201
|
Li H, Durbin R. Genome assembly in the telomere-to-telomere era. Nat Rev Genet 2024; 25:658-670. [PMID: 38649458 DOI: 10.1038/s41576-024-00718-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/25/2024]
Abstract
Genome sequences largely determine the biology and encode the history of an organism, and de novo assembly - the process of reconstructing the genome sequence of an organism from sequencing reads - has been a central problem in bioinformatics for four decades. Until recently, genomes were typically assembled into fragments of a few megabases at best, but now technological advances in long-read sequencing enable the near-complete assembly of each chromosome - also known as telomere-to-telomere assembly - for many organisms. Here, we review recent progress on assembly algorithms and protocols, with a focus on how to derive near-telomere-to-telomere assemblies. We also discuss the additional developments that will be required to resolve remaining assembly gaps and to assemble non-diploid genomes.
Collapse
Affiliation(s)
- Heng Li
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Richard Durbin
- Department of Genetics, Cambridge University, Cambridge, UK.
| |
Collapse
|
202
|
Dettman JR, Gerdis S. Alternaria sections Infectoriae and Pseudoalternaria: New genomic resources, phylogenomic analyses, and biodiversity. Mycologia 2024; 116:659-672. [PMID: 38884943 DOI: 10.1080/00275514.2024.2354149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024]
Abstract
Species in Alternaria sections Infectoriae and Pseudoalternaria are commonly isolated from agricultural crops and a variety of other plant hosts. With the increasing appreciation that species from these two sections are often the dominant taxa recovered from important cereal crops, the need for improved understanding of their biodiversity and taxonomy has grown. Given that morphological characteristics and existing molecular markers are not sufficient for distinguishing among species, we expanded the genomic resources for these sections to support research in biosystematics and species diagnostics. Whole genome assemblies for 22 strains were generated, including the first genomes from section Infectoriae or Pseudoalternaria strains sampled from Canada, which significantly increases the number of publicly released genomes, particularly for section Pseudoalternaria. We performed comprehensive phylogenomic analyses of all available genomes (n = 39) and present the first robust phylogeny for these taxa. The segregation of the two sections was strongly supported by genomewide data, and multiple lineages were detected within each section. We then provide an overview of the biosystematics of these groups by analyzing two standard molecular markers from the largest sample of section Infectoriae and Pseudoalternaria strains studied to date. The patterns of relative diversity suggest that, in many cases, multiple species described based on minor morphological differences may actually represent different strains of the same species. A list of candidate loci for development into new informative molecular markers, which are diagnostic for sections and lineages, was created from analyses of phylogenetic signals from individual genes across the entire genome.
Collapse
Affiliation(s)
- Jeremy R Dettman
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
| | - Suzanne Gerdis
- Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario K1A 0C6, Canada
| |
Collapse
|
203
|
Wang Y, Su W, Zeng X, Liu Z, Zhu J, Wang M, Li L, Shen W. Surprising diversity of new plasmids in bacteria isolated from hemorrhoid patients. PeerJ 2024; 12:e18023. [PMID: 39224828 PMCID: PMC11368089 DOI: 10.7717/peerj.18023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Background Hemorrhoids are common conditions at or around the anus, to which numerous people suffer worldwide. Previous research has suggested that microbes may play a role in the development of hemorrhoids, and the origins of these microbes have been preliminarily investigated. However, no detailed research on the microbes related to hemorrhoid patients has been conducted. This work aims to provide an initial investigation into the microbes related to hemorrhoid patients with high quality whole genome sequencing. Methods Forty-nine bacterial strains were isolated from seven hemorrhoid patients. Third-generation nanopore sequencing was performed to obtain high quality whole genome sequences. The presence of plasmids, particularly new plasmids, along with antibiotic resistance genes, was investigated for these strains. Phylogenetic analysis and genome comparisons were performed. Results Out of the 31 plasmids found in the strains, 15 new plasmids that have not been observed previously were discovered. Further structural analysis revealed new multidrug-resistant conjugative plasmids, virulent plasmids, and small, high-copy mobile plasmids that may play significant functional roles. These plasmids were found to harbor numerous integrases, transposases, and recombinases, suggesting their ability to quickly obtain genes to change functions. Analysis of antibiotic resistance genes revealed the presence of antibiotic resistant-integrons. Together with the surprising number of new plasmids identified, as well as the finding of transmission and modification events for plasmids in this work, we came to the suggestion that plasmids play a major role in genetic plasticity. Conclusion This study reveals that the diversity of plasmids in human-associated microbes has been underestimated. With the decreasing cost of whole-genome sequencing, monitoring plasmids deserves increased attention in future surveillance efforts.
Collapse
Affiliation(s)
- Yihua Wang
- Department of Anorectal Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wenya Su
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xiang Zeng
- Department of Anorectal Surgery, Chengyang District People’s Hospital, Qingdao, China
| | - Zhaopeng Liu
- Department of Anorectal Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jiaming Zhu
- School of Life Sciences, Shandong University, Qingdao, China
| | - Mingyu Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Ling Li
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Wenlong Shen
- Department of Anorectal Surgery, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
204
|
Sleutel M, Zegeye ED, Llarena AK, Pradhan B, Fislage M, O'Sullivan K, Van Gerven N, Aspholm M, Remaut H. Helical ultrastructure of the L-ENA spore aggregation factor of a Bacillus paranthracis foodborne outbreak strain. Nat Commun 2024; 15:7514. [PMID: 39209852 PMCID: PMC11362473 DOI: 10.1038/s41467-024-51804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
In pathogenic Bacillota, spores can form an infectious particle and can take up a central role in the environmental persistence and dissemination of disease. A poorly understood aspect of spore-mediated infection is the fibrous structures or 'endospore appendages' (ENAs) that have been seen to decorate the spores of pathogenic Bacilli and Clostridia. Current methodological approaches are opening a window on these long enigmatic structures. Using cryoID, Alphafold modelling and genetic approaches we identify a sub-class of robust ENAs in a Bacillus paranthracis foodborne outbreak strain. We demonstrate that L-ENA are encoded by a rare three-gene cluster (ena3) that contains all components for the self-assembly of ladder-like protein nanofibers of stacked heptameric rings, their anchoring to the exosporium, and their termination in a trimeric 'ruffle' made of a complement C1Q-like BclA paralogue. The role of ENA fibers in spore-spore interaction and the distribution of L-ENA operon as mobile genetic elements in B. cereus s.l. strains suggest that L-ENA fibers may increase the survival, spread and virulence of these strains.
Collapse
Affiliation(s)
- Mike Sleutel
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium.
| | - Ephrem Debebe Zegeye
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ann-Katrin Llarena
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Brajabandhu Pradhan
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium
| | - Marcus Fislage
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium
| | - Kristin O'Sullivan
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Nani Van Gerven
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium
| | - Marina Aspholm
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Han Remaut
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Brussels, Belgium.
| |
Collapse
|
205
|
Schmidt S, Toivonen S, Medvedev P, Tomescu AI. Applying the Safe-And-Complete Framework to Practical Genome Assembly. LIPICS : LEIBNIZ INTERNATIONAL PROCEEDINGS IN INFORMATICS 2024; 312:8. [PMID: 40297742 PMCID: PMC12037172 DOI: 10.4230/lipics.wabi.2024.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Despite the long history of genome assembly research, there remains a large gap between the theoretical and practical work. There is practical software with little theoretical underpinning of accuracy on one hand and theoretical algorithms which have not been adopted in practice on the other. In this paper we attempt to bridge the gap between theory and practice by showing how the theoretical safe-and-complete framework can be integrated into existing assemblers in order to improve contiguity. The optimal algorithm in this framework, called the omnitig algorithm, has not been used in practice due to its complexity and its lack of robustness to real data. Instead, we pursue a simplified notion of omnitigs (simple omnitigs), giving an efficient algorithm to compute them and demonstrating their safety under certain conditions. We modify two assemblers (wtdbg2 and Flye) by replacing their unitig algorithm with the simple omnitig algorithm. We test our modifications using real HiFi data from the D. melanogaster and the C. elegans genomes. Our modified algorithms lead to a substantial improvement in alignment-based contiguity, with negligible additional computational costs and either no or a small increase in the number of misassemblies.
Collapse
Affiliation(s)
| | | | - Paul Medvedev
- Department of Computer Science and Engineering, The Pennsylvania State University, University Park, PA, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
206
|
Eleiwa A, Nadal J, Vilaprinyo E, Marin-Sanguino A, Sorribas A, Basallo O, Lucido A, Richart C, Pena RN, Ros-Freixedes R, Usie A, Alves R. Hybrid assembly and comparative genomics unveil insights into the evolution and biology of the red-legged partridge. Sci Rep 2024; 14:19531. [PMID: 39174643 PMCID: PMC11341709 DOI: 10.1038/s41598-024-70018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
The red-legged partridge Alectoris rufa plays a crucial role in the ecosystem of southwestern Europe, and understanding its genetics is vital for conservation and management. Here we sequence, assemble, and annotate a highly contiguous and nearly complete version of its genome. This assembly encompasses 96.9% of the avian genes flagged as essential in the BUSCO aves_odb10 dataset. Moreover, we pinpointed RNA and protein-coding genes, 95% of which had functional annotations. Notably, we observed significant chromosome rearrangements in comparison to quail (Coturnix japonica) and chicken (Gallus gallus). In addition, a comparative phylogenetic analysis of these genomes suggests that A. rufa and C. japonica diverged roughly 20 million years ago and that their common ancestor diverged from G. gallus 35 million years ago. Our assembly represents a significant advancement towards a complete reference genome for A. rufa, facilitating comparative avian genomics, and providing a valuable resource for future research and conservation efforts for the red-legged partridge.
Collapse
Affiliation(s)
| | | | - Ester Vilaprinyo
- Institut de Recerca Biomédica (IRBLleida), Lleida, Spain
- Universitat de Lleida (UdL), Lleida, Spain
| | - Alberto Marin-Sanguino
- Institut de Recerca Biomédica (IRBLleida), Lleida, Spain
- Universitat de Lleida (UdL), Lleida, Spain
| | - Albert Sorribas
- Institut de Recerca Biomédica (IRBLleida), Lleida, Spain
- Universitat de Lleida (UdL), Lleida, Spain
| | - Oriol Basallo
- Institut de Recerca Biomédica (IRBLleida), Lleida, Spain
- Universitat de Lleida (UdL), Lleida, Spain
| | - Abel Lucido
- Institut de Recerca Biomédica (IRBLleida), Lleida, Spain
- Universitat de Lleida (UdL), Lleida, Spain
| | | | - Ramona N Pena
- Universitat de Lleida (UdL), Lleida, Spain
- AGROTECNIO CERCA Center, Lleida, Spain
| | - Roger Ros-Freixedes
- Universitat de Lleida (UdL), Lleida, Spain
- AGROTECNIO CERCA Center, Lleida, Spain
| | - Anabel Usie
- Universitat de Lleida (UdL), Lleida, Spain
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento & CHANGE-Global Change and Sustainability Institute, Évora, Portugal
| | - Rui Alves
- Institut de Recerca Biomédica (IRBLleida), Lleida, Spain.
- Universitat de Lleida (UdL), Lleida, Spain.
| |
Collapse
|
207
|
Chiba M, Miri S, Yousuf B, Esmail GA, Leao L, Li Y, Hincke M, Minic Z, Mottawea W, Hammami R. Dual bacteriocin and extracellular vesicle-mediated inhibition of Campylobacter jejuni by the potential probiotic candidate Ligilactobacillus salivarius UO.C249. Appl Environ Microbiol 2024; 90:e0084524. [PMID: 39078127 PMCID: PMC11337818 DOI: 10.1128/aem.00845-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Campylobacter jejuni (C. jejuni) is one of the most common causes of foodborne infections worldwide and a major contributor to diarrheal diseases. This study aimed to explore the ability of commensal gut bacteria to control C. jejuni infection. Bacterial strains from the intestinal mucosa of broilers were screened in vitro against C. jejuni ATCC BAA1153. The cell-free supernatant (CFS) of Ligilactobacillus salivarius UO.C249 showed potent dose-dependent antimicrobial activity against the pathogen, likely due to the presence of bacteriocin-like moieties, as confirmed by protease treatment. Genome and exoproteome analyses revealed the presence of known bacteriocins, including Abp118. The genome of Lg. salivarius UO.C249 harbors a 1.8-Mb chromosome and a 203-kb megaplasmid. The strain was susceptible to several antibiotics and had a high survival rate in the simulated chicken gastrointestinal tract (GIT). Post-protease treatment revealed residual inhibitory activity, suggesting alternative antimicrobial mechanisms. Short-chain fatty acid (SCFA) quantification confirmed non-inhibitory levels of acetic (24.4 ± 1.2 mM), isovaleric (34 ± 1.0 µM), and butyric (32 ± 2.5 µM) acids. Interestingly, extracellular vesicles (EVs) isolated from the CFS of Lg. salivarius UO.C249 were found to inhibit C. jejuni ATCC BAA-1153. Proteome profiling of these EVs revealed the presence of unique proteins distinct from bacteriocins identified in CFS. The majority of the identified proteins in EVs are located in the membrane and play roles in transmembrane transport and peptidoglycan degradation, peptidase, proteolysis, and hydrolysis. These findings suggest that although bacteriocins are a primary antimicrobial mechanism, EV production also contributes to the inhibitory activity of Lg. salivarius UO.C249 against C. jejuni. IMPORTANCE Campylobacter jejuni (C. jejuni) is a major cause of gastroenteritis and a global public health concern. The increasing antibiotic resistance and lack of effective alternatives in livestock production pose serious challenges for controlling C. jejuni infections. Therefore, alternative strategies are needed to control this pathogen, especially in the poultry industry where it is prevalent and can be transmitted to humans through contaminated food products. In this study, Ligilactobacillus salivarius UO.C249 isolated from broiler intestinal mucosa inhibited C. jejuni and exhibited important probiotic features. Beyond bacteriocins, Lg. salivarius UO.C249 secretes antimicrobial extracellular vesicles (EVs) with a unique protein set distinct from bacteriocins that are involved in transmembrane transport and peptidoglycan degradation. Our findings suggest that beyond bacteriocins, EV production is also a distinct inhibitory signaling mechanism used by Lg. salivarius UO.C249 to control C. jejuni. These findings hold promise for the application of probiotic EVs for pathogen control.
Collapse
Affiliation(s)
- Mariem Chiba
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Saba Miri
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Basit Yousuf
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Galal Ali Esmail
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Luana Leao
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Yingxi Li
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Maxwell Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
208
|
Akinduti PA, Motayo BO, Maged EA, Isibor PO. Pathogenomic profile and clonal diversity of potential zoonotic MRSA-CC7-ST789-t091-SCCmecV from human skin and soft tissue infections. Sci Rep 2024; 14:19326. [PMID: 39164371 PMCID: PMC11335753 DOI: 10.1038/s41598-024-67388-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 07/10/2024] [Indexed: 08/22/2024] Open
Abstract
The whole genome sequence (WGS) of prevalent MRSA strains harboring mecA gene obtained from skin and soft tissue infections (SSTIs) in Nigerian hospitals were profiled for pathogenomic structure and evaluated for clonal diversity. The two MRSA strains identified among 66 isolated multi-drug resistant S. aureus from a collection of 256 clinical samples were phenotyped for antibiotic resistance and genotyped for mecA, SCCmec, and spa types. The mecA positive MRSA was analysed using whole-genome sequencing for resistomes, virulomes, phylogenomic profiles and clonal diversity. The identified MRSA-CC7-ST789-t091-SCCmecV strains from a female child (aged 1 year) with severe otorrhea and an adult male (aged 23) with purulent wound abscess showed high-level resistance to streptomycin, vancomycin, kanamycin, sulfamethoxazole and ciprofloxacin. Both strains harbored abundant resistomes, inherent plasmids, chromosomal replicons and typical seven housekeeping genes (arc3, aroE4, glpF1, gmk4, pta4, tpi6, yqiL3). The most abundant putative virulomes were pathogenesis-associated proteins (included hemolysin gamma, leucocidins, proteases, staphylococcal superantigen/enterotoxin-like genes (Set/Ssl), capsule- and biofilm-associated genes, and hyaluronate lyase). Comparative phylogenomic analysis revealed the relatedness of the two clonal strains with prevalent MRSA-CC7 pathotypes observed in Italy (2013 and 2014), Denmark (2014), Thailand (2015 and 2016), USA (2018), and Nigeria (2016 and 2020); and share high genetic similarities with livestock strains from cow milk and cattle. Identified MRSA-CC7-ST789-t091-SCCmecV pathotypes implicated in SSTIs from Nigeria harboring repertoires of antibiotic resistance and virulence genes, and genetic relatedness with livestock strains; show the possibility of gene transfer between animal and human. Adequate hospital MRSA infection control and geno-epidemiological surveillance for animal and human transfer is required.
Collapse
Affiliation(s)
- Paul Akinniyi Akinduti
- Microbiology Unit, Department of Biological Sciences, Covenant University, Ota, Nigeria.
| | | | - El-Ashker Maged
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | | |
Collapse
|
209
|
Admasie A, Wei X, Johnson B, Burns L, Pawar P, Aurand-Cravens A, Voloshchuk O, Dudley EG, Sisay Tessema T, Zewdu A, Kovac J. Genomic diversity of Campylobacter jejuni and Campylobacter coli isolated from the Ethiopian dairy supply chain. PLoS One 2024; 19:e0305581. [PMID: 39159178 PMCID: PMC11332940 DOI: 10.1371/journal.pone.0305581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/31/2024] [Indexed: 08/21/2024] Open
Abstract
Campylobacteriosis outbreaks have previously been linked to dairy foods. While the genetic diversity of Campylobacter is well understood in high-income countries, it is largely unknown in low-income countries, such as Ethiopia. This study therefore aimed to conduct the first genomic characterization of Campylobacter isolates from the Ethiopian dairy supply chain to aid in future epidemiological studies. Fourteen C. jejuni and four C. coli isolates were whole genome sequenced using an Illumina platform. Sequences were analyzed using the bioinformatics tools in the GalaxyTrakr platform to identify MLST types, and single nucleotide polymorphisms, and infer phylogenetic relationships among the studied isolates. Assembled genomes were further screened to detect antimicrobial resistance and virulence gene sequences. Among 14 C. jejuni, ST 2084 and ST 51, which belong to the clonal complexes ST-353 and ST-443, respectively, were identified. Among the 4 sequenced C. coli isolates, two isolates belonged to ST 1628 and two to ST 830 from the clonal complex ST-828. The isolates of C. jejuni ST 2084 and ST 51 carried β-lactam resistance gene blaOXA-605, a fluoroquinolone resistance-associated mutation T86I in the gryA gene, and a macrolide resistance-associated mutation A103V in 50S L22. Only ST 2084 isolates carried the tetracycline resistance gene tetO. Conversely, all four C. coli ST 830 and ST 1628 isolates carried tetO, but only ST 1628 isolates also carried blaOXA-605. Lastly, C. jejuni ST 2084 isolates carried a total of 89 virulence genes, and ST 51 isolates carried up to 88 virulence genes. Among C. coli, ST 830 isolates carried 71 genes involved in virulence, whereas two ST 1628 isolates carried up to 82 genes involved in virulence. Isolates from all identified STs have previously been isolated from human clinical cases, demonstrating a potential food safety concern. This finding warrants further monitoring of Campylobacter in dairy foods in Ethiopia to better understand and manage the risks associated with Campylobacter contamination and transmission.
Collapse
Affiliation(s)
- Abera Admasie
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology, College of Natural and Computational Sciences, Arba Minch University, Arba Minch, Ethiopia
| | - Xiaoyuan Wei
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| | - Beth Johnson
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Logan Burns
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Preeti Pawar
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Ashley Aurand-Cravens
- Division of Laboratory Services, Kentucky Department of Public Health, Frankfort, KY, United States of America
| | - Olena Voloshchuk
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| | | | - Ashagrie Zewdu
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, United States of America
| |
Collapse
|
210
|
Fernandes P, Pimentel D, Ramiro RS, Silva MDC, Fevereiro P, Costa RL. Dual transcriptomic analysis reveals early induced Castanea defense-related genes and Phytophthora cinnamomi effectors. FRONTIERS IN PLANT SCIENCE 2024; 15:1439380. [PMID: 39188543 PMCID: PMC11345161 DOI: 10.3389/fpls.2024.1439380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024]
Abstract
Phytophthora cinnamomi Rands devastates forest species worldwide, causing significant ecological and economic impacts. The European chestnut (Castanea sativa) is susceptible to this hemibiotrophic oomycete, whereas the Asian chestnuts (Castanea crenata and Castanea mollissima) are resistant and have been successfully used as resistance donors in breeding programs. The molecular mechanisms underlying the different disease outcomes among chestnut species are a key foundation for developing science-based control strategies. However, these are still poorly understood. Dual RNA sequencing was performed in C. sativa and C. crenata roots inoculated with P. cinnamomi. The studied time points represent the pathogen's hemibiotrophic lifestyle previously described at the cellular level. Phytophthora cinnamomi expressed several genes related to pathogenicity in both chestnut species, such as cell wall-degrading enzymes, host nutrient uptake transporters, and effectors. However, the expression of effectors related to the modulation of host programmed cell death (elicitins and NLPs) and sporulation-related genes was higher in the susceptible chestnut. After pathogen inoculation, 1,556 and 488 genes were differentially expressed by C. crenata and C. sativa, respectively. The most significant transcriptional changes occur at 2 h after inoculation (hai) in C. sativa and 48 hai in C. crenata. Nevertheless, C. crenata induced more defense-related genes, indicating that the resistant response to P. cinnamomi is controlled by multiple loci, including several pattern recognition receptors, genes involved in the phenylpropanoid, salicylic acid and ethylene/jasmonic acid pathways, and antifungal genes. Importantly, these results validate previously observed cellular responses for C. crenata. Collectively, this study provides a comprehensive time-resolved description of the chestnut-P. cinnamomi dynamic, revealing new insights into susceptible and resistant host responses and important pathogen strategies involved in disease development.
Collapse
Affiliation(s)
- Patrícia Fernandes
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Diana Pimentel
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
| | | | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Fevereiro
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB, Green-It Unit), Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária I.P., Oeiras, Portugal
- Centro de Estudos Florestais, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
211
|
Varda Brkić D, Babel J, Budimir A, Butić I, Gužvinec M, Jurić D, Ferenčak I, Bošnjak S, Mareković I. Disseminated Infection Caused by Nocardia cyriacigeorgica in Immunocompromised Patient Confirmed by Whole Genome Sequencing. Chemotherapy 2024; 70:1-8. [PMID: 39128464 DOI: 10.1159/000539977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/19/2024] [Indexed: 08/13/2024]
Abstract
INTRODUCTION Nocardia spp. is an opportunistic pathogen capable of causing localized and disseminated infections in immunocompromised hosts. It is critical for serious infections to have an early and accurate identification of this pathogen in order to enable timely and focused combination antimicrobial treatment. CASE PRESENTATION We describe the case of an 87-year-old patient previously treated for myasthenia gravis with corticosteroids and azathioprine. Patient was admitted at the emergency department with clinical signs of sepsis with cellulitis of right hand associated with injury acquired after gardening and trimming roses and did not respond to empirical antimicrobial treatment. Computerized tomography revealed pulmonary infiltrates with inflammatory etiology. Nocardia cyriacigeorgica was cultivated from blood culture, skin swab, abscess aspirate, and endotracheal aspirate and identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), 16S rRNA sequencing, and whole genome sequencing (WGS). Susceptibility testing was performed with E-test (bioMerieux, Marcy-l'Étoile, France), and corresponding resistance genes were detected by WGS. Resistance to amoxicillin-clavulanate, azithromycin, ciprofloxacin, and vancomycin was detected by both methods. Despite all interventions and the patient receiving antimicrobial treatment including imipenem-cilastatin, amikacin, and trimethoprim-sulfamethoxazole, the course and outcome of infection were unfavorable. CONCLUSION We would like to emphasize the need to consider the possibility of disseminated Nocardia infection in immunocompromised patients, especially in patients receiving long-term corticosteroid treatment with skin infections and/or cavitary lung lesions, especially if these do not improve with standard antimicrobial treatment. Precise species identity provides a critical guide for physicians in the choice of targeted treatment. Thanks to MALDI-TOF MS, Nocardia spp. identification is now available in routine lab work. WGS is still inevitable for the identification of uncommon and novel species due to the high sequence similarities between closely related species and the genetic diversity of that genus.
Collapse
Affiliation(s)
- Dijana Varda Brkić
- Clinical Department of Clinical Microbiology, Infection Prevention and Control, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Jakša Babel
- Department of Intensive Care Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Ana Budimir
- Clinical Department of Clinical Microbiology, Infection Prevention and Control, University Hospital Centre Zagreb, Zagreb, Croatia
- Department of Medical Microbiology and Parasitology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Iva Butić
- Department of Clinical Microbiology, University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Zagreb, Croatia
| | - Marija Gužvinec
- Department of Clinical Microbiology, University Hospital for Infectious Diseases "Dr. Fran Mihaljević", Zagreb, Croatia
| | - Dragan Jurić
- Department of Microbiology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Ivana Ferenčak
- Department of Microbiology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Selma Bošnjak
- Department of Microbiology, Croatian Institute of Public Health, Zagreb, Croatia
| | - Ivana Mareković
- Clinical Department of Clinical Microbiology, Infection Prevention and Control, University Hospital Centre Zagreb, Zagreb, Croatia
- Department of Medical Microbiology and Parasitology, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
212
|
Regan T, Hori TS, Bean TP. A chromosome-scale Mytilus edulis genome assembly for aquaculture, marine ecology, and evolution. G3 (BETHESDA, MD.) 2024; 14:jkae138. [PMID: 38935082 PMCID: PMC11304980 DOI: 10.1093/g3journal/jkae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
The smooth-shelled blue mussel, Mytilus edulis is part of the Mytilus species complex, encompassing at least three putative species: M. edulis, Mytilus galloprovincialis, and Mytilus trossulus. These three species occur on both sides of the Atlantic and hybridize in nature, and both M. edulis and M. galloprovincialis are important aquaculture species. They are also invasive species in many parts of the world. Here, we present a chromosome-level assembly of M. edulis. We used a combination of PacBio sequencing and Dovetail's Omni-C technology to generate an assembly with 14 long scaffolds containing 94% of the predicted length of the M. edulis genome (1.6 out of 1.7 Gb). Assembly statistics were as follows: total length = 1.65 Gb, N50 = 116 Mb, L50 = 7, and L90 = 13. BUSCO analysis showed 92.55% eukaryote BUSCOs identified. AB-Initio annotation using RNA-seq from mantle, gills, muscle, and foot predicted 47,128 genes. These gene models were combined with IsoSeq validation resulting in 45,379 full CDS protein sequences and 129,708 isoforms. Using GBS and shotgun sequencing, we also sequenced several eastern Canadian populations of Mytilus to characterize single-nucleotide as well as structural variance. This high-quality genome for M. edulis provides a platform to develop tools that can be used in breeding, molecular ecology and evolution to address questions of both commercial and environmental perspectives.
Collapse
Affiliation(s)
- Tim Regan
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| | - Tiago S Hori
- Atlantic Aqua Farms Ltd., Charlottetown, Prince Edward Island, PE C1A 4A2, Canada
| | - Tim P Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, EH25 9RG, UK
| |
Collapse
|
213
|
Flack N, Hughes L, Cassens J, Enriquez M, Gebeyehu S, Alshagawi M, Hatfield J, Kauffman A, Brown B, Klaeui C, Mabrouk IF, Walls C, Yeater T, Rivas A, Faulk C. The genome of Przewalski's horse (Equus ferus przewalskii). G3 (BETHESDA, MD.) 2024; 14:jkae113. [PMID: 38805182 PMCID: PMC11304947 DOI: 10.1093/g3journal/jkae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
The Przewalski's horse (Equus ferus przewalskii) is an endangered equid native to the steppes of central Asia. After becoming extinct in the wild multiple conservation efforts convened to preserve the species, including captive breeding programs, reintroduction and monitoring systems, protected lands, and cloning. Availability of a highly contiguous reference genome is essential to support these continued efforts. We used Oxford Nanopore sequencing to produce a scaffold-level 2.5 Gb nuclear assembly and 16,002 bp mitogenome from a captive Przewalski's mare. All assembly drafts were generated from 111 Gb of sequence from a single PromethION R10.4.1 flow cell. The mitogenome contained 37 genes in the standard mammalian configuration and was 99.63% identical to the domestic horse (Equus caballus). The nuclear assembly, EquPr2, contained 2,146 scaffolds with an N50 of 85.1 Mb, 43X mean depth, and BUSCO quality score of 98.92%. EquPr2 successfully improves upon the existing Przewalski's horse reference genome (Burgud), with 25-fold fewer scaffolds, a 166-fold larger N50, and phased pseudohaplotypes. Modified basecalls revealed 79.5% DNA methylation and 2.1% hydroxymethylation globally. Allele-specific methylation analysis between pseudohaplotypes revealed 226 differentially methylated regions in known imprinted genes and loci not previously reported as imprinted. The heterozygosity rate of 0.165% matches previous estimates for the species and compares favorably to other endangered animals. This improved Przewalski's horse assembly will serve as a valuable resource for conservation efforts and comparative genomics investigations.
Collapse
Affiliation(s)
- Nicole Flack
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lauren Hughes
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jacob Cassens
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maya Enriquez
- ANSC 8520 Students, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samrawit Gebeyehu
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | | | - Jason Hatfield
- ANSC 8520 Students, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anna Kauffman
- ANSC 8520 Students, University of Minnesota, Minneapolis, MN 55455, USA
| | - Baylor Brown
- ANSC 8520 Students, University of Minnesota, Minneapolis, MN 55455, USA
| | - Caitlin Klaeui
- ANSC 8520 Students, University of Minnesota, Minneapolis, MN 55455, USA
| | - Islam F Mabrouk
- ANSC 8520 Students, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carrie Walls
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Taylor Yeater
- ANSC 8520 Students, University of Minnesota, Minneapolis, MN 55455, USA
| | - Anne Rivas
- Minnesota Zoo, Apple Valley, MN 55124, USA
| | - Christopher Faulk
- Department of Animal Science, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
214
|
Albuja-Quintana M, Pozo G, Gordillo-Romero M, Armijos CE, Torres MDL. Genome report: First reference genome of Vaccinium floribundum Kunth, an emblematic Andean species. G3 (BETHESDA, MD.) 2024; 14:jkae136. [PMID: 38888171 PMCID: PMC11304950 DOI: 10.1093/g3journal/jkae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
Vaccinium floribundum Kunth, known as "mortiño," is an endemic shrub species of the Andean region adapted to harsh conditions in high-altitude ecosystems. It plays an important ecological role as a pioneer species in the aftermath of deforestation and human-induced fires within paramo ecosystems, emphasizing its conservation value. While previous studies have offered insights into the genetic diversity of mortiño, comprehensive genomic studies are still missing to fully understand the unique adaptations of this species and its population status, highlighting the importance of generating a reference genome for this plant. ONT and Illumina sequencing were used to establish a reference genome for this species. Three different de novo genome assemblies were generated and compared for quality, continuity and completeness. The Flye assembly was selected as the best and refined by filtering out short ONT reads, screening for contaminants and genome scaffolding. The final assembly has a genome size of 529 Mb, containing 1,317 contigs and 97% complete BUSCOs, indicating a high level of integrity of the genome. Additionally, the LTR Assembly Index of 12.93 further categorizes this assembly as a reference genome. The genome of V. floribundum reported in this study is the first reference genome generated for this species, providing a valuable tool for further studies. This high-quality genome, based on the quality and completeness parameters obtained, will not only help uncover the genetic mechanisms responsible for its unique traits and adaptations to high-altitude ecosystems but will also contribute to conservation strategies for a species endemic to the Andes.
Collapse
Affiliation(s)
- Martina Albuja-Quintana
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Gabriela Pozo
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Milton Gordillo-Romero
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Carolina E Armijos
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Maria de Lourdes Torres
- Colegio de Ciencias Biológicas y Ambientales, Laboratorio de Biotecnología Vegetal, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| |
Collapse
|
215
|
Machado MAM, Panzenhagen P, Lázaro C, Rojas M, Figueiredo EEDS, Conte-Junior CA. Unveiling the High Diversity of Clones and Antimicrobial Resistance Genes in Escherichia coli Originating from ST10 across Different Ecological Niches. Antibiotics (Basel) 2024; 13:737. [PMID: 39200037 PMCID: PMC11350709 DOI: 10.3390/antibiotics13080737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/10/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
In this pioneering in silico study in Peru, we aimed to analyze Escherichia coli (E. coli) genomes for antimicrobial resistance genes (ARGs) diversity and virulence and for its mobilome. For this purpose, 469 assemblies from human, domestic, and wild animal hosts were investigated. Of these genomes, three were E. coli strains (pv05, pv06, and sf25) isolated from chickens in our previous study, characterized for antimicrobial susceptibility profile, and sequenced in this study. Three other genomes were included in our repertoire for having rare cgMLSTs. The phenotypic analysis for antimicrobial resistance revealed that pv05, pv06, and sf25 strains presented multidrug resistance to antibiotics belonging to at least three classes. Our in silico analysis indicated that many Peruvian genomes included resistance genes, mainly to the aminoglycoside class, ESBL-producing E. coli, sulfonamides, and tetracyclines. In addition, through Multi-locus Sequence Typing, we found more than 180 different STs, with ST10 being the most prevalent among the genomes. Pan-genome mapping revealed that, with new lineages, the repertoire of accessory genes in E. coli increased, especially genes related to resistance and persistence, which may be carried by plasmids. The results also demonstrated several genes related to adhesion, virulence, and pathogenesis, especially genes belonging to the high pathogenicity island (HPI) from Yersinia pestis, with a prevalence of 42.2% among the genomes. The complexity of the genetic profiles of resistance and virulence in our study highlights the adaptability of the pathogen to different environments and hosts. Therefore, our in silico analysis through genome sequencing enables tracking the epidemiology of E. coli from Peru and the future development of strategies to mitigate its survival.
Collapse
Affiliation(s)
- Maxsueli Aparecida Moura Machado
- Food Science Program (PPGCAL), Chemistry Institute (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil;
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| | - Pedro Panzenhagen
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
- Oswaldo Cruz Institute, Rio de Janeiro 21040-900, Brazil
| | - Cesar Lázaro
- Laboratory of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, National University of San Marcos, Lima 03-5137, Peru;
| | - Miguel Rojas
- Laboratory of Immunology, Faculty of Veterinary Medicine, National University of San Marcos, Lima 03-5137, Peru;
| | - Eduardo Eustáquio de Souza Figueiredo
- Animal Science Program (PPGCA), Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, Brazil;
- Nutrition, Food and Metabolism Program (PPGNAM), Federal University of Mato Grosso (UFMT), Cuiabá 78060-900, Brazil
| | - Carlos Adam Conte-Junior
- Food Science Program (PPGCAL), Chemistry Institute (IQ), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil;
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-598, Brazil
- Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil
| |
Collapse
|
216
|
Gerasimova JV, Beck A, Scheunert A, Kulkarni O. De Novo Genome Assembly of Toniniopsis dissimilis (Ramalinaceae, Lecanoromycetes) from Long Reads Shows a Comparatively High Composition of Biosynthetic Genes Putatively Involved in Melanin Synthesis. Genes (Basel) 2024; 15:1029. [PMID: 39202389 PMCID: PMC11353741 DOI: 10.3390/genes15081029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/27/2024] [Indexed: 09/03/2024] Open
Abstract
Lichens have developed numerous adaptations to optimize their survival in various environmental conditions, largely by producing secondary compounds by the fungal partner. They often have antibiotic properties and are involved in protection against intensive UV radiation, pathogens, and herbivores. To contribute to the knowledge of the arsenal of secondary compounds in a crustose lichen species, we sequenced and assembled the genome of Toniniopsis dissimilis, an indicator of old-growth forests, using Oxford Nanopore Technologies (ONT, Oxford, UK) long reads. Our analyses focused on biosynthetic gene clusters (BGCs) and specifically on Type I Polyketide (T1PKS) genes involved in the biosynthesis of polyketides. We used the comparative genomic approach to compare the genome of T. dissimilis with six other members of the family Ramalinaceae and twenty additional lichen genomes from the database. With only six T1PKS genes, a comparatively low number of biosynthetic genes are present in the T. dissimilis genome; from those, two-thirds are putatively involved in melanin biosynthesis. The comparative analyses showed at least three potential pathways of melanin biosynthesis in T. dissimilis, namely via the formation of 1,3,6,8-tetrahydroxynaphthalene, naphthopyrone, or YWA1 putative precursors, which highlights its importance in T. dissimilis. In addition, we report the occurrence of genes encoding ribosomally synthesized and posttranslationally modified peptides (RiPPs) in lichens, with their highest number in T. dissimilis compared to other Ramalinaceae genomes. So far, no function has been assigned to RiPP-like proteins in lichens, which leaves potential for future research on this topic.
Collapse
Affiliation(s)
- Julia V. Gerasimova
- Department of Lichenology and Bryology, Botanische Staatssammlung München, SNSB-BSM, 80638 Munich, Germany
- Senckenberg Research Institute and Natural History Museum, 60325 Frankfurt am Main, Germany;
| | - Andreas Beck
- Department of Lichenology and Bryology, Botanische Staatssammlung München, SNSB-BSM, 80638 Munich, Germany
- Systematics, Biodiversity and Evolution of Plants, Faculty of Biology, Ludwig-Maximilians-Universität München, 80638 Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
| | - Agnes Scheunert
- Genomics Core Facility, Staatliche Naturwissenschaftliche Sammlungen Bayerns, SNSB-GCF, 80638 Munich, Germany; (A.S.); (O.K.)
| | - Om Kulkarni
- Genomics Core Facility, Staatliche Naturwissenschaftliche Sammlungen Bayerns, SNSB-GCF, 80638 Munich, Germany; (A.S.); (O.K.)
| |
Collapse
|
217
|
Gbégbé DA, Kacou OBC, N'zi NP, Angaman DM. Priestia flexa as a Novel Urinary Tract Pathogen in Daloa, Côte d'Ivoire: Insights From Genomic Sequencing. Int J Genomics 2024; 2024:6239250. [PMID: 39131828 PMCID: PMC11316909 DOI: 10.1155/2024/6239250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/13/2024] [Indexed: 08/13/2024] Open
Abstract
Bacterial strains coded 21LM367, 21LM07, and 21LM1136 were isolated from the urine of patients with urinary tract infections (UTIs) at the Centre Hospitalier Régional de Daloa in Côte d'Ivoire. Based on average nucleotide identity (ANI) analysis, DNA-DNA digital hybridisation (dDDH), and other comparative genomic methods, strains 21LM07, 21LM367, and 21LM1136 were determined to be Priestia flexa. The size of the assembled complete genomes ranged from 8,624,538 to 4,007,501 bp. The average GC content was 37.76%, 46.33%, and 43.03% for strains 21LM07, 21LM367, and 21LM1136, respectively. The total number of coding regions (CDS) in each genome was 4172, 8497, and 6795, respectively, for strains 21LM07, 21LM367, and 21LM1136. Genomic prediction analysis revealed that a total of 4241, 8583, and 6881 genes were annotated in the 21LM07, 21LM367, and 21LM1136 genomes, respectively. No virulence or resistance genes were predicted in the genomes of strains 21LM07 and 21LM1136. On the other hand, two genes conferring resistance to beta-lactam and tetracyclines as well as nine virulence genes were predicted in the genome of 21LM367. In addition, 438, 350, and 153 mobile genetic elements (MGEs) were predicted in the genomes of strains 21LM367, 21LM1136, and 21LM07, respectively. Strain 21LM07 was characterised by the absence of plasmids in its genome. Two plasmids were predicted in the genomes of isolates 21LM367 and 21LM1136; however, rep7a and IncI2 were predicted to contain the tet(K) resistance gene. No typical multilocus sequences could be characterised in the genomes of the different strains.
Collapse
Affiliation(s)
- Dého Aristide Gbégbé
- Department of Biochemistry-MicrobiologyJean Lorougnon Guédé University, Daloa, Côte d'Ivoire
| | | | - N'goran Parfait N'zi
- Department of Biochemistry-MicrobiologyJean Lorougnon Guédé University, Daloa, Côte d'Ivoire
- Department of Bacteriology-VirologyNational Reference Center for AntibioticsInstitut Pasteur, Abidjan, Côte d'Ivoire
| | - Djédoux Maxime Angaman
- Department of Biochemistry-MicrobiologyJean Lorougnon Guédé University, Daloa, Côte d'Ivoire
| |
Collapse
|
218
|
Chantapakul B, Sabaratnam S, Wang S. Isolation and characterization of bacteriophages for controlling Rhizobium radiobacter - causing stem and crown gall of highbush blueberry. Front Microbiol 2024; 15:1437536. [PMID: 39155984 PMCID: PMC11328917 DOI: 10.3389/fmicb.2024.1437536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/27/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Stem and crown gall disease caused by the plant pathogen Rhizobium radiobacter has a significant impact on highbush blueberry (Vaccinium corymbosum) production. Current methods for controlling the bacterium are limited. Lytic phages, which can specifically target host bacteria, have been widely gained interest in agriculture. Methods In this study, 76 bacteriophages were recovered from sewage influent and screened for their inhibitory effect against Rhizobium spp. The phages were genetically characterized through whole-genome sequencing, and their lytic cycle was confirmed. Results Five potential candidate phages (isolates IC12, IG49, AN01, LG08, and LG11) with the ability to lyse a broad range of hosts were chosen and assessed for their morphology, environmental stability, latent period, and burst size. The morphology of these selected phages revealed a long contractile tail under transmission electron microscopy. Single-step growth curves displayed that these phages had a latent period of 80-110 min and a burst size ranging from 8 to 33 phages per infected cell. None of these phages contained any antimicrobial resistance or virulence genes in their genomes. Subsequently, a combination of two-, three- and four-phage cocktails were formulated and tested for their efficacy in a broth system. A three-phage cocktail composed of the isolates IC12, IG49 and LG08 showed promising results in controlling a large number of R. radiobacter strains in vitro. In a soil/peat-based model, the three-phage cocktail was tested against R. radiobacter PL17, resulting in a significant reduction (p < 0.05) of 2.9 and 1.3 log10 CFU/g after 24 and 48 h of incubation, respectively. Discussion These findings suggest that the three-phage cocktail (IC12, IG49 and LG08) has the potential to serve as a proactive antimicrobial solution for controlling R. radiobacter on blueberry.
Collapse
Affiliation(s)
| | - Siva Sabaratnam
- Abbotsford Agriculture Centre, Ministry of Agriculture and Food, Abbotsford, BC, Canada
| | - Siyun Wang
- Food, Nutrition and Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
219
|
Bellows E, Heatley M, Shah N, Archer N, Giles T, Fray R. Comparative transcriptome reprogramming in oak galls containing asexual or sexual generations of gall wasps. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:798-810. [PMID: 38864838 DOI: 10.1111/plb.13670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
Oak gall wasps have evolved strategies to manipulate the developmental pathways of their host to induce gall formation. This provides shelter and nutrients for the developing larva. Galls are entirely host tissue; however, the initiation, development, and physical appearance are controlled by the inducer. The underlying molecular mechanisms of gall formation, by which one or a small number of cells are reprogrammed and commit to a novel developmental path, are poorly understood. In this study, we sought a deeper insight into the molecular underpinnings of this process. Oak gall wasps have two generations each year, one sexual, and one asexual. Galls formed by these two generations exhibit a markedly different appearance. We sequenced transcriptomes of both the asexual and sexual generations of Neuroterus quercusbaccarum and Neuroterus numismalis. We then deployed Nanopore sequencing to generate long-read sequences to test the hypothesis that gall wasps introduce DNA insertions to determine gall development. We detected potential genome rearrangements but did not uncover any non-host DNA insertions. Transcriptome analysis revealed that transcriptomes of the sexual generations of distinct species of wasp are more similar than inter-generational comparisons from the same species of wasp. Our results highlight the intricate interplay between the host leaves and gall development, suggesting that season and requirements of the gall structure play a larger role than species in controlling gall development and structure.
Collapse
Affiliation(s)
- E Bellows
- School of Biosciences, The University of Nottingham, Nottingham, UK
| | - M Heatley
- Advanced Data Analysis Centre, The University of Nottingham, Nottingham, UK
| | - N Shah
- Advanced Data Analysis Centre, The University of Nottingham, Nottingham, UK
| | - N Archer
- School of Veterinary Medicine and Science, The University of Nottingham, Nottingham, UK
| | - T Giles
- Advanced Data Analysis Centre, The University of Nottingham, Nottingham, UK
| | - R Fray
- School of Biosciences, The University of Nottingham, Nottingham, UK
| |
Collapse
|
220
|
Hall JN, Bah SY, Khalid H, Brailey A, Coleman S, Kirk T, Hussain N, Tovey M, Chaudhuri RR, Davies S, Tilley L, de Silva T, Turner CE. Molecular characterization of Streptococcus pyogenes (StrepA) non-invasive isolates during the 2022-2023 UK upsurge. Microb Genom 2024; 10:001277. [PMID: 39133528 PMCID: PMC11318961 DOI: 10.1099/mgen.0.001277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
At the end of 2022 into early 2023, the UK Health Security Agency reported unusually high levels of scarlet fever and invasive disease caused by Streptococcus pyogenes (StrepA or group A Streptococcus). During this time, we collected and genome-sequenced 341 non-invasive throat and skin S. pyogenes isolates identified during routine clinical diagnostic testing in Sheffield, a large UK city. We compared the data with that obtained from a similar collection of 165 isolates from 2016 to 2017. Numbers of throat-associated isolates collected peaked in early December 2022, reflecting the national scarlet fever upsurge, while skin infections peaked later in December. The most common emm-types in 2022-2023 were emm1 (28.7 %), emm12 (24.9 %) and emm22 (7.7 %) in throat and emm1 (22 %), emm12 (10 %), emm76 (18 %) and emm49 (7 %) in skin. While all emm1 isolates were the M1UK lineage, the comparison with 2016-2017 revealed diverse lineages in other emm-types, including emm12, and emergent lineages within other types including a new acapsular emm75 lineage, demonstrating that the upsurge was not completely driven by a single genotype. The analysis of the capsule locus predicted that only 51 % of throat isolates would produce capsule compared with 78% of skin isolates. Ninety per cent of throat isolates were also predicted to have high NADase and streptolysin O (SLO) expression, based on the promoter sequence, compared with only 56% of skin isolates. Our study has highlighted the value in analysis of non-invasive isolates to characterize tissue tropisms, as well as changing strain diversity and emerging genomic features which may have implications for spillover into invasive disease and future S. pyogenes upsurges.
Collapse
Affiliation(s)
- Jennifer N. Hall
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
- Medical Research Council Unit The Gambia at The London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Saikou Y. Bah
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
- Medical Research Council Unit The Gambia at The London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Henna Khalid
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Alison Brailey
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Sarah Coleman
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Tracey Kirk
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Naveed Hussain
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Mark Tovey
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Roy R. Chaudhuri
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Steve Davies
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Lisa Tilley
- Laboratory Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Thushan de Silva
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
| | - Claire E. Turner
- The Florey Institute of Infection, University of Sheffield, Sheffield, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| |
Collapse
|
221
|
Sondhi Y, Messcher RL, Bellantuono AJ, Storer CG, Cinel SD, Godfrey RK, Mongue AJ, Weng YM, Glass D, St Laurent RA, Hamilton CA, Earl C, Brislawn CJ, Kitching IJ, Bybee SM, Theobald JC, Kawahara AY. Day-night gene expression reveals circadian gene disco as a candidate for diel-niche evolution in moths. Proc Biol Sci 2024; 291:20240591. [PMID: 39194299 DOI: 10.1098/rspb.2024.0591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024] Open
Abstract
Temporal ecological niche partitioning is an underappreciated driver of speciation. While insects have long been models for circadian biology, the genes and circuits that allow adaptive changes in diel-niches remain poorly understood. We compared gene expression in closely related day- and night-active non-model wild silk moths, with otherwise similar ecologies. Using an ortholog-based pipeline to compare RNA-Seq patterns across two moth species, we find over 25 pairs of gene orthologs showing differential expression. Notably, the gene disco, involved in circadian control, optic lobe and clock neuron development in Drosophila, shows robust adult circadian mRNA cycling in moth heads. Disco is highly conserved in moths and has additional zinc-finger domains with specific nocturnal and diurnal mutations. We propose disco as a candidate gene for the diversification of temporal diel-niche in moths.
Collapse
Affiliation(s)
- Yash Sondhi
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
- Department of Biology, Florida International University , Miami, FL 33174, USA
- Institute for Environment, Florida International University , Miami, FL 33174, USA
| | - Rebeccah L Messcher
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
| | | | - Caroline G Storer
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
| | - Scott D Cinel
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
| | - R Keating Godfrey
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
- Department of Biology, Florida International University , Miami, FL 33174, USA
| | - Andrew J Mongue
- Department of Entomology and Nematology, University of Florida , Gainesville, FL 32611, USA
| | - Yi-Ming Weng
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
| | - Deborah Glass
- School of Life Sciences, University of Sussex, Sussex House , Brighton BN1 9RH, UK
- Natural History Museum, Cromwell Road , London SW7 5BD, UK
| | - Ryan A St Laurent
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
- Department of Entomology, Smithsonian Institution, National Museum of Natural History , Washington, DC, USA
| | - Chris A Hamilton
- Department of Entomology, Plant Pathology & Nematology, University of Idaho , Moscow, ID 83844, USA
| | - Chandra Earl
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
- Biodiversity Knowledge Integration Center, School of Life Sciences, Arizona State University , Tempe, AZ 852281, USA
| | | | - Ian J Kitching
- Natural History Museum, Cromwell Road , London SW7 5BD, UK
| | - Seth M Bybee
- Department of Biology, Monte L. Bean Museum, Brigham Young University, 4102 Life Science Building , Provo, UT 84602, USA
| | - Jamie C Theobald
- Department of Biology, Florida International University , Miami, FL 33174, USA
- Institute for Environment, Florida International University , Miami, FL 33174, USA
| | - Akito Y Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida , Gainesville, FL 32611, USA
| |
Collapse
|
222
|
Lysenkova Wiklander M, Arvidsson G, Bunikis I, Lundmark A, Raine A, Marincevic-Zuniga Y, Gezelius H, Bremer A, Feuk L, Ameur A, Nordlund J. A multiomic characterization of the leukemia cell line REH using short- and long-read sequencing. Life Sci Alliance 2024; 7:e202302481. [PMID: 38777370 PMCID: PMC11111970 DOI: 10.26508/lsa.202302481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/02/2024] [Accepted: 05/02/2024] [Indexed: 05/25/2024] Open
Abstract
The B-cell acute lymphoblastic leukemia (ALL) cell line REH, with the t(12;21) ETV6::RUNX1 translocation, is known to have a complex karyotype defined by a series of large-scale chromosomal rearrangements. Taken from a 15-yr-old at relapse, the cell line offers a practical model for the study of pediatric B-ALL. In recent years, short- and long-read DNA and RNA sequencing have emerged as a complement to karyotyping techniques in the resolution of structural variants in an oncological context. Here, we explore the integration of long-read PacBio and Oxford Nanopore whole-genome sequencing, IsoSeq RNA sequencing, and short-read Illumina sequencing to create a detailed genomic and transcriptomic characterization of the REH cell line. Whole-genome sequencing clarified the molecular traits of disrupted ALL-associated genes including CDKN2A, PAX5, BTG1, VPREB1, and TBL1XR1, as well as the glucocorticoid receptor NR3C1 Meanwhile, transcriptome sequencing identified seven fusion genes within the genomic breakpoints. Together, our extensive whole-genome investigation makes high-quality open-source data available to the leukemia genomics community.
Collapse
Affiliation(s)
- Mariya Lysenkova Wiklander
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Gustav Arvidsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Ignas Bunikis
- SciLifeLab, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- National Genomics Infrastructure, Uppsala University, Uppsala, Sweden
| | - Anders Lundmark
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Amanda Raine
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
- National Genomics Infrastructure, Uppsala University, Uppsala, Sweden
| | - Yanara Marincevic-Zuniga
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
- National Genomics Infrastructure, Uppsala University, Uppsala, Sweden
| | - Henrik Gezelius
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
- National Genomics Infrastructure, Uppsala University, Uppsala, Sweden
| | - Anna Bremer
- SciLifeLab, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Clinical Genetics, Uppsala University Hospital, Uppsala, Sweden
| | - Lars Feuk
- SciLifeLab, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- National Genomics Infrastructure, Uppsala University, Uppsala, Sweden
| | - Adam Ameur
- SciLifeLab, Uppsala University, Uppsala, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- National Genomics Infrastructure, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
- National Genomics Infrastructure, Uppsala University, Uppsala, Sweden
| |
Collapse
|
223
|
Salgado JFM, Premkrishnan BNV, Oliveira EL, Vettath VK, Goh FG, Hou X, Drautz-Moses DI, Cai Y, Schuster SC, Junqueira ACM. The dynamics of the midgut microbiome in Aedes aegypti during digestion reveal putative symbionts. PNAS NEXUS 2024; 3:pgae317. [PMID: 39157462 PMCID: PMC11327924 DOI: 10.1093/pnasnexus/pgae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/02/2024] [Indexed: 08/20/2024]
Abstract
Blood-feeding is crucial for the reproductive cycle of the mosquito Aedes aegypti, as well as for the transmission of arboviruses to hosts. It is postulated that blood meals may influence the mosquito microbiome but shifts in microbial diversity and function during digestion remain elusive. We used whole-genome shotgun metagenomics to monitor the midgut microbiome in 60 individual females of A. aegypti throughout digestion, after 12, 24, and 48 h following blood or sugar meals. Additionally, ten individual larvae were sequenced, showing microbiomes dominated by Microbacterium sp. The high metagenomic coverage allowed for microbial assignments at the species taxonomic level, also providing functional profiling. Females in the post-digestive period and larvae displayed low microbiome diversities. A striking proliferation of Enterobacterales was observed during digestion in blood-fed mosquitoes. The compositional shift was concomitant with enrichment in genes associated with carbohydrate and protein metabolism, as well as virulence factors for antimicrobial resistance and scavenging. The bacterium Elizabethkingia anophelis (Flavobacteriales), a known human pathogen, was the dominant species at the end of blood digestion. Phylogenomics suggests that its association with hematophagous mosquitoes occurred several times. We consider evidence of mutually beneficial host-microbe interactions raised from this association, potentially pivotal for the mosquito's resistance to arbovirus infection. After digestion, the observed shifts in blood-fed females' midguts shifted to a sugar-fed-like microbial profile. This study provides insights into how the microbiome of A. aegypti is modulated to fulfil digestive roles following blood meals, emphasizing proliferation of potential symbionts in response to the dynamic midgut environment.
Collapse
Affiliation(s)
- João Felipe M Salgado
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch str. 10, Marburg 35043, Germany
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, 373 Avenida Carlos Chagas Filho, Rio de Janeiro, RJ 21941-902, Brazil
| | - Balakrishnan N V Premkrishnan
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Elaine L Oliveira
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Vineeth Kodengil Vettath
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Feng Guang Goh
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #05-01, Singapore 117558, Singapore
| | - Xinjun Hou
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #05-01, Singapore 117558, Singapore
| | - Daniela I Drautz-Moses
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #05-01, Singapore 117558, Singapore
| | - Stephan C Schuster
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ana Carolina M Junqueira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, 373 Avenida Carlos Chagas Filho, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
224
|
du Preez LL, van der Walt E, Valverde A, Rothmann C, Neser FWC, Cason ED. A metagenomic survey of the fecal microbiome of the African savanna elephant (Loxodonta africana). Anim Genet 2024; 55:621-643. [PMID: 38923598 DOI: 10.1111/age.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
The African savanna elephant (Loxodonta africana) is the largest terrestrial animal on Earth and is found primarily in Southern and Eastern Africa. It is a hindgut, colonic fermenter and subsists on a diet of raw plant materials found in its grazing area. In this study the bacterial, archaeal and fungal populations of seven African savanna elephant fecal metagenomes were first characterized using amplicon sequencing. On the genus level it was observed that the p-1088-a5 gut group in the bacteriome, Methanocorpusulum and Methanobrevibacter in the archaeome and Alternaria, Aurobasidium, Didymella and Preussia in the mycome, predominated. Subsequently, metagenomic shotgun sequencing was employed to identify possible functional pathways and carbohydrate-active enzymes (CAZymes). Carbohydrate catabolic pathways represented the main degradation pathways, and the fecal metagenome was enriched in the glycohydroside (GH) class of CAZymes. Additionally, the top GH families identified - GH43, GH2, GH13 and GH3 - are known to be associated with cellulytic, hemicellulytic and pectolytic activities. Finally, the CAZymes families identified in the African savanna elephant were compared with those found in the Asian elephant and it was demonstrated that there is a unique repository of CAZymes that could be leveraged in the biotechnological context such as the degradation of lignocellulose for the production of second-generation biofuels and energy.
Collapse
Affiliation(s)
- Louis Lategan du Preez
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
| | - Elzette van der Walt
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
| | - Angel Valverde
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
- Instituto de Recursos Naturales y Agrobiología de Salamanca, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Christopher Rothmann
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
- Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein, Free State, South Africa
| | | | - Errol Duncan Cason
- Department of Animal Science, University of the Free State, Bloemfontein, Free State, South Africa
| |
Collapse
|
225
|
Roje B, Zhang B, Mastrorilli E, Kovačić A, Sušak L, Ljubenkov I, Ćosić E, Vilović K, Meštrović A, Vukovac EL, Bučević-Popović V, Puljiz Ž, Karaman I, Terzić J, Zimmermann M. Gut microbiota carcinogen metabolism causes distal tissue tumours. Nature 2024; 632:1137-1144. [PMID: 39085612 PMCID: PMC11358042 DOI: 10.1038/s41586-024-07754-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
Exposure to environmental pollutants and human microbiome composition are important predisposition factors for tumour development1,2. Similar to drug molecules, pollutants are typically metabolized in the body, which can change their carcinogenic potential and affect tissue distribution through altered toxicokinetics3. Although recent studies demonstrated that human-associated microorganisms can chemically convert a wide range of xenobiotics and influence the profile and tissue exposure of resulting metabolites4,5, the effect of microbial biotransformation on chemical-induced tumour development remains unclear. Here we show that the depletion of the gut microbiota affects the toxicokinetics of nitrosamines, which markedly reduces the development and severity of nitrosamine-induced urinary bladder cancer in mice6,7. We causally linked this carcinogen biotransformation to specific gut bacterial isolates in vitro and in vivo using individualized bacterial culture collections and gnotobiotic mouse models, respectively. We tested gut communities from different human donors to demonstrate that microbial carcinogen metabolism varies between individuals and we showed that this metabolic activity applies to structurally related nitrosamine carcinogens. Altogether, these results indicate that gut microbiota carcinogen metabolism may be a contributing factor for chemical-induced carcinogenesis, which could open avenues to target the microbiome for improved predisposition risk assessment and prevention of cancer.
Collapse
Affiliation(s)
- Blanka Roje
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia
| | - Boyao Zhang
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Eleonora Mastrorilli
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ana Kovačić
- Public Health Institute of Split and Dalmatia County, Split, Croatia
| | - Lana Sušak
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia
| | - Ivica Ljubenkov
- Department of Chemistry, University of Split Faculty of Science, Split, Croatia
| | - Elena Ćosić
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia
| | - Katarina Vilović
- Department of Pathology, University Hospital of Split, Split, Croatia
| | - Antonio Meštrović
- Department of Gastroenterology, University Hospital of Split, Split, Croatia
| | | | | | - Željko Puljiz
- Department of Gastroenterology, University Hospital of Split, Split, Croatia
| | - Ivana Karaman
- Department of Pathology, University Hospital of Split, Split, Croatia
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Split, Croatia.
| | - Michael Zimmermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
- Molecular Medicine Partnership Unit (MMPU), University of Heidelberg and European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.
| |
Collapse
|
226
|
Yasawong M, Rosyidah A, Songngamsuk T, Phatcharaharikarn M, Ganta P, Chanthasena P, Chudapongse N, Santapan N, Srisakvarangkool W, Kerdtoob S, Nantapong N. First draft genome sequence data of TA4-1, the type strain of Gram-positive bacterium Streptomyces chiangmaiensis. Data Brief 2024; 55:110611. [PMID: 38993230 PMCID: PMC11237854 DOI: 10.1016/j.dib.2024.110611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 07/13/2024] Open
Abstract
TA4-1 is the type strain of Streptomyces chiangmaiensis. The TA4-1 strain was isolated from a stingless bee (Tetragonilla collina). Here we present the draft genome sequence data of S. chiangmaiensis TA4-1. The Illumina NextSeq 550 sequencer was used to generate paired-end reads from the genomic DNA of the pure culture of S. chiangmaiensis TA4-1. The draft genome sequence of strain TA4-1 consists of 776 contigs with a total size of 9,707,984 base pairs, an N50 of 32,937 base pairs, and a GC content of 69.73 %. Digital DNA-DNA hybridisation (dDDH) and average nucleotide identity (ANI) analysis showed that S. yaanensis CGMCC 4.7035 had the highest dDDH value (32.7 %) and ANIm value (88.50 %) when compared with TA4-1. The presented data indicate the potential for a reference genome sequence in bacterial taxonomy, comparative genomics, and the investigation of bioactive compound biosynthesis in S. chiangmaiensis TA4-1. The draft genome sequence data have been deposited at NCBI under the Bioproject accession number PRJNA680432.
Collapse
Affiliation(s)
- Montri Yasawong
- Programme on Environmental Toxicology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - A'liyatur Rosyidah
- Research Center for Vaccine and Drugs, National Research and Innovation Agency (BRIN), Bogor 16911, Indonesia
| | - Thunwarat Songngamsuk
- Programme on Environmental Toxicology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Manassanan Phatcharaharikarn
- Programme on Environmental Toxicology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Phongsakorn Ganta
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Panjamaphon Chanthasena
- Faculty of Allied Health Sciences, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand
| | - Nuannoi Chudapongse
- Department of Basic Medical Sciences, Faculty of Medicine, Siam University, Bangkok 10160, Thailand
| | - Napatsorn Santapan
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wissarut Srisakvarangkool
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Supavadee Kerdtoob
- Faculty of Allied Health Sciences, Nakhonratchasima College, Nakhon Ratchasima 30000, Thailand
| | - Nawarat Nantapong
- School of Preclinical Sciences, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| |
Collapse
|
227
|
Dutta S, Kothari S, Singh D, Ghosh S, Narayan Sarangi A, Sanjita Behera S, Prajapati S, Kumar Sinha P, Prusty A, Tripathy S. Novel oceanic cyanobacterium isolated from Bangaram island with profound acid neutralizing ability is proposed as Leptolyngbya iicbica sp. nov. strain LK. Mol Phylogenet Evol 2024; 197:108092. [PMID: 38723790 DOI: 10.1016/j.ympev.2024.108092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 05/04/2024] [Indexed: 05/19/2024]
Abstract
An acid-neutralizing, filamentous, non-heterocytous, marine cyanobacterium named 'LK' has been isolated from the seashore of Bangaram Island, an atoll of Lakshadweep, India, and is described here as a novel species. LK has been characterized using morphological, ecological, and genomic features. Based on 16S rRNA, whole-genome sequencing, and marker gene-based analysis, LK has been identified as a new species. LK clustered with Leptolyngbya-like strains belonging to the LPP group but diverged from Leptolyngbya sensu stricto, indicating the polyphyletic nature of the Leptolyngbya genus. Leptolyngbya sp. SIOISBB and Halomicronema sp. CCY15110 were identified as LK's two closest phylogenetic neighbors in various phylogenetic studies. The analysis of 16S rRNA, ITS secondary structures, and genome relatedness indices such as AAI, ANI, and gANI strongly support LK as a novel species of the Leptolyngbya genus. The mechanism behind acid neutralization in LK has been delineated, attributing it to a surface phenomenon most likely due to the presence of salts of calcium, magnesium, sodium, and potassium. We name LK as Leptolyngbya iicbica strain LK which is a novel species with prominent acidic pH-neutralizing properties.
Collapse
Affiliation(s)
- Subhajeet Dutta
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shreya Kothari
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Deeksha Singh
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Samrat Ghosh
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aditya Narayan Sarangi
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Smruti Sanjita Behera
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Molecular Genetics Division, CSIR Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India
| | - Satish Prajapati
- Advanced Materials and Chemical Characterisation Division (AMCCD), CSIR-Central Glass & Ceramic Research Institute (CGCRI), Kolkata 700 032, West Bengal, India
| | - Prasanta Kumar Sinha
- Advanced Materials and Chemical Characterisation Division (AMCCD), CSIR-Central Glass & Ceramic Research Institute (CGCRI), Kolkata 700 032, West Bengal, India
| | - Asharani Prusty
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sucheta Tripathy
- Computational Genomics Lab, Structural Biology and Bioinformatics Division, CSIR- Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700032, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
228
|
Naidoo Y, Pierneef RE, Cowan DA, Valverde A. Characterization of the soil resistome and mobilome in Namib Desert soils. Int Microbiol 2024; 27:967-975. [PMID: 37968548 PMCID: PMC11300574 DOI: 10.1007/s10123-023-00454-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
The study of the soil resistome is important in understanding the evolution of antibiotic resistance and its dissemination between the clinic and the environment. However, very little is known about the soil resistome, especially of those from deserts. Here, we characterize the bacterial communities, using targeted sequencing of the 16S rRNA genes, and both the resistome and the mobilome in Namib Desert soils, using shotgun metagenomics. We detected a variety of antibiotic resistance genes (ARGs) that conferred resistance to antibiotics such as elfamycin, rifampicin, and fluoroquinolones, metal/biocide resistance genes (MRGs/BRGs) conferring resistance to metals such as arsenic and copper, and mobile genetic elements (MGEs) such as the ColE1-like plasmid. The presence of metal/biocide resistance genes in close proximity to ARGs indicated a potential for co-selection of resistance to antibiotics and metals/biocides. The co-existence of MGEs and horizontally acquired ARGs most likely contributed to a decoupling between bacterial community composition and ARG profiles. Overall, this study indicates that soil bacterial communities in Namib Desert soils host a diversity of resistance elements and that horizontal gene transfer, rather than host phylogeny, plays an essential role in their dynamics.
Collapse
Affiliation(s)
- Yashini Naidoo
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
| | - Rian E Pierneef
- Biotechnology Platform, Agricultural Research Council, Soutpan Road, Onderstepoort Campus, Pretoria, 0110, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Angel Valverde
- IRNASA-CSIC, Cordel de Merinas, 37008, Salamanca, Spain.
| |
Collapse
|
229
|
Liu Z, Zheng J, Li H, Fang K, Wang S, He J, Zhou D, Weng S, Chi M, Gu Z, He J, Li F, Wang M. Genome assembly of redclaw crayfish (Cherax quadricarinatus) provides insights into its immune adaptation and hypoxia tolerance. BMC Genomics 2024; 25:746. [PMID: 39080519 PMCID: PMC11290268 DOI: 10.1186/s12864-024-10673-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND The introduction of non-native species is a primary driver of biodiversity loss in freshwater ecosystems. The redclaw crayfish (Cherax quadricarinatus) is a freshwater species that exhibits tolerance to hypoxic stresses, fluctuating temperatures, high ammonia concentration. These hardy physiological characteristics make C. quadricarinatus a popular aquaculture species and a potential invasive species that can negatively impact tropical and subtropical ecosystems. Investigating the genomic basis of environmental tolerances and immune adaptation in C. quadricarinatus will facilitate the development of management strategies of this potential invasive species. RESULTS We constructed a chromosome-level genome of C. quadricarinatus by integrating Nanopore and PacBio techniques. Comparative genomic analysis suggested that transposable elements and tandem repeats drove genome size evolution in decapod crustaceans. The expansion of nine immune-related gene families contributed to the disease resistance of C. quadricarinatus. Three hypoxia-related genes (KDM3A, KDM5A, HMOX2) were identified as being subjected to positive selection in C. quadricarinatus. Additionally, in vivo analysis revealed that upregulating KDM5A was crucial for hypoxic response in C. quadricarinatus. Knockdown of KDM5A impaired hypoxia tolerance in this species. CONCLUSIONS Our results provide the genomic basis for hypoxic tolerance and immune adaptation in C. quadricarinatus, facilitating the management of this potential invasive species. Additionally, in vivo analysis in C. quadricarinatus suggests that the role of KDM5A in the hypoxic response of animals is complex.
Collapse
Affiliation(s)
- Ziwei Liu
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Jianbo Zheng
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Haoyang Li
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Ke Fang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Sheng Wang
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jian He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Dandan Zhou
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China
| | - Shaoping Weng
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China
| | - Meili Chi
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
| | - Zhimin Gu
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| | - Fei Li
- Key Laboratory of Genetics and Breeding, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Muhua Wang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519000, China.
- China-ASEAN Belt and Road Joint Laboratory On Mariculture Technology, Guangdong Provincial Key Laboratory of Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, China.
| |
Collapse
|
230
|
Boland DJ, Cornejo-Corona I, Browne DR, Murphy RL, Mullet J, Okada S, Devarenne TP. Reclassification of Botryococcus braunii chemical races into separate species based on a comparative genomics analysis. PLoS One 2024; 19:e0304144. [PMID: 39074348 DOI: 10.1371/journal.pone.0304144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 05/07/2024] [Indexed: 07/31/2024] Open
Abstract
The colonial green microalga Botryococcus braunii is well known for producing liquid hydrocarbons that can be utilized as biofuel feedstocks. B. braunii is taxonomically classified as a single species made up of three chemical races, A, B, and L, that are mainly distinguished by the hydrocarbons produced. We previously reported a B race draft nuclear genome, and here we report the draft nuclear genomes for the A and L races. A comparative genomic study of the three B. braunii races and 14 other algal species within Chlorophyta revealed significant differences in the genomes of each race of B. braunii. Phylogenomically, there was a clear divergence of the three races with the A race diverging earlier than both the B and L races, and the B and L races diverging from a later common ancestor not shared by the A race. DNA repeat content analysis suggested the B race had more repeat content than the A or L races. Orthogroup analysis revealed the B. braunii races displayed more gene orthogroup diversity than three closely related Chlamydomonas species, with nearly 24-36% of all genes in each B. braunii race being specific to each race. This analysis suggests the three races are distinct species based on sufficient differences in their respective genomes. We propose reclassification of the three chemical races to the following species names: Botryococcus alkenealis (A race), Botryococcus braunii (B race), and Botryococcus lycopadienor (L race).
Collapse
Affiliation(s)
- Devon J Boland
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, United States of America
- Texas A&M Institute for Genome Sciences & Society (TIGSS), College Station, Texas, United States of America
| | - Ivette Cornejo-Corona
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, United States of America
| | - Daniel R Browne
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, United States of America
- AI & Computational Biology, LanzaTech Inc., Skokie, Illinois, United States of America
| | - Rebecca L Murphy
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, United States of America
- Biology Department, Centenary College of Louisiana, Shreveport, Louisiana, United States of America
| | - John Mullet
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, United States of America
| | - Shigeru Okada
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi, Bunkyo, Tokyo, Japan
| | - Timothy P Devarenne
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, Texas, United States of America
| |
Collapse
|
231
|
Chen J, Wang Y, Zhang N, Li J, Liu X. Genotypic and phenotypic characteristics of Acinetobacter baumannii isolates from the people's hospital of Qingyang City, Gansu province. BMC Genomics 2024; 25:727. [PMID: 39060939 PMCID: PMC11282657 DOI: 10.1186/s12864-024-10601-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Acinetobacter baumannii (A. baumannii) is a common opportunistic pathogen in hospitals that causes nosocomial infection. In order to understand the phenotypic and genotypic characteristics of A. baumannii isolates, we sequenced and analyzed 62 A. baumannii isolates from a hospital in Gansu province. RESULTS Non-repeated 62 A. baumannii isolates were collected from August 2015 to November 2021. Most isolates (56/62) were resistant to multiple drugs. All the 62 A. baumannii isolates were resistant to aztreonam and contained blaADC-25 gene which exists only on chromosome contigs. The 62 isolates in this study were not clustered in a single clade, but were dispersed among multiple clades in the common genome. Seven sequence types were identified by Multilocus sequence type (MLST) analysis and most isolates (52/62) belonged to ST2. The plasmids were grouped into 11 clusters by MOB-suite. CONCLUSIONS This study furthers the understanding of A. baumannii antimicrobial-resistant genotypes, and may aid in prevention and control nosocomial infection caused by drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Jiali Chen
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yang Wang
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
| | - Na Zhang
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Li
- Department of Clinical Laboratory Medicine, Qingyang People's Hospital, Qingyang, Gansu, 745000, China.
| | - Xiong Liu
- Chinese PLA Center for Disease Control and Prevention, Beijing, 100071, China.
| |
Collapse
|
232
|
Hayashi M, Yonetamari J, Muto Y, Tanaka K. Complete genome sequence of Peptostreptococcus porci isolated from porcine endocarditis in Japan. Microbiol Resour Announc 2024; 13:e0020124. [PMID: 38842319 PMCID: PMC11256772 DOI: 10.1128/mra.00201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024] Open
Abstract
Peptostreptococcus porci is a recently described bacterium belonging to the Peptostreptococcaceae family, which was isolated in 2016 from pig intestine. Herein, we report the complete genome sequence of a clinical isolate of P. porci (GAI11004) obtained from porcine endocarditis in Japan. The genome contains a 2.4-Mb circular chromosome.
Collapse
Affiliation(s)
- Masahiro Hayashi
- Institute for Glyco-core Research iGCORE, Gifu University, Gifu City, Gifu, Japan
- Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City, Gifu, Japan
- Gifu University Center for Conservation of Microbial Genetic Resource, Gifu City, Gifu, Japan
| | - Jun Yonetamari
- Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City, Gifu, Japan
- Division of Clinical Laboratory, Gifu University Hospital, Gifu City, Gifu, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan
| | - Yoshinori Muto
- Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City, Gifu, Japan
| | - Kaori Tanaka
- Institute for Glyco-core Research iGCORE, Gifu University, Gifu City, Gifu, Japan
- Division of Anaerobe Research, Life Science Research Center, Gifu University, Gifu City, Gifu, Japan
- Gifu University Center for Conservation of Microbial Genetic Resource, Gifu City, Gifu, Japan
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu City, Gifu, Japan
| |
Collapse
|
233
|
Selma-Royo M, Ricci L, Golzato D, Servais C, Nabinejad A, Armanini F, Asnicar F, Pinto F, Tamburini S, Segata N. Draft genome sequences of multiple bacterial strains isolated from human feces. Microbiol Resour Announc 2024; 13:e0030724. [PMID: 38809053 PMCID: PMC11256798 DOI: 10.1128/mra.00307-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial isolation is necessary for functional and mechanistic analyses, and the increased human microbiome diversity revealed by metagenomic sequencing is expanding the relevant cultivation targets. Here, we report 46 draft genome sequences of bacterial isolates obtained from fecal samples of healthy adults in Trento and Milan (Italy), including strains from seven taxonomically uncharacterized species.
Collapse
Affiliation(s)
| | - Liviana Ricci
- Department CIBIO, University of Trento, Trento, Italy
| | | | | | - Amir Nabinejad
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | | | | | | | - Sabrina Tamburini
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Nicola Segata
- Department CIBIO, University of Trento, Trento, Italy
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| |
Collapse
|
234
|
Beshiru A, Igbinosa EO, Al Dahouk S, Dieckmann R, Neuhaus S. Draft genome sequences of a blaCTX-M-15-harboring and an atypical enteropathogenic Escherichia coli isolate recovered from slaughterhouses in Nigeria. Microbiol Resour Announc 2024; 13:e0014024. [PMID: 38860837 PMCID: PMC11256788 DOI: 10.1128/mra.00140-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024] Open
Abstract
We present the draft genome sequences of two Escherichia coli strains isolated from slaughterhouses in Edo State, Nigeria, in 2019. The isolates were identified as blaCTX-M-15-harboring (19-47-58) and atypical enteropathogenic E. coli (aEPEC) (19-47-66), belonging to multilocus sequence types (MLST) ST46 and ST2089, respectively.
Collapse
Affiliation(s)
- Abeni Beshiru
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Department of Microbiology, College of Natural and Applied Sciences, Western Delta University, Oghara, Nigeria
| | - Etinosa O. Igbinosa
- Applied Microbial Processes & Environmental Health Research Group, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
| | - Sascha Al Dahouk
- Department of Environmental Hygiene, German Environment Agency (UBA), Berlin, Germany
| | - Ralf Dieckmann
- Department of Environmental Hygiene, German Environment Agency (UBA), Berlin, Germany
| | - Szilvia Neuhaus
- Department of Biological Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| |
Collapse
|
235
|
Shoemaker A, Maritan A, Cosar S, Nupp S, Menchaca A, Jackson T, Dang A, Baxter BK, Colman DR, Dunham EC, Boyd ES. Wood-Ljungdahl pathway encoding anaerobes facilitate low-cost primary production in hypersaline sediments at Great Salt Lake, Utah. FEMS Microbiol Ecol 2024; 100:fiae105. [PMID: 39054286 PMCID: PMC11287216 DOI: 10.1093/femsec/fiae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/03/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024] Open
Abstract
Little is known of primary production in dark hypersaline ecosystems despite the prevalence of such environments on Earth today and throughout its geologic history. Here, we generated and analyzed metagenome-assembled genomes (MAGs) organized as operational taxonomic units (OTUs) from three depth intervals along a 30-cm sediment core from the north arm of Great Salt Lake, Utah. The sediments and associated porewaters were saturated with NaCl, exhibited redox gradients with depth, and harbored nitrogen-depleted organic carbon. Metabolic predictions of MAGs representing 36 total OTUs recovered from the core indicated that communities transitioned from aerobic and heterotrophic at the surface to anaerobic and autotrophic at depth. Dark CO2 fixation was detected in sediments and the primary mode of autotrophy was predicted to be via the Wood-Ljungdahl pathway. This included novel hydrogenotrophic acetogens affiliated with the bacterial class Candidatus Bipolaricaulia. Minor populations were dependent on the Calvin cycle and the reverse tricarboxylic acid cycle, including in a novel Thermoplasmatota MAG. These results are interpreted to reflect the favorability of and selectability for populations that operate the lowest energy requiring CO2-fixation pathway known, the Wood-Ljungdahl pathway, in anoxic and hypersaline conditions that together impart a higher energy demand on cells.
Collapse
Affiliation(s)
- Anna Shoemaker
- Department of Earth Sciences, Montana State University, P.O. Box 173480, Bozeman, MT 59717, United States
| | - Andrew Maritan
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Su Cosar
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Sylvia Nupp
- Department of Chemistry and Biochemistry, Montana State University, P.O. Box 173400, Bozeman, MT 59717, United States
| | - Ana Menchaca
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Thomas Jackson
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Aria Dang
- Department of Chemistry and Biochemistry, Montana State University, P.O. Box 173400, Bozeman, MT 59717, United States
| | - Bonnie K Baxter
- Great Salt Lake Institute, Westminster University, 1840 South 1300 East, Salt Lake City, UT 84105, United States
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Eric C Dunham
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, P.O. Box 173520, Bozeman, MT 59717, United States
| |
Collapse
|
236
|
Bredemeyer KR, vonHoldt BM, Foley NM, Childers IR, Brzeski KE, Murphy WJ. The value of hybrid genomes: Building two highly contiguous reference genome assemblies to advance Canis genomic studies. J Hered 2024; 115:480-486. [PMID: 38416051 DOI: 10.1093/jhered/esae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024] Open
Abstract
Previous studies of canid population and evolutionary genetics have relied on high-quality domestic dog reference genomes that have been produced primarily for biomedical and trait mapping studies in dog breeds. However, the absence of highly contiguous genomes from other Canis species like the gray wolf and coyote, that represent additional distinct demographic histories, may bias inferences regarding interspecific genetic diversity and phylogenetic relationships. Here, we present single haplotype de novo genome assemblies for the gray wolf and coyote, generated by applying the trio-binning approach to long sequence reads generated from the genome of a female first-generation hybrid produced from a gray wolf and coyote mating. The assemblies were highly contiguous, with contig N50 sizes of 44.6 and 42.0 Mb for the wolf and coyote, respectively. Genome scaffolding and alignments between the two Canis assemblies and published dog reference genomes showed near complete collinearity, with one exception: a coyote-specific chromosome fission of chromosome 13 and fusion of the proximal portion of that chromosome with chromosome 8, retaining the Canis-typical haploid chromosome number of 2n = 78. We evaluated mapping quality for previous RADseq data from 334 canids and found nearly identical mapping quality and patterns among canid species and regional populations regardless of the genome used for alignment (dog, coyote, or gray wolf). These novel wolf and coyote genome reference assemblies will be important resources for proper and accurate inference of Canis demography, taxonomic evaluation, and conservation genetics.
Collapse
Affiliation(s)
- Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, United States
| | - Bridgett M vonHoldt
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Isabella R Childers
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, United States
| | - Kristin E Brzeski
- College of Forest Resources and Environment Science, Michigan Technological University, Houghton, MI, United States
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
237
|
Hopper KR, Wang X, Kenis M, Seehausen ML, Abram PK, Daane KM, Buffington ML, Hoelmer KA, Kingham BF, Shevchenko O, Bernberg E. Genome divergence and reproductive incompatibility among populations of Ganaspis near brasiliensis. G3 (BETHESDA, MD.) 2024; 14:jkae090. [PMID: 38718200 PMCID: PMC11228843 DOI: 10.1093/g3journal/jkae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 04/12/2024] [Indexed: 07/09/2024]
Abstract
During the last decade, the spotted wing drosophila, Drosophila suzukii, has spread from eastern Asia to the Americas, Europe, and Africa. This fly attacks many species of cultivated and wild fruits with soft, thin skins, where its serrated ovipositor allows it to lay eggs in undamaged fruit. Parasitoids from the native range of D. suzukii may provide sustainable management of this polyphagous pest. Among these parasitoids, host-specificity testing has revealed a lineage of Ganaspis near brasiliensis, referred to in this paper as G1, that appears to be a cryptic species more host-specific to D. suzukii than other parasitoids. Differentiation among cryptic species is critical for introduction and subsequent evaluation of their impact on D. suzukii. Here, we present results on divergence in genomic sequences and architecture and reproductive isolation between lineages of Ganaspis near brasiliensis that appear to be cryptic species. We studied five populations, two from China, two from Japan, and one from Canada, identified as the G1 vs G3 lineages based on differences in cytochrome oxidase l sequences. We assembled and annotated the genomes of these populations and analyzed divergences in sequence and genome architecture between them. We also report results from crosses to test reproductive compatibility between the G3 lineage from China and the G1 lineage from Japan. The combined results on sequence divergence, differences in genome architectures, ortholog divergence, reproductive incompatibility, differences in host ranges and microhabitat preferences, and differences in morphology show that these lineages are different species. Thus, the decision to evaluate the lineages separately and only import and introduce the more host-specific lineage to North America and Europe was appropriate.
Collapse
Affiliation(s)
- Keith R Hopper
- United States Department of Agriculture, Agricultural Research Service, 501 South Chapel Street, Newark, DE 19713, USA
| | - Xingeng Wang
- United States Department of Agriculture, Agricultural Research Service, 501 South Chapel Street, Newark, DE 19713, USA
| | - Marc Kenis
- CABI, Rue des Grillons 1, CH-2800 Delémont, Switzerland
| | | | - Paul K Abram
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, 6947 Highway 7, PO Box 1000, Agassiz, BC V0 M 1A2, Canada
| | - Kent M Daane
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA 94720-3114, USA
| | - Matthew L Buffington
- United States Department of Agriculture, Agricultural Research Service, Washington, c/o Smithsonian Institution, National Museum of Natural History, 10th and Constitution NW, MRC-168, Washington, DC 20013-7012, USA
| | - Kim A Hoelmer
- United States Department of Agriculture, Agricultural Research Service, 501 South Chapel Street, Newark, DE 19713, USA
| | - Brewster F Kingham
- DNA Sequencing & Genotyping Center, Delaware Biotechnology Institute, 590 Avenue 1743, Newark, DE 19713, USA
| | - Olga Shevchenko
- DNA Sequencing & Genotyping Center, Delaware Biotechnology Institute, 590 Avenue 1743, Newark, DE 19713, USA
| | - Erin Bernberg
- DNA Sequencing & Genotyping Center, Delaware Biotechnology Institute, 590 Avenue 1743, Newark, DE 19713, USA
| |
Collapse
|
238
|
Gutiérrez EG, Maldonado JE, Castellanos-Morales G, Eguiarte LE, Martínez-Méndez N, Ortega J. Unraveling genomic features and phylogenomics through the analysis of three Mexican endemic Myotis genomes. PeerJ 2024; 12:e17651. [PMID: 38993980 PMCID: PMC11238727 DOI: 10.7717/peerj.17651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Background Genomic resource development for non-model organisms is rapidly progressing, seeking to uncover molecular mechanisms and evolutionary adaptations enabling thriving in diverse environments. Limited genomic data for bat species hinder insights into their evolutionary processes, particularly within the diverse Myotis genus of the Vespertilionidae family. In Mexico, 15 Myotis species exist, with three-M. vivesi, M. findleyi, and M. planiceps-being endemic and of conservation concern. Methods We obtained samples of Myotis vivesi, M. findleyi, and M. planiceps for genomic analysis. Each of three genomic DNA was extracted, sequenced, and assembled. The scaffolding was carried out utilizing the M. yumanensis genome via a genome-referenced approach within the ntJoin program. GapCloser was employed to fill gaps. Repeat elements were characterized, and gene prediction was done via ab initio and homology methods with MAKER pipeline. Functional annotation involved InterproScan, BLASTp, and KEGG. Non-coding RNAs were annotated with INFERNAL, and tRNAscan-SE. Orthologous genes were clustered using Orthofinder, and a phylogenomic tree was reconstructed using IQ-TREE. Results We present genome assemblies of these endemic species using Illumina NovaSeq 6000, each exceeding 2.0 Gb, with over 90% representing single-copy genes according to BUSCO analyses. Transposable elements, including LINEs and SINEs, constitute over 30% of each genome. Helitrons, consistent with Vespertilionids, were identified. Values around 20,000 genes from each of the three assemblies were derived from gene annotation and their correlation with specific functions. Comparative analysis of orthologs among eight Myotis species revealed 20,820 groups, with 4,789 being single copy orthogroups. Non-coding RNA elements were annotated. Phylogenomic tree analysis supported evolutionary chiropterans' relationships. These resources contribute significantly to understanding gene evolution, diversification patterns, and aiding conservation efforts for these endangered bat species.
Collapse
Affiliation(s)
- Edgar G. Gutiérrez
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jesus E. Maldonado
- Center for Conservation Genomics, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, D.C., United States of America
| | - Gabriela Castellanos-Morales
- Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Unidad Villahermosa (ECOSUR-Villahermosa), Villahermosa, Tabasco, Mexico
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Norberto Martínez-Méndez
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Jorge Ortega
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
239
|
AlJindan R, Mahmoud N, AlEraky DM, Almandil NB, AbdulAzeez S, Borgio JF. Phenomics and genomic features of Enterococcus avium IRMC1622a isolated from a clinical sample of hospitalized patient. J Infect Public Health 2024; 17:102463. [PMID: 38833914 DOI: 10.1016/j.jiph.2024.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Enterococcus avium (E. avium) is a Gram-positive nosocomial pathogen that is commonly isolated from the alimentary tract. The objective of this functional genomics study was to identify the resistant genes by analyzing the genome of E. avium IRMC1622a, a type of bacteria found in feces collected from a patient at a Saudi Arabian tertiary hospital. METHODS The bacterial strain IRMC1622a was identified by 16 S rRNA sequencing as Enterococcus sp. The resistance phenomics were performed using VITEK® 2, and morphological analysis was achieved using a scanning electron microscope (SEM). Finally, the whole bacterial genome of the bacterial strain IRMC1622a was subjected to sequencing during October 2023 using Oxford Nanopore long-read sequencing technology, and mining for resistant genes. RESULTS The results of antimicrobial resistant phenomics indicated that the IRMC1622a strain was sensitive to all tested antimicrobial agents except for erythromycin, and the same result was confirmed by genomic analysis in addition to other classes of antibiotics. SEM showed E. avium IRMC1622a is ovoid shape, in single cells (L 1.2797 ± 0.1490 µm), in pairs (L 1.7333 ± 0.1054 µm), and in chains (L 2.44033 ± 0.1978 µm). The E. avium IRMC1622a genome has 14 (in CARD) antimicrobial resistance genes that were identified with several mechanisms of antimicrobial resistance, such as the efflux pump and conferring antibiotic resistance. The present study revealed that the E. avium IRMC1622a genome contains a high number of genes associated with virulence factors, and 14 matched pathogenic protein families and predicted as human pathogen (probability score 0.855). We report two (ISEnfa4 and ISEfa5) mobile genetic elements for the first time in the E. avium genome. CONCLUSIONS The study concludes that E. avium IRMC1622a is susceptible to all tested antibacterials except erythromycin. The IRMC1622a has 14 genes encoding antimicrobial resistance mechanisms, including the efflux pump and conferring antibiotic resistance. This could indicate a potential rise in E. avium resistance in healthcare facilities. These observations may raise concerns regarding E. avium resistance in healthcare. We need more research to understand the pathophysiology of E. avium, which leads to hospital-acquired infections.
Collapse
Affiliation(s)
- Reem AlJindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Nehal Mahmoud
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Doaa M AlEraky
- Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman 4184, United Arab Emirates
| | - Noor B Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - J Francis Borgio
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia.
| |
Collapse
|
240
|
Ercole TG, Kava VM, Petters-Vandresen DAL, Ribeiro RA, Hungria M, Galli LV. Unveiling Agricultural Biotechnological Prospects: The Draft Genome Sequence of Stenotrophomonas geniculata LGMB417. Curr Microbiol 2024; 81:247. [PMID: 38951210 DOI: 10.1007/s00284-024-03784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/22/2024] [Indexed: 07/03/2024]
Abstract
Stenotrophomonas species are recognized as rhizobacteria that play a pivotal role in promoting plant growth by making substantial contributions to enhanced soil fertility, nutrient recycling, and phytopathogen control. Employing them as bioinputs constitutes an environmentally sound strategy, particularly within the rhizospheric community. This study revealed the draft genome sequence of Stenotrophomonas geniculata LGMB417, which was originally isolated from root samples of maize (Zea mays L.). This research assessed the potential of a bacterial strain at the molecular level through genome mining, aiming to identify genes with biotechnological significance for promoting plant growth and protection. The assembly findings indicate that strain LGMB417 possesses a genome size of 4,654,011 bp, with a G + C content of 66.50%. The draft genome sequence revealed the presence of gene clusters responsible for the synthesis of secondary metabolites and carbohydrate active enzymes (CAZymes), glycoside hydrolases (23), glycosyltransferases (18), carbohydrate esterases (5), polysaccharide lyases (2), carbohydrate-binding modules (2), and auxiliary activities (1). Several genes related to growth promotion were found in the genome, including those associated with phosphate transport and solubilization, nitrogen metabolism, siderophore production and iron transport, hormonal modulation, stress responses (such as to drought, temperature fluctuations, osmotic challenges, and oxidative conditions), and volatile organic compounds (VOCs). Subsequent phases will encompass investigations utilizing gene expression methodologies, with future explorations concentrating on facets pertinent to agricultural production, including comprehensive field studies.
Collapse
Affiliation(s)
- Tairine Graziella Ercole
- Postgraduate Program in Genetics, Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba, PR, 81531-980, Brazil.
| | - Vanessa Merlo Kava
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba, PR, 81531-980, Brazil
| | - Desirrê Alexia Lourenço Petters-Vandresen
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba, PR, 81531-980, Brazil
| | - Renan Augusto Ribeiro
- Conselho Nacional de Desenvolvimento Científico e Tecnológico, SHIS QI 1 Conjunto B, Blocos A, B, C e D, Lago Sul, Brasília, Distrito Federal, 71605-001, Brazil
| | | | - Lygia Vitoria Galli
- Department of Genetics, Laboratory of Genetics of Microorganisms, Federal University of Parana, Av. Coronel Francisco Heráclito dos Santos, 100, Curitiba, PR, 81531-980, Brazil.
| |
Collapse
|
241
|
Rho A, Lee SY, Choi JY, Choi J, Lee BM, Lee KT, Cho BC, Hwang CY. Pleionea litopenaei sp. nov., isolated from the gastric tract of juvenile Pacific white shrimp Litopenaeus vannamei. Arch Microbiol 2024; 206:332. [PMID: 38951206 DOI: 10.1007/s00203-024-04064-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
A Gram-stain-negative, aerobic, rod-shaped and motile strain HL-JVS1T, was isolated from the gastric tract of a juvenile Pacific white shrimp. Molecular phylogenetic analysis based on 16S rRNA gene sequences of strain HL-JVS1T revealed its affiliation with the genus Pleionea, with close relatives including Pleionea mediterranea MOLA115T (97.5%) and Pleionea sediminis S1-5-21T (96.2%). The complete genome of strain HL-JVS1T consisted of a circular 4.4 Mb chromosome and two circular plasmids (6.6 and 35.0 kb) with a G + C content of 43.1%. The average nucleotide identity and digital DNA-DNA hybridization values between strain HL-JVS1T and the type strains of described Pleionea species were 69.7-70.4% and 18.3-18.6%, respectively. Strain HL-JVS1T grew at 10-40 °C (optimum, 30 °C) in the presence of 0.5 - 9.0% (w/v) sea salts (optimum, 2.0 - 2.5%), and at pH range of 5.5 - 10.0 (optimum, pH 6.5). The major fatty acids (> 10%) were summed feature 9 (iso-C17:1 ω9c and/or C16:0 10-methyl) (23.3%), iso-C16:0 (14.5%), iso-C11:0 3-OH (13.8%) and iso-C15:0 (11.0%). The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, an unidentified aminophospholipid, two unidentified aminolipids, and two unidentified lipids. The respiratory quinone was ubiquinone-8. The comprehensive phylogenetic, phylogenomic, phenotypic and chemotaxonomic results showed that strain HL-JVS1T is distinct from other Pleionea species. Hence, we propose strain HL-JVS1T as a novel species belonging to the genus Pleionea, for which the name Pleionea litopenaei sp. nov. is proposed with HL-JVS1T (= KCCM 90514T = JCM 36490T) as the type strain.
Collapse
Affiliation(s)
- Ami Rho
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea
| | - Su Yeon Lee
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jy Young Choi
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaeho Choi
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea
| | - Bo Min Lee
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu Tae Lee
- Neo Environmental Business Co. (NeoEnBiz), Bucheon, 14523, Republic of Korea
| | - Byung Cheol Cho
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chung Yeon Hwang
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences, Research Institute of Oceanography, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
242
|
Thant EP, Surachat K, Chusri S, Romyasamit C, Pomwised R, Wonglapsuwan M, Yaikhan T, Suwannasin S, Singkhamanan K. Exploring Weissella confusa W1 and W2 Strains Isolated from Khao-Mahk as Probiotic Candidates: From Phenotypic Traits to Genomic Insights. Antibiotics (Basel) 2024; 13:604. [PMID: 39061286 PMCID: PMC11273482 DOI: 10.3390/antibiotics13070604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
Growing interest in probiotics has spurred research into their health benefits for hosts. This study aimed to evaluate the probiotic properties, especially antibacterial activities and the safety of two Weissella confusa strains, W1 and W2, isolated from Khao-Mahk by describing their phenotypes and genotypes through phenotypic assays and whole genome sequencing. In vitro experiments demonstrated that both strains exhibited robust survival under gastric and intestinal conditions, such as in the presence of low pH, bile salt, pepsin, and pancreatin, indicating their favorable gut colonization traits. Additionally, both strains showed auto-aggregation and strong adherence to Caco2 cells, with adhesion rates of 86.86 ± 1.94% for W1 and 94.74 ± 2.29% for W2. These high adherence rates may be attributed to the significant exopolysaccharide (EPS) production observed in both strains. Moreover, they exerted remarkable antimicrobial activities against Stenotrophomonas maltophilia, Salmonella enterica serotype Typhi, Vibrio cholerae, and Acinetobacter baumannii, along with an absence of hemolytic activities and antibiotic resistance, underscoring their safety for probiotic application. Genomic analysis corroborated these findings, revealing genes related to probiotic traits, including EPS clusters, stress responses, adaptive immunity, and antimicrobial activity. Importantly, no transferable antibiotic-resistance genes or virulence genes were detected. This comprehensive characterization supports the candidacy of W1 and W2 as probiotics, offering substantial potential for promoting health and combating bacterial infections.
Collapse
Affiliation(s)
- Ei Phway Thant
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
- Translational Medicine Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Sarunyou Chusri
- Division of Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhonsithammarat 80161, Thailand;
| | - Rattanaruji Pomwised
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (R.P.); (M.W.)
| | - Monwadee Wonglapsuwan
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (R.P.); (M.W.)
| | - Thunchanok Yaikhan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Sirikan Suwannasin
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| | - Kamonnut Singkhamanan
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand (K.S.); (T.Y.); (S.S.)
| |
Collapse
|
243
|
Ghazawi A, Anes F, Mouftah S, Elbediwi M, Baig A, Alketbi M, Almazrouei F, Alhashmi M, Alzarooni N, Manzoor A, Habib I, Strepis N, Nabi A, Khan M. Genomic Study of High-Risk Clones of Enterobacter hormaechei Collected from Tertiary Hospitals in the United Arab Emirates. Antibiotics (Basel) 2024; 13:592. [PMID: 39061274 PMCID: PMC11274081 DOI: 10.3390/antibiotics13070592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Enterobacter hormaechei has emerged as a significant pathogen within healthcare settings due to its ability to develop multidrug resistance (MDR) and survive in hospital environments. This study presents a genome-based analysis of carbapenem-resistant Enterobacter hormaechei isolates from two major hospitals in the United Arab Emirates. Eight isolates were subjected to whole-genome sequencing (WGS), revealing extensive resistance profiles including the blaNDM-1, blaOXA-48, and blaVIM-4 genes. Notably, one isolate belonging to ST171 harbored dual carbapenemase genes, while five isolates exhibited colistin resistance without mcr genes. The presence of the type VI secretion system (T6SS), various adhesins, and virulence genes contributes to the virulence and competitive advantage of the pathogen. Additionally, our isolates (87.5%) possessed ampC β-lactamase genes, predominantly blaACT genes. The genomic context of blaNDM-1, surrounded by other resistance genes and mobile genetic elements, highlights the role of horizontal gene transfer (HGT) in the spread of resistance. Our findings highlight the need for rigorous surveillance, strategic antibiotic stewardship, and hospital-based WGS to manage and mitigate the spread of these highly resistant and virulent pathogens. Accurate identification and monitoring of Enterobacter cloacae complex (ECC) species and their resistance mechanisms are crucial for effective infection control and treatment strategies.
Collapse
Affiliation(s)
- Akela Ghazawi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Febin Anes
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (F.A.); (I.H.)
| | - Shaimaa Mouftah
- Department of Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 12578, Egypt;
| | - Mohammed Elbediwi
- Evolutionary Biology, Institute for Biology, Freie Universität Berlin, 14163 Berlin, Germany;
- Animal Health Research Institute, Agriculture Research Centre, Cairo 12618, Egypt
| | - Awase Baig
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Muna Alketbi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Fatema Almazrouei
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Mariam Alhashmi
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Norah Alzarooni
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Ashrat Manzoor
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| | - Ihab Habib
- Veterinary Public Health Research Laboratory, Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (F.A.); (I.H.)
| | - Nikolaos Strepis
- Department of Medical Microbiology & Infectious Diseases, Erasmus University Medical Centre (Erasmus MC), 3015 GD Rotterdam, The Netherlands;
| | - Anju Nabi
- Microbiology and Immunology Department, Dubai Hospital, Dubai P.O. Box 53735, United Arab Emirates;
| | - Mushtaq Khan
- Department of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates; (A.G.); (A.B.); (M.A.); (F.A.); (M.A.); (N.A.); (A.M.)
| |
Collapse
|
244
|
Rukminiati Y, Mesak F, Lolong D, Sudarmono P. First Indonesian report of WGS-based MTBC L3 discovery. BMC Res Notes 2024; 17:176. [PMID: 38915046 PMCID: PMC11197274 DOI: 10.1186/s13104-024-06825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/11/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE Recent spoligotyping results in the island nation of Indonesia had revealed the existence of Mycobacterium tuberculosis complex lineage 3 (MTBC L3) or Central Asian (CAS) strains. In this work, whole-genome sequencing (WGS) - based methods were used to search for the presence of MTBC L3. RESULTS Two unrelated Indonesian L3 strains discovered by WGS-based SNP phylogenomics are presented here for the first time. Assemblies of their genomes yielded 96.95% (MTBC strain Mtb_S6970) and 98.35% (Mtb_S19106) of the known reference strain H37Rv. Their respective constructed genome coverages are 45.38 ± 12.95x and 63.13 ± 21.10x. The two L3 genomes have 4062 and 4121 genes, respectively, which are well within the number of genes predicted in MTBC strains. Instead of having three rRNA genes usually, Mtb_S6970 possesses four. These L3 isolates exhibit cross-class antibiotic susceptibility. FadD26, fadE24, fbpA, lprO, and panC, which are thought to be important in the pathophysiology of MTBC, were discovered to have 3-7 times more loci in L3 than L2 or L4. The penetration of L3 in the nation, despite its antibiotic sensitivity, is a concerning indicator of borderless global spread that may eventually be overcome by the phenotypes of acquired drug resistance.
Collapse
Affiliation(s)
- Yuni Rukminiati
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia.
- National Laboratory of Prof Sri Oemijati, Ministry of Health of the Republic of Indonesia, Jakarta, Indonesia.
| | - Felix Mesak
- Doctoral Program in Biomedical Sciences, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Dina Lolong
- National Research and Innovation Agency, Jakarta, Indonesia
| | - Pratiwi Sudarmono
- Department of Clinical Microbiology, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia.
| |
Collapse
|
245
|
Cui H, Fan S, Ding W, Zhang W. Genomic Analysis of Novel Sulfitobacter Bacterial Strains Isolated from Marine Biofilms. Mar Drugs 2024; 22:289. [PMID: 39057398 PMCID: PMC11278168 DOI: 10.3390/md22070289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Bacteria from the genus Sulfitobacter are distributed across various marine habitats and play a significant role in sulfur cycling. However, the metabolic features of Sulfitobacter inhabiting marine biofilms are still not well understood. Here, complete genomes and paired metatranscriptomes of eight Sulfitobacter strains, isolated from biofilms on subtidal stones, have been analyzed to explore their central energy metabolism and potential of secondary metabolite biosynthesis. Based on average nucleotide identity and phylogenetic analysis, the eight strains were classified into six novel species and two novel strains. The reconstruction of the metabolic pathways indicated that all strains had a complete Entner-Doudoroff pathway, pentose phosphate pathway, and diverse pathways for amino acid metabolism, suggesting the presence of an optimized central carbon metabolism. Pangenome analysis further revealed the differences between the gene cluster distribution patterns among the eight strains, suggesting significant functional variation. Moreover, a total of 47 biosynthetic gene clusters were discovered, which were further classified into 37 gene cluster families that showed low similarity with previously documented clusters. Furthermore, metatranscriptomic analysis revealed the expressions of key functional genes involved in the biosynthesis of ribosomal peptides in in situ marine biofilms. Overall, this study sheds new light on the metabolic features, adaptive strategies, and value of genome mining in this group of biofilm-associated Sulfitobacter bacteria.
Collapse
Affiliation(s)
- Han Cui
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.C.); (S.F.)
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
| | - Shen Fan
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.C.); (S.F.)
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
| | - Wei Ding
- MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
| | - Weipeng Zhang
- MOE Key Laboratory of Marine Genetics & Breeding and College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; (H.C.); (S.F.)
| |
Collapse
|
246
|
Dolgusevs M, Jain N, Savicka O, Vangravs R, Bodrenko J, Bergmanis E, Zemite D, Selderina S, Reinis A, Rozentale B. Genomic and phenotypic inconsistencies in Pseudomonas aeruginosa resistome among intensive care patients. Front Cell Infect Microbiol 2024; 14:1335096. [PMID: 38975326 PMCID: PMC11224958 DOI: 10.3389/fcimb.2024.1335096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/24/2024] [Indexed: 07/09/2024] Open
Abstract
Objective Pseudomonas aeruginosa, a difficult-to-manage nosocomial pathogen, poses a serious threat to clinical outcomes in intensive care (ICU) patients due to its high antimicrobial resistance (AMR). To promote effective management, it is essential to investigate the genomic and phenotypic differences in AMR expression of the isolates. Methods A prospective observational study was conducted from July 2022 to April 2023 at Liepaja Regional Hospital in Latvia. The study included all adult patients who were admitted to the ICU and had a documented infection with P. aeruginosa, as confirmed by standard laboratory microbiological testing and short-read sequencing. Since ResFinder is the only sequencing-based database offering antibacterial susceptibility testing (AST) data for each antibiotic, we conducted a comparison of the resistance profile with the results of phenotypic testing, evaluating if ResFinder met the US Food and Drug Administration (FDA) requirements for approval as a new AMR diagnostic test. Next, to improve precision, AST data from ResFinder was compared with two other databases - AMRFinderPlus and RGI. Additionally, data was gathered from environmental samples to inform the implementation of appropriate infection control measures in real time. Results Our cohort consisted of 33 samples from 29 ICU patients and 34 environmental samples. The presence of P. aeruginosa infection was found to be associated with unfavourable clinical outcomes. A third of the patient samples were identified as multi-drug resistant isolates. Apart from resistance against colistin, significant discrepancies were observed when phenotypic data were compared to genotypic data. For example, the aminoglycoside resistance prediction of ResFinder yielded a major errors value of 3.03% for amikacin, which was marginally above the FDA threshold. Among the three positive environmental samples, one sample exhibited multiple AMR genes similar to the patient samples in its cluster. Conclusion Our findings underscore the importance of utilizing a combination of diagnostic methods for the identification of resistance mechanisms, clusters, and environmental reservoirs in ICUs.
Collapse
Affiliation(s)
- Mihails Dolgusevs
- Department of Doctoral Studies, Riga Stradinš University, Riga, Latvia
- Intensive Care Unit, Liepaja Regional Hospital, Liepaja, Latvia
| | - Nityanand Jain
- Statistics Unit, Riga Stradinš University, Riga, Latvia
- Joint Microbiology Laboratory, Pauls Stradinš Clinical University Hospital, Riga, Latvia
| | - Oksana Savicka
- Department of Infectology, Riga Stradinš University, Riga, Latvia
- Laboratory “Latvian Centre of Infectious Diseases”, National Microbiology Reference Laboratory, Riga, Latvia
| | - Reinis Vangravs
- Laboratory “Latvian Centre of Infectious Diseases”, National Microbiology Reference Laboratory, Riga, Latvia
| | - Jevgenijs Bodrenko
- Laboratory “Latvian Centre of Infectious Diseases”, National Microbiology Reference Laboratory, Riga, Latvia
| | - Edvins Bergmanis
- Intensive Care Unit, Liepaja Regional Hospital, Liepaja, Latvia
- Faculty of Residency, Riga Stradinš University, Riga, Latvia
| | | | - Solvita Selderina
- Laboratory “Latvian Centre of Infectious Diseases”, National Microbiology Reference Laboratory, Riga, Latvia
| | - Aigars Reinis
- Joint Microbiology Laboratory, Pauls Stradinš Clinical University Hospital, Riga, Latvia
- Department of Biology and Microbiology, Riga Stradinš University, Riga, Latvia
| | - Baiba Rozentale
- Department of Public Health and Epidemiology, Riga Stradinš University, Riga, Latvia
- Latvian Centre of Infectious Diseases, Riga East Clinical University Hospital, Riga, Latvia
| |
Collapse
|
247
|
Kentache T, Althoff CR, Caligiore F, Souche E, Schulz C, Graff J, Pieters E, Stanley P, Contessa JN, Van Schaftingen E, Matthijs G, Foulquier F, Bommer GT, Wilson MP. The N-glycosylation defect in Lec5 and Lec9 CHO cells is caused by absence of the DHRSX gene. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599300. [PMID: 38948797 PMCID: PMC11212957 DOI: 10.1101/2024.06.18.599300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Glycosylation-deficient Chinese hamster ovary (CHO) cell lines have been instrumental in the discovery of N-glycosylation machinery. Yet, the molecular causes of the glycosylation defects in the Lec5 and Lec9 mutants have been elusive, even though for both cell lines a defect in dolichol formation from polyprenol was previously established. We recently found that dolichol synthesis from polyprenol occurs in three steps consisting of the conversion of polyprenol to polyprenal by DHRSX, the reduction of polyprenal to dolichal by SRD5A3 and the reduction of dolichal to dolichol, again by DHRSX. This led us to investigate defective dolichol synthesis in Lec5 and Lec9 cells. Both cell lines showed increased levels of polyprenol and its derivatives, concomitant with decreased levels of dolichol and derivatives, but no change in polyprenal levels, suggesting DHRSX deficiency. Accordingly, N-glycan synthesis and changes in polyisoprenoid levels were corrected by complementation with human DHRSX but not with SRD5A3. Furthermore, the typical polyprenol dehydrogenase and dolichal reductase activities of DHRSX were absent in membrane preparations derived from Lec5 and Lec9 cells, while the reduction of polyprenal to dolichal, catalyzed by SRD5A3, was unaffected. Long-read whole genome sequencing of Lec5 and Lec9 cells did not reveal mutations in the ORF of SRD5A3, but the genomic region containing DHRSX was absent. Lastly, we established the sequence of Chinese hamster DHRSX and validated that this protein has similar kinetic properties to the human enzyme. Our work therefore identifies the basis of the dolichol synthesis defect in CHO Lec5 and Lec9 cells.
Collapse
Affiliation(s)
- Takfarinas Kentache
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Charlotte R. Althoff
- Laboratory for Molecular Diagnosis, Center for Human Genetics, KU Leuven, Leuven 3000, Belgium
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000 Lille, France
| | - Francesco Caligiore
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Erika Souche
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, KU Leuven, B-3000 Leuven, Belgium
| | - Céline Schulz
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000 Lille, France
| | - Julie Graff
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Eline Pieters
- Laboratory for Molecular Diagnosis, Center for Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Joseph N. Contessa
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Emile Van Schaftingen
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Gert Matthijs
- Laboratory for Molecular Diagnosis, Center for Human Genetics, KU Leuven, Leuven 3000, Belgium
| | - François Foulquier
- Univ. Lille, CNRS, UMR 8576 – UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F- 59000 Lille, France
| | - Guido T. Bommer
- Metabolic Research Group, de Duve Institute & WELRI, Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Matthew P. Wilson
- Laboratory for Molecular Diagnosis, Center for Human Genetics, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
248
|
Garcia A, Rivera R, Simpson AC, Singh NK, Green S, Venkateswaran K. Whole-genome sequencing of Paenibacillus phoenicis isolated from the Phoenix Mars Lander spacecraft assembly facility. Microbiol Resour Announc 2024; 13:e0126523. [PMID: 38742883 PMCID: PMC11237736 DOI: 10.1128/mra.01265-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
The genome of Paenibacillus phoenicis, a spore-forming bacterium isolated from the spacecraft assembly facility of the Phoenix mission, was generated via hybrid assembly by merging short and long reads. Examining this genome may shed light on strategies to minimize the risk of contaminating extraterrestrial environments with Earth-based microorganisms.
Collapse
Affiliation(s)
- Andrew Garcia
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Oregon State University, Corvallis, Oregon, USA
| | - Romar Rivera
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Anna C. Simpson
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Nitin K. Singh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Stefan Green
- Rush University Medical Center, Genomics and Microbiome Core Facility, Chicago, Illinois, USA
| | - Kasthuri Venkateswaran
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
249
|
Erickson VI, Dung TT, Khoi LM, Hounmanou YMG, Phu TM, Dalsgaard A. Genomic Insights into Edwardsiella ictaluri: Molecular Epidemiology and Antimicrobial Resistance in Striped Catfish ( Pangasianodon hypophthalmus) Aquaculture in Vietnam. Microorganisms 2024; 12:1182. [PMID: 38930563 PMCID: PMC11205447 DOI: 10.3390/microorganisms12061182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Edwardsiella ictaluri is responsible for causing bacillary necrosis (BNP) in striped catfish (Pangasianodon hypophthalmus) in Vietnam. This study offers a comprehensive genomic characterization of E. ictaluri to enhance understanding of the molecular epidemiology, virulence, and antimicrobial resistance. E. ictaluri isolates were collected from diseased striped catfish in the Mekong Delta. The species was confirmed through PCR. Antimicrobial susceptibility testing was conducted using minimum inhibitory concentrations for commonly used antimicrobials. Thirty representative isolates were selected for whole genome sequencing to delineate their genomic profiles and phylogeny. All strains belonged to ST-26 and exhibited genetic relatedness, differing by a maximum of 90 single nucleotide polymorphisms. Most isolates carried multiple antimicrobial resistance genes, with the tet(A) gene present in 63% and floR in 77% of the genomes. The ESBL gene, blaCTX-M-15, was identified in 30% of the genomes. Three plasmid replicon types were identified: IncA, p0111, and IncQ1. The genomes clustered into two clades based on their virulence gene profile, one group with the T3SS genes and one without. The genetic similarity among Vietnamese isolates suggests that disease spread occurs within the Mekong region, underscoring the importance of source tracking, reservoir identification, and implementation of necessary biosecurity measures to mitigate spread of BNP.
Collapse
Affiliation(s)
- Vera Irene Erickson
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (V.I.E.); (Y.M.G.H.)
| | - Tu Thanh Dung
- Department of Aquatic Pathology, Can Tho University, Can Tho 94000, Vietnam; (T.T.D.); (L.M.K.)
| | - Le Minh Khoi
- Department of Aquatic Pathology, Can Tho University, Can Tho 94000, Vietnam; (T.T.D.); (L.M.K.)
| | - Yaovi Mahuton Gildas Hounmanou
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (V.I.E.); (Y.M.G.H.)
| | - Tran Minh Phu
- Department of Aquatic Product Processing, Can Tho University, Can Tho 94000, Vietnam;
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark; (V.I.E.); (Y.M.G.H.)
| |
Collapse
|
250
|
Hilário S, Gonçalves MFM, Matos I, Rangel LF, Sousa JA, Santos MJ, Ayra-Pardo C. Comparative genomics reveals insights into the potential of Lysinibacillus irui as a plant growth promoter. Appl Microbiol Biotechnol 2024; 108:370. [PMID: 38861018 PMCID: PMC11166776 DOI: 10.1007/s00253-024-13210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Members of the genus Lysinibacillus attract attention for their mosquitocidal, bioremediation, and plant growth-promoting abilities. Despite this interest, comprehensive studies focusing on genomic traits governing plant growth and stress resilience in this genus using whole-genome sequencing are still scarce. Therefore, we sequenced and compared the genomes of three endophytic Lysinibacillus irui strains isolated from Canary Island date palms with the ex-type strain IRB4-01. Overall, the genomes of these strains consist of a circular chromosome with an average size of 4.6 Mb and a GC content of 37.2%. Comparative analysis identified conserved gene clusters within the core genome involved in iron acquisition, phosphate solubilization, indole-3-acetic acid biosynthesis, and volatile compounds. In addition, genome analysis revealed the presence of genes encoding carbohydrate-active enzymes, and proteins that confer resistance to oxidative, osmotic, and salinity stresses. Furthermore, pathways of putative novel bacteriocins were identified in all genomes. This illustrates possible common plant growth-promoting traits shared among all strains of L. irui. Our findings highlight a rich repertoire of genes associated with plant lifestyles, suggesting significant potential for developing inoculants to enhance plant growth and resilience. This study is the first to provide insights into the overall genomic signatures and mechanisms of plant growth promotion and biocontrol in the genus Lysinibacillus. KEY POINTS: • Pioneer study in elucidating plant growth promoting in L. irui through comparative genomics. • Genome mining identified biosynthetic pathways of putative novel bacteriocins. • Future research directions to develop L. irui-based biofertilizers for sustainable agriculture.
Collapse
Affiliation(s)
- Sandra Hilário
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal.
- GreenUPorto, Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, 747, 4485-646, Vila do Conde, Portugal.
| | - Micael F M Gonçalves
- Department of Biology, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Inês Matos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - Luis F Rangel
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - José A Sousa
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, FC4, 4169-007, Porto, Portugal
| | - Maria J Santos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, FC4, 4169-007, Porto, Portugal
| | - Camilo Ayra-Pardo
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal.
| |
Collapse
|