201
|
Su X, Cui Y, Gong H, Xu T, Sun Y. The gene characteristics and adaptive evolution of the tumor necrosis factor superfamily (TNFSF) in miiuy croaker, Miichthysmiiuy. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110369. [PMID: 40288618 DOI: 10.1016/j.fsi.2025.110369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 04/22/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
The tumor necrosis factor superfamily (TNFSF) is crucial in regulating immune responses, with its members mediating various biological functions through key signaling pathways. However, the gene characteristics of this family and their comparative and evolutionary analysis across species remain limited. In this study, 12 TNFSF genes were identified in the genome-wide of miiuy croaker. Analyses were conducted on evolutionary relationships, conserved motifs, gene duplication, and selection pressure. Conserved motif analyses revealed that the C-terminal motifs of vertebrate TNFSF proteins were more conserved than the N-terminus. Sequence alignment and conservation analysis identified an unrecognized helix structure within the TNF homology domain, which exhibited structural conservation among vertebrates. Synteny and selection pressure analyses indicated that the TNFSF in miiuy croaker exhibited tandem and segmental duplication events. Evolutionary selection pressures may contributed to the functional differentiation of this family. These findings could enhance the understanding of TNFSF gene characteristics and evolutionary relationships, and provide new insights for studying immune-related TNFSF genes.
Collapse
Affiliation(s)
- Xiaoqin Su
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yanqiu Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Hanfu Gong
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, China.
| | - Yuena Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, China.
| |
Collapse
|
202
|
Yang M, Zhao W, Zhang J, Liu L, Tian S, Miao Y, Jia Y, Wang L, Chai Q, Wang Q, Liu F, Zhang Y, You X. HDAC11 Inhibition as a Potential Therapeutic Strategy for AML: Target Identification, Lead Discovery, Antitumor Potency, and Mechanism Investigation. J Med Chem 2025; 68:8124-8142. [PMID: 40177883 DOI: 10.1021/acs.jmedchem.4c02550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Herein, we identified that HDAC11 is involved in the pathogenesis of AML and is a potential therapeutic target for AML. Considering the scarcity of HDAC11 inhibitors, structurally novel HDAC11 inhibitors were developed, identifying A9 as the most potent one, which phenocopied the apoptosis induction, cell cycle arrest, and differentiation promotion effects of HDAC11 knockdown in AML cells. Moreover, A9 not only promoted iron uptake by upregulating TF and TFRC but also promoted iron release by upregulating HMOX1, which cooperatively led to iron homeostasis disruption and the consequent ferroptosis in AML cells. Mechanism investigation indicated that A9-induced HMOX1 upregulation was due to the activation of the p62-Keap1-Nrf2 pathway. Notably, the combination of A9 with chemotherapy drugs synergistically reduced AML cell viability in vitro. The robust in vivo anti-AML efficacy of A9, alone and combined with cytarabine, was also validated. Collectively, our study revealed pharmacological inhibition of HDAC11 as a potential therapeutic strategy for AML.
Collapse
Affiliation(s)
- Maoshuo Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Wei Zhao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jinwei Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lanlan Liu
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Sijia Tian
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yaqing Miao
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yongxin Jia
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Limei Wang
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qipeng Chai
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Qiang Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei 430074, P.R. China
| | - Fabao Liu
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yingjie Zhang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaona You
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
203
|
Liu D, Abdiriyim A, Zhang L, Yu F. Functional and Mechanistic Insights into the Fatty-Acid CoA Ligase FadK in Escherichia coli. FRONT BIOSCI-LANDMRK 2025; 30:36701. [PMID: 40302338 DOI: 10.31083/fbl36701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 05/02/2025]
Abstract
BACKGROUND Escherichia coli (E. coli) is a common opportunistic bacterial pathogen in both human and animal populations. Fatty acids serve as the central carbon and energy source, a process mediated by fatty acid-coenzyme A (CoA) ligases encoded by fad genes such as FadK. However, the function and the mechanism of FadK remain unclear. METHODS The three-dimensional structure of FadK was modeled using AlphaFold2. After expression and purification, monomeric FadK was successfully isolated. The enzymatic activity was assayed, and real-time quantitative polymerase chain reaction (RT-qPCR) was performed to quantify FadK expression levels. RESULTS In enzymatic assays of fatty acid CoA ligase activity, caprylic acid was found to be the optimal substrate for FadK. We determined the optimal catalytic conditions for FadK, which include a pH of 7.4, ATP concentration of 0.6 mM, CoA concentration of 0.8 mM, and Mg2+ concentration of 0.8 mM at 37 °C. Notably, the activity of FadK showed a decrease with increasing concentrations of dodecyl-AMP, which was further confirmed by the RT-qPCR results. CONCLUSIONS Our findings will serve as a fundamental framework for the development of innovative therapeutics that target E. coli infections.
Collapse
Affiliation(s)
- Dafeng Liu
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, 835000 Yining, Xinjiang, China
- School of Life Sciences, Xiamen University, 361102 Xiamen, Fujian, China
| | - Ablikim Abdiriyim
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, 835000 Yining, Xinjiang, China
| | - Lvxia Zhang
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, 835000 Yining, Xinjiang, China
| | - Feng Yu
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, 835000 Yining, Xinjiang, China
| |
Collapse
|
204
|
Tang M, Ma G, Xu C, Yang H, Lin H, Bian C, Hu C, Lu M, Chen L, Jie W, Yue Z, Jian J, Sun Y, Yan H, Zhou J, Zhang X, Liao S, Li Z, Cai S, Wu Y, Yang K, Xiong Y, Zhao Y, Lv Z, Xu X, Liu C, Xin P, Ye L, Cui X, Shi Q, Chen X, Xu R. A facultative plasminogen-independent thrombolytic enzyme from Sipunculus nudus. Nat Commun 2025; 16:3852. [PMID: 40274794 PMCID: PMC12022309 DOI: 10.1038/s41467-025-58915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/04/2025] [Indexed: 04/26/2025] Open
Abstract
Current thrombolytic therapies primarily function by converting plasminogen into plasmin, a process dependent on the fibrin-activator complex. This dependence, coupled with the substantial molecular size of plasmin, constrains its effectiveness in degrading D-dimer and restricts its diffusion within thrombi. Here, we introduce a small facultative plasminogen-independent thrombolytic enzyme, snFPITE, isolated from Sipunculus nudus. Compared to traditional thrombolytic agents, snFPITE does not require plasminogen for thrombolysis, although its presence enhances lytic activity. This enzyme fully degrades cross-linked fibrin without leaving residual nondegradable D-dimer and generates a smaller fibrinolytic-active agent from plasminogen. A series of male rats and mice models further confirm that snFPITE is a safety injectable thrombolytic agent. Mechanistically, snFPITE activates plasminogen and degrades fibrin(ogen) in a multisite cleavage manner. snFPITE is inhibited by plasminogen activator inhibitor 1 and α2-antiplasmin via a competitive inhibition. We further identify 28 snFPITE candidate sequences, of which 10 are confirmed as functional genes.
Collapse
Affiliation(s)
- Mingqing Tang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Guoxing Ma
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
- Department of Life Sciences, Tangshan Normal University, Tangshan, Hebei, China
| | | | - Hui Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi, China
| | - Hongjun Lin
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Chao Bian
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Chengjia Hu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Meiling Lu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Lei Chen
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Wencai Jie
- BGI Genomics, Shenzhen, Guangdong, China
| | - Zhen Yue
- BGI Research, Sanya, Hainan, China
| | | | - Yuqing Sun
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Hui Yan
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Jingjing Zhou
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Xianying Zhang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Shengye Liao
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Zhaofa Li
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Shuangfeng Cai
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Yaqing Wu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Kexin Yang
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Yanan Xiong
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Yonggang Zhao
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
| | - Zhimin Lv
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
- Xiamen Institute of Medicine and Technology, Xiamen, Fujian, China
| | - Xiaoming Xu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China
- Xiamen Institute of Medicine and Technology, Xiamen, Fujian, China
| | - Chuang Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pengliang Xin
- Department of Haematology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Lichao Ye
- Department of Neurology, The Second Affiliated Hospital, The Second Clinical Medical College, Fujian Medical University, Quanzhou, Fujian, China
| | - Xiuling Cui
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China.
| | - Qiong Shi
- Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China.
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, Shanxi, China.
| | - Ruian Xu
- Engineering Research Centre of Molecular Medicine of Ministry of Education, Fujian Key Laboratory of Molecular Medicine, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Xiamen Key Laboratory of Marine and Gene Drugs, School of Biomedical Sciences, Huaqiao University, Xiamen, Fujian, China.
- Xiamen Institute of Medicine and Technology, Xiamen, Fujian, China.
| |
Collapse
|
205
|
Chai X, Jiang Y, Lu H, Huang X. Integrating ensemble machine learning and multi-omics approaches to identify Dp44mT as a novel anti- Candida albicans agent targeting cellular iron homeostasis. Front Pharmacol 2025; 16:1574990. [PMID: 40342996 PMCID: PMC12058677 DOI: 10.3389/fphar.2025.1574990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 04/11/2025] [Indexed: 05/11/2025] Open
Abstract
Introduction Candidiasis, mainly caused by Candida albicans, poses a serious threat to human health. The escalating drug resistance in C. albicans and the limited antifungal options highlight the critical need for novel therapeutic strategies. Methods We evaluated 12 machine learning models on a self-constructed dataset with known anti-C. albicans activity. Based on their performance, the optimal model was selected to screen our separate in-house compound library with unknown anti-C. albicans activity for potential antifungal agents. The anti-C. albicans activity of the selected compounds was confirmed through in vitro drug susceptibility assays, hyphal growth assays, and biofilm formation assays. Through transcriptomics, proteomics, iron rescue experiments, CTC staining, JC-1 staining, DAPI staining, molecular docking, and molecular dynamics simulations, we elucidated the mechanism underlying the anti-C. albicans activity of the compound. Result Among the evaluated machine learning models, the best predictive model was an ensemble learning model constructed from Random Forests and Categorical Boosting using soft voting. It predicts that Dp44mT exhibits potent anti-C. albicans activity. The in vitro tests further verified this finding that Dp44mT can inhibit planktonic growth, hyphal formation, and biofilm formation of C. albicans. Mechanistically, Dp44mT exerts antifungal activity by disrupting cellular iron homeostasis, leading to a collapse of mitochondrial membrane potential and ultimately causing apoptosis. Conclusion This study presents a practical approach for predicting the antifungal activity of com-pounds using machine learning models and provides new insights into the development of antifungal compounds by disrupting iron homeostasis in C. albicans.
Collapse
Affiliation(s)
- Xiaowei Chai
- Department of Dermatology, Hair Medical Center of Shanghai Tongji Hospital, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacy, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Lu
- Department of Pharmacy, Key Laboratory of Pathogen-Host Interaction, Ministry of Education, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xin Huang
- Department of Dermatology, Hair Medical Center of Shanghai Tongji Hospital, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
206
|
Chai R, Guo J, Yang C, Zhu D, Li T, Yang W, Liu X, Chen X, Huang S, Wang H, Yao X, Gao Y, Qiu L. Enhanced chemotaxis and degradation of nonylphenol in Pseudoxanthomonas mexicana via CRISPR-mediated receptor modification. Sci Rep 2025; 15:14296. [PMID: 40274871 PMCID: PMC12022248 DOI: 10.1038/s41598-025-97273-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
In this study, a novel nonylphenol (NP)-degrading bacterium, Pseudoxanthomonas mexicana CH, was isolated from wastewater treatment plant effluent. Phylogenetic analysis showed its close relationship to P. mexicana AMX 26BT. The strain displayed chemotaxis toward NP, with Mcp24 as the key chemoreceptor. The Mcp24 deletion mutant (CH- 1) had weaker chemotaxis and NP degradation (over 30% lower in solution and 8% lower in sludge than the wild type). In vitro, Mcp15's C-terminal pentapeptide DWQEF was methylated by CheR. Using CRISPR, this pentapeptide was added to Mcp24 to create CH- 2. CH- 2 showed better NP chemotaxis (17% higher in plate assays and 39% higher in capillary assays) and higher NP degradation rates (23.5% and 24.2% higher in solution and sludge, respectively). These findings demonstrate that NP acts as a bacterial chemoattractant, with Mcp24 as the receptor. Enhancing Mcp24's C-terminal pentapeptide improves chemotaxis and degradation efficiency, representing a significant advancement in bioremediation by strengthening bacterial responses to pollutants.
Collapse
Affiliation(s)
- Ran Chai
- Yellow River Conservancy Technical Institute, Kaifeng, 475004, China
- College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jiaxiang Guo
- Yellow River Conservancy Technical Institute, Kaifeng, 475004, China
- College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chuanzhong Yang
- Huaxia Bishui Environmental Protection Technology Co., Ltd, Zhengzhou, 450047, China
| | - Dan Zhu
- Yellow River Conservancy Technical Institute, Kaifeng, 475004, China
| | - Tao Li
- College of Applied Engineering, Henan University of Science and Technology, Sanmenxia, 472000, China
| | - Wen Yang
- Zhengzhou Railway Vocational and Technical College, Zhengzhou, 451400, China.
| | - Xinxin Liu
- School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xing Chen
- Yellow River Conservancy Technical Institute, Kaifeng, 475004, China
| | - Shuai Huang
- Yellow River Conservancy Technical Institute, Kaifeng, 475004, China
| | - Haifeng Wang
- Yellow River Conservancy Technical Institute, Kaifeng, 475004, China.
| | - Xinding Yao
- Yellow River Conservancy Technical Institute, Kaifeng, 475004, China.
| | - Yuqian Gao
- College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Liyou Qiu
- College of Life Sciences, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
207
|
Hasebe F, Shimada D, Maruyama C, Hamano Y. Lysine source for ε-poly-l-lysine biosynthesis depends on diaminopimelate pathway during its production in Streptomyces albulus. J Biosci Bioeng 2025:S1389-1723(25)00085-4. [PMID: 40274453 DOI: 10.1016/j.jbiosc.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025]
Abstract
Streptomyces albulus NBRC14147 produces the polycationic homopoly(amino acid) ε-poly-l-lysine (ε-PL). Due to its antimicrobial properties, nontoxicity to humans, biodegradability, and permeability, there is a high demand for ε-PL. As ε-PL is produced by l-lysine polymerization, elucidating the source of l-lysine for ε-PL production is crucial for enhancing its yield. In actinobacteria, l-lysine is produced by diaminopimelate (DAP) pathway. In this study, 2,6-pyridine-dicarboxylate (PDC) was identified as the inhibitor of DapB, a DAP pathway enzyme, by comparing the structure of DapB from Mycobacterium tuberculosis with the model structure of DapB from S. albulus. We also found that adding PDC inhibited the growth of S. albulus. More importantly, PDC additions during the initial stages of the ε-PL production phase led to the accumulation of amino acids generated from pyruvate and l-aspartic 4-semialdehyde, while the ε-PL production was terminated. These findings suggest that de novo biosynthesized nascent l-lysine from the DAP pathway contributes to ε-PL production.
Collapse
Affiliation(s)
- Fumihito Hasebe
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan; Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan.
| | - Daisuke Shimada
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan
| | - Chitose Maruyama
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan; Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan.
| | - Yoshimitsu Hamano
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan; Fukui Bio Incubation Center (FBIC), Fukui Prefectural University, 4-1-1 Matsuoka-Kenjojima, Eiheiji-cho, Yoshida-gun, Fukui 910-1195, Japan.
| |
Collapse
|
208
|
Yang Q, Liu S, Sun A, Li X, Liu T, Han X, Mao J. Salt-Resistant and Ethanol-Resistant Monoamine Oxidases: New Sight for yobN Mining from Bacillus and Biogenic Amine Degradation Mechanism in Fermented Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9714-9731. [PMID: 40223567 DOI: 10.1021/acs.jafc.4c13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Amine oxidases have strong capabilities for the degradation of biogenic amines (BAs) in fermented foods. However, their application is limited by substrate specificity, and high concentrations of ethanol and salt can hinder their effectiveness. This study presents a novel approach utilizing comparative genomics, protein clustering analysis, and full homology modeling to identify three amine oxidases: KCYOBN from the salt-resistant Bacillus subtilis, and LYYOBN1 and LYYOBN2 from the ethanol-resistant Bacillus cereus. These enzymes are highly similar in structure and exhibit broad substrate specificities. KCYOBN maintains over 84% relative activity at 20% (w/v) NaCl, while LYYOBN1 and LYYOBN2 retain over 32 and 21% relative activity at 25% vol ethanol. Variations in key residues are one of the reasons for the differences in tolerance. In fermented foods, KCYOBN degraded 45.97% of the total BAs in cooking wine and 38.33% in fish sauce. LYYOBN1 achieved the highest degradation rate of 32.93% in huangjiu. LYYOBN2 exhibited degradation rates of 30.00% in soy sauce and 35.14% in wine with no significant impact on flavor compounds. The significance of this work lies in the identification of the novel salt-resistant KCYOBN and ethanol-resistant LYYOBN1 and LYYOBN2 through this new method, which can simultaneously degrade multiple BAs and have a broad application potential.
Collapse
Affiliation(s)
- Qilin Yang
- State Key Laboratory of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Shuangping Liu
- State Key Laboratory of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 312000, China
| | - Aibao Sun
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 312000, China
| | - Xin Li
- Jiangsu Hengshun Vinegar Industry Co., Ltd., Zhenjiang 212000, China
| | - Tiantian Liu
- State Key Laboratory of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 312000, China
| | - Xiao Han
- State Key Laboratory of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 312000, China
| | - Jian Mao
- State Key Laboratory of Food Science and Technology, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Shaoxing Key Laboratory of Traditional Fermentation Food and Human Health, Jiangnan University (Shaoxing) Industrial Technology Research Institute, Shaoxing, Zhejiang 312000, China
- National Engineering Research Center of Huangjiu, Zhejiang Guyuelongshan Shaoxing Wine Co., Ltd., Shaoxing, Zhejiang 312000, China
| |
Collapse
|
209
|
Zhou C, Segura-Covarrubias G, Tajima N. Structural Insights into Kainate Receptor Desensitization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645769. [PMID: 40236080 PMCID: PMC11996427 DOI: 10.1101/2025.03.27.645769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Kainate receptors (KARs), along with AMPA and NMDA receptors, belong to the ionotropic glutamate receptor (iGluR) family and play critical roles in mediating excitatory neurotransmission throughout the central nervous system. KARs also regulate neurotransmitter release and modulate neuronal excitability and plasticity. Receptor desensitization plays a critical role in modulating the strength of synaptic transmission and synaptic plasticity. While KARs share overall structural similarity with AMPA receptors, the desensitized state of KARs differs strikingly from that of other iGluRs. Despite extensive studies on KARs, a fundamental question remains unsolved: why do KARs require large conformational changes upon desensitization, unlike other iGluRs? To address this, we present cryo-electron microscopy structures of GluK2 with double cysteine mutations in non-desensitized, shallow-desensitized and deep-desensitized conformations. In the shallow-desensitized conformation, two cysteine crosslinks stabilize the receptors in a conformation that resembles the desensitized state of AMPA receptors. However, unlike the tightly closed pore observed in the deep-desensitized KAR and desensitized AMPAR conformations, the channel pore in the shallow-desensitized state remains incompletely closed. Patch-clamp recordings and fluctuation analysis suggest that this state remains ion-permeable, indicating that the lateral rotational movement of KAR ligand-binding domains (LBDs) is critical for complete channel closure and stabilization of the receptor in desensitization states. Together with the multiple conformations representing different degree of desensitization, our results define the unique mechanism and conformational dynamics of KAR desensitization. Highlights We present cryo-EM structures of GluK2 kainate receptors with engineered cysteine crosslinks at the inter-dimer interface, which restrict subunit lateral rotation and attenuate receptor desensitization.The structure of GluK2 double cysteine mutant in complex with the allosteric potentiator BPAM344 and glutamate represents a non-desensitized state, highlighting the critical conformational changes required for ion channel gating.The glutamate-bound GluK2 mutant adopts multiple conformations, representing both shallow- and deep-desensitized states. Electrophysiological recordings indicate that the GluK2 kainate receptor mutant recovers from desensitization more rapidly, resembling AMPA receptors. Our structural and functional data suggest that shallow-desensitized KARs remain conductive, implying that the large lateral LBD rotation during KAR desensitization is essential for complete channel closure, distinguishing KARs from other iGluRs.
Collapse
|
210
|
Schendel SL, Yu X, Halfmann PJ, Mahita J, Ha B, Hastie KM, Li H, Bedinger D, Troup C, Li K, Kuzmina N, Torrelles JB, Munt JE, Maddocks M, Osei-Twum M, Callaway HM, Reece S, Palser A, Kellam P, Dennison SM, Huntwork RHC, Horn GQ, Abraha M, Feeney E, Martinez-Sobrido L, Pino PA, Hicks A, Ye C, Park JG, Maingot B, Periasamy S, Mallory M, Scobey T, Lepage MN, St-Amant N, Khan S, Gambiez A, Baric RS, Bukreyev A, Gagnon L, Germann T, Kawaoka Y, Tomaras GD, Peters B, Saphire EO. A global collaboration for systematic analysis of broad-ranging antibodies against the SARS-CoV-2 spike protein. Cell Rep 2025; 44:115499. [PMID: 40184253 PMCID: PMC12014896 DOI: 10.1016/j.celrep.2025.115499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/31/2025] [Accepted: 03/11/2025] [Indexed: 04/06/2025] Open
Abstract
The Coronavirus Immunotherapeutic Consortium (CoVIC) conducted side-by-side comparisons of over 400 anti-SARS-CoV-2 spike therapeutic antibody candidates contributed by large and small companies as well as academic groups on multiple continents. Nine reference labs analyzed antibody features, including in vivo protection in a mouse model of infection, spike protein affinity, high-resolution epitope binning, ACE-2 binding blockage, structures, and neutralization of pseudovirus and authentic virus infection, to build a publicly accessible dataset in the database CoVIC-DB. High-throughput, high-resolution binning of CoVIC antibodies defines a broad and predictive landscape of antibody epitopes on the SARS-CoV-2 spike protein and identifies features associated with durable potency against multiple SARS-CoV-2 variants of concern and high in vivo efficacy. Results of the CoVIC studies provide a guide for selecting effective and durable antibody therapeutics and for immunogen design as well as providing a framework for rapid response to future viral disease outbreaks.
Collapse
Affiliation(s)
- Sharon L Schendel
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Xiaoying Yu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Jarjapu Mahita
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Brendan Ha
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Haoyang Li
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | | | - Kan Li
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Natalia Kuzmina
- Department of Pathology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA; Galveston National Laboratory, 301 University Boulevard, Galveston, TX 77550, USA
| | - Jordi B Torrelles
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Population Health Program, International Center for the Advancement of Research & Education (I-CARE), Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jennifer E Munt
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Melissa Maddocks
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Mary Osei-Twum
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | - Heather M Callaway
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Stephen Reece
- Kymab, a Sanofi Company, Babraham Research Campus, Cambridge CB22 3AT, UK
| | | | - Paul Kellam
- RQ Biotechnology Ltd., London W12 7RZ, UK; Department of Infectious Diseases, Faculty of Medicine, Imperial College, London SW7 2AZ, UK
| | - S Moses Dennison
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Richard H C Huntwork
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Gillian Q Horn
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Milite Abraha
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Elizabeth Feeney
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Population Health Program, International Center for the Advancement of Research & Education (I-CARE), Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Paula A Pino
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Amberlee Hicks
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Chengjin Ye
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Population Health Program, International Center for the Advancement of Research & Education (I-CARE), Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jun-Gyu Park
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Billie Maingot
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Sivakumar Periasamy
- Galveston National Laboratory, 301 University Boulevard, Galveston, TX 77550, USA
| | - Michael Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Marie-Noelle Lepage
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | - Natalie St-Amant
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | - Sarwat Khan
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | - Anaïs Gambiez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ralph S Baric
- Population Health Program, International Center for the Advancement of Research & Education (I-CARE), Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Department of Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA; Galveston National Laboratory, 301 University Boulevard, Galveston, TX 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luc Gagnon
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | | | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan; Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Bjoern Peters
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
211
|
Sherry J, Pawar KI, Dolat L, Smith E, Chang IC, Pha K, Kaake R, Swaney DL, Herrera C, McMahon E, Bastidas RJ, Johnson JR, Valdivia RH, Krogan NJ, Elwell CA, Verba K, Engel JN. The Chlamydia effector Dre1 binds dynactin to reposition host organelles during infection. Cell Rep 2025; 44:115509. [PMID: 40186871 DOI: 10.1016/j.celrep.2025.115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/09/2025] [Accepted: 03/12/2025] [Indexed: 04/07/2025] Open
Abstract
The obligate intracellular pathogen Chlamydia trachomatis replicates in a specialized membrane-bound compartment where it repositions host organelles during infection to acquire nutrients and evade host surveillance. We describe a bacterial effector, Dre1, that binds specifically to dynactin associated with host microtubule organizing centers without globally impeding dynactin function. Dre1 is required to reposition the centrosome, mitotic spindle, Golgi apparatus, and primary cilia around the inclusion and contributes to pathogen fitness in cell-based and mouse models of infection. We utilized Dre1 to affinity purify the megadalton dynactin protein complex and determined the first cryoelectron microscopy (cryo-EM) structure of human dynactin. Our results suggest that Dre1 binds to the pointed end of dynactin and uncovers the first bacterial effector that modulates dynactin function. Our work highlights how a pathogen employs a single effector to evoke targeted, large-scale changes in host cell organization that facilitate pathogen growth without inhibiting host viability.
Collapse
Affiliation(s)
- Jessica Sherry
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Komal Ishwar Pawar
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lee Dolat
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erin Smith
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - I-Chang Chang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Khavong Pha
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robyn Kaake
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Clara Herrera
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Eleanor McMahon
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Robert J Bastidas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cherilyn A Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Kliment Verba
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Joanne N Engel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
212
|
Liu Z, Zheng X, Yang D, Li L, Yin H. Genome-wide identification of the nuclear redox protein gene family revealed its potential role in drought stress tolerance in rice. FRONTIERS IN PLANT SCIENCE 2025; 16:1562718. [PMID: 40330127 PMCID: PMC12052764 DOI: 10.3389/fpls.2025.1562718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/28/2025] [Indexed: 05/08/2025]
Abstract
Introduction Thioredoxins (TRX) are redox-active proteins critical for plant stress adaptation. As a TRX family member, nucleoredoxin (NRX) maintains drought-induced redox homeostasis, yet its genome-wide characterization in rice remains uninvestigated. Methods Using HMMER3.0 (E-value <1e-5) and TBtools, we identified OsNRX genes across three rice varieties (Minghui63, Nipponbare, 9311). Conserved domains were verified by SMART/CDD, while promoter cis-elements were systematically predicted with PlantCARE. Tissue-specific expression patterns were analyzed using RiceXPro data, and drought responses were quantified via qRT-PCR in drought-tolerant (Jiangnong Zao 1B) versus sensitive (TAISEN GLUTINOUS YU 1157) varieties under PEG6000 stress. Results Ten OsNRX genes were classified into three subfamilies (NRX1/NRX2/NRX3) exhibiting conserved domain architectures. Promoter analysis identified abundant stress-responsive elements (ABRE, MBS) and phytohormone signals (ABA/JA/SA). Tissue-specific expression profiles revealed NRX1a dominance in roots/hulls, versus NRX1b/NRX2 enrichment in endosperm. Drought stress triggered rapid OsNRX upregulation (20-53-fold within 3-6h), with tolerant varieties showing earlier NRX2 activation than sensitive counterparts. Discussion OsNRX genes exhibit dynamic drought-responsive regulation, while their spatiotemporal expression in glumes, embryos, and endosperm suggests potential dual roles in stress adaptation and grain development. These results provide molecular targets for improving drought resilience in rice breeding.
Collapse
Affiliation(s)
- Zijie Liu
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xingfei Zheng
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crop Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Dabing Yang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crop Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lanzhi Li
- Hunan Engineering & Technology Research Center for Agricultural Big Data Analysis & Decision-Making, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Hexing Yin
- Crop Phenomics Research Center, Huazhi Biotechnology Co., Ltd, Changsha, China
| |
Collapse
|
213
|
Meng X, Wang Y, Tang B, Zhou J, Gu Y, Shen Q, Zhou Y, Wang B, Fang H, Cao Y. A Comprehensive Analysis of the Alternative Splicing Co-Factor U2AF65B Gene Family Reveals Its Role in Stress Responses and Root Development. Int J Mol Sci 2025; 26:3901. [PMID: 40332802 PMCID: PMC12027700 DOI: 10.3390/ijms26083901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 05/08/2025] Open
Abstract
U2AF65, a 65 kDa splicing co-factor, promotes spliceosome assembly. Although its role in alternative splicing (AS) is known, the function of U2AF65B (the large subunit of U2AF65) remains unclear. Therefore, we systematically identified and analyzed the U2AF65B gene family across 36 plant species, revealing 103 putative members with conserved structures and functions. Phylogenetic analysis divided the genes into two clades and five subgroups, indicating evolutionary divergence. Gene structure and conserved motif analyses showed that most U2AF65B genes have complex structures and shared similar motifs. Homology modeling and amino acid conservation analyses revealed significant conservation in U2AF65B amino acid sequences, particularly in Groups D and E. Cis-acting element analysis indicated that U2AF65B genes respond to various stimuli, supported by expression analysis under different stress conditions. Subcellular localization predictions indicated that U2AF65B proteins primarily localize in the nucleus and the cytoplasm. Alternative splicing (AS) profile analysis showed that the AS frequency likely varies between species. Functional analysis of the AtU2AF65B mutant in Arabidopsis revealed that AtU2AF65B function loss enhances root elongation and attenuates ABA-dependent germination suppression, indicating negatively regulated seedling growth and development. These findings provide insights into the evolutionary history, molecular mechanisms, and functional roles of the U2AF65B gene family in plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Fang
- College of Life Sciences, Nantong University, Nantong 226019, China; (X.M.); (Y.W.); (B.T.); (J.Z.); (Y.G.); (Q.S.); (Y.Z.); (B.W.)
| | - Yunying Cao
- College of Life Sciences, Nantong University, Nantong 226019, China; (X.M.); (Y.W.); (B.T.); (J.Z.); (Y.G.); (Q.S.); (Y.Z.); (B.W.)
| |
Collapse
|
214
|
Lun J, Zheng P, Liang X, Hu Y, An L, Xiao G, Chen X, Chen Y, Gong H, Zhong M, Zhang Y, Hu Z. Identification of a conserved cryptic epitope with cross-immunoreactivity in outer membrane protein K (OmpK) from Vibrio species. Vaccine 2025; 53:126964. [PMID: 40037129 DOI: 10.1016/j.vaccine.2025.126964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/25/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Outer membrane protein K (OmpK) has been proven to be an ideal vaccine candidate for broad-spectrum cross-prevention against Vibriosis. However, due to the extensive biological and genetic diversity of Vibrio species, current OmpK subunit vaccines can only target different strains of the same bacterial species or closely related species and have difficulty providing promising cross-immunoprotection against more diverse Vibrio infections. In recent years, the development of epitope-focused vaccines has been described as the latest stage in the development of vaccine formulations, providing new ideas for the development of broad-spectrum Vibrio vaccines. Interestingly, a cryptic epitope (K7) was identified in OmpK from Vibrio species, which is itself immunogenic but is not involved in the immune response to intact OmpK. Epitope K7 is a 15-residue hairpin structure in OmpK predicted to contain a 6-residue extracellular turn region. Interestingly, unlike other highly variable extracellular long loops, epitope K7 is the only conserved extracellular short turn in OmpK, with a similarity of 33 % to 93 %. K7 homologous peptides stimulated the production of specific antibodies, confirming their high immunogenicity. Cross-immunoreactivity between K7 homologous and K7-induced antibodies was evaluated by peptide-based ELISA, western blot, and cell-based ELISA. Flow cytometry and immunofluorescence assay further confirmed that the native epitope K7 in OmpK is surface-exposed and therefore an extracellular target that binds to antibodies. Moreover, an antibody-dependent and complement-mediated serum bactericidal assay suggested that epitope K7-induced antibodies have vibriocidal activity. In conclusion, we identified a conserved cryptic epitope with cross-immunoreactivity in OmpK from Vibrio species. Our results suggest that epitope K7 could be an ideal candidate for the design of epitope-focused vaccines against diverse Vibrio infections.
Collapse
Affiliation(s)
- Jingsheng Lun
- Department of Biology, College of Science, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou 515063, China.
| | - Peng Zheng
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Xueji Liang
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Yihui Hu
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Lu An
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Guiqian Xiao
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Xinyi Chen
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Ying Chen
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Huisheng Gong
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Mingqi Zhong
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Department of Biology, College of Science, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou 515063, China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou 515063, China; Marine Biology Institute, Shantou University, Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou 515063, China.
| |
Collapse
|
215
|
Kraußer F, Rabe K, Topham CM, Voland J, Lilienthal L, Kundoch JO, Ohde D, Liese A, Walther T. Cell-Free Reaction System for ATP Regeneration from d-Fructose. ACS Synth Biol 2025; 14:1250-1263. [PMID: 40143462 PMCID: PMC12012885 DOI: 10.1021/acssynbio.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
Adenosine triphosphate (ATP)-dependent in vitro bioprocesses, such as cell-free protein synthesis and the production of phosphorylated fine chemicals, are of considerable industrial significance. However, their implementation is mainly hindered by the high cost of ATP. We propose and demonstrate the feasibility of a cell-free ATP regeneration system based on the in situ generation of the high-energy compound acetyl phosphate from low-cost d-fructose and inorganic phosphate substrates. The enzyme cascade chains d-fructose phosphoketolase, d-erythrose isomerase, d-erythrulose phosphoketolase, and glycolaldehyde phosphoketolase activities theoretically enabling production of 3 mol ATP per mol of d-fructose. Through a semirational engineering approach and the screening of nine single-mutation libraries, we optimized the phosphoketolase (PKT) from Bifidobacterium adolescentis, identifying the improved variant Bad.F6Pkt H548N. This mutant exhibited a 5.6-fold increase in d-fructose activity, a 2.2-fold increase in d-erythrulose activity, and a 1.3-fold increase in glycolaldehyde activity compared to the wild-type enzyme. The Bad.F6Pkt H548N mutant was initially implemented in a cell-free reaction system together with an acetate kinase from Geobacillus stearothermophilus and a glycerol kinase from Cellulomonas sp. for the production of glycerol-3 phosphate from ADP and glycerol. We demonstrated the feasibility of ATP regeneration from 25 mM d-fructose with a stoichiometry of 1 mol of ATP per mol of C6 ketose. Subsequently, the reaction system was enhanced by incorporating d-erythrose isomerase activity provided by a l-rhamnose isomerase from Pseudomonas stutzeri. In the complete system, the ATP yield increased to 2.53 mol molfructose-1 with a maximum productivity of 7.2 mM h-1.
Collapse
Affiliation(s)
- Franziska Kraußer
- Chair
of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01062 Dresden, Germany
| | - Kenny Rabe
- Chair
of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01062 Dresden, Germany
| | | | - Julian Voland
- Chair
of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01062 Dresden, Germany
| | - Laura Lilienthal
- Chair
of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01062 Dresden, Germany
| | - Jan-Ole Kundoch
- Institute
of Technical Biocatalysis, Hamburg University
of Technology, Denickestr.
15, 21073 Hamburg, Germany
| | - Daniel Ohde
- Institute
of Technical Biocatalysis, Hamburg University
of Technology, Denickestr.
15, 21073 Hamburg, Germany
| | - Andreas Liese
- Institute
of Technical Biocatalysis, Hamburg University
of Technology, Denickestr.
15, 21073 Hamburg, Germany
| | - Thomas Walther
- Chair
of Bioprocess Engineering, Institute of Natural Materials Technology, TU Dresden, Bergstraße 120, 01062 Dresden, Germany
| |
Collapse
|
216
|
Yao S, Xie S, Liu RZ, Huang Z, Zhang L. Expanding catalytic versatility of modular polyketide synthases for alcohol biosynthesis. Nat Chem Biol 2025:10.1038/s41589-025-01883-7. [PMID: 40251435 DOI: 10.1038/s41589-025-01883-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/12/2025] [Indexed: 04/20/2025]
Abstract
Modular polyketide synthases biosynthesize structurally diverse natural products by a set of catalytic domains that operate in an assembly line fashion. Although extensive research has focused on the rational reprogramming of modular polyketide synthases, little has been attempted to introduce noncanonical catalytic reactions on the assembly line. Here, we demonstrate the insertion of a thioester reductase domain, which can generate a terminal alcohol group instead of the canonical carboxylic acid, onto the assembly line polyketide synthases. We show that the didomain insertion of the acyl carrier protein and thioester reductase pair is generally effective for engineering of various polyketide synthase pathways. As a proof of concept, stereoselective and stereodivergent bioproduction of non-natural diols, namely, 1,3-butanediols and 2-methyl-1,3-butanediols, is achieved by harnessing the modularity of polyketide synthases. Our study expands the catalytic versatility of modular polyketide synthases and paves the way toward biosynthesis of designer alcohols.
Collapse
Affiliation(s)
- Shunyu Yao
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Shengling Xie
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Run-Zhou Liu
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Zilei Huang
- Department of Chemistry, Zhejiang University, Hangzhou, China
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Lihan Zhang
- Zhejiang Key Laboratory of Precise Synthesis of Functional Molecules, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
| |
Collapse
|
217
|
Jockmann E, Girame H, Steinchen W, Kind K, Bange G, Tittmann K, Müller M, Feixas F, Garcia-Borràs M, Andexer JN. How to Tell an N from an O: Controlling the Chemoselectivity of Methyltransferases. ACS Catal 2025; 15:6410-6425. [PMID: 40270878 PMCID: PMC12013660 DOI: 10.1021/acscatal.5c00834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/12/2025] [Accepted: 03/26/2025] [Indexed: 04/25/2025]
Abstract
S-Adenosyl-l-methionine (SAM)-dependent methyltransferases (MTs) are important enzymes in numerous biological pathways. They share a common S N 2 mechanism but act on different nucleophilic substrates in vivo. Therefore, MTs have a specific chemoselectivity to transfer CH3 onto the correct atom type and substrate. Caffeate O-MT from Prunus persica (PpCaOMT) and anthranilate N-MT from Ruta graveolens (RgANMT) share a high similarity regarding their amino acid sequence (>74%). Nevertheless, the physiological substrates (caffeate vs anthranilate) and attacking nucleophiles (hydroxyl vs amino group) are strikingly different. We demonstrate that the differing chemoselectivity is governed by different conformational states of the two enzymes. O-Methylation catalyzed by CaOMTs requires a "closed" conformation, whereas ANMTs perform N-methylation in an "open" state. We rationally designed seven variants for both PpCaOMT and RgANMT, which changed their original nucleophile preference to different extents, up to a full inversion. Interestingly, the generated O-selective ANMT variant catalyzes O-methylation considerably faster than wildtype CaOMT. Molecular dynamics (MD) simulations and hydrogen/deuterium exchange mass spectrometry (HDX-MS) experiments showed that the mutations induced changes in the conformational dynamics of the enzyme variants and by modulating the open/closed transitions impact the corresponding chemoselectivity. Our data show that the selectivity of the methyl transfer reaction is not solely governed by the key residues directly involved in the methyl transfer but is rather synergistically modulated by the conformational dynamics of the enzyme and reaction conditions.
Collapse
Affiliation(s)
- Emely Jockmann
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstr.
25, 79104 Freiburg, Germany
| | - Helena Girame
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, C/ Maria Aurèlia Capmany,
69, 17003 Girona, Spain
| | - Wieland Steinchen
- Center
for Synthetic Microbiology, Philipps University
Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department
of Chemistry, Philipps University Marburg, Hans-Meerwein-Str. 4, 35043 Marburg, Germany
| | - Kalle Kind
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstr.
25, 79104 Freiburg, Germany
| | - Gert Bange
- Center
for Synthetic Microbiology, Philipps University
Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
- Department
of Chemistry, Philipps University Marburg, Hans-Meerwein-Str. 4, 35043 Marburg, Germany
| | - Kai Tittmann
- Schwann-Schleiden-Forschungszentrum—Department
of Molecular Enzymology, Georg-August-Universität
Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Michael Müller
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstr.
25, 79104 Freiburg, Germany
| | - Ferran Feixas
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, C/ Maria Aurèlia Capmany,
69, 17003 Girona, Spain
| | - Marc Garcia-Borràs
- Institut
de Química Computacional i Catàlisi and Departament
de Química, Universitat de Girona, C/ Maria Aurèlia Capmany,
69, 17003 Girona, Spain
| | - Jennifer N. Andexer
- Institute
of Pharmaceutical Sciences, University of
Freiburg, Albertstr.
25, 79104 Freiburg, Germany
| |
Collapse
|
218
|
Ye Y, Li Z, Zhou Y, Gao X, Yan D. The Identification and Characterization of a Novel Alginate Lyase from Mesonia hitae R32 Exhibiting High Thermal Stability and Potent Antioxidant Oligosaccharide Production. Mar Drugs 2025; 23:176. [PMID: 40278297 PMCID: PMC12028748 DOI: 10.3390/md23040176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Alginate lyases are of great importance in biotechnological and industrial processes, yet research on these enzymes from Mesonia genus bacteria is still limited. In this study, a novel PL6 family alginate lyase, MhAly6, was cloned and characterized from the deep-sea bacterium Mesonia hitae R32. The enzyme, composed of 797 amino acids, contains both PL6 and GH28 catalytic domains. A phylogenetic analysis revealed its classification into subfamily 1 of the PL6 family. MhAly6 showed optimal activity at 45 °C and pH 9.0, retaining over 50% activity after 210 min of incubation at 40 °C, highlighting its remarkable thermal stability. The enzyme exhibited degradation activity toward sodium alginate, Poly M, and Poly G, with the highest affinity for its natural substrate, sodium alginate, producing alginate oligosaccharides (AOSs) with degrees of polymerization (DP) ranging from 2 to 7. Molecular docking identified conserved catalytic sites (Lys241/Arg262) and Ca2+ binding sites (Asn202/Glu234/Glu236), while the linker and GH28 domain played an auxiliary role in substrate binding. Antioxidant assays revealed that the MhAly6-derived AOSs showed potent radical-scavenging activity, achieving 80.64% and 95.39% inhibition rates against DPPH and ABTS radicals, respectively. This work not only expands our understanding of alginate lyases from the Mesonia genus but also highlights their biotechnological potential for producing functional AOSs with antioxidant properties, opening new avenues for their applications in food and pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Ying Zhou
- Department of Biotechnology, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China; (Y.Y.); (Z.L.); (D.Y.)
| | - Xiujun Gao
- Department of Biotechnology, School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, China; (Y.Y.); (Z.L.); (D.Y.)
| | | |
Collapse
|
219
|
Gombeau K, Hoffmann SA, Cai Y. A new set of mutations in the second transmembrane helix of the Cox2p-W56R substantially improves its allotopic expression in Saccharomyces cerevisiae. Genetics 2025; 229:iyaf037. [PMID: 40178993 PMCID: PMC12005268 DOI: 10.1093/genetics/iyaf037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/23/2025] [Indexed: 04/05/2025] Open
Abstract
The dual genetic control of mitochondrial respiratory function, combined with the high mutation rate of the mitochondrial genome (mtDNA), makes mitochondrial diseases among the most frequent genetic diseases in humans (1 in 5,000 in adults). With no effective treatments available, gene therapy approaches have been proposed. Notably, several studies have demonstrated the potential for nuclear expression of a healthy copy of a dysfunctional mitochondrial gene, referred to as allotopic expression, to help recover respiratory function. However, allotopic expression conditions require significant optimization. We harnessed engineering biology tools to improve the allotopic expression of the COX2-W56R gene in the budding yeast Saccharomyces cerevisiae. Through conducting random mutagenesis and screening of the impact of vector copy number, promoter, and mitochondrial targeting sequence, we substantially increased the mitochondrial incorporation of the allotopic protein and significantly increased recovery of mitochondrial respiration. Moreover, CN-PAGE analyses revealed that our optimized allotopic protein does not impact cytochrome c oxidase assembly, or the biogenesis of respiratory chain supercomplexes. Importantly, the most beneficial amino acid substitutions found in the second transmembrane helix (L93S and I102K) are conserved residues in the corresponding positions of human MT-CO2 (L73 and L75), and we propose that mirroring these changes could potentially help improve allotopic Cox2p expression in human cells. To conclude, this study demonstrates the effectiveness of using engineering biology approaches to optimise allotopic expression of mitochondrial genes in the baker's yeast.
Collapse
Affiliation(s)
- Kewin Gombeau
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Stefan A Hoffmann
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- Systems and Synthetic Biology, Wageningen University & Research, Wageningen 6708 WE, Netherlands
| | - Yizhi Cai
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M1 7DN, UK
- Generative and Synthetic Genomics, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| |
Collapse
|
220
|
Phillippi E, Melo M, Messingham KN, El-Shanti H. Loose Anagen Hair Associated with Wooly Hair Caused by a Heterozygous, Intronic KRT71 Variant. Genes (Basel) 2025; 16:459. [PMID: 40282419 PMCID: PMC12027166 DOI: 10.3390/genes16040459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Loose anagen hair syndrome is a recently described genetic form of non-scarring alopecia that occurs in children and is due to poorly anchored hair shafts during the anagen phase. It can occur alone or in association with hair pathology or complex systemic phenotypes. METHODS We report a mother and daughter with loose anagen hair syndrome that is associated with wooly hair, although it shows variable expressivity. We studied the family using genomic sequencing and identified an intronic variant in their KRT71 that segregates in an autosomal dominant pattern and is suspected to affect splicing in the tail domain of this hair follicle keratin. We studied this variant with a minigene experimental approach. RESULTS We provide experimental evidence that the identified intronic variant affects splicing in the tail domain, which is critical to the biomechanical properties of the keratin intermediate filaments. We demonstrate that it affects splicing by adding 12 bases to the mature transcript and consequently four amino acids to the peptide. CONCLUSION We suspect that this variant is responsible for the poorly anchored and finely curled hair in the mother and daughter, which leads to a proposed diagnosis of autosomal dominant wooly hair, as well as loose anagen hair syndrome. We thus expand the variant spectrum of KRT71 and its associated phenotypes to include both disorders.
Collapse
Affiliation(s)
- Elizabeth Phillippi
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (E.P.); (M.M.)
| | - Marcelo Melo
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (E.P.); (M.M.)
| | - Kelly N. Messingham
- Department of Dermatology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Hatem El-Shanti
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (E.P.); (M.M.)
| |
Collapse
|
221
|
Tang C, Lupala CS, Wang D, Li X, Tang LH, Li X. Structural and Energetic Insights into SARS-CoV-2 Evolution: Analysis of hACE2-RBD Binding in Wild-Type, Delta, and Omicron Subvariants. Int J Mol Sci 2025; 26:3776. [PMID: 40332432 PMCID: PMC12027596 DOI: 10.3390/ijms26083776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
The evolution of SARS-CoV-2, particularly the emergence of Omicron variants, has raised questions regarding changes in its binding affinity to the human angiotensin-converting enzyme 2 receptor (hACE2). Understanding the impact of mutations on the interaction between the receptor-binding domain (RBD) of the spike protein and hACE2 is critical for evaluating viral transmissibility, immune evasion, and the efficacy of therapeutic strategies. Here, we used molecular dynamics (MD) simulations and binding energy calculations to investigate the structural and energetic differences between the hACE2- RBD complexes of wild-type (WT), Delta, and Omicron subvariants. Our results indicate that the Delta and the first Omicron variants showed the highest and the second-highest binding energy among the variants studied. Furthermore, while Omicron variants exhibit increased structural stability and altered electrostatic potential at the hACE2-RBD interface when compared to the ancestral WT, their binding strength to hACE2 does not consistently increase with viral evolution. Moreover, newer Omicron subvariants like JN.1 exhibit a bimodal conformational strategy, alternating between a high-affinity state for hACE2 and a low-affinity state, which could potentially facilitate immune evasion. These findings suggest that, in addition to enhanced hACE2 binding affinity, other factors, such as immune evasion and structural adaptability, shape SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Can Tang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cecylia S. Lupala
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Ding Wang
- Department of Physics, Hong Kong Baptist University, Hong Kong SAR, China;
| | - Xiangcheng Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China;
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - Lei-Han Tang
- Center for Interdisciplinary Studies, Westlake University, Hangzhou 310024, China;
| | - Xuefei Li
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| |
Collapse
|
222
|
Ma X, Wang Q, Chen K, Shen Y, Guan J, Xu M, Rao Z, Zhang X. Protein Engineering and Dual-Module Optimization for Efficient NMN Production in E. coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9174-9186. [PMID: 40172130 DOI: 10.1021/acs.jafc.5c00043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Nicotinamide mononucleotide (NMN) has received widespread attention as a supplement of NAD+ in cells. In this study, a dual-module reaction system was constructed to synthesize NR using uridine and nicotinamide, and further to efficiently synthesize NMN. First, module 1 was constructed, which catalyzed the synthesis of NMN from NR using an efficient NRK and ATP regeneration system. Then module 2 was constructed by introducing pyrimidine nucleoside phosphorylase (PyNP) to synthesize NMN from uridine and NAM under the synergistic catalysis of NRK. Based on the fact that NRK has both phosphorylation and group transfer functions in the dual-module system, the mutant KlmNRKM4 with nearly 4-fold increased stability was obtained through predicted structure and evolutionary conservation analysis. At the same time, the pncC, deoD, ushA, nadR and deoB genes encoding endogenous degradative enzymes in Escherichia coli affect substrate and intermediate conversion were knocked out. Finally, by optimizing the reaction conditions of the dual-module recombination system, a high NMN conversion rate of 81.1% was achieved using 300 mM uridine and nicotinamide as substrates. This study provides a novel and efficient pathway for the biosynthesis of NMN.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Qiang Wang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Kewei Chen
- Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yang Shen
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingyi Guan
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
223
|
Obi JO, Kihn KC, McQueen L, Fields JK, Snyder GA, Deredge DJ. Structural dynamics of the dengue virus non-structural 5 (NS5) interactions with promoter stem-loop A (SLA). NPJ VIRUSES 2025; 3:30. [PMID: 40295851 PMCID: PMC12003724 DOI: 10.1038/s44298-025-00112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Accepted: 03/31/2025] [Indexed: 04/30/2025]
Abstract
The dengue virus (DENV) NS5 protein, essential for viral RNA synthesis, is an attractive antiviral drug target. DENV NS5 interacts with the stem-loop A (SLA) promoter at the 5'-untranslated region of the viral genome to initiate negative-strand synthesis. However, the conformational dynamics of this interaction remains unclear. Our study explores the structural dynamics of DENV serotype 2 NS5 (DENV2 NS5) in complex with SLA, employing surface plasmon resonance (SPR), hydrogen-deuterium exchange mass spectrometry (HDX-MS), computational modeling, and cryoEM. Our findings reveal that DENV2 NS5 binds SLA in a closed conformation, with interdomain cooperation between its methyltransferase (MTase) and RNA-dependent RNA polymerase (RdRp) domains, critical for the interaction. SLA binding induces conformational changes in both domains, highlighting NS5's multifunctional role in viral replication. Our cryoEM results visualizes the DENV2 NS5-SLA complex, confirming a conserved SLA binding across DENV serotypes and provides key insights for antiviral strategies targeting NS5's conformational states.
Collapse
Affiliation(s)
- Juliet O Obi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Kyle C Kihn
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Linfah McQueen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - James K Fields
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA
| | - Greg A Snyder
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA
| | - Daniel J Deredge
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
224
|
Vargas-Rosales PA, Caflisch A. The physics-AI dialogue in drug design. RSC Med Chem 2025; 16:1499-1515. [PMID: 39906313 PMCID: PMC11788922 DOI: 10.1039/d4md00869c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
A long path has led from the determination of the first protein structure in 1960 to the recent breakthroughs in protein science. Protein structure prediction and design methodologies based on machine learning (ML) have been recognized with the 2024 Nobel prize in Chemistry, but they would not have been possible without previous work and the input of many domain scientists. Challenges remain in the application of ML tools for the prediction of structural ensembles and their usage within the software pipelines for structure determination by crystallography or cryogenic electron microscopy. In the drug discovery workflow, ML techniques are being used in diverse areas such as scoring of docked poses, or the generation of molecular descriptors. As the ML techniques become more widespread, novel applications emerge which can profit from the large amounts of data available. Nevertheless, it is essential to balance the potential advantages against the environmental costs of ML deployment to decide if and when it is best to apply it. For hit to lead optimization ML tools can efficiently interpolate between compounds in large chemical series but free energy calculations by molecular dynamics simulations seem to be superior for designing novel derivatives. Importantly, the potential complementarity and/or synergism of physics-based methods (e.g., force field-based simulation models) and data-hungry ML techniques is growing strongly. Current ML methods have evolved from decades of research. It is now necessary for biologists, physicists, and computer scientists to fully understand advantages and limitations of ML techniques to ensure that the complementarity of physics-based methods and ML tools can be fully exploited for drug design.
Collapse
Affiliation(s)
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zurich Winterthurerstrasse 190 8057 Zürich Switzerland
| |
Collapse
|
225
|
Ravindranath AG, Muralidhar A, Gambhir NN, Chatterjee J. Investigating the neuroprotective effects of strawberry extract against diesel soot-induced motor dysfunction in Drosophila: an in-vivo and in-silico study. In Silico Pharmacol 2025; 13:58. [PMID: 40255255 PMCID: PMC12003239 DOI: 10.1007/s40203-025-00344-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/20/2025] [Indexed: 04/22/2025] Open
Abstract
Environmental pollutants including diesel soot, have been known to contribute to neurological disorders. Previous studies highlight the neuroprotective effects of strawberry-derived compounds. This work explores the impacts of diesel soot and strawberry extract in movement-related disorders. In-silico analysis assessed compounds from HPLC/GCMS in the literature of soot and strawberry extract for ADME properties and blood-brain barrier permeability, selecting six compounds and four motor function-related proteins (SOD1, TARDBP, FUS, MAPT) with D. melanogaster orthologs. Homology modeling generated protein structures, molecular docking assessed binding affinities. MLSD examined combined interactions, with RMSD validating accuracy. Docking scores matched neuroprotective controls (quercetin, resveratrol), while differed for negative control (formaldehyde). Phenanthrene and anthocyanin strongly bound to FUS (- 7.60 ± 0.26 kcal/mol, - 7.1 ± 0.26 kcal/mol) and cocoon (- 6.5 ± 0.39 kcal/mol, - 7.23 ± 0.45 kcal/mol). MLSD yielded - 3.00 ± 0.24 kcal/mol and - 3.12 ± 0.11 kcal/mol respectively. In-vivo assays in D. melanogaster exhibited soot impaired movement (p = 0.0006), while strawberry improved it (p = 0.0003) with partial recovery in combined exposure (p = 0.0003). Strawberry enhanced cold stress recovery (p = 0.0048), climbing (p < 0.0001), and vortex recovery (p = 0.0003). One-way ANOVA confirmed significant effects on crawling in males (F (9,20) = 37.67, p < 0.0001, η 2 = 0.53) and female flies (F (9,20) = 70.10, p < 0.0001), with normality confirmed by Shapiro-Wilk test (p > 0.05). Toxicant exposure accelerated mortality, while strawberry improved thermotolerance. Combined exposure provided partial protection with minor sex differences. Findings highlight strawberries' neuroprotective role in counteracting diesel soot toxicity, even under combined exposure. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-025-00344-2.
Collapse
Affiliation(s)
| | - Ananya Muralidhar
- Department of Biotechnology, PES University, Bangalore, 560085 India
| | | | - Jhinuk Chatterjee
- Department of Biotechnology, PES University, Bangalore, 560085 India
| |
Collapse
|
226
|
Trasviña-Arenas CH, Dissanayake UC, Tamayo N, Hashemian M, Lin WJ, Demir M, Hoyos-Gonzalez N, Fisher AJ, Cisneros GA, Horvath MP, David SS. Structure of human MUTYH and functional profiling of cancer-associated variants reveal an allosteric network between its [4Fe-4S] cluster cofactor and active site required for DNA repair. Nat Commun 2025; 16:3596. [PMID: 40234396 PMCID: PMC12000561 DOI: 10.1038/s41467-025-58361-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/20/2025] [Indexed: 04/17/2025] Open
Abstract
MUTYH is a clinically important DNA glycosylase that thwarts mutations by initiating base-excision repair at 8-oxoguanine (OG):A lesions. The roles for its [4Fe-4S] cofactor in DNA repair remain enigmatic. Functional profiling of cancer-associated variants near the [4Fe-4S] cofactor reveals that most variations abrogate both retention of the cofactor and enzyme activity. Surprisingly, R241Q and N238S retained the metal cluster and bound substrate DNA tightly, but were completely inactive. We determine the crystal structure of human MUTYH bound to a transition state mimic and this shows that Arg241 and Asn238 build an H-bond network connecting the [4Fe-4S] cluster to the catalytic Asp236 that mediates base excision. The structure of the bacterial MutY variant R149Q, along with molecular dynamics simulations of the human enzyme, support a model in which the cofactor functions to position and activate the catalytic Asp. These results suggest that allosteric cross-talk between the DNA binding [4Fe-4S] cofactor and the base excision site of MUTYH regulate its DNA repair function.
Collapse
Affiliation(s)
- Carlos H Trasviña-Arenas
- Department of Chemistry, University of California, Davis, CA, USA
- Research Center on Aging, Center for Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Upeksha C Dissanayake
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Nikole Tamayo
- Department of Chemistry, University of California, Davis, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA
| | - Mohammad Hashemian
- Department of Chemistry, University of California, Davis, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA
| | - Wen-Jen Lin
- Department of Chemistry, University of California, Davis, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA
| | - Merve Demir
- Department of Chemistry, University of California, Davis, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA
| | | | - Andrew J Fisher
- Department of Chemistry, University of California, Davis, CA, USA
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA
- Department of Molecular and Cellular Biology, University of California, Davis, CA, USA
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
- Department of Physics, University of Texas at Dallas, Richardson, TX, USA.
| | - Martin P Horvath
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Sheila S David
- Department of Chemistry, University of California, Davis, CA, USA.
- Chemistry and Chemical Biology Graduate Program, University of California, Davis, CA, USA.
| |
Collapse
|
227
|
Sinha S, Murmu B, Roy AK, Balgote PJ, Sivaraman J. Targeting SufC ATPase in Staphylococcus aureus AR465: Insights from an in silico and molecular docking approach. J Microbiol Methods 2025; 232-234:107134. [PMID: 40250768 DOI: 10.1016/j.mimet.2025.107134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Staphylococcus aureus AR465 (S. aureus AR465) is a deadly pathogen that often inherits multidrug resistance, where the antibiotics become ineffective against it. The iron‑sulfur (FeS) cluster assembly pathway has the potential to serve as a new drug target, allowing for the modification of these molecules to be susceptible to oxidative conditions. Our study focuses on the preliminary stage of the FeS pathway inhibition by inhibiting the SufC protein, unlike previous studies that targeted the final stage. SufC has an Adenosine triphosphate (ATP) binding site. The main goal of this study is to inhibit the SufBCD complex of S. aureus AR465 to bind with other subunits to form an FeS cluster. The Sulfur Utilization Factor (SUF) system plays a massive role in the survival of this pathogen by producing electron carrier proteins which possess FeS cofactors. The SufC protein from the SufBCD system was chosen as the main target for the potential inhibitor molecules. SufC is an ATP-binding cassette (ABC) that transfers an FeS cluster to SufA, which then transports it to an apoprotein involved in electron transport processes. In this research, several drugs were selected which can block this particular stage of the FeS cluster formation pathway. The idea was to competitively inhibit the binding of ATP with the help of inhibitors so that it cannot bind to the desired site of SufC. Eventually, the inhibitor molecule blocks the transfer of the FeS cluster to a newly synthesized apo-protein and kills the pathogen.
Collapse
Affiliation(s)
- Sounak Sinha
- Department of Applied Microbiology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Birsing Murmu
- Department of Applied Microbiology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Arya Ketan Roy
- Department of Applied Microbiology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Piyush Jagdish Balgote
- Department of Biotechnology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Jayanthi Sivaraman
- Department of Biotechnology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
228
|
Liu H, Jiang Y, Wang J, Song W, Chen Y, Li Y, Hu YH, He B, Yan W, Ye Y. Competitive Affinity-Based Protein Profiling Reveals Potential Antifungal Targets of 1,2,3-Triazole Hydrazide in Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8798-8808. [PMID: 40172363 DOI: 10.1021/acs.jafc.4c12342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
In previous research, 1,2,3-triazole hydrazide NAU-6ad exhibited remarkable broad-spectrum antifungal activity. However, the specific targets of NAU-6ad remained unknown. Initially, we excluded three targets─succinate dehydrogenase, laccase, and ergosterol synthase─commonly associated with hydrazide derivatives mentioned in the literature. Subsequently, we developed two types of photoprobes: one incorporating diazirine (DA) and the other phenyl tetrazole (TZ), both featuring terminal alkynes for bioorthogonal reactions. Using these two sets of probes, a total of 52 potential targets were identified through competitive affinity-based proteome profiling. Notably, Ndufs6 and I1RC94 were consistently identified by both sets. The overexpression or knockout of Ndufs6, a subunit of complex I, led to significant changes in sensitivity to NAU-6ad in F. graminearum. Similarly, the knockout of other subunits of complex I, specifically Ndufs2, Ndufv1, and Ndufa9, altered the sensitivity of F. graminearum to NAU-6ad, indicating that NAU-6ad might act upon complex I. Further validation was provided by enzyme activity tests, ATP content assays, pyruvate addition assays, and molecular docking, collectively reinforcing the hypothesis that NAU-6ad might function as a complex I inhibitor.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Yu Jiang
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Jiahao Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Wei Song
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Yiliang Chen
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan 243032, China
| | - Yu Li
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Yan-Hao Hu
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Bo He
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Wei Yan
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| | - Yonghao Ye
- State Key Laboratory of Agricultural and Forestry Biosecurity, State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, PR China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, PR China
| |
Collapse
|
229
|
Lu J, Zhang R, Yu Y, Lou H, Li D, Bao Q, Feng C. Identification of a novel chromosome-encoded fosfomycin resistance gene fosC3 in Aeromonas caviae. Front Microbiol 2025; 16:1577167. [PMID: 40303475 PMCID: PMC12037509 DOI: 10.3389/fmicb.2025.1577167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 04/02/2025] [Indexed: 05/02/2025] Open
Abstract
Background Owing to the rapid emerging of multidrug-, even pandrug-resistant pathogens, and lack of new antibiotics, the older antibiotic, fosfomycin, has been reused in recent years in the clinical practice, especially for treatment of uropathogen infections. With the increased use of fosfomycin, bacterial resistance to it has also increased drastically. Elucidating the resistance mechanism to the antimicrobial has become an urgent task. Methods The putative fosfomycin resistance gene fosC3 was cloned, and minimal inhibitory concentrations were determined by the agar dilution method. Enzyme kinetic parameters were measured by high-performance liquid chromatography. Bioinformatics analysis was applied to understand the evolutionary characteristics of FosC3. Results The A. caviae strain DW0021 exhibited high level resistance to several antimicrobials including kanamycin, streptomycin, chloramphenicol, florfenicol, tetracycline, and especially higher to fosfomycin (> 1,024 μg/mL), while genome annotation indicated that no function-characterized resistance gene was associated with fosfomycin resistance. A novel functional gene designated fosC3 responsible for fosfomycin resistance was identified in the chromosome of A. caviae DW0021. Among the function-characterized proteins, FosC3 shared the highest amino acid similarity of 58.65% with FosC2. No mobile genetic element (MGE) was found surrounding the fosC3 gene. The recombinant pMD19-fosC3/DH5α displayed a MIC value of 32 μg/mL to fosfomycin, which revealed a 128-fold increase of MIC value to fosfomycin compared to the control pMD19/E. coli DH5α (0.25 μg/mL). FosC3 was phylogenetically close to FosC2 and exhibited a k cat and K m of 82,442 ± 1,475 s-1, 70.99 ± 4.31 μM, respectively, and a catalytic efficiency of (1.2 ± 0.3) × 103 μM-1·s-1. Conclusion In this work, a novel functional fosfomycin thiol transferase, FosC3, which shared the highest protein sequence similarity with FosC2, was identified in A. caviae. The fosfomycin inactivation enzyme FosC3 could effectively inactivate fosfomycin by chemical modification. It is implied that such mechanism facilitates A. caviae to respond to fosfomycin exposure, thereby enhancing survival. However, fosC3 was not related with any MGE, which differs from many other fosfomycin thiol transferase genes. As a result, fosC3 is not expected to be transmitted to other species through horizontal gene transfer mechanism. Our findings will contribute to the resistance mechanism of the common pathogenic A. caviae.
Collapse
Affiliation(s)
- Junwan Lu
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua University of Vocational Technology, Jinhua, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Runzhi Zhang
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Yan Yu
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Hongqiang Lou
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua University of Vocational Technology, Jinhua, China
| | - Dong Li
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Qiyu Bao
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua University of Vocational Technology, Jinhua, China
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Chunlin Feng
- Key Laboratory of Medical Genetics of Zhejiang Province, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Institute of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
230
|
Do HN, Kubicek-Sutherland JZ, Gnanakaran S. Diverse toxins exhibit a common binding mode to the nicotinic acetylcholine receptors. Biophys J 2025; 124:1195-1207. [PMID: 40017033 PMCID: PMC12044393 DOI: 10.1016/j.bpj.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 12/02/2024] [Accepted: 02/25/2025] [Indexed: 03/01/2025] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are critical ligand-gated ion channels in the human nervous system. They are targets for various neurotoxins produced by algae, plants, and animals. While many structures of nAChRs bound by neurotoxins have been published, the binding mechanism of toxins to the nAChRs remains unclear. In this work, we have performed extensive Gaussian accelerated molecular dynamics simulations on several Aplysia californica nAChRs in complex with α-conotoxins, strychnine, and pinnatoxins, as well as human nAChRs in complex with α-bungarotoxin and α-conotoxin, to determine the binding and dissociation pathways of the toxins to the nAChRs and the associated effects. We uncovered two common binding and dissociation pathways shared by toxins and nAChRs. In the first binding pathway, the toxins diffused from the bulk solvent to bind a region near the extracellular pore before moving downwards along the nAChRs to the nAChR orthosteric pocket. The second binding pathway involved a direct diffusion of the toxins from the bulk solvent into the nAChR orthosteric pocket. The dissociation pathways were the reverse of the observed binding pathways. Notably, we determined that the electrostatically bipolar interactions between the nAChR orthosteric pocket and toxins provided an explanation for the common binding mode shared by diverse toxins.
Collapse
Affiliation(s)
- Hung N Do
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Jessica Z Kubicek-Sutherland
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico.
| |
Collapse
|
231
|
Chi JJ, Xie P, Cheng MH, Zhu Y, Cui X, Watson J, Zeng L, Uddin A, Nguyen H, Li L, Moremen K, Reedy A, Wyatt M, Marcus A, Dai M, Paulos CM, Cristofanilli M, Gradishar WJ, Zhao S, Kalinsky K, Hung MC, Bahar I, Zhang B, Wan Y. MGAT1-Guided complex N-Glycans on CD73 regulate immune evasion in triple-negative breast cancer. Nat Commun 2025; 16:3552. [PMID: 40229283 PMCID: PMC11997035 DOI: 10.1038/s41467-025-58524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/25/2025] [Indexed: 04/16/2025] Open
Abstract
Despite the widespread application of immunotherapy, treating immune-cold tumors remains a significant challenge in cancer therapy. Using multiomic spatial analyses and experimental validation, we identify MGAT1, a glycosyltransferase, as a pivotal factor governing tumor immune response. Overexpression of MGAT1 leads to immune evasion due to aberrant elevation of CD73 membrane translocation, which suppresses CD8+ T cell function, especially in immune-cold triple-negative breast cancer (TNBC). Mechanistically, addition of N-acetylglucosamine to CD73 by MGAT1 enables the CD73 dimerization necessary for CD73 loading onto VAMP3, ensuring membrane fusion. We further show that THBS1 is an upstream etiological factor orchestrating the MGAT1-CD73-VAMP3-adenosine axis in suppressing CD8+ T cell antitumor activity. Spatial transcriptomic profiling reveals spatially resolved features of interacting malignant and immune cells pertaining to expression levels of MGAT1 and CD73. In preclinical models of TNBC, W-GTF01, an inhibitor specifically blocked the MGAT1-catalyzed CD73 glycosylation, sensitizing refractory tumors to anti-PD-L1 therapy via restoring capacity to elicit a CD8+ IFNγ-producing T cell response. Collectively, our findings uncover a strategy for targeting the immunosuppressive molecule CD73 by inhibiting MGAT1.
Collapse
Affiliation(s)
- Junlong Jack Chi
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- DGP graduate program, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, USA
| | - Ping Xie
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern, University Feinberg School of Medicine, Chicago, IL, USA
| | - Mary Hongying Cheng
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Yueming Zhu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Xin Cui
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Joshua Watson
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, USA
| | - Lidan Zeng
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Amad Uddin
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Hoang Nguyen
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, NY, USA
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, USA
| | - Kelley Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, USA
| | - April Reedy
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Megan Wyatt
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Surgery/Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Adam Marcus
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mingji Dai
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Chemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Chrystal M Paulos
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Surgery/Microbiology & Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - William J Gradishar
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern, University Feinberg School of Medicine, Chicago, IL, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, USA
| | - Kevin Kalinsky
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Mine-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Ivet Bahar
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, NY, USA.
- Department of Biochemistry and Cell Biology, School of Medicine, Stony Brook University, Stony Brook, NY, USA.
| | - Bin Zhang
- Department of Medicine, Robert H. Lurie Comprehensive Cancer Center, Northwestern, University Feinberg School of Medicine, Chicago, IL, USA.
| | - Yong Wan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
232
|
He Z, Zhou J, Li S, Zhang Y, Shen L, Liu S, Tang KHD, Wang T, Zhu L. Molecular Mechanisms Underlying the Impacts of Available-Iron Levels on the Accumulation and Translocation of 6:2 Chlorinated Polyfluoroalkyl Ether Sulfonate in Soybean ( Glycine max L. Merrill). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7268-7277. [PMID: 40186555 DOI: 10.1021/acs.est.4c11993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Soil available-iron (Fe) is crucial for various physiological properties and processes in plants, particularly those related to the accumulation and translocation of per- and polyfluoroalkyl substances (PFAS). However, the mechanisms underlying the impact of available-Fe levels on PFAS accumulation and translocation in plants remain unclear. In this study, we investigated the impacts of available-Fe levels on the accumulation of an emerging PFAS, 6:2 chlorinated polyfluoroalkyl ether sulfonate (6:2 Cl-PFESA), in soybean, a typical dicot, through hydroponic experiments. Interestingly, Fe deficiency significantly enhanced soybean root volume, surface area, root tip count, and lipid content, thus favoring 6:2 Cl-PFESA adsorption on the root epidermis. However, its absorption and translocation to aboveground tissues were markedly suppressed due to significantly reduced transpiration rate and soluble protein content induced by Fe deficiency. Conversely, although excessive available-Fe also inhibited transpiration, it notably increased root membrane permeability and soluble protein content in aboveground tissues, thus greatly facilitating the absorption and translocation of 6:2 Cl-PFESA within soybeans. These findings demonstrate that appropriate Fe application in agricultural soils is essential to promote the growth of dicot crops and mitigate the potential ecological risks associated with the accumulation of 6:2 Cl-PFESA in the aboveground tissues of soybeans.
Collapse
Affiliation(s)
- Zhuang He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, P. R. China
| | - Shuxing Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Yutong Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Lina Shen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Siqian Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Kuok Ho Daniel Tang
- Department of Environmental Science, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, P. R. China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, P. R. China
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
233
|
Chatterjee S, Paul N, Das A, Bank S, Bankura B, Yadav RP, Sarkar K, Saha S, Malakar S, Choudhury S, Ghosh S, Das M. Molecular dynamics reveal potential effects of novel VHL variants on VHL-Elongin C binding in ccRCC patients from Eastern India. Sci Rep 2025; 15:13022. [PMID: 40234555 PMCID: PMC12000512 DOI: 10.1038/s41598-025-95875-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 03/24/2025] [Indexed: 04/17/2025] Open
Abstract
Renal cell carcinoma (RCC) is the one of the most fatal and frequent form of urological malignancy worldwide. The von Hippel-Lindau (VHL) tumour suppressor gene is a critical component of the VHL-Cullin2-ElonginB/C (VCB) complex that regulates the ubiquitin-mediated proteasomal degradation of proteins with mutations consistently associated with the development of clear cell renal cell carcinoma (ccRCC). Despite extensive investigations conducted worldwide, there is a notable lack of data concerning VHL mutations in sporadic ccRCC patients from India. Our study aimed to investigate the sporadic VHL mutations within the tumours of 210 ccRCC patients without a familial history of VHL disease. We extracted genomic DNA from tumour and adjacent normal tissues, PCR amplified and sequenced the VHL gene. In silico tools were used assess the damaging potential of missense variants on pVHL structure and stability. Protein-protein docking and protein flexibility molecular docking simulation study were employed to study the interaction between wild-type and mutated VHL models with Elongin C. Sequence analysis revealed seven novel missense mutations in patient tumour tissues p.(Val170Phe), p.(Arg69Cys), p.(Phe76Leu), p.(Glu173Asp), p.(Leu201Val), p.(His208Leu), p.(Arg205Pro). I-Mutant 2.0 indicated these mutations reduced pVHL stability (ΔΔG < -0.5 kcal/mol). Protein Flexibility-Molecular Dynamic (MD) Simulation study indicated that mutations weaken the interaction of VHL with Elongin C, with V170F showing the most significant reduction in binding quality and stability. In conclusion, this study introduces novel genetic data from an understudied population and highlights the impact of VHL mutations on its interaction with Elongin C. These findings contribute to our understanding of the molecular basis of VHL-related pathologies and may guide future therapeutic strategies targeting these interactions.
Collapse
Affiliation(s)
- Srilagna Chatterjee
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Nirvika Paul
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Anwesha Das
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Sarbashri Bank
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Biswabandhu Bankura
- Multidisciplinary Research Unit, Calcutta Medical College and Hospital, Kolkata, West Bengal, India
| | - Ravi Prakash Yadav
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Kunal Sarkar
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Soumen Saha
- Department of Urology, Calcutta Medical College and Hospital, Kolkata, West Bengal, India
| | - Subhajit Malakar
- Department of Urology, Institute of Postgraduate Medical Education and Research, Kolkata, West Bengal, India
| | - Sunirmal Choudhury
- Department of Urology, Calcutta Medical College and Hospital, Kolkata, West Bengal, India
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, 39 Sankar Ghosh Lane, Kolkata, 700006, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
234
|
Li P, Faraone JN, Hsu CC, Chamblee M, Liu Y, Zheng YM, Xu Y, Carlin C, Horowitz JC, Mallampalli RK, Saif LJ, Oltz EM, Jones D, Li J, Gumina RJ, Bednash JS, Xu K, Liu SL. Role of glycosylation mutations at the N-terminal domain of SARS-CoV-2 XEC variant in immune evasion, cell-cell fusion, and spike stability. J Virol 2025; 99:e0024225. [PMID: 40135879 PMCID: PMC11998534 DOI: 10.1128/jvi.00242-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/01/2025] [Indexed: 03/27/2025] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve, producing new variants that drive global coronavirus disease 2019 surges. XEC, a recombinant of KS.1.1 and KP.3.3, contains T22N and F59S mutations in the spike protein's N-terminal domain (NTD). The T22N mutation, similar to the DelS31 mutation in KP.3.1.1, introduces a potential N-linked glycosylation site in XEC. In this study, we examined the neutralizing antibody (nAb) response and mutation effects in sera from bivalent-vaccinated healthcare workers, BA.2.86/JN.1 wave-infected patients, and XBB.1.5 monovalent-vaccinated hamsters, assessing responses to XEC alongside D614G, JN.1, KP.3, and KP.3.1.1. XEC demonstrated significantly reduced neutralization titers across all cohorts, largely due to the F59S mutation. Notably, removal of glycosylation sites in XEC and KP.3.1.1 substantially restored nAb titers. Antigenic cartography analysis revealed XEC to be more antigenically distinct from its common ancestral BA.2.86/JN.1 compared to KP.3.1.1, with the F59S mutation as a determining factor. Similar to KP.3.1.1, XEC showed reduced cell-cell fusion relative to its parental KP.3, a change attributed to the T22N glycosylation. We also observed reduced S1 shedding for XEC and KP.3.1.1, which was reversed by ablation of T22N and DelS31 glycosylation mutations, respectively. Molecular modeling suggests that T22N and F59S mutations of XEC alter hydrophobic interactions with adjacent spike protein residues, impacting both conformational stability and neutralization. Overall, our findings underscore the pivotal role of NTD mutations in shaping SARS-CoV-2 spike biology and immune escape mechanisms.IMPORTANCEThe continuous evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the emergence of novel variants with enhanced immune evasion properties, posing challenges for current vaccination strategies. This study identifies key N-terminal domain (NTD) mutations, particularly T22N and F59S in the recent XEC variant, which significantly impacts antigenicity, neutralization, and spike protein stability. The introduction of an N-linked glycosylation site through T22N, along with the antigenic shift driven by F59S, highlights how subtle mutations can drastically alter viral immune recognition. By demonstrating that glycosylation site removal restores neutralization sensitivity, this work provides crucial insights into the molecular mechanisms governing antibody escape. Additionally, the observed effects on spike protein shedding and cell-cell fusion contribute to a broader understanding of variant fitness and transmissibility. These findings emphasize the importance of monitoring NTD mutations in emerging SARS-CoV-2 lineages and support the need for adaptive vaccine designs to counteract ongoing viral evolution.
Collapse
Affiliation(s)
- Pei Li
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Julia N. Faraone
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Molecular, Cellular, and Developmental Biology Program, The Ohio State University, Columbus, Ohio, USA
| | - Cheng Chih Hsu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Michelle Chamblee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yajie Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Yan Xu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Claire Carlin
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Jeffrey C. Horowitz
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine,The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Rama K. Mallampalli
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine,The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Linda J. Saif
- Center for Food Animal Health, Animal Sciences Department, OARDC, College of Food, Agricultural and Environmental Sciences, The Ohio State University, Wooster, Ohio, USA
- Veterinary Preventive Medicine Department, College of Veterinary Medicine, The Ohio State University, Wooster, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center Arthur G. James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Daniel Jones
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | - Richard J. Gumina
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Joseph S. Bednash
- Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine,The Ohio State University, Columbus, Ohio, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Kai Xu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Texas Therapeutic Institute, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, Ohio, USA
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
- Viruses and Emerging Pathogens Program, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
235
|
Subramani NK, Venugopal S. Identification of novel drug targets and small molecule discovery for MRSA infections. FRONTIERS IN BIOINFORMATICS 2025; 5:1562596. [PMID: 40303563 PMCID: PMC12037569 DOI: 10.3389/fbinf.2025.1562596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction The topmost deadliest microorganism, namely, methicillin-resistant Staphylococcus aureus (MRSA), causes dreadful infections like bacteremia, pneumonia, endocarditis, and systemic inflammations. The virulence factors associated with MRSA exhibit multidrug-resistant characteristics, complicating treatment choices. So, the primary objective of this study is to identify the MRSA virulence factors and inhibiting its activity utilizing bioinformatic approaches. Methods The screening of novel therapeutic MRSA targets was conducted based on the predictions retrieved from non-homologous, physicochemical analysis, subcellular localization, druggability, and virulence factor examinations. Following that, flavonoid compounds were docked against specific MRSA targets using AutoDock Vina. Further, molecular dynamic simulations and binding free energy calculations were performed using simulation software. Results After examining 2,640 virulence factors that presented in MRSA, the heme response regulator R (HssR) was found to be a novel protein that greatly controls the levels of heme in MRSA infections. Subsequently, the binding energy calculations for flavonoid compounds and HssR revealed that the catechin provided -7.9 kcal/mol, which surpassed the standard drug, namely, vancomycin (-5.9 kcal/mol). Further, the results were validated by evaluating molecular dynamic simulation parameters like RMSD, RMSF, ROG, SASA, and PCA. Through analyzing these parameters, catechin provided a more stable, compact nature and less solvent exposure with HssR than vancomycin. Moreover, the predicted binding free energy for HssR-catechin was found to be -23.0 kcal/mol, which was less compared to the HssR-vancomycin (-16.91 kcal/mol) complex. The results suggested that the catechin was able to modulate the activity of the HssR protein effectively. Conclusion These potential findings revealed that heme response regulator R as a promising therapeutic target while the flavonoid compound catechin could act as alternative therapeutic inhibitor that target MRSA infections.
Collapse
Affiliation(s)
| | - Subhashree Venugopal
- School of Bio Science and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
236
|
Ramírez-Martínez MA, Pastor N. Role of Cre Dynamics in Autoinhibition and Priming. J Chem Inf Model 2025; 65:3615-3627. [PMID: 40111927 DOI: 10.1021/acs.jcim.4c02405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Cre recombinase, a powerful tool for genome engineering, associates into an intasome, a tetrameric complex of alternate active and inactive monomers that bring together two loxP sequences, stabilized by key protein-protein and protein-DNA interactions. High-resolution structural information for free Cre is still missing, in contrast to the many structures found for Cre-DNA complexes in the Protein Data Bank, hindering understanding of the initial steps in intasome formation. To approach Cre structure and dynamics, we carried out 100 μs of molecular dynamics simulations of free Cre, starting from five Cre structures from different stages of intasome assembly. In the generated ensemble, the linker connecting the CBD and CAT domains is an intrinsically disordered region (IDR) that promotes different orientations of the two domains. The domains remain folded and interact with each other through short-lived interactions, retaining ∼70% of their surface available for interaction with loxP. The C-terminal Helix N in the CAT domain is also an IDR that interacts with the entire protein, including the active site, transiently forming an autoinhibited complex. The active site can be assembled in the absence of DNA, albeit inefficiently. The CAT domain has a clam-like motion, opening and closing the cavity where helix N docks, establishing protein-protein interactions in the intasome. Helix A in the CBD domain slides over the domain like a windshield wiper, sampling intasome-like conformations, among others. The wide range of intramolecular motion sampled by free Cre suggests that it uses conformational selection, using primed DNA-binding surfaces in both domains while assembling into the intasome.
Collapse
Affiliation(s)
- Marco A Ramírez-Martínez
- Laboratorio de Dinámica de proteínas y ácidos nucleicos, Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, México
| | - Nina Pastor
- Laboratorio de Dinámica de proteínas y ácidos nucleicos, Centro de Investigación en Dinámica Celular-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos 62209, México
| |
Collapse
|
237
|
Meng Z, Wang H, Jia C, Chen G, Zhao M. Transient Expression of Hen Egg White Lysozyme (EWL) in Nicotiana benthamiana Influences Plant Pathogen Infection. Life (Basel) 2025; 15:642. [PMID: 40283196 PMCID: PMC12028522 DOI: 10.3390/life15040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Lysozyme is an enzyme that hydrolyzes bacterial cell walls, which is functional for destroying the integrity of bacteria, enhancing the activity of immune cells, participating in immune signal transmission, helping to maintain the micro-ecological balance of the gastrointestinal tract, etc. Egg white lysozyme (EWL), as one of the typical representatives of lysozyme, is the most widely used enzyme in production so far, and is also one of the most complex structures of lysozyme. EWL also helps protect plants from fungal and bacterial diseases. Here, we report the effect of EWL on infections from plant viruses. The EWL gene was cloned and characterized. The EWL protein sequence analysis identified a conserved domain of lysozyme activity and the sharing of a 100% identical EWL protein from the Coturnix japonica lysozyme. Then, the EWL gene was cloned into the plant expression vector pEAQ-HT-DEST3 and transiently expressed in Nicotiana benthamiana (N. benthamiana). We found that EWL expression in N. benthamiana significantly contributed to infections by the turnip mosaic virus (TuMV) but not by the tobacco mosaic virus (TMV). Plants that transiently expressed EWL showed an obvious increase in resistance to Botrytis cinerea (B.cinerea). Our results suggested a new research point for the application of EWL on plant pathogen infections.
Collapse
Affiliation(s)
- Zhuo Meng
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.M.); (H.W.)
| | - Haijuan Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.M.); (H.W.)
| | - Chongyi Jia
- Bayannur Agriculture and Animal Husbandry Bureau (Rural Revitalization Bureau), Bayannur City 015000, Mongolia;
| | - Guihua Chen
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.M.); (H.W.)
| | - Mingmin Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China; (Z.M.); (H.W.)
| |
Collapse
|
238
|
Braza MK, Demir Ö, Ahn SH, Morris CK, Calvó-Tusell C, McGuire KL, de la Peña Avalos B, Carpenter MA, Chen Y, Casalino L, Aihara H, Herzik MA, Harris RS, Amaro RE. Regulatory Interactions between APOBEC3B N- and C-Terminal Domains. J Chem Inf Model 2025; 65:3593-3604. [PMID: 40105360 PMCID: PMC12004528 DOI: 10.1021/acs.jcim.4c02272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025]
Abstract
APOBEC3B (A3B) is implicated in DNA mutations that facilitate tumor evolution. Although structures of its individual N- and C-terminal domains (NTD and CTD) have been resolved through X-ray crystallography, the full-length A3B (fl-A3B) structure remains elusive, limiting our understanding of its dynamics and mechanisms. In particular, the APOBEC3B C-terminal domain (A3Bctd) is frequently closed in models and structures. In this study, we built several new models of fl-A3B using integrative structural biology methods and selected a top model for further dynamical investigation. We compared the dynamics of the truncated (A3Bctd) to that of the fl-A3B via conventional and Gaussian accelerated molecular dynamics (MD) simulations. Subsequently, we employed weighted ensemble methods to explore the fl-A3B active site opening mechanism, finding that interactions at the NTD-CTD interface enhance the opening frequency of the fl-A3B active site. Our findings shed light on the structural dynamics and potential druggability of fl-A3B, including observations regarding both the active and allosteric sites, which may offer new avenues for therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Mac Kevin
E. Braza
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Özlem Demir
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Surl-Hee Ahn
- Department
of Chemical Engineering, University of California,
Davis, Davis, California 95616, United States
| | - Clare K. Morris
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Carla Calvó-Tusell
- Department
of Molecular Biology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Kelly L. McGuire
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Bárbara de la Peña Avalos
- Department
of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| | - Michael A. Carpenter
- Department
of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
- Howard
Hughes Medical Institute, University of
Texas Health San Antonio, San Antonio, Texas 78229, United States
| | - Yanjun Chen
- Department
of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
| | - Lorenzo Casalino
- Department
of Molecular Biology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Hideki Aihara
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mark A. Herzik
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| | - Reuben S. Harris
- Department
of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas 78229, United States
- Howard
Hughes Medical Institute, University of
Texas Health San Antonio, San Antonio, Texas 78229, United States
| | - Rommie E. Amaro
- Department
of Molecular Biology, University of California,
San Diego, La Jolla, California 92093, United States
| |
Collapse
|
239
|
Kumar P, Bishnoi R, Priyadarshini P, Chhuneja P, Singla D. Understanding the structural basis of ALS mutations associated with resistance to sulfonylurea in wheat. Sci Rep 2025; 15:12855. [PMID: 40229296 PMCID: PMC11997136 DOI: 10.1038/s41598-025-91379-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 02/20/2025] [Indexed: 04/16/2025] Open
Abstract
Developing herbicide-tolerant wheat varieties is highly desirable for effective weed management and improved crop yield. The enzyme acetolactate synthase (ALS) is the target enzyme for the sulfonylurea class of herbicides. The structural analysis of mutable sites in ALS is crucial for the generation of herbicide-resistant crops. Previous studies indicated that mutant lines of Triticum aestivum ALS (TaALS) with amino acid substitutions at P174, G631, and G632 residues provided resistance to sulfonylurea herbicide, nicosulfuron. The present study aimed to provide structural insights into mutable residues causing sulfonylurea herbicide resistance to TaALS enzyme through in-silico molecular docking and simulation approaches. The molecular docking analysis suggested a single point mutation at TaALS-P174S, its double mutant conformations (TaALS-G632S/P174S and TaALS-G631D/G632S) and associated triple mutant conformation (TaALS-G631D/G632S/P174S) to have the lowest binding affinity with nicosulfuron than the wild-type conformation of TaALS. Furthermore, the molecular dynamic simulation study confirms the weakest and more stable binding of the triple mutant conformation with nicosulfuron. Our computational study identifies a triple mutant conformation (TaALS-G631D/G632S/P174S) to be more effective in developing sulfonylurea herbicide-resistant wheat crops.
Collapse
Affiliation(s)
- Pawan Kumar
- Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
- Department of Bioinformatics and Computational Biology, College of Biotechnology, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Ritika Bishnoi
- Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Pragya Priyadarshini
- Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Parveen Chhuneja
- Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Deepak Singla
- Bioinformatics Centre, School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, Punjab, India.
| |
Collapse
|
240
|
Wu Y, Ikeno S. Cyclization of Short Peptides Designed from Late Embryogenesis Abundant Protein to Improve Stability and Functionality. Chembiochem 2025; 26:e202401013. [PMID: 39912732 PMCID: PMC12007072 DOI: 10.1002/cbic.202401013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/07/2025]
Abstract
LEA peptides, which are designed based on late embryogenic abundant (LEA) protein sequences, have demonstrated chaperone-like functions, such as improving drought stress tolerance of Escherichia coli (E. coli). Previous studies have focused on the biological functions of linear LEA peptides. However, the function of cyclic LEA peptide still unknown. This study aimed to explore the cyclic LEA peptides' bio function like enhance the drought stress tolerance of E. coli by cyclizing the LEA peptide using SICLOPPS (Split Intein Circular Ligation of Peptides and Proteins). The results indicated that cyclization significantly improved the function and extended the potential applications. At the same time, we found that peptides containing numerous lysine residues exhibited reduced performance, which may be due to the exteins' residues affecting the SICLOPPS efficiency.
Collapse
Affiliation(s)
- Yinghan Wu
- Department of Biological Functions EngineeringKyushu Institute of TechnologyKitakyushu Science and Research ParkKitakyushuFukuokaJapan
| | - Shinya Ikeno
- Department of Biological Functions EngineeringKyushu Institute of TechnologyKitakyushu Science and Research ParkKitakyushuFukuokaJapan
| |
Collapse
|
241
|
Abulude IJ, Luna ICR, Varela AS, Camilli A, Kadouri DE, Guo X. Using AlphaFold-Multimer to study novel protein-protein interactions of predation essential hypothetical proteins in Bdellovibrio. FRONTIERS IN BIOINFORMATICS 2025; 5:1566486. [PMID: 40297267 PMCID: PMC12034629 DOI: 10.3389/fbinf.2025.1566486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Bdellovibrio bacteriovorus is the most studied member of a group of small motile Gram-negative bacteria called Bdellovibrio and Like Organisms (BALOs). B. bacteriovorus can prey on Gram-negative bacteria, including multi-drug resistant pathogens, and has been proposed as an alternative to antibiotics. Although the life cycle of B. bacteriovorus is well characterized, some molecular aspects of B. bacteriovorus-prey interaction are poorly understood. Hypothetical proteins with unestablished functions have been implicated in B. bacteriovorus predation by many studies. Our approach to characterize these proteins employing Alphafold has revealed novel interactions among attack phase-hypothetical proteins, which may be involved in less understood mechanisms of the Bdellovibrio attack phase. Here, we overlapped attack phase genes from B. bacteriovorus transcriptomic data sets and from transposon sequencing data sets to generate a set of proteins that are both expressed at the attack phase and are necessary for predation, which we termed Attack Phase Predation-Essential Proteins (AP-PEP). By applying Markov Cluster Algorithm and AlphaFold-Multimer to analyze the protein network and interaction partners of the AP-PEPs, we predicted high-confidence protein-protein interactions and two structurally similar but unique novel protein complexes formed among proteins of the Bd2209-Bd2212 and Bd2723-Bd2726 operons. Furthermore, we confirmed the interaction between hypothetical proteins Bd0075 and Bd0474 using the Bacteria Adenylate Cyclase Two-Hybrid system. In addition, we confirmed that the C-terminal domain of Bd0075, which contains Tetratricopeptide repeat motifs, participates principally in its interaction with Bd0474. This study revealed previously unknown cooperation among predation essential hypothetical proteins in the attack phase B. bacteriovorus and has paved the way for further work to understand molecular mechanisms of BALO predation processes.
Collapse
Affiliation(s)
- Ibukun John Abulude
- Laboratorio de Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd Reynosa, Tamaulipas, México
| | - Isabel Cristina Rodríguez Luna
- Laboratorio de Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd Reynosa, Tamaulipas, México
| | - Alejandro Sánchez Varela
- Laboratorio de Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd Reynosa, Tamaulipas, México
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
| | - Daniel E. Kadouri
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, United States
| | - Xianwu Guo
- Laboratorio de Biotecnología Genómica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Cd Reynosa, Tamaulipas, México
| |
Collapse
|
242
|
Sullivan OM, Nesbitt DJ, Schaack GA, Feltman E, Nipper T, Kongsomros S, Reed SG, Nelson SL, King CR, Shishkova E, Coon JJ, Mehle A. IFIT3 RNA-binding activity promotes influenza A virus infection and translation efficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638785. [PMID: 40027740 PMCID: PMC11870506 DOI: 10.1101/2025.02.17.638785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Host cells produce a vast network of antiviral factors in response to viral infection. The interferon-induced proteins with tetratricopeptide repeats (IFITs) are important effectors of a broad-spectrum antiviral response. In contrast to their canonical roles, we previously identified IFIT2 and IFIT3 as pro-viral host factors during influenza A virus (IAV) infection. During IAV infection, IFIT2 binds and enhances translation of AU-rich cellular mRNAs, including many IFN-simulated gene products, establishing a model for its broad antiviral activity. But, IFIT2 also bound viral mRNAs and enhanced their translation resulting in increased viral replication. The ability of IFIT3 to bind RNA and whether this is important for its function was not known. Here we validate direct interactions between IFIT3 and RNA using electromobility shift assays (EMSAs). RNA-binding site identification (RBS-ID) experiments then identified an RNA-binding surface composed of residues conserved in IFIT3 orthologs and IFIT2 paralogs. Mutation of the RNA-binding site reduced the ability IFIT3 to promote IAV gene expression and translation efficiency when compared to wild type IFIT3. The functional units of IFIT2 and IFIT3 are homo- and heterodimers, however the RNA-binding surfaces are located near the dimerization interface. Using co-immunoprecipitation, we showed that mutations to these sites do not affect dimerization. Together, these data establish the link between IFIT3 RNA-binding and its ability to modulate translation of host and viral mRNAs during IAV infection.
Collapse
|
243
|
Zhang N, You S, Guo J, Chang X, Qiu J, Hua K. Genetic variants and molecular profiling of 46,XY gonadal dysgenesis using whole-exome sequencing. Front Endocrinol (Lausanne) 2025; 16:1560698. [PMID: 40290305 PMCID: PMC12021639 DOI: 10.3389/fendo.2025.1560698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/13/2025] [Indexed: 04/30/2025] Open
Abstract
Background More than 60% of cases of 46,XY gonadal dysgenesis (GD), a condition classified as a disorder of sex development (DSD), remain unexplained, which is due to high genetic and clinical heterogeneity. Whole-exome sequencing (WES) is an efficient primary genetic diagnostic method; specifically, the use of WES in patients with 46,XY GD to explore the underlying genetic variants of the disorder may help us gain a deeper understanding of the pathogenesis and phenotype-genotype correlation of 46,XY GD. Methods We performed WES and pedigree studies to investigate the underlying genetic etiology of patients with 46,XY GD (six patients and six familial controls). The variants were confirmed via Sanger sequencing, and detailed functional prediction of the discovered genetic variants was conducted. Furthermore, we performed in-silico protein structural analysis and protein thermodynamic analysis to further explore the pathogenicity of these variants. GATA4 variants in patients with 46,XY GD with/without CHD and patients with cardiac disease alone were also analyzed. Results We identified three novel pathogenic variants in GATA4:c.725G>C(p.Cys242Ser), NR5A1:c.370_380del(p.Pro124Glyfs*21), and DHX37:c.2020C>T(p.Arg674Trp), as well as one previously reported MAP3K1:c.1016G>A(p.Arg339Gln) variant. These variant sites are conserved among species and were predicted to be damaging according to functional algorithms and protein analyses. Additionally, 71.4% of the GATA4 amino acid changes in 46,XY GD were located in or close to the N-terminal zinc finger (N-ZF) domain. However, most GATA4 pathogenic variants (31.82%) in patients with isolated cardiac diseases were located in transactivation domain 1 (TAD1), and only 9.09% of the variants were located in the N-ZF domain. Conclusion The N-ZF domain may play an exclusive role in the mechanism of GATA4 in the pathogenesis of 46,XY GD; therefore, this domain may be an interesting topic for future investigation. This study enhances our understanding of the genetic etiology and pathogenesis of 46,XY GD, which may aid in the diagnosis and intervention of this disorder.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Yangtze River Delta Integration Demonstration Zone (QingPu), Shanghai, China
| | - Shuoming You
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Jingjing Guo
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Xingyu Chang
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Junjun Qiu
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Keqin Hua
- Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| |
Collapse
|
244
|
Gamas N, Smaoui F, Ben Romdhane W, Wiszniewska A, Baazaoui N, Bouteraa MT, Chouaibi Y, Ben Hsouna A, Kačániová M, Kluz MI, Garzoli S, Ben Saad R. Genome-Wide Identification of the Defensin Gene Family in Triticum durum and Assessment of Its Response to Environmental Stresses. BIOLOGY 2025; 14:404. [PMID: 40282269 PMCID: PMC12024934 DOI: 10.3390/biology14040404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/26/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025]
Abstract
Plant defensins (PDFs) are a group of cationic antimicrobial peptides that are distinguished by their unique tertiary structure and play significant roles in physiological metabolism, growth, and stress tolerance. Defensins are key components of plant innate immunity; they can target a wide variety of microorganisms. This study aimed to identify and investigate the role of Triticum durum PDFs (TdPDFs) in response to environmental stresses. Prior to this, in silico analyses of TdPDF genes were conducted to assess their chromosomal locations, conserved motifs, exon-intron distribution, and cis-regulatory elements in the promoter regions. Additionally, bioinformatic analyses were performed to characterize the structure of TdPDF proteins, evaluate their phylogenetic relationships, predict their subcellular localization, and estimate their physicochemical properties. Docking studies were conducted to assess the interactions between TdPDF proteins and the fungal plasma membrane. A total of 28 TdPDF genes were identified in durum wheat based on their conserved domain PF00304 (gamma-thionin). These genes are distributed across all chromosomes of the durum wheat genome, except for chromosomes 4A and 7A. Analysis of the promoters of these genes revealed numerous elements associated with development, hormone responsiveness, and environmental stress. The majority of TdPDF proteins were predicted to be located extracellular. In addition, TdPDF proteins were classified into three clusters based on sequence similarity. Phylogenetic analysis suggested that TdPDF proteins share ancestral similarities with the PDF sequences of other monocotyledonous species. Molecular docking studies revealed that TdPDF proteins interact with fungal plasma membranes, suggesting that they play a critical role in the resistance of plants to pathogen infections. Expression analysis underlined the crucial role of nine TdPDF genes in the defense responses of durum wheat against both pathogenic and environmental stressors. Overall, our findings underscore the potential of TdPDF genes in host-plant resistance and highlight opportunities for their application in crop improvement toward stress tolerance.
Collapse
Affiliation(s)
- Nawress Gamas
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P “1177”, Sfax 3018, Tunisia; (N.G.); (M.T.B.); (Y.C.); (A.B.H.); (R.B.S.)
- Faculty of Sciences of Gafsa, University of Gafsa, Sidi Ahmed Zarrouk, Gafsa 2112, Tunisia
| | - Fahmi Smaoui
- Research Laboratory “Microorganisms and Human Disease LR03SP03”, Laboratory of Microbiology, Habib Bourguiba University Hospital, University of Sfax, Sfax 3029, Tunisia;
| | - Walid Ben Romdhane
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Kraków, 31-120 Kraków, Poland;
| | - Narjes Baazaoui
- Biology Department, Faculty of Science, King Khalid University, Abha 61421, Saudi Arabia;
| | - Mohamed Taieb Bouteraa
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P “1177”, Sfax 3018, Tunisia; (N.G.); (M.T.B.); (Y.C.); (A.B.H.); (R.B.S.)
- Faculty of Sciences of Bizerte UR13ES47, University of Carthage, BP W, Bizerte 7021, Tunisia
| | - Yosra Chouaibi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P “1177”, Sfax 3018, Tunisia; (N.G.); (M.T.B.); (Y.C.); (A.B.H.); (R.B.S.)
| | - Anis Ben Hsouna
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P “1177”, Sfax 3018, Tunisia; (N.G.); (M.T.B.); (Y.C.); (A.B.H.); (R.B.S.)
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia 5100, Tunisia
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
- School of Medical and Health Sciences, University of Economics and Human Sciences in Warsaw, Okopowa 59, 01-043 Warszawa, Poland
| | - Maciej Ireneusz Kluz
- Andrzej Frycz Modrzewski Krakow University, Gustawa Herlinga-Grudzińskiego 1, 30-705 Kraków, Poland
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, 00185 Rome, Italy;
| | - Rania Ben Saad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax, University of Sfax, B.P “1177”, Sfax 3018, Tunisia; (N.G.); (M.T.B.); (Y.C.); (A.B.H.); (R.B.S.)
| |
Collapse
|
245
|
Hankins MTK, Parrag M, Garaeva AA, Earp JC, Seeger MA, Stansfeld PJ, Bublitz M. MprF from Pseudomonas aeruginosa is a promiscuous lipid scramblase with broad substrate specificity. SCIENCE ADVANCES 2025; 11:eads9135. [PMID: 40203087 PMCID: PMC11980842 DOI: 10.1126/sciadv.ads9135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/03/2025] [Indexed: 04/11/2025]
Abstract
The multiple peptide resistance factor (MprF) is a bifunctional membrane protein found in many bacteria, including Pseudomonas aeruginosa and Staphylococcus aureus. MprF modifies inner leaflet lipid headgroups through aminoacylation and translocates modified lipid to the outer leaflet. This activity provides increased resistance to antimicrobial agents. MprF presents a promising target in multiresistant pathogens, but structural information is limited and both substrate specificity and energization of MprF-mediated lipid transport are poorly understood. Here, we present the cryo-EM structure of MprF from P. aeruginosa (PaMprF) bound to a synthetic nanobody. PaMprF adopts an "open" conformation with a wide, lipid-exposed groove on the periplasmic side that induces a local membrane deformation in molecular dynamics simulations. Using an in vitro liposome transport assay, we demonstrate that PaMprF translocates a wide range of different lipids without an external energy source. This suggests that PaMprF is the first dedicated lipid scramblase to be characterized in bacteria.
Collapse
Affiliation(s)
- Matthew T. K. Hankins
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Matyas Parrag
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Alisa A. Garaeva
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006 Zurich, Switzerland
| | - Jennifer C. Earp
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006 Zurich, Switzerland
| | - Markus A. Seeger
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006 Zurich, Switzerland
| | - Phillip J. Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Maike Bublitz
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Institute of Translational Medicine, Faculty of Medical Sciences, Private University in the Principality of Liechtenstein (UFL), Dorfstrasse 24, 9495 Triesen, Liechtenstein
| |
Collapse
|
246
|
Ye X, Hu X, Zhen K, Meng J, Du H, Cao X, Zhou D. Genome-Wide Identification and Expression Analysis of m 6A Methyltransferase Family in Przewalskia tangutica Maxim. Int J Mol Sci 2025; 26:3593. [PMID: 40332128 PMCID: PMC12027458 DOI: 10.3390/ijms26083593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/30/2025] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
N6-methyladenosine (m6A) RNA modification plays important regulatory roles in plant development and adaptation to the environment. However, there has been no research regarding m6A RNA methyltransferases (MT-A70) in Przewalskia tangutica Maxim. Here, we performed a comprehensive analysis of the MT-A70 family in Przewalskia tangutica (PtMTs), including gene structures, phylogenetic relationships, conserved motifs, gene location, promoter analysis, GO enrichment analysis, and expression profiles. We identified seven PtMT genes. Phylogeny analysis indicated that the seven PtMT genes could be divided into three groups; two MTA genes, three MTB genes, and two MTC genes, and domains and motifs exhibited similar patterns within the same group. These PtMT genes were found to contain a large number of cis-acting elements associated with plant hormones, light response, and stress response, suggesting their widespread regulatory function. Furthermore, the expression profiling of different tissues was investigated using RNA-seq data, and the expression of seven genes was further validated by qPCR analysis. These results provided valuable information to further elucidate the function of m6A regulatory genes and their epigenetic regulatory mechanisms in Przewalskia tangutica.
Collapse
Affiliation(s)
- Xing Ye
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Xingqiang Hu
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Kun Zhen
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Jing Meng
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Heyan Du
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Xueye Cao
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
| | - Dangwei Zhou
- The College of Pharmacy, Qinghai Minzu University, Xining 810007, China; (X.Y.); (X.H.); (K.Z.); (J.M.); (H.D.); (X.C.)
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Xining 810007, China
- Key Laboratory of Adaptation and Evolution of Plateau Biota (AEPB), Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| |
Collapse
|
247
|
Fiorentino F, Thoms M, Wild K, Denk T, Cheng J, Zeman J, Sinning I, Hurt E, Beckmann R. Highly conserved ribosome biogenesis pathways between human and yeast revealed by the MDN1-NLE1 interaction and NLE1 containing pre-60S subunits. Nucleic Acids Res 2025; 53:gkaf255. [PMID: 40207627 PMCID: PMC11983104 DOI: 10.1093/nar/gkaf255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/11/2025] Open
Abstract
The assembly of ribosomal subunits, primarily occurring in the nucleolar and nuclear compartments, is a highly complex process crucial for cellular function. This study reveals the conservation of ribosome biogenesis between yeast and humans, illustrated by the structural similarities of ribosomal subunit intermediates. By using X-ray crystallography and cryo-EM, the interaction between the human AAA+ ATPase MDN1 and the 60S assembly factor NLE1 is compared with the yeast homologs Rea1 and Rsa4. The MDN1-MIDAS and NLE1-Ubl complex structure at 2.3 Å resolution mirrors the highly conserved interaction patterns observed in yeast. Moreover, human pre-60S intermediates bound to the dominant negative NLE1-E85A mutant revealed at 2.8 Å resolution an architecture that largely matched the equivalent yeast structures. Conformation of rRNA, assembly factors and their interaction networks are highly conserved. Additionally, novel human pre-60S intermediates with a non-rotated 5S RNP and processed ITS2/foot structure but incomplete intersubunit surface were identified to be similar to counterparts observed in yeast. These findings confirm that the MDN1-NLE1-driven transition phase of the 60S assembly is essentially identical, supporting the idea that ribosome biogenesis is a highly conserved process across eukaryotic cells, employing an evolutionary preservation of ribosomal assembly mechanisms.
Collapse
MESH Headings
- Humans
- Saccharomyces cerevisiae Proteins/metabolism
- Saccharomyces cerevisiae Proteins/chemistry
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae/genetics
- Ribosome Subunits, Large, Eukaryotic/metabolism
- Ribosome Subunits, Large, Eukaryotic/chemistry
- Ribosome Subunits, Large, Eukaryotic/ultrastructure
- Cryoelectron Microscopy
- Crystallography, X-Ray
- Ribosomal Proteins/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/genetics
- Models, Molecular
- Protein Binding
- Nuclear Proteins/metabolism
- Nuclear Proteins/chemistry
- Nuclear Proteins/genetics
- ATPases Associated with Diverse Cellular Activities/metabolism
- ATPases Associated with Diverse Cellular Activities/chemistry
- ATPases Associated with Diverse Cellular Activities/genetics
- Ribosomes/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
Collapse
Affiliation(s)
- Federica Fiorentino
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Matthias Thoms
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Klemens Wild
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Timo Denk
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Jingdong Cheng
- Institutes of Biomedical Sciences, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Fudan University, Dong’an Road 131, 200032 Shanghai, China
| | - Jakub Zeman
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Irmgard Sinning
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Ed Hurt
- Biochemistry Center (BZH), University of Heidelberg, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| |
Collapse
|
248
|
Li D, Minkara MS. Decoding SP-D and glycan binding mechanisms using a novel computational workflow. Biophys J 2025:S0006-3495(25)00219-X. [PMID: 40211540 DOI: 10.1016/j.bpj.2025.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/27/2025] Open
Abstract
Surfactant protein D (SP-D) plays an important role in the innate immune system by recognizing and binding to glycans on the surface of pathogens, facilitating their clearance. Despite its importance, the detailed binding mechanisms between SP-D and various pathogenic surface glycans remain elusive due to the limited experimentally solved protein-glycan crystal structures. To address this, we developed and validated a computational workflow that integrates induced fit docking, molecular mechanics/generalized Born surface area binding free energy calculations, and binding pose metadynamics simulations to accurately predict stable SP-D-glycan complex structure and binding mechanisms. By utilizing this workflow, we identified primary and secondary binding sites in SP-D critical for glycan recognition and uncovered a calcium chelation mode correlating with high binding affinity. To demonstrate the workflow's utility, we investigated the binding of pilin glycan from Pseudomonas aeruginosa (P. aeruginosa) to SP-A, SP-D, and mannose-binding lectin (MBL). We found that SP-D exhibited the most stable binding with pilin glycan versus SP-A and MBL, highlighting its potential role in the innate immune response against P. aeruginosa infection. These findings deepen our understanding of SP-D's role in the innate immune response and provide a basis for engineering SP-D variants for therapeutic applications. Moreover, our computational workflow can serve as a powerful tool for exploring protein-ligand interactions in diverse, biologically significant systems. It provides a robust framework to guide experimental studies and accelerates the development of novel therapeutics, effectively bridging the gap between computational insights and practical applications.
Collapse
Affiliation(s)
- Deng Li
- Department of Bioengineering, Northeastern University, Boston, Massachusetts
| | - Mona S Minkara
- Department of Bioengineering, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
249
|
Scherf D, Hammermeister A, Böhnert P, Burkard A, Helm M, Glatt S, Schaffrath R. tRNA binding to Kti12 is crucial for wobble uridine modification by Elongator. Nucleic Acids Res 2025; 53:gkaf296. [PMID: 40226916 PMCID: PMC11995267 DOI: 10.1093/nar/gkaf296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/05/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
In yeast, tRNA modifications that are introduced by the Elongator complex are recognized by zymocin, a fungal tRNase killer toxin that cleaves the anticodon. Based on zymocin resistance conferred by mutations in KTI12, a gene coding for an Elongator interactor, we further examined the yet vaguely defined cellular role of Kti12. Guided by structural similarities between Kti12 and PSTK, a tRNA kinase involved in selenocysteine synthesis, we identified conserved basic residues in the C-terminus of Kti12, which upon site-directed mutagenesis caused progressive loss of tRNA binding in vitro. The inability of Kti12 to bind tRNA led to similar phenotypes caused by Elongator inactivation in vivo. Consistently, tRNA binding deficient kti12 mutants drastically suppressed Elongator dependent tRNA anticodon modifications and reduced the capacity of Kti12 to interact with Elongator. We further could distinguish Elongator unbound pools of Kti12 in a tRNA dependent manner from bound ones. In summary, the C-terminal domain of Kti12 is crucial for tRNA binding and Kti12 recruitment to Elongator, which are both requirements for Elongator function suggesting Kti12 is a tRNA carrier that interacts with Elongator for modification of the tRNA anticodon.
Collapse
Affiliation(s)
- David Scherf
- Institute of Biology, Division of Microbiology, University of Kassel, D-34132 Kassel, Germany
| | - Alexander Hammermeister
- Institute of Biology, Division of Microbiology, University of Kassel, D-34132 Kassel, Germany
- Małopolska Centre of Biotechnology, Jagiellonian University, 30387 Krakow, Poland
| | - Pauline Böhnert
- Institute of Biology, Division of Microbiology, University of Kassel, D-34132 Kassel, Germany
| | - Alicia Burkard
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University of Mainz, D-55128 Mainz, Germany
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University of Mainz, D-55128 Mainz, Germany
| | - Sebastian Glatt
- Małopolska Centre of Biotechnology, Jagiellonian University, 30387 Krakow, Poland
- Department for Biological Sciences and Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Raffael Schaffrath
- Institute of Biology, Division of Microbiology, University of Kassel, D-34132 Kassel, Germany
| |
Collapse
|
250
|
Nasiri MJ, Rogowski L, Venketaraman V. In Silico Targeting and Immunological Profiling of PpiA in Mycobacterium tuberculosis: A Computational Approach. Pathogens 2025; 14:370. [PMID: 40333132 PMCID: PMC12030337 DOI: 10.3390/pathogens14040370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/05/2025] [Accepted: 04/08/2025] [Indexed: 05/09/2025] Open
Abstract
Tuberculosis (TB) remains a leading cause of mortality, with drug resistance highlighting the need for new vaccine targets. Peptidyl-prolyl isomerase A (PpiA), a conserved Mycobacterium tuberculosis (Mtb) protein, plays a role in bacterial stress adaptation and immune evasion, making it a potential target for immunotherapy. This study uses computational methods to assess PpiA's antigenicity, structural integrity, and immunogenic potential. The PpiA sequence was retrieved from NCBI and analyzed for antigenicity and allergenicity using VaxiJen, AllerTOP, and AllergenFP. Physicochemical properties were evaluated using ProtParam, and structural models were generated through PSIPRED and SWISS-MODEL. Structural validation was performed with MolProbity, QMEANDisCo, and ProSA-Web. B-cell epitopes were predicted using BepiPred 2.0 and IEDB, while T-cell epitopes were mapped via IEDB's MHC-I and MHC-II tools. Epitope conservation across Mtb strains was confirmed using ConSurf. Results indicate PpiA is highly antigenic, non-allergenic, and stable, with several immunogenic epitopes identified for both B- and T-cells. This study supports PpiA as a promising immunogenic target for TB vaccine development.
Collapse
Affiliation(s)
- Mohammad J. Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-69411, Iran;
| | - Lily Rogowski
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA;
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766-1854, USA;
| |
Collapse
|