10.1016/j.smim.2007.04.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 04/14/2007] [Indexed: 12/19/2022]
Abstract
Despite intensive investigation we still do not understand how the T cell antigen receptor (TCR) tranduces signals across the plasma membrane, a process referred to as TCR triggering. Three basic mechanisms have been proposed, involving aggregation, conformational change, or segregation of the TCR upon binding pMHC ligand. Given the low density of pMHC ligand it remains doubtful that TCR aggregation initiates triggering, although it is likely to enhance subsequent signalling. Structural studies to date have not provided definitive evidence for or against a conformational change mechanism, but they have ruled out certain types of conformational change. Size-induced segregation of the bound TCR from inhibitory membrane tyrosine phosphatases seems to be required, but is probably not the only mechanism. Current evidence suggests that TCR triggering is initiated by a combination of segregation and conformational change, with subsequent aggregation contributing to amplification of the signal.
Collapse
Affiliation(s)
- Kaushik Choudhuri
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
227
|
Rubin B, Knibiehler M, Gairin JE. Allosteric Changes in the TCR/CD3 Structure Upon Interaction With Extra- or Intra-cellular Ligands. Scand J Immunol 2007; 66:228-37. [PMID: 17635800 DOI: 10.1111/j.1365-3083.2007.01979.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
T lymphocytes are activated by the interaction between the T-cell antigen receptor (TCR) and peptides presented by major histocompatibility complex (MHC) molecules. The avidity of this TCR-pMHC interaction is very low. Therefore, several hypotheses have been put forward to explain how T cells become specifically activated despite this handicap: conformational change model, aggregation model, kinetic segregation model, sequential interaction model and permissive geometry model. In the present paper, we conducted experiments to distinguish between the TCR-aggregation model and the TCR-conformational change model. The results obtained using a TCR capture ELISA with Brij 98-solubilized TCR molecules from normal or activated T cells showed that the ligand-TCR interaction causes structural changes in the CD3 epsilon cytoplasmic tail as well as in the extracellular TCR beta FG loop region. Size-fractionation experiments with Brij 98-solubilized TCR/CD3/co-receptor complexes from naïve or activated CD4(+) or CD8(+) T cells demonstrated that such complexes are found as either dimers or tetramers. No monomers or multimers were detected. We propose that: (1) ligand-TCR interaction results in conformational changes in the CD3 epsilon cytoplasmic tail leading to T-cell activation; (2) CD3 epsilon cytoplasmic tail interaction with intracellular proteins may dissociate pMHC and co-receptors (CD4 or CD8) from TCR/CD3 complexes, thus leading to the arrest of T-cell activation; and (3) T-cell activation appears to occur among dimers or tetramers of TCR/CD3/co-receptor complexes interacting with self and non-self (foreign) peptide-MHC complexes.
Collapse
MESH Headings
- Allosteric Regulation/immunology
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/metabolism
- CD3 Complex/chemistry
- CD3 Complex/genetics
- CD3 Complex/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Enzyme-Linked Immunosorbent Assay
- Extracellular Fluid/metabolism
- Intracellular Fluid/metabolism
- Ligands
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
Collapse
Affiliation(s)
- B Rubin
- Institut de Sciences et Technologies du Médicament de Toulouse (ISTMT), Toulouse, France.
| | | | | |
Collapse
|
228
|
Peiser M, Becht A, Wanner R. Antibody blocking of MHC II on human activated regulatory T cells abrogates their suppressive potential. Allergy 2007; 62:773-80. [PMID: 17573725 DOI: 10.1111/j.1398-9995.2007.01339.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Natural regulatory CD4(+)CD25(+)Foxp3(+) T cells control peripheral immune responses. Freshly isolated regulatory T-cell populations are regarded as being unable to suppress the proliferation of strongly stimulated effector T cells. We now provide evidence that it is not the strength of the proliferative signal to effector T cells but activation and accessibility of regulatory T cells that determine whether suppression may occur. Human regulatory T cells were initially cocultured with allogeneic monocyte-derived dendritic cells for a short time and were then rendered accessible for effector T cells by removal of the dendritic cells. That way activated regulatory T cells effectively suppressed the proliferation of autologous effector T cells which was strongly driven by cell-sized Dynabeads coated with CD3/CD28 antibodies. Although regulatory T cells are known to display MHC II molecules and to upregulate their expression along with activation, a role of MHC II molecules in forming the contact to effector T cells was not yet envisaged. However, blocking of MHC II on activated regulatory T cells abrogated their suppressive potential. It should not be excluded that self-MHC molecules on physically accessible activated regulatory T cells arrange the contact to effector T cells.
Collapse
Affiliation(s)
- M Peiser
- Institute of Molecular Biology and Bioinformatics, Charité, Berlin, Germany
| | | | | |
Collapse
|
229
|
Abstract
Blue native PAGE (BN-PAGE) can be used for one-step isolation of protein complexes from biological membranes and total cell and tissue homogenates. It can also be used to determine native protein masses and oligomeric states and to identify physiological protein-protein interactions. Native complexes are recovered from gels by electroelution or diffusion and are used for 2D crystallization and electron microscopy or analyzed by in-gel activity assays or by native electroblotting and immunodetection. In this protocol, we describe methodology to perform BN-PAGE followed by (i) native extraction or native electroblotting of separated proteins, or (ii) a second dimension of tricine-SDS-PAGE or modified BN-PAGE, or (iii) a second dimension of isoelectric focusing (IEF) followed by a third dimension of tricine-SDS-PAGE for the separation of subunits of complexes. These protocols for 2D and 3D PAGE can be completed in 2 and 3 days.
Collapse
Affiliation(s)
- Ilka Wittig
- Molekulare Bioenergetik, Zentrum der Biologischen Chemie, Universitätsklinikum Frankfurt, Theodor-Stern-Kai 7, Haus 26, D-60590 Frankfurt, Germany
| | | | | |
Collapse
|
230
|
Abstract
In light of recent data showing that both helper and cytotoxic T cells can detect even a single molecule of an agonist peptide-MHC, alphabeta T cells are clearly a type of sensory cell, comparable to any in the nervous system. In addition, endogenous (self) peptides bound to MHCs are not just important for thymic selection, but also play an integral role in T cell activation in the response to foreign antigens. With the multitude of specificities available to most T cells, they can thus be considered as a sensory organ, trained on self-peptide-MHCs and primed to detect nonself.
Collapse
Affiliation(s)
- Mark M Davis
- Howard Hughes Medical Institute, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California 94305, USA.
| | | | | | | | | | | |
Collapse
|
231
|
Bello R, Feito MJ, Ojeda G, Portolés P, Rojo JM. Loss of N-terminal charged residues of mouse CD3 epsilon chains generates isoforms modulating antigen T cell receptor-mediated signals and T cell receptor-CD3 interactions. J Biol Chem 2007; 282:22324-34. [PMID: 17561508 DOI: 10.1074/jbc.m701875200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The antigen T cell receptor (TCR)-CD3 complexes present on the cell surface of CD4(+) T lymphocytes and T cell lines express CD3 epsilon chain isoforms with different isoelectric points (pI), with important structural and functional consequences. The pI values of the isoforms fit the predicted pI values of CD3 epsilon chains lacking one, two, and three negatively charged amino acid residues present in the N-terminal region. Different T cells have different ratios of CD3 epsilon chain isoforms. At a high pI, degraded CD3 epsilon isoforms can be better recognized by certain anti-CD3 monoclonal antibodies such as YCD3-1, the ability of which to bind to the TCR-CD3 complex is directly correlated with the pI of CD3 epsilon. The abundance of CD3 epsilon isoforms can be modified by treatment of T cells with the proteinase inhibitor phenanthroline. In addition, these CD3 epsilon isoforms have functional importance. This is shown, first, by the different structure of TCR-CD3 complexes in cells possessing different amounts of isoforms (as observed in surface biotinylation experiments), by their different antigen responses, and by the stronger interaction between low pI CD3 epsilon isoforms and the TCR. Second, incubation of cells with phenanthroline diminished the proportion of degraded high pI CD3 epsilon isoforms, but also the ability of the cells to deliver early TCR activation signals. Third, cells expressing mutant CD3 epsilon chains lacking N-terminal acid residues showed facilitated recognition by antibody YCD3-1 and enhanced TCR-mediated activation. Furthermore, the binding avidity of antibody YCD3-1 was different in distinct thymus populations. These results suggest that changes in CD3 epsilon N-terminal chains might help to fine-tune the response of the TCR to its ligands in distinct activation situations or in thymus selection.
Collapse
Affiliation(s)
- Raquel Bello
- Departamento de Fisiopatología Celular y Molecular, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, E-28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
232
|
Swamy M, Minguet S, Siegers GM, Alarcón B, Schamel WWA. A native antibody-based mobility-shift technique (NAMOS-assay) to determine the stoichiometry of multiprotein complexes. J Immunol Methods 2007; 324:74-83. [PMID: 17568608 DOI: 10.1016/j.jim.2007.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 05/03/2007] [Accepted: 05/07/2007] [Indexed: 02/09/2023]
Abstract
Characterization of multiprotein complexes (MPCs) is an important step toward an integrative view of protein interaction networks and prerequisite for a molecular understanding of how a certain MPC functions. Here, we present a technique utilizing monoclonal subunit-specific antibodies for an electrophoretic immunoshift assay in Blue Native-gels (NAMOS-assay), which allows the determination of the stoichiometry of MPCs. First, we use the B cell antigen receptor as a model MPC whose stoichiometry is known, confirming the HC(2)LC(2)Igalpha/beta(1) stoichiometry. Second, we demonstrate that the digitonin-extracted T cell antigen receptor (TCR) extracted from T cells has a stoichiometry of alphabetaepsilon(2)gammadeltazeta(2). We then show that the NAMOS-assay does not require purified MPCs, since it can determine the stoichiometry of an MPC in cell lysates. The NAMOS-assay is also compatible with use of epitope tags appended to the protein of interest, as e.g. the widely used HA-tag, and anti-epitope antibodies for the assay. Given its general applicability, this method has a wide potential for MPC research.
Collapse
MESH Headings
- Animals
- Antibodies/metabolism
- Cell Line
- Cell Line, Tumor
- Electrophoresis, Polyacrylamide Gel
- Electrophoretic Mobility Shift Assay
- Humans
- Immunoglobulin Heavy Chains/metabolism
- Immunoglobulin Light Chains/metabolism
- Mice
- Multiprotein Complexes/chemistry
- Multiprotein Complexes/immunology
- Multiprotein Complexes/metabolism
- Receptors, Antigen, B-Cell/chemistry
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Mahima Swamy
- Max Planck-Institut für Immunbiologie and Universität Freiburg, Biologie III, Stübeweg 51, 79108 Freiburg, Germany
| | | | | | | | | |
Collapse
|
233
|
Boulter JM, Schmitz N, Sewell AK, Godkin AJ, Bachmann MF, Gallimore AM. Potent T cell agonism mediated by a very rapid TCR/pMHC interaction. Eur J Immunol 2007; 37:798-806. [PMID: 17295390 PMCID: PMC2435421 DOI: 10.1002/eji.200636743] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/27/2006] [Accepted: 01/09/2007] [Indexed: 02/06/2023]
Abstract
The interaction between T cell receptors (TCR) and peptide-major histocompatibility complex (pMHC) antigens can lead to varying degrees of agonism (T cell activation), or antagonism. The P14 TCR recognises the lymphocytic choriomeningitis virus (LCMV)-derived peptide, gp33 residues 33-41 (KAVYNFATC), presented in the context of H-2D(b). The cellular responses to various related H-2D(b) peptide ligands are very well characterised, and P14 TCR-transgenic mice have been used extensively in models of virus infection, autoimmunity and tumour rejection. Here, we analyse the binding of the P14 soluble TCR to a broad panel of related H-2D(b)-peptide complexes by surface plasmon resonance, and compare this with their diverse cellular responses. P14 TCR binds H-2D(b)-gp33 with a KD of 3 microM (+/-0.5 microM), typical of an immunodominant antiviral TCR, but with unusually fast kinetics (k(off) = 1 s(-1)), corresponding to a half-life of 0.7 s at 25 degrees C, outside the range previously observed for murine agonist TCR/pMHC interactions. The most striking feature of these data is that a very short half-life does not preclude the ability of a TCR/pMHC interaction to induce antiviral immunity, autoimmune disease and tumour rejection.
Collapse
Affiliation(s)
- Jonathan M Boulter
- Department of Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff, UK.
| | | | | | | | | | | |
Collapse
|
234
|
Mazzon C, Viola A. From tango to quadrilla: current views of the immunological synapse. Cell Adh Migr 2007; 1:7-12. [PMID: 19262090 PMCID: PMC2633674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 02/07/2007] [Indexed: 05/27/2023] Open
Abstract
All T cell functions require establishing contacts with other cells. In the last ten years, the immunological synapse, the contact-site between T cells and their partners, has been the object of numerous investigations and recent advances in imaging technologies have provided significant insights into the mechanism of immunological synapse formation and its functional outcomes. Considering all the available data, the immunological synapse can be defined as a dynamic structure, formed between a T cell and one or more antigen-presenting cells, showing lipid and protein segregation, signaling compartmentalization, and bidirectional information exchange though soluble and membrane-bound transmitters. In this review, we present the current views on the immunological synapse and discuss about some interesting unresolved questions.
Collapse
Affiliation(s)
| | - Antonella Viola
- Istituto Clinico Humanitas IRCCS; Rozzano, Milan, Italy
- Venetian Institute of Molecular Medicine and Department of Biomedical Science; University of Padua; Padua, Italy
| |
Collapse
|
235
|
|
236
|
Minguet S, Swamy M, Alarcón B, Luescher IF, Schamel WWA. Full Activation of the T Cell Receptor Requires Both Clustering and Conformational Changes at CD3. Immunity 2007; 26:43-54. [PMID: 17188005 DOI: 10.1016/j.immuni.2006.10.019] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2006] [Revised: 10/10/2006] [Accepted: 10/27/2006] [Indexed: 11/26/2022]
Abstract
T cell receptor (TCR-CD3) triggering involves both receptor clustering and conformational changes at the cytoplasmic tails of the CD3 subunits. The mechanism by which TCRalphabeta ligand binding confers conformational changes to CD3 is unknown. By using well-defined ligands, we showed that induction of the conformational change requires both multivalent engagement and the mobility restriction of the TCR-CD3 imposed by the plasma membrane. The conformational change is elicited by cooperative rearrangements of two TCR-CD3 complexes and does not require accompanying changes in the structure of the TCRalphabeta ectodomains. This conformational change at CD3 reverts upon ligand dissociation and is required for T cell activation. Thus, our permissive geometry model provides a molecular mechanism that rationalizes how the information of ligand binding to TCRalphabeta is transmitted to the CD3 subunits and to the intracellular signaling machinery.
Collapse
Affiliation(s)
- Susana Minguet
- Max Planck-Institut für Immunbiologie and Faculty of Biology, University of Freiburg, Stübeweg 51, 79108 Freiburg, Germany
| | | | | | | | | |
Collapse
|
237
|
Abstract
The notion of immunological synapse is generally associated to a concentric structure (a core of T cell receptors surrounded by a ring of adhesion molecules) often called "mature synapse". This schematic view has been built on observations corresponding to peculiar experimental conditions: very high antigen concentration presented by surrogate APCs such as lipid bilayers or B lymphoma. These observations have been hastily constituted in a dogma that a "normal" synapse should look like this, should form only in the presence of antigen, and should trigger a "stop" signal that completely immobilizes the T cell. However, when analyzing the interaction between naive T cells and dendritic cells (DC), that are the only antigen-presenting cells able to activate naive T cells, a very different picture emerges. Firstly, T-DC synapses can form in the absence of antigen; therefore antigen recognition is not a prerequisite for synapse formation. Secondly, these antigen-independent synapses are likely to play several roles, including sensitization of T cells for later antigen detection, and delivery of survival signals. Thirdly, in vivo, naive T cells interacting with antigen-laden DC do not fully stop, but start to make transient contacts with DCs for a few minutes, before continuing their exploration. It is only after several hours of this process that T cells eventually immobilize. Fourthly, the structure of the T-DC synapse is clearly multifocal, the two cells interacting through several tens of tight appositions of a few tens of nm in diameter. These numerous tight appositions are reminiscent of the microclusters that have been recently described at the T-bilayer interface. Finally, synaptic signaling is not a transient initial event, but is sustained for hours. In particular, sustained activation of phosphatidylinositol 3-kinase allows the exclusion out of the nucleus of FoxO transcription factors, normally maintaining T cells in a quiescent state.
Collapse
Affiliation(s)
- Georges Bismuth
- Département de Biologie Cellulaire, Inserm U567, CNRS UMR 8104, Equipe Labellisée par la Ligue Nationale Contre le Cancer, Université René-Descartes, Institut Cochin, 22, rue Méchain, 75014 Paris, France.
| | | |
Collapse
|
238
|
Rubin B, Riond J, Leghait J, Gairin JE. Interactions between CD8alphabeta and the TCRalphabeta/CD3-receptor complex. Scand J Immunol 2006; 64:260-70. [PMID: 16918695 DOI: 10.1111/j.1365-3083.2006.01798.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CD8+ T cells recognize antigenic peptides bound to major histocompatibility complex (MHC) class I molecules on normal antigen-presenting cells (APC), as well as on virus-infected cells or tumour cells (pMHC). At least two receptor types participate in recognition of these complexes: T-cell receptor (TCR) alphabeta heterodimers and CD8alphabeta molecules. The former molecules react with antigenic peptide and variable regions of MHC class I molecules, whereas the latter molecules react with constant alpha3 regions of MHC class I molecules. As the avidity of both receptor-MHC interactions is low, it is believed that TCRalphabeta and CD8alphabeta heterodimers collaborate in T-cell recognition. We have established a TCR/CD3-CD8 capture ELISA, which can measure the interaction of pMHC with CD8alphabeta molecules and with TCR/CD3 complexes. The major findings are: (1) TCR/CD3 complexes derived from in vitro activated T cells and captured by anti-CD3 MoAb, do bind specific pMHC and (2) CD8+ T cells express at least three forms of CD8alphabeta molecules: single CD8alphabeta, CD3-CD8 and TCR/CD3-CD8 complexes. Only the latter complexes are associated with CD3zeta homodimers, and the quantity of TCR/CD3-CD8 complexes relative to total CD8alphabeta molecules appears to increase and to be selected into sucrose-gradient microdomains as a function of TCRalphabeta-mediated T-cell activation.
Collapse
Affiliation(s)
- B Rubin
- Centre de Recherche en Pharmacologie-Santé, UMR 2587 CNRS-Pierre Fabre, 3 rue des Satellites, 31400 Toulouse, France.
| | | | | | | |
Collapse
|
239
|
Varma R, Campi G, Yokosuka T, Saito T, Dustin ML. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 2006; 25:117-27. [PMID: 16860761 PMCID: PMC1626533 DOI: 10.1016/j.immuni.2006.04.010] [Citation(s) in RCA: 679] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2005] [Revised: 01/04/2006] [Accepted: 04/12/2006] [Indexed: 12/11/2022]
Abstract
T cell receptor (TCR) signaling is initiated and sustained in microclusters; however, it's not known whether signaling also occurs in the TCR-rich central supramolecular activation cluster (cSMAC). We showed that the cSMAC formed by fusion of microclusters contained more CD45 than microclusters and is a site enriched in lysobisphosphatidic acid, a lipid involved in sorting ubiquitinated membrane proteins for degradation. Calcium signaling via TCR was blocked within 2 min by anti-MHCp treatment and 1 min by latrunculin-A treatment. TCR-MHCp interactions in the cSMAC survived these perturbations for 10 min and hence were not sufficient to sustain signaling. TCR microclusters were also resistant to disruption by anti-MHCp and latrunculin-A treatments. We propose that TCR signaling is sustained by stabilized microclusters and is terminated in the cSMAC, a structure from which TCR are sorted for degradation. Our studies reveal a role for F-actin in TCR signaling beyond microcluster formation.
Collapse
Affiliation(s)
- Rajat Varma
- Program in Molecular Pathogenesis, Skirball Institute of Biomolecular Medicine, Department of Pathology, New York University School of Medicine, 540 First Avenue, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
240
|
Sigalov AB. Immune cell signaling: a novel mechanistic model reveals new therapeutic targets. Trends Pharmacol Sci 2006; 27:518-24. [PMID: 16908074 DOI: 10.1016/j.tips.2006.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 07/12/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
Multichain immune recognition receptors (MIRRs) represent a family of surface receptors that is expressed on different cells and that transduces extracellular signals, leading to many biological responses. The most intriguing common structural feature of MIRR family members is that the extracellular recognition domains and the intracellular signaling domains are located on separate subunits. It is not clear how extracellular ligand binding triggers MIRRs and initiates intracellular signal-transduction processes. In this article, I suggest that the structural similarity of the MIRRs provides the basis for the similarity in the mechanisms of MIRR-mediated transmembrane signaling. This hypothesis assumes that the therapeutic strategies learned from a novel mechanistic model of MIRR-mediated signal transduction, the signaling chain homo-oligomerization model, are generalized for this entire family and have important implications for the treatment of many disorders that are mediated by immune cells, including HIV.
Collapse
Affiliation(s)
- Alexander B Sigalov
- Department of Pathology, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA.
| |
Collapse
|
241
|
Fernández-Malavé E, Wang N, Pulgar M, Schamel WWA, Alarcón B, Terhorst C. Overlapping functions of human CD3delta and mouse CD3gamma in alphabeta T-cell development revealed in a humanized CD3gamma-mouse. Blood 2006; 108:3420-7. [PMID: 16888097 DOI: 10.1182/blood-2006-03-010850] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Humans lacking the CD3gamma subunit of the pre-TCR and TCR complexes exhibit a mild alphabeta T lymphopenia, but have normal T cells. By contrast, CD3gamma-deficient mice are almost devoid of mature alphabeta T cells due to an early block of intrathymic development at the CD4(-)CD8(-) double-negative (DN) stage. This suggests that in humans but not in mice, the highly related CD3delta chain replaces CD3gamma during alphabeta T-cell development. To determine whether human CD3delta (hCD3delta) functions in a similar manner in the mouse in the absence of CD3gamma, we introduced an hCD3delta transgene in mice that were deficient for both CD3delta and CD3gamma, in which thymocyte development is completely arrested at the DN stage. Expression of hCD3delta efficiently supported pre-TCR-mediated progression from the DN to the CD4(+)CD8(+) double-positive (DP) stage. However, alphabetaTCR-mediated positive and negative thymocyte selection was less efficient than in wild-type mice, which correlated with a marked attenuation of TCR-mediated signaling. Of note, murine CD3gamma-deficient TCR complexes that had incorporated hCD3delta displayed abnormalities in structural stability resembling those of T cells from CD3gamma-deficient humans. Taken together, these data demonstrate that CD3delta and CD3gamma play a different role in humans and mice in pre-TCR and TCR function during alphabeta T-cell development.
Collapse
Affiliation(s)
- Edgar Fernández-Malavé
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
242
|
Swamy M, Siegers GM, Minguet S, Wollscheid B, Schamel WWA. Blue Native Polyacrylamide Gel Electrophoresis (BN-PAGE) for the Identification and Analysis of Multiprotein Complexes. Sci Signal 2006; 2006:pl4. [PMID: 16868305 DOI: 10.1126/stke.3452006pl4] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Multiprotein complexes (MPCs) play crucial roles in cell signaling. Two kinds of MPCs can be distinguished: (i) Constitutive, abundant MPCs--for example, multisubunit receptors or transcription factors; and (ii) signal-induced, transient, low copy number MPCs--for example, complexes that form upon binding of Src-homology 2 (SH2) domain-containing proteins to tyrosine-phosphorylated proteins. Blue native polyacrylamide gel electrophoresis (BN-PAGE) is a separation method with a higher resolution than gel filtration or sucrose density ultracentrifugation that can be used to analyze abundant, stable MPCs from 10 kD to 10 MD. In contrast to immunoprecipitation and two-hybrid approaches, it allows the determination of the size, the relative abundance, and the subunit composition of an MPC. In addition, it shows how many different complexes exist that share a common subunit, whether free monomeric forms of individual subunits exist, and whether these parameters change upon cell stimulation. Here, we give a detailed protocol for the separation of MPCs from total cellular lysates or of prepurified MPCs by one-dimensional BN-PAGE or by two-dimensional BN-PAGE and SDS-PAGE.
Collapse
Affiliation(s)
- Mahima Swamy
- Max Planck-Institut für Immunbiologie und Universität Freiburg, Biologie III, Stübeweg 51, D-79108 Freiburg, Germany
| | | | | | | | | |
Collapse
|
243
|
Angelov GS, Guillaume P, Cebecauer M, Bosshard G, Dojcinovic D, Baumgaertner P, Luescher IF. Soluble MHC-peptide complexes containing long rigid linkers abolish CTL-mediated cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2006; 176:3356-65. [PMID: 16517703 DOI: 10.4049/jimmunol.176.6.3356] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Soluble MHC-peptide (pMHC) complexes induce intracellular calcium mobilization, diverse phosphorylation events, and death of CD8+ CTL, given that they are at least dimeric and co-engage CD8. By testing dimeric, tetrameric, and octameric pMHC complexes containing spacers of different lengths, we show that their ability to activate CTL decreases as the distance between their subunit MHC complexes increases. Remarkably, pMHC complexes containing long rigid polyproline spacers (> or =80 A) inhibit target cell killing by cloned S14 CTL in a dose- and valence-dependent manner. Long octameric pMHC complexes abolished target cell lysis, even very strong lysis, at nanomolar concentrations. By contrast, an altered peptide ligand antagonist was only weakly inhibitory and only at high concentrations. Long D(b)-gp33 complexes strongly and specifically inhibited the D(b)-restricted lymphocytic choriomeningitis virus CTL response in vitro and in vivo. We show that complications related to transfer of peptide from soluble to cell-associated MHC molecules can be circumvented by using covalent pMHC complexes. Long pMHC complexes efficiently inhibited CTL target cell conjugate formation by interfering with TCR-mediated activation of LFA-1. Such reagents provide a new and powerful means to inhibit Ag-specific CTL responses and hence should be useful to blunt autoimmune disorders such as diabetes type I.
Collapse
Affiliation(s)
- Georgi S Angelov
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, 1066 Epalinges, Switzerland
| | | | | | | | | | | | | |
Collapse
|
244
|
Kiessling LL, Gestwicki JE, Strong LE. Synthetische multivalente Liganden als Sonden für die Signaltransduktion. Angew Chem Int Ed Engl 2006. [DOI: 10.1002/ange.200502794] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
245
|
Abstract
Cell-surface receptors acquire information from the extracellular environment and coordinate intracellular responses. Many receptors do not operate as individual entities, but rather as part of dimeric or oligomeric complexes. Coupling the functions of multiple receptors may endow signaling pathways with the sensitivity and malleability required to govern cellular responses. Moreover, multireceptor signaling complexes may provide a means of spatially segregating otherwise degenerate signaling cascades. Understanding the mechanisms, extent, and consequences of receptor co-localization and interreceptor communication is critical; chemical synthesis can provide compounds to address the role of receptor assembly in signal transduction. Multivalent ligands can be generated that possess a variety of sizes, shapes, valencies, orientations, and densities of binding elements. This Review focuses on the use of synthetic multivalent ligands to characterize receptor function.
Collapse
Affiliation(s)
- Laura L Kiessling
- Department of Chemistry, University of Wisconsin--Madison, 1101 University Ave., Madison, WI 53706, USA.
| | | | | |
Collapse
|
246
|
Schamel WWA, Risueño RM, Minguet S, Ortíz AR, Alarcón B. A conformation- and avidity-based proofreading mechanism for the TCR–CD3 complex. Trends Immunol 2006; 27:176-82. [PMID: 16527543 DOI: 10.1016/j.it.2006.02.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/24/2006] [Accepted: 02/16/2006] [Indexed: 10/24/2022]
Abstract
During antigen recognition, T cells show high sensitivity and specificity, and a wide dynamic range. Paradoxically, these characteristics are based on low-affinity receptor-ligand interactions [between the T-cell antigen receptor (TCR-CD3) complex and the antigen peptide bound to MHC]. Recent evidence indicates that the TCR-CD3 is expressed as multivalent complexes in the membrane of non-stimulated T cells and that conformational changes in the TCR-CD3 can be induced by strong but not weak agonists. Here, we propose a thermodynamic model whereby the specificity of the TCR-CD3-pMHC interaction is explained by its multivalent nature. We also propose that the free energy barriers involved in the change in conformation of the receptor impose a response threshold and determine the kinetic properties of recognition. Finally, we suggest that multivalent TCR-CD3s can amplify signals by spreading them from pMHC-engaged TCR-CD3s to unengaged complexes as a consequence of the cooperativity in the system.
Collapse
Affiliation(s)
- Wolfgang W A Schamel
- Max Planck-Institut für Immunbiologie and University of Freiburg, Stübeweg 51, 79108 Freiburg, Germany
| | | | | | | | | |
Collapse
|
247
|
|
248
|
Swamy M, Kulathu Y, Ernst S, Reth M, Schamel WWA. Two dimensional Blue Native-/SDS-PAGE analysis of SLP family adaptor protein complexes. Immunol Lett 2005; 104:131-7. [PMID: 16356554 DOI: 10.1016/j.imlet.2005.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 11/01/2005] [Accepted: 11/08/2005] [Indexed: 11/26/2022]
Abstract
SH2 domain containing leukocyte protein (SLP) adaptor proteins serve a central role in the antigen-mediated activation of lymphocytes by organizing multiprotein signaling complexes. Here, we use two dimensional native-/SDS-gel electrophoresis to study the number, size and relative abundance of protein complexes containing SLP family proteins. In non-stimulated T cells all SLP-76 proteins are in a approximately 400 kDa complex with the small adaptor protein Grb2-like adaptor protein downstream of Shc (Gads), whereas half of Gads is monomeric. This constitutive SLP-76/Gads complex could be reconstituted in Drosophila S2 cells expressing both components, suggesting that it might not contain additional subunits. In contrast, in B cells SLP-65 exists in a 180 kDa complex as well as in monomeric form. Since the complex was not found in S2 cells expressing only SLP-65, it was not di/trimeric SLP-65. Upon antigen-stimulation only the complexed SLP-65 was phosphorylated. Surprisingly, stimulation-induced alteration of SLP complexes could not be detected, suggesting that active signaling complexes form only transiently, and are of low abundance.
Collapse
Affiliation(s)
- Mahima Swamy
- Department of Molecular Immunology, Biologie III, University of Freiburg and Max Planck-Institut für Immunbiologie, Stübeweg 51, 79108 Freiburg, Germany
| | | | | | | | | |
Collapse
|
249
|
Hellwig S, Schamel WWA, Pflugfelder U, Gerlich B, Weltzien HU. Differences in pairing and cluster formation of T cell receptor α- and β-chains in T cell clones and fusion hybridomas. Immunobiology 2005; 210:685-94. [PMID: 16323705 DOI: 10.1016/j.imbio.2005.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The questions of T cell receptor (TCR) clustering and preferential pairing of TCR alpha- and beta-chains are discussed controversially. We here describe the rare case of a non-pairing TCR alpha-TCR beta combination detected in the murine T cell hybridoma Hy-E6. Of its two TCR alpha-chains (Valpha3.2, Vbeta17) and one Vbeta16-chain only the Valpha17/Vbeta16 TCR is exposed on the surface, despite intracellular expression of Valpha3.2 protein. The lack of Valpha3.2/Vbeta16 pairing was confirmed by TCR transfections. Surprisingly, however, the parental T cell clone CTL-E6 expressed both alpha-chains on its plasma membrane. Different size distribution of TCR clusters in CTL-E6 versus Hy-E6 and transfectants as determined by Blue-Native gel electrophoresis indicated differences in the supra-molecular TCR assembly as one possible reason for this phenomenon. Our data further reveal that the nominal specificity of CTL-E6 for the fully agonistic trinitrophenyl (TNP) modified peptide M4L-TNP was specifically mediated by the trimeric Valpha3.2/Valpha17/Vbeta16 TCR of CTL-E6. In contrast, the Valpha17/Vbeta16 combination in Hy-E6 only conferred specificity for the cross-reactive partial agonist O4-TNP. Both specificities are H-2Kb-restricted and, hence, appear to be positively selected. The differences in TCR clustering in CTL and hybridoma might indicate differences in the reception and transmission of TCR-signals between these two cell types.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- CD8 Antigens/metabolism
- Cells, Cultured
- Clone Cells/immunology
- Clone Cells/metabolism
- Hybridomas/cytology
- Hybridomas/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Peptides/chemistry
- Peptides/pharmacology
- Picrates/pharmacology
- Protein Binding
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Sven Hellwig
- Max-Planck-Institute for Immunobiology, Freiburg, Germany
| | | | | | | | | |
Collapse
|