201
|
Sudasinghe H, Ranasinghe T, Herath J, Wijesooriya K, Pethiyagoda R, Rüber L, Meegaskumbura M. Molecular phylogeny and phylogeography of the freshwater-fish genus Pethia (Teleostei: Cyprinidae) in Sri Lanka. BMC Ecol Evol 2021; 21:203. [PMID: 34758736 PMCID: PMC8582130 DOI: 10.1186/s12862-021-01923-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Sri Lanka is a continental island separated from India by the Palk Strait, a shallow-shelf sea, which was emergent during periods of lowered sea level. Its biodiversity is concentrated in its perhumid south-western 'wet zone'. The island's freshwater fishes are dominated by the Cyprinidae, characterized by small diversifications of species derived from dispersals from India. These include five diminutive, endemic species of Pethia (P. bandula, P. cumingii, P. melanomaculata, P. nigrofasciata, P. reval), whose evolutionary history remains poorly understood. Here, based on comprehensive geographic sampling, we explore the phylogeny, phylogeography and morphological diversity of the genus in Sri Lanka. RESULTS The phylogenetic analyses, based on mitochondrial and nuclear loci, recover Sri Lankan Pethia as polyphyletic. The reciprocal monophyly of P. bandula and P. nigrofasciata, and P. cumingii and P. reval, is not supported. Pethia nigrofasciata, P. cumingii, and P. reval show strong phylogeographic structure in the wet zone, compared with P. melanomaculata, which ranges across the dry and intermediate zones. Translocated populations of P. nigrofasciata and P. reval in the Central Hills likely originate from multiple sources. Morphological analyses reveal populations of P. nigrofasciata proximal to P. bandula, a narrow-range endemic, to have a mix of characters between the two species. Similarly, populations of P. cumingii in the Kalu basin possess orange fins, a state between the red-finned P. reval from Kelani to Deduru and yellow-finned P. cumingii from Bentara to Gin basins. CONCLUSIONS Polyphyly in Sri Lankan Pethia suggests two or three colonizations from mainland India. Strong phylogeographic structure in P. nigrofasciata, P. cumingii and P. reval, compared with P. melanomaculata, supports a model wherein the topographically complex wet zone harbors greater genetic diversity than the topographically uniform dry-zone. Mixed morphological characters between P. bandula and P. nigrofasciata, and P. cumingii and P. reval, and their unresolved phylogenies, may suggest recent speciation scenarios with incomplete lineage sorting, or hybridization.
Collapse
Affiliation(s)
- Hiranya Sudasinghe
- Evolutionary Ecology and Systematics Laboratory, Department of Molecular Biology and Biotechnology, University of Peradeniya, Peradeniya, 20400, Sri Lanka.,Postgraduate Institute of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka.,Evolutionary Ecology, Institute of Ecology and Evolution, University of Bern, 3012, Bern, Switzerland.,Naturhistorisches Museum Bern, Bernastrasse, 15, 3005, Bern, Switzerland
| | - Tharindu Ranasinghe
- Butterfly Conservation Society of Sri Lanka, 762/A, Yatihena, Malwana, 11670, Sri Lanka
| | - Jayampathi Herath
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China
| | - Kumudu Wijesooriya
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Rohan Pethiyagoda
- Ichthyology Section, Australian Museum, 6 College Street, Sydney, NSW, 2010, Australia
| | - Lukas Rüber
- Naturhistorisches Museum Bern, Bernastrasse, 15, 3005, Bern, Switzerland.,Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, 3012, Bern, Switzerland
| | - Madhava Meegaskumbura
- Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, People's Republic of China.
| |
Collapse
|
202
|
Young MK, Smith R, Pilgrim KL, Schwartz MK. Molecular species delimitation refines the taxonomy of native and nonnative physinine snails in North America. Sci Rep 2021; 11:21739. [PMID: 34741094 PMCID: PMC8571305 DOI: 10.1038/s41598-021-01197-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/15/2021] [Indexed: 11/21/2022] Open
Abstract
Being able to associate an organism with a scientific name is fundamental to our understanding of its conservation status, ecology, and evolutionary history. Gastropods in the subfamily Physinae have been especially troublesome to identify because morphological variation can be unrelated to interspecific differences and there have been widespread introductions of an unknown number of species, which has led to a speculative taxonomy. To resolve uncertainty about species diversity in North America, we targeted an array of single-locus species delimitation methods at publically available specimens and new specimens collected from the Snake River basin, USA to generate species hypotheses, corroborated using nuclear analyses of the newly collected specimens. A total-evidence approach delineated 18 candidate species, revealing cryptic diversity within recognized taxa and a lack of support for other named taxa. Hypotheses regarding certain local endemics were confirmed, as were widespread introductions, including of an undescribed taxon likely belonging to a separate genus in southeastern Idaho for which the closest relatives are in southeast Asia. Overall, single-locus species delimitation was an effective first step toward understanding the diversity and distribution of species in Physinae and to guiding future investigation sampling and analyses of species hypotheses.
Collapse
Affiliation(s)
- Michael K. Young
- grid.497401.f0000 0001 2286 5230USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 E. Beckwith Avenue, Missoula, MT 59802 USA
| | - Rebecca Smith
- grid.497401.f0000 0001 2286 5230USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 E. Beckwith Avenue, Missoula, MT 59802 USA ,grid.411461.70000 0001 2315 1184Present Address: Department of Ecology & Evolutionary Biology, University of Tennessee, 569 Dabney Hall, Knoxville, TN 37996 USA
| | - Kristine L. Pilgrim
- grid.497401.f0000 0001 2286 5230USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 E. Beckwith Avenue, Missoula, MT 59802 USA
| | - Michael K. Schwartz
- grid.497401.f0000 0001 2286 5230USDA Forest Service, National Genomics Center for Wildlife and Fish Conservation, Rocky Mountain Research Station, 800 E. Beckwith Avenue, Missoula, MT 59802 USA
| |
Collapse
|
203
|
Mamos T, Jażdżewski K, Čiamporová-Zaťovičová Z, Čiampor F, Grabowski M. Fuzzy species borders of glacial survivalists in the Carpathian biodiversity hotspot revealed using a multimarker approach. Sci Rep 2021; 11:21629. [PMID: 34732763 PMCID: PMC8566499 DOI: 10.1038/s41598-021-00320-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
The Carpathians are one of the key biodiversity hotspots in Europe. The mountain chain uplifted during Alpine orogenesis and is characterised by a complex geological history. Its current biodiversity was highly influenced by Pleistocene glaciations. The goal of the current study was to examine the phylogenetic and demographic history of Gammarus balcanicus species complex in the Carpathians using multiple markers as well as to delimit, using an integrative approach, and describe new species hidden so far under the name G. balcanicus. Results showed that divergence of the studied lineages reaches back to the Miocene, which supports the hypothesis of their survival in multiple micro refugia. Moreover, the increase of their diversification rate in the Pleistocene suggests that glaciation was the driving force of their speciation. The climatic changes during and after the Pleistocene also played a major role in the demography of the local Carpathian lineages. Comparison of diversity patterns and phylogenetic relationships of both, the mitochondrial and nuclear markers, provide evidence of putative hybridisation and retention of ancient polymorphism (i.e., incomplete lineage sorting). The morphological examination supported the existence of two morphological types; one we describe as a G. stasiuki sp. nov. and another we redescribe as a G. tatrensis (S. Karaman, 1931).
Collapse
Affiliation(s)
- Tomasz Mamos
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
| | - Krzysztof Jażdżewski
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| | - Zuzana Čiamporová-Zaťovičová
- ZooLab, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovakia
- Department of Ecology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia
| | - Fedor Čiampor
- ZooLab, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 845 23, Bratislava, Slovakia
| | - Michał Grabowski
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| |
Collapse
|
204
|
Ellepola G, Herath J, Manamendra-Arachchi K, Wijayathilaka N, Senevirathne G, Pethiyagoda R, Meegaskumbura M. Molecular species delimitation of shrub frogs of the genus Pseudophilautus (Anura, Rhacophoridae). PLoS One 2021; 16:e0258594. [PMID: 34665841 PMCID: PMC8525734 DOI: 10.1371/journal.pone.0258594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Sri Lanka is an amphibian hotspot of global significance. Its anuran fauna is dominated by the shrub frogs of the genus Pseudophilautus. Except for one small clade of four species in Peninsular India, these cool-wet adapted frogs, numbering some 59 extant species, are distributed mainly across the montane and lowland rain forests of the island. With species described primarily by morphological means, the diversification has never yet been subjected to a molecular species delimitation analysis, a procedure now routinely applied in taxonomy. Here we test the species boundaries of Pseudophilautus in the context of the phylogenetic species concept (PSC). We use all the putative species for which credible molecular data are available (nDNA-Rag-1; mt-DNA- 12S rRNA, 16S rRNA) to build a well resolved phylogeny, which is subjected to species delimitation analyses. The ABGD, bPTP, mPTP and bGMYC species delimitation methods applied to the 16S rRNA frog barcoding gene (for all species), 12S rRNA and Rag-1 nDNA grouped P. procax and P. abundus; P. hallidayi and P. fergusonianus; P. reticulatus and P. pappilosus; P. pleurotaenia and P. hoipolloi; P. hoffmani and P. asankai; P. silvaticus and P. limbus; P. dilmah and P. hankeni; P. fulvus and P. silus.. Surprisingly, all analyses recovered 14 unidentified potential new species as well. The geophylogeny affirms a distribution across the island's aseasonal 'wet zone' and its three principal hill ranges, suggestive of allopatric speciation playing a dominant role, especially between mountain masses. Among the species that are merged by the delimitation analyses, a pattern leading towards a model of parapatric speciation emerges-ongoing speciation in the presence of gene flow. This delimitation analysis reinforces the species hypotheses, paving the way to a reasonable understanding of Sri Lankan Pseudophilautus, enabling both deeper analyses and conservation efforts of this remarkable diversification. http://zoobank.org/urn:lsid:zoobank.org:pub:DA869B6B-870A-4ED3-BF5D-5AA3F69DDD27.
Collapse
Affiliation(s)
- Gajaba Ellepola
- College of Forestry, Guangxi Key Lab for Forest Ecology and Conservation, Guangxi University, Nanning, PR China
- Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Jayampathi Herath
- College of Forestry, Guangxi Key Lab for Forest Ecology and Conservation, Guangxi University, Nanning, PR China
| | | | - Nayana Wijayathilaka
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Gayani Senevirathne
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Rohan Pethiyagoda
- Ichthyology Section, Australian Museum, Sydney, New South Wales, Australia
| | - Madhava Meegaskumbura
- College of Forestry, Guangxi Key Lab for Forest Ecology and Conservation, Guangxi University, Nanning, PR China
| |
Collapse
|
205
|
Evolution and phylogeny of the deep-sea isopod families Desmosomatidae Sars, 1897 and Nannoniscidae Hansen, 1916 (Isopoda: Asellota). ORG DIVERS EVOL 2021; 21:691-717. [PMID: 34658667 PMCID: PMC8510888 DOI: 10.1007/s13127-021-00509-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 08/05/2021] [Indexed: 10/31/2022]
Abstract
In the deep sea, the phylogeny and biogeography of only a few taxa have been well studied. Although more than 200 species in 32 genera have been described for the asellote isopod families Desmosomatidae Sars, 1897 and Nannoniscidae Hansen, 1916 from all ocean basins, their phylogenetic relationships are not completely understood. There is little doubt about the close relationship of these families, but the taxonomic position of a number of genera is so far unknown. Based on a combined morphological phylogeny using the Hennigian method with a dataset of 107 described species and a molecular phylogeny based on three markers (COI, 16S, and 18S) with 75 species (most new to science), we could separate Desmosomatidae and Nannoniscidae as separate families. However, we could not support the concept of the subfamilies Eugerdellatinae Hessler, 1970 and Desmosomatinae Hessler, 1970. Most genera of both families were well supported, but several genera appear as para- or even polyphyletic. Within both families, convergent evolution and analogies caused difficulty in defining apomorphies for phylogenetic reconstructions and this is reflected in the results of the concatenated molecular tree. There is no biogeographic pattern in the distribution as the genera occur over the entire Atlantic and Pacific Ocean, showing no specific phylogeographical pattern. Poor resolution at deep desmosomatid nodes may reflect the long evolutionary history of the family and rapid evolutionary radiations. Supplementary Information The online version contains supplementary material available at 10.1007/s13127-021-00509-9.
Collapse
|
206
|
Kocher A, Papac L, Barquera R, Key FM, Spyrou MA, Hübler R, Rohrlach AB, Aron F, Stahl R, Wissgott A, van Bömmel F, Pfefferkorn M, Mittnik A, Villalba-Mouco V, Neumann GU, Rivollat M, van de Loosdrecht MS, Majander K, Tukhbatova RI, Musralina L, Ghalichi A, Penske S, Sabin S, Michel M, Gretzinger J, Nelson EA, Ferraz T, Nägele K, Parker C, Keller M, Guevara EK, Feldman M, Eisenmann S, Skourtanioti E, Giffin K, Gnecchi-Ruscone GA, Friederich S, Schimmenti V, Khartanovich V, Karapetian MK, Chaplygin MS, Kufterin VV, Khokhlov AA, Chizhevsky AA, Stashenkov DA, Kochkina AF, Tejedor-Rodríguez C, de Lagrán ÍGM, Arcusa-Magallón H, Garrido-Pena R, Royo-Guillén JI, Nováček J, Rottier S, Kacki S, Saintot S, Kaverzneva E, Belinskiy AB, Velemínský P, Limburský P, Kostka M, Loe L, Popescu E, Clarke R, Lyons A, Mortimer R, Sajantila A, de Armas YC, Hernandez Godoy ST, Hernández-Zaragoza DI, Pearson J, Binder D, Lefranc P, Kantorovich AR, Maslov VE, Lai L, Zoledziewska M, Beckett JF, Langová M, Danielisová A, Ingman T, Atiénzar GG, de Miguel Ibáñez MP, Romero A, Sperduti A, Beckett S, Salter SJ, Zilivinskaya ED, Vasil'ev DV, von Heyking K, Burger RL, Salazar LC, Amkreutz L, Navruzbekov M, Rosenstock E, Alonso-Fernández C, Slavchev V, Kalmykov AA, Atabiev BC, Batieva E, Calmet MA, et alKocher A, Papac L, Barquera R, Key FM, Spyrou MA, Hübler R, Rohrlach AB, Aron F, Stahl R, Wissgott A, van Bömmel F, Pfefferkorn M, Mittnik A, Villalba-Mouco V, Neumann GU, Rivollat M, van de Loosdrecht MS, Majander K, Tukhbatova RI, Musralina L, Ghalichi A, Penske S, Sabin S, Michel M, Gretzinger J, Nelson EA, Ferraz T, Nägele K, Parker C, Keller M, Guevara EK, Feldman M, Eisenmann S, Skourtanioti E, Giffin K, Gnecchi-Ruscone GA, Friederich S, Schimmenti V, Khartanovich V, Karapetian MK, Chaplygin MS, Kufterin VV, Khokhlov AA, Chizhevsky AA, Stashenkov DA, Kochkina AF, Tejedor-Rodríguez C, de Lagrán ÍGM, Arcusa-Magallón H, Garrido-Pena R, Royo-Guillén JI, Nováček J, Rottier S, Kacki S, Saintot S, Kaverzneva E, Belinskiy AB, Velemínský P, Limburský P, Kostka M, Loe L, Popescu E, Clarke R, Lyons A, Mortimer R, Sajantila A, de Armas YC, Hernandez Godoy ST, Hernández-Zaragoza DI, Pearson J, Binder D, Lefranc P, Kantorovich AR, Maslov VE, Lai L, Zoledziewska M, Beckett JF, Langová M, Danielisová A, Ingman T, Atiénzar GG, de Miguel Ibáñez MP, Romero A, Sperduti A, Beckett S, Salter SJ, Zilivinskaya ED, Vasil'ev DV, von Heyking K, Burger RL, Salazar LC, Amkreutz L, Navruzbekov M, Rosenstock E, Alonso-Fernández C, Slavchev V, Kalmykov AA, Atabiev BC, Batieva E, Calmet MA, Llamas B, Schultz M, Krauß R, Jiménez-Echevarría J, Francken M, Shnaider S, de Knijff P, Altena E, Van de Vijver K, Fehren-Schmitz L, Tung TA, Lösch S, Dobrovolskaya M, Makarov N, Read C, Van Twest M, Sagona C, Ramsl PC, Akar M, Yener KA, Ballestero EC, Cucca F, Mazzarello V, Utrilla P, Rademaker K, Fernández-Domínguez E, Baird D, Semal P, Márquez-Morfín L, Roksandic M, Steiner H, Salazar-García DC, Shishlina N, Erdal YS, Hallgren F, Boyadzhiev Y, Boyadzhiev K, Küßner M, Sayer D, Onkamo P, Skeates R, Rojo-Guerra M, Buzhilova A, Khussainova E, Djansugurova LB, Beisenov AZ, Samashev Z, Massy K, Mannino M, Moiseyev V, Mannermaa K, Balanovsky O, Deguilloux MF, Reinhold S, Hansen S, Kitov EP, Dobeš M, Ernée M, Meller H, Alt KW, Prüfer K, Warinner C, Schiffels S, Stockhammer PW, Bos K, Posth C, Herbig A, Haak W, Krause J, Kühnert D. Ten millennia of hepatitis B virus evolution. Science 2021; 374:182-188. [PMID: 34618559 DOI: 10.1126/science.abi5658] [Show More Authors] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Arthur Kocher
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Luka Papac
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Felix M Key
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Max Planck Institute for Infection Biology, 10117 Berlin, Germany
| | - Maria A Spyrou
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,Archaeo- and Palaeogenetics group, Institute for Archaeological Sciences, Eberhard Karls University Tübingen, 72070 Tübingen, Germany
| | - Ron Hübler
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Adam B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Franziska Aron
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Raphaela Stahl
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Antje Wissgott
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Florian van Bömmel
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Maria Pfefferkorn
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Alissa Mittnik
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Gunnar U Neumann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Maïté Rivollat
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Université de Bordeaux, CNRS, PACEA UMR 5199, Pessac, France
| | | | - Kerttu Majander
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Institute of Evolutionary Medicine (IEM), University of Zürich, 8057 Zürich, Switzerland
| | - Rezeda I Tukhbatova
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Laboratory of Structural Biology, Kazan Federal University, Kazan, Russia
| | - Lyazzat Musralina
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,Al-Farabi Kazakh National University, Almaty, Kazakhstan.,Institute of Genetics and Physiology, 050060 Almaty, Kazakhstan
| | - Ayshin Ghalichi
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Sandra Penske
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Susanna Sabin
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Megan Michel
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Joscha Gretzinger
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Elizabeth A Nelson
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Tiago Ferraz
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Departmento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Cody Parker
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Arizona State University School of Human Evolution and Social Change, Tempe Arizona, USA
| | - Marcel Keller
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Evelyn K Guevara
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| | - Michal Feldman
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Archaeo- and Palaeogenetics group, Institute for Archaeological Sciences, Eberhard Karls University Tübingen, 72070 Tübingen, Germany
| | - Stefanie Eisenmann
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Eirini Skourtanioti
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Karen Giffin
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Guido Alberto Gnecchi-Ruscone
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Susanne Friederich
- State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, D-06114 Halle, Germany
| | | | - Valery Khartanovich
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, 199034 St. Petersburg, Russia
| | - Marina K Karapetian
- Anuchin Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russia
| | | | - Vladimir V Kufterin
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia
| | | | - Andrey A Chizhevsky
- Institute of Archaeology named after A. Kh. Khalikov, Tatarstan Academy of Sciences, Kazan, Russia
| | - Dmitry A Stashenkov
- Samara Museum for Historical and Regional Studies named after P. V. Alabin, Samara, Russia
| | - Anna F Kochkina
- Samara Museum for Historical and Regional Studies named after P. V. Alabin, Samara, Russia
| | - Cristina Tejedor-Rodríguez
- Department of Prehistory and Archaeology, Faculty of Philosophy and Letters, University of Valladolid, Spain
| | | | | | - Rafael Garrido-Pena
- Department of Prehistory and Archaeology, Faculty of Philosophy and Letters, Autonomous University of Madrid, Spain
| | | | - Jan Nováček
- Thuringian State Office for Heritage Management and Archaeology, 99423 Weimar, Germany.,University Medical School Göttingen, Institute of Anatomy and Cell Biology, 37075 Göttingen, Germany
| | | | - Sacha Kacki
- Université de Bordeaux, CNRS, PACEA UMR 5199, Pessac, France.,Department of Archaeology, Durham University, South Road, Durham. DH1 3LE. UK
| | - Sylvie Saintot
- INRAP, ARAR UMR 5138, Maison de l'Orient et de la Méditerranée, Lyon, France
| | | | | | - Petr Velemínský
- Department of Anthropology, The National Museum, Prague, Czech Republic
| | - Petr Limburský
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Louise Loe
- Oxford Archaeology South, Janus House, Osney Mead, Oxford, OX2 0ES, UK
| | | | - Rachel Clarke
- Oxford Archaeology East, Bar Hill, Cambridge, CB23 8SQ, UK
| | - Alice Lyons
- Oxford Archaeology East, Bar Hill, Cambridge, CB23 8SQ, UK
| | | | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland.,Forensic Medicine Unit, Finnish Institute of Health and Welfare, Helsinki, Finland
| | | | - Silvia Teresita Hernandez Godoy
- Grupo de Investigación y Desarrollo, Dirección Provincial de Cultura, Matanzas, Cuba.,Universidad de Matanzas, Matanzas, Cuba
| | - Diana I Hernández-Zaragoza
- Molecular Genetics Laboratory, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico.,Immunogenetics Unit, Técnicas Genéticas Aplicadas a la Clínica (TGAC), Mexico City, Mexico
| | - Jessica Pearson
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool L69 7WZ, UK
| | - Didier Binder
- Université Côte d'Azur, CNRS, CEPAM UMR 7264, Nice, France
| | - Philippe Lefranc
- Université de Strasbourg, CNRS, Archimède UMR 7044, Strasbourg, France
| | - Anatoly R Kantorovich
- Department of Archaeology, Faculty of History, Lomonosov Moscow State University, 119192 Moscow, Russia
| | - Vladimir E Maslov
- Institute of Archaeology, Russian Academy of Sciences, , Moscow 117292, Russia
| | - Luca Lai
- Department of Anthropology, University of South Florida, Tampa, FL, USA.,Department of Anthropology, University of North Carolina at Charlotte, Charlotte, NC, USA
| | | | | | - Michaela Langová
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Alžběta Danielisová
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tara Ingman
- Koç University, Research Center for Anatolian Civilizations, Istanbul 34433, Turkey
| | - Gabriel García Atiénzar
- Institute for Research in Archaeology and Historical Heritage (INAPH), University of Alicante, 03690, Alicante, Spain
| | - Maria Paz de Miguel Ibáñez
- Institute for Research in Archaeology and Historical Heritage (INAPH), University of Alicante, 03690, Alicante, Spain
| | - Alejandro Romero
- Institute for Research in Archaeology and Historical Heritage (INAPH), University of Alicante, 03690, Alicante, Spain.,Departamento de Biotecnología, Facultad de Ciencias, Universidad de Alicante, 03690, Alicante, Spain
| | - Alessandra Sperduti
- Bioarchaeology Service, Museum of Civilizations, Rome, Italy.,Dipartimento Asia Africa e Mediterraneo, Università di Napoli L'Orientale, Napoli, Italy
| | - Sophie Beckett
- Sedgeford Historical and Archaeological Research Project, Old Village Hall, Sedgeford, Hunstanton PE36 5LS, UK.,Melbourne Dental School, University of Melbourne, Victoria 3010 Australia.,Cranfield Forensic Institute, Cranfield Defence and Security, Cranfield University, College Road, Cranfield, MK43 0AL, UK
| | - Susannah J Salter
- Sedgeford Historical and Archaeological Research Project, Old Village Hall, Sedgeford, Hunstanton PE36 5LS, UK.,Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Emma D Zilivinskaya
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia
| | | | - Kristin von Heyking
- SNSB, State Collection for Anthropology and Palaeoanatomy, 80333 Munich, Germany
| | - Richard L Burger
- Department of Anthropology, Yale University, New Haven, CT 06511, USA
| | - Lucy C Salazar
- Department of Anthropology, Yale University, New Haven, CT 06511, USA
| | - Luc Amkreutz
- National Museum of Antiquities, 2301 EC Leiden, Netherlands
| | | | - Eva Rosenstock
- Freie Universität Berlin, Einstein Center Chronoi, 14195 Berlin, Germany
| | | | | | | | - Biaslan Ch Atabiev
- Institute for Caucasus Archaeology, 361401 Nalchik, Republic Kabardino-Balkaria, Russia
| | - Elena Batieva
- Azov History, Archaeology and Palaeontology Museum-Reserve, Azov 346780, Russia
| | | | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences and The Environment Institute, Adelaide University, Adelaide, SA 5005, Australia.,Centre of Excellence for Australian Biodiversity and Heritage (CABAH), University of Adelaide, Adelaide, SA 5005, Australia.,National Centre for Indigenous Genomics, Australian National University, Canberra, ACT 0200, Australia
| | - Michael Schultz
- University Medical School Göttingen, Institute of Anatomy and Embryology, 37075 Göttingen, Germany.,Institute of Biology, University of Hildeshein, Germany
| | - Raiko Krauß
- Institute for Prehistory, Early History and Medieval Archaeology, University of Tübingen, 72070 Tübingen, Germany
| | | | - Michael Francken
- State Office for Cultural Heritage Baden-Württemberg, 78467 Konstanz, Germany
| | - Svetlana Shnaider
- ArchaeoZoology in Siberia and Central Asia-ZooSCAn, CNRS-IAET SB RAS International Research Laboratory, IRL 2013, Novosibirsk, Russia
| | - Peter de Knijff
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, Netherlands
| | - Eveline Altena
- Department of Human Genetics, Leiden University Medical Center, Leiden, 2333 ZC, Netherlands
| | - Katrien Van de Vijver
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium.,Center for Archaeological Sciences, University of Leuven, Belgium.,Dienst Archeologie-Stad Mechelen, Belgium
| | - Lars Fehren-Schmitz
- UCSC Paleogenomics Laboratory, Department of Anthropology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA.,UCSC Genomics Institute, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | - Tiffiny A Tung
- Department of Anthropology, Vanderbilt University, Nashville, TN 37235, USA
| | - Sandra Lösch
- Department of Physical Anthropology, Institute of Forensic Medicine, University of Bern, Bern, Switzerland
| | - Maria Dobrovolskaya
- Institute of Archaeology, Russian Academy of Sciences, , Moscow 117292, Russia
| | - Nikolaj Makarov
- Institute of Archaeology, Russian Academy of Sciences, , Moscow 117292, Russia
| | - Chris Read
- Applied Archaeology School of Science, Institute of Technology Sligo, Ireland
| | - Melanie Van Twest
- Sedgeford Historical and Archaeological Research Project, Old Village Hall, Sedgeford, Hunstanton PE36 5LS, UK
| | - Claudia Sagona
- School of Historical and Philosophical Studies, University of Melbourne, Victoria 3010, Australia
| | - Peter C Ramsl
- Institute of Prehistoric and Historical Archaeology, University of Vienna, Austria
| | - Murat Akar
- Department of Archaeology, Hatay Mustafa Kemal University, Alahan-Antakya, Hatay 31060, Turkey
| | - K Aslihan Yener
- Institute for the Study of the Ancient World (ISAW), New York University, New York, NY 10028, USA
| | - Eduardo Carmona Ballestero
- Territorial Service of Culture and Tourism from Valladolid, Castilla y León Regional Government, C/ San Lorenzo, 5, 47001, Valladolid, Spain.,Department of History, Geography and Comunication, University of Burgos, Paseo de Comendadores, s/n 09001 Burgos (Burgos), Spain
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica-CNR, Monserrato, Italy.,Dipartimento di Scienze Biomediche, Università di Sassari, Sassari, Italy
| | | | - Pilar Utrilla
- Área de Prehistoria, P3A DGA Research Group, IPH, University of Zaragoza, C/ Pedro Cerbuna 12, 50009, Zaragoza, Spain
| | - Kurt Rademaker
- Department of Anthropology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Douglas Baird
- Department of Archaeology, Classics and Egyptology, University of Liverpool, Liverpool L69 7WZ, UK
| | - Patrick Semal
- Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Lourdes Márquez-Morfín
- Osteology Laboratory, Post Graduate Studies Division, Escuela Nacional de Antropología e Historia (ENAH), Mexico City, Mexico
| | - Mirjana Roksandic
- Department of Anthropology, University of Winnipeg, Winnipeg, MB, Canada.,Caribbean Research Institute, Univeristy of Winnipeg, Winnipeg, MB, Canada.,DFG Center for Advanced Studies "Words, Bones, Genes, Tools," University of Tübingen, Tübingen, Germany
| | - Hubert Steiner
- South Tyrol Provincial Heritage Service, South Tyrol, Italy
| | - Domingo Carlos Salazar-García
- Grupo de Investigación en Prehistoria IT-1223-19 (UPV-EHU)/IKERBASQUE-Basque Foundation for Science, Vitoria, Spain.,Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, València, Spain.,Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | - Natalia Shishlina
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, 199034 St. Petersburg, Russia.,State Historical Museum, Moscow, Russia
| | - Yilmaz Selim Erdal
- Human_G Laboratory, Department of Anthropology, Hacettepe University, Ankara 06800, Turkey
| | | | - Yavor Boyadzhiev
- National Archaeological Institute with Museum at the Bulgarian Academy of Sciences, Sofia 1000, Bulgaria
| | - Kamen Boyadzhiev
- National Archaeological Institute with Museum at the Bulgarian Academy of Sciences, Sofia 1000, Bulgaria
| | - Mario Küßner
- Thuringian State Office for Heritage Management and Archaeology, 99423 Weimar, Germany
| | - Duncan Sayer
- School of Natural Sciences, University of Central Lancashire, Preston, UK
| | - Päivi Onkamo
- Department of Biosciences, University of Helsinki, 00014 Helsinki, Finland.,Department of Biology, University of Turku, 20500 Turku, Finland
| | - Robin Skeates
- Department of Archaeology, Durham University, South Road, Durham. DH1 3LE. UK
| | - Manuel Rojo-Guerra
- Department of Prehistory and Archaeology, Faculty of Philosophy and Letters, University of Valladolid, Spain
| | - Alexandra Buzhilova
- Anuchin Research Institute and Museum of Anthropology, Lomonosov Moscow State University, Moscow, Russia
| | | | | | - Arman Z Beisenov
- Institute of archaeology named after A. Kh. Margulan, 44 Almaty, Kazakhstan
| | - Zainolla Samashev
- Branch of Institute of Archaeology named after A.Kh. Margulan, 24 of 511 Nur-Sultan, Kazakhstan.,State Historical and Cultural Museum-Reserve "Berel," Katon-Karagay district, East Kazakhstan region, Kazakhstan
| | - Ken Massy
- Institut für Vor- und Frühgeschichtliche Archäologie und Provinzialrömische Archäologie, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Marcello Mannino
- Department of Archeology and Heritage Studies, Aarhus University, 8270 Højbjerg, Denmark.,Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig Germany
| | - Vyacheslav Moiseyev
- Peter the Great Museum of Anthropology and Ethnography (Kunstkamera) RAS, 199034 St. Petersburg, Russia
| | | | - Oleg Balanovsky
- Research Centre for Medical Genetics, Moscow, Russia.,Biobank of North Eurasia, Moscow, Russia.,Vavilov Institute of General Genetics, Moscow, Russia
| | | | - Sabine Reinhold
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Svend Hansen
- Eurasia Department, German Archaeological Institute, Berlin, Germany
| | - Egor P Kitov
- Institute of Ethnology and Anthropology, Russian Academy of Sciences, Moscow, Russia.,Institute of archaeology named after A. Kh. Margulan, 44 Almaty, Kazakhstan
| | - Miroslav Dobeš
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Ernée
- Institute of Archaeology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Harald Meller
- State Office for Heritage Management and Archaeology Saxony-Anhalt and State Museum of Prehistory, D-06114 Halle, Germany
| | - Kurt W Alt
- Danube Private University, Center of Natural and Cultural Human History, A - 3500 Krems-Stein, Austria.,Integrative Prehistory and Archaeological Science, Spalenring 145, CH-4055 Basel, Switzerland.,Department of Biomedical Engineering (DBE), Universitätsspital Basel (HFZ), CH-4123 Allschwil, Switzerland
| | - Kay Prüfer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Christina Warinner
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,Department of Anthropology, Harvard University, Cambridge, MA 02138, USA
| | - Stephan Schiffels
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Philipp W Stockhammer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,Institut für Vor- und Frühgeschichtliche Archäologie und Provinzialrömische Archäologie, Ludwig-Maximilians-Universität München, 80539 Munich, Germany
| | - Kirsten Bos
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Archaeo- and Palaeogenetics group, Institute for Archaeological Sciences, Eberhard Karls University Tübingen, 72070 Tübingen, Germany
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,School of Biological Sciences, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Denise Kühnert
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for the Science of Human History, 07745 Jena, Germany.,Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.,European Virus Bioinformatics Center (EVBC), Jena, Germany
| |
Collapse
|
207
|
Jovanović M, Haring E, Sattmann H, Grosser C, Pesic V. DNA barcoding for species delimitation of the freshwater leech genus Glossiphonia from the Western Balkan (Hirudinea, Glossiphoniidae). Biodivers Data J 2021; 9:e66347. [PMID: 34616211 PMCID: PMC8458266 DOI: 10.3897/bdj.9.e66347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/20/2021] [Indexed: 11/12/2022] Open
Abstract
Glossiphoniid leeches are a diverse group and sometimes abundant elements of the aquatic fauna inhabiting various types of freshwater habitats. In this study, we sampled leeches of the genus Glossiphonia from the Western Balkan in order to test the suitability of the mitochondrial cytochrome c oxidase subunit 1 (COI) marker sequence for species delimitation. Morphological analysis revealed the presence of four taxa, G.complanata with two subspecies, G.c.complanata and G.c.maculosa, the latter an endemic of Ohrid Lake, G.nebulosa and endemic G.balcanica. In total, 29 new barcodes of Glossiphonia were sequenced in the course of this study and compared with the available molecular dataset of the latter genus from GenBank/BOLD databases. The applied ASAP distance-based species delimitation method for the analysed dataset revealed an interspecific threshold between 4-8% K2P distance as suitable for species identification purposes of the Western Balkan Glossiphonia species. Our study revealed that morphologically identified taxa as G.nebulosa and G.concolor each consists of more than one clearly different phylogenetic clade. This study contributes to a better knowledge of the taxonomy of glossiphoniid leeches and emphasises future work on the revision of this genus using a standard molecular COI marker in species identification.
Collapse
Affiliation(s)
- Milica Jovanović
- Department of Biology, Faculty of Natural Science and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000, Podgorica, Montenegro Department of Biology, Faculty of Natural Science and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica Montenegro
| | - Elisabeth Haring
- Department of Evolutionary Biology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria Department of Evolutionary Biology, University of Vienna, Althanstraße 14, 1090 Vienna Austria.,Central Research Laboratories, Natural History Museum Vienna, Burgring 7, 1010, Vienna, Austria Central Research Laboratories, Natural History Museum Vienna, Burgring 7, 1010 Vienna Austria
| | - Helmut Sattmann
- 3rd Zoological Department, Natural History Museum Vienna, Burgring 7, Vienna, Austria 3rd Zoological Department, Natural History Museum Vienna, Burgring 7 Vienna Austria
| | - Clemens Grosser
- 4 Bernd-Blindow-Schule Leipzig, Comeniusstraße 17, 04315, Leipzig, Germany 4 Bernd-Blindow-Schule Leipzig, Comeniusstraße 17, 04315 Leipzig Germany
| | - Vladimir Pesic
- Department of Biology, Faculty of Natural Science and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000, Podgorica, Montenegro Department of Biology, Faculty of Natural Science and Mathematics, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica Montenegro
| |
Collapse
|
208
|
Majewski W, Holzmann M, Gooday AJ, Majda A, Mamos T, Pawlowski J. Cenozoic climatic changes drive evolution and dispersal of coastal benthic foraminifera in the Southern Ocean. Sci Rep 2021; 11:19869. [PMID: 34615927 PMCID: PMC8494791 DOI: 10.1038/s41598-021-99155-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Antarctic coastal fauna is characterized by high endemism related to the progressive cooling of Antarctic waters and their isolation by the Antarctic Circumpolar Current. The origin of the Antarctic coastal fauna could involve either colonization from adjoining deep-sea areas or migration through the Drake Passage from sub-Antarctic areas. Here, we tested these hypotheses by comparing the morphology and genetics of benthic foraminifera collected from Antarctica, sub-Antarctic coastal settings in South Georgia, the Falkland Islands and Patagonian fjords. We analyzed four genera (Cassidulina, Globocassidulina, Cassidulinoides, Ehrenbergina) of the family Cassidulinidae that are represented by at least nine species in our samples. Focusing on the genera Globocassidulina and Cassidulinoides, our results showed that the first split between sub-Antarctic and Antarctic lineages took place during the mid-Miocene climate reorganization, probably about 20 to 17 million years ago (Ma). It was followed by a divergence between Antarctic species ~ 10 Ma, probably related to the cooling of deep water and vertical structuring of the water-column, as well as broadening and deepening of the continental shelf. The gene flow across the Drake Passage, as well as between South America and South Georgia, seems to have occurred from the Late Miocene to the Early Pliocene. It appears that climate warming during 7-5 Ma and the migration of the Polar Front breached biogeographic barriers and facilitated inter-species hybridization. The latest radiation coincided with glacial intensification (~ 2 Ma), which accelerated geographic fragmentation of populations, demographic changes, and genetic diversification in Antarctic species. Our results show that the evolution of Antarctic and sub-Antarctic coastal benthic foraminifera was linked to the tectonic and climatic history of the area, but their evolutionary response was not uniform and reflected species-specific ecological adaptations that influenced the dispersal patterns and biogeography of each species in different ways.
Collapse
Affiliation(s)
- Wojciech Majewski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland.
| | - Maria Holzmann
- Department of Genetics and Evolution, University of Geneva, Sciences III, 30 Quai Ernest Ansermet, 1211, Geneve 4, Switzerland
| | - Andrew J Gooday
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
| | - Aneta Majda
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warsaw, Poland
| | - Tomasz Mamos
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, Banacha 12/16, 90-237, Łódź, Poland
| | - Jan Pawlowski
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712, Sopot, Poland
| |
Collapse
|
209
|
Becchimanzi A, Zimowska B, Nicoletti R. Cryptic Diversity in Cladosporium cladosporioides Resulting from Sequence-Based Species Delimitation Analyses. Pathogens 2021; 10:pathogens10091167. [PMID: 34578199 PMCID: PMC8472012 DOI: 10.3390/pathogens10091167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Cladosporium cladosporioides is an extremely widespread fungus involved in associations ranging from mutualistic to pathogenic and is the most frequently represented Cladosporium species in sequence databases, such as Genbank. The taxonomy of Cladosporium species, currently based on the integration of molecular data with morphological and cultural characters, is in frequent need of revision. Hence, the recently developed species delimitation methods can be helpful to explore cryptic diversity in this genus. Considering a previous study that reported several hypothetical species within C. cladosporioides, we tested four methods of species delimitation using the combined DNA barcodes internal transcribed spacers, translation elongation factor 1-α and actin 1. The analyses involved 105 isolates, revealing that currently available sequences of C. cladosporioides in GenBank actually represent more than one species. Moreover, we found that eight isolates from this set should be ascribed to Cladosporium anthropophilum. Our results revealed a certain degree of discordance among species delimitation methods, which can be efficiently treated using conservative approaches in order to minimize the risk of considering false positives.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (A.B.); (R.N.)
| | - Beata Zimowska
- Department of Plant Protection, University of Life Sciences, 20-069 Lublin, Poland
- Correspondence:
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (A.B.); (R.N.)
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
| |
Collapse
|
210
|
Firneno TJ, O’Neill JR, Itgen MW, Kihneman TA, Townsend JH, Fujita MK. Delimitation despite discordance: Evaluating the species limits of a confounding species complex in the face of mitonuclear discordance. Ecol Evol 2021; 11:12739-12753. [PMID: 34594535 PMCID: PMC8462145 DOI: 10.1002/ece3.8018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/24/2022] Open
Abstract
The delimitation of species is an essential pursuit of biology, and proper taxonomies are crucial for the assessment and conservation management of organismal diversity. However, delimiting species can be hindered by a number of factors including highly conserved morphologies (e.g., cryptic species), differences in criteria of species concepts, lineages being in the early stages of the speciation or divergence process, and discordance between gene topologies (e.g., mitonuclear discordance). Here we use a taxonomically confounded species complex of toads in Central America that exhibits extensive mitonuclear discordance to test delimitation hypotheses. Our investigation integrates mitochondrial sequences, nuclear SNPs, morphology, and macroecological data to determine which taxonomy best explains the divergence and evolutionary relationships among these toads. We found that a three species taxonomy following the distributions of the nuclear SNP haplotypes offers the best explanation of the species in this complex based off of the integrated data types. Due to the taxonomic instability of this group, we also discuss conservation concerns in the face of improper taxonomic delimitation. Our study provides an empirical and integrative hypothesis testing framework to assess species delimitation hypotheses in the face of cryptic morphology and mitonuclear discordance and highlights the importance that a stable taxonomy has over conservation-related actions.
Collapse
Affiliation(s)
- Thomas J. Firneno
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTXUSA
- Department of Biology, Amphibian and Reptile Diversity Research CenterUniversity of Texas at ArlingtonArlingtonTXUSA
| | | | | | | | - Josiah H. Townsend
- Department of BiologyIndiana University of PennsylvaniaIndianaPAUSA
- Departamento de Ambiente y DesarrolloCentro Zamorano de BiodiversidadEscuela Agrícola Panamericana ZamoranoMunicipalidad de San Antonio de OrienteFrancisco MorazánHonduras
| | - Matthew K. Fujita
- Department of BiologyUniversity of Texas at ArlingtonArlingtonTXUSA
- Department of Biology, Amphibian and Reptile Diversity Research CenterUniversity of Texas at ArlingtonArlingtonTXUSA
| |
Collapse
|
211
|
Cedrola F, Martinele I, Senra MVX, Furtado EJDO, D Agosto M, Dias RJP. Rediscovery of Plasmodium (Huffia) huffi (Apicomplexa, Haemosporida): a lost lineage from toucans. Parasitol Res 2021; 120:3287-3296. [PMID: 34374851 DOI: 10.1007/s00436-021-07273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/26/2021] [Indexed: 11/30/2022]
Abstract
Literature data on toucans haemosporidians are scarce and all reports come from investigations in Brazil. Muniz et al. (Rev Bras Malariol 3: 339-356, Muniz et al., Rev Bras Malariol 3:339-356, 1951) and Muniz and Soares (Rev Bras Malar 611-617, Muniz J, Soares R de RL (1954) Nota sôbre um parasita do gênero Plasmodium encontrado no Ramphastos toco Müller, 1776, "Tucano-Açu", e diferente do Plasmodium huffi: Plasmodium pinottii n. sp. Rev Bras Malar 611 - 617.) described two Plasmodium species, P. huffi and P. pinottii, in Ramphastos toco. Later, Manwell and Sessler (J Protozol 18: 570-574, Manwell and Sessler, Malaria Parasites of Toucans J Protozol 18:570-574, 1971) established a new subspecies, P. nucleophilum toucani. In the last review on avian haemosporidians, Valkiūnas (Valkiūnas, Avian malaria parasites and other haemosporidia, CRC Press, New York, 2005) highlighted that P. huffi was insufficiently characterized, considering it a lost lineage. Also, the original description of P. huffi was considered insufficiently clear, due to a possible co-infection of the toucan hosts with a Novyella-like species. Here, we redescribed the species Plasmodium (Huffia) huffi based on morphological and molecular data, which were found in two toucan species, Ramphastos toco and Pteroglossus aracari from Brazil. Morphological features of the specimens are markedly the same as the original description. In R. toco, we observe two individuals infected, one infected only with P. huffi and one co-infected with P. huffi and the Novyella-like species, as observed in the original description. Also, we observe one R. toco infected only with the Novyella-like species, identified by morphological and molecular data as Plasmodium (Novyella) nucleophilum nucleophilum. In this way, it was possible to redescribe Plasmodium huffi in detail, without the doubt characters observed in the original description. Moreover, by applying species delimitation algorithms to a large Plasmodium phylogeny, we were able to identify new possible hosts for P. huffi and extend its geographic distribution to include North America.
Collapse
Affiliation(s)
- Franciane Cedrola
- Laboratório de Protozoologia, Programa de Pós-Graduação Em Biodiversidade E Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP, 36036-900, Brazil.
| | - Isabel Martinele
- Laboratório de Protozoologia, Programa de Pós-Graduação Em Biodiversidade E Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP, 36036-900, Brazil
| | - Marcus Vinicius Xavier Senra
- Laboratório de Protozoologia, Programa de Pós-Graduação Em Biodiversidade E Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP, 36036-900, Brazil.,Instituto de Recursos Naturais, Universidade Federal de Itajubá, ItajubáMinas Gerais, 37500-903, Brazil
| | - Elen Juliana de Oliveira Furtado
- Laboratório de Protozoologia, Programa de Pós-Graduação Em Biodiversidade E Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP, 36036-900, Brazil
| | - Marta D Agosto
- Laboratório de Protozoologia, Programa de Pós-Graduação Em Biodiversidade E Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP, 36036-900, Brazil
| | - Roberto Júnio Pedroso Dias
- Laboratório de Protozoologia, Programa de Pós-Graduação Em Biodiversidade E Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, CEP, 36036-900, Brazil
| |
Collapse
|
212
|
Collado GA, Torres-Díaz C, Valladares MA. Phylogeography and molecular species delimitation reveal cryptic diversity in Potamolithus (Caenogastropoda: Tateidae) of the southwest basin of the Andes. Sci Rep 2021; 11:15735. [PMID: 34344905 PMCID: PMC8333322 DOI: 10.1038/s41598-021-94900-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
The species of the genus Potamolithus inhabiting the southwestern basin of the Andes are difficult to distinguish due to small size and similar shell morphology. Only Potamolithus australis and Potamolithus santiagensis have been traditionally recognized in this region, but the occurrence of several morphologically similar undescribed populations could increase the regional richness. Here we delimit described and potentially undescribed cryptic species of the genus using partial sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Network analysis and diversity indices inferred six highly differentiated haplogroups, many of them sympatric and widespread in the study area. Phylogeographic analyses suggest a scenario of recent diversification and the occurrence of multiple refuges during the successive Pleistocene glaciations. Phylogenetic analysis also recovered six major clades that showed no relationship with physiography. Species delimitation analyses consistently recognized three or four candidate species apart from P. australis and P. santiagensis. Divergence times indicate that speciation of Chilean Potamolithus began at the end of the Pliocene, probably driven by climatic rather than geographic events. Considering the high inter- and intra-basin genetic diversity, conservation efforts should be focused on protecting sympatric taxa in the basins with the highest species richness.
Collapse
Affiliation(s)
- Gonzalo A. Collado
- grid.440633.6Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán, Chile ,grid.440633.6Grupo de Investigación en Biodiversidad y Cambio Global (GBCG), Universidad del Bío-Bío, Chillán, Chile
| | - Cristian Torres-Díaz
- grid.440633.6Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán, Chile ,grid.440633.6Grupo de Investigación en Biodiversidad y Cambio Global (GBCG), Universidad del Bío-Bío, Chillán, Chile
| | - Moisés A. Valladares
- grid.440633.6Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bío-Bío, Avenida Andrés Bello 720, Chillán, Chile ,grid.440633.6Grupo de Investigación en Biodiversidad y Cambio Global (GBCG), Universidad del Bío-Bío, Chillán, Chile
| |
Collapse
|
213
|
Phylogeographic pattern and Pleistocene range reconstruction in the long-tailed hamster Cricetulus longicaudatus (Rodentia, Cricetidae) support its Tibetan origin. MAMMAL RES 2021. [DOI: 10.1007/s13364-021-00585-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
214
|
Hilário S, Gonçalves MFM, Alves A. Using Genealogical Concordance and Coalescent-Based Species Delimitation to Assess Species Boundaries in the Diaporthe eres Complex. J Fungi (Basel) 2021; 7:507. [PMID: 34202282 PMCID: PMC8307253 DOI: 10.3390/jof7070507] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 11/16/2022] Open
Abstract
DNA sequence analysis has been of the utmost importance to delimit species boundaries in the genus Diaporthe. However, the common practice of combining multiple genes, without applying the genealogical concordance criterion has complicated the robust delimitation of species, given that phylogenetic incongruence between loci has been disregarded. Despite the several attempts to delineate the species boundaries in the D. eres complex, the phylogenetic limits within this complex remain unclear. In order to bridge this gap, we employed the Genealogical Phylogenetic Species Recognition principle (GCPSR) and the coalescent-based model Poisson Tree Processes (PTPs) and evaluated the presence of recombination within the D. eres complex. Based on the GCPSR principle, presence of incongruence between individual gene genealogies, i.e., conflicting nodes and branches lacking phylogenetic support, was evident. Moreover, the results of the coalescent model identified D. eres complex as a single species, which was not consistent with the current large number of species within the complex recognized in phylogenetic analyses. The absence of reproductive isolation and barriers to gene flow as well as the high haplotype and low nucleotide diversity indices within the above-mentioned complex suggest that D. eres constitutes a population rather than different lineages. Therefore, we argue that a cohesive approach comprising genealogical concordance criteria and methods to detect recombination must be implemented in future studies to circumscribe species in the genus Diaporthe.
Collapse
Affiliation(s)
| | | | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (S.H.); (M.F.M.G.)
| |
Collapse
|
215
|
Siriwut W, Jeratthitikul E, Panha S, Chanabun R, Ngor PB, Sutcharit C. Evidence of cryptic diversity in freshwater Macrobrachium prawns from Indochinese riverine systems revealed by DNA barcode, species delimitation and phylogenetic approaches. PLoS One 2021; 16:e0252546. [PMID: 34077477 PMCID: PMC8171930 DOI: 10.1371/journal.pone.0252546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/18/2021] [Indexed: 12/04/2022] Open
Abstract
The diversity of Indochinese prawns in genus Macrobrachium is enormous due to the habitat diversification and broad tributary networks of two river basins: the Chao Phraya and the Mekong. Despite long-standing interest in SE-Asian decapod diversity, the subregional Macrobrachium fauna is still not yet comprehensively clarified in terms of taxonomic identification or genetic diversification. In this study, integrative taxonomic approaches including morphological examination, DNA barcoding, and molecular species delimitation were used to emphasize the broad scale systematics of Macrobrachium prawns in Indochina. Twenty-seven nominal species were successfully re-verified by traditional and molecular taxonomy. Barcode gap analysis supported broad overlapping of species boundaries. Taxonomic ambiguity of several deposited samples in the public database is related to inter- and intraspecific genetic divergence as indicated by BOLD discordance. Diagnostic nucleotide positions were found in six Macrobrachium species. Eighteen additional putative lineages are herein assigned using the consensus of species delimitation methods. Genetic divergence indicates the possible existence of cryptic species in four morphologically complex and wide-ranging species: M. lanchesteri, M. niphanae, M. sintangense, and some members of the M. pilimanus group. The geographical distribution of some species supports the connections and barriers attributed to paleo-historical events of SE-Asian rivers and land masses. Results of this study show explicitly the importance of freshwater ecosystems in Indochinese subregions, especially for the Mekong River Basin due to its high genetic diversity and species composition found throughout its tributaries.
Collapse
Affiliation(s)
- Warut Siriwut
- Animal Systematics and Molecular Ecology Laboratory, Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ekgachai Jeratthitikul
- Animal Systematics and Molecular Ecology Laboratory, Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Somsak Panha
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - Ratmanee Chanabun
- Program in Animal Science, Faculty of Agricultural Technology, Sakon Nakhon Rajabhat University, Sakon Nakhon, Thailand
| | - Peng Bun Ngor
- Inland Fisheries Research and Development Institute (IFReDI), Fisheries Administration, Phnom Penh, Cambodia
- Wonders of the Mekong Project, Phnom Penh, Cambodia
| | - Chirasak Sutcharit
- Animal Systematics Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
216
|
Onditi KO, Demos TC, Kerbis Peterhans J, Chen ZZ, Bryja J, Lavrenchenko LA, Musila S, Verheyen E, Van de Perre F, Akaibe BD, de la Sancha NU, Jiang XL. Historical biogeography, systematics, and integrative taxonomy of the non-Ethiopian speckled pelage brush-furred rats (Lophuromys flavopunctatus group). BMC Ecol Evol 2021; 21:89. [PMID: 34011264 PMCID: PMC8132446 DOI: 10.1186/s12862-021-01813-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The speckled-pelage brush-furred rats (Lophuromys flavopunctatus group) have been difficult to define given conflicting genetic, morphological, and distributional records that combine to obscure meaningful accounts of its taxonomic diversity and evolution. In this study, we inferred the systematics, phylogeography, and evolutionary history of the L. flavopunctatus group using maximum likelihood and Bayesian phylogenetic inference, divergence times, historical biogeographic reconstruction, and morphometric discriminant tests. We compiled comprehensive datasets of three loci (two mitochondrial [mtDNA] and one nuclear) and two morphometric datasets (linear and geometric) from across the known range of the genus Lophuromys. RESULTS The mtDNA phylogeny supported the division of the genus Lophuromys into three primary groups with nearly equidistant pairwise differentiation: one group corresponding to the subgenus Kivumys (Kivumys group) and two groups corresponding to the subgenus Lophuromys (L. sikapusi group and L. flavopunctatus group). The L. flavopunctatus group comprised the speckled-pelage brush-furred Lophuromys endemic to Ethiopia (Ethiopian L. flavopunctatus members [ETHFLAVO]) and the non-Ethiopian ones (non-Ethiopian L. flavopunctatus members [NONETHFLAVO]) in deeply nested relationships. There were distinctly geographically structured mtDNA clades among the NONETHFLAVO, which were incongruous with the nuclear tree where several clades were unresolved. The morphometric datasets did not systematically assign samples to meaningful taxonomic units or agree with the mtDNA clades. The divergence dating and ancestral range reconstructions showed the NONETHFLAVO colonized the current ranges over two independent dispersal events out of Ethiopia in the early Pleistocene. CONCLUSION The phylogenetic associations and divergence times of the L. flavopunctatus group support the hypothesis that paleoclimatic impacts and ecosystem refugia during the Pleistocene impacted the evolutionary radiation of these rodents. The overlap in craniodental variation between distinct mtDNA clades among the NONETHFLAVO suggests unraveling underlying ecomorphological drivers is key to reconciling taxonomically informative morphological characters. The genus Lophuromys requires a taxonomic reassessment based on extensive genomic evidence to elucidate the patterns and impacts of genetic isolation at clade contact zones.
Collapse
Affiliation(s)
- Kenneth Otieno Onditi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- Mammal Section, Zoology Department, National Museums of Kenya, Nairobi, Kenya
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Nairobi, Kenya
| | - Terrence C Demos
- Science & Education, Field Museum of Natural History, Chicago, USA
| | - Julian Kerbis Peterhans
- Science & Education, Field Museum of Natural History, Chicago, USA
- College of Arts and Sciences, Roosevelt University, Chicago, USA
| | - Zhong-Zheng Chen
- Collaborative Innovation Centre of Recovery and Reconstruction of Degraded Ecosystems in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Anhui, China
| | - Josef Bryja
- Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Leonid A Lavrenchenko
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Science, Moscow, Russia
| | - Simon Musila
- Mammal Section, Zoology Department, National Museums of Kenya, Nairobi, Kenya
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Nairobi, Kenya
| | - Erik Verheyen
- Operational Direction Taxonomy and Phylogeny, Royal Belgian Institute for Natural Sciences, Brussels, Belgium
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Frederik Van de Perre
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Benjamin Dudu Akaibe
- Department of Ecology and Animal Resource Management, Faculty of Science, Biodiversity Monitoring Centre, University of Kisangani, Kisangani, Democratic Republic of the Congo
| | - Noé U de la Sancha
- Science & Education, Field Museum of Natural History, Chicago, USA
- Department of Biological Sciences, Chicago State University, Chicago, USA
| | - Xue-Long Jiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China.
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Nairobi, Kenya.
| |
Collapse
|
217
|
Morel B, Barbera P, Czech L, Bettisworth B, Hübner L, Lutteropp S, Serdari D, Kostaki EG, Mamais I, Kozlov AM, Pavlidis P, Paraskevis D, Stamatakis A. Phylogenetic Analysis of SARS-CoV-2 Data Is Difficult. Mol Biol Evol 2021; 38:1777-1791. [PMID: 33316067 PMCID: PMC7798910 DOI: 10.1093/molbev/msaa314] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Numerous studies covering some aspects of SARS-CoV-2 data analyses are being published on a daily basis, including a regularly updated phylogeny on nextstrain.org. Here, we review the difficulties of inferring reliable phylogenies by example of a data snapshot comprising a quality-filtered subset of 8,736 out of all 16,453 virus sequences available on May 5, 2020 from gisaid.org. We find that it is difficult to infer a reliable phylogeny on these data due to the large number of sequences in conjunction with the low number of mutations. We further find that rooting the inferred phylogeny with some degree of confidence either via the bat and pangolin outgroups or by applying novel computational methods on the ingroup phylogeny does not appear to be credible. Finally, an automatic classification of the current sequences into subclasses using the mPTP tool for molecular species delimitation is also, as might be expected, not possible, as the sequences are too closely related. We conclude that, although the application of phylogenetic methods to disentangle the evolution and spread of COVID-19 provides some insight, results of phylogenetic analyses, in particular those conducted under the default settings of current phylogenetic inference tools, as well as downstream analyses on the inferred phylogenies, should be considered and interpreted with extreme caution.
Collapse
Affiliation(s)
- Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Pierre Barbera
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Lucas Czech
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
| | - Ben Bettisworth
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Lukas Hübner
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sarah Lutteropp
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Dora Serdari
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Evangelia-Georgia Kostaki
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioannis Mamais
- Department of Health Sciences, European University Cyprus, Nicosia, Cyprus
| | - Alexey M Kozlov
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Pavlos Pavlidis
- Institute of Computer Science, Foundation for Research and Technology-Hellas, Crete, Greece
| | - Dimitrios Paraskevis
- Department of Hygiene Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
218
|
Ge Y, Xia C, Wang J, Zhang X, Ma X, Zhou Q. The efficacy of DNA barcoding in the classification, genetic differentiation, and biodiversity assessment of benthic macroinvertebrates. Ecol Evol 2021; 11:5669-5681. [PMID: 34026038 PMCID: PMC8131818 DOI: 10.1002/ece3.7470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/26/2021] [Accepted: 03/05/2021] [Indexed: 11/19/2022] Open
Abstract
Macroinvertebrates have been recognized as key ecological indicators of aquatic environment and are the most commonly used approaches for water quality assessment. However, species identification of macroinvertebrates (especially of aquatic insects) proves to be very difficult due to the lack of taxonomic expertise in some regions and can become time-consuming. In this study, we evaluated the feasibility of DNA barcoding for the classification of benthic macroinvertebrates and investigated the genetic differentiation in seven orders (Insecta: Ephemeroptera, Plecoptera, Trichoptera, Diptera, Hemiptera, Coleoptera, and Odonata) from four large transboundary rivers of northwest China and further explored its potential application to biodiversity assessment. A total of 1,144 COI sequences, belonging to 176 species, 112 genera, and 53 families were obtained and analyzed. The barcoding gap analysis showed that COI gene fragment yielded significant intra- and interspecific divergences and obvious barcoding gaps. NJ phylogenetic trees showed that all species group into monophyletic species clusters whether from the same population or not, except two species (Polypedilum. laetum and Polypedilum. bullum). The distance-based (ABGD) and tree-based (PTP and MPTP) methods were utilized for grouping specimens into Operational Taxonomic Units (OTUs) and delimiting species. The ABGD, PTP, and MPTP analysis were divided into 177 (p = .0599), 197, and 195 OTUs, respectively. The BIN analysis generated 186 different BINs. Overall, our study showed that DNA barcoding offers an effective framework for macroinvertebrate species identification and sheds new light on the biodiversity assessment of local macroinvertebrates. Also, the construction of DNA barcode reference library of benthic macroinvertebrates in Eurasian transboundary rivers provides a solid backup for bioassessment studies of freshwater habitats using modern high-throughput technologies in the near future.
Collapse
Affiliation(s)
- Yihao Ge
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
- The Key Laboratory of Aquatic Biodiversity and ConservationInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Chengxing Xia
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
| | - Jun Wang
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- The Key Laboratory of Aquatic Biodiversity and ConservationInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Xiujie Zhang
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
| | - Xufa Ma
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
| | - Qiong Zhou
- Key Laboratory of Freshwater Animal BreedingMinistry of Agriculture and Rural Affair/Key Laboratory of Agricultural Animal Genetics, Breeding and ReproductionMinistry of EducationCollege of FisheriesHuazhong Agricultural UniversityWuhanChina
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic BeltMinistry of EducationWuhanChina
| |
Collapse
|
219
|
Garibian PG, Karabanov DP, Neretina AN, Taylor DJ, Kotov AA. Bosminopsis deitersi (Crustacea: Cladocera) as an ancient species group: a revision. PeerJ 2021; 9:e11310. [PMID: 33981506 PMCID: PMC8074845 DOI: 10.7717/peerj.11310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Water fleas (Crustacea: Cladocera) of the Family Bosminidae have been studied since the founding of paleolimnology and freshwater ecology. However, one species, Bosminopsis deitersi, stands out for its exceptional multicontinental range and broad ecological requirements. Here we use an integrated morphological and multilocus genetic approach to address the species problem in B. deitersi. We analyzed 32 populations of B. deitersi s. lat. Two nuclear and two mitochondrial loci were used to carry out the bGMYC, mPTP and STACEY algorithms for species delimitation. Detailed morphological study was also carried out across continents. The evidence indicated a widely distributed cryptic species in the Old World (Bosminopsis zernowi) that is genetically divergent from B. deitersi s.str. We revised the taxonomy and redescribed the species in this complex. Our sampling indicated that B. zernowi had weak genetic differentiation across its range. A molecular clock and biogeographic analysis with fossil calibrations suggested a Mesozoic origin for the Bosminopsis deitersi group. Our evidence rejects the single species hypothesis for B. deitersi and is consistent with an ancient species group (potentially Mesozoic) that shows marked morphological conservation. The family Bosminidae, then, has examples of both rapid morphological evolution (Holocene Bosmina), and morphological stasis (Bosminopsis).
Collapse
Affiliation(s)
- Petr G. Garibian
- Laboratory of Aquatic Ecology and Invasions, A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
| | - Dmitry P. Karabanov
- Laboratory of Fish Ecology, I.D. Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences, Borok, Yaroslavl Area, Russia
| | - Anna N. Neretina
- Laboratory of Aquatic Ecology and Invasions, A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
| | - Derek J. Taylor
- Department of Biological Sciences, The State University of New York at Buffalo, Buffalo, New York, United States
| | - Alexey A. Kotov
- Laboratory of Aquatic Ecology and Invasions, A.N. Severtsov Institute of Ecology and Evolution of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
220
|
Shen S, Liu SL, Jiang JH, Zhou LW. Addressing widespread misidentifications of traditional medicinal mushrooms in Sanghuangporus (Basidiomycota) through ITS barcoding and designation of reference sequences. IMA Fungus 2021; 12:10. [PMID: 33853671 PMCID: PMC8048060 DOI: 10.1186/s43008-021-00059-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/09/2021] [Indexed: 01/27/2023] Open
Abstract
"Sanghuang" refers to a group of important traditionally-used medicinal mushrooms belonging to the genus Sanghuangporus. In practice, species of Sanghuangporus referred to in medicinal studies and industry are now differentiated mainly by a BLAST search of GenBank with the ITS barcoding region as a query. However, inappropriately labeled ITS sequences of "Sanghuang" in GenBank restrict accurate species identification and, to some extent, the utilization of these species as medicinal resources. We examined all available 271 ITS sequences related to "Sanghuang" in GenBank including 31 newly submitted sequences from this study. Of these sequences, more than half were mislabeled so we have now corrected the corresponding species names. The mislabeled sequences mainly came from strains utilized by non-taxonomists. Based on the analyses of ITS sequences submitted by taxonomists as well as morphological characters, we separate the newly described Sanghuangporus subbaumii from S. baumii and treat S. toxicodendri as a later synonym of S. quercicola. Fourteen species of Sanghuangporus are accepted, with intraspecific distances up to 1.30% (except in S. vaninii, S. weirianus and S. zonatus) and interspecific distances above 1.30% (except between S. alpinus and S. lonicerinus, and S. baumii and S. subbaumii). To stabilize the concept of these 14 species of Sanghuangporus, their taxonomic information and reliable ITS reference sequences are provided. Moreover, ten potential diagnostic sequences are provided for Hyperbranched Rolling Circle Amplification to rapidly confirm three common commercial species, viz. S. baumii, S. sanghuang, and S. vaninii. Our results provide a practical method for ITS barcoding-based species identification of Sanghuangporus and will promote medicinal studies and commercial development from taxonomically correct material.
Collapse
Affiliation(s)
- Shan Shen
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Liang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ji-Hang Jiang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
221
|
de Sousa JLP, de Araújo Bitencourt J, Sampaio I, Schneider H, de Mello Affonso PRA. “More than meets the eye”: phylogeographic inferences and remarkable cryptic diversity and in endemic catfish Parotocinclus (Loricariidae: Hypoptopomatinae) from neglected and impacted basins in South America. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01336-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
222
|
Hazzi NA, Hormiga G. Morphological and molecular evidence support the taxonomic separation of the medically important Neotropical spiders Phoneutria depilata (Strand, 1909) and P. boliviensis (F.O. Pickard-Cambridge, 1897) (Araneae, Ctenidae). Zookeys 2021; 1022:13-50. [PMID: 33762866 PMCID: PMC7960689 DOI: 10.3897/zookeys.1022.60571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/09/2021] [Indexed: 02/08/2023] Open
Abstract
The species of the genus Phoneutria (Ctenidae), also called banana spiders, are considered amongst the most venomous spiders in the world. In this study we revalidate P. depilata (Strand, 1909), which had been synonymized with P. boliviensisis (F.O. Pickard-Cambridge, 1897), using morphological and nucleotide sequence data (COI and ITS-2) together with species delimitation methods. We synonymized Ctenus peregrinoides, Strand, 1910 and Phoneutria colombiana Schmidt, 1956 with P. depilata. Furthermore, we designated Ctenus signativenter Strand, 1910 as a nomen dubium because the exact identity of this species cannot be ascertained with immature specimens, but we note that the type locality suggests that the C. signativenter syntypes belong to P. depilata. We also provide species distribution models for both species of Phoneutria and test hypotheses of niche conservatism under an allopatric speciation model. Our phylogenetic analyses support the monophyly of the genus Phoneutria and recover P. boliviensis and P. depilata as sister species, although with low nodal support. In addition, the tree-based species delimitation methods also supported the separate identities of these two species. Phoneutria boliviensis and P. depilata present allopatric distributions separated by the Andean mountain system. Species distribution models indicate lowland tropical rain forest ecosystems as the most suitable habitat for these two Phoneutria species. In addition, we demonstrate the value of citizen science platforms like iNaturalist in improving species distribution knowledge based on occurrence records. Phoneutria depilata and P. boliviensis present niche conservatism following the expected neutral model of allopatric speciation. The compiled occurrence records and distribution maps for these two species, together with the morphological diagnosis of both species, will help to identify risk areas of accidental bites and assist health professionals to determine the identity of the species involved in bites, especially for P. depilata.
Collapse
Affiliation(s)
- Nicolas A. Hazzi
- The George Washington University, Department of Biological Sciences, Washington, D.C. 20052, USAThe George Washington UniversityWashington, D.CUnited States of America
- Fundación Ecotonos, Cra 72 No. 13ª-56, Cali, ColombiaFundación EcotonosCaliColombia
| | - Gustavo Hormiga
- The George Washington University, Department of Biological Sciences, Washington, D.C. 20052, USAThe George Washington UniversityWashington, D.CUnited States of America
| |
Collapse
|
223
|
Marín MA, López-Rubio A, Clavijo A, Pyrcz TW, Freitas AVL, Uribe SI, Álvarez CF. Use of species delimitation approaches to tackle the cryptic diversity of an assemblage of high Andean butterflies (Lepidoptera: Papilionoidea). Genome 2021; 64:937-949. [PMID: 33596120 DOI: 10.1139/gen-2020-0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cryptic biological diversity has generated ambiguity in taxonomic and evolutionary studies. Single-locus methods and other approaches for species delimitation are useful for addressing this challenge, enabling the practical processing of large numbers of samples for identification and inventory purposes. This study analyzed an assemblage of high Andean butterflies using DNA barcoding and compared the identifications based on the current morphological taxonomy with three methods of species delimitation (automatic barcode gap discovery, generalized mixed Yule coalescent model, and Poisson tree processes). Sixteen potential cryptic species were recognized using these three methods, representing a net richness increase of 11.3% in the assemblage. A well-studied taxon of the genus Vanessa, which has a wide geographical distribution, appeared with the potential cryptic species that had a higher genetic differentiation at the local level than at the continental level. The analyses were useful for identifying the potential cryptic species in Pedaliodes and Forsterinaria complexes, which also show differentiation along altitudinal and latitudinal gradients. This genetic assessment of an entire assemblage of high Andean butterflies (Papilionoidea) provides baseline information for future research in a region characterized by high rates of endemism and population isolation.
Collapse
Affiliation(s)
- Mario Alejandro Marín
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo (SP), Brazil.,Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Andrés López-Rubio
- Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Alejandra Clavijo
- Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Tomasz Wilhelm Pyrcz
- Department of Invertebrate Evolution, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa, Kraków, Poland.,Nature Education Centre, Jagiellonian University, Gronostajowa, Kraków, Poland
| | - André Victor Lucci Freitas
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo (SP), Brazil.,Museu de Diversidade Biológica, Instituto de Biologia, Universidade Estadual de Campinas, São Paulo, Brazil
| | - Sandra Inés Uribe
- Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| | - Carlos Federico Álvarez
- Grupo de Investigación en Sistemática Molecular, Universidad Nacional de Colombia, Medellín, Antioquia, Colombia
| |
Collapse
|
224
|
Abstract
Members of the following marine annelid families are found almost exclusively in the interstitial environment and are highly adapted to move between sand grains, relying mostly on ciliary locomotion: Apharyngtidae n. fam., Dinophilidae, Diurodrilidae, Nerillidae, Lobatocerebridae, Parergodrilidae, Polygordiidae, Protodrilidae, Protodriloididae, Psammodrilidae and Saccocirridae. This article provides a review of the evolution, systematics, and diversity of these families, with the exception of Parergodrilidae, which was detailed in the review of Orbiniida by Meca, Zhadan, and Struck within this Special Issue. While several of the discussed families have previously only been known by a few described species, recent surveys inclusive of molecular approaches have increased the number of species, showing that all of the aforementioned families exhibit a high degree of cryptic diversity shadowed by a limited number of recognizable morphological traits. This is a challenge for studies of the evolution, taxonomy, and diversity of interstitial families as well as for their identification and incorporation into ecological surveys. By compiling a comprehensive and updated review on these interstitial families, we hope to promote new studies on their intriguing evolutionary histories, adapted life forms and high and hidden diversity.
Collapse
|
225
|
Lebedev VS, Kovalskaya Y, Solovyeva EN, Zemlemerova ED, Bannikova AA, Rusin MY, Matrosova VA. Molecular systematics of the Sicista tianschanica species complex: a contribution from historical DNA analysis. PeerJ 2021; 9:e10759. [PMID: 33520475 PMCID: PMC7810041 DOI: 10.7717/peerj.10759] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022] Open
Abstract
The Tianshan birch mouse Sicista tianschanica is an endemic of the Central Asian mountains and has previously been shown to include several karyomorphs (“Terskey”, “Talgar”, “Dzungar”); however, the taxonomic status of these forms has remained uncertain. We examined the genetic variation in S. tianschanica based on historical DNA samples from museum collections, including the type series. Mitochondrial and nuclear data indicated that the species complex includes two major clades: Northern (N) and Southern (S) (cytb distance 13%). The N clade corresponds to the “Dzungar” karyomorph (Dzungar Alatau, Tarbagatay). The S clade is comprised of four lineages (S1–S4) divergent at 6–8%; the relationships among which are resolved incompletely. The S1 lineage is found in eastern Tianshan and corresponds to the nominal taxon. The S2 is distributed in central and northern Tianshan and corresponds to the “Terskey” karyomorph. The S3 is restricted to Trans-Ili Alatau and belongs to the “Talgar” karyomorph. The S4 is represented by a single specimen from southeastern Dzungar Alatau with "Talgar" karyotype. No interlineage gene flow was revealed. The validity of S. zhetysuica (equivalent to the N clade) is supported. Based on genetic and karyotypic evidence, lineages S2 and S3 are described as distinct species. The status of the S4 requires further investigation.
Collapse
Affiliation(s)
| | - Yulia Kovalskaya
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | | | - Elena D Zemlemerova
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Anna A Bannikova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail Yu Rusin
- Research and International Cooperation Department, Kiev Zoo, Kiev, Ukraine.,Schmalhausen Institute of Zoology, Kiev, Ukraine
| | - Vera A Matrosova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
226
|
Neretina AN, Karabanov DP, Sacherova V, Kotov AA. Unexpected mitochondrial lineage diversity within the genus Alonella Sars, 1862 (Crustacea: Cladocera) across the Northern Hemisphere. PeerJ 2021; 9:e10804. [PMID: 33585083 PMCID: PMC7860113 DOI: 10.7717/peerj.10804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/30/2020] [Indexed: 02/05/2023] Open
Abstract
Representatives of the genus Alonella Sars (Crustacea: Cladocera: Chydorinae) belong to the smallest known water fleas. Although species of Alonella are widely distributed and often abundant in acidic and mountain water bodies, their diversity is poorly studied. Morphological and genetic approaches have been complicated by the minute size of these microcrustaceans. As a result, taxonomists have avoided revising these species. Here, we present genetic data on Alonella species diversity across the Northern Hemisphere with particular attention to the A. excisa species complex. We analyzed 82 16S rRNA sequences (all newly obtained), and 78 COI sequences (39 were newly obtained). The results revealed at least twelve divergent phylogenetic lineages, possible cryptic species, of Alonella, with different distribution patterns. As expected, the potential species diversity of this genus is significantly higher than traditionally accepted. The A. excisa complex is represented by nine divergent clades in the Northern Hemisphere, some of them have relatively broad distribution ranges and others are more locally distributed. Our results provide a genetic background for subsequent morphological analyses, formal descriptions of Alonella species and detailed phylogeographical studies.
Collapse
Affiliation(s)
- Anna N. Neretina
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry P. Karabanov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- I.D. Papanin Institute for Biology of Inland Waters, Borok, Yaroslavl State, Russia
| | | | - Alexey A. Kotov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
227
|
Salgado-Roa FC, Gamez A, Sanchez-Herrera M, Pardo-Díaz C, Salazar C. Divergence promoted by the northern Andes in the giant fishing spider Ancylometes bogotensis (Araneae: Ctenidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blaa220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The biodiversity of the tropical Americas is a consequence of the interplay between geological and climatic events, with the Andean uplift being a major driver of speciation. Multiple studies have shown that species diversification promoted by the Andes can occur in the presence or absence of gene flow. However, to date, the majority of research addressing this aspect has been conducted in vertebrates, whereas other highly diverse tropical organisms such as arthropods remain uninvestigated. We used a combination of phylogenetics, population genetic analyses and species distribution models to explore whether the northern Andes played a role in the diversification of Ancylometes bogotensis. We detected two major lineages that are separated by the Eastern Cordillera of the Colombian Andes, and they share the same climatic niche. These groups diverged at ~3.85 Mya and exhibit no signatures of gene flow, which can be a consequence of the Andean highlands being poorly suited habitats for this species, thus preventing their genetic connectivity. Our study reveals that the genetic structure of an arachnid species that has limited dispersal capacity and is highly dependent on water bodies is shaped by the Andean orogeny. The generality of this observation remains to be assessed in other invertebrates.
Collapse
Affiliation(s)
- Fabian C Salgado-Roa
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogota, DC, Colombia
| | - Andres Gamez
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogota, DC, Colombia
| | - Melissa Sanchez-Herrera
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogota, DC, Colombia
| | - Carolina Pardo-Díaz
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogota, DC, Colombia
| | - Camilo Salazar
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogota, DC, Colombia
| |
Collapse
|
228
|
Tamar K, Els J, Kornilios P, Soorae P, Tarroso P, Thanou E, Pereira J, Shah JN, Elhassan EEM, Aguhob JC, Badaam SF, Eltayeb MM, Pusey R, Papenfuss TJ, Macey JR, Carranza S. The demise of a wonder: Evolutionary history and conservation assessments of the Wonder Gecko Teratoscincus keyserlingii (Gekkota, Sphaerodactylidae) in Arabia. PLoS One 2021; 16:e0244150. [PMID: 33411750 PMCID: PMC7790289 DOI: 10.1371/journal.pone.0244150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/03/2020] [Indexed: 11/19/2022] Open
Abstract
Effective biodiversity conservation planning starts with genetic characterization within and among focal populations, in order to understand the likely impact of threats for ensuring the long-term viability of a species. The Wonder Gecko, Teratoscincus keyserlingii, is one of nine members of the genus. This species is distributed in Iran, Afghanistan, and Pakistan, with a small isolated population in the United Arab Emirates (UAE), where it is classified nationally as Critically Endangered. Within its Arabian range, anthropogenic activity is directly linked to the species’ decline, with highly localised and severely fragmented populations. Here we describe the evolutionary history of Teratoscincus, by reconstructing its phylogenetic relationships and estimating its divergence times and ancestral biogeography. For conservation implications of T. keyserlingii we evaluate the genetic structure of the Arabian population using genomic data. This study supports the monophyly of most species and reveals considerable intraspecific variability in T. microlepis and T. keyserlingii, which necessitate broad systematic revisions. The UAE population of T. keyserlingii likely arrived from southern Iran during the Pleistocene and no internal structure was recovered within, implying a single population status. Regional conservation of T. keyserlingii requires improved land management and natural habitat restoration in the species’ present distribution, and expansion of current protected areas, or establishment of new areas with suitable habitat for the species, mostly in northern Abu Dhabi Emirate.
Collapse
Affiliation(s)
- Karin Tamar
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, Barcelona, Spain
- * E-mail: (KT); (SC)
| | - Johannes Els
- Environment and Protected Areas Authority, Sharjah, United Arab Emirates
| | - Panagiotis Kornilios
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, Barcelona, Spain
- The Molecular Ecology Backshop, G. Lekka, Loutraki, Greece
| | | | - Pedro Tarroso
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, Barcelona, Spain
- CIBIO/InBIO, Research Centre in Biodiversity and Genetic Resources, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, Vairão, Vila do Conde, Portugal
| | - Evanthia Thanou
- The Molecular Ecology Backshop, G. Lekka, Loutraki, Greece
- Section of Animal Biology, Department of Biology, School of Natural Sciences, University of Patras, Patras, Greece
| | - John Pereira
- Environment and Protected Areas Authority, Sharjah, United Arab Emirates
| | - Junid Nazeer Shah
- Natural Resource Conservation Section, Environment Department, Dubai Municipality, Dubai, United Arab Emirates
| | | | - Jeruel Cabadonga Aguhob
- Natural Resource Conservation Section, Environment Department, Dubai Municipality, Dubai, United Arab Emirates
| | - Saoud Faisal Badaam
- Natural Resource Conservation Section, Environment Department, Dubai Municipality, Dubai, United Arab Emirates
| | - Mohamed Mustafa Eltayeb
- Natural Resource Conservation Section, Environment Department, Dubai Municipality, Dubai, United Arab Emirates
| | | | - Theodore J. Papenfuss
- Museum of Vertebrate Zoology, Valley Life Sciences Building, University of California, Berkeley, CA, United States of America
| | - J. Robert Macey
- Peralta Genomics Institute, Chancellor’s Office, Peralta Community College District, Oakland, CA, United States of America
| | - Salvador Carranza
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta, Barcelona, Spain
- * E-mail: (KT); (SC)
| |
Collapse
|
229
|
Ji Y, Yang J, Landis JB, Wang S, Yang Z, Zhang Y. Deciphering the Taxonomic Delimitation of Ottelia acuminata (Hydrocharitaceae) Using Complete Plastomes as Super-Barcodes. FRONTIERS IN PLANT SCIENCE 2021; 12:681270. [PMID: 34335651 PMCID: PMC8320023 DOI: 10.3389/fpls.2021.681270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/10/2021] [Indexed: 05/08/2023]
Abstract
Accurate species delimitation and identification, which is a challenging task in traditional morphology-based taxonomy, is crucial to species conservation. Ottelia acuminata (Hydrocharitaceae) is a severely threatened submerged macrophyte endemic to southwestern China. The taxonomy of O. acuminata, which has long been in dispute, remains unresolved, impeding effective conservation and management practices. Here, we aim to address the long-standing issues concerning species boundary and intraspecific subdivision of O. acuminata using complete plastome sequences as super-barcodes. The taxonomic delimitation of O. acuminata was explored using phylogenetic inference and two independent sequence-based species delimitation schemes: automatic barcode gap discovery (ABGD) and multi-rate Poisson tree processes (mPTP). The reciprocally reinforcing results support the reduction of the closely related congeneric species, O. balansae and O. guanyangensis, as two conspecific varieties of O. acuminata. Within the newly defined O. acuminata, accurate varietal identification can be achieved using plastome super-barcodes. These findings will help inform future decisions regarding conservation, management and restoration of O. acuminata. This case study suggests that the use of plastome super-barcodes can provide a solution for species delimitation and identification in taxonomically difficult plant taxa, thus providing great potential to lessen the challenges of inventorying biodiversity, as well as biologically monitoring and assessing threatened species.
Collapse
Affiliation(s)
- Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Yunheng Ji,
| | - Jin Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jacob B. Landis
- School of Integrative Plant Science, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, United States
| | - Shuying Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Zhenyan Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Yonghong Zhang
- School of Life Sciences, Yunnan Normal University, Kunming, China
| |
Collapse
|
230
|
On the Challenge to Correctly Identify Rasboras (Teleostei: Cyprinidae: Danioninae) Inhabiting the Mesangat Wetlands, East Kalimantan, Indonesia. DIVERSITY 2020. [DOI: 10.3390/d13010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Within the subfamily Danioninae, rasborine cyprinids are known as a ‘catch-all’ group, diagnosed by only a few characteristics. Most species closely resemble each other in morphology. Species identification is therefore often challenging. In this study, we attempted to determine the number of rasborine species occurring in samples from the Mesangat wetlands in East Kalimantan, Indonesia, by using different approaches. Morphological identification resulted in the distinction of five species (Trigonopoma sp., Rasbora cf. hubbsi Brittan, 1954, R. rutteni Weber and de Beaufort, 1916, R. trilineata Steindachner, 1870, and R. vaillantii, Popta 1905). However, genetic species delimitation methods (Poisson tree processes (PTP) and multi-rate PTP (mPTP)) based on DNA barcodes and principal component analysis (PCA) based on homologous geometric morphometric landmarks, revealed a single cluster for Trigonopoma sp. and R. trilineata, respectively, whereas the remaining traditionally identified species were distinguished neither by DNA barcodes nor by the morphometry approach. A k-mean clustering based on the homologous landmarks divided the sample into 13 clusters and was thus found to be inappropriate for landmark data from species extremely resembling each other in morphology. Due to inconsistent results between the applied methods we refer to the traditional identifications and distinguish five rasborine species for the Mesangat wetlands.
Collapse
|
231
|
Shekhovtsov SV, Shipova AA, Poluboyarova TV, Vasiliev GV, Golovanova EV, Geraskina AP, Bulakhova NA, Szederjesi T, Peltek SE. Species Delimitation of the Eisenia nordenskioldi Complex (Oligochaeta, Lumbricidae) Using Transcriptomic Data. Front Genet 2020; 11:598196. [PMID: 33365049 PMCID: PMC7750196 DOI: 10.3389/fgene.2020.598196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/09/2020] [Indexed: 01/22/2023] Open
Abstract
Eisenia nordenskioldi (Eisen, 1879) is the only autochthonous Siberian earthworm with a large distribution that ranges from tundra to steppe and broadleaved forests. This species has a very high morphological, ecological, karyological, and genetic diversity, so it was proposed that E. nordenskioldi should be split into several species. However, the phylogeny of the complex was unclear due to the low resolution of the methods used and the high diversity that should have been taken into account. We investigated this question by (1) studying the diversity of the COI gene of E. nordenskioldi throughout its range and (2) sequencing transcriptomes of different genetic lineages to infer its phylogeny. We found that E. nordenskioldi is monophyletic and is split into two clades. The first one includes the pigmented genetic lineages widespread in the northern and western parts of the distribution, and the second one originating from the southern and southeastern part of the species' range and representing both pigmented and non-pigmented forms. We propose to split the E. nordenskioldi complex into two species, E. nordenskioldi and Eisenia sp. 1 (aff. E. nordenskioldi), corresponding to these two clades. The currently recognized non-pigmented subspecies E. n. pallida will be abolished as a polyphyletic and thus a non-natural taxon, while Eisenia sp. 1 will be expanded to include several lineages earlier recognized as E. n. nordenskioldi and E. n. pallida.
Collapse
Affiliation(s)
- Sergei V Shekhovtsov
- Department of Molecular Biotechnology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Kurchatov Genomic Center, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Laboratory of Biocenology, Institute of Biological Problems of the North of the Far Eastern Branch of the Russian Academy of Sciences, Magadan, Russia
| | - Aleksandra A Shipova
- Department of Molecular Biotechnology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Kurchatov Genomic Center, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tatiana V Poluboyarova
- Department of Molecular Biotechnology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Kurchatov Genomic Center, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Laboratory of Biocenology, Institute of Biological Problems of the North of the Far Eastern Branch of the Russian Academy of Sciences, Magadan, Russia
| | - Gennady V Vasiliev
- Department of Molecular Biotechnology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena V Golovanova
- Laboratory of Systematics and Ecology of Invertebrates, Omsk State Pedagogical University, Omsk, Russia
| | - Anna P Geraskina
- Center for Forest Ecology and Productivity of the Russian Academy of Sciences, Moscow, Russia
| | - Nina A Bulakhova
- Laboratory of Biocenology, Institute of Biological Problems of the North of the Far Eastern Branch of the Russian Academy of Sciences, Magadan, Russia.,Laboratory of Biodiversity and Ecology, Tomsk State University, Tomsk, Russia
| | - Tímea Szederjesi
- Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary
| | - Sergei E Peltek
- Department of Molecular Biotechnology, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Kurchatov Genomic Center, Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
232
|
Siriwut W, Jeratthitikul E, Panha S, Chanabun R, Sutcharit C. Molecular phylogeny and species delimitation of the freshwater prawn Macrobrachium pilimanus species group, with descriptions of three new species from Thailand. PeerJ 2020; 8:e10137. [PMID: 33312765 PMCID: PMC7703394 DOI: 10.7717/peerj.10137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/18/2020] [Indexed: 12/05/2022] Open
Abstract
Specific status and species boundaries of several freshwater prawns in the Macrobrachium pilimanus species group remain ambiguous, despite the taxonomic re-description of type materials and additional specimens collected to expand the boundaries of some species. In this study, the "pilimanus" species group of Macrobrachium sensu Johnson (1958) was studied using specimens collected from montane streams of Thailand. Molecular phylogenetic analyses based on sequences of three molecular markers (COI, 16S and 18S rRNA) were performed. The phylogenetic results agreed with morphological identifications, and indicated the presence of at least nine putative taxa. Of these, six morphospecies were recognised as M. malayanum, M. forcipatum, M. dienbienphuense, M. hirsutimanus, M. eriocheirum, and M. sirindhorn. Furthermore, three morphologically and genetically distinct linages were detected, and are described herein as M. naiyanetri Siriwut sp. nov. , M. palmopilosum Siriwut sp. nov. and M. puberimanus Siriwut sp. nov. The taxonomic comparison indicated wide morphological variation in several species and suggested additional diagnostic characters that are suitable for use in species diagnoses, such as the shape and orientation of fingers, the rostrum form, and the presence or absence of velvet pubescence hairs and tuberculated spinulation on each telopodite of the second pereiopods. The "pilimanus" species group was portrayed as non-monophyletic in both ML and BI analyses. The genetic structure of different geographical populations in Thailand was detected in some widespread species. The species delimitation based on the four delimitation methods (BIN, ABGD, PTP and GMYC) suggested high genetic diversity of the "pilimanus" species group and placed the candidate members much higher than in previous designations based on traditional morphology. This finding suggests that further investigation of morphological and genetic diversity of Southeast Asian freshwater prawns in the genus Macrobrachium is still required to provide a comprehensive species list to guide efforts in conservation and resource management.
Collapse
Affiliation(s)
- Warut Siriwut
- Department of Biology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Somsak Panha
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| | - Ratmanee Chanabun
- Faculty of Agricultural Technology, Sakon Nakhon Rajabhat University, Sakhon Nakhon
| | - Chirasak Sutcharit
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
233
|
Weiss SJ, Gonçalves DV, Secci-Petretto G, Englmaier GK, Gomes-Dos-Santos A, Denys GPJ, Persat H, Antonov A, Hahn C, Taylor EB, Froufe E. Global systematic diversity, range distributions, conservation and taxonomic assessments of graylings (Teleostei: Salmonidae; Thymallus spp.). ORG DIVERS EVOL 2020. [DOI: 10.1007/s13127-020-00468-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractGraylings (Thymallus) are among the less well-studied groups of salmonid fishes, especially across their Asian distribution range. Here we perform a comprehensive global review of their phylogeography, systematic diversity and range distributions, including biogeographic reconstruction and assessment of both conservation and taxonomic status of each species. Based on a mitogenomic phylogenetic analysis, three approaches to the delineation of molecular operational units, and evaluation of 15 a-priori defined species, we provide biological support for the recognition of 13 grayling species, plus two additional species tentatively. Several instances of paraphyly and its potential effect on systematic inferences are discussed. Overall, the genus displays increasing species diversity and decreasing range size from higher to lower latitudes and ancestral trait reconstruction supports an East Asian origin for extant diversity, most likely centred in the Amur River drainage. Europe’s colonization by Thymallus took place as early as the late Miocene, at least two colonisations of North America are supported, and multiple dispersal events likely took place into Western Siberia. The conservation status for the 15 taxa was estimated to be: 6 least concern, 1 near-threatened, 2 vulnerable, 3 endangered and 3 data deficient.
Collapse
|
234
|
Molecular Species Delimitation of Larks (Aves: Alaudidae), and Integrative Taxonomy of the Genus Calandrella, with the Description of a Range-Restricted African Relic Taxon. DIVERSITY 2020. [DOI: 10.3390/d12110428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Larks constitute an avian family of exceptional cryptic diversity and striking examples of convergent evolution. Therefore, traditional morphology-based taxonomy has recurrently failed to reflect evolutionary relationships. While taxonomy ideally should integrate morphology, vocalizations, behaviour, ecology, and genetics, this can be challenging for groups that span several continents including areas that are difficult to access. Here, we combine morphometrics and mitochondrial DNA to evaluate the taxonomy of Calandrella larks, with particular focus on the African C. cinerea and the Asian C. acutirostris complexes. We describe a new range-restricted West African taxon, Calandrella cinerea rufipecta ssp. nov. (type locality: Jos, Plateau State, Nigeria), with an isolated relic population 3000 km from its closest relative in the Rift Valley. We performed molecular species delimitation, employing coalescence-based multi-rate Poisson Tree Processes (mPTP) on cytochrome b sequences across 52 currently recognized lark species, including multiple taxa currently treated as subspecies. Three species-level splits were inferred within the genus Calandrella and another 13 across other genera, primarily among fragmented sub-Saharan taxa and taxa distributed from Northwest Africa to Arabia or East Africa. Previously unknown divergences date back as far as to the Miocene, indicating the presence of currently unrecognized species. However, we stress that taxonomic decisions should not be based on single datasets, such as mitochondrial DNA, although analyses of mitochondrial DNA can be a good indicator of taxa in need of further integrative taxonomic assessment.
Collapse
|
235
|
Hupało K, Karaouzas I, Mamos T, Grabowski M. Molecular data suggest multiple origins and diversification times of freshwater gammarids on the Aegean archipelago. Sci Rep 2020; 10:19813. [PMID: 33188238 PMCID: PMC7666221 DOI: 10.1038/s41598-020-75802-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/07/2020] [Indexed: 11/09/2022] Open
Abstract
Our main aim was to investigate the diversity, origin and biogeographical affiliations of freshwater gammarids inhabiting the Aegean Islands by analysing their mtDNA and nDNA polymorphism, thereby providing the first insight into the phylogeography of the Aegean freshwater gammarid fauna. The study material was collected from Samothraki, Lesbos, Skyros, Evia, Andros, Tinos and Serifos islands as well as from mainland Greece. The DNA extracted was used for amplification of two mitochondrial (COI and 16S) and two nuclear markers (28S and EF1-alpha). The multimarker time-calibrated phylogeny supports multiple origins and different diversification times for the studied taxa. Three of the sampled insular populations most probably represent new, distinct species as supported by all the delimitation methods used in our study. Our results show that the evolution of freshwater taxa is associated with the geological history of the Aegean Basin. The biogeographic affiliations of the studied insular taxa indicate its continental origin, as well as the importance of the land fragmentation and the historical land connections of the islands. Based on the findings, we highlight the importance of studying insular freshwater biota to better understand diversification mechanisms in fresh waters as well as the origin of studied Aegean freshwater taxa.
Collapse
Affiliation(s)
- Kamil Hupało
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland.
- Aquatische Ökosystemforschung, Universität Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.
| | - Ioannis Karaouzas
- Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 46.7 km Athens-Sounio Av., 19013, Anavyssos, Greece
| | - Tomasz Mamos
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
- Zoological Institute, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Michał Grabowski
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237, Lodz, Poland
| |
Collapse
|
236
|
Barino GTM, Rossi MF, de Oliveira L, Reis Junior JL, D'Agosto M, Dias RJP. Haemoproteus syrnii (Haemosporida: Haemoproteidae) in owls from Brazil: morphological and molecular characterization, potential cryptic species, and exo-erythrocytic stages. Parasitol Res 2020; 120:243-255. [PMID: 33169308 DOI: 10.1007/s00436-020-06958-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 11/01/2020] [Indexed: 12/16/2022]
Abstract
Haemoproteus syrnii is a haemosporidian parasite found in owls. Although morphological and molecular data on the species is available, its exo-erythrocytic development was never researched. In this study, we provide the morphological, morphometric, and molecular characterization of H. syrnii populations found in owl species from Minas Gerais, southeast Brazil. We also characterized the coalescent species delimitation based on the molecular and histopathology data. Samples from 54 owls from six different species were analyzed, generating 11 sequences of the cyt b gene, from which six were new sequences. The overall prevalence of infection was high (72.22%). The H. syrnii sequences were grouped into two well-supported independent clades, which included other Haemoproteus (Parahaemoproteus) species. This was supported by both the coalescent species delimitation analysis and by the genetic divergence between lineages of these distinct clades. There were small morphological and morphometric differences within the population presented in this study. However, when compared with other studies, the molecular analysis demonstrated considerable intraspecific variation and suggests potential cryptic species. The histopathological analysis revealed, for the first time, that lungs and skeletal muscle are exo-erythrocytic stage location of H. syrnii, and that the parasite is linked to the histopathological changes found in owls. This study brings new data from Haemoproteus species biology and host infection, and improves host-parasite relationship understanding under an owl conservation perspective.
Collapse
Affiliation(s)
- Glauber Thiago Martins Barino
- Laboratório de Protozoologia (LabProto), LAZ, Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Mariana Fonseca Rossi
- Laboratório de Protozoologia (LabProto), LAZ, Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Luísa de Oliveira
- Laboratório de Protozoologia (LabProto), LAZ, Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Janildo Ludolf Reis Junior
- Departamento de Medicina Veterinária, Faculdade de Medicina, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Marta D'Agosto
- Laboratório de Protozoologia (LabProto), LAZ, Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, 36036-900, Brazil
| | - Roberto Júnio Pedroso Dias
- Laboratório de Protozoologia (LabProto), LAZ, Programa de Pós-graduação em Biodiversidade e Conservação da Natureza, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitário, Juiz de Fora, Minas Gerais, 36036-900, Brazil.
| |
Collapse
|
237
|
Lovrenčić L, Bonassin L, Boštjančić LL, Podnar M, Jelić M, Klobučar G, Jaklič M, Slavevska-Stamenković V, Hinić J, Maguire I. New insights into the genetic diversity of the stone crayfish: taxonomic and conservation implications. BMC Evol Biol 2020; 20:146. [PMID: 33158414 PMCID: PMC7648294 DOI: 10.1186/s12862-020-01709-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/21/2020] [Indexed: 12/23/2022] Open
Abstract
Background Austropotamobius torrentium is a freshwater crayfish species native to central and south-eastern Europe, with an intricate evolutionary history and the highest genetic diversity recorded in the northern-central Dinarides (NCD). Its populations are facing declines, both in number and size across its entire range. By extanding current knowledge on the genetic diversity of this species, we aim to assist conservation programmes. Multigene phylogenetic analyses were performed using different divergence time estimates based on mitochondrial and, for the first time, nuclear DNA markers on the largest data set analysed so far. In order to reassess taxonomic relationships within this species we applied several species delimitation methods and studied the meristic characters with the intention of finding features that would clearly separate stone crayfish belonging to different phylogroups. Results Our results confirmed the existence of high genetic diversity within A. torrentium, maintained in divergent phylogroups which have their own evolutionary dynamics. A new phylogroup in the Kordun region belonging to NCD has also been discovered. Due to the incongruence between implemented species delimitation approaches and the lack of any morphological characters conserved within lineages, we are of the opinion that phylogroups recovered on mitochondrial and nuclear DNA are cryptic subspecies and distinct evolutionary significant units. Conclusions Geographically and genetically isolated phylogroups represent the evolutionary legacy of A. torrentium and are highly relevant for conservation due to their evolutionary distinctiveness and restricted distribution.
Collapse
Affiliation(s)
- Leona Lovrenčić
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Lena Bonassin
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Ljudevit Luka Boštjančić
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Martina Podnar
- Croatian Natural History Museum, Demetrova 1, 10000, Zagreb, Croatia
| | - Mišel Jelić
- Department of Natural Sciences, Varaždin City Museum, Franjevački trg 10, 42000, Varaždin, Croatia
| | - Göran Klobučar
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Martina Jaklič
- Center for Clinical Research, University Medical Centre Ljubljana, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Valentina Slavevska-Stamenković
- Department of Invertebrates and Animal Ecology, Faculty of Natural Sciences and Mathematics, University "St. Cyril and Methodius", Arhimedova 3, 1000, Skopje, Republic of North Macedonia
| | - Jelena Hinić
- Department of Invertebrates and Animal Ecology, Faculty of Natural Sciences and Mathematics, University "St. Cyril and Methodius", Arhimedova 3, 1000, Skopje, Republic of North Macedonia
| | - Ivana Maguire
- Division of Zoology, Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| |
Collapse
|
238
|
Koroiva R, Rodrigues LRR, Santana DJ. DNA barcoding for identification of anuran species in the central region of South America. PeerJ 2020; 8:e10189. [PMID: 33150083 PMCID: PMC7585382 DOI: 10.7717/peerj.10189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/24/2020] [Indexed: 11/20/2022] Open
Abstract
The use of COI barcodes for specimen identification and species discovery has been a useful molecular approach for the study of Anura. Here, we establish a comprehensive amphibian barcode reference database in a central area of South America, in particular for specimens collected in Mato Grosso do Sul state (Brazil), and to evaluate the applicability of the COI gene for species-level identification. Both distance- and tree-based methods were applied for assessing species boundaries and the accuracy of specimen identification was evaluated. A total of 204 mitochondrial COI barcode sequences were evaluated from 22 genera and 59 species (19 newly barcoded species). Our results indicate that morphological and molecular identifications converge for most species, however, some species may present cryptic species due to high intraspecific variation, and there is a high efficiency of specimen identification. Thus, we show that COI sequencing can be used to identify anuran species present in this region.
Collapse
Affiliation(s)
- Ricardo Koroiva
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil
| | | | - Diego José Santana
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| |
Collapse
|
239
|
Mateos E, Jones HD, Riutort M, Álvarez-Presas M. A new species of alien terrestrial planarian in Spain: Caenoplana decolorata. PeerJ 2020; 8:e10013. [PMID: 33062435 PMCID: PMC7534684 DOI: 10.7717/peerj.10013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/01/2020] [Indexed: 11/20/2022] Open
Abstract
Terrestrial planarians found in a plant nursery in Spain in 2012 are described as a new species, Caenoplana decolorata. Dorsally they are mahogany brown with a cream median line. Ventrally they are pastel turquoise fading to brown laterally. Molecular data indicate that they are a member of the genus Caenoplana, but that they differ from other Caenoplana species found in Europe. One mature specimen has been partially sectioned, and the musculature and copulatory apparatus is described, confirming the generic placement but distinguishing the species from other members of the genus. It is probable that the species originates from Australia.
Collapse
Affiliation(s)
- Eduardo Mateos
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals. Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Hugh D Jones
- Life Sciences Department, Natural History Museum, London, UK
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística. Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain
| | - Marta Álvarez-Presas
- Departament de Genètica, Microbiologia i Estadística. Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain.,School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
240
|
Barbera P, Czech L, Lutteropp S, Stamatakis A. SCRAPP: A tool to assess the diversity of microbial samples from phylogenetic placements. Mol Ecol Resour 2020; 21:340-349. [PMID: 32996237 PMCID: PMC7756409 DOI: 10.1111/1755-0998.13255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/24/2020] [Accepted: 08/25/2020] [Indexed: 12/04/2022]
Abstract
Microbial ecology research is currently driven by the continuously decreasing cost of DNA sequencing and the improving accuracy of data analysis methods. One such analysis method is phylogenetic placement, which establishes the phylogenetic identity of the anonymous environmental sequences in a sample by means of a given phylogenetic reference tree. However, assessing the diversity of a sample remains challenging, as traditional methods do not scale well with the increasing data volumes and/or do not leverage the phylogenetic placement information. Here, we present scrapp, a highly parallel and scalable tool that uses a molecular species delimitation algorithm to quantify the diversity distribution over the reference phylogeny for a given phylogenetic placement of the sample. scrapp employs a novel approach to cluster phylogenetic placements, called placement space clustering, to efficiently perform dimensionality reduction, so as to scale on large data volumes. Furthermore, it uses the phylogeny‐aware molecular species delimitation method mPTP to quantify diversity. We evaluated scrapp using both, simulated and empirical data sets. We use simulated data to verify our approach. Tests on an empirical data set show that scrapp‐derived metrics can classify samples by their diversity‐correlated features equally well or better than existing, commonly used approaches. scrapp is available at https://github.com/pbdas/scrapp.
Collapse
Affiliation(s)
- Pierre Barbera
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Lucas Czech
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Sarah Lutteropp
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.,Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
241
|
Oliveira L, Dias RJP, Rossi MF, D'Agosto M, Santos HA. Molecular diversity and coalescent species delimitation of avian haemosporidian parasites in an endemic bird species of South America. Parasitol Res 2020; 119:4033-4047. [PMID: 33030600 DOI: 10.1007/s00436-020-06908-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022]
Abstract
Haemoproteus spp. and Plasmodium spp. are blood parasites that occur in birds worldwide. Identifying the species within this group is complex, especially in wild birds that present low parasitemia when captured, making morphological identification very difficult. Thus, the use of alternative tools to identify species may be useful in the elucidation of the distribution of parasites that circulate in bird populations. The objectives of this study were to determine the prevalence and parasitemia of the genera Plasmodium and Haemoproteus in Tachyphonus coronatus in the Atlantic Forest, Brazil, and to evaluate the molecular diversity, geographic distribution, and specificity of these parasites based on coalescent species delimitation methods. Microscopic analysis, PCR, cyt b gene sequencing, phylogenetic analysis and coalescent species delimitation using single-locus algorithms were performed (Poisson tree process (PTP) and multi-rate Poisson tree process (MPTP) methods). The analyses were performed in 117 avian host individuals. The prevalence was 55.5% for Plasmodium and 1.7% for Haemoproteus, with a mean parasitemia of 0.06%. Twenty-five Plasmodium and two Haemoproteus lineages were recovered. The MPTP method recovered seven different evolutionarily significant units (ESUs) of Plasmodium and one of Haemoproteus, whereas PTP presented fourteen ESUs of Plasmodium and one of Haemoproteus. The MPTP was more consistent with current taxonomy, while PTP overestimated the number of lineages. These ESUs are widely distributed and have already been found in 22 orders of birds that, all together, inhabit every continent, except Antarctica. The computational methods of species delimitation proved to be effective in cases where the classification of Haemosporida based just on morphology is insufficient.
Collapse
Affiliation(s)
- Luísa Oliveira
- Department of Animal Parasitology, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| | - Roberto Júnio Pedroso Dias
- Department of Zoology (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.,Laboratory of Protozoology (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Mariana F Rossi
- Department of Zoology (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil. .,Laboratory of Protozoology (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.
| | - Marta D'Agosto
- Department of Zoology (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Huarrisson A Santos
- Department of Epidemiology and Public Health, Veterinary Institute, Federal Rural University of Rio de Janeiro, Seropédica, RJ, Brazil
| |
Collapse
|
242
|
Schäffer S, Koblmüller S. Unexpected diversity in the host-generalist oribatid mite Paraleius leontonychus (Oribatida, Scheloribatidae) phoretic on Palearctic bark beetles. PeerJ 2020; 8:e9710. [PMID: 32974091 PMCID: PMC7489242 DOI: 10.7717/peerj.9710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/23/2020] [Indexed: 11/20/2022] Open
Abstract
Bark beetles are feared as pests in forestry but they also support a large number of other taxa that exploit the beetles and their galleries. Among arthropods, mites are the largest taxon associated with bark beetles. Many of these mites are phoretic and often involved in complex interactions with the beetles and other organisms. Within the oribatid mite family Scheloribatidae, only two of the three nominal species of Paraleius have been frequently found in galleries of bark beetles and on the beetles themselves. One of the species, P. leontonychus, has a wide distribution range spanning over three ecozones of the world and is believed to be a host generalist, reported from numerous bark beetle and tree species. In the present study, phylogenetic analyses of one mitochondrial and two nuclear genes identified six well supported, fairly divergent clades within P. leontonychus which we consider to represent distinct species based on molecular species delimitation methods and largely congruent clustering in mitochondrial and nuclear gene trees. These species do not tend to be strictly host specific and might occur syntopically. Moreover, mito-nuclear discordance indicates a case of past hybridization/introgression among distinct Paraleius species, the first case of interspecific hybridization reported in mites other than ticks.
Collapse
|
243
|
Araujo APG, Carbayo F, Riutort M, Álvarez-Presas M. Five new pseudocryptic land planarian species of Cratera (Platyhelminthes: Tricladida) unveiled through integrative taxonomy. PeerJ 2020; 8:e9726. [PMID: 32983634 PMCID: PMC7491415 DOI: 10.7717/peerj.9726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/24/2020] [Indexed: 12/01/2022] Open
Abstract
Background Cratera is a genus of land planarians endemic to the Brazilian Atlantic forest. The species of this genus are distinguished from each other by a series of external and internal characters, nonetheless they represent a challenging taxonomic issue due to the extreme alikeness of the species analysed in the present work. To resolve these difficulties, we have performed morphological analyses and used three nuclear markers (ribosomal 18S and 28S, Elongation Factor, a new anonymous marker named Tnuc813) and two mitochondrial fragments (Cytochrome c oxidase subunit I gene, and a fragment encompasing NADH deshydrogenase subunit 4 gene, trnF and the beginning of the Cytochrome c oxidase I gene) in an integrative taxonomic study. Methods To unveil cryptic species, we applied a molecular species delimitation approach based on molecular discovery methods, followed by a validation method. The putative species so delimited were then validated on the basis of diagnostic morphological features. Results We discovered and described four new species, namely Cratera assu, C. tui, C. boja, and C. imbiri. A fifth new species, C. paraitinga was not highly supported by molecular evidence, but was described because its morphological attributes are unique. Our study documents for the genus Cratera the presence of a number of highly similar species, a situation that is present also in other genera of land planarians. The high number of poorly differentiated and presumably recent speciation events might be explained by the recent geological history of the area.
Collapse
Affiliation(s)
- Ana Paula Goulart Araujo
- Museu de Zoologia, Universidade de São Paulo, São Paulo, Brazil.,Laboratório de Ecologia e Evolução, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brazil
| | - Fernando Carbayo
- Laboratório de Ecologia e Evolução, Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Marta Riutort
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Álvarez-Presas
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
244
|
Sánchez-Restrepo AF, Chifflet L, Confalonieri VA, Tsutsui ND, Pesquero MA, Calcaterra LA. A Species delimitation approach to uncover cryptic species in the South American fire ant decapitating flies (Diptera: Phoridae: Pseudacteon). PLoS One 2020; 15:e0236086. [PMID: 32678835 PMCID: PMC7367480 DOI: 10.1371/journal.pone.0236086] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/29/2020] [Indexed: 11/18/2022] Open
Abstract
South American fire ant decapitating flies in the genus Pseudacteon (Diptera: Phoridae) are potential biocontrol agents of the invasive fire ants Solenopsis invicta and S. richteri in the United States and other regions of the world due to their high host specificity and the direct and indirect damage to their host ants. Despite their importance and the fact that several flies have already been released in the US, little is known about the genetic variability and phylogenetic relationships of Pseudacteon flies parasitizing South American fire ants in the Solenopsis saevissima species-group. A species delimitation analysis was conducted using a distance-based method (ABGD) and two tree-based methods (GMYC and mPTP) using COI sequences of 103 specimens belonging to 20 of the 22 Pseudacteon species known from southern South America. Additionally, phylogenetic relationships between the already described and new candidate species were inferred using mitochondrial (COI) and nuclear (wingless) sequences. The species delimitation analysis suggests that species richness in these flies has been previously underestimated, due to the existence of putative cryptic species within nominal Pseudacteon obtusus, P. pradei, P. tricuspis, P. cultellatus, and P. nudicornis. Geographic distribution and host fire ant species seem to support cryptic lineages, though additional morphological data are needed to corroborate these results. All phylogenetic analyses reveal that South American fire ant decapitating flies are grouped into two main clades, with Pseudacteon convexicauda sister and well differentiated relative to these clades. Neither host nor geographic association appeared to be related to the differentiation of these two main clades within South American fire ant decapitating flies. This work provides information that will allow testing whether the putative cryptic phorid fly species show differences in their effectiveness as biocontrol agents against the highly invasive imported fire ants.
Collapse
Affiliation(s)
- Andrés F. Sánchez-Restrepo
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA; UBA-CONICET), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- * E-mail:
| | - Lucila Chifflet
- Museo Argentino de Ciencias Naturales “Bernardino Rivadavia”, Buenos Aires, Argentina
| | - Viviana Andrea Confalonieri
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Instituto de Ecología Genética y Evolución de Buenos Aires (IEGEBA; UBA-CONICET), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Neil D. Tsutsui
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, United States of America
| | - Marcos Antônio Pesquero
- Programa de Pós-Graduação em Ambiente e Sociedade (PPGAS), Universidade Estadual de Goiás, Morrinhos, Brasil
| | - Luis Antonio Calcaterra
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
245
|
Delrieu‐Trottin E, Durand J, Limmon G, Sukmono T, Kadarusman, Sugeha HY, Chen W, Busson F, Borsa P, Dahruddin H, Sauri S, Fitriana Y, Zein MSA, Hocdé R, Pouyaud L, Keith P, Wowor D, Steinke D, Hanner R, Hubert N. Biodiversity inventory of the grey mullets (Actinopterygii: Mugilidae) of the Indo-Australian Archipelago through the iterative use of DNA-based species delimitation and specimen assignment methods. Evol Appl 2020; 13:1451-1467. [PMID: 32684969 PMCID: PMC7359824 DOI: 10.1111/eva.12926] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/25/2022] Open
Abstract
DNA barcoding opens new perspectives on the way we document biodiversity. Initially proposed to circumvent the limits of morphological characters to assign unknown individuals to known species, DNA barcoding has been used in a wide array of studies where collecting species identity constitutes a crucial step. The assignment of unknowns to knowns assumes that species are already well identified and delineated, making the assignment performed reliable. Here, we used DNA-based species delimitation and specimen assignment methods iteratively to tackle the inventory of the Indo-Australian Archipelago grey mullets, a notorious case of taxonomic complexity that requires DNA-based identification methods considering that traditional morphological identifications are usually not repeatable and sequence mislabeling is common in international sequence repositories. We first revisited a DNA barcode reference library available at the global scale for Mugilidae through different DNA-based species delimitation methods to produce a robust consensus scheme of species delineation. We then used this curated library to assign unknown specimens collected throughout the Indo-Australian Archipelago to known species. A second iteration of OTU delimitation and specimen assignment was then performed. We show the benefits of using species delimitation and specimen assignment methods iteratively to improve the accuracy of specimen identification and propose a workflow to do so.
Collapse
Affiliation(s)
- Erwan Delrieu‐Trottin
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE)Université de MontpellierMontpellier CedexFrance
- Museum für NaturkundeLeibniz Institute for Evolution and Biodiversity ScienceBerlinGermany
| | - Jean‐Dominique Durand
- UMR 9190 MARBEC (IRD, UM, CNRS, IFREMER)Université de MontpellierMontpellier CedexFrance
| | - Gino Limmon
- Maritime and Marine Science Center of ExcellenceUniversitas PattimuraAmbonIndonesia
| | - Tedjo Sukmono
- Department of BiologyUniversitas JambiJambiIndonesia
| | - Kadarusman
- Politeknik Kelautan dan Perikanan SorongKota SorongIndonesia
| | - Hagi Yulia Sugeha
- Research Center for OceanographyIndonesian Institute of SciencesJakartaIndonesia
| | - Wei‐Jen Chen
- Institute of OceanographyNational Taiwan UniversityTaipeiTaiwan
| | - Frédéric Busson
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE)Université de MontpellierMontpellier CedexFrance
- UMR 7208 BOREA (MNHN, CNRS, UPMC, IRD, UCBN)Muséum National d’Histoire NaturelleParis CedexFrance
| | - Philippe Borsa
- UMR 250 ENTROPIE (IRD, UR, UNC, CNRS, IFREMER), Centre IRD‐OccitanieMontpellierFrance
| | - Hadi Dahruddin
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE)Université de MontpellierMontpellier CedexFrance
- Division of ZoologyResearch Center for BiologyIndonesian Institute of Sciences (LIPI)CibinongIndonesia
| | - Sopian Sauri
- Division of ZoologyResearch Center for BiologyIndonesian Institute of Sciences (LIPI)CibinongIndonesia
| | - Yuli Fitriana
- Division of ZoologyResearch Center for BiologyIndonesian Institute of Sciences (LIPI)CibinongIndonesia
| | | | - Régis Hocdé
- UMR 9190 MARBEC (IRD, UM, CNRS, IFREMER)Université de MontpellierMontpellier CedexFrance
| | - Laurent Pouyaud
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE)Université de MontpellierMontpellier CedexFrance
| | - Philippe Keith
- UMR 7208 BOREA (MNHN, CNRS, UPMC, IRD, UCBN)Muséum National d’Histoire NaturelleParis CedexFrance
| | - Daisy Wowor
- Division of ZoologyResearch Center for BiologyIndonesian Institute of Sciences (LIPI)CibinongIndonesia
| | - Dirk Steinke
- Centre for Biodiversity GenomicsUniversity of GuelphGuelphONCanada
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | - Robert Hanner
- Centre for Biodiversity GenomicsUniversity of GuelphGuelphONCanada
- Department of Integrative BiologyUniversity of GuelphGuelphONCanada
| | - Nicolas Hubert
- UMR 5554 ISEM (IRD, UM, CNRS, EPHE)Université de MontpellierMontpellier CedexFrance
| |
Collapse
|
246
|
Križek P, Mendel J, Fedorčák J, Koščo J. In the foothill zone- Sabanejewia balcanica (Karaman 1922), in the lowland zone- Sabanejewia bulgarica (Drensky, 1928): Myth or reality? Ecol Evol 2020; 10:7929-7947. [PMID: 32760575 PMCID: PMC7391564 DOI: 10.1002/ece3.6529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/23/2022] Open
Abstract
The status of golden loaches (genus Sabanejewia) in the region of Central Europe and Balkans is still ambiguous. The greatest controversy is caused by species Sabanejewia balcanica and S. bulgarica. Both species are characterized by a wide spectrum of morphological variability and overlapping of distinguishing features, which then lead to difficulties in their determination. Previous phylogenetic studies aimed on the resolving of their taxonomic status did not include samples from their type localities and so led to a lack of their true distribution in this region. Therefore, the main aim of this study was to identify taxonomic status of golden loaches populations in the region of the middle Danube basin and adjacent areas on the model territory of Slovakia. For this purpose, we used novelty approach (morphological, molecular, and microhabitat) and we also included the missing samples from the type localities of both species. Based on mtDNA all the Slovakian samples reflected haplotype richness revealed on the type locality of S. bulgarica, although the genetic distances from other representatives of the genus Sabanejewia occurring are not significant. Within the morphology, we have revealed a great measure of variability in studied populations, which is largely caused by different habitat conditions and thus representing a phenotypic plasticity of these fish.
Collapse
Affiliation(s)
- Peter Križek
- Faculty of Humanities and Natural SciencesDepartment of EcologyUniversity of Prešov in PrešovPrešovSlovakia
| | - Jan Mendel
- Institute of Vertebrate BiologyCzech Academy of SciencesBrnoCzech Republic
| | - Jakub Fedorčák
- Faculty of Humanities and Natural SciencesDepartment of EcologyUniversity of Prešov in PrešovPrešovSlovakia
| | - Ján Koščo
- Faculty of Humanities and Natural SciencesDepartment of EcologyUniversity of Prešov in PrešovPrešovSlovakia
| |
Collapse
|
247
|
Servis JA, Reid BN, Timmers MA, Stergioula V, Naro-Maciel E. Characterizing coral reef biodiversity: genetic species delimitation in brachyuran crabs of Palmyra Atoll, Central Pacific. Mitochondrial DNA A DNA Mapp Seq Anal 2020; 31:178-189. [PMID: 32500776 DOI: 10.1080/24701394.2020.1769087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Coral reefs are highly threatened ecosystems, yet there are numerous challenges in conducting inventories of their vanishing biodiversity, partly because many taxa remain difficult to detect and describe. Genetic species delimitation methods provide a standardized means for taxonomic classification including of cryptic, rare, or elusive groups, but results can vary by analytical method and genetic marker. In this study, a combination of morphological and genetic identification methods was used to estimate species richness and identify taxonomic units in true crabs (Infraorder Brachyura; n = 200) from coral reefs of Palmyra Atoll, Central Pacific. Genetic identification was based on matches between mitochondrial 16S ribosomal RNA (16S rRNA) and/or cytochrome c oxidase subunit I (COI) sequences to GenBank data, while morphological work relied on the taxonomic literature. Broad agreement in the number of candidate species delimited by genetic distance thresholds and tree-based approaches was found, although the multi-rate Poisson tree process (mPTP) was less appropriate for this dataset. The COI sequence data identified 30-32 provisional species and the 16S data revealed 34-35. The occurrence of 10 families, 20 genera, and 19 species of brachyurans at Palmyra was corroborated by at least two methods. Diversity levels within Chlorodiella laevissima indicated possible undescribed or cryptic species in currently lumped taxa. These results illustrate the efficacy of DNA sequences in identifying organisms and detecting cryptic variation, and underscore the importance of using appropriate genetic markers and multiple species delimitation analyses, with applications for future species descriptions.
Collapse
Affiliation(s)
| | - Brendan N Reid
- Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Molly A Timmers
- Ecosystem Sciences Division, Joint Institute for Marine and Atmospheric Research, Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | | | | |
Collapse
|
248
|
Voss RS, Giarla TC, Díaz-Nieto JF, Jansa SA. A Revision of the Didelphid Marsupial Genus MarmosaPart 2. Species of the Rapposa Group (Subgenus Micoureus). BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2020. [DOI: 10.1206/0003-0090.439.1.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Robert S. Voss
- Division of Vertebrate Zoology (Mammalogy), American Museum of Natural History
| | | | - Juan F. Díaz-Nieto
- Departamento de Ciencias Biológicas and Grupo de Investigación BEC, Universidad EAFIT, Medellín, Colombia
| | - Sharon A. Jansa
- Department of Ecology, Evolution, and Behavior; and J.F. Bell Museum of Natural History, University of Minnesota, St. Paul, MN
| |
Collapse
|
249
|
Parslow BA, Schwarz MP, Stevens MI. Molecular diversity and species delimitation in the family Gasteruptiidae (Hymenoptera: Evanioidea). Genome 2020; 64:253-264. [PMID: 32413273 DOI: 10.1139/gen-2019-0186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gasteruptiidae Ashmead is an easily recognised family of wasps with ∼589 described species worldwide. Although well characterised by traditional taxonomy, multiple authors have commented on the extreme morphological uniformity of the group, making species-level identification difficult. This problem is enhanced by the lack of molecular data and molecular phylogenetic research for the group. We used 187 cytochrome c oxidase subunit I (COI) barcodes to explore the efficiency of sequence data to delimitate species in Gasteruptiidae. We undertook a graphical and discussion-based comparison of six methods for species delimitation, with the success of methods judged based on known species boundaries and morphology. Both distance-based (ABGD and jMOTU threshold analysis) and tree-based (GMYC and PTP) methods compared across multiple parameters recovered variable molecular operational taxonomic units (MOTUs), ranging from 55 to 123 MOTUs. Tree-based methods tended to split known morphological species less than distance-based methods, with the single-threshold GMYC method the most concordant with known morphospecies. Our results suggest that the incorporation of molecular species delimitation techniques provides a powerful tool to assist in the interpretation of species and help direct informed decisions with taxonomic uncertainty in the family.
Collapse
Affiliation(s)
- Ben A Parslow
- Biological Sciences, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia.,Biological and Earth Sciences, South Australian Museum, SA 5000, Australia
| | - Michael P Schwarz
- Biological Sciences, College of Science and Engineering, Flinders University, Adelaide, SA 5001, Australia
| | - Mark I Stevens
- Biological and Earth Sciences, South Australian Museum, SA 5000, Australia.,University of South Australia, Clinical and Health Sciences, SA 5000, Australia
| |
Collapse
|
250
|
Grosse M, Bakken T, Nygren A, Kongsrud JA, Capa M. Species delimitation analyses of NE Atlantic Chaetozone (Annelida, Cirratulidae) reveals hidden diversity among a common and abundant marine annelid. Mol Phylogenet Evol 2020; 149:106852. [PMID: 32417496 DOI: 10.1016/j.ympev.2020.106852] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 01/04/2023]
Abstract
The polychaetes of the family Cirratulidae (Annelida) are common inhabitants in continental shelf benthic environments and considered an important group of organisms in environmental monitoring surveys. The family represents a taxonomic and systematic challenge, as monophyly of genera and evolutionary relationships within the family remain to be explored in a proper phylogenetic framework. Bitentaculate cirratulids, especially the genus Chaetozone, form one of the most species-diverse group of polychaetes worldwide. In this study, we aimed at evaluating the species diversity of the genus Chaetozonein benthic environments in the North East Atlantic by molecular means. We tested whether traditional morphological diagnostic characters are able to discriminate between the species hypothesis after species delimitation analyses, and assessed monophyly of the genera involved. Two DNA markers were sequenced from about 200 specimens belonging to Chaetozone, Aphelochaeta, Dodecaceria, Cirriformia and Cirratulus - the universal mitochondrial barcoding region COI, and the D1-D2 regions of the nuclear 28S rRNA - and analyzed with Bayesian inference, Maximum Likelihood and the species delimitation methods mPTP and GMYC. The first phylogeny of the family Cirratulidae is inferred and the genera Chaetozone, Dodecaceria and Cirratulus are recovered monophyletic. A total of 14 clusters of sequences - corresponding to species of Chaetozone - were found in the study area, and only one of them is here referred to a nominal species, Chaetozone setosa. Our results reveal several species complexes in the genus Chaetozone, that some of these independent lineages are unnamed and undescribed, and that morphological diagnostic features are in most cases unable to discriminate between the most similar species.
Collapse
Affiliation(s)
- Maël Grosse
- Norwegian University of Science and Technology, NTNU University Museum, Trondheim, Norway; University of the Balearic Island, Department of Biology, Ctra. Valldemossa km 7.5, Balearic Islands, Spain.
| | - Torkild Bakken
- Norwegian University of Science and Technology, NTNU University Museum, Trondheim, Norway
| | - Arne Nygren
- Institutionen för marina vetenskaper, Göteborgs Universitet, Göteborg, Sweden
| | - Jon A Kongsrud
- Department of Natural History, University Museum of Bergen, Bergen, Norway
| | - María Capa
- University of the Balearic Island, Department of Biology, Ctra. Valldemossa km 7.5, Balearic Islands, Spain; Norwegian University of Science and Technology, NTNU University Museum, Trondheim, Norway
| |
Collapse
|