201
|
Scholz SS, Reichelt M, Mekonnen DW, Ludewig F, Mithöfer A. Insect Herbivory-Elicited GABA Accumulation in Plants is a Wound-Induced, Direct, Systemic, and Jasmonate-Independent Defense Response. FRONTIERS IN PLANT SCIENCE 2015; 6:1128. [PMID: 26734035 PMCID: PMC4686679 DOI: 10.3389/fpls.2015.01128] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/29/2015] [Indexed: 05/19/2023]
Abstract
The non-proteinogenic amino acid γ-aminobutyric acid (GABA) is present in all organisms analyzed so far. In invertebrates GABA acts as a neurotransmitter; in plants different functions are under discussion. Among others, its involvement in abiotic stress reactions and as a defensive compound against feeding insects is suggested. GABA is synthesized from glutamate by glutamate decarboxylases and degraded by GABA-transaminases. Here, in Arabidopsis thaliana, gad1/2 double mutants showing reduced GABA concentrations as well as GABA-enriched triple mutants (gad1/2 x pop2-5) were generated and employed for a systematic study of GABA induction, accumulation and related effects in Arabidopsis leaves upon herbivory. The results demonstrate that GABA accumulation is stimulated by insect feeding-like wounding by a robotic caterpillar, MecWorm, as well as by real insect (Spodoptera littoralis) herbivory. Higher GABA levels in both plant tissue and artificial dietary supplements in turn affect the performance of feeding larvae. GABA enrichment occurs not only in the challenged but also in adjacent leaf. This induced response is neither dependent on herbivore defense-related phytohormones, jasmonates, nor is jasmonate induction dependent on the presence of GABA. Thus, in Arabidopsis the rapid accumulation of GABA very likely represents a general, direct and systemic defense reaction against insect herbivores.
Collapse
Affiliation(s)
- Sandra S. Scholz
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical EcologyJena, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical EcologyJena, Germany
| | - Dereje W. Mekonnen
- Department Botany II, Cologne Biocenter, University of CologneCologne, Germany
| | - Frank Ludewig
- Department Botany II, Cologne Biocenter, University of CologneCologne, Germany
- Division of Biochemistry, Department of Biology, University of Erlangen-NurembergErlangen, Germany
| | - Axel Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical EcologyJena, Germany
- *Correspondence: Axel Mithöfer
| |
Collapse
|
202
|
Okada K, Abe H, Arimura GI. Jasmonates induce both defense responses and communication in monocotyledonous and dicotyledonous plants. PLANT & CELL PHYSIOLOGY 2015; 56:16-27. [PMID: 25378688 DOI: 10.1093/pcp/pcu158] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Jasmonic acid (JA) and its derivatives (jasmonates, JAs) are phytohormones with essential roles in plant defense against pathogenesis and herbivorous arthropods. Both the up- and down-regulation of defense responses are dependent on signaling pathways mediated by JAs as well as other stress hormones (e.g. salicylic acid), generally those involving the transcriptional and post-transcriptional regulation of transcription factors via protein modification and epigenetic regulation. In addition to the typical model plant Arabidopsis (a dicotyledon), advances in genetics research have made rice a model monocot in which innovative pest control traits can be introduced and whose JA signaling pathway can be studied. In this review, we introduce the dynamic functions of JAs in plant defense strategy using defensive substances (e.g. indole alkaloids and terpenoid phytoalexins) and airborne signals (e.g. green leaf volatiles and volatile terpenes) in response to biotrophic and necrotrophic pathogens as well as above-ground and below-ground herbivores. We then discuss the important issue of how the mutualism of herbivorous arthropods with viruses or bacteria can cause cross-talk between JA and other phytohormones to counter the defense systems.
Collapse
Affiliation(s)
- Kazunori Okada
- Biotechnology Research Center, The University of Tokyo, Tokyo, 113-8657 Japan
| | - Hiroshi Abe
- Experimental Plant Division, RIKEN BioResource Center, Tsukuba, 305-0074 Japan
| | - Gen-ichiro Arimura
- Department of Biological Science & Technology, Faculty of Industrial Science & Technology, Tokyo University of Science, Tokyo, 125-8585 Japan
| |
Collapse
|
203
|
Zeng F, Sun F, Li L, Liu K, Zhan Y. Genome-scale transcriptome analysis in response to nitric oxide in birch cells: implications of the triterpene biosynthetic pathway. PLoS One 2014; 9:e116157. [PMID: 25551661 PMCID: PMC4281108 DOI: 10.1371/journal.pone.0116157] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 12/02/2014] [Indexed: 11/18/2022] Open
Abstract
Evidence supporting nitric oxide (NO) as a mediator of plant biochemistry continues to grow, but its functions at the molecular level remains poorly understood and, in some cases, controversial. To study the role of NO at the transcriptional level in Betula platyphylla cells, we conducted a genome-scale transcriptome analysis of these cells. The transcriptome of untreated birch cells and those treated by sodium nitroprusside (SNP) were analyzed using the Solexa sequencing. Data were collected by sequencing cDNA libraries of birch cells, which had a long period to adapt to the suspension culture conditions before SNP-treated cells and untreated cells were sampled. Among the 34,100 UniGenes detected, BLASTX search revealed that 20,631 genes showed significant (E-values≤10-5) sequence similarity with proteins from the NR-database. Numerous expressed sequence tags (i.e., 1374) were identified as differentially expressed between the 12 h SNP-treated cells and control cells samples: 403 up-regulated and 971 down-regulated. From this, we specifically examined a core set of NO-related transcripts. The altered expression levels of several transcripts, as determined by transcriptome analysis, was confirmed by qRT-PCR. The results of transcriptome analysis, gene expression quantification, the content of triterpenoid and activities of defensive enzymes elucidated NO has a significant effect on many processes including triterpenoid production, carbohydrate metabolism and cell wall biosynthesis.
Collapse
Affiliation(s)
- Fansuo Zeng
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fengkun Sun
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Leilei Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Kun Liu
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yaguang Zhan
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- * E-mail:
| |
Collapse
|
204
|
Genome-wide identification, expression analysis of GH3 family genes in Medicago truncatula under stress-related hormones and Sinorhizobium meliloti infection. Appl Microbiol Biotechnol 2014; 99:841-54. [PMID: 25529315 DOI: 10.1007/s00253-014-6311-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Auxin plays a pivotal role in the regulation of plant growth and development by controlling the expression of auxin response genes rapidly. As one of the major auxin early response gene families, Gretchen Hagen 3 (GH3) genes are involved in auxin homeostasis by conjugating excess auxins to amino acids. However, how GH3 genes function in environmental stresses and rhizobial infection responses in Medicago truncatula are largely unknown. Here, based on the latest updated M. truncatula genome, a comprehensive identification and expression profiling analysis of MtGH3 genes were performed. Our data showed that most of MtGH3 genes were expressed in tissue-specific manner and were responsive to environmental stress-related hormones. To understand the possible roles of MtGH3 genes involved in symbiosis establishment between M. truncatula and symbiotic bacteria, quantitative real-time polymerase chain reaction (qRT-PCR) was used to test the expressions of MtGH3 genes during the early phase of Sinorhizobium meliloti infection. The expression levels of most MtGH3 genes were upregulated in shoots and downregulated in roots by S. meliloti infection. The differences in expression responses to S. meliloti infection between roots and shoots were in agreement with the results of free indoleacetic acid (IAA) content measurements. The identification and expression analysis of MtGH3 genes at the early phase of S. meliloti infection may help us to understand the role of GH3-mediated IAA homeostasis in the regulation of nodule formation in model legumes M. truncatula.
Collapse
|
205
|
Wang X, Du J, Yao X. Structural and dynamic basis of acid amido synthetase GH3.1: an investigation of substrate selectivity and major active site access channels. MOLECULAR BIOSYSTEMS 2014; 11:809-18. [PMID: 25531425 DOI: 10.1039/c4mb00608a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Auxin/IAA (Indole-3-acetic acid) plays critical roles in many aspects of plant growth and development. Gretchen Hagen 3.1 (GH3.1) enzyme from grapevine (Vitis vinifera) catalyzes the ATP-dependent conjugation of aspartate to IAA suggesting a significant way to modulate levels of cellular auxins/IAA. It is reported that VvGH3.1 prefers IAA as the substrate than 1-naphthaleneacetic acid (NAA) and benzothiazole-2-oxyacetic acid (BTOA), whereas the detailed interaction mechanism of these substrates remains unclear. In this study, based on the recently reported crystal structure of VvGH3.1 and AtGH3.12, the open form of VvGH3.1 was built. Then combined computational techniques including molecular docking, molecular dynamics (MD) simulations, Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA) methods and active site access channel analysis were utilized to investigate the binding mechanism of three substrates, IAA, NAA and BTOA, and dynamic behaviors of GH3.1 induced by substrate binding. The predicted binding free energy is in agreement with the experimental work with an order of IAA < NAA < BTOA. Key residues interacting with three substrates and residues specifically binding to one of them were identified. The strong hydrogen bond interaction formed between IAA and Ser108, Ser339, Gln560 makes it the best substrate over NAA and BTOA. The dynamic behaviors, especially in the dominant access channels of IAA and NAA bound GH3.1, were found to be different from those in the BTOA-GH3.1 system with larger bottleneck radius and shorter length. This study provided novel insight to understand the substrate selectivity mechanism of GH3.1 and also for the rational design of novel auxin-based herbicides and growth regulators.
Collapse
Affiliation(s)
- Xue Wang
- Key Lab of Applied Mycology, College of Life Science, Qingdao Agricultural University, Qingdao 266109, China.
| | | | | |
Collapse
|
206
|
Pirrello J, Leclercq J, Dessailly F, Rio M, Piyatrakul P, Kuswanhadi K, Tang C, Montoro P. Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis. BMC PLANT BIOLOGY 2014; 14:341. [PMID: 25443311 PMCID: PMC4274682 DOI: 10.1186/s12870-014-0341-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 11/19/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Latex harvesting in Hevea brasiliensis amounts to strong abiotic stress that can cause a halt in production in the most susceptible clones. Although the role of jasmonic acid has been suggested in laticifer differentiation, its role in latex production and in the response to harvesting stress has received very little attention. Only a few key genes acting in the COI-JAZ-MYC module have been isolated and studied at transcriptional level. RESULTS Use of a reference transcriptome obtained on rubber clone PB 260 covering a large number of tissues under different environmental conditions enabled us to identify 24 contigs implicated in the jasmonate signalling pathway in the rubber tree. An analysis of their expression profile by qPCR, combined with hierarchical clustering, suggested that the jasmonate signalling pathway is highly activated in laticifer cells and, more particularly, in the response to harvesting stress. By comparison with their genomic sequences, the existence of regulation by alternative splicing was discovered for JAZ transcripts in response to harvesting stress. Lastly, positive transcriptional regulation of the HbJAZ_1405 gene by MYC was demonstrated. CONCLUSION This study led to the identification of all actors of jasmonate signalling pathway and revealed a specific gene expression pattern in latex cells. In-depth analysis of this regulation showed alternative splicing that has been previously shown in Arabidopsis. Interestingly, genotypic variation was observed in Hevea clones with contrasting latex metabolism. This result suggests an involvement of jasmonate signalling pathway in latex production. The data suggest that specific variability of the JA pathway may have some major consequences for resistance to stress. The data support the hypothesis that a better understanding of transcriptional regulations of jasmonate pathway during harvesting stress, along with the use of genotypic diversity in response to such stress, can be used to improve resistance to stress and rubber production in Hevea.
Collapse
Affiliation(s)
| | | | | | | | - Piyanuch Piyatrakul
- />CIRAD, UMR AGAP, F-34398 Montpellier, France
- />Rubber Research Institute, Chatuchak, Bangkok 10900 Thailand
| | - Kuswanhadi Kuswanhadi
- />Sembawa Research Centre, Indonesian Rubber Research Institute, P.O 1127, Palembang, 30001 Indonesia
| | - Chaorong Tang
- />Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China
| | | |
Collapse
|
207
|
Geng X, Jin L, Shimada M, Kim MG, Mackey D. The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. PLANTA 2014; 240:1149-65. [PMID: 25156488 PMCID: PMC4228168 DOI: 10.1007/s00425-014-2151-x] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/08/2014] [Indexed: 05/20/2023]
Abstract
Plant pathogens deploy an array of virulence factors to suppress host defense and promote pathogenicity. Numerous strains of Pseudomonas syringae produce the phytotoxin coronatine (COR). A major aspect of COR function is its ability to mimic a bioactive jasmonic acid (JA) conjugate and thus target the JA-receptor COR-insensitive 1 (COI1). Biological activities of COR include stimulation of JA-signaling and consequent suppression of SA-dependent defense through antagonistic crosstalk, antagonism of stomatal closure to allow bacterial entry into the interior of plant leaves, contribution to chlorotic symptoms in infected plants, and suppression of plant cell wall defense through perturbation of secondary metabolism. Here, we review the virulence function of COR, including updates on these established activities as well as more recent findings revealing COI1-independent activity of COR and shedding light on cooperative or redundant defense suppression between COR and type III effector proteins.
Collapse
Affiliation(s)
- Xueqing Geng
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Lin Jin
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
| | - Mikiko Shimada
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
| | - Min Gab Kim
- College of Pharmacy, Research Institute of Pharmaceutical Science, PMBBRC Gyeongsang National University, Jinju daero, Jinju, 660-751 Republic of Korea
| | - David Mackey
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
208
|
|
209
|
Bosch M, Wright LP, Gershenzon J, Wasternack C, Hause B, Schaller A, Stintzi A. Jasmonic acid and its precursor 12-oxophytodienoic acid control different aspects of constitutive and induced herbivore defenses in tomato. PLANT PHYSIOLOGY 2014; 166:396-410. [PMID: 25073705 PMCID: PMC4149723 DOI: 10.1104/pp.114.237388] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 07/25/2014] [Indexed: 05/20/2023]
Abstract
The jasmonate family of growth regulators includes the isoleucine (Ile) conjugate of jasmonic acid (JA-Ile) and its biosynthetic precursor 12-oxophytodienoic acid (OPDA) as signaling molecules. To assess the relative contribution of JA/JA-Ile and OPDA to insect resistance in tomato (Solanum lycopersicum), we silenced the expression of OPDA reductase3 (OPR3) by RNA interference (RNAi). Consistent with a block in the biosynthetic pathway downstream of OPDA, OPR3-RNAi plants contained wild-type levels of OPDA but failed to accumulate JA or JA-Ile after wounding. JA/JA-Ile deficiency in OPR3-RNAi plants resulted in reduced trichome formation and impaired monoterpene and sesquiterpene production. The loss of these JA/JA-Ile -dependent defense traits rendered them more attractive to the specialist herbivore Manduca sexta with respect to feeding and oviposition. Oviposition preference resulted from reduced levels of repellant monoterpenes and sesquiterpenes. Feeding preference, on the other hand, was caused by increased production of cis-3-hexenal acting as a feeding stimulant for M. sexta larvae in OPR3-RNAi plants. Despite impaired constitutive defenses and increased palatability of OPR3-RNAi leaves, larval development was indistinguishable on OPR3-RNAi and wild-type plants, and was much delayed compared with development on the jasmonic acid-insensitive1 (jai1) mutant. Apparently, signaling through JAI1, the tomato ortholog of the ubiquitin ligase CORONATINE INSENSITIVE1 in Arabidopsis (Arabidopsis thaliana), is required for defense, whereas the conversion of OPDA to JA/JA-Ile is not. Comparing the signaling activities of OPDA and JA/JA-Ile, we found that OPDA can substitute for JA/JA-Ile in the local induction of defense gene expression, but the production of JA/JA-Ile is required for a systemic response.
Collapse
Affiliation(s)
- Marko Bosch
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Louwrance P Wright
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Jonathan Gershenzon
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Claus Wasternack
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Bettina Hause
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, 70593 Stuttgart, Germany (M.B., A.Sc., A.St.);Max Planck Institute for Chemical Ecology, 07745 Jena, Germany (L.P.W., J.G.); andLeibniz Institute of Plant Biochemistry, 06120 Halle, Germany (C.W., B.H.)
| |
Collapse
|
210
|
Meesters C, Mönig T, Oeljeklaus J, Krahn D, Westfall CS, Hause B, Jez JM, Kaiser M, Kombrink E. A chemical inhibitor of jasmonate signaling targets JAR1 in Arabidopsis thaliana. Nat Chem Biol 2014; 10:830-6. [PMID: 25129030 DOI: 10.1038/nchembio.1591] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/12/2014] [Indexed: 12/11/2022]
Abstract
Jasmonates are lipid-derived plant hormones that regulate plant defenses and numerous developmental processes. Although the biosynthesis and molecular function of the most active form of the hormone, (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), have been unraveled, it remains poorly understood how the diversity of bioactive jasmonates regulates such a multitude of plant responses. Bioactive analogs have been used as chemical tools to interrogate the diverse and dynamic processes of jasmonate action. By contrast, small molecules impairing jasmonate functions are currently unknown. Here, we report on jarin-1 as what is to our knowledge the first small-molecule inhibitor of jasmonate responses that was identified in a chemical screen using Arabidopsis thaliana. Jarin-1 impairs the activity of JA-Ile synthetase, thereby preventing the synthesis of the active hormone, JA-Ile, whereas closely related enzymes are not affected. Thus, jarin-1 may serve as a useful chemical tool in search for missing regulatory components and further dissection of the complex jasmonate signaling networks.
Collapse
Affiliation(s)
- Christian Meesters
- 1] Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany. [2] Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Timon Mönig
- Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Julian Oeljeklaus
- Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Daniel Krahn
- Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Corey S Westfall
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Joseph M Jez
- Department of Biology, Washington University, St. Louis, Missouri, USA
| | - Markus Kaiser
- Center for Medical Biotechnology, Department of Chemical Biology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Erich Kombrink
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Köln, Germany
| |
Collapse
|
211
|
Pazmiño DM, Rodríguez-Serrano M, Sanz M, Romero-Puertas MC, Sandalio LM. Regulation of epinasty induced by 2,4-dichlorophenoxyacetic acid in pea and Arabidopsis plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:809-18. [PMID: 24444075 DOI: 10.1111/plb.12128] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/04/2013] [Indexed: 06/03/2023]
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) causes uncontrolled cell division and malformed growth in plants, giving rise to leaf epinasty and stem curvature. In this study, mechanisms involved in the regulation of leaf epinasty induced by 2,4-D were studied using different chemicals involved in reactive oxygen species (ROS) accumulation (diphenyleniodonium, butylated hydroxyanisole, EDTA, allopurinol), calcium channels (LaCl3), protein phosphorylation (cantharidin, wortmannin) and ethylene emission/perception (aminoethoxyvinyl glycine, AgNO3). The effect of these compounds on the epinasty induced by 2,4-D was analysed in shoots and leaf strips from pea plants. For further insight into the effect of 2,4-D, studies were also made in Arabidopsis mutants deficient in ROS production (rbohD, rbohF, xdh), ethylene (ein 3-1, ctr 1-1, etr 1-1), abscisic acid (aba 3.1), and jasmonic acid (coi 1.1, jar 1.1, opr 3) pathways. The results suggest that ROS production, mainly ·OH, is essential in the development of epinasty triggered by 2,4-D. Epinasty was also found to be regulated by Ca2+, protein phosphorylation and ethylene, although all these factors act downstream of ROS production. The use of Arabidopsis mutants appears to indicate that abscisic and jasmonic acid are not involved in regulating epinasty, although they could be involved in other symptoms induced by 2,4-D.
Collapse
Affiliation(s)
- D M Pazmiño
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | | | |
Collapse
|
212
|
Bostock RM, Pye MF, Roubtsova TV. Predisposition in plant disease: exploiting the nexus in abiotic and biotic stress perception and response. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:517-49. [PMID: 25001451 DOI: 10.1146/annurev-phyto-081211-172902] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Predisposition results from abiotic stresses occurring prior to infection that affect susceptibility of plants to disease. The environment is seldom optimal for plant growth, and even mild, episodic stresses can predispose plants to inoculum levels they would otherwise resist. Plant responses that are adaptive in the short term may conflict with those for resisting pathogens. Abiotic and biotic stress responses are coordinated by complex signaling networks involving phytohormones and reactive oxygen species (ROS). Abscisic acid (ABA) is a global regulator in stress response networks and an important phytohormone in plant-microbe interactions with systemic effects on resistance and susceptibility. However, extensive cross talk occurs among all the phytohormones during stress events, and the challenge is discerning those interactions that most influence disease. Identifying convergent points in the stress response circuitry is critically important in terms of understanding the fundamental biology that underscores the disease phenotype as well as translating research to improve stress tolerance and disease management in production systems.
Collapse
Affiliation(s)
- Richard M Bostock
- Department of Plant Pathology, University of California, Davis, California 95616; , ,
| | | | | |
Collapse
|
213
|
Hsieh HL, Okamoto H. Molecular interaction of jasmonate and phytochrome A signalling. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2847-57. [PMID: 24868039 DOI: 10.1093/jxb/eru230] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytochrome family of red (R) and far-red (FR) light receptors (phyA-phyE in Arabidopsis) play important roles throughout plant development and regulate elongation growth during de-etiolation and under light. Phytochromes regulate growth through interaction with the phytohormones gibberellin, auxin, and brassinosteroid. Recently it has been established that jasmonic acid (JA), a phytohormone for stress responses, namely wounding and defence, is also important in inhibition of hypocotyl growth regulated by phyA and phyB. This review focuses on recent advances in our understanding of the molecular basis of the interaction between JA and phytochrome signalling particularly during seedling development in Arabidopsis. Significantly, JA biosynthesis genes are induced by phyA. The protein abundance of JAR1/FIN219, an enzyme for the final synthesis step to give JA-Ile, an active form of JA, is also determined by phyA. In addition, JAR1/FIN219 directly interacts with an E3-ligase, COP1, a master regulator for transcription factors regulating hypocotyl growth, suggesting a more direct role in growth regulation. There are a number of points of interaction in the molecular signalling of JA and phytochrome during seedling development in Arabidopsis, and we propose a model for how they work together to regulate hypocotyl growth.
Collapse
Affiliation(s)
- Hsu-Liang Hsieh
- Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Haruko Okamoto
- Centre for Biological Sciences, University of Southampton, Southampton, UK Department of Biochemistry, Faculty of Pharmaceutical Sciences, Iwate Medical University, Iwate, Japan
| |
Collapse
|
214
|
Vadassery J, Reichelt M, Jimenez-Aleman GH, Boland W, Mithöfer A. Neomycin inhibition of (+)-7-iso-jasmonoyl-L-isoleucine accumulation and signaling. J Chem Ecol 2014; 40:676-86. [PMID: 24859518 DOI: 10.1007/s10886-014-0448-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 04/16/2014] [Accepted: 05/01/2014] [Indexed: 01/13/2023]
Abstract
The majority of plant defenses against insect herbivores are coordinated by jasmonate (jasmonic acid, JA; (+)-7-iso-jasmonoyl-L-isoleucine, JA-Ile)-dependent signaling cascades. Insect feeding and mimicking herbivory by application of oral secretions (OS) from the insect induced both cytosolic Ca(2+) and jasmonate-phytohormone elevation in plants. Here it is shown that in Arabidopsis thaliana upon treatment with OS from lepidopteran Spodoptera littoralis larvae, the antibiotic neomycin selectively blocked the accumulation of OS-induced Ca(2+) elevation and level of the bioactive JA-Ile, in contrast to JA level. Furthermore, neomycin treatment affected the downstream expression of JA-Ile-responsive genes, VSP2 and LOX2, in Arabidopsis. The neomycin-dependent reduced JA-Ile level is partially due to increased CYP94B3 expression and subsequent JA-Ile turn-over to12-hydroxy-JA-Ile. It is neither due to the inhibition of the enzymatic conjugation process nor to substrate availability. Thus, blocking Ca(2+) elevation specifically controls JA-Ile accumulation and signaling, offering an insight into role of calcium in defense against insect herbivory.
Collapse
Affiliation(s)
- Jyothilakshmi Vadassery
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany,
| | | | | | | | | |
Collapse
|
215
|
Liu N, Ding Y, Fromm M, Avramova Z. Different gene-specific mechanisms determine the 'revised-response' memory transcription patterns of a subset of A. thaliana dehydration stress responding genes. Nucleic Acids Res 2014; 42:5556-66. [PMID: 24744238 PMCID: PMC4027201 DOI: 10.1093/nar/gku220] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plants that have experienced several exposures to dehydration stress show increased resistance to future exposures by producing faster and/or stronger reactions, while many dehydration stress responding genes in Arabidopsis thaliana super-induce their transcription as a 'memory' from the previous encounter. A previously unknown, rather unusual, memory response pattern is displayed by a subset of the dehydration stress response genes. Despite robustly responding to a first stress, these genes return to their initial, pre-stressed, transcript levels during the watered recovery; surprisingly, they do not respond further to subsequent stresses of similar magnitude and duration. This transcriptional behavior defines the 'revised-response' memory genes. Here, we investigate the molecular mechanisms regulating this transcription memory behavior. Potential roles of abscisic acid (ABA), of transcription factors (TFs) from the ABA signaling pathways (ABF2/3/4 and MYC2), and of histone modifications (H3K4me3 and H3K27me3) as factors in the revised-response transcription memory patterns are elucidated. We identify the TF MYC2 as the critical component for the memory behavior of a specific subset of MYC2-dependent genes.
Collapse
Affiliation(s)
- Ning Liu
- University of Nebraska School of Biological Sciences, 1901 Vine Street, Lincoln, NE 68588, USA
| | - Yong Ding
- University of Nebraska School of Biological Sciences, 1901 Vine Street, Lincoln, NE 68588, USA School of Life Sciences, University of Science & Technology of China, 443 Huangshang Road, Hefei, Anhui 230027, China
| | - Michael Fromm
- University of Nebraska Center for Biotechnology and Center for Plant Science Innovation, 1901 Vine Street, Lincoln, NE 68588, USA
| | - Zoya Avramova
- University of Nebraska School of Biological Sciences, 1901 Vine Street, Lincoln, NE 68588, USA
| |
Collapse
|
216
|
Svyatyna K, Jikumaru Y, Brendel R, Reichelt M, Mithöfer A, Takano M, Kamiya Y, Nick P, Riemann M. Light induces jasmonate-isoleucine conjugation via OsJAR1-dependent and -independent pathways in rice. PLANT, CELL & ENVIRONMENT 2014; 37:827-39. [PMID: 24033451 DOI: 10.1111/pce.12201] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 08/26/2013] [Accepted: 09/04/2013] [Indexed: 05/22/2023]
Abstract
The bioactive form of jasmonate is the conjugate of the amino acid isoleucine (Ile) with jasmonic acid (JA), which is biosynthesized in a reaction catalysed by the GH3 enzyme JASMONATE RESISTANT 1 (JAR1). We examined the biochemical properties of OsJAR1 and its involvement in photomorphogenesis of rice (Oryza sativa). OsJAR1 has a similar substrate specificities as its orthologue in Arabidopsis. However, osjar1 loss-of-function mutants did not show as severe coleoptile phenotypes as the JA-deficient mutants coleoptile photomorphogenesis 2 (cpm2) and hebiba, which develop long coleoptiles in all light qualities we examined. Analysis of hormonal contents in the young seedling stage revealed that osjar1 mutants are still able to synthesize JA-Ile conjugate in response to blue light, suggesting that a redundantly active enzyme can conjugate JA and Ile in rice seedlings. A good candidate for this enzyme is OsJAR2, which was found to be able to catalyse the conjugation of JA with Ile as well as with some additional amino acids. In contrast, if plants in the vegetative stage were mechanically wounded, the content of JA-Ile was severely reduced in osjar1, demonstrating that OsJAR1 is the most important JA-Ile conjugating enzyme in the wounding response during the vegetative stage.
Collapse
Affiliation(s)
- Katharina Svyatyna
- Botanical Institute, Karlsruhe Institute of Technology, 76131, Karlsruhe, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Mitra S, Baldwin IT. RuBPCase activase (RCA) mediates growth-defense trade-offs: silencing RCA redirects jasmonic acid (JA) flux from JA-isoleucine to methyl jasmonate (MeJA) to attenuate induced defense responses in Nicotiana attenuata. THE NEW PHYTOLOGIST 2014; 201:1385-1395. [PMID: 24491116 PMCID: PMC4996320 DOI: 10.1111/nph.12591] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/03/2013] [Indexed: 05/14/2023]
Abstract
• RuBPCase activase (RCA), an abundant photosynthetic protein, is strongly down-regulated in response to Manduca sexta's oral secretion (OS) in Nicotiana attenuata. RCA-silenced plants are impaired not only in photosynthetic capacity and growth, but also in jasmonic acid-isoleucine (JA-Ile) signaling, and herbivore resistance mediated by JA-Ile-dependent defense traits. These responses are consistent with a resource-based growth-defense trade-off. • As JA + Ile supplementation of OS restored wild-type (WT) levels of JA-Ile, defenses and resistance to M. sexta, but OS supplemented individually with JA or Ile did not, the JA-Ile deficiency of RCA-silenced plants could not be attributed to lower JA or Ile pools or JAR4/6 conjugating activity. Similar levels of JA-Ile derivatives after OS elicitation indicated unaltered JA-Ile turnover, and lower levels of other JA conjugates ruled out competition from other conjugation reactions. • RCA-silenced plants accumulated more methyl jasmonate (MeJA) after OS elicitation, which corresponded to increased jasmonate methyltransferase (JMT) activity. RCA silencing phenocopies JMT overexpression, wherein elevated JMT activity redirects OS-elicited JA flux towards inactive MeJA, creating a JA sink which depletes JA-Ile and its associated defense responses. • Hence, RCA plays an additional non-photosynthetic role in attenuating JA-mediated defenses and their associated costs, potentially allowing plants to anticipate resource-based constraints on growth before they actually occur.
Collapse
Affiliation(s)
- Sirsha Mitra
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany
| |
Collapse
|
218
|
Zhang X, Zhu Z, An F, Hao D, Li P, Song J, Yi C, Guo H. Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. THE PLANT CELL 2014; 26:1105-17. [PMID: 24668749 PMCID: PMC4001372 DOI: 10.1105/tpc.113.122002] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 02/11/2014] [Accepted: 03/03/2014] [Indexed: 05/20/2023]
Abstract
The apical hook is an essential structure that enables epigeal plants to protrude through the soil. Arabidopsis thaliana HOOKLESS1 (HLS1) is reported to be a key regulator of hook development and a direct target gene of the ethylene (ET)-activated transcription factors ETHYLENE INSENSITIVE3 (EIN3) and its close homolog EIN3-Like1. Previous research has shown that the phytohormones jasmonate (JA) and ET antagonistically regulate apical hook development, although the underlying molecular mechanism is largely unknown. Here, we report that JA represses hook formation by reducing HLS1 expression. Our results further reveal that the JA-activated transcription factor MYC2 represses EIN3 function to reduce HLS1 expression through at least the following two layers of regulation: (1) MYC2 binds to the promoter of an F-box gene, EIN3 BINDING F-BOX PROTEIN1, to induce its expression and thus promote EIN3 degradation; and (2) MYC2 physically interacts with EIN3 and inhibits its DNA binding activity. Collectively, our findings shed light on the molecular mechanism underlying the antagonism between JA and ET during apical hook development and provide insight into the coaction of multiple phytohormones in the regulation of plant growth and development.
Collapse
Affiliation(s)
- Xing Zhang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Ziqiang Zhu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fengying An
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Dongdong Hao
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
| | - Pengpeng Li
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Hongwei Guo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Beijing 100871, China
- Address correspondence to
| |
Collapse
|
219
|
Trost G, Vi SL, Czesnick H, Lange P, Holton N, Giavalisco P, Zipfel C, Kappel C, Lenhard M. Arabidopsis poly(A) polymerase PAPS1 limits founder-cell recruitment to organ primordia and suppresses the salicylic acid-independent immune response downstream of EDS1/PAD4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:688-99. [PMID: 24372773 DOI: 10.1111/tpj.12421] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/09/2013] [Accepted: 12/11/2013] [Indexed: 05/24/2023]
Abstract
Polyadenylation of pre-mRNAs by poly(A) polymerase (PAPS) is a critical process in eukaryotic gene expression. As found in vertebrates, plant genomes encode several isoforms of canonical nuclear PAPS enzymes. In Arabidopsis thaliana these isoforms are functionally specialized, with PAPS1 affecting both organ growth and immune response, at least in part by the preferential polyadenylation of subsets of pre-mRNAs. Here, we demonstrate that the opposite effects of PAPS1 on leaf and flower growth reflect the different identities of these organs, and identify a role for PAPS1 in the elusive connection between organ identity and growth patterns. The overgrowth of paps1 mutant petals is due to increased recruitment of founder cells into early organ primordia, and suggests that PAPS1 activity plays unique roles in influencing organ growth. By contrast, the leaf phenotype of paps1 mutants is dominated by a constitutive immune response that leads to increased resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis and reflects activation of the salicylic acid-independent signalling pathway downstream of ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)/PHYTOALEXIN DEFICIENT4 (PAD4). These findings provide an insight into the developmental and physiological basis of the functional specialization amongst plant PAPS isoforms.
Collapse
Affiliation(s)
- Gerda Trost
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Welander M, Geier T, Smolka A, Ahlman A, Fan J, Zhu LH. Origin, timing, and gene expression profile of adventitious rooting in Arabidopsis hypocotyls and stems. AMERICAN JOURNAL OF BOTANY 2014; 101:255-66. [PMID: 24500805 DOI: 10.3732/ajb.1300258] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
PREMISE OF THE STUDY Adventitious root (AR) formation is indispensable for vegetative propagation, but difficult to achieve in many crops. Understanding its molecular mechanisms is thus important for such species. Here we aimed at developing a rooting protocol for direct AR formation in stems, locating cellular AR origins in stems and exploring molecular differences underlying adventitious rooting in hypocotyls and stems. METHODS In-vitro-grown hypocotyls or stems of wild-type and transgenic ecotype Columbia (Col-0) of Arabidopsis thaliana were rooted on rooting media. Anatomy of AR formation, qRT-PCR of some rooting-related genes and in situ GUS expression were carried out during rooting from hypocotyls and stems. KEY RESULTS We developed a rooting protocol for AR formation in stems and traced back root origins in stems by anatomical and in situ expression studies. Unlike rooting in hypocotyls, rooting in stems was slower, and AR origins were mainly from lateral parenchyma of vascular bundles and neighboring starch sheath cells as well as, to a lesser extent, from phloem cap and xylem parenchyma. Transcript levels of GH3-3, LBD16, LBD29, and LRP1 in hypocotyls and stems were similar, but transcript accumulation was delayed in stems. In situ expression signals of DR5::GUS, LBD16::GUS, LBD29::GUS, and rolB::GUS reporters in stems mainly occurred at the root initiation sites, suggesting their involvement in AR formation. CONCLUSIONS We have developed an efficient rooting protocol using half-strength Lepoivre medium for studying AR formation in stems, traced back the cellular AR origins in stems, and correlated expression of rooting-related genes with root initiation sites.
Collapse
Affiliation(s)
- Margareta Welander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Box 101, SE-230 53 Alnarp, Sweden
| | | | | | | | | | | |
Collapse
|
221
|
Lin F, Zhao M, Baumann DD, Ping J, Sun L, Liu Y, Zhang B, Tang Z, Hughes E, Doerge RW, Hughes TJ, Ma J. Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics. BMC Genomics 2014; 15:18. [PMID: 24410936 PMCID: PMC3893405 DOI: 10.1186/1471-2164-15-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 01/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is controlled by Rps genes. However, little is known regarding the Rps-induced molecular responses to P. sojae and how they actually overlap. We thus sequenced, analyzed, and compared the transcriptomes of 10 near isogenic lines (NILs), each with a unique Rps gene/allele, and the susceptible parent Williams, pre- and post-inoculation with the pathogen. RESULTS A total of 4,330 differentially expressed genes (DEGs) were identified in Williams versus 2,014 to 5,499 DEGs in individual NILs upon inoculation with the pathogen. Comparisons of the DEGs between the NILs and Williams identified incompatible interaction genes (IIGs) and compatible interaction genes (CIGs). Hierarchical cluster and heatmap analyses consistently grouped the NILs into three clusters: Cluster I (Rps1-a), Cluster II (Rps1-b, 1-c and 1-k) and Cluster III (Rps3-a, 3-b, 3-c, 4, 5, and 6), suggesting an overlap in Rps-induced defense signaling among certain NILs. Gene ontology (GO) analysis revealed associations between members of the WRKY family and incompatible reactions and between a number of phytohormone signaling pathways and incompatible/compatible interactions. These associations appear to be distinguished according to the NIL clusters. CONCLUSIONS This study characterized genes and multiple branches of putative regulatory networks associated with resistance to P. sojae in ten soybean NILs, and depicted functional "fingerprints" of individual Rps-mediated resistance responses through comparative transcriptomic analysis. Of particular interest are dramatic variations of detected DEGs, putatively involved in ethylene (ET)-, jasmonic acid (JA)-, (reactive oxygen species) ROS-, and (MAP-kinase) MAPK- signaling, among these soybean NILs, implicating their important roles of these signaling in differentiating molecular defense responses. We hypothesize that different timing and robustness in defense signaling to the same pathogen may be largely responsible for such variations.
Collapse
Affiliation(s)
- Feng Lin
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Meixia Zhao
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Douglas D Baumann
- Department of Mathematics, University of Wisconsin – La Crosse, La Crosse, WI 54601, USA
| | - Jieqing Ping
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Lianjun Sun
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Yunfeng Liu
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Biao Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Zongxiang Tang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Elisa Hughes
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Rebecca W Doerge
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Teresa J Hughes
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- USDA-ARS Crop Production and Pest Control Research Unit, Purdue University, West Lafayette, IN 47907, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
222
|
Aranega-Bou P, de la O Leyva M, Finiti I, García-Agustín P, González-Bosch C. Priming of plant resistance by natural compounds. Hexanoic acid as a model. FRONTIERS IN PLANT SCIENCE 2014; 5:488. [PMID: 25324848 PMCID: PMC4181288 DOI: 10.3389/fpls.2014.00488] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/03/2014] [Indexed: 05/18/2023]
Abstract
Some alternative control strategies of currently emerging plant diseases are based on the use of resistance inducers. This review highlights the recent advances made in the characterization of natural compounds that induce resistance by a priming mechanism. These include vitamins, chitosans, oligogalacturonides, volatile organic compounds, azelaic and pipecolic acid, among others. Overall, other than providing novel disease control strategies that meet environmental regulations, natural priming agents are valuable tools to help unravel the complex mechanisms underlying the induced resistance (IR) phenomenon. The data presented in this review reflect the novel contributions made from studying these natural plant inducers, with special emphasis placed on hexanoic acid (Hx), proposed herein as a model tool for this research field. Hx is a potent natural priming agent of proven efficiency in a wide range of host plants and pathogens. It can early activate broad-spectrum defenses by inducing callose deposition and the salicylic acid (SA) and jasmonic acid (JA) pathways. Later it can prime pathogen-specific responses according to the pathogen's lifestyle. Interestingly, Hx primes redox-related genes to produce an anti-oxidant protective effect, which might be critical for limiting the infection of necrotrophs. Our Hx-IR findings also strongly suggest that it is an attractive tool for the molecular characterization of the plant alarmed state, with the added advantage of it being a natural compound.
Collapse
Affiliation(s)
- Paz Aranega-Bou
- Departamento de Bioquímica y Biología Molecular, Universitat de Valencia, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Maria de la O Leyva
- Departamento de Bioquímica y Biología Molecular, Universitat de Valencia, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Ivan Finiti
- Departamento de Bioquímica y Biología Molecular, Universitat de Valencia, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones CientíficasValencia, Spain
| | - Pilar García-Agustín
- Grupo de Bioquímica y Biotecnología, Área de Fisiología Vegetal, Departamento de Ciencias Agrarias y del Medio Natural, Escola Superior de Tecnologia i Ciències Experimentals, Universitat Jaume ICastellón, Spain
| | - Carmen González-Bosch
- Departamento de Bioquímica y Biología Molecular, Universitat de Valencia, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones CientíficasValencia, Spain
- *Correspondence: Carmen González-Bosch, Departamento de Bioquímica y Biología Molecular, Universitat de Valencia, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Avenida Agustín Escardino 7, 46980 Paterna, Valencia, Spain e-mail:
| |
Collapse
|
223
|
Singh VK, Jain M, Garg R. Genome-wide analysis and expression profiling suggest diverse roles of GH3 genes during development and abiotic stress responses in legumes. FRONTIERS IN PLANT SCIENCE 2014; 5:789. [PMID: 25642236 PMCID: PMC4294127 DOI: 10.3389/fpls.2014.00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/18/2014] [Indexed: 05/08/2023]
Abstract
Growth hormone auxin regulates various cellular processes by altering the expression of diverse genes in plants. Among various auxin-responsive genes, GH3 genes maintain endogenous auxin homeostasis by conjugating excess of auxin with amino acids. GH3 genes have been characterized in many plant species, but not in legumes. In the present work, we identified members of GH3 gene family and analyzed their chromosomal distribution, gene structure, gene duplication and phylogenetic analysis in different legumes, including chickpea, soybean, Medicago, and Lotus. A comprehensive expression analysis in different vegetative and reproductive tissues/stages revealed that many of GH3 genes were expressed in a tissue-specific manner. Notably, chickpea CaGH3-3, soybean GmGH3-8 and -25, and Lotus LjGH3-4, -5, -9 and -18 genes were up-regulated in root, indicating their putative role in root development. In addition, chickpea CaGH3-1 and -7, and Medicago MtGH3-7, -8, and -9 were found to be highly induced under drought and/or salt stresses, suggesting their role in abiotic stress responses. We also observed the examples of differential expression pattern of duplicated GH3 genes in soybean, indicating their functional diversification. Furthermore, analyses of three-dimensional structures, active site residues and ligand preferences provided molecular insights into function of GH3 genes in legumes. The analysis presented here would help in investigation of precise function of GH3 genes in legumes during development and stress conditions.
Collapse
Affiliation(s)
| | | | - Rohini Garg
- *Correspondence: Rohini Garg, Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
224
|
Zeier J. New insights into the regulation of plant immunity by amino acid metabolic pathways. PLANT, CELL & ENVIRONMENT 2013; 36:2085-103. [PMID: 23611692 DOI: 10.1111/pce.12122] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 04/09/2013] [Accepted: 04/14/2013] [Indexed: 05/20/2023]
Abstract
Besides defence pathways regulated by classical stress hormones, distinct amino acid metabolic pathways constitute integral parts of the plant immune system. Mutations in several genes involved in Asp-derived amino acid biosynthetic pathways can have profound impact on plant resistance to specific pathogen types. For instance, amino acid imbalances associated with homoserine or threonine accumulation elevate plant immunity to oomycete pathogens but not to pathogenic fungi or bacteria. The catabolism of Lys produces the immune signal pipecolic acid (Pip), a cyclic, non-protein amino acid. Pip amplifies plant defence responses and acts as a critical regulator of plant systemic acquired resistance, defence priming and local resistance to bacterial pathogens. Asp-derived pyridine nucleotides influence both pre- and post-invasion immunity, and the catabolism of branched chain amino acids appears to affect plant resistance to distinct pathogen classes by modulating crosstalk of salicylic acid- and jasmonic acid-regulated defence pathways. It also emerges that, besides polyamine oxidation and NADPH oxidase, Pro metabolism is involved in the oxidative burst and the hypersensitive response associated with avirulent pathogen recognition. Moreover, the acylation of amino acids can control plant resistance to pathogens and pests by the formation of protective plant metabolites or by the modulation of plant hormone activity.
Collapse
Affiliation(s)
- Jürgen Zeier
- Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
225
|
Vahabi K, Camehl I, Sherameti I, Oelmüller R. Growth of Arabidopsis seedlings on high fungal doses of Piriformospora indica has little effect on plant performance, stress, and defense gene expression in spite of elevated jasmonic acid and jasmonic acid-isoleucine levels in the roots. PLANT SIGNALING & BEHAVIOR 2013; 8:e26301. [PMID: 24047645 PMCID: PMC4091356 DOI: 10.4161/psb.26301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The endophytic fungus Piriformospora indica colonizes the roots of many plant species including Arabidopsis and promotes their performance, biomass, and seed production as well as resistance against biotic and abiotic stress. Imbalances in the symbiotic interaction such as uncontrolled fungal growth result in the loss of benefits for the plants and activation of defense responses against the microbe. We exposed Arabidopsis seedlings to a dense hyphal lawn of P. indica. The seedlings continue to grow, accumulate normal amounts of chlorophyll, and the photosynthetic parameters demonstrate that they perform well. In spite of high fungal doses around the roots, the fungal material inside the roots was not significantly higher when compared with roots that live in a beneficial symbiosis with P. indica. Fifteen defense- and stress-related genes including PR2, PR3, PAL2, and ERF1 are only moderately upregulated in the roots on the fungal lawn, and the seedlings did not accumulate H2O2/radical oxygen species. However, accumulation of anthocyanin in P. indica-exposed seedlings indicates stress symptoms. Furthermore, the jasmonic acid (JA) and jasmonic acid-isoleucine (JA-Ile) levels were increased in the roots, and consequently PDF1.2 and a newly characterized gene for a 2-oxoglurate and Fe2+ -dependent oxygenase were upregulated more than 7-fold on the dense fungal lawn, in a JAR1- and EIN3-dependent manner. We conclude that growth of A. thaliana seedlings on high fungal doses of P. indica has little effect on the overall performance of the plants although elevated JA and JA-Ile levels in the roots induce a mild stress or defense response.
Collapse
|
226
|
Ayil-Gutiérrez B, Galaz-Ávalos RM, Peña-Cabrera E, Loyola-Vargas VM. Dynamics of the concentration of IAA and some of its conjugates during the induction of somatic embryogenesis in Coffea canephora. PLANT SIGNALING & BEHAVIOR 2013; 8:e26998. [PMID: 24299659 PMCID: PMC4091420 DOI: 10.4161/psb.26998] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 05/18/2023]
Abstract
Most of the somatic embryogenesis (SE) process requires the presence, either before or during the embryogenic process, of at least one exogenous auxin. This exogenous auxin induces the presence of endogenous auxins, which appears to be essential for SE induction. We found that during the preincubation period of SE in Coffea canephora, there is an important increase in both free and conjugated indole-3-acetic acid (IAA), as well as indole-3-butyric acid. This increase is accompanied by an increase in the expression of YUCCA (CcYUC), TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (CcTAA1), and GRETCHEN HAGEN 3 (GH3) genes. On the other hand, most of the IAA compounds decreased during the induction of SE. The results presented in this research suggest that a balance between free IAA and its amide conjugates is necessary to allow the expression of SE-related genes.
Collapse
Affiliation(s)
- Benajmín Ayil-Gutiérrez
- Unidad de Bioquímica y Biología Molecular de Plantas; Centro de Investigación Científica de Yucatán; Mérida, Yucatán, México
| | - Rosa María Galaz-Ávalos
- Unidad de Bioquímica y Biología Molecular de Plantas; Centro de Investigación Científica de Yucatán; Mérida, Yucatán, México
| | - Eduardo Peña-Cabrera
- Departamento de Química; Universidad de Guanajuato; Col. Noria Alta S/N, Guanajuato, México
| | - Victor Manuel Loyola-Vargas
- Unidad de Bioquímica y Biología Molecular de Plantas; Centro de Investigación Científica de Yucatán; Mérida, Yucatán, México
| |
Collapse
|
227
|
Abstract
Jasmonic acid (JA) is activated for signaling by its conjugation to isoleucine (Ile) through an amide linkage. The Arabidopsis thaliana JASMONIC ACID RESISTANT1 (JAR1) enzyme carries out this Mg-ATP-dependent reaction in two steps, adenylation of the free carboxyl of JA, followed by condensation of the activated group to Ile. This chapter details the protocols used to detect and quantify the enzymatic activity obtained from a glutathione-S-transferase:JAR1 fusion protein produced in Escherichia coli, including an isotope exchange assay for the adenylation step and assays for the complete reaction that involve the high-performance liquid chromatography quantitation of adenosine monophosphate, a stoichiometric by-product of the reaction, and detection of the conjugation product by thin-layer chromatography or gas -chromatography/mass spectrometry.
Collapse
Affiliation(s)
- Martha L Rowe
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | |
Collapse
|
228
|
Merelo P, Xie Y, Brand L, Ott F, Weigel D, Bowman JL, Heisler MG, Wenkel S. Genome-wide identification of KANADI1 target genes. PLoS One 2013; 8:e77341. [PMID: 24155946 PMCID: PMC3796457 DOI: 10.1371/journal.pone.0077341] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/21/2013] [Indexed: 11/28/2022] Open
Abstract
Plant organ development and polarity establishment is mediated by the action of several transcription factors. Among these, the KANADI (KAN) subclade of the GARP protein family plays important roles in polarity-associated processes during embryo, shoot and root patterning. In this study, we have identified a set of potential direct target genes of KAN1 through a combination of chromatin immunoprecipitation/DNA sequencing (ChIP-Seq) and genome-wide transcriptional profiling using tiling arrays. Target genes are over-represented for genes involved in the regulation of organ development as well as in the response to auxin. KAN1 affects directly the expression of several genes previously shown to be important in the establishment of polarity during lateral organ and vascular tissue development. We also show that KAN1 controls through its target genes auxin effects on organ development at different levels: transport and its regulation, and signaling. In addition, KAN1 regulates genes involved in the response to abscisic acid, jasmonic acid, brassinosteroids, ethylene, cytokinins and gibberellins. The role of KAN1 in organ polarity is antagonized by HD-ZIPIII transcription factors, including REVOLUTA (REV). A comparison of their target genes reveals that the REV/KAN1 module acts in organ patterning through opposite regulation of shared targets. Evidence of mutual repression between closely related family members is also shown.
Collapse
Affiliation(s)
- Paz Merelo
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Yakun Xie
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
| | - Lucas Brand
- School of Biological Sciences, Monash University, Melbourne, Australia
| | - Felix Ott
- Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Max-Planck-Institute for Developmental Biology, Tübingen, Germany
| | - John L. Bowman
- School of Biological Sciences, Monash University, Melbourne, Australia
- * E-mail: (JLB); (MGH); (SW)
| | - Marcus G. Heisler
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- School of Biologlical Sciences, Sydney University, Sydney, Australia
- * E-mail: (JLB); (MGH); (SW)
| | - Stephan Wenkel
- Center for Plant Molecular Biology, University of Tübingen, Tübingen, Germany
- * E-mail: (JLB); (MGH); (SW)
| |
Collapse
|
229
|
Chen Y, Shen H, Wang M, Li Q, He Z. Salicyloyl-aspartate synthesized by the acetyl-amido synthetase GH3.5 is a potential activator of plant immunity in Arabidopsis. Acta Biochim Biophys Sin (Shanghai) 2013; 45:827-36. [PMID: 23842113 DOI: 10.1093/abbs/gmt078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Salicylic acid (SA) plays a critical role in plant immunity responses against pathogen infection, especially in the establishment of systemic acquired resistance. Whether other forms of salicylates also function in plant immunity has not been explored. Our previous study has revealed that salicyloyl-aspartate (SA-Asp), the only reported endogenous SA-amino acid conjugate in plants, was highly accumulated in the Arabidopsis activation-tagged mutant gh3.5-1D after pathogen infection. In this study, we dissected SA-Asp production in Arabidopsis. In vitro biochemical experiments showed that the GH3.5 protein could catalyze the conjugation of SA with aspartic acid to form SA-Asp. SA-Asp is not converted into free SA and likely acts as a mobile molecule in plants. SA-Asp could induce pathogenesis-related (PR) gene expression and increase disease resistance to pathogenic Pseudomonas syringae. Our current study also supports the notion that GH3.5 is a multifunction enzyme in plant hormone metabolism.
Collapse
Affiliation(s)
- Ying Chen
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
230
|
Hu Y, Jiang L, Wang F, Yu D. Jasmonate regulates the inducer of cbf expression-C-repeat binding factor/DRE binding factor1 cascade and freezing tolerance in Arabidopsis. THE PLANT CELL 2013; 25:2907-24. [PMID: 23933884 PMCID: PMC3784588 DOI: 10.1105/tpc.113.112631] [Citation(s) in RCA: 492] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 07/17/2013] [Accepted: 07/30/2013] [Indexed: 05/18/2023]
Abstract
The inducer of cbf expression (ICE)-C-repeat binding factor/DRE binding factor1 (CBF/DREB1) transcriptional pathway plays a critical role in modulating cold stress responses in Arabidopsis thaliana. Dissecting crucial upstream regulatory signals or components of the ICE-CBF/DREB1 cascade will enhance our understanding of plant cold-tolerance mechanisms. Here, we show that jasmonate positively regulates plant responses to freezing stress in Arabidopsis. Exogenous application of jasmonate significantly enhanced plant freezing tolerance with or without cold acclimation. By contrast, blocking endogenous jasmonate biosynthesis and signaling rendered plants hypersensitive to freezing stress. Consistent with the positive role of jasmonate in freezing stress, production of endogenous jasmonate was triggered by cold treatment. In addition, cold induction of genes acting in the CBF/DREB1 signaling pathway was upregulated by jasmonate. Further investigation revealed that several jasmonate ZIM-domain (JAZ) proteins, the repressors of jasmonate signaling, physically interact with ICE1 and ICE2 transcription factors. JAZ1 and JAZ4 repress the transcriptional function of ICE1, thereby attenuating the expression of its regulon. Consistent with this, overexpression of JAZ1 or JAZ4 represses freezing stress responses of Arabidopsis. Taken together, our study provides evidence that jasmonate functions as a critical upstream signal of the ICE-CBF/DREB1 pathway to positively regulate Arabidopsis freezing tolerance.
Collapse
Affiliation(s)
- Yanru Hu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liqun Jiang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Diqiu Yu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- Address correspondence to
| |
Collapse
|
231
|
Fukumoto K, Alamgir K, Yamashita Y, Mori IC, Matsuura H, Galis I. Response of rice to insect elicitors and the role of OsJAR1 in wound and herbivory-induced JA-Ile accumulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:775-84. [PMID: 23621526 DOI: 10.1111/jipb.12057] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/29/2013] [Indexed: 05/23/2023]
Abstract
Plants produce jasmonic acid (JA) and its amino acid conjugate, jasmonoyl-L-isoleucine (JA-Ile) as major defense signals in response to wounding and herbivory. In rice (Oryza sativa), JA and JA-Ile rapidly increased after mechanical damage, and this increase was further amplified when the wounds were treated with oral secretions from generalist herbivore larvae, lawn armyworms (Spodoptera mauritia), revealing for the first time active perception mechanisms of herbivore-associated elicitor(s) in rice. In the rice genome, two OsJAR genes can conjugate JA and Ile and form JA-Ile in vitro; however, their function in herbivory-induced accumulation of JA-Ile has not been investigated. By functional characterization of TOS17 retrotransposon-tagged Osjar1 plants and their response to simulated herbivory, we show that OsJAR1 is essential for JA-Ile production in herbivore-attacked, field-grown plants. In addition, OsJAR1 was required for normal seed development in rice under field conditions. Our results suggest that OsJAR1 possesses at least two major functions in rice defense and development that cannot be complemented by the additional OsJAR2 gene function, although this gene previously showed overlapping enzyme activity in vitro.
Collapse
Affiliation(s)
- Kaori Fukumoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki 710-0046, Japan
| | | | | | | | | | | |
Collapse
|
232
|
Song S, Qi T, Huang H, Xie D. Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis. MOLECULAR PLANT 2013; 6:1065-73. [PMID: 23543439 DOI: 10.1093/mp/sst054] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Proper stamen development is essential for plants to achieve their life cycles. Defects in stamen development will cause male sterility. A vast array of research efforts have been made to understand stamen developmental processes and regulatory mechanisms over the past decades. It is so far reported that phytohormones, including jasmonate, auxin, gibberellin, brassinosteroid, and cytokinin, play essential roles in regulation of stamen development. This review will briefly summarize the molecular basis for coordinated regulation of stamen development by jasmonate, auxin, and gibberellin in Arabidopsis.
Collapse
Affiliation(s)
- Susheng Song
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|
233
|
García-Robles I, Ochoa-Campuzano C, Fernández-Crespo E, Camañes G, Martínez-Ramírez AC, González-Bosch C, García-Agustín P, Rausell C, Real MD. Combining hexanoic acid plant priming with Bacillus thuringiensis insecticidal activity against Colorado potato beetle. Int J Mol Sci 2013; 14:12138-56. [PMID: 23743826 PMCID: PMC3709778 DOI: 10.3390/ijms140612138] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 01/17/2023] Open
Abstract
Interaction between insect herbivores and host plants can be modulated by endogenous and exogenous compounds present in the source of food and might be successfully exploited in Colorado potato beetle (CPB) pest management. Feeding tests with CPB larvae reared on three solanaceous plants (potato, eggplant and tomato) resulted in variable larval growth rates and differential susceptibility to Bacillus thuringiensis Cry3Aa toxin as a function of the host plant. An inverse correlation with toxicity was observed in Cry3Aa proteolytic patterns generated by CPB midgut brush-border membrane vesicles (BBMV) from Solanaceae-fed larvae, being the toxin most extensively proteolyzed on potato, followed by eggplant and tomato. We found that CPB cysteine proteases intestains may interact with Cry3Aa toxin and, in CPB BBMV from larvae fed all three Solanaceae, the toxin was able to compete for the hydrolysis of a papain substrate. In response to treatment with the JA-dependent plant inducer Hexanoic acid (Hx), we showed that eggplant reduced OPDA basal levels and both, potato and eggplant induced JA-Ile. CPB larvae feeding on Hx-induced plants exhibited enhanced Cry3Aa toxicity, which correlated with altered papain activity. Results indicated host-mediated effects on B. thuringiensis efficacy against CPB that can be enhanced in combination with Hx plant induction.
Collapse
Affiliation(s)
- Inmaculada García-Robles
- Department of Genetics, University of Valencia, Dr. Moliner 50, Burjassot 46100, Valencia, Spain; E-Mails: (I.G.-R.); (C.O.-C.); (A.C.M.-R.); (C.R.)
| | - Camila Ochoa-Campuzano
- Department of Genetics, University of Valencia, Dr. Moliner 50, Burjassot 46100, Valencia, Spain; E-Mails: (I.G.-R.); (C.O.-C.); (A.C.M.-R.); (C.R.)
| | - Emma Fernández-Crespo
- Biochemistry and Biotechnology Laboratory, Plant Physiology Area, Department CAMN, University Jaume I, Castellón 12071, Spain; E-Mails: (E.F.-C.); (G.C.); (P.G.-A.)
| | - Gemma Camañes
- Biochemistry and Biotechnology Laboratory, Plant Physiology Area, Department CAMN, University Jaume I, Castellón 12071, Spain; E-Mails: (E.F.-C.); (G.C.); (P.G.-A.)
| | - Amparo C. Martínez-Ramírez
- Department of Genetics, University of Valencia, Dr. Moliner 50, Burjassot 46100, Valencia, Spain; E-Mails: (I.G.-R.); (C.O.-C.); (A.C.M.-R.); (C.R.)
| | - Carmen González-Bosch
- Department of Biochemistry and Molecular Biology, University of Valencia, IATA (CSIC), Paterna, Valencia 46980, Spain; E-Mail:
| | - Pilar García-Agustín
- Biochemistry and Biotechnology Laboratory, Plant Physiology Area, Department CAMN, University Jaume I, Castellón 12071, Spain; E-Mails: (E.F.-C.); (G.C.); (P.G.-A.)
| | - Carolina Rausell
- Department of Genetics, University of Valencia, Dr. Moliner 50, Burjassot 46100, Valencia, Spain; E-Mails: (I.G.-R.); (C.O.-C.); (A.C.M.-R.); (C.R.)
| | - María Dolores Real
- Department of Genetics, University of Valencia, Dr. Moliner 50, Burjassot 46100, Valencia, Spain; E-Mails: (I.G.-R.); (C.O.-C.); (A.C.M.-R.); (C.R.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-963-543-397; Fax: +34-963-543-029
| |
Collapse
|
234
|
Yang DH, Baldwin IT, Wu J. Silencing brassinosteroid receptor BRI1 impairs herbivory-elicited accumulation of jasmonic acid-isoleucine and diterpene glycosides, but not jasmonic acid and trypsin proteinase inhibitors in Nicotiana attenuata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:514-526. [PMID: 23347255 DOI: 10.1111/jipb.12035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/21/2013] [Indexed: 06/01/2023]
Abstract
The brassinosteroid (BR) receptor, BR insensitive 1 (BRI1), plays a critical role in plant development, but whether BRI1-mediated BR signaling is involved in plant defense responses to herbivores was largely unknown. Here, we examined the function of BRI1 in the resistance of Nicotiana attenuata (Solanaceae) to its specialist insect herbivore Manduca sexta. Jasmonic acid (JA) and JA-isoleucine conjugate (JA-Ile) are important hormones that mediate resistance to herbivores and we found that after wounding or simulated herbivory NaBRI1 had little effect on JA levels, but was important for the induction of JA-Ile. Further experiments revealed that decreased JAR (the enzyme for JA-Ile production) activity and availability of Ile in NaBRI1-silenced plants were likely responsible for the low JA-Ile levels. Consistently, M. sexta larvae gained more weight on NaBRI1-silenced plants than on the control plants. Quantification of insect feeding-induced secondary metabolites revealed that silencing NaBRI1 resulted in decreased levels of carbon-rich defensive secondary metabolites (hydroxygeranyllinalool diterpene glycosides, chlorogenic acid, and rutin), but had little effect on the nitrogen-rich ones (nicotine and trypsin proteinase inhibitors). Thus, NaBRI1-mediated BR signaling is likely involved in plant defense responses to M. sexta, including maintaining JA-Ile levels and the accumulation of several carbon-rich defensive secondary metabolites.
Collapse
Affiliation(s)
- Da-Hai Yang
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, D-07745 Jena, Germany
| | | | | |
Collapse
|
235
|
Westfall CS, Muehler AM, Jez JM. Enzyme action in the regulation of plant hormone responses. J Biol Chem 2013; 288:19304-11. [PMID: 23709222 DOI: 10.1074/jbc.r113.475160] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plants synthesize a chemically diverse range of hormones that regulate growth, development, and responses to environmental stresses. The major classes of plant hormones are specialized metabolites with exquisitely tailored perception and signaling systems, but equally important are the enzymes that control the dose and exposure to the bioactive forms of these molecules. Here, we review new insights into the role of enzyme families, including the SABATH methyltransferases, the methylesterases, the GH3 acyl acid-amido synthetases, and the hormone peptidyl hydrolases, in controlling the biosynthesis and modifications of plant hormones and how these enzymes contribute to the network of chemical signals responsible for plant growth, development, and environmental adaptation.
Collapse
Affiliation(s)
- Corey S Westfall
- Department of Biology, Washington University in St Louis, St Louis, Missouri 63130, USA
| | | | | |
Collapse
|
236
|
Fürstenberg-Hägg J, Zagrobelny M, Bak S. Plant defense against insect herbivores. Int J Mol Sci 2013; 14:10242-97. [PMID: 23681010 PMCID: PMC3676838 DOI: 10.3390/ijms140510242] [Citation(s) in RCA: 402] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 04/27/2013] [Accepted: 05/02/2013] [Indexed: 01/09/2023] Open
Abstract
Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar. Insect herbivory induce several internal signals from the wounded tissues, including calcium ion fluxes, phosphorylation cascades and systemic- and jasmonate signaling. These are perceived in undamaged tissues, which thereafter reinforce their defense by producing different, mostly low molecular weight, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce defense responses. Plants also apply morphological features like waxes, trichomes and latices to make the feeding more difficult for the insects. Extrafloral nectar, food bodies and nesting or refuge sites are produced to accommodate and feed the predators of the herbivores. Meanwhile, herbivorous insects have adapted to resist plant defenses, and in some cases even sequester the compounds and reuse them in their own defense. Both plant defense and insect adaptation involve metabolic costs, so most plant-insect interactions reach a stand-off, where both host and herbivore survive although their development is suboptimal.
Collapse
Affiliation(s)
- Joel Fürstenberg-Hägg
- Plant Biochemistry Laboratory and VKR Research Centre ‘Pro-Active Plants’, Department of Plant and Environmental Science, University of Copenhagen, 40 Thorvaldsensvej, Frederiksberg C, Copenhagen DK-1871, Denmark; E-Mails: (J.F.-H.); (M.Z.)
| | - Mika Zagrobelny
- Plant Biochemistry Laboratory and VKR Research Centre ‘Pro-Active Plants’, Department of Plant and Environmental Science, University of Copenhagen, 40 Thorvaldsensvej, Frederiksberg C, Copenhagen DK-1871, Denmark; E-Mails: (J.F.-H.); (M.Z.)
| | - Søren Bak
- Plant Biochemistry Laboratory and VKR Research Centre ‘Pro-Active Plants’, Department of Plant and Environmental Science, University of Copenhagen, 40 Thorvaldsensvej, Frederiksberg C, Copenhagen DK-1871, Denmark; E-Mails: (J.F.-H.); (M.Z.)
| |
Collapse
|
237
|
Yuan H, Zhao K, Lei H, Shen X, Liu Y, Liao X, Li T. Genome-wide analysis of the GH3 family in apple (Malus × domestica). BMC Genomics 2013; 14:297. [PMID: 23638690 PMCID: PMC3653799 DOI: 10.1186/1471-2164-14-297] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 04/25/2013] [Indexed: 11/10/2022] Open
Abstract
Background Auxin plays important roles in hormone crosstalk and the plant’s stress response. The auxin-responsive Gretchen Hagen3 (GH3) gene family maintains hormonal homeostasis by conjugating excess indole-3-acetic acid (IAA), salicylic acid (SA), and jasmonic acids (JAs) to amino acids during hormone- and stress-related signaling pathways. With the sequencing of the apple (Malus × domestica) genome completed, it is possible to carry out genomic studies on GH3 genes to indentify candidates with roles in abiotic/biotic stress responses. Results Malus sieversii Roem., an apple rootstock with strong drought tolerance and the ancestral species of cultivated apple species, was used as the experimental material. Following genome-wide computational and experimental identification of MdGH3 genes, we showed that MdGH3s were differentially expressed in the leaves and roots of M. sieversii and that some of these genes were significantly induced after various phytohormone and abiotic stress treatments. Given the role of GH3 in the negative feedback regulation of free IAA concentration, we examined whether phytohormones and abiotic stresses could alter the endogenous auxin level. By analyzing the GUS activity of DR5::GUS-transformed Arabidopsis seedlings, we showed that ABA, SA, salt, and cold treatments suppressed the auxin response. These findings suggest that other phytohormones and abiotic stress factors might alter endogenous auxin levels. Conclusion Previous studies showed that GH3 genes regulate hormonal homeostasis. Our study indicated that some GH3 genes were significantly induced in M. sieversii after various phytohormone and abiotic stress treatments, and that ABA, SA, salt, and cold treatments reduce the endogenous level of axuin. Taken together, this study provides evidence that GH3 genes play important roles in the crosstalk between auxin, other phytohormones, and the abiotic stress response by maintaining auxin homeostasis.
Collapse
Affiliation(s)
- Huazhao Yuan
- Department of Fruit Science, College of Agriculture and Biotechnology/Key Laboratory of Stress Physiology and Molecular Biology for Tree Fruits of Beijing, China Agricultural University, 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
238
|
Ostrowski M, Jakubowska A. GH3 expression and IAA-amide synthetase activity in pea (Pisum sativum L.) seedlings are regulated by light, plant hormones and auxinic herbicides. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:361-8. [PMID: 23332498 DOI: 10.1016/j.jplph.2012.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/05/2012] [Accepted: 10/22/2012] [Indexed: 05/14/2023]
Abstract
The formation of auxin conjugates is one of the important regulatory mechanisms for modulating IAA action. Several auxin-responsive GH3 genes encode IAA-amide synthetases that are involved in the maintenance of hormonal homeostasis by conjugating excess IAA to amino acids. Recently, the data have revealed novel regulatory functions of several GH3 proteins in plant growth, organ development, fruit ripening, light signaling, abiotic stress tolerance and plant defense responses. Indole-3-acetyl-aspartate (IAA-Asp) synthetase catalyzing IAA conjugation to aspartic acid in immature seeds of pea (Pisum sativum L.) was purified and characterized during our previous investigations. In this study, we examined the effect of auxin and other plant hormones (ABA, GA, kinetin, JA, MeJA, SA), different light conditions (red, far-red, blue, white light), and auxinic herbicides (2,4-D, Dicamba, Picloram) on the expression of a putative GH3 gene and IAA-amide synthesizing activity in 10-d-old pea seedlings. Quantitative RT-PCR analysis indicated that the PsGH3-5 gene, weakly expressed in control sample, was visibly induced in response to all plant hormones, different light wavelengths and the auxinic herbicides tested. Protein A immunoprecipitation/gel blot analysis using anti-AtGH3.5 antibodies revealed a similar pattern of changes on the protein levels in response to all treatments. IAA-amide synthetase activity determined with aspartate as a substrate, not detectable in control seedlings, was positively affected by a majority of treatments. Based on these results, we suggest that PsGH3-5 may control the growth and development of pea plants in a way similar to the known GH3 genes from other plant species.
Collapse
Affiliation(s)
- Maciej Ostrowski
- Department of Biochemistry, Nicolaus Copernicus University, Gagarina 9, 87-100 Toruń, Poland.
| | | |
Collapse
|
239
|
Adams E, Abdollahi P, Shin R. Cesium Inhibits Plant Growth through Jasmonate Signaling in Arabidopsis thaliana. Int J Mol Sci 2013; 14:4545-59. [PMID: 23439557 PMCID: PMC3634425 DOI: 10.3390/ijms14034545] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Revised: 01/25/2013] [Accepted: 02/06/2013] [Indexed: 11/25/2022] Open
Abstract
It has been suggested that cesium is absorbed from the soil through potassium uptake machineries in plants; however, not much is known about perception mechanism and downstream response. Here, we report that the jasmonate pathway is required in plant response to cesium. Jasmonate biosynthesis mutant aos and jasmonate-insensitive mutant coi1-16 show clear resistance to root growth inhibition caused by cesium. However, the potassium and cesium contents in these mutants are comparable to wild-type plants, indicating that jasmonate biosynthesis and signaling are not involved in cesium uptake, but involved in cesium perception. Cesium induces expression of a high-affinity potassium transporter gene HAK5 and reduces potassium content in the plant body, suggesting a competitive nature of potassium and cesium uptake in plants. It has also been found that cesium-induced HAK5 expression is antagonized by exogenous application of methyl-jasmonate. Taken together, it has been indicated that cesium inhibits plant growth via induction of the jasmonate pathway and likely modifies potassium uptake machineries.
Collapse
Affiliation(s)
- Eri Adams
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; E-Mails: (E.A.); (P.A.)
| | - Parisa Abdollahi
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; E-Mails: (E.A.); (P.A.)
| | - Ryoung Shin
- RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; E-Mails: (E.A.); (P.A.)
| |
Collapse
|
240
|
Seo JS, Koo YJ, Jung C, Yeu SY, Song JT, Kim JK, Choi Y, Lee JS, Do Choi Y. Identification of a novel jasmonate-responsive element in the AtJMT promoter and its binding protein for AtJMT repression. PLoS One 2013; 8:e55482. [PMID: 23393583 PMCID: PMC3564755 DOI: 10.1371/journal.pone.0055482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/24/2012] [Indexed: 12/21/2022] Open
Abstract
Jasmonates (JAs) are important regulators of plant biotic and abiotic stress responses and development. AtJMT in Arabidopsis thaliana and BcNTR1 in Brassica campestris encode jasmonic acid carboxyl methyltransferases, which catalyze methyl jasmonate (MeJA) biosynthesis and are involved in JA signaling. Their expression is induced by MeJA application. To understand its regulatory mechanism, here we define a novel JA-responsive cis-element (JARE), G(C)TCCTGA, in the AtJMT and BcNTR1 promoters, by promoter deletion analysis and Yeast 1-Hybrid (Y1H) assays; the JARE is distinct from other JA-responsive cis-elements previously reported. We also used Y1H screening to identify a trans-acting factor, AtBBD1, which binds to the JARE and interacts with AtJAZ1 and AtJAZ4. Knockout and overexpression analyses showed that AtBBD1 and its close homologue AtBBD2 are functionally redundant and act as negative regulators of AtJMT expression. However, AtBBD1 positively regulated the JA-responsive expression of JR2. Chromatin immunoprecipitation from knockout and overexpression plants revealed that repression of AtJMT is associated with reduced histone acetylation in the promoter region containing the JARE. These results show that AtBBD1 interacts with JAZ proteins, binds to the JARE and represses AtJMT expression.
Collapse
Affiliation(s)
- Jun Sung Seo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Yeon Jong Koo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Choonkyun Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Song Yion Yeu
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Ju-Kon Kim
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin, Korea
| | - Yeonhee Choi
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jong Seob Lee
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yang Do Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
241
|
Fu ZQ, Dong X. Systemic acquired resistance: turning local infection into global defense. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:839-63. [PMID: 23373699 DOI: 10.1146/annurev-arplant-042811-105606] [Citation(s) in RCA: 841] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Systemic acquired resistance (SAR) is an induced immune mechanism in plants. Unlike vertebrate adaptive immunity, SAR is broad spectrum, with no specificity to the initial infection. An avirulent pathogen causing local programmed cell death can induce SAR through generation of mobile signals, accumulation of the defense hormone salicylic acid, and secretion of the antimicrobial PR (pathogenesis-related) proteins. Consequently, the rest of the plant is protected from secondary infection for a period of weeks to months. SAR can even be passed on to progeny through epigenetic regulation. The Arabidopsis NPR1 (nonexpresser of PR genes 1) protein is a master regulator of SAR. Recent study has shown that salicylic acid directly binds to the NPR1 adaptor proteins NPR3 and NPR4, regulates their interactions with NPR1, and controls NPR1 protein stability. However, how NPR1 interacts with TGA transcription factors to activate defense gene expression is still not well understood. In addition, redox regulators, the mediator complex, WRKY transcription factors, endoplasmic reticulum-resident proteins, and DNA repair proteins play critical roles in SAR.
Collapse
Affiliation(s)
- Zheng Qing Fu
- Howard Hughes Medical Institute-Gordon and Betty Moore Foundation and Department of Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
242
|
Zhao SQ, Xiang JJ, Xue HW. Studies on the rice LEAF INCLINATION1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. MOLECULAR PLANT 2013; 6:174-87. [PMID: 22888153 DOI: 10.1093/mp/sss064] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The angle of rice leaf inclination is an important agronomic trait and closely related to the yields and architecture of crops. Although few mutants with altered leaf angles have been reported, the molecular mechanism remains to be elucidated, especially whether hormones are involved in this process. Through genetic screening, a rice gain-of-function mutant leaf inclination1, lc1-D, was identified from the Shanghai T-DNA Insertion Population (SHIP). Phenotypic analysis confirmed the exaggerated leaf angles of lc1-D due to the stimulated cell elongation at the lamina joint. LC1 is transcribed in various tissues and encodes OsGH3-1, an indole-3-acetic acid (IAA) amido synthetase, whose homolog of Arabidopsis functions in maintaining the auxin homeostasis by conjugating excess IAA to various amino acids. Indeed, recombinant LC1 can catalyze the conjugation of IAA to Ala, Asp, and Asn in vitro, which is consistent with the decreased free IAA amount in lc1-D mutant. lc1-D is insensitive to IAA and hypersensitive to exogenous BR, in agreement with the microarray analysis that reveals the altered transcriptions of genes involved in auxin signaling and BR biosynthesis. These results indicate the crucial roles of auxin homeostasis in the leaf inclination control.
Collapse
Affiliation(s)
- Shu-Qing Zhao
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | |
Collapse
|
243
|
Chen J, Sonobe K, Ogawa N, Masuda S, Nagatani A, Kobayashi Y, Ohta H. Inhibition of arabidopsis hypocotyl elongation by jasmonates is enhanced under red light in phytochrome B dependent manner. JOURNAL OF PLANT RESEARCH 2013; 126:161-8. [PMID: 22825635 PMCID: PMC3530149 DOI: 10.1007/s10265-012-0509-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/30/2012] [Indexed: 05/18/2023]
Abstract
Jasmonates are phytohormones derived from oxygenated fatty acids that regulate a broad range of plant defense and developmental processes. In Arabidopsis, hypocotyl elongation under various light conditions was suppressed by exogenously supplied methyl jasmonate (MeJA). Moreover, this suppression by MeJA was particularly effective under red light condition. Mutant analyses suggested that SCF(COI1)-mediated proteolysis was involved in this function. However, MeJA action still remained in the coi1 mutant, and (+)-7-iso-JA-L-Ile, a well-known active form of jasmonate, had a weaker effect than MeJA under the red light condition, suggesting that unknown signaling pathway are present in MeJA-mediated inhibition of hypocotyl elongation. EMS mutant screening identified two MeJA-insensitive hypocotyl elongation mutants, jasmonate resistance long hypocotyl 1 (jal1) and jal36, which had mutations in the phytochrome B (PHYB) gene. These analyses suggested that inhibition of hypocotyl elongation by jasmonates is enhanced under red light in phyB dependent manner.
Collapse
Affiliation(s)
- Jing Chen
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Kohei Sonobe
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Narihito Ogawa
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-52 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Yuichi Kobayashi
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-52 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| |
Collapse
|
244
|
De Domenico S, Bonsegna S, Horres R, Pastor V, Taurino M, Poltronieri P, Imtiaz M, Kahl G, Flors V, Winter P, Santino A. Transcriptomic analysis of oxylipin biosynthesis genes and chemical profiling reveal an early induction of jasmonates in chickpea roots under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 61:115-122. [PMID: 23141673 DOI: 10.1016/j.plaphy.2012.09.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 09/14/2012] [Indexed: 05/08/2023]
Abstract
Drought is one of the major constraints in subtropical agriculture. Therefore improving water stress tolerance is of great importance to breed for drought tolerance in future. The first plant organ sensing dehydration is the root. Aim of the present work was to clarify the potential impact of the phyto-oxylipins pathway on drought tolerance of chickpea (Cicer arietinum), the third important legume crop worldwide. Therefore, we measured the expression of key genes involved in oxylipins metabolism by qPCR on samples from stressed and non-stressed roots of a drought-tolerant and a drought-sensitive chickpea variety using commercially available TaqMan assays. We demonstrate that the drought tolerant variety reacts to drought with sustained and earlier activation of a specific lipoxygenase (Mt-LOX 1) gene, two hydroperoxide lyases (Mt-HPL 1 and Mt-HPL 2), an allene oxide synthase (Mt-AOS), and an oxo-phytodienoate reductase (Mt-OPR). We further show that gene over-expression positively correlates with the levels of major oxylipin metabolites from the AOS branch of the pathway, which finally leads to the synthesis of jasmonates. Higher levels of jasmonic acid (JA), its precursor 12-oxophytodienoic acid (OPDA) and the active form JA-isoleucine (JA-Ile) were especially detected in the root tissues of the tolerant variety, prompting us to assume a role of jasmonates in the early signalling of drought stress in chickpea and its involvement in the tolerance mechanism of the drought-tolerant variety.
Collapse
Affiliation(s)
- Stefania De Domenico
- Institute of Sciences of Food Production C.N.R., Unit of Lecce, via Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Kuang JF, Wu JY, Zhong HY, Li CQ, Chen JY, Lu WJ, Li JG. Carbohydrate stress affecting fruitlet abscission and expression of genes related to auxin signal transduction pathway in litchi. Int J Mol Sci 2012; 13:16084-103. [PMID: 23443112 PMCID: PMC3546680 DOI: 10.3390/ijms131216084] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/06/2012] [Accepted: 11/16/2012] [Indexed: 01/11/2023] Open
Abstract
Auxin, a vital plant hormone, regulates a variety of physiological and developmental processes. It is involved in fruit abscission through transcriptional regulation of many auxin-related genes, including early auxin responsive genes (i.e., auxin/indole-3-acetic acid (AUX/IAA), Gretchen Hagen3 (GH3) and small auxin upregulated (SAUR)) and auxin response factors (ARF), which have been well characterized in many plants. In this study, totally five auxin-related genes, including one AUX/IAA (LcAUX/IAA1), one GH3 (LcGH3.1), one SAUR (LcSAUR1) and two ARFs (LcARF1 and LcARF2), were isolated and characterized from litchi fruit. LcAUX/IAA1, LcGH3.1, LcSAUR1, LcARF1 and LcARF2 contain open reading frames (ORFs) encoding polypeptides of 203, 613, 142, 792 and 832 amino acids, respectively, with their corresponding molecular weights of 22.67, 69.20, 11.40, 88.20 and 93.16 kDa. Expression of these genes was investigated under the treatment of girdling plus defoliation which aggravated litchi fruitlet abscission due to the blockage of carbohydrates transport and the reduction of endogenous IAA content. Results showed that transcript levels of LcAUX/IAA1, LcGH3.1 and LcSAUR1 mRNAs were increased after the treatment in abscission zone (AZ) and other tissues, in contrast to the decreasing accumulation of LcARF1 mRNA, suggesting that LcAUX/IAA1, LcSAUR1 and LcARF1 may play more important roles in abscission. Our results provide new insight into the process of fruitlet abscission induced by carbohydrate stress and broaden our understanding of the auxin signal transduction pathway in this process at the molecular level.
Collapse
Affiliation(s)
- Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mails: (J.-F.K.); (H.-Y.Z.); (J.-Y.C.); (W.-J.L.)
| | - Jian-Yang Wu
- China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China; E-Mails: (J.-Y.W.); (C.-Q.L.)
- College of Basic Education, Zhanjiang Normal University, Zhanjiang 524037, China
| | - Hai-Ying Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mails: (J.-F.K.); (H.-Y.Z.); (J.-Y.C.); (W.-J.L.)
| | - Cai-Qin Li
- China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China; E-Mails: (J.-Y.W.); (C.-Q.L.)
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mails: (J.-F.K.); (H.-Y.Z.); (J.-Y.C.); (W.-J.L.)
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou 510642, China; E-Mails: (J.-F.K.); (H.-Y.Z.); (J.-Y.C.); (W.-J.L.)
| | - Jian-Guo Li
- China Litchi Research Center, South China Agricultural University, Guangzhou 510642, China; E-Mails: (J.-Y.W.); (C.-Q.L.)
| |
Collapse
|
246
|
Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6467-80. [PMID: 23112280 PMCID: PMC3504496 DOI: 10.1093/jxb/ers300] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant responses to abiotic stresses are coordinated by arrays of growth and developmental processes. Indole-3-acetic acid (IAA) and abscisic acid (ABA) play critical roles in developmental programmes and environmental responses, respectively, through complex signalling and metabolism networks. However, crosstalk between the two phytohormones in the stress responses remains largely unknown. Here, it is reported that a GH3 family gene, OsGH3-2, encoding an enzyme catalysing IAA conjugation to amino acids, is involved in the modulation of ABA level and stress tolerance. Expression of OsGH3-2 was induced by drought but was suppressed by cold. Overexpression of OsGH3-2 in rice caused significant morphological aberrations related to IAA deficiency, such as dwarfism, smaller leaves, and fewer crown roots and root hairs. The overexpressing line showed significantly reduced carotene, ABA, and free IAA levels, greater stomata aperture, and faster water loss, and was hypersensitive to drought stress. However, the overexpressing line showed increased cold tolerance, which was due to the combined effects of reduced free IAA content, alleviated oxidative damage, and decreased membrane penetrability. Furthermore, expression levels of some ABA synthesis- and stress-related genes were significantly changed in the overexpression line. It was conclude that OsGH3-2 modulates both endogenous free IAA and ABA homeostasis and differentially affects drought and cold tolerance in rice.
Collapse
Affiliation(s)
- Hao Du
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Nai Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jing Fu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shiping Wang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
247
|
Sanchez L, Courteaux B, Hubert J, Kauffmann S, Renault JH, Clément C, Baillieul F, Dorey S. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. PLANT PHYSIOLOGY 2012; 160:1630-41. [PMID: 22968829 PMCID: PMC3490604 DOI: 10.1104/pp.112.201913] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/06/2012] [Indexed: 05/19/2023]
Abstract
Plant resistance to phytopathogenic microorganisms mainly relies on the activation of an innate immune response usually launched after recognition by the plant cells of microbe-associated molecular patterns. The plant hormones, salicylic acid (SA), jasmonic acid, and ethylene have emerged as key players in the signaling networks involved in plant immunity. Rhamnolipids (RLs) are glycolipids produced by bacteria and are involved in surface motility and biofilm development. Here we report that RLs trigger an immune response in Arabidopsis (Arabidopsis thaliana) characterized by signaling molecules accumulation and defense gene activation. This immune response participates to resistance against the hemibiotrophic bacterium Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora arabidopsidis, and the necrotrophic fungus Botrytis cinerea. We show that RL-mediated resistance involves different signaling pathways that depend on the type of pathogen. Ethylene is involved in RL-induced resistance to H. arabidopsidis and to P. syringae pv tomato whereas jasmonic acid is essential for the resistance to B. cinerea. SA participates to the restriction of all pathogens. We also show evidence that SA-dependent plant defenses are potentiated by RLs following challenge by B. cinerea or P. syringae pv tomato. These results highlight a central role for SA in RL-mediated resistance. In addition to the activation of plant defense responses, antimicrobial properties of RLs are thought to participate in the protection against the fungus and the oomycete. Our data highlight the intricate mechanisms involved in plant protection triggered by a new type of molecule that can be perceived by plant cells and that can also act directly onto pathogens.
Collapse
Affiliation(s)
- Lisa Sanchez
- Laboratoire de Stress, Défenses, et Reproduction des Plantes, L'Unité de Recherche Vignes et Vins de Champagne, Equipe d'Accueil 4707 (L.S., B.C., C.C., F.B., S.D.) and Institut de Chimie Moléculaire de Reims Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6229, Institut Fédératif Recherche 53 (J.H., J.-H.R.), Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France; and Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, F-67084 Strasbourg, France (S.K.)
| | - Barbara Courteaux
- Laboratoire de Stress, Défenses, et Reproduction des Plantes, L'Unité de Recherche Vignes et Vins de Champagne, Equipe d'Accueil 4707 (L.S., B.C., C.C., F.B., S.D.) and Institut de Chimie Moléculaire de Reims Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6229, Institut Fédératif Recherche 53 (J.H., J.-H.R.), Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France; and Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, F-67084 Strasbourg, France (S.K.)
| | - Jane Hubert
- Laboratoire de Stress, Défenses, et Reproduction des Plantes, L'Unité de Recherche Vignes et Vins de Champagne, Equipe d'Accueil 4707 (L.S., B.C., C.C., F.B., S.D.) and Institut de Chimie Moléculaire de Reims Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6229, Institut Fédératif Recherche 53 (J.H., J.-H.R.), Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France; and Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, F-67084 Strasbourg, France (S.K.)
| | | | - Jean-Hugues Renault
- Laboratoire de Stress, Défenses, et Reproduction des Plantes, L'Unité de Recherche Vignes et Vins de Champagne, Equipe d'Accueil 4707 (L.S., B.C., C.C., F.B., S.D.) and Institut de Chimie Moléculaire de Reims Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6229, Institut Fédératif Recherche 53 (J.H., J.-H.R.), Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France; and Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, F-67084 Strasbourg, France (S.K.)
| | - Christophe Clément
- Laboratoire de Stress, Défenses, et Reproduction des Plantes, L'Unité de Recherche Vignes et Vins de Champagne, Equipe d'Accueil 4707 (L.S., B.C., C.C., F.B., S.D.) and Institut de Chimie Moléculaire de Reims Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6229, Institut Fédératif Recherche 53 (J.H., J.-H.R.), Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France; and Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, F-67084 Strasbourg, France (S.K.)
| | - Fabienne Baillieul
- Laboratoire de Stress, Défenses, et Reproduction des Plantes, L'Unité de Recherche Vignes et Vins de Champagne, Equipe d'Accueil 4707 (L.S., B.C., C.C., F.B., S.D.) and Institut de Chimie Moléculaire de Reims Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6229, Institut Fédératif Recherche 53 (J.H., J.-H.R.), Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France; and Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, F-67084 Strasbourg, France (S.K.)
| | - Stéphan Dorey
- Laboratoire de Stress, Défenses, et Reproduction des Plantes, L'Unité de Recherche Vignes et Vins de Champagne, Equipe d'Accueil 4707 (L.S., B.C., C.C., F.B., S.D.) and Institut de Chimie Moléculaire de Reims Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6229, Institut Fédératif Recherche 53 (J.H., J.-H.R.), Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France; and Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, F-67084 Strasbourg, France (S.K.)
| |
Collapse
|
248
|
Kombrink E. Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. PLANTA 2012; 236:1351-66. [PMID: 23011567 DOI: 10.1007/s00425-012-1705-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/27/2012] [Indexed: 05/03/2023]
Abstract
Jasmonates are lipid-derived compounds that act as signals in plant stress responses and developmental processes. Enzymes participating in biosynthesis of jasmonic acid (JA) and components of JA signaling have been extensively characterized by biochemical and molecular-genetic tools. Mutants have helped to define the pathway for synthesis of jasmonoyl-L-isoleucine (JA-Ile), the bioactive form of JA, and to identify the F-box protein COI1 as central regulatory unit. Details on the molecular mechanism of JA signaling were recently unraveled by the discovery of JAZ proteins that together with the adaptor protein NINJA and the general co-repressor TOPLESS form a transcriptional repressor complex. The current model of JA perception and signaling implies the SCF(COI1) complex operating as E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ proteins for degradation by the 26S proteasome pathway, thereby allowing MYC2 and other transcription factors to activate gene expression. Chemical strategies, as integral part of jasmonate research, have helped the establishment of structure-activity relationships and the discovery of (+)-7-iso-JA-L-Ile as the major bioactive form of the hormone. The transient nature of its accumulation highlights the need to understand catabolism and inactivation of JA-Ile and recent studies indicate that oxidation of JA-Ile by cytochrome P450 monooxygenase is the major mechanism for turning JA signaling off. Plants contain numerous JA metabolites, which may have pronounced and differential bioactivity. A major challenge in the field of plant lipid signaling is to identify the cognate receptors and modes of action of these bioactive jasmonates/oxylipins.
Collapse
Affiliation(s)
- Erich Kombrink
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany.
| |
Collapse
|
249
|
Peat TS, Böttcher C, Newman J, Lucent D, Cowieson N, Davies C. Crystal structure of an indole-3-acetic acid amido synthetase from grapevine involved in auxin homeostasis. THE PLANT CELL 2012; 24:4525-38. [PMID: 23136372 PMCID: PMC3531850 DOI: 10.1105/tpc.112.102921] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Auxins are important for plant growth and development, including the control of fruit ripening. Conjugation to amino acids by indole-3-acetic acid (IAA)-amido synthetases is an important part of auxin homeostasis. The structure of the auxin-conjugating Gretchen Hagen3-1 (GH3-1) enzyme from grapevine (Vitis vinifera), in complex with an inhibitor (adenosine-5'-[2-(1H-indol-3-yl)ethyl]phosphate), is presented. Comparison with a previously published benzoate-conjugating enzyme from Arabidopsis thaliana indicates that grapevine GH3-1 has a highly similar domain structure and also undergoes a large conformational change during catalysis. Mutational analyses and structural comparisons with other proteins have identified residues likely to be involved in acyl group, amino acid, and ATP substrate binding. Vv GH3-1 is a monomer in solution and requires magnesium ions solely for the adenlyation reaction. Modeling of IAA and two synthetic auxins, benzothiazole-2-oxyacetic acid (BTOA) and 1-naphthaleneacetic acid (NAA), into the active site indicates that NAA and BTOA are likely to be poor substrates for this enzyme, confirming previous enzyme kinetic studies. This suggests a reason for the increased effectiveness of NAA and BTOA as auxins in planta and provides a tool for designing new and effective auxins.
Collapse
Affiliation(s)
- Thomas S. Peat
- The Commonwealth Scientific and Industrial Research Organization (CSIRO) Materials, Science and Engineering, Parkville, Victoria 3052, Australia
| | | | - Janet Newman
- The Commonwealth Scientific and Industrial Research Organization (CSIRO) Materials, Science and Engineering, Parkville, Victoria 3052, Australia
| | - Del Lucent
- The Commonwealth Scientific and Industrial Research Organization (CSIRO) Materials, Science and Engineering, Parkville, Victoria 3052, Australia
| | | | - Christopher Davies
- CSIRO Plant Industry, Glen Osmond, South Australia 5064, Australia
- Address correspondence to
| |
Collapse
|
250
|
Rosquete MR, Barbez E, Kleine-Vehn J. Cellular auxin homeostasis: gatekeeping is housekeeping. MOLECULAR PLANT 2012; 5:772-86. [PMID: 22199236 DOI: 10.1093/mp/ssr109] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The phytohormone auxin is essential for plant development and contributes to nearly every aspect of the plant life cycle. The spatio-temporal distribution of auxin depends on a complex interplay between auxin metabolism and cell-to-cell auxin transport. Auxin metabolism and transport are both crucial for plant development; however, it largely remains to be seen how these processes are integrated to ensure defined cellular auxin levels or even gradients within tissues or organs. In this review, we provide a glance at very diverse topics of auxin biology, such as biosynthesis, conjugation, oxidation, and transport of auxin. This broad, but certainly superficial, overview highlights the mutual importance of auxin metabolism and transport. Moreover, it allows pinpointing how auxin metabolism and transport get integrated to jointly regulate cellular auxin homeostasis. Even though these processes have been so far only separately studied, we assume that the phytohormonal crosstalk integrates and coordinates auxin metabolism and transport. Besides the integrative power of the global hormone signaling, we additionally introduce the hypothetical concept considering auxin transport components as gatekeepers for auxin responses.
Collapse
Affiliation(s)
- Michel Ruiz Rosquete
- Department of Applied Genetics and Cell Biology, University of Applied Life Sciences and Natural Resources (BOKU), 1190 Vienna, Austria
| | | | | |
Collapse
|