201
|
Khan F, Bamunuarachchi NI, Tabassum N, Jo DM, Khan MM, Kim YM. Suppression of hyphal formation and virulence of Candida albicans by natural and synthetic compounds. BIOFOULING 2021; 37:626-655. [PMID: 34284656 DOI: 10.1080/08927014.2021.1948538] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Candida albicans undergoes a morphological yeast-to-hyphal transition during infection, which plays a significant role in its pathogenesis. The filamentous morphology of the hyphal form has been identified as a virulence factor as it facilitates surface adherence, intertwining with biofilm, invasion, and damage to host tissues and organs. Hence, inhibition of filamentation in addition to biofilm formation is considered a viable strategy against C. albicans infections. Furthermore, a good understanding of the signaling pathways involved in response to environmental cues driving hyphal growth is also critical to an understanding of C. albicans pathogenicity and to develop novel therapies. In this review, first the clinical significance and transcriptional control of C. albicans hyphal morphogenesis are addressed. Then, various strategies employed to suppress filamentation, prevent biofilm formation, and reduce virulence are discussed. These strategies include the inhibition of C. albicans filament formation using natural or synthetic compounds, and their combination with other agents or nanoformulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
- Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, University Brunei Darussalam, Gadong, Brunei Darussalam
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
202
|
Benedict K, Toda M, Jackson BR. Revising Conventional Wisdom About Histoplasmosis in the United States. Open Forum Infect Dis 2021; 8:ofab306. [PMID: 34703835 PMCID: PMC8538056 DOI: 10.1093/ofid/ofab306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 06/07/2021] [Indexed: 11/12/2022] Open
Abstract
Studies performed during the 1940s-1960s continue to serve as the foundation of the epidemiology of histoplasmosis given that many knowledge gaps persist regarding its geographic distribution, prevalence, and burden in the United States. We explore 3 long-standing, frequently cited, and somewhat incomplete epidemiologic beliefs about histoplasmosis: (1) histoplasmosis is the most common endemic mycosis in the United States, (2) histoplasmosis is endemic to the Ohio and Mississippi River Valleys, and (3) histoplasmosis is associated with bird or bat droppings. We also summarize recent insights about the clinical spectrum of histoplasmosis and changes in underlying conditions associated with the severe forms. Continuing to identify prevention opportunities will require better epidemiologic data, better diagnostic testing, and greater awareness about this neglected disease among health care providers, public health professionals, and the general public.
Collapse
Affiliation(s)
- Kaitlin Benedict
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mitsuru Toda
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brendan R Jackson
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
203
|
Seagle EE, Jackson BR, Lockhart SR, Georgacopoulos O, Nunnally NS, Roland J, Barter DM, Johnston HL, Czaja CA, Kayalioglu H, Clogher P, Revis A, Farley MM, Harrison LH, Davis SS, Phipps EC, Tesini BL, Schaffner W, Markus TM, Lyman MM. The landscape of candidemia during the COVID-19 pandemic. Clin Infect Dis 2021; 74:802-811. [PMID: 34145450 DOI: 10.1093/cid/ciab562] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The COVID-19 pandemic has resulted in unprecedented healthcare challenges, and COVID-19 has been linked to secondary infections. Candidemia, a fungal healthcare-associated infection, has been described in patients hospitalized with severe COVID-19. However, studies of candidemia and COVID-19 co-infection have been limited in sample size and geographic scope. We assessed differences in patients with candidemia with and without a COVID-19 diagnosis. METHODS We conducted a case-level analysis using population-based candidemia surveillance data collected through the Centers for Disease Control and Prevention's Emerging Infections Program during April-August 2020 to compare characteristics of candidemia patients with and without a positive test for COVID-19 in the 30 days before their Candida culture using chi-square or Fisher exact tests. RESULTS Of the 251 candidemia patients included, 64 (25.5%) were positive for SARS-CoV-2. Liver disease, solid organ malignancies, and prior surgeries were each >3 times more common in patients without COVID-19 co-infection, whereas intensive care unit-level care, mechanical ventilation, having a central venous catheter, and receipt of corticosteroids and immunosuppressants were each >1.3 times more common in patients with COVID-19. All cause in-hospital fatality was two times higher among those with COVID-19 (62.5%) than without (32.1%). CONCLUSIONS One quarter of candidemia patients had COVID-19. These patients were less likely to have certain underlying conditions and recent surgery commonly associated with candidemia and more likely to have acute risk factors linked to COVID-19 care, including immunosuppressive medications. Given the high mortality, it is important for clinicians to remain vigilant and take proactive measures to prevent candidemia in patients with COVID-19.
Collapse
Affiliation(s)
- Emma E Seagle
- ASRT, Inc; Atlanta, Georgia, USA.,Mycotic Disease Branch, Centers for Disease Control and Prevention; Atlanta, Georgia, USA
| | - Brendan R Jackson
- Mycotic Disease Branch, Centers for Disease Control and Prevention; Atlanta, Georgia, USA
| | - Shawn R Lockhart
- Mycotic Disease Branch, Centers for Disease Control and Prevention; Atlanta, Georgia, USA
| | - Ourania Georgacopoulos
- Mycotic Disease Branch, Centers for Disease Control and Prevention; Atlanta, Georgia, USA
| | - Natalie S Nunnally
- Mycotic Disease Branch, Centers for Disease Control and Prevention; Atlanta, Georgia, USA
| | - Jeremy Roland
- California Emerging Infections Program; Oakland, California, USA
| | - Devra M Barter
- Colorado Department of Public Health and Environment; Denver, Colorado, USA
| | - Helen L Johnston
- Colorado Department of Public Health and Environment; Denver, Colorado, USA
| | | | - Hazal Kayalioglu
- Connecticut Emerging Infections Program, Yale School of Public Health; New Haven, Connecticut, USA
| | - Paula Clogher
- Connecticut Emerging Infections Program, Yale School of Public Health; New Haven, Connecticut, USA
| | - Andrew Revis
- Atlanta VA Medical Center; Atlanta, Georgia, USA.,Foundation for Atlanta Veterans Education and Research; Atlanta, Georgia, USA.,Georgia Emerging Infections Program; Atlanta, Georgia, USA
| | - Monica M Farley
- Atlanta VA Medical Center; Atlanta, Georgia, USA.,Department of Medicine, Emory University School of Medicine; Atlanta, Georgia, USA
| | - Lee H Harrison
- Department of International Health, Johns Hopkins Bloomberg School of Public Health; Baltimore, Maryland, USA
| | - Sarah Shrum Davis
- New Mexico Emerging Infections Program, University of New Mexico; Albuquerque, New Mexico, USA
| | - Erin C Phipps
- New Mexico Emerging Infections Program, University of New Mexico; Albuquerque, New Mexico, USA
| | - Brenda L Tesini
- University of Rochester School of Medicine; Rochester, New York, USA
| | | | | | - Meghan M Lyman
- Mycotic Disease Branch, Centers for Disease Control and Prevention; Atlanta, Georgia, USA
| |
Collapse
|
204
|
Diaz-Abad M, Robinett KS, Lasso-Pirot A, Legesse TB, Khambaty M. Granulomatous Pneumocystis jiroveci Pneumonia in an HIV-Positive Patient on Antiretroviral Therapy: A Diagnostic Challenge. Open Respir Med J 2021; 15:19-22. [PMID: 34249178 PMCID: PMC8227459 DOI: 10.2174/1874306402115010019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/16/2021] [Accepted: 03/07/2021] [Indexed: 01/15/2023] Open
Abstract
Human Immunodeficiency Virus (HIV)-related Opportunistic Infections (OI), including Pneumocystis jiroveci pneumonia (PCP), have become much less commonplace with anti-retroviral therapy (ART). Despite this, OIs are still common and it is important to remain vigilant for their presence and be aware of how ART and OI chemoprophylaxis may lead to atypical disease presentations. We present the case of a 51-year-old woman with HIV and CD4+ T helper lymphocytes cell count > 200 cells/ul on both ART and trimethoprim/sulfamethoxazole prophylaxis who presented with cavitating lung masses, mediastinal lymphadenopathy and pleural effusions. Negative bronchoalveolar lavage (BAL) and transbronchial biopsy (TBBx) prompted a second diagnostic procedure with a transthoracic core needle biopsy; the final diagnosis was granulomatous PCP. This case showcases a very rare presentation of PCP, with both large cavitating lung masses on imaging and granulomatous reaction on pathology, as well as the challenge of a potentially missed diagnosis with negative BAL and TBBx requiring transthoracic core needle biopsy for a final diagnosis.
Collapse
Affiliation(s)
- Montserrat Diaz-Abad
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kathryn S Robinett
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Anayansi Lasso-Pirot
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Teklu B Legesse
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mariam Khambaty
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
205
|
Dishman AF, He J, Volkman BF, Huppler AR. Metamorphic Protein Folding Encodes Multiple Anti- Candida Mechanisms in XCL1. Pathogens 2021; 10:pathogens10060762. [PMID: 34204234 PMCID: PMC8235156 DOI: 10.3390/pathogens10060762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/12/2021] [Indexed: 11/16/2022] Open
Abstract
Candida species cause serious infections requiring prolonged and sometimes toxic therapy. Antimicrobial proteins, such as chemokines, hold great interest as potential additions to the small number of available antifungal drugs. Metamorphic proteins reversibly switch between multiple different folded structures. XCL1 is a metamorphic, antimicrobial chemokine that interconverts between the conserved chemokine fold (an α–β monomer) and an alternate fold (an all-β dimer). Previous work has shown that human XCL1 kills C. albicans but has not assessed whether one or both XCL1 folds perform this activity. Here, we use structurally locked engineered XCL1 variants and Candida killing assays, adenylate kinase release assays, and propidium iodide uptake assays to demonstrate that both XCL1 folds kill Candida, but they do so via different mechanisms. Our results suggest that the alternate fold kills via membrane disruption, consistent with previous work, and the chemokine fold does not. XCL1 fold-switching thus provides a mechanism to regulate the XCL1 mode of antifungal killing, which could protect surrounding tissue from damage associated with fungal membrane disruption and could allow XCL1 to overcome candidal resistance by switching folds. This work provides inspiration for the future design of switchable, multifunctional antifungal therapeutics.
Collapse
Affiliation(s)
- Acacia F. Dishman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jie He
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
| | - Brian F. Volkman
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Correspondence: (B.F.V.); (A.R.H.)
| | - Anna R. Huppler
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA;
- Correspondence: (B.F.V.); (A.R.H.)
| |
Collapse
|
206
|
Arastehfar A, de Almeida Júnior JN, Perlin DS, Ilkit M, Boekhout T, Colombo AL. Multidrug-resistant Trichosporon species: underestimated fungal pathogens posing imminent threats in clinical settings. Crit Rev Microbiol 2021; 47:679-698. [PMID: 34115962 DOI: 10.1080/1040841x.2021.1921695] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Species of Trichosporon and related genera are widely used in biotechnology and, hence, many species have their genome sequenced. Importantly, yeasts of the genus Trichosporon have been increasingly identified as a cause of life-threatening invasive trichosporonosis (IT) in humans and are associated with an exceptionally high mortality rate. Trichosporon spp. are intrinsically resistant to frontline antifungal agents, which accounts for numerous reports of therapeutic failure when echinocandins are used to treat IT. Moreover, these fungi have low sensitivity to polyenes and azoles and, therefore, are potentially regarded as multidrug-resistant pathogens. However, despite the clinical importance of Trichosporon spp., our understanding of their antifungal resistance mechanisms is quite limited. Furthermore, antifungal susceptibility testing is not standardized, and there is a lack of interpretive epidemiological cut-off values for minimal inhibitory concentrations to distinguish non-wild type Trichosporon isolates. The route of infection remains obscure and detailed clinical and environmental studies are required to determine whether the Trichosporon infections are endogenous or exogenous in nature. Although our knowledge on effective IT treatments is rather limited and future randomized clinical trials are required to identify the best antifungal agent, the current paradigm advocates the use of voriconazole, removal of central venous catheters and recovery from neutropenia.
Collapse
Affiliation(s)
- Amir Arastehfar
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - João N de Almeida Júnior
- Laboratorio de Micologia Medica (LIM 53), Instituto de Medicina Tropical, Universidade de São Paulo, São Paulo, Brazil.,Laboratório Central (LIM 03), Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - David S Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Macit Ilkit
- Division of Mycology, University of Çukurova, Adana, Turkey
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Arnaldo Lopes Colombo
- Department of Medicine, Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
207
|
Nishimoto AT, Sharma C, Rogers PD. Molecular and genetic basis of azole antifungal resistance in the opportunistic pathogenic fungus Candida albicans. J Antimicrob Chemother 2021; 75:257-270. [PMID: 31603213 DOI: 10.1093/jac/dkz400] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Candida albicans is an opportunistic yeast and the major human fungal pathogen in the USA, as well as in many other regions of the world. Infections with C. albicans can range from superficial mucosal and dermatological infections to life-threatening infections of the bloodstream and vital organs. The azole antifungals remain an important mainstay treatment of candidiasis and therefore the investigation and understanding of the evolution, frequency and mechanisms of azole resistance are vital to improving treatment strategies against this organism. Here the organism C. albicans and the genetic changes and molecular bases underlying the currently known resistance mechanisms to the azole antifungal class are reviewed, including up-regulated expression of efflux pumps, changes in the expression and amino acid composition of the azole target Erg11 and alterations to the organism's typical sterol biosynthesis pathways. Additionally, we update what is known about activating mutations in the zinc cluster transcription factor (ZCF) genes regulating many of these resistance mechanisms and review azole import as a potential contributor to azole resistance. Lastly, investigations of azole tolerance in C. albicans and its implicated clinical significance are reviewed.
Collapse
Affiliation(s)
- Andrew T Nishimoto
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Cheshta Sharma
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - P David Rogers
- Department of Clinical Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
208
|
Gold JAW, Seagle EE, Nadle J, Barter DM, Czaja CA, Johnston H, Farley MM, Thomas S, Harrison LH, Fischer J, Pattee B, Mody RK, Phipps EC, Shrum Davis S, Tesini BL, Zhang AY, Markus TM, Schaffner W, Lockhart SR, Vallabhaneni S, Jackson BR, Lyman M. Treatment Practices for Adults with Candidemia at Nine Active Surveillance Sites - United States, 2017-2018. Clin Infect Dis 2021; 73:1609-1616. [PMID: 34079987 DOI: 10.1093/cid/ciab512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Candidemia is a common opportunistic infection causing substantial morbidity and mortality. Because of an increasing proportion of non-albicans Candida species and rising antifungal drug resistance, the Infectious Diseases Society of America (IDSA) changed treatment guidelines in 2016 to recommend echinocandins over fluconazole as first-line treatment for adults with candidemia. We describe candidemia treatment practices and adherence to the updated guidelines. METHODS During 2017-2018, the Emerging Infections Program conducted active population-based candidemia surveillance at nine U.S. sites using a standardized case definition. We assessed factors associated with initial antifungal treatment for the first candidemia case among adults using multivariable logistic regression models. To identify instances of potentially inappropriate treatment, we compared the first antifungal drug received with species and antifungal susceptibility testing (AFST) results from initial blood cultures. RESULTS Among 1,835 patients who received antifungal treatment, 1,258 (68.6%) received an echinocandin and 543 (29.6%) received fluconazole as initial treatment. Cirrhosis (adjusted odds ratio = 2.06, 95% confidence interval: 1.29-3.29) was the only underlying medical condition significantly associated with initial receipt of an echinocandin (versus fluconazole). Over half (n = 304, 56.0%) of patients initially treated with fluconazole grew a non-albicans species. Among 265 patients initially treated with fluconazole and with fluconazole AFST results, 28 (10.6%) had a fluconazole-resistant isolate. CONCLUSIONS A substantial proportion of patients with candidemia were initially treated with fluconazole, resulting in potentially inappropriate treatment for those involving non-albicans or fluconazole-resistant species. Reasons for non-adherence to IDSA guidelines should be evaluated, and clinician education is needed.
Collapse
Affiliation(s)
- Jeremy A W Gold
- Mycotic Diseases Branch, CDC, Atlanta, Georgia, USA.,Epidemic Intelligence Service, CDC, Atlanta, Georgia, USA
| | - Emma E Seagle
- Mycotic Diseases Branch, CDC, Atlanta, Georgia, USA.,ASRT Inc., Atlanta, GA, USA
| | - Joelle Nadle
- California Emerging Infections Program, Oakland, California, USA
| | - Devra M Barter
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | | | - Helen Johnston
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | - Monica M Farley
- Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.,Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, USA
| | - Stepy Thomas
- Georgia Emerging Infections, Emory University School of Medicine, Atlanta, GA, USA
| | - Lee H Harrison
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jill Fischer
- Minnesota Department of Health, Saint Paul, Minnesota, USA
| | | | - Rajal K Mody
- Minnesota Department of Health, Saint Paul, Minnesota, USA.,Division of State and Local Readiness, CDC, Atlanta, Georgia, USA
| | - Erin C Phipps
- New Mexico Emerging Infections Program, Albuquerque, New Mexico, USA
| | - Sarah Shrum Davis
- New Mexico Emerging Infections Program, Albuquerque, New Mexico, USA
| | - Brenda L Tesini
- University of Rochester School of Medicine, Rochester, New York, USA
| | - Alexia Y Zhang
- Oregon Public Health Division, Oregon Health Authority, Portland, Oregon, USA
| | | | | | | | | | | | - Meghan Lyman
- Mycotic Diseases Branch, CDC, Atlanta, Georgia, USA
| |
Collapse
|
209
|
Abstract
The breadth of fungi causing human disease and the spectrum of clinical presentations associated with these infections has widened. Epidemiologic trends display dramatic shifts with expanding geographic ranges, identification of new at-risk groups, increasing prevalence of resistant infections, and emergence of novel multidrug-resistant pathogenic fungi. Certain fungi have been transmitted between patients in clinical settings. Major health events not typically associated with mycoses resulted in larger proportions of the population susceptible to secondary fungal infections. Many health care-related, environmental, and socioeconomic factors have influenced these epidemiologic shifts. This review summarizes updates to clinically significant fungal pathogens in North America.
Collapse
Affiliation(s)
- Emma E Seagle
- ASRT, Inc, 4158 Onslow Pl, Smyrna, GA 30080, USA; Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, Atlanta, GA 30329-4018, USA
| | - Samantha L Williams
- ASRT, Inc, 4158 Onslow Pl, Smyrna, GA 30080, USA; Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, Atlanta, GA 30329-4018, USA
| | - Tom M Chiller
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road Northeast, Atlanta, GA 30329-4018, USA.
| |
Collapse
|
210
|
Mulet Bayona JV, Tormo Palop N, Salvador García C, Fuster Escrivá B, Chanzá Aviñó M, Ortega García P, Gimeno Cardona C. Impact of the SARS-CoV-2 Pandemic in Candidaemia, Invasive Aspergillosis and Antifungal Consumption in a Tertiary Hospital. J Fungi (Basel) 2021; 7:jof7060440. [PMID: 34072876 PMCID: PMC8228091 DOI: 10.3390/jof7060440] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 01/07/2023] Open
Abstract
In addition to the increase in fungal infections that has been observed in the last few decades, it has been reported that severe clinical COVID-19 can increase the risk of invasive fungal infections. The main objective of this study was to evaluate if there had been an increase in candidaemia and invasive pulmonary aspergillosis (IPA) cases since the onset of the SARS-CoV-2 pandemic. Data were retrospectively collected from April 2019 to March 2021, from patients admitted to Consorcio Hospital General Universitario de Valencia (Spain). A total of 152 candidaemia cases (56 of which were due to Candida auris) and 108 possible IPA cases were detected. A great increase in candidaemia cases was produced during the first and the third epidemic waves of the SARS-CoV-2 pandemic (June 2020, and January 2021, respectively), while an increase in IPA cases was produced during the third wave. The 28-day mortality rates in patients affected by candidaemia and IPA increased in 2020 and 2021. C. auris has displaced the other Candida species, becoming the most isolated Candida species in blood cultures since the onset of the SARS-CoV-2 pandemic. Antifungal consumption increased in 2020 when compared to 2019, especially echinocandins, voriconazole and isavuconazole.
Collapse
Affiliation(s)
- Juan Vicente Mulet Bayona
- Department of Microbiology and Parasitology, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain; (N.T.P.); (C.S.G.); (B.F.E.); (M.C.A.); (C.G.C.)
- Correspondence:
| | - Nuria Tormo Palop
- Department of Microbiology and Parasitology, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain; (N.T.P.); (C.S.G.); (B.F.E.); (M.C.A.); (C.G.C.)
| | - Carme Salvador García
- Department of Microbiology and Parasitology, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain; (N.T.P.); (C.S.G.); (B.F.E.); (M.C.A.); (C.G.C.)
| | - Begoña Fuster Escrivá
- Department of Microbiology and Parasitology, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain; (N.T.P.); (C.S.G.); (B.F.E.); (M.C.A.); (C.G.C.)
| | - Mercedes Chanzá Aviñó
- Department of Microbiology and Parasitology, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain; (N.T.P.); (C.S.G.); (B.F.E.); (M.C.A.); (C.G.C.)
| | - Pilar Ortega García
- Department of Hospital Pharmacy, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain;
| | - Concepción Gimeno Cardona
- Department of Microbiology and Parasitology, Consorcio Hospital General Universitario de Valencia, 46014 Valencia, Spain; (N.T.P.); (C.S.G.); (B.F.E.); (M.C.A.); (C.G.C.)
- Department of Microbiology and Ecology, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
211
|
Investigational Agents for the Treatment of Resistant Yeasts and Molds. CURRENT FUNGAL INFECTION REPORTS 2021; 15:104-115. [PMID: 34075318 PMCID: PMC8162489 DOI: 10.1007/s12281-021-00419-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 12/17/2022]
Abstract
Purpose of Review This review summarizes the investigational antifungals in clinical development with the potential to address rising drug resistance patterns. The relevant pharmacodynamics, spectrum of activity, preclinical studies, and latest clinical trial data are described. Recent Findings Agricultural and medicinal antifungal use has been selected for inherently drug-resistant fungi and acquired resistance mechanisms. The rates of fungal infections and immunocompromised populations continue to grow as few new antifungals have hit the market. Several agents with the potential to address the emergence of multidrug-resistant (MDR) molds and yeasts are in clinical development. Summary Evolved formulations of echinocandins, polyenes, and triazoles offer less toxicity, convenient dosing, and greater potency, potentially expanding these classes’ indications. Ibrexafungerp, olorofim, oteseconazole, and fosmanogepix possess novel mechanisms of actions with potent activity against MDR fungi. Successful clinical development is neither easy nor guaranteed; thus, perpetual efforts to discover new antifungals are needed.
Collapse
|
212
|
Siopi M, Efstathiou I, Theodoropoulos K, Pournaras S, Meletiadis J. Molecular Epidemiology and Antifungal Susceptibility of Trichophyton Isolates in Greece: Emergence of Terbinafine-Resistant Trichophytonmentagrophytes Type VIII Locally and Globally. J Fungi (Basel) 2021; 7:jof7060419. [PMID: 34072049 PMCID: PMC8229535 DOI: 10.3390/jof7060419] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
Trichophyton isolates with reduced susceptibility to antifungals are now increasingly reported worldwide. We therefore studied the molecular epidemiology and the in vitro antifungal susceptibility patterns of Greek Trichophyton isolates over the last 10 years with the newly released EUCAST reference method for dermatophytes. Literature was reviewed to assess the global burden of antifungal resistance in Trichophyton spp. The in vitro susceptibility of 112 Trichophyton spp. molecularly identified clinical isolates (70 T. rubrum, 24 T. mentagrophytes, 12 T. interdigitale and 6 T. tonsurans) was tested against terbinafine, itraconazole, voriconazole and amorolfine (EUCAST E.DEF 11.0). Isolates were genotyped based on the internal transcribed spacer (ITS) sequences and the target gene squalene epoxidase (SQLE) was sequenced for isolates with reduced susceptibility to terbinafine. All T. rubrum, T. interdigitale and T. tonsurans isolates were classified as wild-type (WT) to all antifungals, whereas 9/24 (37.5%) T. mentagrophytes strains displayed elevated terbinafine MICs (0.25–8 mg/L) but not to azoles and amorolfine. All T. interdigitale isolates belonged to ITS Type II, while T. mentagrophytes isolates belonged to ITS Type III* (n = 11), VIII (n = 9) and VII (n = 4). All non-WT T. mentagrophytes isolates belonged to Indian Genotype VIII and harbored Leu393Ser (n = 5) and Phe397Leu (n = 4) SQLE mutations. Terbinafine resistance rates ranged globally from 0–44% for T. rubrum and 0–76% for T. interdigitale/T. mentagrophytes with strong endemicity. High incidence (37.5%) of terbinafine non-WT T. mentagrophytes isolates (all belonging to ITS Type VIII) without cross-resistance to other antifungals was found for the first time in Greece. This finding must alarm for susceptibility testing of dermatophytes at a local scale particularly in non-responding dermatophytoses.
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, Medical School, “Attikon” University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.S.); (I.E.); (S.P.)
| | - Ioanna Efstathiou
- Clinical Microbiology Laboratory, Medical School, “Attikon” University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.S.); (I.E.); (S.P.)
| | - Konstantinos Theodoropoulos
- Second Department of Dermatology & Venereology, Medical School, “Attikon” University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece;
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Medical School, “Attikon” University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.S.); (I.E.); (S.P.)
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Medical School, “Attikon” University General Hospital, National and Kapodistrian University of Athens, 124 62 Athens, Greece; (M.S.); (I.E.); (S.P.)
- Correspondence: ; Tel.: +30-210-583-1909; Fax: +30-210-532-6421
| |
Collapse
|
213
|
Chand P, Kumari S, Mondal N, Singh SP, Prasad T. Synergism of Zinc Oxide Quantum Dots with Antifungal Drugs: Potential Approach for Combination Therapy against Drug Resistant Candida albicans. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.624564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Candidiasis caused by Candida albicans is one of the most common microbial infections. Azoles, polyenes, allylamines, and echinocandins are classes of antifungals used for treating Candida infections. Standard drug doses often become ineffective due to the emergence of multidrug resistance (MDR). This leads to the use of higher drug doses for prolonged duration, resulting in severe toxicity (nephrotoxicity and liver damage) in humans. However, combination therapy using very low concentrations of two or more antifungal agents together, can lower such toxicity and limit evolution of drug resistance. Herein, 4–6 nm zinc oxide quantum dots (ZnO QDs) were synthesized and their in vitro antifungal activities were assessed against drug-susceptible (G1, F1, and GU4) and resistant (G5, F5, and GU5) isolates of C. albicans. In broth microdilution assay, ZnO QDs exhibited dose dependent growth inhibition between 0 – 200 µg/ml and almost 90% growth was inhibited in all Candida strains at 200 µg/ml of ZnO QDs. Synergy between ZnO QDs and antifungal drugs at sub-inhibitory concentrations of each was assessed by checkerboard analysis and expressed in terms of the fractional inhibitory concentration (FIC) index. ZnO QDs were used with two different classes of antifungals (azoles and polyenes) against Candida isolates: combination 1 (with fluconazole); combination 2 (with ketoconazole); combination 3 (with amphotericin B), and combination 4 (with nystatin). Results demonstrated that the potency of combinations of ZnO QDs with antifungal drugs even at very low concentrations of each was higher than their individual activities against the fungal isolates. The FIC index was found to be less than 0.5 for all combinations in the checkerboard assay, which confirmed synergism between sub-inhibitory concentrations of ZnO QDs (25 µg/ml) and individual antifungal drugs. Synergism was further confirmed by spot assay where cell viabilities of Candida strains were significantly reduced in all combinations, which was clearly evident from the disappearance of fungal cells on agar plates containing antifungal combinations. For safer clinical use, the in vitro cytotoxic activity of ZnO QDs was assessed against HeLa cell line and it was found that ZnO QDs were non-toxic at 25 µg/ml. Results suggested that the combination of ZnO QDs with drugs potentiate antimicrobial activity through multitargeted action. ZnO QDs could therefore offer a versatile alternative in combination therapy against MDR fungal pathogens, wherein lowering drug concentrations could reduce toxicity and their multitargeted action could limit evolution of fungal drug resistance.
Collapse
|
214
|
Toda M, Beer KD, Kuivila KM, Chiller TM, Jackson BR. Trends in Agricultural Triazole Fungicide Use in the United States, 1992-2016 and Possible Implications for Antifungal-Resistant Fungi in Human Disease. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:55001. [PMID: 33949891 PMCID: PMC8098123 DOI: 10.1289/ehp7484] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/28/2021] [Accepted: 03/16/2021] [Indexed: 05/18/2023]
Abstract
BACKGROUND The fungus Aspergillus fumigatus (A. fumigatus) is the leading cause of invasive mold infections, which cause severe disease and death in immunocompromised people. Use of triazole antifungal medications in recent decades has improved patient survival; however, triazole-resistant infections have become common in parts of Europe and are emerging in the United States. Triazoles are also a class of fungicides used in plant agriculture, and certain triazole-resistant A. fumigatus strains found causing disease in humans have been linked to environmental fungicide use. OBJECTIVES We examined U.S. temporal and geographic trends in the use of triazole fungicides using U.S. Geological Survey agricultural pesticide use estimates. DISCUSSION Based on our analysis, overall tonnage of triazole fungicide use nationwide was relatively constant during 1992-2005 but increased >4-fold during 2006-2016 to 2.9 million kg in 2016. During 1992-2005, triazole fungicide use occurred mostly in orchards and grapes, wheat, and other crops, but recent increases in use have occurred primarily in wheat, corn, soybeans, and other crops, particularly in Midwest and Southeast states. We conclude that, given the chemical similarities between triazole fungicides and triazole antifungal drugs used in human medicine, increased monitoring for environmental and clinical triazole resistance in A. fumigatus would improve overall understanding of these interactions, as well as help identify strategies to mitigate development and spread of resistance. https://doi.org/10.1289/EHP7484.
Collapse
Affiliation(s)
- Mitsuru Toda
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Karlyn D. Beer
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kathryn M. Kuivila
- U.S. Geological Survey Oregon Water Science Center, Portland, Oregon, USA
| | - Tom M. Chiller
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brendan R. Jackson
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
215
|
Rayens E, Norris KA, Cordero JF. Mortality Trends in Risk Conditions and Invasive Mycotic Disease in the United States, 1999-2018. Clin Infect Dis 2021; 74:309-318. [PMID: 33876235 DOI: 10.1093/cid/ciab336] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Invasive fungal infections (IFIs) in the United States are chronically underdiagnosed and a lack of coordinated surveillance makes the true burden of disease difficult to determine. The purpose of this analysis was to capture mortality-associated burden of risk conditions and fungal infections. METHODS We analyzed data from the National Vital Statistics System from 1999-2018 to estimate the mortality attributed to risk conditions and related fungal disease. RESULTS The number of risk conditions associated with fungal disease is steadily rising in the United States with 1,047,422 diagnoses at time of death in 2018. While fungal disease decreased substantially from 1999 to 2010, primarily due to the control of HIV infection, the number deaths with fungal diagnosis has increased in the non-HIV cohort, with significant increases in patients with diabetes, cancer, immunosuppressive disorders, or sepsis. CONCLUSION The landscape of individuals at risk for serious fungal diseases is changing, with a continued decline in HIV-associated incidence, but increased diagnoses in patients with cancer, sepsis, immunosuppressive disorders, and influenza. Additionally, there is an overall increase in the number of fungal infections in recent years, indicating a failure to control fungal disease mortality in these new immunocompromised cohorts. Improvement in prevention and management of fungal diseases is needed to control morbidity and mortality in the rising number of immunocompromised and at-risk patients in the United States.
Collapse
Affiliation(s)
- Emily Rayens
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia USA.,Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, Georgia USA
| | - Karen A Norris
- Center for Vaccines and Immunology, Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia USA
| | - José F Cordero
- Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, Georgia USA
| |
Collapse
|
216
|
Cation Transporters of Candida albicans-New Targets to Fight Candidiasis? Biomolecules 2021; 11:biom11040584. [PMID: 33923411 PMCID: PMC8073359 DOI: 10.3390/biom11040584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
Candidiasis is the wide-spread fungal infection caused by numerous strains of yeast, with the prevalence of Candida albicans. The current treatment of candidiasis is becoming rather ineffective and costly owing to the emergence of resistant strains; hence, the exploration of new possible drug targets is necessary. The most promising route is the development of novel antibiotics targeting this pathogen. In this review, we summarize such candidates found in C. albicans and those involved in the transport of (metal) cations, as the latter are essential for numerous processes within the cell; hence, disruption of their fluxes can be fatal for C. albicans.
Collapse
|
217
|
Struyfs C, Cammue BPA, Thevissen K. Membrane-Interacting Antifungal Peptides. Front Cell Dev Biol 2021; 9:649875. [PMID: 33912564 PMCID: PMC8074791 DOI: 10.3389/fcell.2021.649875] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of invasive fungal infections is increasing worldwide, resulting in more than 1.6 million deaths every year. Due to growing antifungal drug resistance and the limited number of currently used antimycotics, there is a clear need for novel antifungal strategies. In this context, great potential is attributed to antimicrobial peptides (AMPs) that are part of the innate immune system of organisms. These peptides are known for their broad-spectrum activity that can be directed toward bacteria, fungi, viruses, and/or even cancer cells. Some AMPs act via rapid physical disruption of microbial cell membranes at high concentrations causing cell leakage and cell death. However, more complex mechanisms are also observed, such as interaction with specific lipids, production of reactive oxygen species, programmed cell death, and autophagy. This review summarizes the structure and mode of action of antifungal AMPs, thereby focusing on their interaction with fungal membranes.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
218
|
Fabri JHTM, Rocha MC, Fernandes CM, Persinoti GF, Ries LNA, da Cunha AF, Goldman GH, Del Poeta M, Malavazi I. The Heat Shock Transcription Factor HsfA Is Essential for Thermotolerance and Regulates Cell Wall Integrity in Aspergillus fumigatus. Front Microbiol 2021; 12:656548. [PMID: 33897671 PMCID: PMC8062887 DOI: 10.3389/fmicb.2021.656548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/11/2021] [Indexed: 12/13/2022] Open
Abstract
The deleterious effects of human-induced climate change have long been predicted. However, the imminent emergence and spread of new diseases, including fungal infections through the rise of thermotolerant strains, is still neglected, despite being a potential consequence of global warming. Thermotolerance is a remarkable virulence attribute of the mold Aspergillus fumigatus. Under high-temperature stress, opportunistic fungal pathogens deploy an adaptive mechanism known as heat shock (HS) response controlled by heat shock transcription factors (HSFs). In eukaryotes, HSFs regulate the expression of several heat shock proteins (HSPs), such as the chaperone Hsp90, which is part of the cellular program for heat adaptation and a direct target of HSFs. We recently observed that the perturbation in cell wall integrity (CWI) causes concomitant susceptibility to elevated temperatures in A. fumigatus, although the mechanisms underpinning the HS response and CWI cross talking are not elucidated. Here, we aim at further deciphering the interplay between HS and CWI. Our results show that cell wall ultrastructure is severely modified when A. fumigatus is exposed to HS. We identify the transcription factor HsfA as essential for A. fumigatus viability, thermotolerance, and CWI. Indeed, HS and cell wall stress trigger the coordinated expression of both hsfA and hsp90. Furthermore, the CWI signaling pathway components PkcA and MpkA were shown to be important for HsfA and Hsp90 expression in the A. fumigatus biofilms. Lastly, RNA-sequencing confirmed that hsfA regulates the expression of genes related to the HS response, cell wall biosynthesis and remodeling, and lipid homeostasis. Our studies collectively demonstrate the connection between the HS and the CWI pathway, with HsfA playing a crucial role in this cross-pathway regulation, reinforcing the importance of the cell wall in A. fumigatus thermophily.
Collapse
Affiliation(s)
| | - Marina Campos Rocha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
| | - Gabriela Felix Persinoti
- Laboratório Nacional de Biorrenováveis (LNBR), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, São Paulo, Brazil
| | | | - Anderson Ferreira da Cunha
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Gustavo Henrique Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, United States
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, United States
- Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, NY, United States
- Veterans Administration Medical Center, Northport, NY, United States
| | - Iran Malavazi
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
219
|
Strickland AB, Shi M. Mechanisms of fungal dissemination. Cell Mol Life Sci 2021; 78:3219-3238. [PMID: 33449153 PMCID: PMC8044058 DOI: 10.1007/s00018-020-03736-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022]
Abstract
Fungal infections are an increasing threat to global public health. There are more than six million fungal species worldwide, but less than 1% are known to infect humans. Most of these fungal infections are superficial, affecting the hair, skin and nails, but some species are capable of causing life-threatening diseases. The most common of these include Cryptococcus neoformans, Aspergillus fumigatus and Candida albicans. These fungi are typically innocuous and even constitute a part of the human microbiome, but if these pathogens disseminate throughout the body, they can cause fatal infections which account for more than one million deaths worldwide each year. Thus, systemic dissemination of fungi is a critical step in the development of these deadly infections. In this review, we discuss our current understanding of how fungi disseminate from the initial infection sites to the bloodstream, how immune cells eliminate fungi from circulation and how fungi leave the blood and enter distant organs, highlighting some recent advances and offering some perspectives on future directions.
Collapse
Affiliation(s)
- Ashley B Strickland
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| | - Meiqing Shi
- Division of Immunology, Virginia-Maryland College of Veterinary Medicine and Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA.
| |
Collapse
|
220
|
Johnson MD, Lewis RE, Dodds Ashley ES, Ostrosky-Zeichner L, Zaoutis T, Thompson GR, Andes DR, Walsh TJ, Pappas PG, Cornely OA, Perfect JR, Kontoyiannis DP. Core Recommendations for Antifungal Stewardship: A Statement of the Mycoses Study Group Education and Research Consortium. J Infect Dis 2021; 222:S175-S198. [PMID: 32756879 DOI: 10.1093/infdis/jiaa394] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In recent years, the global public health community has increasingly recognized the importance of antimicrobial stewardship (AMS) in the fight to improve outcomes, decrease costs, and curb increases in antimicrobial resistance around the world. However, the subject of antifungal stewardship (AFS) has received less attention. While the principles of AMS guidelines likely apply to stewarding of antifungal agents, there are additional considerations unique to AFS and the complex field of fungal infections that require specific recommendations. In this article, we review the literature on AMS best practices and discuss AFS through the lens of the global core elements of AMS. We offer recommendations for best practices in AFS based on a synthesis of this evidence by an interdisciplinary expert panel of members of the Mycoses Study Group Education and Research Consortium. We also discuss research directions in this rapidly evolving field. AFS is an emerging and important component of AMS, yet requires special considerations in certain areas such as expertise, education, interventions to optimize utilization, therapeutic drug monitoring, and data analysis and reporting.
Collapse
Affiliation(s)
- Melissa D Johnson
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA
| | - Russell E Lewis
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elizabeth S Dodds Ashley
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, Laboratory of Mycology Research, McGovern Medical School, Houston, Texas, USA
| | - Theoklis Zaoutis
- Division of Infectious Diseases, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - George R Thompson
- Division of Infectious Diseases, Department of Internal Medicine, University of California, Davis, Sacramento, California, USA
| | - David R Andes
- Department of Medicine and Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases, Weill Cornell Medicine of Cornell University, New York, New York, USA
| | - Peter G Pappas
- Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Oliver A Cornely
- Department I of Internal Medicine, University Hospital of Cologne, Cologne, Germany.,German Centre for Infection Research, partner site Bonn-Cologne, Cologne, Germany.,CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.,Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany
| | - John R Perfect
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, USA
| | - Dimitrios P Kontoyiannis
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
221
|
Oliveira LVN, Wang R, Specht CA, Levitz SM. Vaccines for human fungal diseases: close but still a long way to go. NPJ Vaccines 2021; 6:33. [PMID: 33658522 PMCID: PMC7930017 DOI: 10.1038/s41541-021-00294-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
Despite the substantial global burden of human fungal infections, there are no approved fungal vaccines to protect at risk individuals. Here, we review the progress that has been made and the challenges that lie ahead in the quest towards efficacious fungal vaccines. In mouse studies, protection has been achieved with vaccines directed against fungal pathogens, including species of Candida, Cryptococcus, and Aspergillus, that most commonly cause life-threatening human disease. Encouraging results have been obtained with vaccines composed of live-attenuated and killed fungi, crude extracts, recombinant subunit formulations, and nucleic acid vaccines. Novel adjuvants that instruct the immune system to mount the types of protective responses needed to fight mycotic infections are under development. Candidate vaccines include those that target common antigens expressed on multiple genera of fungi thereby protecting against a broad range of mycoses. Encouragingly, three vaccines have reached human clinical trials. Still, formidable obstacles must be overcome before we will have fungal vaccines licensed for human use.
Collapse
Affiliation(s)
- Lorena V N Oliveira
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ruiying Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Charles A Specht
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Stuart M Levitz
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
222
|
Toda M, Benedict K, Jackson BR. Invasive Aspergillosis After Influenza and Other Viral Respiratory Infections Among Intensive Care Unit Patients in a Commercially Insured Population in the United States, 2013-2018. Open Forum Infect Dis 2021; 8:ofab091. [PMID: 33796602 DOI: 10.1093/ofid/ofab091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/24/2021] [Indexed: 11/12/2022] Open
Abstract
Influenza-associated aspergillosis (IAA) is an emerging phenomenon in intensive care unit patients with severe influenza. In a large US health insurance claims database, IAA was uncommon (0.3%) during 2013-2018. The low IAA frequency likely reflects underdiagnosis and differences in medical practices or epidemiologic differences.
Collapse
Affiliation(s)
- Mitsuru Toda
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kaitlin Benedict
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brendan R Jackson
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
223
|
Antifungal Liposomes Directed by Dectin-2 Offer a Promising Therapeutic Option for Pulmonary Aspergillosis. mBio 2021; 12:mBio.00030-21. [PMID: 33622715 PMCID: PMC8545082 DOI: 10.1128/mbio.00030-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Invasive fungal diseases cause millions of deaths each year. There are currently approximately 300,000 acute cases of aspergillosis, most of which result from a pulmonary infection of immunocompromised patients by the common soil organism and opportunistic pathogen Aspergillus fumigatus. Patients are treated with antifungal drugs, such as amphotericin B (AmB). However, AmB has serious limitations due to human organ toxicity. AmB is slightly less toxic if loaded in liposomes, such as AmBisome or AmB-loaded liposomes (AmB-LLs). Even with antifungal therapy, recurrent infections are common, and 1-year fatality rates may exceed 50%. We have previously shown that coating AmB-LLs with the extracellular oligomannan-binding domain of the C-type lectin receptor Dectin-2 (DEC2-AmB-LLs) effectively targets DEC2-AmB-LLs to cell walls, exopolysaccharide matrices, and biofilms of fungal pathogens in vitro. In vitro, DEC2-AmB-LLs reduce the effective dose of AmB for 95% inhibition and killing of A. fumigatus 10-fold compared to that of untargeted AmB-LLs. Herein we tested the antifungal activity of DEC2-AmB-LLs relative to that of untargeted AmB-LLs in immunosuppressed mice with pulmonary aspergillosis. Remarkably, DEC2-AmB-LLs bound 30-fold more efficiently to A. fumigatus at sites of infection in the lungs. Furthermore, Dectin-2-targeted liposomes delivering AmB at a dose of 0.2 mg/kg of body weight significantly reduced the fungal burden in lungs compared to results with untargeted AmB-LLs at 0.2 mg/kg and micellar voriconazole at 20 mg/kg and prolonged mouse survival. By dramatically increasing the efficacy of antifungal drugs at low doses, targeted liposomes have the potential to create a new clinical paradigm to treat diverse fungal diseases.
Collapse
|
224
|
Gingerich AD, Norris KA, Mousa JJ. Pneumocystis Pneumonia: Immunity, Vaccines, and Treatments. Pathogens 2021; 10:pathogens10020236. [PMID: 33669726 PMCID: PMC7921922 DOI: 10.3390/pathogens10020236] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
For individuals who are immunocompromised, the opportunistic fungal pathogen Pneumocystis jirovecii is capable of causing life-threatening pneumonia as the causative agent of Pneumocystis pneumonia (PCP). PCP remains an acquired immunodeficiency disease (AIDS)-defining illness in the era of antiretroviral therapy. In addition, a rise in non-human immunodeficiency virus (HIV)-associated PCP has been observed due to increased usage of immunosuppressive and immunomodulating therapies. With the persistence of HIV-related PCP cases and associated morbidity and mortality, as well as difficult to diagnose non-HIV-related PCP cases, an improvement over current treatment and prevention standards is warranted. Current therapeutic strategies have primarily focused on the administration of trimethoprim-sulfamethoxazole, which is effective at disease prevention. However, current treatments are inadequate for treatment of PCP and prevention of PCP-related death, as evidenced by consistently high mortality rates for those hospitalized with PCP. There are no vaccines in clinical trials for the prevention of PCP, and significant obstacles exist that have slowed development, including host range specificity, and the inability to culture Pneumocystis spp. in vitro. In this review, we overview the immune response to Pneumocystis spp., and discuss current progress on novel vaccines and therapies currently in the preclinical and clinical pipeline.
Collapse
Affiliation(s)
- Aaron D. Gingerich
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (A.D.G.); (K.A.N.)
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Karen A. Norris
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (A.D.G.); (K.A.N.)
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jarrod J. Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; (A.D.G.); (K.A.N.)
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
- Correspondence:
| |
Collapse
|
225
|
Investigating natural antibiofilm components: a new therapeutic perspective against candidal vulvovaginitis. Med Hypotheses 2021; 148:110515. [PMID: 33549963 DOI: 10.1016/j.mehy.2021.110515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 11/23/2022]
Abstract
The rampant emergence of Candida albicans in the vagina and its ability to thrive as a biofilm has outstood the prevalence of candidal vulvovaginitis (CVV), a gender-based fungal infection approximately affecting 75% of the global female population. The biofilm represents a multidimensional microbial population, which often dictates prominent caveats of CVV such as increased fungal virulence, drug resistance and infection relapse/recurrence. Additionally, the conjugated issues of the ineffectiveness of conventional antifungals (azoles), prolonged treatment durations, compromised patient compliance, economic and social burden, exacerbates CVV complications as well. Henceforth, the current hypothesis narrates an investigational proposal for exploration and combination of naturally derived antibiofilm components with luliconazole (imidazole antifungal agent) as a new therapeutic paradigm against CVV. The purported hypothesis unravels a synergistic approach for fabricating Nanostructured Lipid Carriers, NLCs loaded transvaginal gel with dual APIs of natural (antibiofilm) as well as the synthetic (antifungal) origin to target high therapeutic efficacy, delivery, retention, controlled release and bioadhesion in a vaginal milieu. The multipronged effect of antibiofilm and antifungal agents will expectably enhance drug susceptibility thus, maintaining Minimum Inhibitory Concentration (MIC) against cells of C. albicans and targeting its biofilm in planktonic, adherent, and sessile phases. The effective disruption of a biofilm could further lower infection resistance and recurrence as well. In conclusion, the purported hypothesis could speed up the emergence of novel drug combinations and accelerates new product development with solid, synergistic, and complementary activities against C. albicans and its biofilm, making it amenable for generating pre-clinical and clinical results therebycreating a suitableroadmap for commercialization.
Collapse
|
226
|
Chen H, Li H, Duan C, Song C, Peng Z, Li H, Shi W. Reversal of azole resistance in Candida albicans by oridonin. J Glob Antimicrob Resist 2021; 24:296-302. [PMID: 33513441 DOI: 10.1016/j.jgar.2020.10.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/14/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Candida albicans is a yeast that causes fungal infections with high mortality and is typically resistant to azole drugs. To overcome this resistance, we explored the combined use of oridonin (ORI) and three azole drugs, namely fluconazole (FLC), itraconazole (ITR) and voriconazole (VOR). Azole-resistant C. albicans strains were obtained from cancer patients and the reversal of drug resistance in these strains was investigated. METHODS The synergistic antifungal activity of ORI and azole drugs was measured by checkerboard microdilution and time-kill assays. The resistance reversal mechanisms, namely inhibition of drug efflux and induction of apoptosis, were investigated by flow cytometry. Expression levels of the efflux pump-related genesCDR1 and CDR2 were assessed by RT-qPCR. RESULTS The efflux pump inhibition assay with ORI showed that the minimum inhibitory concentrations (MICs) of FLC (128-fold), ITR (64-fold) and VOR (250-fold) decreased significantly. Upregulation of genes encodingCDR1 and CDR2 was confirmed in the resistant strain. The sensitising effect of ORI on FLC in the treatment of C. albicans also included the promotion of apoptosis. CONCLUSION We demonstrated that combining azoles with ORI exerted potent synergism and that ORI could promote sensitisation to azoles in azole-resistantC. albicans. The discovery that ORI can effectively inhibit drug efflux and promote apoptosis may provide new insights and therapeutic strategies to overcome increasing azole resistance in C. albicans.
Collapse
Affiliation(s)
- Haisheng Chen
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, People's Republic of China
| | - Hui Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, People's Republic of China
| | - Cunxian Duan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, People's Republic of China
| | - Chuanjie Song
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, People's Republic of China
| | - Zuoliang Peng
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, People's Republic of China
| | - Hui Li
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, People's Republic of China
| | - Wenna Shi
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, People's Republic of China.
| |
Collapse
|
227
|
Anderson TM, Shammami MA, Taddei SM, Finkel JS. How to Use a Mutant Library to Identify Genes Required for Biofilm Formation in the Pathogenic Fungus Candida albicans. UJEMI+ 2021; 2:1-13. [PMID: 35493534 PMCID: PMC9052792 DOI: 10.14288/ujemi.v2i.193711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
With over 1 billion infections and the causative agents showing critical diseases such as pancreatic cancer, the study of pathogenic fungi has never been more critical. In 2017, the United States spent $7.2 billion on fungal diseases. $4.5 billion was allocated to 75,055 hospitalizations, while $2.6 billion went to 8,993,230 outpatient visits. For Candida infections specifically, the cost was $1.4 billion. Currently, there are few classes of antifungals available, and resistance is growing. The identification of genes required for biofilm formation is essential for new antifungal development. This review details how to identify, verify, and characterize defective biofilm formation mutants in C. albicans. This includes how to run an in vitro biofilm formation assay, how to create clean deletions using the modified CRISPR-Cas9 system, how to assay to identify the potential causes of the defect, and how to create complementation strains to confirm the mutant defect.
Collapse
Affiliation(s)
- Tania M Anderson
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA
| | - Marcelio A Shammami
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA
| | - Steven M Taddei
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA
| | - Jonathan S Finkel
- Department of Biology, College of Engineering and Science, University of Detroit Mercy, USA
| |
Collapse
|
228
|
Sagatova AA. Strategies to Better Target Fungal Squalene Monooxygenase. J Fungi (Basel) 2021; 7:49. [PMID: 33450973 PMCID: PMC7828399 DOI: 10.3390/jof7010049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/21/2023] Open
Abstract
Fungal pathogens present a challenge in medicine and agriculture. They also harm ecosystems and threaten biodiversity. The allylamine class of antimycotics targets the enzyme squalene monooxygenase. This enzyme occupies a key position in the sterol biosynthesis pathway in eukaryotes, catalyzing the rate-limiting reaction by introducing an oxygen atom to the squalene substrate converting it to 2,3-oxidosqualene. Currently, terbinafine-the most widely used allylamine-is mostly used for treating superficial fungal infections. The ability to better target this enzyme will have significant implications for human health in the treatment of fungal infections. The human orthologue can also be targeted for cholesterol-lowering therapeutics and in cancer therapies. This review will focus on the structural basis for improving the current therapeutics for fungal squalene monooxygenase.
Collapse
Affiliation(s)
- Alia A Sagatova
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
229
|
Scorzoni L, Alves de Paula e Silva AC, de Oliveira HC, Tavares dos Santos C, de Lacorte Singulani J, Akemi Assato P, Maria Marcos C, Teodoro Oliveira L, Ferreira Fregonezi N, Rossi DCP, Buffoni Roque da Silva L, Pelleschi Taborda C, Fusco-Almeida AM, Soares Mendes-Giannini MJ. In Vitro and In Vivo Effect of Peptides Derived from 14-3-3 Paracoccidioides spp. Protein. J Fungi (Basel) 2021; 7:jof7010052. [PMID: 33451062 PMCID: PMC7828505 DOI: 10.3390/jof7010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 02/06/2023] Open
Abstract
Background: Paracoccidioidomycosis (PCM) is a chronic disease that causes sequelae and requires prolonged treatment; therefore, new therapeutic approaches are necessary. In view of this, three peptides from Paracoccidioides brasiliensis 14-3-3 protein were selected based on its immunogenicity and therapeutic potential. Methods: The in vitro antifungal activity and cytotoxicity of the 14-3-3 peptides were evaluated. The influence of the peptides in immunological and survival aspects was evaluated in vivo, using Galleria mellonella and the expression of antimicrobial peptide genes in Caenorhabditis elegans. Results: None of the peptides were toxic to HaCaT (skin keratinocyte), MRC-5 (lung fibroblast), and A549 (pneumocyte) cell lines, and only P1 exhibited antifungal activity against Paracoccidioides spp. The peptides could induce an immune response in G. mellonella. Moreover, the peptides caused a delay in the death of Paracoccidioides spp. infected larvae. Regarding C. elegans, the three peptides were able to increase the expression of the antimicrobial peptides. These peptides had essential effects on different aspects of Paracoccidioides spp. infection showing potential for a therapeutic vaccine. Future studies using mammalian methods are necessary to validate our findings.
Collapse
Affiliation(s)
- Liliana Scorzoni
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Ana Carolina Alves de Paula e Silva
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Haroldo Cesar de Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Claudia Tavares dos Santos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Junya de Lacorte Singulani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Patricia Akemi Assato
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Caroline Maria Marcos
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Lariane Teodoro Oliveira
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Nathália Ferreira Fregonezi
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Diego Conrado Pereira Rossi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.C.P.R.); (L.B.R.d.S.); (C.P.T.)
| | - Leandro Buffoni Roque da Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.C.P.R.); (L.B.R.d.S.); (C.P.T.)
| | - Carlos Pelleschi Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; (D.C.P.R.); (L.B.R.d.S.); (C.P.T.)
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
| | - Maria José Soares Mendes-Giannini
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo 14800-903, Brazil; (L.S.); (A.C.A.d.P.eS.); (H.C.d.O.); (C.T.d.S.); (J.d.L.S.); (P.A.A.); (C.M.M.); (L.T.O.); (N.F.F.); (A.M.F.-A.)
- Correspondence:
| |
Collapse
|
230
|
Nguyen S, Truong JQ, Bruning JB. Targeting Unconventional Pathways in Pursuit of Novel Antifungals. Front Mol Biosci 2021; 7:621366. [PMID: 33511160 PMCID: PMC7835888 DOI: 10.3389/fmolb.2020.621366] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/11/2020] [Indexed: 01/31/2023] Open
Abstract
The impact of invasive fungal infections on human health is a serious, but largely overlooked, public health issue. Commonly affecting the immunocompromised community, fungal infections are predominantly caused by species of Candida, Cryptococcus, and Aspergillus. Treatments are reliant on the aggressive use of pre-existing antifungal drug classes that target the fungal cell wall and membrane. Despite their frequent use, these drugs are subject to unfavorable drug-drug interactions, can cause undesirable side-effects and have compromised efficacy due to the emergence of antifungal resistance. Hence, there is a clear need to develop novel classes of antifungal drugs. A promising approach involves exploiting the metabolic needs of fungi by targeted interruption of essential metabolic pathways. This review highlights potential antifungal targets including enolase, a component of the enolase-plasminogen complex, and enzymes from the mannitol biosynthesis and purine nucleotide biosynthesis pathways. There has been increased interest in the enzymes that comprise these particular pathways and further investigation into their merits as antifungal targets and roles in fungal survival and virulence are warranted. Disruption of these vital processes by targeting unconventional pathways with small molecules or antibodies may serve as a promising approach to discovering novel classes of antifungals.
Collapse
Affiliation(s)
- Stephanie Nguyen
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Jia Q Truong
- School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - John B Bruning
- Institute of Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
231
|
Culbertson EM, Culotta VC. Copper in infectious disease: Using both sides of the penny. Semin Cell Dev Biol 2021; 115:19-26. [PMID: 33423931 DOI: 10.1016/j.semcdb.2020.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
The transition metal Cu is an essential micronutrient that serves as a co-factor for numerous enzymes involved in redox and oxygen chemistry. However, Cu is also a potentially toxic metal, especially to unicellular microbes that are in direct contact with their environment. Since 400 BCE, Cu toxicity has been leveraged for its antimicrobial properties and even today, Cu based materials are being explored as effective antimicrobials against human pathogens spanning bacteria, fungi, and viruses, including the SARS-CoV-2 agent of the 2019-2020 pandemic. Given that Cu has the double-edged property of being both highly toxic and an essential micronutrient, it plays an active and complicated role at the host-pathogen interface. Humans have evolved methods of incorporating Cu into innate and adaptive immune processes and both sides of the penny (Cu toxicity and Cu as a nutrient) are employed. Here we review the evolution of Cu in biology and its multi-faceted roles in infectious disease, from the viewpoints of the microbial pathogens as well as the animal hosts they infect.
Collapse
Affiliation(s)
- Edward M Culbertson
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Valeria C Culotta
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
232
|
Mohammadi R, Ranjbar-Mobarake M, Nowroozi J, Badiee P, Mostafavi S. Cross-Sectional Study of Candidemia from Isfahan, Iran: Etiologic Agents, Predisposing Factors, and Antifungal Susceptibility Testing. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2021; 26:107. [PMID: 35126570 PMCID: PMC8765515 DOI: 10.4103/jrms.jrms_156_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/07/2021] [Accepted: 06/25/2021] [Indexed: 11/04/2022]
|
233
|
Garcia-Ceron D, Bleackley MR, Anderson MA. Fungal Extracellular Vesicles in Pathophysiology. Subcell Biochem 2021; 97:151-177. [PMID: 33779917 DOI: 10.1007/978-3-030-67171-6_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fungal pathogens are a concern in medicine and agriculture that has been exacerbated by the emergence of antifungal-resistant varieties that severely threaten human and animal health, as well as food security. This had led to the search for new and sustainable treatments for fungal diseases. Innovative solutions require a deeper understanding of the interactions between fungal pathogens and their hosts, and the key determinants of fungal virulence. Recently, a link has emerged between the release of extracellular vesicles (EVs) and fungal virulence that may contribute to finding new methods for fungal control. Fungal EVs carry pigments, carbohydrates, protein, nucleic acids and other macromolecules with similar functions as those found in EVs from other organisms, however certain fungal features, such as the fungal cell wall, impact EV release and cargo. Fungal EVs modulate immune responses in the host, have a role in cell-cell communication and transport molecules that function in virulence. Understanding the function of fungal EVs will expand our knowledge of host-pathogen interactions and may provide new and specific targets for antifungal drugs and agrichemicals.
Collapse
|
234
|
Gupta P, Pruthi V, Poluri KM. Mechanistic insights into Candida biofilm eradication potential of eucalyptol. J Appl Microbiol 2020; 131:105-123. [PMID: 33226719 DOI: 10.1111/jam.14940] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
AIM Candida-associated fungal infections are prevalent in hospitalized and immune-compromised patients. Their biofilm architecture and high rate of antifungal resistance make treatment challenging. Eucalyptol (EPTL), a monoterpene majorly present in the essential oil of eucalyptus is well known for curing respiratory infections. Hence, the present study investigated the anti-biofilm efficacy of EPTL against the laboratory strains and clinical isolates of Candida to delineate its mode of action. METHODS The effect of EPTL on the viability, biofilm formation, and mature biofilm of Candida strains was studied. Furthermore, its effect on cell cycle arrest, mitochondrial membrane potential (MMP), ROS generation, germ tube formation, ergosterol content and transcriptional expression of selected genes was also investigated. RESULTS EPTL exhibited anti-biofilm activity against mature and developing biofilm of Candida albicans and Candida glabrata along with their clinical isolates. The biochemical components and enzyme activity were differentially modulated in EPTL-treated biofilm extracellular matrix. EPTL generated ROS and arrested cell cycle at the G1 /S phase in both the species, while altered MMP was recorded in C. glabrata. Transcriptional analysis evidenced for differential gene expression of selected ABC transporters, secreted hydrolytic enzymes, and cell wall biogenesis in C. albicans/C. glabrata upon treating with EPTL. CONCLUSION The current data on anti-biofilm activity of EPTL establish its candidacy for drug development or as an adjuvant with existing antifungal formulations. SIGNIFICANCE AND IMPACT OF THE STUDY Present investigation elucidates the mode of action of Eucalyptol as antifungal agent and would stand as a candidate for management of topical fungal infection.
Collapse
Affiliation(s)
- P Gupta
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - V Pruthi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - K M Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.,Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| |
Collapse
|
235
|
Urban K, Chu S, Scheufele C, Giesey RL, Mehrmal S, Uppal P, Delost GR. The global, regional, and national burden of fungal skin diseases in 195 countries and territories: A cross-sectional analysis from the Global Burden of Disease Study 2017. JAAD Int 2020; 2:22-27. [PMID: 34409349 PMCID: PMC8362308 DOI: 10.1016/j.jdin.2020.10.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2020] [Indexed: 10/24/2022] Open
Abstract
Introduction Fungal skin diseases are highly prevalent worldwide, but few existing studies focus on the burden of dermatomycoses. Methods An analysis of fungal skin disease trends in 2017 in 195 countries worldwide was conducted using the Global Burden of Disease Study database, including prevalence rates, age and sex patterns, and fungal burden, using disability-adjusted life years (DALYs). Age-standardized DALYs were also compared to the sociodemographic index values of all the countries in 2017. Results The age-specific fungal skin disease DALYs in 2017 showed a right-skewed distribution, with a peak between 1 and 5 years of age. The world region with the greatest burden of fungal skin disease was sub-Saharan Africa (DALY rate 89.3 per 100,000 males, 78.42 for females), and the individual country with the greatest DALY rate was Mali (122). The Global Burden of Disease super region with the lowest fungal skin disease burden had high incomes (DALY rate 33.12 per 100,000 males, 30.16 for females), which includes southern Latin America, western Europe, high-income North America, Australasia, and high-income southern Pacific. Conclusion Skin mycoses place a substantial burden on patients worldwide. This burden is the greatest in resource-poor countries, tropical regions, and children between 1 and 5 years of age. DALYs can potentially serve as a purposeful measure for directing health policy resources to improve the global impact of fungal skin disease.
Collapse
Affiliation(s)
- Katelyn Urban
- Lake Erie College of Osteopathic Medicine, Greensburg, Pennsylvania
| | - Sherman Chu
- Western University of Health Sciences, College of Osteopathic Medicine of the Pacific-Northwest, Lebanon, Oregon
| | - Christian Scheufele
- Cutaneous oncology fellow, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Rachel L Giesey
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio
| | - Sino Mehrmal
- Department of Internal Medicine, Alameda Health System - Highland Hospital, Oakland, California
| | - Prabhdeep Uppal
- Department of Emergency Medicine, Christiana Care Health System, Newark, Delaware.,Department of Family Medicine, Christiana Care Health System, Newark, Delaware
| | - Gregory R Delost
- Apex Dermatology and Skin Surgery Center, Mayfield Heights, Ohio.,Lake Erie College of Osteopathic Medicine, Erie, Pennsylvania
| |
Collapse
|
236
|
Čmoková A, Kolařík M, Dobiáš R, Hoyer LL, Janouškovcová H, Kano R, Kuklová I, Lysková P, Machová L, Maier T, Mallátová N, Man M, Mencl K, Nenoff P, Peano A, Prausová H, Stubbe D, Uhrlaß S, Větrovský T, Wiegand C, Hubka V. Resolving the taxonomy of emerging zoonotic pathogens in the Trichophyton benhamiae complex. FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00465-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
237
|
Carvalho-Pereira J, Fernandes F, Araújo R, Springer J, Loeffler J, Buitrago MJ, Pais C, Sampaio P. Multiplex PCR Based Strategy for Detection of Fungal Pathogen DNA in Patients with Suspected Invasive Fungal Infections. J Fungi (Basel) 2020; 6:E308. [PMID: 33238439 PMCID: PMC7712097 DOI: 10.3390/jof6040308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
A new and easy polymerase chain reaction (PCR) multiplex strategy, for the identification of the most common fungal species involved in invasive fungal infections (IFI) was developed in this work. Two panels with species-specific markers were designed, the Candida Panel for the identification of Candida species, and the Filamentous Fungi Panel for the identification of Aspergillus species and Rhizopusarrhizus. The method allowed the correct identification of all targeted pathogens using extracted DNA or by colony PCR, showed no cross-reactivity with nontargeted species and allowed identification of different species in mixed infections. Sensitivity reached 10 to 1 pg of DNA and was suitable for clinical samples from sterile sites, with a sensitivity of 89% and specificity of 100%. Overall, the study showed that the new method is suitable for the identification of the ten most important fungal species involved in IFI, not only from positive blood cultures but also from clinical samples from sterile sites. The method provides a unique characteristic, of seeing the peak in the specific region of the panel with the correct fluorescence dye, that aids the ruling out of unspecific amplifications. Furthermore, the panels can be further customized, selecting markers for different species and/or resistance genes.
Collapse
Affiliation(s)
- Joana Carvalho-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710 Braga, Portugal; (J.C.-P.); (F.F.); (C.P.)
| | - Filipa Fernandes
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710 Braga, Portugal; (J.C.-P.); (F.F.); (C.P.)
| | - Ricardo Araújo
- Department Medical Biotechnology, Health Sciences, Flinders University, Adelaide 5042, Australia;
| | - Jan Springer
- Department of Internal Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany; (J.S.); (J.L.)
| | - Juergen Loeffler
- Department of Internal Medicine II, University Hospital of Würzburg, 97080 Würzburg, Germany; (J.S.); (J.L.)
| | - María José Buitrago
- Mycology Reference Laboratory, National Centre of Microbiology, Instituto de Salud Carlos III, 28220 Madrid, Spain;
| | - Célia Pais
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710 Braga, Portugal; (J.C.-P.); (F.F.); (C.P.)
| | - Paula Sampaio
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710 Braga, Portugal; (J.C.-P.); (F.F.); (C.P.)
| |
Collapse
|
238
|
Nanopore Sequencing of the Fungal Intergenic Spacer Sequence as a Potential Rapid Diagnostic Assay. J Clin Microbiol 2020; 58:JCM.01972-20. [PMID: 32967904 DOI: 10.1128/jcm.01972-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/12/2020] [Indexed: 12/13/2022] Open
Abstract
Fungal infections are being caused by a broadening spectrum of fungi, yet in many cases, identification to the species level is required for proper antifungal selection. We investigated the fungal intergenic spacer (IGS) sequence in combination with nanopore sequencing for fungal identification. We sequenced isolates from two Cryptococcus species complexes, C. gattii and C. neoformans, which are the main pathogenic members of this genus, using the Oxford Nanopore Technologies MinION device and Sanger sequencing. There is enough variation within the two complexes to argue for further resolution into separate species, which we wanted to see if nanopore sequencing could detect. Using the R9.4.1 flow cell, IGS sequence identities averaged 99.57% compared to Sanger sequences of the same region. When the newer R10.3 flow cell was used, accuracy increased to 99.83% identity compared to the same Sanger sequences. Nanopore sequencing errors were predominantly in regions of homopolymers, with G homopolymers displaying the largest number of errors and C homopolymers displaying the least. Phylogenetic analysis of the nanopore- and Sanger-derived sequences resulted in indistinguishable trees. Comparison of average percent identities between the C. gattii and C. neoformans species complexes resulted in only a 74 to 77% identity between the two complexes. Sequencing using the nanopore platform could be completed in less than an hour, and samples could be multiplexed in groups as large as 24 sequences in a single run. These results suggest that sequencing the IGS region using nanopore sequencing could be a potential new molecular diagnostic strategy.
Collapse
|
239
|
Sobouti B, Dahmardehei M, Fallah S, Karrobi M, Ghavami Y, Vaghardoost R. Candidemia in pediatric burn patients: Risk factors and outcomes in a retrospective cohort study. Curr Med Mycol 2020; 6:33-41. [PMID: 33834141 PMCID: PMC8018818 DOI: 10.18502/cmm.6.3.4663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Background and Purpose : Despite advances in burn care and management, infections are still a major contributor to morbidity and mortality rates in patients with burn injuries. Regarding this, the present study was conducted to investigate the prevalence and importance of candidemia in pediatric burn patients. Materials and Methods: Blood samples were collected from the patients and cultured in an automated blood culture system. Candida species were identified using specific culture media. The relationship between candidemia and possible risk factors was evaluated and compared to a control group. Results: A total of 71 patients with the mean age of 4.52±3.63 years were included in the study. Blood cultures showed candidemia in 19 (27%) patients. Based on the results,
C. albicans was the most common fungus among patients with and without candidemia. The results of statistical analysis also showed that
candidemia was significantly correlated with total body surface area (TBSA), mechanical ventilation, duration of total parenteral
nutrition, length of intensive care unit (ICU) stay, presence of neutropenia, and R-Baux score (all P≤0.001). In this regard, TBSA, length of ICU stay, R-Baux score, and Candida score were identified as the determinant factors for mortality due to candidemia. Conclusion: Candidemia increases the mortality and morbidity rates associated with burn injuries. Prompt diagnostic and prevention measures can reduce the unfortunate outcomes via controlling the possible risk factors.
Collapse
Affiliation(s)
- Behnam Sobouti
- Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mostafa Dahmardehei
- Department of Plastic Surgery, Burn Research Center, Motahari Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Fallah
- Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Majid Karrobi
- Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Ghavami
- Department of Plastic Surgery, Burn Research Center, Motahari Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Vaghardoost
- Department of Plastic Surgery, Burn Research Center, Motahari Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
240
|
Pennerman KK, Yin G, Glenn AE, Bennett JW. Identifying candidate Aspergillus pathogenicity factors by annotation frequency. BMC Microbiol 2020; 20:342. [PMID: 33176679 PMCID: PMC7661267 DOI: 10.1186/s12866-020-02031-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/02/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Members of the genus Aspergillus display a variety of lifestyles, ranging from saprobic to pathogenic on plants and/or animals. Increased genome sequencing of economically important members of the genus permits effective use of "-omics" comparisons between closely related species and strains to identify candidate genes that may contribute to phenotypes of interest, especially relating to pathogenicity. Protein-coding genes were predicted from 216 genomes of 12 Aspergillus species, and the frequencies of various structural aspects (exon count and length, intron count and length, GC content, and codon usage) and functional annotations (InterPro, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes terms) were compared. RESULTS Using principal component analyses, the three sets of functional annotations for each strain were clustered by species. The species clusters appeared to separate by pathogenicity on plants along the first dimensions, which accounted for over 20% of the variance. More annotations for genes encoding pectinases and secondary metabolite biosynthetic enzymes were assigned to phytopathogenic strains from species such as Aspergillus flavus. In contrast, Aspergillus fumigatus strains, which are pathogenic to animals but not plants, were assigned relatively more terms related to phosphate transferases, and carbohydrate and amino-sugar metabolism. Analyses of publicly available RNA-Seq data indicated that one A. fumigatus protein among 17 amino-sugar processing candidates, a hexokinase, was up-regulated during co-culturing with human immune system cells. CONCLUSION Genes encoding hexokinases and other proteins of interest may be subject to future manipulations to further refine understanding of Aspergillus pathogenicity factors.
Collapse
Affiliation(s)
- Kayla K Pennerman
- United States Department of Agriculture, Toxicology and Mycotoxin Research Unit, Athens, GA, 30605, USA.
| | - Guohua Yin
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Anthony E Glenn
- United States Department of Agriculture, Toxicology and Mycotoxin Research Unit, Athens, GA, 30605, USA
| | - Joan W Bennett
- Department of Plant Biology, Rutgers University, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| |
Collapse
|
241
|
Soltani S, Akhbari K, White J. Sonochemical Synthesis, Crystal Structure and Antimicrobial Property of One‐dimensional Dinuclear Coordination Polymer. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sajjad Soltani
- School of Chemistry College of Science University of Tehran Tehran Iran
| | - Kamran Akhbari
- School of Chemistry College of Science University of Tehran Tehran Iran
| | - Jonathan White
- School of Chemistry and Bio21 Institute The University of Melbourne 3010 VIC Australia
| |
Collapse
|
242
|
Basso V, Tran DQ, Ouellette AJ, Selsted ME. Host Defense Peptides as Templates for Antifungal Drug Development. J Fungi (Basel) 2020; 6:jof6040241. [PMID: 33113935 PMCID: PMC7711597 DOI: 10.3390/jof6040241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Current treatment for invasive fungal diseases is limited to three classes of antifungal drugs: azoles, polyenes, and echinocandins. The most recently introduced antifungal class, the echinocandins, was first approved nearly 30 years ago. The limited antifungal drug portfolio is rapidly losing its clinical utility due to the inexorable rise in the incidence of invasive fungal infections and the emergence of multidrug resistant (MDR) fungal pathogens. New antifungal therapeutic agents and novel approaches are desperately needed. Here, we detail attempts to exploit the antifungal and immunoregulatory properties of host defense peptides (HDPs) in the design and evaluation of new antifungal therapeutics and discuss historical limitations and recent advances in this quest.
Collapse
Affiliation(s)
- Virginia Basso
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (V.B.); (D.Q.T.); (A.J.O.)
| | - Dat Q. Tran
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (V.B.); (D.Q.T.); (A.J.O.)
- Oryn Therapeutics, Vacaville, CA 95688, USA
| | - André J. Ouellette
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (V.B.); (D.Q.T.); (A.J.O.)
- Norris Comprehensive Cancer Center of the University of Southern California, Los Angeles, CA 90089, USA
| | - Michael E. Selsted
- Department of Pathology and Laboratory Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA; (V.B.); (D.Q.T.); (A.J.O.)
- Oryn Therapeutics, Vacaville, CA 95688, USA
- Norris Comprehensive Cancer Center of the University of Southern California, Los Angeles, CA 90089, USA
- Correspondence:
| |
Collapse
|
243
|
Millet N, Solis NV, Swidergall M. Mucosal IgA Prevents Commensal Candida albicans Dysbiosis in the Oral Cavity. Front Immunol 2020; 11:555363. [PMID: 33193324 PMCID: PMC7642201 DOI: 10.3389/fimmu.2020.555363] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
The fungus Candida albicans colonizes the oral mucosal surface of 30–70% of healthy individuals. Due to local or systemic immunosuppression, this commensal fungus is able to proliferate resulting in oral disease, called oropharyngeal candidiasis (OPC). However, in healthy individuals C. albicans causes no harm. Unlike humans mice do not host C. albicans in their mycobiome. Thus, oral fungal challenge generates an acute immune response in a naive host. Therefore, we utilized C. albicans clinical isolates which are able to persist in the oral cavity without causing disease to analyze adaptive responses to oral fungal commensalism. We performed RNA sequencing to determine the transcriptional host response landscape during C. albicans colonization. Pathway analysis revealed an upregulation of adaptive host responses due to C. albicans oral persistence, including the upregulation of the immune network for IgA production. Fungal colonization increased cross-specific IgA levels in the saliva and the tongue, and IgA+ cells migrated to foci of fungal colonization. Binding of IgA prevented fungal epithelial adhesion and invasion resulting in a dampened proinflammatory epithelial response. Besides CD19+ CD138− B cells, plasmablasts, and plasma cells were enriched in the tongue of mice colonized with C. albicans suggesting a potential role of B lymphocytes during oral fungal colonization. B cell deficiency increased the oral fungal load without causing severe OPC. Thus, in the oral cavity B lymphocytes contribute to control commensal C. albicans carriage by secreting IgA at foci of colonization thereby preventing fungal dysbiosis.
Collapse
Affiliation(s)
- Nicolas Millet
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States.,Institute for Infection and Immunity, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Norma V Solis
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States.,Institute for Infection and Immunity, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States.,Institute for Infection and Immunity, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
244
|
Steenwyk JL, Mead ME, Knowles SL, Raja HA, Roberts CD, Bader O, Houbraken J, Goldman GH, Oberlies NH, Rokas A. Variation Among Biosynthetic Gene Clusters, Secondary Metabolite Profiles, and Cards of Virulence Across Aspergillus Species. Genetics 2020; 216:481-497. [PMID: 32817009 PMCID: PMC7536862 DOI: 10.1534/genetics.120.303549] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Aspergillus fumigatus is a major human pathogen. In contrast, Aspergillus fischeri and the recently described Aspergillus oerlinghausenensis, the two species most closely related to A. fumigatus, are not known to be pathogenic. Some of the genetic determinants of virulence (or "cards of virulence") that A. fumigatus possesses are secondary metabolites that impair the host immune system, protect from host immune cell attacks, or acquire key nutrients. To examine whether secondary metabolism-associated cards of virulence vary between these species, we conducted extensive genomic and secondary metabolite profiling analyses of multiple A. fumigatus, one A. oerlinghausenensis, and multiple A. fischeri strains. We identified two cards of virulence (gliotoxin and fumitremorgin) shared by all three species and three cards of virulence (trypacidin, pseurotin, and fumagillin) that are variable. For example, we found that all species and strains examined biosynthesized gliotoxin, which is known to contribute to virulence, consistent with the conservation of the gliotoxin biosynthetic gene cluster (BGC) across genomes. For other secondary metabolites, such as fumitremorgin, a modulator of host biology, we found that all species produced the metabolite but that there was strain heterogeneity in its production within species. Finally, species differed in their biosynthesis of fumagillin and pseurotin, both contributors to host tissue damage during invasive aspergillosis. A. fumigatus biosynthesized fumagillin and pseurotin, while A. oerlinghausenensis biosynthesized fumagillin and A. fischeri biosynthesized neither. These biochemical differences were reflected in sequence divergence of the intertwined fumagillin/pseurotin BGCs across genomes. These results delineate the similarities and differences in secondary metabolism-associated cards of virulence between a major fungal pathogen and its nonpathogenic closest relatives, shedding light onto the genetic and phenotypic changes associated with the evolution of fungal pathogenicity.
Collapse
Affiliation(s)
- Jacob L Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - Matthew E Mead
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| | - Sonja L Knowles
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Huzefa A Raja
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Christopher D Roberts
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, 37075, Germany
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity Institute, 3584 CT Utrecht, The Netherlands
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14040-900 Brazil
| | - Nicholas H Oberlies
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina 27402
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235
| |
Collapse
|
245
|
Sphaerostilbellins, New Antimicrobial Aminolipopeptide Peptaibiotics from Sphaerostilbella toxica. Biomolecules 2020; 10:biom10101371. [PMID: 32993102 PMCID: PMC7600149 DOI: 10.3390/biom10101371] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/18/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Sphaerostilbella toxica is a mycoparasitic fungus that can be found parasitizing wood-decay basidiomycetes in the southern USA. Organic solvent extracts of fermented strains of S. toxica exhibited potent antimicrobial activity, including potent growth inhibition of human pathogenic yeasts Candida albicans and Cryptococcus neoformans, the respiratory pathogenic fungus Aspergillus fumigatus, and the Gram-positive bacterium Staphylococcus aureus. Bioassay-guided separations led to the purification and structure elucidation of new peptaibiotics designated as sphaerostilbellins A and B. Their structures were established mainly by analysis of NMR and HRMS data, verification of amino acid composition by Marfey's method, and by comparison with published data of known compounds. They incorporate intriguing structural features, including an N-terminal 2-methyl-3-oxo-tetradecanoyl (MOTDA) residue and a C-terminal putrescine residue. The minimal inhibitory concentrations for sphaerostilbellins A and B were measured as 2 μM each for C. neoformans, 1 μM each for A. fumigatus, and 4 and 2 μM, respectively, for C. albicans. Murine macrophage cells were unaffected at these concentrations.
Collapse
|
246
|
Benedict K, Molinari NAM, Jackson BR. Public Awareness of Invasive Fungal Diseases - United States, 2019. MMWR-MORBIDITY AND MORTALITY WEEKLY REPORT 2020; 69:1343-1346. [PMID: 32970658 PMCID: PMC7727495 DOI: 10.15585/mmwr.mm6938a2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Fungal diseases range from minor skin and mucous membrane infections to life-threatening disseminated disease. The estimated yearly direct health care costs of fungal diseases exceed $7.2 billion (1). These diseases are likely widely underdiagnosed (1,2), and improved recognition among health care providers and members of the public is essential to reduce delays in diagnoses and treatment. However, information about public awareness of fungal diseases is limited. To guide public health educational efforts, a nationally representative online survey was conducted to assess whether participants had ever heard of six invasive fungal diseases. Awareness was low and varied by disease, from 4.1% for blastomycosis to 24.6% for candidiasis. More than two thirds (68.9%) of respondents had never heard of any of the diseases. Female sex, higher education, and increased number of prescription medications were associated with awareness. These findings can serve as a baseline to compare with future surveys; they also indicate that continued strategies to increase public awareness about fungal diseases are needed.
Collapse
Affiliation(s)
- Kaitlin Benedict
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC
| | - Noelle Angelique M Molinari
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC
| | - Brendan R Jackson
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, CDC
| |
Collapse
|
247
|
First Report of Candidemia Clonal Outbreak Caused by Emerging Fluconazole-Resistant Candida parapsilosis Isolates Harboring Y132F and/or Y132F+K143R in Turkey. Antimicrob Agents Chemother 2020; 64:AAC.01001-20. [PMID: 32690638 DOI: 10.1128/aac.01001-20] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Clonal outbreaks of fluconazole-resistant (FLZR) Candida parapsilosis isolates have been reported in several countries. Despite its being the second leading cause of candidemia, the azole resistance mechanisms and the clonal expansion of FLZR C. parapsilosis blood isolates have not been reported in Turkey. In this study, we consecutively collected C. parapsilosis blood isolates (n = 225) from the fifth largest hospital in Turkey (2007 to 2019), assessed their azole susceptibility pattern using CLSI M27-A3/S4, and sequenced ERG11 for all and MRR1, TAC1, and UPC2 for a selected number of C. parapsilosis isolates. The typing resolution of two widely used techniques, amplified fragment length polymorphism typing (AFLP) and microsatellite typing (MST), and the biofilm production of FLZR isolates with and without Y132F were compared. Approximately 27% of isolates were FLZR (60/225), among which 90% (54/60) harbored known mutations in Erg11, including Y132F (24/60) and Y132F+K143R (19/60). Several mutations specific to FLZR isolates were found in MRR1, TAC1, and UPC2 AFLP grouped isolates into two clusters, while MST revealed several clusters. The majority of Y132F/Y132F+K143R isolates grouped in clonal clusters, which significantly expanded throughout 2007 to 2019 in neonatal wards. Candida parapsilosis isolates carrying Y132F were associated with significantly higher mortality and less biofilm production than other FLZR isolates. Collectively, we documented the first outbreak of FLZR C. parapsilosis blood isolates in Turkey. The MRR1, TAC1, and UPC2 mutations exclusively found in FLZR isolates establishes a basis for future studies, which will potentially broaden our knowledge of FLZR mechanisms in C. parapsilosis MST should be a preferred method for clonal analysis of C. parapsilosis isolates in outbreak scenarios.
Collapse
|
248
|
Kischkel B, Rossi SA, Santos SR, Nosanchuk JD, Travassos LR, Taborda CP. Therapies and Vaccines Based on Nanoparticles for the Treatment of Systemic Fungal Infections. Front Cell Infect Microbiol 2020; 10:463. [PMID: 33014889 PMCID: PMC7502903 DOI: 10.3389/fcimb.2020.00463] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment modalities for systemic mycoses are still limited. Currently, the main antifungal therapeutics include polyenes, azoles, and echinocandins. However, even in the setting of appropriate administration of antifungals, mortality rates remain unacceptably high. Moreover, antifungal therapy is expensive, treatment periods can range from weeks to years, and toxicity is also a serious concern. In recent years, the increased number of immunocompromised individuals has contributed to the high global incidence of systemic fungal infections. Given the high morbidity and mortality rates, the complexity of treatment strategies, drug toxicity, and the worldwide burden of disease, there is a need for new and efficient therapeutic means to combat invasive mycoses. One promising avenue that is actively being pursued is nanotechnology, to develop new antifungal therapies and efficient vaccines, since it allows for a targeted delivery of drugs and antigens, which can reduce toxicity and treatment costs. The goal of this review is to discuss studies using nanoparticles to develop new therapeutic options, including vaccination methods, to combat systemic mycoses caused by Candida sp., Cryptococcus sp., Paracoccidioides sp., Histoplasma sp., Coccidioides sp., and Aspergillus sp., in addition to providing important information on the use of different types of nanoparticles, nanocarriers and their corresponding mechanisms of action.
Collapse
Affiliation(s)
- Brenda Kischkel
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Suélen A Rossi
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Samuel R Santos
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine [Division of Infectious Diseases], Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Laboratory of Medical Mycology-Institute of Tropical Medicine of São Paulo/LIM53/Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
249
|
Valle Arevalo A, Nobile CJ. Interactions of microorganisms with host mucins: a focus on Candida albicans. FEMS Microbiol Rev 2020; 44:645-654. [PMID: 32627827 PMCID: PMC7476774 DOI: 10.1093/femsre/fuaa027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/02/2020] [Indexed: 02/06/2023] Open
Abstract
Mucus is an important host innate defense factor that lines most epithelial cell layers of the body and provides crucial physical and biological protection against pathogenic microorganisms. Mucins are the main glycoproteins of mucus that are responsible for interacting with microorganisms and are critical for the antimicrobial properties of mucus. The mechanisms by which microorganisms interact with mucins are poorly understood, especially in terms of fungi, and these interactions are continually evolving. Work in bacterial pathogens has shown that mucins inhibit bacterial virulence traits, including quorum sensing, toxin secretion and biofilm formation. Among the fungal clade, the common opportunistic human fungal pathogen and commensal Candida albicans engages in constant battle with the host innate immune system. This battle creates strong selective pressures for C. albicans to evolve in response to the host. Recent work in C. albicans found that mucins inhibit specific virulence traits, such as surface adherence, filamentation, biofilm formation and the production of secreted proteases. Here we review the current knowledge of microbial interactions with mucins, with a special emphasis on the interactions between C. albicans and mucins.
Collapse
Affiliation(s)
- Ashley Valle Arevalo
- Department of Molecular and Cell Biology, University of California – Merced, 5200 North Lake Rd., Merced, CA 95343, USA
- Quantitative and Systems Biology Graduate Program, University of California – Merced, 5200 North Lake Rd., Merced, CA 95343, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California – Merced, 5200 North Lake Rd., Merced, CA 95343, USA
| |
Collapse
|
250
|
Perlatti B, Nichols CB, Lan N, Wiemann P, Harvey CJB, Alspaugh JA, Bills GF. Identification of the Antifungal Metabolite Chaetoglobosin P From Discosia rubi Using a Cryptococcus neoformans Inhibition Assay: Insights Into Mode of Action and Biosynthesis. Front Microbiol 2020; 11:1766. [PMID: 32849391 PMCID: PMC7399079 DOI: 10.3389/fmicb.2020.01766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/06/2020] [Indexed: 01/11/2023] Open
Abstract
Cryptococcus neoformans is an important human pathogen with limited options for treatments. We have interrogated extracts from fungal fermentations to find Cryptococcus-inhibiting natural products using assays for growth inhibition, differential thermosensitivity, and synergy with existing antifungal drugs. Extracts from fermentations of strains of Discosia rubi from eastern Texas showed anticryptococcal bioactivity with preferential activity in agar zone of inhibition assays against C. neoformans at 37°C versus 25°C. Assay-guided fractionation led to the purification and identification of chaetoglobosin P as the active component of these extracts. Genome sequencing of these strains revealed a biosynthetic gene cluster consistent with chaetoglobosin biosynthesis and β-methylation of the tryptophan residue. Proximity of genes of the actin-binding protein twinfilin-1 to the chaetoglobosin P and K gene clusters suggested a possible self-resistance mechanism involving twinfilin-1 which is consistent with the predicted mechanism of action involving interference with the polymerization of the capping process of filamentous actin. A C. neoformans mutant lacking twinfilin-1 was hypersensitive to chaetoglobosin P. Chaetoglobosins also potentiated the effects of amphotericin B and caspofungin on C. neoformans.
Collapse
Affiliation(s)
- Bruno Perlatti
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, Untied States
| | - Connie B Nichols
- Departments of Medicine and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Nan Lan
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, Untied States
| | | | | | - J Andrew Alspaugh
- Departments of Medicine and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, Untied States
| |
Collapse
|