201
|
ALS-Related Mutant SOD1 Aggregates Interfere with Mitophagy by Sequestering the Autophagy Receptor Optineurin. Int J Mol Sci 2020; 21:ijms21207525. [PMID: 33065963 PMCID: PMC7590160 DOI: 10.3390/ijms21207525] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive demise of motor neurons. One of the causes of familial ALS is the mutation of the gene encoding superoxide dismutase 1 (SOD1), which leads to abnormal protein aggregates. How SOD1 aggregation drives ALS is still poorly understood. Recently, ALS pathogenesis has been functionally implicated in mitophagy, specifically the clearance of damaged mitochondria. Here, to understand this mechanism, we investigated the relationship between the mitophagy receptor optineurin and SOD1 aggregates. We found that mutant SOD1 (mSOD1) proteins associate with and then sequester optineurin, which is required to form the mitophagosomes, to aggregates in N2a cells. Optineurin recruitment into mSOD1 aggregates resulted in a reduced mitophagy flux. Furthermore, we observed that an exogenous augmentation of optineurin alleviated the cellular cytotoxicity induced by mSOD1. Taken together, these studies demonstrate that ALS-linked mutations in SOD1 interfere with the mitophagy process through optineurin sequestration, suggesting that the accumulation of damaged mitochondria may play a crucial role in the pathophysiological mechanisms contributing to ALS.
Collapse
|
202
|
Stem cell plasticity and regenerative potential regulation through Ca 2+-mediated mitochondrial nuclear crosstalk. Mitochondrion 2020; 56:1-14. [PMID: 33059088 DOI: 10.1016/j.mito.2020.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The multi-lineage differentiation potential is one of the prominent mechanisms through which stem cells can repair damaged tissues. The regenerative potential of stem cells is the manifestation of several changes at the structural and molecular levels in stem cells that are regulated through intricate mitochondrial-nuclear interactions maintained by Ca2+ ion signaling. Despite the exhilarating evidences strengthening the versatile and indispensible role of Ca2+ in regulating mitochondrial-nuclear interactions, the extensive details of signaling mechanisms remains largely unexplored. In this review we have discussed the effect of Ca2+ ion mediated mitochondrial-nuclear interactions participating in stem plasticity and its regenerative potential.
Collapse
|
203
|
Lu J, Li Y, Mollinari C, Garaci E, Merlo D, Pei G. Amyloid-β Oligomers-induced Mitochondrial DNA Repair Impairment Contributes to Altered Human Neural Stem Cell Differentiation. Curr Alzheimer Res 2020; 16:934-949. [PMID: 31642778 DOI: 10.2174/1567205016666191023104036] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/25/2019] [Accepted: 09/20/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Amyloid-β42 oligomers (Aβ42O), the proximate effectors of neurotoxicity observed in Alzheimer's disease (AD), can induce mitochondrial oxidative stress and impair mitochondrial function besides causing mitochondrial DNA (mtDNA) damage. Aβ42O also regulate the proliferative and differentiative properties of stem cells. OBJECTIVE We aimed to study whether Aβ42O-induced mtDNA damage is involved in the regulation of stem cell differentiation. METHOD Human iPSCs-derived neural stem cell (NSC) was applied to investigate the effect of Aβ42O on reactive oxygen species (ROS) production and DNA damage using mitoSOX staining and long-range PCR lesion assay, respectively. mtDNA repair activity was measured by non-homologous end joining (NHEJ) in vitro assay using mitochondria isolates and the expression and localization of NHEJ components were determined by Western blot and immunofluorescence assay. The expressions of Tuj-1 and GFAP, detected by immunofluorescence and qPCR, respectively, were examined as an index of neurons and astrocytes production. RESULTS We show that in NSC Aβ42O treatment induces ROS production and mtDNA damage and impairs DNA end joining activity. NHEJ components, such as Ku70/80, DNA-PKcs, and XRCC4, are localized in mitochondria and silencing of XRCC4 significantly exacerbates the effect of Aβ42O on mtDNA integrity. On the contrary, pre-treatment with Phytic Acid (IP6), which specifically stimulates DNA-PK-dependent end-joining, inhibits Aβ42O-induced mtDNA damage and neuronal differentiation alteration. CONCLUSION Aβ42O-induced mtDNA repair impairment may change cell fate thus shifting human NSC differentiation toward an astrocytic lineage. Repair stimulation counteracts Aβ42O neurotoxicity, suggesting mtDNA repair pathway as a potential target for the treatment of neurodegenerative disorders like AD.
Collapse
Affiliation(s)
- Jing Lu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yi Li
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Cristiana Mollinari
- Department of Neuroscience, Istituto Superiore di Sanita, Rome, Italy.,Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Enrico Garaci
- IRCCS San Raffaele Pisana, Via di Val Cannuta 247, 00166 Rome, Italy.,Telematic University San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy
| | - Daniela Merlo
- Department of Neuroscience, Istituto Superiore di Sanita, Rome, Italy
| | - Gang Pei
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.,Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
204
|
Wong KY, Roy J, Fung ML, Heng BC, Zhang C, Lim LW. Relationships between Mitochondrial Dysfunction and Neurotransmission Failure in Alzheimer's Disease. Aging Dis 2020; 11:1291-1316. [PMID: 33014538 PMCID: PMC7505271 DOI: 10.14336/ad.2019.1125] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Besides extracellular deposition of amyloid beta and formation of phosphorylated tau in the brains of patients with Alzheimer's disease (AD), the pathogenesis of AD is also thought to involve mitochondrial dysfunctions and altered neurotransmission systems. However, none of these components can describe the diverse cognitive, behavioural, and psychiatric symptoms of AD without the pathologies interacting with one another. The purpose of this review is to understand the relationships between mitochondrial and neurotransmission dysfunctions in terms of (1) how mitochondrial alterations affect cholinergic and monoaminergic systems via disruption of energy metabolism, oxidative stress, and apoptosis; and (2) how different neurotransmission systems drive mitochondrial dysfunction via increasing amyloid beta internalisation, oxidative stress, disruption of mitochondrial permeabilisation, and mitochondrial trafficking. All these interactions are separately discussed in terms of neurotransmission systems. The association of mitochondrial dysfunctions with alterations in dopamine, norepinephrine, and histamine is the prospective goal in this research field. By unfolding the complex interactions surrounding mitochondrial dysfunction in AD, we can better develop potential treatments to delay, prevent, or cure this devastating disease.
Collapse
Affiliation(s)
- Kan Yin Wong
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Jaydeep Roy
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Man Lung Fung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Boon Chin Heng
- Peking University School of Stomatology, Beijing, China.
| | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China.
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
205
|
Lamtai M, Zghari O, Ouakki S, Marmouzi I, Mesfioui A, El Hessni A, Ouichou A. Chronic copper exposure leads to hippocampus oxidative stress and impaired learning and memory in male and female rats. Toxicol Res 2020; 36:359-366. [PMID: 33005595 PMCID: PMC7494722 DOI: 10.1007/s43188-020-00043-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/18/2020] [Accepted: 02/18/2020] [Indexed: 01/12/2023] Open
Abstract
Environmental and occupational exposures to copper (Cu) play a pivotal role in the etiology of some neurological diseases and reduced cognitive functions. However, the precise mechanisms of its effects on cognitive function have not been yet thoroughly established. In our study, we aimed to investigate the behavior and neurochemical alterations in hippocampus of male and female rats, chronically exposed to copper chloride (CuCl2) and the possible involvement of oxidative stress. Twenty-four rats, for each gender, were divided into control and three test groups (n = 6), and were injected intraperitoneally with saline (0.9% NaCl) or CuCl2 (0.25 mg/kg, 0.5 mg/kg and 1 mg/kg) for 8 weeks. After the treatment period, Y-maze test was used for the evaluation of spatial working memory and the Morris Water Maze (MWM) to test the spatial learning and memory. Biochemical determination of oxidative stress levels in hippocampus was performed. The main results of the present work are working memory impairment in spatial Y-maze which induced by higher Cu intake (1 mg/kg) in male and female rats. Also, In the MWM test, the spatial learning and memory were significantly impaired in rats treated with Cu at dose of 1 mg/kg. Additionally, markers of oxidative stress such as catalase, superoxide dismutase, lipid peroxidation products and nitric oxide levels were significantly altered following Cu treatments. These data propose that compromised behavior following Cu exposure is associated with increase in oxidative stress.
Collapse
Affiliation(s)
- Mouloud Lamtai
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Oussama Zghari
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Sihame Ouakki
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Ilias Marmouzi
- Laboratoire de Pharmacologie et Toxicologie, équipe de Pharmacocinétique, Faculté de Médicine et Pharmacie, University Mohammed V in Rabat, Rabat Instituts, Rabat, Morocco
| | - Abdelhalem Mesfioui
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Aboubaker El Hessni
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| | - Ali Ouichou
- Laboratory of Genetics, Neuroendocrinology and Biotechnology, Faculty of Science, Ibn Tofail University, BP 133, Kénitra, 14000 Morocco
| |
Collapse
|
206
|
Xu C, Xiao Z, Wu H, Zhou G, He D, Chang Y, Li Y, Wang G, Xie M. BDMC protects AD in vitro via AMPK and SIRT1. Transl Neurosci 2020; 11:319-327. [PMID: 33335771 PMCID: PMC7712110 DOI: 10.1515/tnsci-2020-0140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023] Open
Abstract
Background Alzheimer’s disease (AD) is a common neurodegenerative disorder without any satisfactory therapeutic approaches. AD is mainly characterized by the deposition of β-amyloid protein (Aβ) and extensive neuronal cell death. Curcumin, with anti-oxidative stress (OS) and cell apoptosis properties, plays essential roles in AD. However, whether bisdemethoxycurcumin (BDMC), a derivative of curcumin, can exert a neuroprotective effect in AD remains to be elucidated. Methods In this study, SK-N-SH cells were used to establish an in vitro model to investigate the effects of BDMC on the Aβ1–42-induced neurotoxicity. SK-N-SH cells were pretreated with BDMC and with or without compound C and EX527 for 30 min after co-incubation with rotenone for 24 h. Subsequently, western blotting, cell viability assay and SOD and GSH activity measurement were performed. Results BDMC increased the cell survival, anti-OS ability, AMPK phosphorylation levels and SIRT1 in SK-N-SH cells treated with Aβ1–42. However, after treatment with compound C, an AMPK inhibitor, and EX527, an SIRT1inhibitor, the neuroprotective roles of BDMC on SK-N-SH cells treated with Aβ1–42 were inhibited. Conclusion These results suggest that BDMC exerts a neuroprotective role on SK-N-SH cells in vitro via AMPK/SIRT1 signaling, laying the foundation for the application of BDMC in the treatment of neurodegenerative diseases related to AMPK/SIRT1 signaling.
Collapse
Affiliation(s)
- Chenlin Xu
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China.,Xiangxi Autonomous Prefecture People's Hospital, Jishou, Hunan 416000, People's Republic of China
| | - Zijian Xiao
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Heng Wu
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Guijuan Zhou
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Duanqun He
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yunqian Chang
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Yihui Li
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| | - Gang Wang
- Department of Rehabilitation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, People's Republic of China
| | - Ming Xie
- The First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, People's Republic of China
| |
Collapse
|
207
|
Abdullah A, Mohd Murshid N, Makpol S. Antioxidant Modulation of mTOR and Sirtuin Pathways in Age-Related Neurodegenerative Diseases. Mol Neurobiol 2020; 57:5193-5207. [PMID: 32865663 DOI: 10.1007/s12035-020-02083-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
In the human body, cell division and metabolism are expected to transpire uneventfully for approximately 25 years. Then, secondary metabolism and cell damage products accumulate, and ageing phenotypes are acquired, causing the progression of disease. Among these age-related diseases, neurodegenerative diseases have attracted considerable attention because of their irreversibility, the absence of effective treatment and their relationship with social and economic pressures. Mechanistic (formerly mammalian) target of rapamycin (mTOR), sirtuin (SIRT) and insulin/insulin growth factor 1 (IGF1) signalling pathways are among the most important pathways in ageing-associated conditions, such as neurodegeneration. These longevity-related pathways are associated with a diversity of various processes, including metabolism, cognition, stress reaction and brain plasticity. In this review, we discuss the roles of sirtuin and mTOR in ageing and neurodegeneration, with an emphasis on their regulation of autophagy, apoptosis and mitochondrial energy metabolism. The intervention of neurodegeneration using potential antioxidants, including vitamins, phytochemicals, resveratrol, herbals, curcumin, coenzyme Q10 and minerals, specifically aimed at retaining mitochondrial function in the treatment of Alzheimer's disease, Parkinson's disease and Huntington's disease is highlighted.
Collapse
Affiliation(s)
- Asmaa Abdullah
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Level 17, Preclinical Building, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Nuraqila Mohd Murshid
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Level 17, Preclinical Building, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Level 17, Preclinical Building, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
208
|
Liao Y, Dong Y, Cheng J. The Molecular Determinants of Mitochondrial Membrane Contact With ER, Lysosomes and Peroxisomes in Neuronal Physiology and Pathology. Front Cell Neurosci 2020; 14:194. [PMID: 32848610 PMCID: PMC7427582 DOI: 10.3389/fncel.2020.00194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 06/05/2020] [Indexed: 11/24/2022] Open
Abstract
Membrane tethering is an important communication method for membrane-packaged organelles. Mitochondria are organelles with a bilayer membrane, and the membrane contact between mitochondria and other organelles is indispensable for maintaining cellular homeostasis. Increased levels of molecular determinants that mediate the membrane contact between mitochondria and other organelles, and their functions, have been revealed in recent years. In this review article, we aim to summarize the findings on the tethering between mitochondria and other organelles in physiological or pathological conditions, and discuss their roles in cellular homeostasis, neural activity, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yajin Liao
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, China
| | - Yuan Dong
- Department of Biochemistry, Medical College, Qingdao University, Qingdao, China
| | - Jinbo Cheng
- Center on Translational Neuroscience, College of Life & Environmental Science, Minzu University of China, Beijing, China
| |
Collapse
|
209
|
The Effects of Alpha-Linolenic Acid on the Secretory Activity of Astrocytes and β Amyloid-Associated Neurodegeneration in Differentiated SH-SY5Y Cells: Alpha-Linolenic Acid Protects the SH-SY5Y cells against β Amyloid Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8908901. [PMID: 32832007 PMCID: PMC7428942 DOI: 10.1155/2020/8908901] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/16/2020] [Accepted: 07/06/2020] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder. Amyloid β- (Aβ-) induced mitochondrial dysfunction may be a primary process triggering all the cascades of events that lead to AD. Therefore, identification of natural factors and endogenous mechanisms that protect neurons against Aβ toxicity is needed. In the current study, we investigated whether alpha-linolenic acid (ALA), as a natural product, would increase insulin and IGF-I (insulin-like growth factor I) release from astrocytes. Moreover, we explored the protective effect of astrocytes-derived insulin/IGF-I on Aβ-induced neurotoxicity, with special attention paid to their impact on mitochondrial function of differentiated SH-SY5Y cells. The results showed that ALA induced insulin and IGF-I secretion from astrocytes. Our findings demonstrated that astrocyte-derived insulin/insulin-like growth factor I protects differentiated SH-SY5Y cells against Aβ1-42-induced cell death. Moreover, pretreatment with conditioned medium (CM) and ALA-preactivated CM (ALA-CM) protected the SH-SY5Y cells against Aβ1-42-induced mitochondrial dysfunction by reducing the depolarization of the mitochondrial membrane, increasing mitochondrial biogenesis, restoring the balance between fusion and fission processes, and regulation of mitophagy and autophagy processes. Our study suggested that astrocyte-derived insulin/insulin-like growth factor I suppresses Aβ1-42-induced cytotoxicity in the SH-SY5Y cells by protecting against mitochondrial dysfunction. Moreover, the neuroprotective effects of CM were intensified by preactivation with ALA.
Collapse
|
210
|
Soyal SM, Kwik M, Kalev O, Lenz S, Zara G, Strasser P, Patsch W, Weis S. A TOMM40/APOE allele encoding APOE-E3 predicts high likelihood of late-onset Alzheimer's disease in autopsy cases. Mol Genet Genomic Med 2020; 8:e1317. [PMID: 32472747 PMCID: PMC7434743 DOI: 10.1002/mgg3.1317] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/22/2020] [Accepted: 04/27/2020] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND The APOE-ε4 allele is an established risk factor for Alzheimer's disease (AD). TOMM40 located adjacent to APOE has also been implicated in AD but reports of TOMM40 associations with AD that are independent of APOE-ε4 are at variance. METHODS We investigated associations of AD with haplotypes defined by three TOMM40 and two APOE single nucleotide polymorphisms in 73 and 71 autopsy cases with intermediate and high likelihood of AD (defined by BRAAK stages RESULTS We observed eight haplotypes with a frequency >0.02. The two haplotypes encoding APOE-E4 showed strong associations with AD that did not differ between intermediate and high likelihood AD. In contrast, a TOMM40 haplotype encoding APOE-E3 was identified as risk haplotype of high- (p = .0186), but not intermediate likelihood AD (p = .7530). Furthermore, the variant allele of rs2075650 located in intron 2 of TOMM40, increased the risk of high-, but not intermediate likelihood AD on the APOE-ε3/ε3 background (p = .0230). CONCLUSION The striking association of TOMM40 only with high likelihood AD may explain some contrasting results for TOMM40 in clinical studies and may reflect an association with more advanced disease and/or suggest a role of TOMM40 in the pathogenesis of neurofibrillary tangles.
Collapse
Affiliation(s)
- Selma M. Soyal
- Institute of Pharmacology and ToxicologyParacelsus Medical UniversitySalzburgAustria
| | - Markus Kwik
- Institute of Pharmacology and ToxicologyParacelsus Medical UniversitySalzburgAustria
| | - Ognian Kalev
- Division of NeuropathologyNeuromed Campus, Kepler University HospitalLinzAustria
| | - Stefan Lenz
- Division of NeuropathologyNeuromed Campus, Kepler University HospitalLinzAustria
| | - Greta Zara
- Institute of Pharmacology and ToxicologyParacelsus Medical UniversitySalzburgAustria
| | - Peter Strasser
- Institute of Laboratory MedicineParacelsus Medical UniversitySalzburgAustria
| | - Wolfgang Patsch
- Institute of Pharmacology and ToxicologyParacelsus Medical UniversitySalzburgAustria
| | - Serge Weis
- Division of NeuropathologyNeuromed Campus, Kepler University HospitalLinzAustria
| |
Collapse
|
211
|
Mitochondria focused neurotherapeutics for spinal cord injury. Exp Neurol 2020; 330:113332. [DOI: 10.1016/j.expneurol.2020.113332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
|
212
|
Early Onset of Sex-Dependent Mitochondrial Deficits in the Cortex of 3xTg Alzheimer's Mice. Cells 2020; 9:cells9061541. [PMID: 32599904 PMCID: PMC7349170 DOI: 10.3390/cells9061541] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is a major public health concern worldwide. Advanced age and female sex are two of the most prominent risk factors for AD. AD is characterized by progressive neuronal loss, especially in the cortex and hippocampus, and mitochondrial dysfunction has been proposed to be an early event in the onset and progression of the disease. Our results showed early perturbations in mitochondrial function in 3xTg mouse brain, with the cortex being more susceptible to mitochondrial changes than the hippocampus. In the cortex of 3xTg females, decreased coupled and uncoupled respiration were evident early (at 2 months of age), while in males it appeared later at 6 months of age. We observed increased coupled respiration in the hippocampus of 2-month-old 3xTg females, but no changes were detected later in life. Changes in mitochondrial dynamics were indicated by decreased mitofusin (Mfn2) and increased dynamin related protein 1 (Drp1) (only in females) in the hippocampus and cortex of 3xTg mice. Our findings highlight the importance of controlling and accounting for sex, brain region, and age in studies examining brain bioenergetics using this common AD model in order to more accurately evaluate potential therapies and improve the sex-specific translatability of preclinical findings.
Collapse
|
213
|
Gupta S, Singhal NK, Ganesh S, Sandhir R. Extending Arms of Insulin Resistance from Diabetes to Alzheimer's Disease: Identification of Potential Therapeutic Targets. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:172-184. [PMID: 30430949 DOI: 10.2174/1871527317666181114163515] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/08/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND & OBJECTIVE Type 3 diabetes (T3D) is chronic insulin resistant state of brain which shares pathology with sporadic Alzheimer's disease (sAD). Insulin signaling is a highly conserved pathway in the living systems that orchestrate cell growth, repair, maintenance, energy homeostasis and reproduction. Although insulin is primarily studied as a key molecule in diabetes mellitus, its role has recently been implicated in the development of Alzheimer's disease (AD). Severe complications in brain of diabetic patients and metabolically compromised status is evident in brain of AD patients. Underlying shared pathology of two disorders draws a trajectory from peripheral insulin resistance to insulin unresponsiveness in the central nervous system (CNS). As insulin has a pivotal role in AD, it is not an overreach to address diabetic condition in AD brain as T3D. Insulin signaling is indispensable to nervous system and it is vital for neuronal growth, repair, and maintenance of chemical milieu at synapses. Downstream mediators of insulin signaling pathway work as a regulatory hub for aggregation and clearance of unfolded proteins like Aβ and tau. CONCLUSION In this review, we discuss the regulatory roles of insulin as a pivotal molecule in brain with the understanding of defective insulin signaling as a key pathological mechanism in sAD. This article also highlights ongoing trials of targeting insulin signaling as a therapeutic manifestation to treat diabetic condition in brain.
Collapse
Affiliation(s)
- Smriti Gupta
- Department of Biochemistry, Basic Medical Science Block II, Sector 25, Panjab University, Chandigarh 160014, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute, Sector 81, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Rajat Sandhir
- Department of Biochemistry, Basic Medical Science Block II, Sector 25, Panjab University, Chandigarh 160014, India
| |
Collapse
|
214
|
Rosdah AA, Smiles WJ, Oakhill JS, Scott JW, Langendorf CG, Delbridge LMD, Holien JK, Lim SY. New perspectives on the role of Drp1 isoforms in regulating mitochondrial pathophysiology. Pharmacol Ther 2020; 213:107594. [PMID: 32473962 DOI: 10.1016/j.pharmthera.2020.107594] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/26/2020] [Indexed: 12/13/2022]
Abstract
Mitochondria are dynamic organelles constantly undergoing fusion and fission. A concerted balance between the process of mitochondrial fusion and fission is required to maintain cellular health under different physiological conditions. Mutation and dysregulation of Drp1, the major driver of mitochondrial fission, has been associated with various neurological, oncological and cardiovascular disorders. Moreover, when subjected to pathological insults, mitochondria often undergo excessive fission, generating fragmented and dysfunctional mitochondria leading to cell death. Therefore, manipulating mitochondrial fission by targeting Drp1 has been an appealing therapeutic approach for cytoprotection. However, studies have been inconsistent. Studies employing Drp1 constructs representing alternate Drp1 isoforms, have demonstrated differing impacts of these isoforms on mitochondrial fission and cell death. Furthermore, there are distinct expression patterns of Drp1 isoforms in different tissues, suggesting idiosyncratic engagement in specific cellular functions. In this review, we will discuss these inherent variations among human Drp1 isoforms and how they could affect Drp1-mediated mitochondrial fission and cell death.
Collapse
Affiliation(s)
- Ayeshah A Rosdah
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria, Australia; Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia; Department of Surgery, University of Melbourne, Victoria, Australia
| | - William J Smiles
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Jonathan S Oakhill
- Metabolic Signalling Laboratory, St Vincent's Institute of Medical Research, Victoria, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria, Australia
| | - John W Scott
- Mary MacKillop Institute for Health Research, Australian Catholic University, Victoria, Australia; Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, Victoria, Australia; The Florey Institute of Neuroscience and Mental Health, Victoria, Australia
| | - Christopher G Langendorf
- Protein Chemistry and Metabolism Unit, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Lea M D Delbridge
- Department of Physiology, University of Melbourne, Victoria, Australia
| | - Jessica K Holien
- Department of Surgery, University of Melbourne, Victoria, Australia; Structural Bioinformatics and Drug Discovery, St Vincent's Institute of Medical Research, Victoria, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Victoria, Australia; Department of Surgery, University of Melbourne, Victoria, Australia.
| |
Collapse
|
215
|
Wang W, Zhao F, Ma X, Perry G, Zhu X. Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: recent advances. Mol Neurodegener 2020; 15:30. [PMID: 32471464 PMCID: PMC7257174 DOI: 10.1186/s13024-020-00376-6] [Citation(s) in RCA: 729] [Impact Index Per Article: 145.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases, characterized by impaired cognitive function due to progressive loss of neurons in the brain. Under the microscope, neuronal accumulation of abnormal tau proteins and amyloid plaques are two pathological hallmarks in affected brain regions. Although the detailed mechanism of the pathogenesis of AD is still elusive, a large body of evidence suggests that damaged mitochondria likely play fundamental roles in the pathogenesis of AD. It is believed that a healthy pool of mitochondria not only supports neuronal activity by providing enough energy supply and other related mitochondrial functions to neurons, but also guards neurons by minimizing mitochondrial related oxidative damage. In this regard, exploration of the multitude of mitochondrial mechanisms altered in the pathogenesis of AD constitutes novel promising therapeutic targets for the disease. In this review, we will summarize recent progress that underscores the essential role of mitochondria dysfunction in the pathogenesis of AD and discuss mechanisms underlying mitochondrial dysfunction with a focus on the loss of mitochondrial structural and functional integrity in AD including mitochondrial biogenesis and dynamics, axonal transport, ER-mitochondria interaction, mitophagy and mitochondrial proteostasis.
Collapse
Affiliation(s)
- Wenzhang Wang
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| | - Fanpeng Zhao
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| | - Xiaopin Ma
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| | - George Perry
- College of Sciences, University of Texas at San Antonio, San Antonio, TX USA
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106 USA
| |
Collapse
|
216
|
Khan S, Raj D, Jaiswal K, Lahiri A. Modulation of host mitochondrial dynamics during bacterial infection. Mitochondrion 2020; 53:140-149. [PMID: 32470613 DOI: 10.1016/j.mito.2020.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/15/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
Abstract
Mitochondria is a dynamic organelle of the cell that can regulate and maintain cellular ATP level, ROS production, calcium signaling and immune response. In order to retain their shape and distribution, mitochondria go through coordinated cycles of fission and fusion. Further, dysfunctional mitochondria are selectively eliminated from the cell via mitophagy to synchronize mitochondrial quality control and cellular homeostasis. In addition, mitochondria when in close proximity with the endoplasmic reticulum can alter the signaling pathways and some recent findings also reveal a direct correlation between the mitochondrial localization in the cell to the immune response elicited against the invading pathogen. These modulations in the mitochondrial network are collectively termed as 'mitochondrial dynamics'. Diverse bacteria, virus and parasitic pathogens upon infecting a cell can alter the host mitochondrial dynamics in favor of their multiplication and this in turn can be a major determinant of the disease outcome. Pharmacological perturbations in these pathways thus could lead to generation of additional therapeutic opportunities. This review will focus on the pathogenic modulation of the host mitochondrial dynamics, specifically during the bacterial infections and describes how dysregulated mitochondrial dynamics facilitates the pathogen's ability to establish efficient infection.
Collapse
Affiliation(s)
- Shaziya Khan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Desh Raj
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India
| | - Kritika Jaiswal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Amit Lahiri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), New Delhi 110001, India.
| |
Collapse
|
217
|
Abstract
Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease and has become a major socioeconomic issue in many developed countries. Currently available therapeutic agents for AD provide only symptomatic treatments, mainly because the complete mechanism of the AD pathogenesis is still unclear. Although several different hypotheses have been proposed, mitochondrial dysfunction has gathered interest because of its profound effect on brain bioenergetics and neuronal survival in the pathophysiology of AD. Various therapeutic agents targeting the mitochondrial pathways associated with AD have been developed over the past decade. Although most of these agents are still early in the clinical development process, they are used to restore mitochondrial function, which provides an alternative therapeutic strategy that is likely to slow the progression of the disease. In this mini review, we will survey the AD-related mitochondrial pathways and their small-molecule modulators that have therapeutic potential. We will focus on recently reported examples, and also overview the current challenges and future perspectives of ongoing research.
Collapse
Affiliation(s)
- Ji Woong Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792, Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 01133, Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
218
|
Allnutt AB, Waters AK, Kesari S, Yenugonda VM. Physiological and Pathological Roles of Cdk5: Potential Directions for Therapeutic Targeting in Neurodegenerative Disease. ACS Chem Neurosci 2020; 11:1218-1230. [PMID: 32286796 DOI: 10.1021/acschemneuro.0c00096] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cyclin-dependent kinase 5 (Cdk5) is a proline-directed serine (ser)/threonine (Thr) kinase that has been demonstrated to be one of the most functionally diverse kinases within neurons. Cdk5 is regulated via binding with its neuron-specific regulatory subunits, p35 or p39. Cdk5-p35 activity is critical for a variety of developmental and cellular processes in the brain, including neuron migration, memory formation, microtubule regulation, and cell cycle suppression. Aberrant activation of Cdk5 via the truncated p35 byproduct, p25, is implicated in the pathogenesis of several neurodegenerative diseases. The present review highlights the importance of Cdk5 activity and function in the brain and demonstrates how deregulation of Cdk5 can contribute to the development of neurodegenerative conditions such as Alzheimer's and Parkinson's disease. Additionally, we cover past drug discovery attempts at inhibiting Cdk5-p25 activity and discuss which types of targeting strategies may prove to be the most successful moving forward.
Collapse
|
219
|
Kodavati M, Wang H, Hegde ML. Altered Mitochondrial Dynamics in Motor Neuron Disease: An Emerging Perspective. Cells 2020; 9:cells9041065. [PMID: 32344665 PMCID: PMC7226538 DOI: 10.3390/cells9041065] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondria plays privotal role in diverse pathways that regulate cellular function and survival, and have emerged as a prime focus in aging and age-associated motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Accumulating evidence suggests that many amyloidogenic proteins, including MND-associated RNA/DNA-binding proteins fused in sarcoma (FUS) and TAR DNA binding protein (TDP)-43, are strongly linked to mitochondrial dysfunction. Animal model and patient studies have highlighted changes in mitochondrial structure, plasticity, replication/copy number, mitochondrial DNA instability, and altered membrane potential in several subsets of MNDs, and these observations are consistent with the evidence of increased excitotoxicity, induction of reactive oxygen species, and activation of intrinsic apoptotic pathways. Studies in MND rodent models also indicate that mitochondrial abnormalities begin prior to the clinical and pathological onset of the disease, suggesting a causal role of mitochondrial dysfunction. Our recent studies, which demonstrated the involvement of specific defects in DNA break-ligation mediated by DNA ligase 3 (LIG3) in FUS-associated ALS, raised a key question of its potential implication in mitochondrial DNA transactions because LIG3 is essential for both mitochondrial DNA replication and repair. This question, as well as how wild-type and mutant MND-associated factors affect mitochondria, remain to be elucidated. These new investigation avenues into the mechanistic role of mitochondrial dysfunction in MNDs are critical to identify therapeutic targets to alleviate mitochondrial toxicity and its consequences. In this article, we critically review recent advances in our understanding of mitochondrial dysfunction in diverse subgroups of MNDs and discuss challenges and future directions.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (M.K.); (H.W.)
| | - Haibo Wang
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (M.K.); (H.W.)
| | - Muralidhar L. Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77030, USA; (M.K.); (H.W.)
- Department of Neurosurgery, Weill Medical College, New York, NY 10065, USA
- Correspondence:
| |
Collapse
|
220
|
Armada-Moreira A, Gomes JI, Pina CC, Savchak OK, Gonçalves-Ribeiro J, Rei N, Pinto S, Morais TP, Martins RS, Ribeiro FF, Sebastião AM, Crunelli V, Vaz SH. Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Front Cell Neurosci 2020; 14:90. [PMID: 32390802 PMCID: PMC7194075 DOI: 10.3389/fncel.2020.00090] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/26/2020] [Indexed: 12/13/2022] Open
Abstract
Excitotoxicity is a phenomenon that describes the toxic actions of excitatory neurotransmitters, primarily glutamate, where the exacerbated or prolonged activation of glutamate receptors starts a cascade of neurotoxicity that ultimately leads to the loss of neuronal function and cell death. In this process, the shift between normal physiological function and excitotoxicity is largely controlled by astrocytes since they can control the levels of glutamate on the synaptic cleft. This control is achieved through glutamate clearance from the synaptic cleft and its underlying recycling through the glutamate-glutamine cycle. The molecular mechanism that triggers excitotoxicity involves alterations in glutamate and calcium metabolism, dysfunction of glutamate transporters, and malfunction of glutamate receptors, particularly N-methyl-D-aspartic acid receptors (NMDAR). On the other hand, excitotoxicity can be regarded as a consequence of other cellular phenomena, such as mitochondrial dysfunction, physical neuronal damage, and oxidative stress. Regardless, it is known that the excessive activation of NMDAR results in the sustained influx of calcium into neurons and leads to several deleterious consequences, including mitochondrial dysfunction, reactive oxygen species (ROS) overproduction, impairment of calcium buffering, the release of pro-apoptotic factors, among others, that inevitably contribute to neuronal loss. A large body of evidence implicates NMDAR-mediated excitotoxicity as a central mechanism in the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), and epilepsy. In this review article, we explore different causes and consequences of excitotoxicity, discuss the involvement of NMDAR-mediated excitotoxicity and its downstream effects on several neurodegenerative disorders, and identify possible strategies to study new aspects of these diseases that may lead to the discovery of new therapeutic approaches. With the understanding that excitotoxicity is a common denominator in neurodegenerative diseases and other disorders, a new perspective on therapy can be considered, where the targets are not specific symptoms, but the underlying cellular phenomena of the disease.
Collapse
Affiliation(s)
- Adam Armada-Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Joana I. Gomes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Carolina Campos Pina
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Oksana K. Savchak
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Joana Gonçalves-Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Nádia Rei
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Sara Pinto
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Tatiana P. Morais
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom
| | - Robertta Silva Martins
- Laboratório de Neurofarmacologia, Instituto Biomédico, Universidade Federal Fluminense, Niterói, Brazil
| | - Filipa F. Ribeiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Ana M. Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| | - Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, United Kingdom
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Sandra H. Vaz
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
221
|
Hill RL, Singh IN, Wang JA, Kulbe JR, Hall ED. Protective effects of phenelzine administration on synaptic and non-synaptic cortical mitochondrial function and lipid peroxidation-mediated oxidative damage following TBI in young adult male rats. Exp Neurol 2020; 330:113322. [PMID: 32325157 DOI: 10.1016/j.expneurol.2020.113322] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury (TBI) results in mitochondrial dysfunction and induction of lipid peroxidation (LP). Lipid peroxidation-derived neurotoxic aldehydes such as 4-HNE and acrolein bind to mitochondrial proteins, inducing additional oxidative damage and further exacerbating mitochondrial dysfunction and LP. Mitochondria are heterogeneous, consisting of both synaptic and non-synaptic populations, with synaptic mitochondria being more vulnerable to injury-dependent consequences. The goal of these studies was to explore the hypothesis that interrupting secondary oxidative damage following TBI using phenelzine (PZ), an aldehyde scavenger, would preferentially protect synaptic mitochondria against LP-mediated damage in a dose- and time-dependent manner. Male Sprague-Dawley rats received a severe (2.2 mm) controlled cortical impact (CCI)-TBI. PZ (3-30 mg/kg) was administered subcutaneously (subQ) at different times post-injury. We found PZ treatment preserves both synaptic and non-synaptic mitochondrial bioenergetics at 24 h and that this protection is partially maintained out to 72 h post-injury using various dosing regimens. The results from these studies indicate that the therapeutic window for the first dose of PZ is likely within the first hour after injury, and the window for administration of the second dose seems to fall between 12 and 24 h. Administration of PZ was able to significantly improve mitochondrial respiration compared to vehicle-treated animals across various states of respiration for both the non-synaptic and synaptic mitochondria. The synaptic mitochondria appear to respond more robustly to PZ treatment than the non-synaptic, and further experimentation will need to be done to further understand these effects in the context of TBI.
Collapse
Affiliation(s)
- Rachel L Hill
- University of Kentucky, Spinal Cord and Brain Injury Research Center (SCoBIRC), United States of America.
| | - Indrapal N Singh
- University of Kentucky, Spinal Cord and Brain Injury Research Center (SCoBIRC), United States of America; Department of Neuroscience, 741 S. Limestone St, Lexington, KY 40536-0509, United States of America
| | - Juan A Wang
- University of Kentucky, Spinal Cord and Brain Injury Research Center (SCoBIRC), United States of America
| | - Jacqueline R Kulbe
- University of Kentucky, Spinal Cord and Brain Injury Research Center (SCoBIRC), United States of America
| | - Edward D Hall
- University of Kentucky, Spinal Cord and Brain Injury Research Center (SCoBIRC), United States of America; Department of Neuroscience, 741 S. Limestone St, Lexington, KY 40536-0509, United States of America
| |
Collapse
|
222
|
Mitochondrial biogenesis as a therapeutic target for traumatic and neurodegenerative CNS diseases. Exp Neurol 2020; 329:113309. [PMID: 32289315 DOI: 10.1016/j.expneurol.2020.113309] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/31/2020] [Accepted: 04/10/2020] [Indexed: 12/27/2022]
Abstract
Central nervous system (CNS) diseases, both traumatic and neurodegenerative, are characterized by impaired mitochondrial bioenergetics and often disturbed mitochondrial dynamics. The dysregulation observed in these pathologies leads to defective respiratory chain function and reduced ATP production, thereby promoting neuronal death. As such, attenuation of mitochondrial dysfunction through induction of mitochondrial biogenesis (MB) is a promising, though still underexplored, therapeutic strategy. MB is a multifaceted process involving the integration of highly regulated transcriptional events, lipid membrane and protein synthesis/assembly and replication of mtDNA. Several nuclear transcription factors promote the expression of genes involved in oxidative phosphorylation, mitochondrial import and export systems, antioxidant defense and mitochondrial gene transcription. Of these, the nuclear-encoded peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is the most commonly studied and is widely accepted as the 'master regulator' of MB. Several recent preclinical studies document that reestablishment of mitochondrial homeostasis through increased MB results in inhibited injury progression and increased functional recovery. This perspective will briefly review the role of mitochondrial dysfunction in the propagation of CNS diseases, while also describing current research strategies that mediate mitochondrial dysfunction and compounds that induce MB for the treatment of acute and chronic neuropathologies.
Collapse
|
223
|
Zhao N, Yan QW, Xia J, Zhang XL, Li BX, Yin LY, Xu B. Treadmill Exercise Attenuates Aβ-Induced Mitochondrial Dysfunction and Enhances Mitophagy Activity in APP/PS1 Transgenic Mice. Neurochem Res 2020; 45:1202-1214. [PMID: 32125561 DOI: 10.1007/s11064-020-03003-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
Mitochondrial dysfunction is a hallmark of Alzheimer's disease (AD), which may be related to mitophagy failure. Previous reports suggest that treadmill exercise protects against mitochondrial dysfunction in AD. However, few studies have investigated the relationship between mitophagy and mitochondrial adaptation caused by treadmill exercise in AD. The current study aimed to investigate whether exercise-ameliorated AD is associated with changes in mitophagy activity. Both Wild-type and APP/PS1 transgenic mice were divided into sedentary (WTC and ADC) and exercise (WTE and ADE) groups (n = 9 for each group). WTE and ADE mice were subjected to treadmill exercise for 12 weeks, followed by evaluating the effect of treadmill exercise on learning and memory ability, Aβ plaques, mitochondrial Aβ peptide level, synaptic activity and mitochondrial function. Meanwhile, mitophagy-related proteins PINK1, Parkin, LC3II and P62 were measured in the hippocampal mitochondrial fractions. The results indicated that exercise not only restored learning and memory ability, but also reduced Aβ plaque area, mitochondrial Aβ peptide level, and increased levels of synaptic markers SYN and GAP43, as well as reversed mitochondrial dysfunction (defective mitochondrial ultrastructure, decreased PGC-1α, TFAM and ATP levels) in APP/PS1 transgenic mice. Moreover, exercise increased mitophagy activity as evidenced by a significant decrease in levels of P62 and PINK1 as well as an increase in levels of LC3II and Parkin in ADE mice. These findings suggest that treadmill exercise can enhance mitophagy activity in the hippocampus, which is efficient in ameliorating pathological phenotypes of APP/PS1 transgenic mice.
Collapse
Affiliation(s)
- Na Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.,School of Physical Education & Health Care, East China Normal University, Shanghai, China
| | - Qing-Wei Yan
- School of Physical Education, Xi Zang Minzu University, Xianyang, China
| | - Jie Xia
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.,School of Physical Education & Health Care, East China Normal University, Shanghai, China
| | - Xian-Liang Zhang
- The School of Physical Education of Shandong University, Jinan, China
| | - Bai-Xia Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.,School of Physical Education & Health Care, East China Normal University, Shanghai, China
| | - Ling-Yu Yin
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China.,School of Physical Education & Health Care, East China Normal University, Shanghai, China
| | - Bo Xu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, China. .,School of Physical Education & Health Care, East China Normal University, Shanghai, China.
| |
Collapse
|
224
|
Oral glutathione administration inhibits the oxidative stress and the inflammatory responses in App NL-G-F/NL-G-F knock-in mice. Neuropharmacology 2020; 168:108026. [PMID: 32130977 DOI: 10.1016/j.neuropharm.2020.108026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by the presence of extracellular amyloid-β (Aβ) plaques and intracellular neurofibrillary tangles. Reduced antioxidants and increased oxidative stress and inflammation are responsible for the pathological features characteristic of an AD brain. We observed decreased levels of the reduced form of glutathione (GSH), the most abundant brain antioxidant, and decreased GSH/glutathione disulfide (GSSG) ratios in AppNL-G-F/NL-G-F knock-in (NL-G-F) mouse brains. Repeated oral GSH administration for 3 weeks dose-dependently increased GSH levels and restored the GSH/GSSH ratio. Consistent with the restoration of GSH levels, the levels of 4-hydroxy-2-nonenal (4-HNE), a marker of oxidative stress, were significantly decreased in the hippocampus of NL-G-F mice. Additionally, inflammatory responses, such as microgliosis and increased mRNA expression of inflammatory cytokines, were also inhibited. Moreover, behavioral deficits including cognitive decline, depressive-like behaviors, and anxiety-related behaviors observed in NL-G-F mice were significantly improved by oral and chronic GSH administration. Taken together, our data suggest that oral GSH administration is an attractive therapeutic strategy to reduce the excessive oxidative stress and inflammatory responses in the AD brain.
Collapse
|
225
|
Mou Y, Mukte S, Chai E, Dein J, Li XJ. Analyzing Mitochondrial Transport and Morphology in Human Induced Pluripotent Stem Cell-Derived Neurons in Hereditary Spastic Paraplegia. J Vis Exp 2020. [PMID: 32090993 DOI: 10.3791/60548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Neurons have intense demands for high energy in order to support their functions. Impaired mitochondrial transport along axons has been observed in human neurons, which may contribute to neurodegeneration in various disease states. Although it is challenging to examine mitochondrial dynamics in live human nerves, such paradigms are critical for studying the role of mitochondria in neurodegeneration. Described here is a protocol for analyzing mitochondrial transport and mitochondrial morphology in forebrain neuron axons derived from human induced pluripotent stem cells (iPSCs). The iPSCs are differentiated into telencephalic glutamatergic neurons using well-established methods. Mitochondria of the neurons are stained with MitoTracker CMXRos, and mitochondrial movement within the axons are captured using a live-cell imaging microscope equipped with an incubator for cell culture. Time-lapse images are analyzed using software with "MultiKymograph", "Bioformat importer", and "Macros" plugins. Kymographs of mitochondrial transport are generated, and average mitochondrial velocity in the anterograde and retrograde directions is read from the kymograph. Regarding mitochondrial morphology analysis, mitochondrial length, area, and aspect ratio are obtained using the ImageJ. In summary, this protocol allows characterization of mitochondrial trafficking along axons and analysis of their morphology to facilitate studies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford; Department of Bioengineering, University of Illinois at Chicago
| | - Sukhada Mukte
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford
| | - Eric Chai
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford
| | - Joshua Dein
- MD Program, University of Illinois College of Medicine Rockford
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford; Department of Bioengineering, University of Illinois at Chicago;
| |
Collapse
|
226
|
A-Kinase Anchoring Protein 1: Emerging Roles in Regulating Mitochondrial Form and Function in Health and Disease. Cells 2020; 9:cells9020298. [PMID: 31991888 PMCID: PMC7072574 DOI: 10.3390/cells9020298] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023] Open
Abstract
Best known as the powerhouse of the cell, mitochondria have many other important functions such as buffering intracellular calcium and reactive oxygen species levels, initiating apoptosis and supporting cell proliferation and survival. Mitochondria are also dynamic organelles that are constantly undergoing fission and fusion to meet specific functional needs. These processes and functions are regulated by intracellular signaling at the mitochondria. A-kinase anchoring protein 1 (AKAP1) is a scaffold protein that recruits protein kinase A (PKA), other signaling proteins, as well as RNA to the outer mitochondrial membrane. Hence, AKAP1 can be considered a mitochondrial signaling hub. In this review, we discuss what is currently known about AKAP1's function in health and diseases. We focus on the recent literature on AKAP1's roles in metabolic homeostasis, cancer and cardiovascular and neurodegenerative diseases. In healthy tissues, AKAP1 has been shown to be important for driving mitochondrial respiration during exercise and for mitochondrial DNA replication and quality control. Several recent in vivo studies using AKAP1 knockout mice have elucidated the role of AKAP1 in supporting cardiovascular, lung and neuronal cell survival in the stressful post-ischemic environment. In addition, we discuss the unique involvement of AKAP1 in cancer tumor growth, metastasis and resistance to chemotherapy. Collectively, the data indicate that AKAP1 promotes cell survival throug regulating mitochondrial form and function. Lastly, we discuss the potential of targeting of AKAP1 for therapy of various disorders.
Collapse
|
227
|
Wang H, Zhang T, Ge X, Chen J, Zhao Y, Fu J. Parkin overexpression attenuates Aβ-induced mitochondrial dysfunction in HEK293 cells by restoring impaired mitophagy. Life Sci 2020; 244:117322. [PMID: 31958419 DOI: 10.1016/j.lfs.2020.117322] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
AIMS Mitochondrial dysfunction is an early prominent feature of Alzheimer's disease (AD). In the present study, we sought to investigate whether defective mitophagy is tightly related to amyloid-β (Aβ)-induced mitochondrial dysfunction. MAIN METHODS Immunofluorescence, western blot and transmission electron microscopy were used to examine mitophagy. Mitochondrial membrane potential was assessed using the JC-1 dye. Mitochondrial ROS was detected using MitoSOX™ Red staining. KEY FINDINGS Aβ induced mitochondrial dysfunction in HEK293 cells. Moreover, Aβ induced an increase in parkin translocation to mitochondria and led to a drastic reduction in cytosolic parkin. Furthermore, Aβ-treated cells displayed a microtubule-associated protein 1 light chain 3 (LC3) punctate pattern and elevated mitochondrial LC3-II levels, suggesting the upregulation of mitophagy. Notably, Aβ induced the accumulation of mitochondrial p62, which was associated with impaired mitophagy. In addition, Aβ-treated cells exhibited fragmented or swollen mitochondria with severely decreased cristae. We then investigated whether overexpression of parkin could protect cells against Aβ-induced mitochondrial dysfunction. Interestingly, parkin overexpression inhibited Aβ-induced mitochondrial dysfunction. Besides, parkin overexpression increased cytosolic and mitochondrial parkin levels as well as mitochondrial LC3-II levels in Aβ-treated cells. Additionally, parkin overexpression reversed the accumulation of p62 in mitochondria, indicating that parkin overexpression restored impaired mitophagy in Aβ-treated cells. Importantly, parkin overexpression remarkably reversed Aβ-induced mitochondrial fragmentation. SIGNIFICANCE Our data demonstrate that overexpression of parkin ameliorates impaired mitophagy and promotes the removal of damaged mitochondria in Aβ-treated cells, indicating that upregulation of parkin-mediated mitophagy may be a potential strategy for the therapy of AD.
Collapse
Affiliation(s)
- Hongmei Wang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ting Zhang
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xuhua Ge
- Department of General Medicine, Yangpu Hospital Affiliated to Tongji University, Shanghai, China
| | - Jingjiong Chen
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Jianliang Fu
- Department of Neurology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
228
|
Chen Y, Chou T, Lin I, Chen C, Kao C, Huang G, Chen L, Wang P, Lin C, Tsai T. Upregulation of Cisd2 attenuates Alzheimer's-related neuronal loss in mice. J Pathol 2020; 250:299-311. [PMID: 31837018 PMCID: PMC7065100 DOI: 10.1002/path.5374] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 12/01/2019] [Accepted: 12/04/2019] [Indexed: 12/24/2022]
Abstract
CDGSH iron-sulfur domain-containing protein 2 (Cisd2), a protein that declines in an age-dependent manner, mediates lifespan in mammals. Cisd2 deficiency causes accelerated aging and shortened lifespan, whereas persistent expression of Cisd2 promotes longevity in mice. Alzheimer's disease (AD) is the most prevalent form of senile dementia and is without an effective therapeutic strategy. We investigated whether Cisd2 upregulation is able to ameliorate amyloid β (Aβ) toxicity and prevent neuronal loss using an AD mouse model. Our study makes three major discoveries. First, using the AD mouse model (APP/PS1 double transgenic mice), the dosage of Cisd2 appears to modulate the severity of AD phenotypes. Cisd2 overexpression (∼two-fold) significantly promoted survival and alleviated the pathological defects associated with AD. Conversely, Cisd2 deficiency accelerated AD pathogenesis. Secondly, Cisd2 overexpression protected against Aβ-mediated mitochondrial damage and attenuated loss of neurons and neuronal progenitor cells. Finally, an increase in Cisd2 shifted the expression profiles of a panel of genes that are dysregulated by AD toward the patterns observed in wild-type mice. These findings highlight Cisd2-based therapies as a potential disease-modifying strategy for AD. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Yi‐Fan Chen
- The Ph.D. Program for Translational Medicine, College of Medical Science and TechnologyTaipei Medical UniversityTaipeiTaiwan
| | - Tzu‐Yu Chou
- Department of Life Sciences and Institute of Genome SciencesNational Yang‐Ming UniversityTaipeiTaiwan
| | - I‐Hsuan Lin
- TMU Research Center of Cancer Translational MedicineTaipei Medical UniversityTaipeiTaiwan
| | - Chung‐Guang Chen
- Department of Biomedical Imaging and Radiological SciencesNational Yang‐Ming UniversityTaipeiTaiwan
| | - Cheng‐Heng Kao
- Center of General EducationChang Gung UniversityTaoyuanTaiwan
| | - Guo‐Jen Huang
- Department of Biomedical ScienceChang Gung UniversityTaoyuanTaiwan
| | - Liang‐Kung Chen
- Aging and Health Research CenterNational Yang‐Ming UniversityTaipeiTaiwan
- Department of Geriatric MedicineNational Yang‐Ming UniversityTaipeiTaiwan
- Center for Geriatrics and GerontologyNeurological Institute, Taipei Veterans General HospitalTaipeiTaiwan
| | - Pei‐Ning Wang
- Aging and Health Research CenterNational Yang‐Ming UniversityTaipeiTaiwan
- Brain Research CenterNational Yang‐Ming UniversityTaipeiTaiwan
- Department of NeurologyNeurological Institute, Taipei Veterans General HospitalTaipeiTaiwan
| | - Ching‐Po Lin
- Aging and Health Research CenterNational Yang‐Ming UniversityTaipeiTaiwan
- Brain Research CenterNational Yang‐Ming UniversityTaipeiTaiwan
- Institute of NeuroscienceNational Yang‐Ming UniversityTaipeiTaiwan
| | - Ting‐Fen Tsai
- Department of Life Sciences and Institute of Genome SciencesNational Yang‐Ming UniversityTaipeiTaiwan
- Aging and Health Research CenterNational Yang‐Ming UniversityTaipeiTaiwan
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesZhunanTaiwan
- Institute of Biotechnology and Pharmaceutical ResearchNational Health Research InstitutesZhunanTaiwan
| |
Collapse
|
229
|
Bhatti GK, Reddy AP, Reddy PH, Bhatti JS. Lifestyle Modifications and Nutritional Interventions in Aging-Associated Cognitive Decline and Alzheimer's Disease. Front Aging Neurosci 2020; 11:369. [PMID: 31998117 PMCID: PMC6966236 DOI: 10.3389/fnagi.2019.00369] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a type of incurable neurodegenerative disease that is characterized by the accumulation of amyloid-β (Aβ; plaques) and tau hyperphosphorylation as neurofibrillary tangles (NFTs) in the brain followed by neuronal death, cognitive decline, and memory loss. The high prevalence of AD in the developed world has become a major public health challenge associated with social and economic burdens on individuals and society. Due to there being limited options for early diagnosis and determining the exact pathophysiology of AD, finding effective therapeutic strategies has become a great challenge. Several possible risk factors associated with AD pathology have been identified; however, their roles are still inconclusive. Recent clinical trials of the drugs targeting Aβ and tau have failed to find a cure for the AD pathology. Therefore, effective preventive strategies should be followed to reduce the exponential increase in the prevalence of cognitive decline and dementia, especially AD. Although the search for new therapeutic targets is a great challenge for the scientific community, the roles of lifestyle interventions and nutraceuticals in the prevention of many metabolic and neurodegenerative diseases are highly appreciated in the literature. In this article, we summarize the molecular mechanisms involved in AD pathology and the possible ameliorative action of lifestyle and nutritional interventions including diet, exercise, Calorie restriction (CR), and various bioactive compounds on cognitive decline and dementia. This article will provide insights into the role of non-pharmacologic interventions in the modulation of AD pathology, which may offer the benefit of improving quality of life by reducing cognitive decline and incident AD.
Collapse
Affiliation(s)
- Gurjit Kaur Bhatti
- Department of Medical Lab Technology, University Institute of Applied Health Sciences, Chandigarh University, Mohali, India
| | - Arubala P. Reddy
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - P. Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Speech, Language and Hearing Sciences Department, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Jasvinder Singh Bhatti
- Department of Biotechnology and Microbial Biotechnology, Sri Guru Gobind Singh College, Chandigarh, India
| |
Collapse
|
230
|
Cai Q, Jeong YY. Mitophagy in Alzheimer's Disease and Other Age-Related Neurodegenerative Diseases. Cells 2020; 9:cells9010150. [PMID: 31936292 PMCID: PMC7017092 DOI: 10.3390/cells9010150] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/03/2020] [Accepted: 01/05/2020] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial dysfunction is a central aspect of aging and neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease. Mitochondria are the main cellular energy powerhouses, supplying most of ATP by oxidative phosphorylation, which is required to fuel essential neuronal functions. Efficient removal of aged and dysfunctional mitochondria through mitophagy, a cargo-selective autophagy, is crucial for mitochondrial maintenance and neuronal health. Mechanistic studies into mitophagy have highlighted an integrated and elaborate cellular network that can regulate mitochondrial turnover. In this review, we provide an updated overview of the recent discoveries and advancements on the mitophagy pathways and discuss the molecular mechanisms underlying mitophagy defects in Alzheimer's disease and other age-related neurodegenerative diseases, as well as the therapeutic potential of mitophagy-enhancing strategies to combat these disorders.
Collapse
|
231
|
Gothié J, Vancamp P, Demeneix B, Remaud S. Thyroid hormone regulation of neural stem cell fate: From development to ageing. Acta Physiol (Oxf) 2020; 228:e13316. [PMID: 31121082 PMCID: PMC9286394 DOI: 10.1111/apha.13316] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/10/2019] [Accepted: 05/17/2019] [Indexed: 12/13/2022]
Abstract
In the vertebrate brain, neural stem cells (NSCs) generate both neuronal and glial cells throughout life. However, their neuro‐ and gliogenic capacity changes as a function of the developmental context. Despite the growing body of evidence on the variety of intrinsic and extrinsic factors regulating NSC physiology, their precise cellular and molecular actions are not fully determined. Our review focuses on thyroid hormone (TH), a vital component for both development and adult brain function that regulates NSC biology at all stages. First, we review comparative data to analyse how TH modulates neuro‐ and gliogenesis during vertebrate brain development. Second, as the mammalian brain is the most studied, we highlight the molecular mechanisms underlying TH action in this context. Lastly, we explore how the interplay between TH signalling and cell metabolism governs both neurodevelopmental and adult neurogenesis. We conclude that, together, TH and cellular metabolism regulate optimal brain formation, maturation and function from early foetal life to adult in vertebrate species.
Collapse
Affiliation(s)
- Jean‐David Gothié
- Department of Neurology & Neurosurgery Montreal Neurological Institute & Hospital, McGill University Montreal Quebec Canada
| | - Pieter Vancamp
- CNRS UMR 7221 Muséum National d’Histoire Naturelle Paris France
| | | | - Sylvie Remaud
- CNRS UMR 7221 Muséum National d’Histoire Naturelle Paris France
| |
Collapse
|
232
|
Volloch V, Olsen BR, Rits S. AD "Statin": Alzheimer's Disorder is a "Fast" Disease Preventable by Therapeutic Intervention Initiated Even Late in Life and Reversible at the Early Stages. ANNALS OF INTEGRATIVE MOLECULAR MEDICINE 2020; 2:75-89. [PMID: 32201863 PMCID: PMC7083596 DOI: 10.33597/aimm.02-1006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The present study posits that Alzheimer's disorder is a "fast" disease. This is in sharp contrast to a view, prevailing until now, that Alzheimer's Disease (AD) is a quintessential "slow" disease that develops throughout the life as one prolonged process. According to this view, beta-amyloid (Aβ) is produced and secreted solely by the beta-amyloid precursor protein (βAPP) proteolytic/secretory pathway. As its extracellular levels increase, it triggers neurodegeneration starting relatively early in life. Damages accumulate and manifest, late in life in sporadic Alzheimer's Disease (SAD) cases, as AD symptoms. In familial AD (FAD) cases, where mutations in βAPP gene or in presenilins increase production of either common Aβ isoform or of its more toxic isoforms, neurodegeneration reaches critical threshold sooner and AD symptoms occur earlier in life, mostly in late 40s and 50s. There are currently no preventive AD therapies but if they were available, according to this viewpoint it would be largely futile to intervene late in life in case of potential SAD or at mid-age in cases of FAD because, although AD symptoms have not yet manifested, the damage has already occurred during the preceding decades. In this paradigm, to be effective, preventive therapeutic intervention should be initiated early in life. The outlook suggested by the present study is radically different. According to it, Alzheimer's disease evolves in two stages. The first stage is a slow process of intracellular beta-amyloid accumulation. It occurs via βAPP proteolytic/secretory pathway and cellular uptake of secreted Aβ common to Homo sapiens, including healthy humans, and to non-human mammals, and results neither in significant damage, nor in manifestation of the disease. The second stage occurs exclusively in humans, commences shortly before symptomatic onset of the disease, sharply accelerates the production and increases intracellular levels of Aβ that is not secreted but is retained intracellularly, generates significant damages, triggers AD symptoms, and is fast. It is driven by an Aβ generation pathway qualitatively and quantitatively different from βAPP proteolytic process and entirely independent of beta-amyloid precursor protein, and results in rapid and substantial intracellular accumulation of Aβ, consequent significant neurodegeneration, and symptomatic AD. In this paradigm, a preventive therapy for AD, an AD "statin", would be effective when initiated at any time prior to commencement of the second stage. Moreover, there are good reasons to believe that with a drug blocking βAPP-independent Aβ production pathway in the second stage, it would be possible not only to preempt the disease but also to stop and to reverse it even when early AD symptoms have already manifested. The present study posits a notion of AD as a Fast Disease, offers evidence for the occurrence of the AD-specific Aβ production pathway, describes cellular and molecular processes constituting an engine that drives Alzheimer's disease, and explains why non-human mammals are not susceptible to AD and why only a subset of humans develop the disease. It establishes that Alzheimer's disease is preventable by therapeutic intervention initiated even late in life, details a powerful mechanism underlying the disease, suggests that Aβ produced in the βAPP-independent pathway is retained intracellularly, elaborates why neither BACE inhibition nor Aβ immunotherapy are effective in treatment of AD and why intracellularly retained beta-amyloid could be the primary agent of neuronal death in Alzheimer's disease, necessitates generation of a novel animal AD model capable of producing Aβ via βAPP-independent pathway, proposes therapeutic targets profoundly different from previously pursued components of the βAPP proteolytic pathway, and provides conceptual rationale for design of drugs that could be used not only preemptively but also for treatment and reversal of the early stages of the disease.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits
- Division of Molecular Medicine, Children’s Hospital, Boston, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|
233
|
Lim JW, Lee J, Pae AN. Mitochondrial dysfunction and Alzheimer's disease: prospects for therapeutic intervention. BMB Rep 2020; 53:47-55. [PMID: 31818365 PMCID: PMC6999825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Indexed: 03/29/2024] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease and has become a major socioeconomic issue in many developed countries. Currently available therapeutic agents for AD provide only symptomatic treatments, mainly because the complete mechanism of the AD pathogenesis is still unclear. Although several different hypotheses have been proposed, mitochondrial dysfunction has gathered interest because of its profound effect on brain bioenergetics and neuronal survival in the pathophysiology of AD. Various therapeutic agents targeting the mitochondrial pathways associated with AD have been developed over the past decade. Although most of these agents are still early in the clinical development process, they are used to restore mitochondrial function, which provides an alternative therapeutic strategy that is likely to slow the progression of the disease. In this mini review, we will survey the AD-related mitochondrial pathways and their small-molecule modulators that have therapeutic potential. We will focus on recently reported examples, and also overview the current challenges and future perspectives of ongoing research. [BMB Reports 2020; 53(1): 47-55].
Collapse
Affiliation(s)
- Ji Woong Lim
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792,
Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin University, Seoul 01133,
Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology, Seoul 02792,
Korea
- Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792,
Korea
| |
Collapse
|
234
|
Martínez J, Marmisolle I, Tarallo D, Quijano C. Mitochondrial Bioenergetics and Dynamics in Secretion Processes. Front Endocrinol (Lausanne) 2020; 11:319. [PMID: 32528413 PMCID: PMC7256191 DOI: 10.3389/fendo.2020.00319] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
Secretion is an energy consuming process that plays a relevant role in cell communication and adaptation to the environment. Among others, endocrine cells producing hormones, immune cells producing cytokines or antibodies, neurons releasing neurotransmitters at synapsis, and more recently acknowledged, senescent cells synthesizing and secreting multiple cytokines, growth factors and proteases, require energy to successfully accomplish the different stages of the secretion process. Calcium ions (Ca2+) act as second messengers regulating secretion in many of these cases. In this setting, mitochondria appear as key players providing ATP by oxidative phosphorylation, buffering Ca2+ concentrations and acting as structural platforms. These tasks also require the concerted actions of the mitochondrial dynamics machinery. These proteins mediate mitochondrial fusion and fission, and are also required for transport and tethering of mitochondria to cellular organelles where the different steps of the secretion process take place. Herein we present a brief overview of mitochondrial energy metabolism, mitochondrial dynamics, and the different steps of the secretion processes, along with evidence of the interaction between these pathways. We also analyze the role of mitochondria in secretion by different cell types in physiological and pathological settings.
Collapse
|
235
|
Volloch V, Olsen B, Rits S. Alzheimer's Disease is Driven by Intraneuronally Retained Beta-Amyloid Produced in the AD-Specific, βAPP-Independent Pathway: Current Perspective and Experimental Models for Tomorrow. ANNALS OF INTEGRATIVE MOLECULAR MEDICINE 2020; 2:90-114. [PMID: 32617536 PMCID: PMC7331974 DOI: 10.33597/aimm.02-1007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A view of the origin and progression of Alzheimer's disease, AD, prevailing until now and formalized as the Amyloid Cascade Hypothesis theory, maintains that the disease is initiated by overproduction of beta-amyloid, Aβ, which is generated solely by the Aβ precursor protein, βAPP, proteolytic pathway and secreted from the cell. Consequent extracellular accumulation of Aβ triggers a cascade of molecular and cellular events leading to neurodegeneration that starts early in life, progresses as one prolonged process, builds up for decades, and culminates in symptomatic manifestations of the disease late in life. In this paradigm, a time window for commencement of therapeutic intervention is small and accessible only early in life. The outlook introduced in the present study is fundamentally different. It posits that the βAPP proteolytic/secretory pathway of Aβ production causes AD in humans no more than it does in either short- or long-lived non-human mammals that share this pathway with humans, accumulate beta-amyloid as they age, but do not develop the disease. Alzheimer's disease, according to this outlook, is driven by an additional powerful AD-specific pathway of Aβ production that operates in affected humans, is completely independent of the βAPP precursor, and is not available in non-human mammals. The role of the βAPP proteolytic pathway in the disease in humans is activation of this additional AD-specific Aβ production pathway. This occurs through accumulation of intracellular Aβ, primarily via ApoE-assisted cellular uptake of secreted beta-amyloid, but also through retention of a fraction of Aβ produced in the βAPP proteolytic pathway. With time, accumulated intracellular Aβ triggers mitochondrial dysfunction. In turn, cellular stresses associated with mitochondrial dysfunction, including ER stress, activate a second, AD-specific, Aβ production pathway: Asymmetric RNA-dependent βAPP mRNA amplification; animal βAPP mRNA is ineligible for this process. In this pathway, every conventionally produced βAPP mRNA molecule serves potentially as a template for production of severely 5'-truncated mRNA encoding not the βAPP but its C99 fragment (hence "asymmetric"), the immediate precursor of Aβ. Thus produced, N-terminal signal peptide-lacking C99 is processed not in the secretory pathway on the plasma membrane, but at the intracellular membrane sites, apparently in a neuron-specific manner. The resulting Aβ is, therefore, not secreted but is retained intraneuronally and accumulates rapidly within the cell. Increased levels of intracellular Aβ augment mitochondrial dysfunction, which, in turn, sustains the activity of the βAPP mRNA amplification pathway. These self-propagating mutual Aβ overproduction/mitochondrial dysfunction feedback cycles constitute a formidable two-stroke engine, an engine that drives Alzheimer's disease. The present outlook envisions Alzheimer's disorder as a two-stage disease. The first stage is a slow process of intracellular beta-amyloid accumulation. It results neither in significant neurodegenerative damage, nor in manifestation of the disease. The second stage commences with the activation of the βAPP mRNA amplification pathway shortly before symptomatic onset of the disease, sharply increases the rate of Aβ generation and the extent of its intraneuronal accumulation, produces significant damages, triggers AD symptoms, and is fast. In this paradigm, the time window of therapeutic intervention is wide open, and preventive treatment can be initiated any time, even late in life, prior to commencement of the second stage of the disease. Moreover, there are good reasons to believe that with a drug blocking the βAPP mRNA amplification pathway, it would be possible not only to preempt the disease but also to stop and to reverse it even when early AD symptoms have already manifested. There are numerous experimental models of AD, all based on a notion of the exceptionality of βAPP proteolytic/secretory pathway in Aβ production in the disease. However, with no drug even remotely effective in Alzheimer's disease, a long list of candidate drugs that succeeded remarkably in animal models, yet failed utterly in human clinical trials of potential AD drugs, attests to the inadequacy of currently employed AD models. The concept of a renewable supply of beta-amyloid, produced in the βAPP mRNA amplification pathway and retained intraneuronally in Alzheimer's disease, explains spectacular failures of both BACE inhibition and Aβ-immunotherapy in human clinical trials. This concept also forms the basis of a new generation of animal and cell-based experimental models of AD, described in the present study. These models incorporate Aβ- or C99-encoding mRNA amplification pathways of Aβ production, as well as intracellular retention of their product, and can support not only further investigation of molecular mechanisms of AD but also screening for and testing of candidate drugs aimed at therapeutic targets suggested by the present study.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits
- Division of Molecular Medicine, Children’s Hospital, Boston, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|
236
|
Varkuti BH, Kepiro M, Liu Z, Vick K, Avchalumov Y, Pacifico R, MacMullen CM, Kamenecka TM, Puthanveettil SV, Davis RL. Neuron-based high-content assay and screen for CNS active mitotherapeutics. SCIENCE ADVANCES 2020; 6:eaaw8702. [PMID: 31934620 PMCID: PMC6949038 DOI: 10.1126/sciadv.aaw8702] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
Impaired mitochondrial dynamics and function are hallmarks of many neurological and psychiatric disorders, but direct screens for mitotherapeutics using neurons have not been reported. We developed a multiplexed and high-content screening assay using primary neurons and identified 67 small-molecule modulators of neuronal mitostasis (MnMs). Most MnMs that increased mitochondrial content, length, and/or health also increased mitochondrial function without altering neurite outgrowth. A subset of MnMs protected mitochondria in primary neurons from Aβ(1-42) toxicity, glutamate toxicity, and increased oxidative stress. Some MnMs were shown to directly target mitochondria. The top MnM also increased the synaptic activity of hippocampal neurons and proved to be potent in vivo, increasing the respiration rate of brain mitochondria after administering the compound to mice. Our results offer a platform that directly queries mitostasis processes in neurons, a collection of small-molecule modulators of mitochondrial dynamics and function, and candidate molecules for mitotherapeutics.
Collapse
Affiliation(s)
- Boglarka H. Varkuti
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Miklos Kepiro
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ze Liu
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Kyle Vick
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yosef Avchalumov
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Rodrigo Pacifico
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Theodore M. Kamenecka
- Department of Molecular Medicine, The Scripps Research Institute Florida, Jupiter, FL 33458, USA
| | | | - Ronald L. Davis
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
237
|
Quntanilla RA, Tapia-Monsalves C. The Role of Mitochondrial Impairment in Alzheimer´s Disease Neurodegeneration: The Tau Connection. Curr Neuropharmacol 2020; 18:1076-1091. [PMID: 32448104 PMCID: PMC7709157 DOI: 10.2174/1570159x18666200525020259] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/23/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulative evidence has shown that mitochondrial dysfunction plays a pivotal role in the pathogenesis of Alzheimer's disease (AD). Mitochondrial impairment actively contributes to the synaptic and cognitive failure that characterizes AD. The presence of soluble pathological forms of tau like hyperphosphorylated at Ser396 and Ser404 and cleaved at Asp421 by caspase 3, negatively impacts mitochondrial bioenergetics, transport, and morphology in neurons. These adverse effects against mitochondria health will contribute to the synaptic impairment and cognitive decline in AD. Current studies suggest that mitochondrial failure induced by pathological tau forms is likely the result of the opening of the mitochondrial permeability transition pore (mPTP). mPTP is a mitochondrial mega-channel that is activated by increases in calcium and is associated with mitochondrial stress and apoptosis. This structure is composed of different proteins, where Ciclophilin D (CypD) is considered to be the primary mediator of mPTP activation. Also, new studies suggest that mPTP contributes to Aβ pathology and oxidative stress in AD. Further, inhibition of mPTP through the reduction of CypD expression prevents cognitive and synaptic impairment in AD mouse models. More importantly, tau protein contributes to the physiological regulation of mitochondria through the opening/interaction with mPTP in hippocampal neurons. Therefore, in this paper, we will discuss evidence that suggests an important role of pathological forms of tau against mitochondrial health. Also, we will discuss the possible role of mPTP in the mitochondrial impairment produced by the presence of tau pathology and its impact on synaptic function present in AD.
Collapse
Affiliation(s)
- Rodrigo A. Quntanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Carola Tapia-Monsalves
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
238
|
Hasan-Olive MM, Enger R, Hansson HA, Nagelhus EA, Eide PK. Pathological mitochondria in neurons and perivascular astrocytic endfeet of idiopathic normal pressure hydrocephalus patients. Fluids Barriers CNS 2019; 16:39. [PMID: 31849332 PMCID: PMC6918585 DOI: 10.1186/s12987-019-0160-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 12/05/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A growing body of evidence suggests that the accumulation of amyloid-β and tau (HPτ) in the brain of patients with the dementia subtype idiopathic normal pressure hydrocephalus (iNPH) is associated with delayed extravascular clearance of metabolic waste. Whether also clearance of intracellular debris is affected in these patients needs to be examined. Hypothetically, defective extra- and intra-cellular clearance of metabolites may be instrumental in the neurodegeneration and dementia characterizing iNPH. This study explores whether iNPH is associated with altered mitochondria phenotype in neurons and astrocytes. METHODS Cortical brain biopsies of 9 reference (REF) individuals and 30 iNPH patients were analyzed for subcellular distribution and morphology of mitochondria using transmission electron microscopy. In neuronal soma of REF and iNPH patients, we identified normal, pathological and clustered mitochondria, mitochondria-endoplasmic reticulum contact sites and autophagic vacuoles. We also differentiated normal and pathological mitochondria in pre- and post-synaptic nerve terminals, as well as in astrocytic endfoot processes towards vessels. RESULTS We found a high prevalence of pathological mitochondria in neuronal soma and pre- and post-synaptic terminals, as well as increased mitochondrial clustering, and altered number of mitochondria-endoplasmic reticulum contact sites in iNPH. Non-fused autophagic vacuoles were more abundant in neuronal soma of iNPH patients, suggestive of cellular clearance failure. Moreover, the length of postsynaptic densities was reduced in iNPH, potentially related to reduced synaptic activity. In astrocytic endfoot processes, we also found increased number, area and area fraction of pathological mitochondria in iNPH patients. The proportion of pathological mitochondria correlated significantly with increasing degree of astrogliosis and reduced perivascular expression of aquaporin-4 (AQP4), assessed by light microscopy immunohistochemistry. CONCLUSION Our results provide evidence of mitochondrial pathology and signs of impaired cellular clearance in iNPH patients. The results indicate that iNPH is a neurodegenerative disease with close similarity to Alzheimer's disease.
Collapse
Affiliation(s)
- Md Mahdi Hasan-Olive
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, 0027, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rune Enger
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway.,Department of Neurology, Oslo University Hospital-Rikshospitalet, 0027, Oslo, Norway
| | - Hans-Arne Hansson
- Institute of Biomedicine, University of Gothenburg, Göteborg, Sweden
| | - Erlend A Nagelhus
- GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway.,Department of Neurology, Oslo University Hospital-Rikshospitalet, 0027, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, 0027, Oslo, Norway. .,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
239
|
Li B, Liang F, Ding X, Yan Q, Zhao Y, Zhang X, Bai Y, Huang T, Xu B. Interval and continuous exercise overcome memory deficits related to β-Amyloid accumulation through modulating mitochondrial dynamics. Behav Brain Res 2019; 376:112171. [DOI: 10.1016/j.bbr.2019.112171] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/03/2019] [Accepted: 08/21/2019] [Indexed: 12/16/2022]
|
240
|
Zhao W, Xu Z, Cao J, Fu Q, Wu Y, Zhang X, Long Y, Zhang X, Yang Y, Li Y, Mi W. Elamipretide (SS-31) improves mitochondrial dysfunction, synaptic and memory impairment induced by lipopolysaccharide in mice. J Neuroinflammation 2019; 16:230. [PMID: 31747905 PMCID: PMC6865061 DOI: 10.1186/s12974-019-1627-9] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background It is widely accepted that mitochondria have a direct impact on neuronal function and survival. Oxidative stress caused by mitochondrial abnormalities play an important role in the pathophysiology of lipopolysaccharide (LPS)-induced memory impairment. Elamipretide (SS-31) is a novel mitochondrion-targeted antioxidant. However, the impact of elamipretide on the cognitive sequelae of inflammatory and oxidative stress is unknown. Methods We utilized MWM and contextual fear conditioning test to assess hippocampus-related learning and memory performance. Molecular biology techniques and ELISA were used to examine mitochondrial function, oxidative stress, and the inflammatory response. TUNEL and Golgi-staining was used to detect neural cell apoptosis and the density of dendritic spines in the mouse hippocampus. Results Mice treated with LPS exhibited mitochondrial dysfunction, oxidative stress, an inflammatory response, neural cell apoptosis, and loss of dendritic spines in the hippocampus, leading to impaired hippocampus-related learning and memory performance in the MWM and contextual fear conditioning test. Treatment with elamipretide significantly ameliorated LPS-induced learning and memory impairment during behavioral tests. Notably, elamipretide not only provided protective effects against mitochondrial dysfunction and oxidative stress but also facilitated the regulation of brain-derived neurotrophic factor (BDNF) signaling, including the reversal of important synaptic-signaling proteins and increased synaptic structural complexity. Conclusion These findings indicate that LPS-induced memory impairment can be attenuated by the mitochondrion-targeted antioxidant elamipretide. Consequently, elamipretide may have a therapeutic potential in preventing damage from the oxidative stress and neuroinflammation that contribute to perioperative neurocognitive disorders (PND), which makes mitochondria a potential target for treatment strategies for PND.
Collapse
Affiliation(s)
- Weixing Zhao
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Zhipeng Xu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Jiangbei Cao
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Qiang Fu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yishuang Wu
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xiaoying Zhang
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yue Long
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Xuan Zhang
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yitian Yang
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yunfeng Li
- State Key Laboratory of Toxicology Medical Countermeasures, Beijing Key Laboratories of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Academy of Military Sciences, Beijing, 100850, China
| | - Weidong Mi
- Anesthesia and Operation Center, the First Medical Center, Chinese PLA General Hospital, 28th Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
241
|
Volloch V, Olsen BR, Rits S. Precursor-Independent Overproduction of Beta-Amyloid in AD: Mitochondrial Dysfunction as Possible Initiator of Asymmetric RNA-Dependent βAPP mRNA Amplification. An Engine that Drives Alzheimer's Disease. ANNALS OF INTEGRATIVE MOLECULAR MEDICINE 2019; 1:61-74. [PMID: 31858090 PMCID: PMC6922309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The present study defines RNA-dependent amplification of βAPP mRNA as a molecular basis of beta-amyloid overproduction in Alzheimer's disease. In this process, βAPP mRNA serves as a template for RNA-dependent RNA polymerase, RdRp complex. The resulting antisense RNA self-primes its extension utilizing two complementary elements: 3'-terminal and internal, located within an antisense segment corresponding to the coding portion of βAPP mRNA. The extension produces 3'-terminal fragment of βAPP mRNA, a part of a hairpin-structured antisense/sense RNA molecule. Cleavage at the 3' end of the hairpin loop produces RNA end product encoding a C-terminal fragment of βAPP. Since each conventional βAPP mRNA can be used repeatedly as a template, the process constitutes an asymmetric mRNA amplification. The 5'-most translation initiation codon of the amplified mRNA is the AUG preceding immediately and in-frame the Aβ-coding segment. Translation from this codon overproduces Aβ independently of βAPP. Such process can occur in humans but not in mice and other animals where segments of βAPP antisense RNA required for self-priming have little, if any, complementarity. This explains why Alzheimer's disease occurs exclusively in humans and implies that βAPP mRNA amplification is requisite in AD. In AD, therefore, there are two pathways of beta-amyloid production: βAPP proteolytic pathway and βAPP mRNA amplification pathway independent of βAPP and insensitive to beta-secretase inhibition. This implies that in healthy humans, where only the proteolytic pathway is in operation, Aβ production should be suppressed by the BACE inhibition, and indeed it is. However, since βAPP-independent pathway operating in AD is by far the predominant one, BACE inhibition has no effect in Alzheimer's disease. It appears that, physiologically, the extent of beta-amyloid overproduction sufficient to trigger amyloid cascade culminating in AD requires asymmetric RNA-dependent amplification of βAPP mRNA and cannot be reached without it. In turn, the occurrence of mRNA amplification process depends on the activation of inducible components of RdRp complex by certain stresses, for example the ER stress in case of amplification of mRNA encoding extracellular matrix proteins. In case of Alzheimer's disease, such an induction appears to be triggered by stresses associated with mitochondrial dysfunction, a phenomenon closely linked to AD. The cause-and-effect relationships between mitochondrial dysfunction and AD appear to be very different in familial, FAD, and sporadic, SAD cases. In FAD, increased levels or more toxic species of Aβ resulting from the abnormal proteolysis of βAPP trigger mitochondrial dysfunction, activate mRNA amplification and increase the production of Aβ, reinforcing the cycle. Thus in FAD, mitochondrial dysfunction is an intrinsic component of the amyloid cascade. The reverse sequence is true in SAD where aging-related mitochondrial dysfunction activates amplification of βAPP mRNA and enhances the production of Aβ. This causes further mitochondrial dysfunction, the cycle repeats and degeneration increases. Thus in SAD, the initial mitochondrial dysfunction arises prior to the disease, independently of and upstream from the increased Aβ production, i.e. in SAD, mitochondrial pathology hierarchically supersedes Aβ pathology. This is the primary reason for the formulation of the Mitochondrial Cascade Hypothesis. But even in terms of the MCH, the core of the disease is the amyloid cascade as defined in the amyloid cascade hypothesis, ACH. The role of mitochondrial dysfunction in relation to this core is causative in SAD and auxiliary in FAD. In FAD, the initial increase in the production of Aβ is mutations-based and occurs relatively early in life, whereas in SAD it is coerced by an aging-contingent component, but both lead to mechanistically identical self-perpetuating mutual Aβ/mitochondrial dysfunction feedback cycles, an engine that drives, via RNA-dependent βAPP mRNA amplification, overproduction of beta-amyloid and, consequently, AD; hence drastic difference in the age of onset, yet profound pathological and symptomatic similarity in the progression, of familial and sporadic forms of Alzheimer's disease. Interestingly, the recent findings that mitochondrial microprotein PIGBOS interacts with the ER in mitigating the unfolded protein response indicate a possible connection between mitochondrial dysfunction and ER stress, implicated in activation of RNA-dependent mRNA amplification pathway. The possible involvement of mitochondrial dysfunction in βAPP mRNA amplification makes it a promising therapeutic target. Recent successes in mitigating, and even reversing, Aβ-induced metabolic defects with anti-diabetes drug metformin are encouraging in this respect.
Collapse
Affiliation(s)
- Vladimir Volloch
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, USA
| | - Sophia Rits
- Division of Molecular Medicine, Children’s Hospital, Boston, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, USA
| |
Collapse
|
242
|
Chen L, Xu S, Wu T, Shao Y, Luo L, Zhou L, Ou S, Tang H, Huang W, Guo K, Xu J. Studies on APP metabolism related to age-associated mitochondrial dysfunction in APP/PS1 transgenic mice. Aging (Albany NY) 2019; 11:10242-10251. [PMID: 31744937 PMCID: PMC6914425 DOI: 10.18632/aging.102451] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
Abstract
The aging brain with mitochondrial dysfunction and a reduced adenosine 5'-triphosphate (ATP) has been implicated in the onset and progression of β-Amyloid (Aβ)-induced neuronal toxicity in AD. To unravel the function of ATP and the underlying mechanisms on AD development, APP/PS1 double transgenic mice and wild-type (WT) C57 mice at 6 and 10 months of age were studied. We demonstrated a decreased ATP release in the hippocampus and platelet of APP/PS1 mice, comparing to C57 mice at a relatively early age. Levels of Aβ were raised in both hippocampus and platelet of APP/PS1 mice, accompanied by a decrease of α-secretase activity and an increase of β-secretase activity. Moreover, our results presented an age-dependent rise in mitochondrial vulnerability to oxidation in APP/PS1 mice. In addition, we found decreased pSer473-Akt levels, increased GSK3β activity by inhibiting phosphorylation at Ser9 in aged APP/PS1 mice and these dysfunctions probably due to down-regulation of Bcl-2 and up-regulation of cleaved caspase-3. Therefore, we demonstrate that PI3K/Akt/GSK3β signaling pathway could be involved in Aβ-associated mitochondrial dysfunction of APP/PS1 mice and APP abnormal metabolism in platelet might provide potential biomarkers for early diagnosis of AD.
Collapse
Affiliation(s)
- Lizhi Chen
- Department of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shicheng Xu
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tong Wu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Yijia Shao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Li Luo
- Department of Anatomy, School of Basic Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lingqi Zhou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Shanshan Ou
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hai Tang
- Department of Anatomy, Guangdong Jiangmen Chinese Traditional Medicine College, Jiangmen, China
| | - Wenhua Huang
- Department of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kaihua Guo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jie Xu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
243
|
Yan T, Zhao Y. Acetaldehyde induces phosphorylation of dynamin-related protein 1 and mitochondrial dysfunction via elevating intracellular ROS and Ca 2+ levels. Redox Biol 2019; 28:101381. [PMID: 31756635 PMCID: PMC6879985 DOI: 10.1016/j.redox.2019.101381] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/31/2019] [Accepted: 11/10/2019] [Indexed: 12/21/2022] Open
Abstract
Excessive alcohol consumption impairs brain function and has been associated with an earlier onset of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). Acetaldehyde, the most toxic metabolite of alcohol, has been speculated to mediate the neurotoxicity induced by alcohol abuse. However, the precise mechanisms by which acetaldehyde induces neurotoxicity remain elusive. In this study, it was found that acetaldehyde treatment induced excessive mitochondrial fragmentation, impaired mitochondrial function and caused cytotoxicity in cortical neurons and SH-SY5Y cells. Further analyses showed that acetaldehyde induced the phosphorylation of mitochondrial fission related protein dynamin-related protein 1 (Drp1) at Ser616 and promoted its translocation to mitochondria. The elevation of Drp1 phosphorylation was partly dependent on the reactive oxygen species (ROS)-mediated activation of c-Jun-N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK), as N-acetyl-l-cysteine (NAC) pretreatment inhibited the activation of JNK and p38 MAPK while attenuating Drp1 phosphorylation in acetaldehyde-treated cells. In addition, acetaldehyde treatment elevated intracellular Ca2+ level and activated Ca2+/calmodulin-dependent protein kinase II (CaMKII). Pretreatment of CaMKII inhibitor prevented Drp1 phosphorylation in acetaldehyde-treated cells and ameliorated acetaldehyde-induced cytotoxicity, suggesting that CaMKII was a key effector mediating acetaldehyde-induced Drp1 phosphorylation and mitochondrial dysfunction. Taken together, acetaldehyde induced cytotoxicity by promoting excessive Drp1 phosphorylation and mitochondrial fragmentation. Both ROS and Ca2+-mediated signaling pathways played important roles in acetaldehyde-induced Drp1 phosphorylation. The results also suggested that prevention of oxidative stress by antioxidants might be beneficial for preventing neurotoxicity associated with acetaldehyde and alcohol abuse.
Collapse
Affiliation(s)
- Tingting Yan
- Department of Bioengineering, Harbin Institute of Technology, Weihai, 264209, Shandong, China
| | - Yan Zhao
- Department of Bioengineering, Harbin Institute of Technology, Weihai, 264209, Shandong, China.
| |
Collapse
|
244
|
Denver P, D’Adamo H, Hu S, Zuo X, Zhu C, Okuma C, Kim P, Castro D, Jones MR, Leal C, Mekkittikul M, Ghadishah E, Teter B, Vinters HV, Cole GM, Frautschy SA. A Novel Model of Mixed Vascular Dementia Incorporating Hypertension in a Rat Model of Alzheimer's Disease. Front Physiol 2019; 10:1269. [PMID: 31708792 PMCID: PMC6821690 DOI: 10.3389/fphys.2019.01269] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/19/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) and mixed dementia (MxD) comprise the majority of dementia cases in the growing global aging population. MxD describes the coexistence of AD pathology with vascular pathology, including cerebral small vessel disease (SVD). Cardiovascular disease increases risk for AD and MxD, but mechanistic synergisms between the coexisting pathologies affecting dementia risk, progression and the ultimate clinical manifestations remain elusive. To explore the additive or synergistic interactions between AD and chronic hypertension, we developed a rat model of MxD, produced by breeding APPswe/PS1ΔE9 transgenes into the stroke-prone spontaneously hypertensive rat (SHRSP) background, resulting in the SHRSP/FAD model and three control groups (FAD, SHRSP and non-hypertensive WKY rats, n = 8-11, both sexes, 16-18 months of age). After behavioral testing, rats were euthanized, and tissue assessed for vascular, neuroinflammatory and AD pathology. Hypertension was preserved in the SHRSP/FAD cross. Results showed that SHRSP increased FAD-dependent neuroinflammation (microglia and astrocytes) and tau pathology, but plaque pathology changes were subtle, including fewer plaques with compact cores and slightly reduced plaque burden. Evidence for vascular pathology included a change in the distribution of astrocytic end-foot protein aquaporin-4, normally distributed in microvessels, but in SHRSP/FAD rats largely dissociated from vessels, appearing disorganized or redistributed into neuropil. Other evidence of SVD-like pathology included increased collagen IV staining in cerebral vessels and PECAM1 levels. We identified a plasma biomarker in SHRSP/FAD rats that was the only group to show increased Aqp-4 in plasma exosomes. Evidence of neuron damage in SHRSP/FAD rats included increased caspase-cleaved actin, loss of myelin and reduced calbindin staining in neurons. Further, there were mitochondrial deficits specific to SHRSP/FAD, notably the loss of complex II, accompanying FAD-dependent loss of mitochondrial complex I. Cognitive deficits exhibited by FAD rats were not exacerbated by the introduction of the SHRSP phenotype, nor was the hyperactivity phenotype associated with SHRSP altered by the FAD transgene. This novel rat model of MxD, encompassing an amyloidogenic transgene with a hypertensive phenotype, exhibits several features associated with human vascular or "mixed" dementia and may be a useful tool in delineating the pathophysiology of MxD and development of therapeutics.
Collapse
Affiliation(s)
- Paul Denver
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Heather D’Adamo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Shuxin Hu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Xiaohong Zuo
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Cansheng Zhu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Chihiro Okuma
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Peter Kim
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Daniel Castro
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Mychica R. Jones
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Carmen Leal
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Marisa Mekkittikul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Elham Ghadishah
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Bruce Teter
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Harry V. Vinters
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Gregory Michael Cole
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| | - Sally A. Frautschy
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Geriatric Research Education and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA, United States
| |
Collapse
|
245
|
Mirzapoiazova T, Li H, Nathan A, Srivstava S, Nasser MW, Lennon F, Armstrong B, Mambetsariev I, Chu PG, Achuthan S, Batra SK, Kulkarni P, Salgia R. Monitoring and Determining Mitochondrial Network Parameters in Live Lung Cancer Cells. J Clin Med 2019; 8:jcm8101723. [PMID: 31635288 PMCID: PMC6832496 DOI: 10.3390/jcm8101723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are dynamic organelles that constantly fuse and divide, forming dynamic tubular networks. Abnormalities in mitochondrial dynamics and morphology are linked to diverse pathological states, including cancer. Thus, alterations in mitochondrial parameters could indicate early events of disease manifestation or progression. However, finding reliable and quantitative tools for monitoring mitochondria and determining the network parameters, particularly in live cells, has proven challenging. Here, we present a 2D confocal imaging-based approach that combines automatic mitochondrial morphology and dynamics analysis with fractal analysis in live small cell lung cancer (SCLC) cells. We chose SCLC cells as a test case since they typically have very little cytoplasm, but an abundance of smaller mitochondria compared to many of the commonly used cell types. The 2D confocal images provide a robust approach to quantitatively measure mitochondrial dynamics and morphology in live cells. Furthermore, we performed 3D reconstruction of electron microscopic images and show that the 3D reconstruction of the electron microscopic images complements this approach to yield better resolution. The data also suggest that the parameters of mitochondrial dynamics and fractal dimensions are sensitive indicators of cellular response to subtle perturbations, and hence, may serve as potential markers of drug response in lung cancer.
Collapse
Affiliation(s)
- Tamara Mirzapoiazova
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Haiqing Li
- Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Department of Computational & Quantitative Medicine, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA.
| | - Anusha Nathan
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Saumya Srivstava
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Mohd W Nasser
- University of Nebraska, Medical Center, Nebraska, NE 68198, USA.
| | | | - Brian Armstrong
- Department of Developmental and Stem Cell Biology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Isa Mambetsariev
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Peiguo G Chu
- Department of Anatomic Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Srisairam Achuthan
- Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Surinder K Batra
- University of Nebraska, Medical Center, Nebraska, NE 68198, USA.
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
246
|
Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, Page G, Duarte AI, Giusti P, Zusso M, Robert P, Frisoni GB, Cattaneo A, Zille M, Boltze J, Cartier N, Buee L, Johansson G, Winblad B. Current and emerging avenues for Alzheimer's disease drug targets. J Intern Med 2019; 286:398-437. [PMID: 31286586 DOI: 10.1111/joim.12959] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is escalating as a global epidemic, and so far, there is neither cure nor treatment to alter its progression. The most important feature of the disease is neuronal death and loss of cognitive functions, caused probably from several pathological processes in the brain. The main neuropathological features of AD are widely described as amyloid beta (Aβ) plaques and neurofibrillary tangles of the aggregated protein tau, which contribute to the disease. Nevertheless, AD brains suffer from a variety of alterations in function, such as energy metabolism, inflammation and synaptic activity. The latest decades have seen an explosion of genes and molecules that can be employed as targets aiming to improve brain physiology, which can result in preventive strategies for AD. Moreover, therapeutics using these targets can help AD brains to sustain function during the development of AD pathology. Here, we review broadly recent information for potential targets that can modify AD through diverse pharmacological and nonpharmacological approaches including gene therapy. We propose that AD could be tackled not only using combination therapies including Aβ and tau, but also considering insulin and cholesterol metabolism, vascular function, synaptic plasticity, epigenetics, neurovascular junction and blood-brain barrier targets that have been studied recently. We also make a case for the role of gut microbiota in AD. Our hope is to promote the continuing research of diverse targets affecting AD and promote diverse targeting as a near-future strategy.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - A Cedazo-Minguez
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | | | - G Page
- Neurovascular Unit and Cognitive impairments - EA3808, University of Poitiers, Poitiers, France
| | - A I Duarte
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - P Giusti
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - M Zusso
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - P Robert
- CoBTeK - lab, CHU Nice University Côte d'Azur, Nice, France
| | - G B Frisoni
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - A Cattaneo
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - M Zille
- Institute of Experimental and Clinical Pharmacology and Toxicology, Lübeck, Germany
| | - J Boltze
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - N Cartier
- Preclinical research platform, INSERM U1169/MIRCen Commissariat à l'énergie atomique, Fontenay aux Roses, France.,Université Paris-Sud, Orsay, France
| | - L Buee
- Alzheimer & Tauopathies, LabEx DISTALZ, CHU-Lille, Inserm, Univ. Lille, Lille, France
| | - G Johansson
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
247
|
Cenini G, Voos W. Mitochondria as Potential Targets in Alzheimer Disease Therapy: An Update. Front Pharmacol 2019; 10:902. [PMID: 31507410 PMCID: PMC6716473 DOI: 10.3389/fphar.2019.00902] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/18/2019] [Indexed: 02/06/2023] Open
Abstract
Alzheimer disease (AD) is a progressive and deleterious neurodegenerative disorder that affects mostly the elderly population. At the moment, no effective treatments are available in the market, making the whole situation a compelling challenge for societies worldwide. Recently, novel mechanisms have been proposed to explain the etiology of this disease leading to the new concept that AD is a multifactor pathology. Among others, the function of mitochondria has been considered as one of the intracellular processes severely compromised in AD since the early stages and likely represents a common feature of many neurodegenerative diseases. Many mitochondrial parameters decline already during the aging, reaching an extensive functional failure concomitant with the onset of neurodegenerative conditions, although the exact timeline of these events is still unclear. Thereby, it is not surprising that mitochondria have been already considered as therapeutic targets in neurodegenerative diseases including AD. Together with an overview of the role of mitochondrial dysfunction, this review examines the pros and cons of the tested therapeutic approaches targeting mitochondria in the context of AD. Since mitochondrial therapies in AD have shown different degrees of progress, it is imperative to perform a detailed analysis of the significance of mitochondrial deterioration in AD and of a pharmacological treatment at this level. This step would be very important for the field, as an effective drug treatment in AD is still missing and new therapeutic concepts are urgently needed.
Collapse
Affiliation(s)
- Giovanna Cenini
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Wolfgang Voos
- Institut für Biochemie und Molekularbiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
248
|
Chamberlain KA, Sheng ZH. Mechanisms for the maintenance and regulation of axonal energy supply. J Neurosci Res 2019; 97:897-913. [PMID: 30883896 PMCID: PMC6565461 DOI: 10.1002/jnr.24411] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 12/25/2022]
Abstract
The unique polarization and high-energy demand of neurons necessitates specialized mechanisms to maintain energy homeostasis throughout the cell, particularly in the distal axon. Mitochondria play a key role in meeting axonal energy demand by generating adenosine triphosphate through oxidative phosphorylation. Recent evidence demonstrates how axonal mitochondrial trafficking and anchoring are coordinated to sense and respond to altered energy requirements. If and when these mechanisms are impacted in pathological conditions, such as injury and neurodegenerative disease, is an emerging research frontier. Recent evidence also suggests that axonal energy demand may be supplemented by local glial cells, including astrocytes and oligodendrocytes. In this review, we provide an updated discussion of how oxidative phosphorylation, aerobic glycolysis, and oligodendrocyte-derived metabolic support contribute to the maintenance of axonal energy homeostasis.
Collapse
Affiliation(s)
- Kelly Anne Chamberlain
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, Maryland 20892-3706, USA
| |
Collapse
|
249
|
Cisternas P, Oliva CA, Torres VI, Barrera DP, Inestrosa NC. Presymptomatic Treatment With Andrographolide Improves Brain Metabolic Markers and Cognitive Behavior in a Model of Early-Onset Alzheimer's Disease. Front Cell Neurosci 2019; 13:295. [PMID: 31379502 PMCID: PMC6657419 DOI: 10.3389/fncel.2019.00295] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 06/17/2019] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of dementia. The onset and progression of this pathology are correlated with several changes in the brain, including the formation of extracellular aggregates of amyloid-beta (Aβ) peptide and the intracellular accumulation of hyperphosphorylated tau protein. In addition, dysregulated neuronal plasticity, synapse loss, and a reduction in cellular energy metabolism have also been described. Canonical Wnt signaling has also been shown to be downregulated in AD. Remarkably, we showed previously that the in vivo inhibition of Wnt signaling accelerates the appearance of AD markers in transgenic (Tg) and wild-type (WT) mice. Additionally, we found that Wnt signaling stimulates energy metabolism, which is critical for the ability of Wnt to promote the recovery of cognitive function in AD. Therefore, we hypothesized that activation of canonical Wnt signaling in a presymptomatic transgenic animal model of AD would improve some symptoms. To explore the latter, we used a transgenic mouse model (J20 Tg) with mild AD phenotype expression (high levels of amyloid aggregates) and studied the effect of andrographolide (ANDRO), an activator of canonical Wnt signaling. We found that presymptomatic administration of ANDRO in J20 Tg mice prevented the reduction in cellular energy metabolism markers. Moreover, treated animals showed improvement in cognitive performance. At the synaptic level, J20 Tg animals showed severe deficiencies in presynaptic function as determined by electrophysiological parameters, all of which were completely restored to normal by ANDRO administration. Finally, an analysis of hippocampal synaptosomes by electron microscopy revealed that the length of synapses was restored with ANDRO treatment. Altogether, these data support the idea that the activation of canonical Wnt signaling during presymptomatic stages could represent an interesting pharmacological strategy to delay the onset of AD.
Collapse
Affiliation(s)
- Pedro Cisternas
- Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina A. Oliva
- Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Viviana I. Torres
- Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela P. Barrera
- Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C. Inestrosa
- Centro de Envejecimiento y Regeneración, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
- Centro de Excelencia en Biomedicina de Magallanes, Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
250
|
Espinosa-Parrilla Y, Gonzalez-Billault C, Fuentes E, Palomo I, Alarcón M. Decoding the Role of Platelets and Related MicroRNAs in Aging and Neurodegenerative Disorders. Front Aging Neurosci 2019; 11:151. [PMID: 31312134 PMCID: PMC6614495 DOI: 10.3389/fnagi.2019.00151] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Platelets are anucleate cells that circulate in blood and are essential components of the hemostatic system. During aging, platelet numbers decrease and their aggregation capacity is reduced. Platelet dysfunctions associated with aging can be linked to molecular alterations affecting several cellular systems that include cytoskeleton rearrangements, signal transduction, vesicular trafficking, and protein degradation. Age platelets may adopt a phenotype characterized by robust secretion of extracellular vesicles that could in turn account for about 70-90% of blood circulating vesicles. Interestingly these extracellular vesicles are loaded with messenger RNAs and microRNAs that may have a profound impact on protein physiology at the systems level. Age platelet dysfunction is also associated with accumulation of reactive oxygen species. Thereby understanding the mechanisms of aging in platelets as well as their age-dependent dysfunctions may be of interest when evaluating the contribution of aging to the onset of age-dependent pathologies, such as those affecting the nervous system. In this review we summarize the findings that link platelet dysfunctions to neurodegenerative diseases including Alzheimer's Disease, Parkinson's Disease, Multiple Sclerosis, Huntington's Disease, and Amyotrophic Lateral Sclerosis. We discuss the role of platelets as drivers of protein dysfunctions observed in these pathologies, their association with aging and the potential clinical significance of platelets, and related miRNAs, as peripheral biomarkers for diagnosis and prognosis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yolanda Espinosa-Parrilla
- School of Medicine, Universidad de Magallanes, Punta Arenas, Chile
- Laboratory of Molecular Medicine-LMM, Center for Education, Healthcare and Investigation-CADI, Universidad de Magallanes, Punta Arenas, Chile
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
| | - Christian Gonzalez-Billault
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism GERO, Santiago, Chile
- The Buck Institute for Research on Aging, Novato, CA, United States
| | - Eduardo Fuentes
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| | - Ivan Palomo
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| | - Marcelo Alarcón
- Thematic Task Force on Healthy Aging, CUECH Research Network, Santiago, Chile
- Thrombosis Research Center, Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences and Research Center for Aging, Universidad de Talca, Talca, Chile
| |
Collapse
|