201
|
Starska-Kowarska K. The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer-Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers (Basel) 2023; 15:1642. [PMID: 36980527 PMCID: PMC10046400 DOI: 10.3390/cancers15061642] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most aggressive and heterogeneous groups of human neoplasms. HNSCC is characterized by high morbidity, accounting for 3% of all cancers, and high mortality with ~1.5% of all cancer deaths. It was the most common cancer worldwide in 2020, according to the latest GLOBOCAN data, representing the seventh most prevalent human malignancy. Despite great advances in surgical techniques and the application of modern combinations and cytotoxic therapies, HNSCC remains a leading cause of death worldwide with a low overall survival rate not exceeding 40-60% of the patient population. The most common causes of death in patients are its frequent nodal metastases and local neoplastic recurrences, as well as the relatively low response to treatment and severe drug resistance. Much evidence suggests that the tumour microenvironment (TME), tumour infiltrating lymphocytes (TILs) and circulating various subpopulations of immunocompetent cells, such regulatory T cells (CD4+CD25+Foxp3+Tregs), cytotoxic CD3+CD8+ T cells (CTLs) and CD3+CD4+ T helper type 1/2/9/17 (Th1/Th2/Th9/Th17) lymphocytes, T follicular helper cells (Tfh) and CD56dim/CD16bright activated natural killer cells (NK), carcinoma-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), tumour-associated neutrophils (N1/N2 TANs), as well as tumour-associated macrophages (M1/M2 phenotype TAMs) can affect initiation, progression and spread of HNSCC and determine the response to immunotherapy. Rapid advances in the field of immuno-oncology and the constantly growing knowledge of the immunosuppressive mechanisms and effects of tumour cancer have allowed for the use of effective and personalized immunotherapy as a first-line therapeutic procedure or an essential component of a combination therapy for primary, relapsed and metastatic HNSCC. This review presents the latest reports and molecular studies regarding the anti-tumour role of selected subpopulations of immunocompetent cells in the pathogenesis of HNSCC, including HPV+ve (HPV+) and HPV-ve (HPV-) tumours. The article focuses on the crucial regulatory mechanisms of pro- and anti-tumour activity, key genetic or epigenetic changes that favour tumour immune escape, and the strategies that the tumour employs to avoid recognition by immunocompetent cells, as well as resistance mechanisms to T and NK cell-based immunotherapy in HNSCC. The present review also provides an overview of the pre- and clinical early trials (I/II phase) and phase-III clinical trials published in this arena, which highlight the unprecedented effectiveness and limitations of immunotherapy in HNSCC, and the emerging issues facing the field of HNSCC immuno-oncology.
Collapse
Affiliation(s)
- Katarzyna Starska-Kowarska
- Department of Physiology, Pathophysiology and Clinical Immunology, Department of Clinical Physiology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland; ; Tel.: +48-604-541-412
- Department of Otorhinolaryngology, EnelMed Center Expert, Drewnowska 58, 91-001 Lodz, Poland
| |
Collapse
|
202
|
Abstract
The Cancer Genome Atlas (TCGA) endometrial cancer data expanded our knowledge about the role of different immunotherapeutic approaches based on molecular subtypes. Immune checkpoint inhibitors demonstrated distinct antitumor activities as monotherapy or in combination. In microsatellite unstable (microsatellite instability-high) endometrial cancer, immunotherapy with immune checkpoint inhibitors showed promising single agent activity in recurrent settings. Different strategies are needed to enhance the response or reverse resistance to immune checkpoint inhibitors, or both, in microsatellite instability-high endometrial cancer. On the other hand, single immune checkpoint inhibitors showed underwhelming efficacy in microsatellite stable endometrial cancer but this was significantly improved using a combination approach. Furthermore, studies are also needed to improve response along with ensuring safety and tolerability in microsatellite stable endometrial cancer. This review summarizes the current indications of immunotherapy for the treatment of advanced and recurrent endometrial cancer. We also outline potential future strategies for an immunotherapy based combination approach in endometrial cancer to combat resistance or enhance response to immune checkpoint inhibitors, or both.
Collapse
Affiliation(s)
- Haider Mahdi
- Division of Gynecologic Oncology, UPMC Magee Womens Hospital, Pittsburgh, Pennsylvania, USA
| | - Anca Chelariu-Raicu
- LMU University Hospitals Munich Department of Infections and Tropical Medicine, Munchen, Germany
| | - Brian M Slomovitz
- Gynecologic Oncology, Mount Sinai Medical Center, Miami Beach, Florida, USA
| |
Collapse
|
203
|
Hong JH, Cho HW, Ouh YT, Lee JK, Chun Y. Lymphocyte activation gene (LAG)-3 is a potential immunotherapeutic target for microsatellite stable, programmed death-ligand 1 (PD-L1)-positive endometrioid endometrial cancer. J Gynecol Oncol 2023; 34:e18. [PMID: 36509464 PMCID: PMC9995863 DOI: 10.3802/jgo.2023.34.e18] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/14/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Immune checkpoint inhibitors have been widely used in the treatment of endometrial cancer (EC) with microsatellite instability-hypermutated (MSI-H). However, there is an unmet need for microsatellite stable (MSS) EC because of their modest activity. This study aimed to identify potential immune-related biomarkers in MSS EC. METHODS One hundred and twenty-three patients with EC who underwent hysterectomy were enrolled. MSI status was determined using MSI analysis and/or immunohistochemical staining for mismatch repair proteins. Immunohistochemical analysis of programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), PD-L2, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), cluster of differentiation 3 (CD3), CD8, lymphocyte activation gene-3 (LAG-3), indoleamine 2,3-dioxygenase 1 (IDO1), phosphatase and tensin homolog (PTEN), p53, AT-rich interactive domain-containing protein 1A (ARID1A), and β-catenin was performed using tissue microarray blocks. RESULTS Among 123 patients, 95 (77.2%) were classified as having MSS. Within EC with MSS, PD-L1 positivity was significantly associated with positive PD-1 (p<0.001), CTLA-4 (p<0.001), CD3 (p=0.002), CD8 (p<0.001), and LAG-3 (p<0.001). In the univariate analysis, positive PD-1 (odds ratio [OR]=9.281; 95% confidence interval [CI]=2.560-33.653; p<0.001), CTLA-4 (OR=5.33; 95% CI=1.418-19.307; p=0.005), CD3 (OR=5.571; 95% CI=1.746-17.775; p=0.004), CD8 (OR=6.909; 95% CI=2.647-18.037; p<0.001), and LAG-3 (OR=9.75; 95% CI=1.947-48.828; p=0.005) were significantly associated with PD-L1 positivity in MSS EC. In the multivariate analysis, LAG-3 demonstrated a significant association with positive PD-L1 expression in MSS EC (OR=5.061; 95% CI=1.534-16.693; p=0.023). CONCLUSION In patients with MSS EC harboring PD-L1, LAG-3 may be a potential immunotherapeutic target. Clinical trials investigating the role of anti-LAG-3 antibodies, alone or in combination with other immunotherapies, are warranted.
Collapse
Affiliation(s)
- Jin Hwa Hong
- Department of Obstetrics and Gynecology, Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Hyun Woong Cho
- Department of Obstetrics and Gynecology, Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Yung-Taek Ouh
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Korea
| | - Jae Kwan Lee
- Department of Obstetrics and Gynecology, Guro Hospital, Korea University College of Medicine, Seoul, Korea
| | - Yikyeong Chun
- Department of Pathology, Guro Hospital, Korea University College of Medicine, Seoul, Korea.
| |
Collapse
|
204
|
Blum FR, Miles JA, Farag SW, Johnson EF, Davis M, Hamzavi IH, Lyons AB, Sayed CJ, Googe PB. Characterizing the immune checkpoint marker profiles of cutaneous squamous cell carcinomas in patients with hidradenitis suppurativa. J Eur Acad Dermatol Venereol 2023; 37:e316-e318. [PMID: 36151986 DOI: 10.1111/jdv.18598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/14/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Franklin R Blum
- UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - J Alex Miles
- Department of Dermatology, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Sherif W Farag
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA
| | - Emma F Johnson
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark Davis
- Department of Dermatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Iltefat H Hamzavi
- Henry Ford Hospital, Department of Dermatology, Detroit, Michigan, USA
| | - Alexis B Lyons
- Henry Ford Hospital, Department of Dermatology, Detroit, Michigan, USA
| | - Christopher J Sayed
- Department of Dermatology, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Paul B Googe
- Department of Dermatology, UNC Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA.,UNC Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, USA.,UNC Department of Pathology and Laboratory Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
205
|
Hung YP, Mino-Kenudson M. Beyond PD-L1: Assessment of LAG-3 and other predictive biomarkers in non-small cell lung carcinoma. Cancer Cytopathol 2023; 131:151-153. [PMID: 36066727 DOI: 10.1002/cncy.22640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 11/06/2022]
|
206
|
Wu B, Shi X, Jiang M, Liu H. Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Mol Cancer 2023; 22:38. [PMID: 36810098 PMCID: PMC9942413 DOI: 10.1186/s12943-023-01748-4] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Ongoing research has revealed that the existence of cancer stem cells (CSCs) is one of the biggest obstacles in the current cancer therapy. CSCs make an influential function in tumor progression, recurrence and chemoresistance due to their typical stemness characteristics. CSCs are preferentially distributed in niches, and those niche sites exhibit characteristics typical of the tumor microenvironment (TME). The complex interactions between CSCs and TME illustrate these synergistic effects. The phenotypic heterogeneity within CSCs and the spatial interactions with the surrounding tumor microenvironment led to increased therapeutic challenges. CSCs interact with immune cells to protect themselves against immune clearance by exploiting the immunosuppressive function of multiple immune checkpoint molecules. CSCs also can protect themselves against immune surveillance by excreting extracellular vesicles (EVs), growth factors, metabolites and cytokines into the TME, thereby modulating the composition of the TME. Therefore, these interactions are also being considered for the therapeutic development of anti-tumor agents. We discuss here the immune molecular mechanisms of CSCs and comprehensively review the interplay between CSCs and the immune system. Thus, studies on this topic seem to provide novel ideas for reinvigorating therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Bo Wu
- grid.459742.90000 0004 1798 5889Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Xiang Shi
- grid.459742.90000 0004 1798 5889Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Meixi Jiang
- grid.412644.10000 0004 5909 0696Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032 China
| | - Hongxu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| |
Collapse
|
207
|
Pan X, Li C, Feng J. The role of LncRNAs in tumor immunotherapy. Cancer Cell Int 2023; 23:30. [PMID: 36810034 PMCID: PMC9942365 DOI: 10.1186/s12935-023-02872-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
Cancer immunotherapy is a major breakthrough in the history of tumor therapy in the last decade. Immune checkpoint inhibitors blocking CTLA-4/B7 or PD-1/PD-L1 pathways have greatly prolonged the survival of patients with different cancers. Long non-coding RNAs (lncRNAs) are abnormally expressed in tumors and play an important role in tumor immunotherapy through immune regulation and immunotherapy resistance. In this review, we summarized the mechanisms of lncRNAs in regulating gene expression and well-studied immune checkpoint pathways. The crucial regulatory function of immune-related lncRNAs in cancer immunotherapy was also described. Further understanding of the underlying mechanisms of these lncRNAs is of great importance to the development of taking lncRNAs as novel biomarkers and therapeutic targets for immunotherapy.
Collapse
Affiliation(s)
- Xuan Pan
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Chenchen Li
- grid.89957.3a0000 0000 9255 8984Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jifeng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
208
|
Khan MA, Haider N, Singh T, Bandopadhyay R, Ghoneim MM, Alshehri S, Taha M, Ahmad J, Mishra A. Promising biomarkers and therapeutic targets for the management of Parkinson's disease: recent advancements and contemporary research. Metab Brain Dis 2023; 38:873-919. [PMID: 36807081 DOI: 10.1007/s11011-023-01180-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/04/2023] [Indexed: 02/23/2023]
Abstract
Parkinson's disease (PD) is one of the progressive neurological diseases which affect around 10 million population worldwide. The clinical manifestation of motor symptoms in PD patients appears later when most dopaminergic neurons have degenerated. Thus, for better management of PD, the development of accurate biomarkers for the early prognosis of PD is imperative. The present work will discuss the potential biomarkers from various attributes covering biochemical, microRNA, and neuroimaging aspects (α-synuclein, DJ-1, UCH-L1, β-glucocerebrosidase, BDNF, etc.) for diagnosis, recent development in PD management, and major limitations with current and conventional anti-Parkinson therapy. This manuscript summarizes potential biomarkers and therapeutic targets, based on available preclinical and clinical evidence, for better management of PD.
Collapse
Affiliation(s)
- Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nafis Haider
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Murtada Taha
- Prince Sultan Military College of Health Sciences, Dhahran, 34313, Saudi Arabia
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran, 11001, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER) - Guwahati, Sila Katamur (Halugurisuk), Kamrup, Changsari, Assam, 781101, India.
| |
Collapse
|
209
|
Jantz-Naeem N, Böttcher-Loschinski R, Borucki K, Mitchell-Flack M, Böttcher M, Schraven B, Mougiakakos D, Kahlfuss S. TIGIT signaling and its influence on T cell metabolism and immune cell function in the tumor microenvironment. Front Oncol 2023; 13:1060112. [PMID: 36874131 PMCID: PMC9982004 DOI: 10.3389/fonc.2023.1060112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 01/11/2023] [Indexed: 02/19/2023] Open
Abstract
One of the key challenges for successful cancer therapy is the capacity of tumors to evade immune surveillance. Tumor immune evasion can be accomplished through the induction of T cell exhaustion via the activation of various immune checkpoint molecules. The most prominent examples of immune checkpoints are PD-1 and CTLA-4. Meanwhile, several other immune checkpoint molecules have since been identified. One of these is the T cell immunoglobulin and ITIM domain (TIGIT), which was first described in 2009. Interestingly, many studies have established a synergistic reciprocity between TIGIT and PD-1. TIGIT has also been described to interfere with the energy metabolism of T cells and thereby affect adaptive anti-tumor immunity. In this context, recent studies have reported a link between TIGIT and the hypoxia-inducible factor 1-α (HIF1-α), a master transcription factor sensing hypoxia in several tissues including tumors that among others regulates the expression of metabolically relevant genes. Furthermore, distinct cancer types were shown to inhibit glucose uptake and effector function by inducing TIGIT expression in CD8+ T cells, resulting in an impaired anti-tumor immunity. In addition, TIGIT was associated with adenosine receptor signaling in T cells and the kynurenine pathway in tumor cells, both altering the tumor microenvironment and T cell-mediated immunity against tumors. Here, we review the most recent literature on the reciprocal interaction of TIGIT and T cell metabolism and specifically how TIGIT affects anti-tumor immunity. We believe understanding this interaction may pave the way for improved immunotherapy to treat cancer.
Collapse
Affiliation(s)
- Nouria Jantz-Naeem
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Romy Böttcher-Loschinski
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Katrin Borucki
- Institute of Clinical Chemistry, Department of Pathobiochemistry, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Marisa Mitchell-Flack
- Department of Oncology, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Martin Böttcher
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Dimitrios Mougiakakos
- Department of Hematology and Oncology, University Hospital Magdeburg, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke-University, Magdeburg, Germany
| |
Collapse
|
210
|
Olguin JE, Mendoza-Rodriguez MG, Sanchez-Barrera CA, Terrazas LI. Is the combination of immunotherapy with conventional chemotherapy the key to increase the efficacy of colorectal cancer treatment? World J Gastrointest Oncol 2023; 15:251-267. [PMID: 36908325 PMCID: PMC9994043 DOI: 10.4251/wjgo.v15.i2.251] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/14/2023] Open
Abstract
Colorectal cancer (CRC) is among the most prevalent and deadly neoplasms worldwide. According to GLOBOCAN predictions, its incidence will increase from 1.15 million CRC cases in 2020 to 1.92 million cases in 2040. Therefore, a better understanding of the mechanisms involved in CRC development is necessary to improve strategies focused on reducing the incidence, prevalence, and mortality of this oncological pathology. Surgery, chemotherapy, and radiotherapy are the main strategies for treating CRC. The conventional chemotherapeutic agent utilized throughout the last four decades is 5-fluorouracil, notwithstanding its low efficiency as a single therapy. In contrast, combining 5-fluorouracil therapy with leucovorin and oxaliplatin or irinotecan increases its efficiency. However, these treatments have limited and temporary solutions and aggressive side effects. Additionally, most patients treated with these regimens develop drug resistance, which leads to disease progression. The immune response is considered a hallmark of cancer; thus, the use of new strategies and methodologies involving immune molecules, cells, and transcription factors has been suggested for CRC patients diagnosed in stages III and IV. Despite the critical advances in immunotherapy, the development and impact of immune checkpoint inhibitors on CRC is still under investigation because less than 25% of CRC patients display an increased 5-year survival. The causes of CRC are diverse and include modifiable environmental factors (smoking, diet, obesity, and alcoholism), individual genetic mutations, and inflammation-associated bowel diseases. Due to these diverse causes, the solutions likely cannot be generalized. Interestingly, new strategies, such as single-cell multiomics, proteomics, genomics, flow cytometry, and massive sequencing for tumor microenvironment analysis, are beginning to clarify the way forward. Thus, the individual mechanisms involved in developing the CRC microenvironment, their causes, and their consequences need to be understood from a genetic and immunological perspective. This review highlighted the importance of altering the immune response in CRC. It focused on drugs that may modulate the immune response and show specific efficacy and contrasted with evidence that immunosuppression or the promotion of the immune response is the answer to generating effective treatments with combined chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jonadab E Olguin
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Monica G Mendoza-Rodriguez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - C Angel Sanchez-Barrera
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Luis I Terrazas
- Laboratorio Nacional en Salud, Diagnóstico Molecular y Efecto Ambiental en Enfermedades Crónico-degenerativas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Estado de Mexico, Mexico
| |
Collapse
|
211
|
Kim D, Kim G, Yu R, Lee J, Kim S, Qiu K, Montauti E, Fang D, Chandel NS, Choi J, Min B. Lymphocyte activation gene 3 (Lag3) supports Foxp3 + Treg cell function by restraining c-Myc-dependent aerobic glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528371. [PMID: 36824824 PMCID: PMC9949104 DOI: 10.1101/2023.02.13.528371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Lymphocyte activation gene 3 (Lag3) has emerged as the next-generation immune checkpoint molecule due to its ability to inhibit effector T cell activity. Foxp3 + regulatory T (Treg) cells, a master regulator of immunity and tolerance, also highly express Lag3. While Lag3 is thought to be necessary for Treg cell-mediated regulation of immunity, the precise roles and underlying mechanisms remain largely elusive. In this study, we report that Lag3 is indispensable for Treg cells to control autoimmune inflammation. Utilizing a newly generated Treg cell specific Lag3 mutant mouse model, we found that these animals are highly susceptible to autoimmune diseases, suggesting defective Treg cell function. Genome wide transcriptome analysis further uncovered that Lag3 mutant Treg cells upregulated genes involved in metabolic processes. Mechanistically, we found that Lag3 limits Treg cell expression of Myc, a key regulator of aerobic glycolysis. We further found that Lag3-dependent Myc expression determines Treg cells’ metabolic programming as well as the in vivo function to suppress autoimmune inflammation. Taken together, our results uncovered a novel function of Lag3 in supporting Treg cell suppressive function by regulating Myc-dependent metabolic programming.
Collapse
|
212
|
Han Y, Li B, Yan D, Zhou D, Yuan X, Zhao W, Zhang D, Zhang J. Combining multiple cell death pathway-related risk scores to develop neuroblastoma cell death signature. J Cancer Res Clin Oncol 2023:10.1007/s00432-023-04605-5. [PMID: 36781504 DOI: 10.1007/s00432-023-04605-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/27/2023] [Indexed: 02/15/2023]
Abstract
PURPOSE Cell death plays an important role in tumourigenesis and progression; nevertheless, the clinical significance of cell death-related genes in neuroblastoma remains incompletely understood. METHODS We separately constructed the corresponding risk scores for each of the eight cell death pathways separately and assessed their predictive performance. Through Cox regression analysis, these eight risk scores were integrated to obtain final cell death risk scores (CDRS). We evaluated the predictive performance of CDRS in multiple datasets and compared its accuracy with the clinical characteristics of patients and some existing prognostic models for neuroblastoma. We then explored the differences in immune infiltration between the high and low CDRS groups, and the significance of CDRS on EFS and disease progression. RESULTS All eight risk scores have high predictive accuracy, with the Immunogenic-RS being the most accurate and the cuproptosis-RS the least accurate. Model genes are mainly enriched in a variety of cancer-related pathways and are closely related to the clinical characteristics. CDRS showed superior and robust predictive performance in multiple datasets and was more accurate than the clinical characteristics of patients and some existing prognostic models for neuroblastoma. High CDRS group featured distinct immune cold tumor profiles and may have poorer immune checkpoint inhibitor efficacy. CDRS had significance in predicting EFS and disease progression. CONCLUSION We integrated risk scores associated with multiple cell death pathways to develop a high-performing and robust neuroblastoma signature. CDRS was a promising tool that may help with risk assessment and prediction of overall prognosis, and thus improve clinical outcomes.
Collapse
Affiliation(s)
- Yahui Han
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Biyun Li
- Department of Pediatric Hematology Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Dun Yan
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Diming Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Xiafei Yuan
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Wei Zhao
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Da Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
213
|
Tavana S, Mokhtari Z, Sanei MH, Heidari Z, Dehghanian AR, Faghih Z, Rezaei M. Clinicopathological significance and prognostic role of LAG3 + tumor-infiltrating lymphocytes in colorectal cancer; relationship with sidedness. Cancer Cell Int 2023; 23:23. [PMID: 36765348 PMCID: PMC9912542 DOI: 10.1186/s12935-023-02864-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND It is well-documented that the interplay between tumor-infiltrating lymphocytes (TILs) and tumor cells is a major determining factor in cancer progression. CD45RO seems to be a reliable indicator for predicting prognosis and disease outcome, along with CD3 and CD8 markers. LAG-3 is another important marker that overexpresses on TILs in a variety of cancers and is associated with disease prognosis; however, its prognostic impact is controversial. Hence, in the present study, we aimed to investigate the presence of CD45RO + , LAG3 + , CD3 + , and CD8 + lymphocytes in CRC tumor tissues and their association with clinicopathological parameters of the disease as well as patients' survival, according to primary tumor locations. METHODS Expression of CD45RO, LAG3, CD3, and CD8 was immunohistochemically assessed in tissue sections of 136 patients with CRC. The percentages of TILs expressing these markers were then separately determined in both invasive margin (IM) and center of tumor (CT). Their associations with clinicopathological factors and patients' survival were analyzed in the entire cohort and the subgroups of patients with right- and left- rectum tumors. RESULTS Based on our observation, CD45RO + and CD3 + cells were the most frequent infiltrated lymphocytes in both CT and IM regions of colon tumor tissue. Whilst, LAG3 + lymphocytes were the least frequent subset in both areas. Statistical analysis indicated that the frequency of CD45RO + TILs was positively associated with advanced TNM stages (III/IV), in the entire cohort and right-sided tumors (P < 0.05). LAG3 + TILs in IM were also increased in tumor tissues with higher T-stages in the entire cohort (P = 0.027). In univariate analysis, high score of CD45RO + TILs in IM was associated with better overall survival in the entire cohort. High score of CD8 + and CD45RO + lymphocytes in IM were also associated with improved survival in patients with right-sided tumors. CONCLUSIONS Our findings generally suggest that the clinicopathological and prognostic significance of immune system-related markers such as CD45RO and LAG3 depends on the primary tumor sides. Our results collectively demonstrated that infiltration of CD45RO + lymphocytes in IM could be an independent prognostic factor in a site-dependent manner.
Collapse
Affiliation(s)
- Shirin Tavana
- grid.411036.10000 0001 1498 685XDepartment of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461 Iran
| | - Zahra Mokhtari
- grid.411036.10000 0001 1498 685XDepartment of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461 Iran
| | - Mohammad Hossein Sanei
- grid.411036.10000 0001 1498 685XDepartment of Pathology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- grid.411036.10000 0001 1498 685XDepartment of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir-Reza Dehghanian
- grid.412571.40000 0000 8819 4698Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Faghih
- grid.412571.40000 0000 8819 4698School of Medicine, Shiraz Institute for Cancer Research, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Marzieh Rezaei
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 8174673461, Iran.
| |
Collapse
|
214
|
Li X, Meng X, Chen H, Fu X, Wang P, Chen X, Gu C, Zhou J. Integration of single sample and population analysis for understanding immune evasion mechanisms of lung cancer. NPJ Syst Biol Appl 2023; 9:4. [PMID: 36765073 PMCID: PMC9918494 DOI: 10.1038/s41540-023-00267-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
A deep understanding of the complex interaction mechanism between the various cellular components in tumor microenvironment (TME) of lung adenocarcinoma (LUAD) is a prerequisite for understanding its drug resistance, recurrence, and metastasis. In this study, we proposed two complementary computational frameworks for integrating multi-source and multi-omics data, namely ImmuCycReg framework (single sample level) and L0Reg framework (population or subtype level), to carry out difference analysis between the normal population and different LUAD subtypes. Then, we aimed to identify the possible immune escape pathways adopted by patients with different LUAD subtypes, resulting in immune deficiency which may occur at different stages of the immune cycle. More importantly, combining the research results of the single sample level and population level can improve the credibility of the regulatory network analysis results. In addition, we also established a prognostic scoring model based on the risk factors identified by Lasso-Cox method to predict survival of LUAD patients. The experimental results showed that our frameworks could reliably identify transcription factor (TF) regulating immune-related genes and could analyze the dominant immune escape pathways adopted by each LUAD subtype or even a single sample. Note that the proposed computational framework may be also applicable to the immune escape mechanism analysis of pan-cancer.
Collapse
Affiliation(s)
- Xiong Li
- School of Software, East China Jiaotong University, Nanchang, 330013, China.
| | - Xu Meng
- grid.440711.7School of Software, East China Jiaotong University, Nanchang, 330013 China
| | - Haowen Chen
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xiangzheng Fu
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Peng Wang
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Xia Chen
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Changlong Gu
- grid.67293.39College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Juan Zhou
- grid.440711.7School of Software, East China Jiaotong University, Nanchang, 330013 China
| |
Collapse
|
215
|
Duro-Sánchez S, Alonso MR, Arribas J. Immunotherapies against HER2-Positive Breast Cancer. Cancers (Basel) 2023; 15:cancers15041069. [PMID: 36831412 PMCID: PMC9954045 DOI: 10.3390/cancers15041069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Breast cancer is the leading cause of cancer-related deaths among women worldwide. HER2-positive breast cancer, which represents 15-20% of all cases, is characterized by the overexpression of the HER2 receptor. Despite the variety of treatments available for HER2-positive breast cancer, both targeted and untargeted, many patients do not respond to therapy and relapse and eventually metastasize, with a poor prognosis. Immunotherapeutic approaches aim to enhance the antitumor immune response to prevent tumor relapse and metastasis. Several immunotherapies have been approved for solid tumors, but their utility for HER2-positive breast cancer has yet to be confirmed. In this review, we examine the different immunotherapeutic strategies being tested in HER2-positive breast cancer, from long-studied cancer vaccines to immune checkpoint blockade, which targets immune checkpoints in both T cells and tumor cells, as well as the promising adoptive cell therapy in various forms. We discuss how some of these new approaches may contribute to the prevention of tumor progression and be used after standard-of-care therapies for resistant HER2-positive breast tumors, highlighting the benefits and drawbacks of each. We conclude that immunotherapy holds great promise for the treatment of HER2-positive tumors, with the potential to completely eradicate tumor cells and prevent the progression of the disease.
Collapse
Affiliation(s)
- Santiago Duro-Sánchez
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Campus de la UAB, 08193 Bellaterra, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Macarena Román Alonso
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Campus de la UAB, 08193 Bellaterra, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
| | - Joaquín Arribas
- Preclinical & Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 08035 Barcelona, Spain
- Department of Biochemistry and Molecular Biology, Universitat Autónoma de Barcelona, Campus de la UAB, 08193 Bellaterra, Spain
- Cancer Research Program, Hospital del Mar Medical Research Institute (IMIM), 08003 Barcelona, Spain
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
216
|
Sun X, Liu P. Prognostic biomarker NEIL3 and its association with immune infiltration in renal clear cell carcinoma. Front Oncol 2023; 13:1073941. [PMID: 36816967 PMCID: PMC9932331 DOI: 10.3389/fonc.2023.1073941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Background Kidney renal clear cell carcinoma (KIRC) is a malignant tumor with a high degree of immune infiltration. Identifying immune biomarkers is essential for the treatment of KIRC. Studies have identified the potential of NEIL3 to modulate the immune microenvironment and promote tumor progression. However, the role of NEIL3 in KIRC remains uncertain. This study was to investigate the effect of NEIL3 on the prognosis and immune infiltration of patients with KIRC. Methods TCGA and GEO databases were used to study the expression of NEIL3 in KIRC. Cox regression analysis was used to examine the relationship between the expression of NEIL3 and clinicopathological variables and survival. Furthermore, Gene Set Cancer Analysis (GSCA) was applied to study the impact of NEIL3 methylation on outcomes of KIRC. Through gene ontology (GO) and Gene set enrichment (GSEA) analysis, the biological processes and signal pathways related to NEIL3 expression were identified. In addition, immune infiltration analysis was conducted via CIBERSORT analysis, ssGSEA analysis and TISIDB database. Results NEIL3 was overexpressed in KIRC, and it was significantly related with histologic grade, pathologic stage, T stage, M stage, and vital status of KIRC patients (P < 0.001). The expression of NEIL3 was associated with worse outcomes. Univariate and multivariate Cox analysis showed that NEIL3 may be an indicator of adverse outcomes in KIRC. GSEA analysis revealed that NEIL3 may be involved in signal pathways including cell cycle, DNA replication, mismatch repair, P53 signal pathway, and antigen processing and presentation. In addition, immune infiltration analysis showed a positive correlation between NEIL3 expression and multiple immune cells (activated CD8 T cells, activated dendritic cells, myeloid-derived suppressor cells, follicular helper T cells, and regulatory T cells) and immunoinhibitors (PD1, CTLA4, LAG3, TIGHT, IL10, and CD96). Conclusion NEIL3 is a potential independent biomarker of KIRC, which is relevant to immune infiltration.
Collapse
Affiliation(s)
- Xiaomei Sun
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengfei Liu
- Department of Medical Oncology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China,*Correspondence: Pengfei Liu,
| |
Collapse
|
217
|
Ros J, Balconi F, Baraibar I, Saoudi Gonzalez N, Salva F, Tabernero J, Elez E. Advances in immune checkpoint inhibitor combination strategies for microsatellite stable colorectal cancer. Front Oncol 2023; 13:1112276. [PMID: 36816981 PMCID: PMC9932591 DOI: 10.3389/fonc.2023.1112276] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors have reshaped the prognostic of several tumor types, including metastatic colorectal tumors with microsatellite instability (MSI). However, 90-95% of metastatic colorectal tumors are microsatellite stable (MSS) in which immunotherapy has failed to demonstrate meaningful clinical results. MSS colorectal tumors are considered immune-cold tumors. Several factors have been proposed to account for this lack of response to immune checkpoint blockade including low levels of tumor infiltrating lymphocytes, low tumor mutational burden, a high rate of WNT/β-catenin pathway mutations, and liver metastases which have been associated with immunosuppression. However, studies with novel combinations based on immune checkpoint inhibitors are showing promising activity in MSS colorectal cancer. Here, we review the underlying biological facts that preclude immunotherapy activity, and detail the different immune checkpoint inhibitor combinations evaluated, along with novel immune-based therapies, to overcome innate mechanisms of resistance in MSS colorectal cancer.
Collapse
Affiliation(s)
- Javier Ros
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain,Oncologia Medica, Dipartimento di Medicina di Precisione, Università degli Studi della Campania Luigi Vanvitelli, Naples, Italy
| | - Francesca Balconi
- Medical Oncology, University Hospital and University of Cagliari, Cagliari, Italy
| | - Iosune Baraibar
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Francesc Salva
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Elena Elez
- Medical Oncology, Vall d’Hebron Institute of Oncology (VHIO), Barcelona, Spain,*Correspondence: Elena Elez,
| |
Collapse
|
218
|
Zou Y, Ye F, Kong Y, Hu X, Deng X, Xie J, Song C, Ou X, Wu S, Wu L, Xie Y, Tian W, Tang Y, Wong C, Chen Z, Xie X, Tang H. The Single-Cell Landscape of Intratumoral Heterogeneity and The Immunosuppressive Microenvironment in Liver and Brain Metastases of Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203699. [PMID: 36529697 PMCID: PMC9929130 DOI: 10.1002/advs.202203699] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 11/11/2022] [Indexed: 05/07/2023]
Abstract
Distant metastasis remains the major cause of morbidity for breast cancer. Individuals with liver or brain metastasis have an extremely poor prognosis and low response rates to anti-PD-1/L1 immune checkpoint therapy compared to those with metastasis at other sites. Therefore, it is urgent to investigate the underlying mechanism of anti-PD-1/L1 resistance and develop more effective immunotherapy strategies for these patients. Using single-cell RNA sequencing, a high-resolution map of the entire tumor ecosystem based on 44 473 cells from breast cancer liver and brain metastases is depicted. Identified by canonical markers and confirmed by multiplex immunofluorescent staining, the metastatic ecosystem features remarkable reprogramming of immunosuppressive cells such as FOXP3+ regulatory T cells, LAMP3+ tolerogenic dendritic cells, CCL18+ M2-like macrophages, RGS5+ cancer-associated fibroblasts, and LGALS1+ microglial cells. In addition, PD-1 and PD-L1/2 are barely expressed in CD8+ T cells and cancer/immune/stromal cells, respectively. Interactions of the immune checkpoint molecules LAG3-LGALS3 and TIGIT-NECTIN2 between CD8+ T cells and cancer/immune/stromal cells are found to play dominant roles in the immune escape. In summary, this study dissects the intratumoral heterogeneity and immunosuppressive microenvironment in liver and brain metastases of breast cancer for the first time, providing insights into the most appropriate immunotherapy strategies for these patients.
Collapse
Affiliation(s)
- Yutian Zou
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Feng Ye
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Yanan Kong
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Xiaoqian Hu
- School of Biomedical SciencesFaculty of MedicineThe University of Hong Kong21 Sassoon RoadHong Kong999077China
| | - Xinpei Deng
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Jindong Xie
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Cailu Song
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Xueqi Ou
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Song Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Linyu Wu
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Yi Xie
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Wenwen Tian
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Yuhui Tang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Chau‐Wei Wong
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Zhe‐Sheng Chen
- College of Pharmacy and Health SciencesSt. John's UniversityQueensNYUSA
| | - Xinhua Xie
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| | - Hailin Tang
- Sun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine651 East Dongfeng RoadGuangzhou510060China
| |
Collapse
|
219
|
Yoshinami Y, Shoji H. Recent advances in immunotherapy and molecular targeted therapy for gastric cancer. Future Sci OA 2023; 9:FSO842. [PMID: 37009054 PMCID: PMC10061264 DOI: 10.2144/fsoa-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Our increasing understanding of the molecular biological characteristics of cancer and of cancer genomics is facilitating the development of immunotherapy and molecular targeted drugs for gastric cancer. After the approval of immune checkpoint inhibitors (ICIs) for melanoma in 2010, many different cancers have been shown to respond to such treatments. Thus, the anti-PD-1 antibody nivolumab was reported to prolong survival in 2017, and ICIs have become the mainstay of treatment development. Many clinical trials of combination therapies with cytotoxic agents and molecular-targeted agents, as well as combinations of immunotherapeutic agents acting via different mechanisms, are currently underway for each treatment line. As a result, further improvements in therapeutic outcomes for gastric cancer are anticipated in the near future.
Collapse
Affiliation(s)
- Yuri Yoshinami
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hirokazu Shoji
- Department of Gastrointestinal Medical Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| |
Collapse
|
220
|
Review to Understand the Crosstalk between Immunotherapy and Tumor Metabolism. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020862. [PMID: 36677919 PMCID: PMC9863813 DOI: 10.3390/molecules28020862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Immune checkpoint inhibitors have ushered in a new era of cancer treatment by increasing the likelihood of long-term survival for patients with metastatic disease and by introducing fresh therapeutic indications in cases where the disease is still in its early stages. Immune checkpoint inhibitors that target the proteins cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) or programmed death-1/programmed death ligand-1 have significantly improved overall survival in patients with certain cancers and are expected to help patients achieve complete long-lasting remissions and cures. Some patients who receive immune checkpoint inhibitors, however, either experience therapeutic failure or eventually develop immunotherapy resistance. Such individuals are common, which necessitates a deeper understanding of how cancer progresses, particularly with regard to nutritional regulation in the tumor microenvironment (TME), which comprises metabolic cross-talk between metabolites and tumor cells as well as intracellular metabolism in immune and cancer cells. Combination of immunotherapy with targeted metabolic regulation might be a focus of future cancer research despite a lack of existing clinical evidence. Here, we reviewed the significance of the tumor microenvironment and discussed the most significant immunological checkpoints that have recently been identified. In addition, metabolic regulation of tumor immunity and immunological checkpoints in the TME, including glycolysis, amino acid metabolism, lipid metabolism, and other metabolic pathways were also incorporated to discuss the possible metabolism-based treatment methods being researched in preclinical and clinical settings. This review will contribute to the identification of a relationship or crosstalk between tumor metabolism and immunotherapy, which will shed significant light on cancer treatment and cancer research.
Collapse
|
221
|
Rodríguez-Guilarte L, Ramírez MA, Andrade CA, Kalergis AM. LAG-3 Contribution to T Cell Downmodulation during Acute Respiratory Viral Infections. Viruses 2023; 15:147. [PMID: 36680187 PMCID: PMC9865459 DOI: 10.3390/v15010147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
LAG-3 is a type I transmembrane protein expressed on immune cells, such as activated T cells, and binds to MHC class II with high affinity. LAG-3 is an inhibitory receptor, and its multiple biological activities on T cell activation and effector functions play a regulatory role in the immune response. Immunotherapies directed at immune checkpoints, including LAG-3, have become a promising strategy for controlling malignant tumors and chronic viral diseases. Several studies have suggested an association between the expression of LAG-3 with an inadequate immune response during respiratory viral infections and the susceptibility to reinfections, which might be a consequence of the inhibition of T cell effector functions. However, important information relative to therapeutic potential during acute viral lower respiratory tract infections and the mechanism of action of the LAG-3 checkpoint remains to be characterized. In this article, we discuss the contribution of LAG-3 to the impairment of T cells during viral respiratory infections. Understanding the host immune response to respiratory infections is crucial for developing effective vaccines and therapies.
Collapse
Affiliation(s)
- Linmar Rodríguez-Guilarte
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Mario A. Ramírez
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Catalina A. Andrade
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Alexis M. Kalergis
- Millennium Institute of Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
222
|
Zhang MJ, Wu CC, Wang S, Yang LL, Sun ZJ. Overexpression of LAG3, TIM3, and A2aR in adenoid cystic carcinoma and mucoepidermoid carcinoma. Oral Dis 2023; 29:175-187. [PMID: 34651389 DOI: 10.1111/odi.14045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Adenoid cystic carcinoma (AdCC) and mucoepidermoid carcinoma (MEC) are the two most frequent malignancies of salivary glands. This study aims to explore the expression and migration of LAG3, TIM3, and A2aR in AdCC and MEC, and the potential relationship with oncogenic signaling molecules and immunosuppressive cytokines. MATERIALS AND METHODS Custom made human salivary gland tissue microarrays included 81 AdCCs, 52 MECs, 76 normal salivary glands (NSG), and 14 pleomorphic adenoma (PMA) samples. Immunohistochemical analysis of lymphocyte activation gene 3 (LAG3), T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3), adenosine 2a receptor (A2aR), oncogenic phosphorylated S6 kinase (p-S6) and ERK1/2 (p-ERK1/2 ), and TGF-β1 was performed with salivary gland tissue microarrays of human samples. The correlation of the immunostaining was analyzed based on a digital pathological system, and data were evaluated by hierarchical cluster. Further in vitro studies of knockdown immune checkpoints LAG3, TIM3, and A2aR were carried out by siRNA transfection. RESULTS The expression levels of LAG3, TIM3, and A2aR were remarkably increased in AdCC and MEC, compared with NSG and PMA samples, but were independent of pathology grade. They were closely correlated with TGF-β1, slightly related to p-ERK1/2 and p-S6. After the knockdown of immune checkpoints LAG3, TIM3, and A2aR, the migration of SACC-LM cell line was significantly reduced. CONCLUSIONS These results suggested that LAG3, TIM3, and A2aR are overexpressed in AdCC and MEC, may promote migration of SACC-LM cell and correlated with TGF-β1 and oncogenic signaling pathways.
Collapse
Affiliation(s)
- Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Cong-Cong Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Lei-Lei Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Head Neck Oncology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
223
|
Wong CK, Lam TH, Liao SY, Lau YM, Tse HF, So BYF. Immunopathogenesis of Immune Checkpoint Inhibitor Induced Myocarditis: Insights from Experimental Models and Treatment Implications. Biomedicines 2023; 11:biomedicines11010107. [PMID: 36672615 PMCID: PMC9855410 DOI: 10.3390/biomedicines11010107] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Despite the extraordinary success of immune checkpoint inhibitors (ICIs) in cancer treatment, their use is associated with a high incidence of immune-related adverse events (IRAEs), resulting from therapy-related autoimmunity against various target organs. ICI-induced myocarditis is one of the most severe forms of IRAE, which is associated with risk of hemodynamic compromise and mortality. Despite increasing recognition and prompt treatment by clinicians, there remain significant gaps in knowledge regarding the pathophysiology, diagnosis and treatment of ICI-induced myocarditis. As the newly emerged disease entity is relatively rare, it is challenging for researchers to perform studies involving patients at scale. Alternatively, mouse models have been developed to facilitate research understanding of the pathogenesis of ICI-induced myocarditis and drug discovery. Transgenic mice with immune checkpoint genes knocked out allow induction of myocarditis in a highly reproducible manner. On the other hand, it has not been possible to induce ICI-induced myocarditis in wild type mice by injecting ICIs monotherapy alone. Additional interventions such as combinational ICI, tumor inoculation, cardiac sarcomere immunization, or cardiac irradiation are necessary to mimic the underlying pathophysiology in human cancer patients and to induce ICI-induced myocarditis successfully. This review focuses on the immunopathogenesis of ICI-induced myocarditis, drawing insights from human studies and animal models, and discusses the potential implications for treatment.
Collapse
Affiliation(s)
- Chun-Ka Wong
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Tsun-Ho Lam
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Song-Yan Liao
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yee-Man Lau
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Hung-Fat Tse
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Hong Kong-Guangdong Stem Cell and Regenerative Medicine Research Centre, The University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China
- Centre for Stem Cell Translational Biology, Hong Kong SAR, China
| | - Benjamin Y. F. So
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Correspondence: ; Tel.: +852-2255-3111
| |
Collapse
|
224
|
Hu X, Wang L, Shang B, Wang J, Sun J, Liang B, Su L, You W, Jiang S. Immune checkpoint inhibitor-associated toxicity in advanced non-small cell lung cancer: An updated understanding of risk factors. Front Immunol 2023; 14:1094414. [PMID: 36949956 PMCID: PMC10025397 DOI: 10.3389/fimmu.2023.1094414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), cytotoxic T lymphocyte antigen 4 (CTLA-4) antibodies, etc, have revolutionized cancer treatment strategies, including non-small cell lung cancer (NSCLC). While these immunotherapy agents have achieved durable clinical benefits in a subset of NSCLC patients, they bring in a variety of immune-related adverse events (irAEs), which involve cardiac, pulmonary, gastrointestinal, endocrine and dermatologic system damage, ranging from mild to life-threatening. Thus, there is an urgent need to better understand the occurrence of irAEs and predict patients who are susceptible to those toxicities. Herein, we provide a comprehensive review of what is updated about the clinical manifestations, mechanisms, predictive biomarkers and management of ICI-associated toxicity in NSCLC. In addition, this review also provides perspective directions for future research of NSCLC-related irAEs.
Collapse
Affiliation(s)
- Xiangxiao Hu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lina Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Shang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junren Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jian Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bin Liang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lili Su
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wenjie You
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- *Correspondence: Wenjie You, ; Shujuan Jiang,
| | - Shujuan Jiang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wenjie You, ; Shujuan Jiang,
| |
Collapse
|
225
|
Sun Z, Liu J, Li Y, Lin X, Chu Y, Wang W, Huang S, Li W, Peng J, Liu C, Cai L, Deng W, Sun C, Deng G. Aggregation-Induced-Emission Photosensitizer-Loaded Nano-Superartificial Dendritic Cells with Directly Presenting Tumor Antigens and Reversed Immunosuppression for Photodynamically Boosted Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208555. [PMID: 36255149 DOI: 10.1002/adma.202208555] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The success of tumor immunotherapy highlights the potential of harnessing immune system to fight cancer. Activating both native T cells and exhausted T cells is a critical step for generating effective antitumor immunity, which is determined based on the efficient presentation of tumor antigens and co-stimulatory signals by antigen-presenting cells, as well as immunosuppressive reversal. However, strategies for achieving an efficient antigen presentation process and improving the immunosuppressive microenvironment remain unresolved. Here, aggregation-induced-emission (AIE) photosensitizer-loaded nano-superartificial dendritic cells (saDC@Fs-NPs) are developed by coating superartificial dendritic cells membranes from genetically engineered 4T1 tumor cells onto nanoaggregates of AIE photosensitizers. The outer cell membranes of saDC@Fs-NPs are derived from recombinant lentivirus-infected 4T1 tumor cells in which peptide-major histocompatibility complex class I, CD86, and anti-LAG3 antibody are simultaneously anchored. These saDC@Fs-NPs could directly stimulate T-cell activation and reverse T-cell exhaustion for cancer immunotherapy. The inner AIE-active photosensitizers induce immunogenic cell death to activate dendritic cells and enhance T lymphocyte infiltration by photodynamic therapy, promoting the transformation of "cold tumors" into "hot tumors," which further boosts immunotherapy efficiency. This work presents a powerful photoactive and artificial antigen-presenting platform for activating both native T cells and exhausted T cells, as well as facilitating tumor photodynamic immunotherapy.
Collapse
Affiliation(s)
- Zhihong Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Jie Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yueying Li
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Xun Lin
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Yongli Chu
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Wenting Wang
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Shiyun Huang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Wei Li
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Jin Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Chuyao Liu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Wenbin Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Chengming Sun
- The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, P. R. China
| | - Guanjun Deng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, P. R. China
- Guangdong Key Laboratory of Nanomedicine, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS-HK Joint Lab for Biomaterials, CAS Key Lab for Health Informatics, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| |
Collapse
|
226
|
Guo Z, Zhang R, Yang AG, Zheng G. Diversity of immune checkpoints in cancer immunotherapy. Front Immunol 2023; 14:1121285. [PMID: 36960057 PMCID: PMC10027905 DOI: 10.3389/fimmu.2023.1121285] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Finding effective treatments for cancer remains a challenge. Recent studies have found that the mechanisms of tumor evasion are becoming increasingly diverse, including abnormal expression of immune checkpoint molecules on different immune cells, in particular T cells, natural killer cells, macrophages and others. In this review, we discuss the checkpoint molecules with enhanced expression on these lymphocytes and their consequences on immune effector functions. Dissecting the diverse roles of immune checkpoints in different immune cells is crucial for a full understanding of immunotherapy using checkpoint inhibitors.
Collapse
Affiliation(s)
- Zhangyan Guo
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
| | - Rui Zhang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
| | - An-Gang Yang
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Guoxu Zheng, ; An-Gang Yang,
| | - Guoxu Zheng
- State Key Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, Xi’an, China
- *Correspondence: Guoxu Zheng, ; An-Gang Yang,
| |
Collapse
|
227
|
Tian X, Shi C, Liu S, Zhao C, Wang X, Cao Y. Methylation related genes are associated with prognosis of patients with head and neck squamous cell carcinoma via altering tumor immune microenvironment. J Dent Sci 2023; 18:57-64. [PMID: 36643267 PMCID: PMC9831828 DOI: 10.1016/j.jds.2022.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/12/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose Analysis of methylomes may enable prognostic stratification in patients with head and neck squamous cell carcinoma (HNSCC). This study aimed to identify methylation-related differentially expressed genes (mrDEGs), and to assess their efficacy in predicting patients' survival, tumor immune microenvironment alterations and immune checkpoints in patients with HNSCC. Materials and methods The methylome and transcriptome data of 528 HNSCC and 50 normal samples from TCGA database were used as training cohort. We identified mrDEGs and constituted a risk score model using Kaplan-Meier analysis and multivariate Cox regression. The prognostic efficacy of the risk score was validated in GSE65858 and GSE41613. We determined the enrichment of previously defined biological processes of mrDEGs. We separated the HNSCC patients into low-risk and high-risk groups and compared their immune cell infiltration and immune checkpoints' expressions. Results The risk score model was constituted by nine prognostic mrDEGs, including LIMD2, SYCP2, EPHX3, UCLH1, STC2, PRAME, SLC7A4, PLOD2, and ACADL. The risk score was a significant prognostic factor both in training (P < 0.001) and validation dataset (GSE65858: P = 0.008; GSE41613 = 0.015). The prognostic mrDEGs were enriched in multiple immune-associated pathways. Effector immune cells were increased in low-risk patients, including CD8+ T cells, activated CD4+ T cells, and plasma cells, whereas tumor associated M2 macrophages were recruited in the high-risk group. Expressions of immune checkpoints were generally higher in low-risk patients, including CTLA-4, PD-1 and LAG3. Conclusion The mrDEGs can stratify HNSCC patients' prognosis, which correlates with alterations in tumor immune infiltrations and immune checkpoints.
Collapse
Affiliation(s)
- Xudong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Head and Neck Oncology, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Congyu Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Head and Neck Oncology, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Shan Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Head and Neck Oncology, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Chengzhi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Head and Neck Oncology, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China,Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, China,Corresponding author. State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China College of Stomatology, Sichuan University, No. 14, 3rd Section of Ren Min Nan Rd, Chengdu, 610041, China.,
| |
Collapse
|
228
|
Li Y, Wang W, Tian J, Zhou Y, Shen Y, Wang M, Tang L, Liu C, Zhang X, Shen F, Chen Y, Gu Y. Clinical Significance of Soluble LAG-3 (sLAG-3) in Patients With Cervical Cancer Determined via Enzyme-Linked Immunosorbent Assay With Monoclonal Antibodies. Technol Cancer Res Treat 2023; 22:15330338231202650. [PMID: 37968933 PMCID: PMC10655791 DOI: 10.1177/15330338231202650] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 11/17/2023] Open
Abstract
Background: The tumor microenvironment and tumor immunity have become the focus of research on tumor diagnosis and treatment. Lymphocyte activation gene-3 (LAG-3, CD223) is a newly discovered immunosuppressive receptor that is abnormally expressed in various tumor microenvironments and plays an important role as an immune checkpoint in the tumor immune response. Objective: We developed a novel enzyme-linked immunosorbent assay kit, examined the levels of soluble LAG-3 (sLAG-3) in the serum of patients with cervical cancer, and identified new biomarkers for cervical cancer development. Methods: To investigate the potential biological function of sLAG-3, we generated and characterized 2 novel anti-LAG-3 monoclonal antibodies, namely 4F4 and 4E12. We performed western blotting, immunofluorescence, and immunohistochemistry using hybridoma technology and an enzyme-linked immunosorbent assay kit for detecting human sLAG-3 based on an improved double-antibody sandwich enzyme-linked immunosorbent assay method. The stability and sensitivity of these kits were also assessed. Results: We screened and characterized 2 novel monoclonal antibodies against human LAG-3. The enzyme-linked immunosorbent assay kit also includes a wide range of tests. Using this enzyme-linked immunosorbent assay system, we found that the expression level of sLAG-3 in the peripheral blood of patients with cervical cancer significantly decreased as the disease progressed (P < .0001). Multivariate logistic regression analysis revealed that low sLAG-3 expression was an independent predictor of cervical cancer and related diseases (P < .05). Furthermore, receiver operating characteristic curve analysis showed that sLAG-3 had diagnostic value for cervical cancer metastasis (P < .0001). Conclusion: These data suggest that sLAG-3 is a potential biomarker for cervical cancer development. Therefore, this kit has a certain application value in the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Yang Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wenwen Wang
- Department of General surgery, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jingluan Tian
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ying Zhou
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yu Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Mingyuan Wang
- Suzhou Red Cross Blood Station, Suzhou, Jiangsu, China
| | - Longhai Tang
- Suzhou Red Cross Blood Station, Suzhou, Jiangsu, China
| | - Cuiping Liu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xueguang Zhang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fangrong Shen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Youguo Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yanzheng Gu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
229
|
Dutta A, Hung CY, Chen TC, Chang CS, Hsiao SH, Lin YC, Lin CY, Huang CT. The origin of regulatory from the effector cells in LAG-3-marked Th1 immunity against severe influenza virus infection. Immunol Suppl 2022; 169:167-184. [PMID: 36522294 DOI: 10.1111/imm.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
In severe respiratory virus infections, including influenza, an exaggerated host immune response has been linked to the severe disease and death. Control of the overwhelming immune response is thus essential. Efforts with broad-spectrum immunosuppressive agents such as steroids are disappointing. A better understanding of host immune response using animal experimental system is required to avoid undesired outcome of experimental manipulation. Following severe influenza virus infection in influenza hemagglutinin antigen-specific transgenic mouse experimental model, step-wise evolving cells from a pool of naïve hemagglutinin-specific CD4+ T cells were studied for phenotypic, genomic, and functional characterization in vivo. Naïve CD4+ T cells respond with Th1 commitment in the absolute majority. They first develop into LAG-3Med IFN-γ-secreting Th1 effectors and then evolve into LAG-3High IFN-γ-not-secreting regulators with increasing LAG-3 expression upon continuous activation and cell division. The LAG-3Med IFN-γ-secreting effectors contribute to inflammation, boost inflammatory response of cognate antigen-specific CD8+ T cells, and aggravate the disease despite facilitated virus clearance. In contrast, LAG-3High regulators do not contribute to inflammation, suppress CD8+ T cell inflammatory response, alleviate lung pathology, and ameliorate the disease with preserved virus clearance. Moderated CD8+ T cells retain proliferative capacity, and persist beyond virus clearance. Such moderation is distinct from Foxp-3+ regulator-mediated suppression, which suppresses proliferative and inflammatory responses of the CD8+ T cells and impairs virus clearance with inflammation alleviation. Origin of regulatory from the effector cells of LAG-3-marked Th1 immunity alleviates lung inflammation without impairment of virus eradication.
Collapse
Affiliation(s)
- Avijit Dutta
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Chen-Yiu Hung
- Division of Thoracic Medicine, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Tse-Ching Chen
- Department of Pathology, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan
| | - Chia-Shiang Chang
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Sung-Han Hsiao
- Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Yung-Chang Lin
- College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan.,Division of Hematology and Oncology, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Chun-Yen Lin
- College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan.,Division of Hepatogastroenterology, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan
| | - Ching-Tai Huang
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Division of Infectious Diseases, Department of Medicine, Chang Gung Memorial Hospital, Guishan, Taoyuan City, Taiwan.,College of Medicine, Chang Gung University, Guishan, Taoyuan City, Taiwan
| |
Collapse
|
230
|
Catalano M, Shabani S, Venturini J, Ottanelli C, Voltolini L, Roviello G. Lung Cancer Immunotherapy: Beyond Common Immune Checkpoints Inhibitors. Cancers (Basel) 2022; 14:6145. [PMID: 36551630 PMCID: PMC9777293 DOI: 10.3390/cancers14246145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/27/2022] [Accepted: 11/27/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy is an ever-expanding field in lung cancer treatment research. Over the past two decades, there has been significant progress in identifying immunotherapy targets and creating specific therapeutic agents, leading to a major paradigm shift in lung cancer treatment. However, despite the great success achieved with programmed death protein 1/ligand 1 (PD-1/PD-L1) monoclonal antibodies and with anti-PD-1/PD-L1 plus anti-cytotoxic T-lymphocyte antigen 4 (CTLA-4), only a minority of lung cancer patients respond to treatment, and of these many subsequently experience disease progression. In addition, immune-related adverse events sometimes can be life-threatening, especially when anti-CTLA-4 and anti-PD-1 are used in combination. All of this prompted researchers to identify novel immune checkpoints targets to overcome these limitations. Lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin (Ig) and Immunoreceptor Tyrosine-Based Inhibitory Motif (ITIM) domain (TIGIT), T cell immunoglobulin and mucin-domain containing-3 (TIM-3) are promising molecules now under investigation. This review aims to outline the current role of immunotherapy in lung cancer and to examine efficacy and future applications of the new immune regulating molecules.
Collapse
Affiliation(s)
- Martina Catalano
- School of Human Health Sciences, University of Florence, 50134 Florence, Italy
| | - Sonia Shabani
- School of Human Health Sciences, University of Florence, 50134 Florence, Italy
| | - Jacopo Venturini
- School of Human Health Sciences, University of Florence, 50134 Florence, Italy
| | - Carlotta Ottanelli
- School of Human Health Sciences, University of Florence, 50134 Florence, Italy
| | - Luca Voltolini
- Thoraco-Pulmonary Surgery Unit, Careggi University Hospital, 50134 Florence, Italy
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Giandomenico Roviello
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| |
Collapse
|
231
|
Ephraim R, Feehan J, Fraser S, Nurgali K, Apostolopoulos V. Cancer Immunotherapy: The Checkpoint between Chronic Colitis and Colorectal Cancer. Cancers (Basel) 2022; 14:cancers14246131. [PMID: 36551617 PMCID: PMC9776998 DOI: 10.3390/cancers14246131] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a group of diseases that cause intestinal inflammation and lesions because of an abnormal immune response to host gut microflora. Corticosteroids, anti-inflammatories, and antibiotics are often used to reduce non-specific inflammation and relapse rates; however, such treatments are ineffective over time. Patients with chronic colitis are more susceptible to developing colorectal cancer, especially those with a longer duration of colitis. There is often a limit in using chemotherapy due to side effects, leading to reduced efficacy, leaving an urgent need to improve treatments and identify new therapeutic targets. Cancer immunotherapy has made significant advances in recent years and is mainly categorized as cancer vaccines, adoptive cellular immunotherapy, or immune checkpoint blockade therapies. Checkpoint markers are expressed on cancer cells to evade the immune system, and as a result checkpoint inhibitors have transformed cancer treatment in the last 5-10 years. Immune checkpoint inhibitors have produced long-lasting clinical responses in both single and combination therapies. Winnie mice are a viable model of spontaneous chronic colitis with immune responses like human IBD. Determining the expression levels of checkpoint markers in tissues from these mice will provide insights into disease initiation, progression, and cancer. Such information will lead to identification of novel checkpoint markers and the development of treatments with or without immune checkpoint inhibitors or vaccines to slow or stop disease progression.
Collapse
Affiliation(s)
- Ramya Ephraim
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Sarah Fraser
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
232
|
Martin C, Enrico D. Current and novel therapeutic strategies for optimizing immunotherapy outcomes in advanced non-small cell lung cancer. Front Oncol 2022; 12:962947. [PMID: 36568253 PMCID: PMC9772042 DOI: 10.3389/fonc.2022.962947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
During the past decade, immunotherapy has dramatically improved the outcomes of patients with non-small cell lung cancer (NSCLC). The development of specific antibodies against the programmed death (PD1) receptor and its ligand PD-L1 (programmed death ligand-1) has demonstrated substantial efficacy in advanced NSCLC either in the first or in the second line. However, the success of immune checkpoint inhibitors (ICIs) as monotherapy did not reach all patients and long-term responders still represent a small subset of cases. Under these circumstances, different strategies have been and are being tested to optimize clinical outcomes. Here, we reviewed the current evidence and the more promising perspectives of ICI combination approaches, such as the addition of chemotherapy, antiangiogenic agents, other co-inhibitory or co-stimulatory checkpoints, and targeted therapies.
Collapse
Affiliation(s)
- Claudio Martin
- Department of Medical Oncology, Thoracic Oncology Section, Alexander Fleming Cancer Institute, Buenos Aires, Argentina
- Department of Clinical Research, Alexander Fleming Cancer Institute, Buenos Aires, Argentina
| | - Diego Enrico
- Department of Medical Oncology, Thoracic Oncology Section, Alexander Fleming Cancer Institute, Buenos Aires, Argentina
- Department of Clinical Research, Alexander Fleming Cancer Institute, Buenos Aires, Argentina
| |
Collapse
|
233
|
Ruan Z, Zhang Y, Quan Q, Jiang J, Wang Q, Zhang Y, Peng R. Pan-cancer analysis identifies DDX56 as a prognostic biomarker associated with immune infiltration and drug sensitivity. Front Genet 2022; 13:1004467. [PMID: 36568395 PMCID: PMC9768347 DOI: 10.3389/fgene.2022.1004467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
DDX56, a member of the RNA helicase family, is upregulated in colon adenocarcinoma, lung squamous cell carcinoma, and osteosarcoma. However, the relationships between DDX56 and other tumors are not clear, and the molecular mechanism of its action is not fully understood. Here, we explore the biological functions of DDX56 in 31 solid tumors and clarify that DDX56 can promote oncogenesis and progression in multiple tumor types based on multi-omics data. Bioinformatics analysis revealed that the cancer-promoting effects of DDX56 were achieved by facilitating tumor cell proliferation, inhibiting apoptosis, inducing drug resistance, and influencing immune cell infiltration. Furthermore, we found that copy number alterations and low DNA methylation of DDX56 were likely to be related to aberrantly high DDX56 expression. Our results suggest that DDX56 is a potential pan-cancer biomarker that could be used to predict survival and response to therapy, as well as a potential novel therapeutic target. We validated some of our results and illustrated their reliability using CRISPR Screens data. In conclusion, our results clarify the role of DDX56 in the occurrence and development of multiple cancers and provide insight into the molecular mechanisms involved in the process of pathogenesis, indicating a direction for future research on DDX56 in cancers.
Collapse
Affiliation(s)
- Zhaohui Ruan
- VIP Department, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuetong Zhang
- Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qi Quan
- VIP Department, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jiaxin Jiang
- VIP Department, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qianyu Wang
- VIP Department, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yujing Zhang
- Radiation Oncology, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China,*Correspondence: Roujun Peng, ; Yujing Zhang,
| | - Roujun Peng
- VIP Department, State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China,*Correspondence: Roujun Peng, ; Yujing Zhang,
| |
Collapse
|
234
|
Programmed Cell Death-Ligand 1 in Head and Neck Squamous Cell Carcinoma: Molecular Insights, Preclinical and Clinical Data, and Therapies. Int J Mol Sci 2022; 23:ijms232315384. [PMID: 36499710 PMCID: PMC9738355 DOI: 10.3390/ijms232315384] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Aberrant expression of the programmed cell death protein ligand 1 (PD-L1) constitutes one of the main immune evasion mechanisms of cancer cells. The approval of drugs against the PD-1-PD-L1 axis has given new impetus to the chemo-therapy of many malignancies. We performed a literature review from 1992 to August 2022, summarizing evidence regarding molecular structures, physiological and pathological roles, mechanisms of PD-L1 overexpression, and immunotherapy evasion. Furthermore, we summarized the studies concerning head and neck squamous cell carcinomas (HNSCC) immunotherapy and the prospects for improving the associated outcomes, such as identifying treatment response biomarkers, new pharmacological combinations, and new molecules. PD-L1 overexpression can occur via four mechanisms: genetic modifications; inflammatory signaling; oncogenic pathways; microRNA or protein-level regulation. Four molecular mechanisms of resistance to immunotherapy have been identified: tumor cell adaptation; changes in T-cell function or proliferation; alterations of the tumor microenvironment; alternative immunological checkpoints. Immunotherapy was indeed shown to be superior to traditional chemotherapy in locally advanced/recurrent/metastatic HNSCC treatments.
Collapse
|
235
|
Qi Y, Yan X, Wang C, Cao H, Liu G. Predictive value of PD-L1 expression to the efficacy of immune checkpoint inhibitors in advanced triple-negative breast cancer: A systematic review and meta-analysis. Front Pharmacol 2022; 13:1004821. [PMID: 36532783 PMCID: PMC9755205 DOI: 10.3389/fphar.2022.1004821] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/22/2022] [Indexed: 08/08/2023] Open
Abstract
Background: Immune checkpoint inhibitors (ICIs) have been an emerging treatment strategy for advanced triple-negative breast cancer (TNBC). Some studies have shown that high expression of programmed death-ligand 1 (PD-L1) can achieve a better response of clinical efficacy. However, the efficacy of ICIs in advanced TNBC remains controversial. In this meta-analysis, we evaluated the correlation of PD-L1 expression with the efficacy of ICIs in patients with advanced TNBC. Methods: We conducted a systematic search using four databases until March 2022 to obtain eligible randomized controlled trials (RCTs). The quality of the studies was assessed by the Cochrane risk of bias tool. Hazard ratio (HR) was extracted to evaluate the relationship between PD-L1 expression and progression-free survival (PFS) or overall survival (OS) in patients with advanced TNBC. Results: Five randomized controlled clinical trials (RCTs) with 3104 patients were included in this meta-analysis. The results demonstrated that ICIs could significantly improve the OS (HR 0.77, 95% CI 0.60-0.98, p = 0.03) in PD-L1 positive TNBC group. In the subgroup analysis, longer OS was observed (HR: 0.70, 95% CI: 0.60-0.82, p = 0.00001) in PD-L1 positive TNBC patients receiving ICIs alone or ICIs combined with nab-paclitaxel. In terms of PFS, PFS was significantly improved (HR: 0.68, 95% CI: 0.58-0.79, p < 0.00001) in PD-L1 positive patients receiving first-line ICIs and chemotherapy compared to those with ICIs alone. No significant improvement was observed for OS or PFS in PD-L1 negative group. Conclusion: Our study indicated significant improvement for OS in advanced TNBC with ICIs therapy in the PD-L1 positive status, and ICIs alone or ICIs combined with nab-paclitaxel might be a excellent choice in terms of OS. Although PFS has no significant benefit in PD-L1 positive patients, the subgroup analysis showed that ICIs combined with chemotherapy could achieve the PFS benefit in the first-line treatment. However, further clinical studies are needed to validate our conclusions due to limited relevant research.
Collapse
Affiliation(s)
- Yingjie Qi
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Xin Yan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Chao Wang
- Institute of Drug Control, Liaoning Inspection, Examination and Certification Centre, Shenyang, China
| | - Hui Cao
- Department of Breast Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Guangxuan Liu
- Department of Pharmacy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
236
|
Najafi S, Majidpoor J, Mortezaee K. The impact of microbiota on PD-1/PD-L1 inhibitor therapy outcomes: A focus on solid tumors. Life Sci 2022; 310:121138. [DOI: 10.1016/j.lfs.2022.121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/02/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
|
237
|
Leal JL, John T. Immunotherapy in Advanced NSCLC Without Driver Mutations: Available Therapeutic Alternatives After Progression and Future Treatment Options. Clin Lung Cancer 2022; 23:643-658. [PMID: 36130865 DOI: 10.1016/j.cllc.2022.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 01/27/2023]
Abstract
The treatment paradigm of non-small-cell lung cancer without oncogenic drivers has varied dramatically in recent years and is constantly evolving. Immune- checkpoint inhibitors have demonstrated unprecedented durable efficacy in a subset of these patients, so these drugs have become the standard of care in most cases. There are different ways to deliver these agents, such as monotherapy and combinations of immunotherapy or chemotherapy plus immunotherapy. Treatment selection is complicated by an absence of head-to-head comparisons in randomized trials because these agents have gained approval by demonstrating superiority to platinum-doublet chemotherapy alone. Unfortunately, most patients will progress and die from their disease despite advances. Furthermore, after progression on these agents, there is a lack of randomized controlled data to support further management, constituting an unmet need. This review discusses the therapeutic alternatives after progression, summarizes mechanisms of resistance and progression patterns, and describes the main approaches under clinical investigation in the field.
Collapse
Affiliation(s)
- Jose Luis Leal
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Thomas John
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia..
| |
Collapse
|
238
|
Andrews LP, Cillo AR, Karapetyan L, Kirkwood JM, Workman CJ, Vignali DAA. Molecular Pathways and Mechanisms of LAG3 in Cancer Therapy. Clin Cancer Res 2022; 28:5030-5039. [PMID: 35579997 PMCID: PMC9669281 DOI: 10.1158/1078-0432.ccr-21-2390] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/29/2022] [Accepted: 05/05/2022] [Indexed: 01/24/2023]
Abstract
Immunotherapy targeting coinhibitory receptors has been highly successful in treating a wide variety of malignancies; however, only a subset of patients exhibits durable responses. The first FDA-approved immunotherapeutics targeting coinhibitory receptors PD1 and CTLA4, alone or in combination, significantly improved survival but were also accompanied by substantial toxicity in combination. The third FDA-approved immune checkpoint inhibitor targets LAG3, a coinhibitory receptor expressed on activated CD4+ and CD8+ T cells, especially in settings of long-term antigenic stimulation, such as chronic viral infection or cancer. Mechanistically, LAG3 expression limits both the expansion of activated T cells and the size of the memory pool, suggesting that LAG3 may be a promising target for immunotherapy. Importantly, the mechanism(s) by which LAG3 contributes to CD8+ T-cell exhaustion may be distinct from those governed by PD1, indicating that the combination of anti-LAG3 and anti-PD1 may synergistically enhance antitumor immunity. Clinical studies evaluating the role of anti-LAG3 in combination with anti-PD1 are underway, and recent phase III trial results in metastatic melanoma demonstrate both the efficacy and safety of this combination. Further ongoing clinical trials are evaluating this combination across multiple tumor types and the adjuvant setting, with accompanying translational and biomarker-focused studies designed to elucidate the molecular pathways that lead to improved antitumor T-cell responses following dual blockade of PD1 and LAG3. Overall, LAG3 plays an important role in limiting T-cell activation and has now become part of the repertoire of combinatorial immunotherapeutics available for the treatment of metastatic melanoma.
Collapse
Affiliation(s)
- Lawrence P Andrews
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Anthony R Cillo
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Lilit Karapetyan
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John M Kirkwood
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| |
Collapse
|
239
|
Mulholland M, Kritikou E, Katra P, Nilsson J, Björkbacka H, Lichtman AH, Rodriguez A, Engelbertsen D. LAG3 Regulates T Cell Activation and Plaque Infiltration in Atherosclerotic Mice. JACC CardioOncol 2022; 4:635-645. [PMID: 36636446 PMCID: PMC9830219 DOI: 10.1016/j.jaccao.2022.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/27/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Background The immune checkpoint receptor lymphocyte-activation gene 3 (LAG3) is a new target for immune checkpoint blockade (ICB), but the effects of LAG3 on atherosclerosis are not known. Objectives The aim of the study was to evaluate the role of LAG3 on plaque inflammation using murine hypercholesterolemic models of atherosclerosis. Methods To study the role of LAG3 in atherosclerosis, we investigated both bone marrow chimeras lacking LAG3 in hematopoietic cells as well as global Lag3 -/- knockout mice. Effects of anti-LAG3 monoclonal antibody monotherapy and combination therapy with anti-programmed cell death protein 1 (PD-1) were tested in hypercholesterolemic low-density lipoprotein receptor knockout (Ldlr -/- ) mice and evaluated by histology and flow cytometry. Results LAG3-deficiency or treatment with blocking anti-LAG3 monoclonal antibodies led to increased levels of both interferon gamma-producing T helper 1 cells and effector/memory T cells, balanced by increased levels of regulatory T cells. Plaque size was affected by neither LAG3 deficiency nor LAG3 blockade, although density of T cells in plaques was 2-fold increased by loss of LAG3. Combination therapy of anti-PD-1 and anti-LAG3 had an additive effect on T cell activation and cytokine production and promoted plaque infiltration of T cells. Conclusions Loss of LAG3 function promoted T cell activation and accumulation in plaques while not affecting plaque burden. Our report supports further clinical studies investigating cardiovascular risk in patients treated with anti-LAG3 ICB.
Collapse
Key Words
- CTLA-4, cytotoxic T lymphocyte associated protein 4
- HCD, high-cholesterol diet
- ICB, immune checkpoint blockade
- IFN, interferon
- IL, interleukin
- LAG3, lymphocyte-activation gene 3
- PD-1, programmed cell death protein-1
- PD-L1, programmed death-ligand 1
- T cells
- TNF, tumor necrosis factor
- Treg, regulatory T cell
- WT, wild-type
- atherosclerosis
- cardiovascular disease
- immune checkpoint blockade
- inflammation
Collapse
Affiliation(s)
- Megan Mulholland
- Department of Clinical Sciences, Malmö, Cardiovascular Research - Cellular Metabolism and Inflammation, Lund University, Malmö, Sweden
| | - Eva Kritikou
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pernilla Katra
- Department of Clinical Sciences, Malmö, Cardiovascular Research - Cellular Metabolism and Inflammation, Lund University, Malmö, Sweden
| | - Jan Nilsson
- Department of Clinical Sciences, Malmö, Cardiovascular Research - Cellular Metabolism and Inflammation, Lund University, Malmö, Sweden
| | - Harry Björkbacka
- Department of Clinical Sciences, Malmö, Cardiovascular Research - Cellular Metabolism and Inflammation, Lund University, Malmö, Sweden
| | - Andrew H. Lichtman
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Annabelle Rodriguez
- Center for Vascular Biology, University of Connecticut Health, Farmington, Connecticut, USA
| | - Daniel Engelbertsen
- Department of Clinical Sciences, Malmö, Cardiovascular Research - Cellular Metabolism and Inflammation, Lund University, Malmö, Sweden
| |
Collapse
|
240
|
Shi N, Zhou Y, Liu Y, Zhang R, Jiang X, Ren C, Gao X, Luo L. PD-1/LAG-3 bispecific antibody potentiates T cell activation and increases antitumor efficacy. Front Immunol 2022; 13:1047610. [PMID: 36518768 PMCID: PMC9742559 DOI: 10.3389/fimmu.2022.1047610] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
Several clinical studies demonstrate that there exist other immune checkpoints overexpressed in some PD-1 inhibitor-resistant tumor patients. Among them, Lymphocyte-activation gene 3 (LAG-3) is one of the important immune checkpoint molecules and has been clinically demonstrated to have synergistic anti-tumor effects in combination with PD-1 antibody. In this study, we designed a novel 'knob-in-hole' PD-1/LAG-3 bispecific antibody (BsAb) YG-003D3. In conclusion, the BsAb maintained the similar affinity and thermal stability to the parental antibody, and the BsAb structure can be independent of each other in the process of double-target recognition, and the recognition activity will not be affected. Moreover, the BsAb can not only target PD-1 and LAG-3 on single cell simultaneously, but also bridge the two kinds of cells expressing PD-1 and LAG-3, so as to release the 'brake system of immune checkpoints' and activate immune cells to exert anti-tumor effects more effectively. Especially in the PBMCs activation assay, YG-003D3 induced stronger IFN-γ, IL-6, and TNF-α secretion compared to anti-PD-1 or anti-LAG-3 single drug group or even combined drug group. In the tumor killing experiment of PBMC in vitro, YG-003D3 has a better ability to activate PBMC to kill tumor cells than anti-PD-1 or anti-LAG-3 single drug group or even combined drug group, and the killing rate is as high as 20%. In a humanized PD-1/LAG-3 transgenic mouse subcutaneous tumor-bearing model, YG-003D3 showed good anti-tumor activity, even better than that of the combination group at the same molar concentration. Further studies have shown that YG-003D3 could significantly alter the proportion of immune cells in the tumor microenvironment. In particular, the proportion of CD45+, CD3+ T, CD8+ T cells in tumor tissue and the proportion of CD3+ T, CD8+ T, CD4+ T cells in peripheral blood were significantly increased. These results suggest that YG-003D3 exerts a potent antitumor effect by activating the body 's immune system. In summary, the BsAb YG-003D3 has good anti-tumor activity, which is expected to become a novel drug candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Ning Shi
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Yangyihua Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China,Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Yujun Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China
| | - Ran Zhang
- Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Xingjun Jiang
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Caiping Ren
- National Health Commission (NHC) Key Laboratory of Carcinogenesis, Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China,Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China,Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, China,*Correspondence: Caiping Ren, ; Xiang Gao, ; Longlong Luo,
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China,*Correspondence: Caiping Ren, ; Xiang Gao, ; Longlong Luo,
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing, China,*Correspondence: Caiping Ren, ; Xiang Gao, ; Longlong Luo,
| |
Collapse
|
241
|
Luo K, Liu S, Shen X, Xu J, Shi C, Chao Y, Wen Z, Zhang K, Wang R, Liu B, Jiang Y. Integration of cancer stemness and neoantigen load to predict responsiveness to anti-PD1/PDL1 therapy. Front Cell Dev Biol 2022; 10:1003656. [DOI: 10.3389/fcell.2022.1003656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/27/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Anti-programmed cell death 1/programmed cell death ligand 1 (PD1/PDL1) therapy is an important part of comprehensive cancer therapy. However, many patients suffer from non-response to therapy. Tumor neoantigen burden (TNB) and cancer stemness play essential roles in the responsiveness to therapy. Therefore, the identification of drug candidates for anti-PD1/PDL1 therapy remains an unmet need.Methods: Three anti-PD1/PDL1 therapy cohorts were obtained from GEO database and published literatures. Cancer immune characteristics were analyzed using CIBERSORTX, GSVA, and ESTIMATE. WGCNA was employed to identify the gene modules correlated with cancer TNB and stemness. A machine-learning method was used to construct the immunotherapy resistance score (TSIRS). Pharmacogenomic analysis was conducted to explore the potential alternative drugs for anti-PD1/PDL1 therapy resistant patients. CCK-8 assay, EdU assay and wound healing assay were used to validate the effect of the predicted drug on cancer cells.Results: The therapy response and non-response cancer groups have different microenvironment features. TSIRS was developed based on tumor neoantigen and stemness. TSIRS can effectively predict the outcomes of patients with anti-PD1/PDL1 therapy in training, validation and meta cohorts. Meanwhile, TSIRS can reflect the characteristics of tumor microenvironment during anti-PD1/PDL1 therapy. PF-4708671 is identified as a potential alternative drug for patients with resistance to anti-PD1/PDL1 therapy. It possesses significant inhibitive effect on the proliferation and migration of BGC-823 cells.Conclusion: TSIRS is an effective tool in the identification of candidate patients who will be benefit from anti-PD1/PDL1 therapy. Small molecule drug PF-4708671 has the potential to be used in anti-PD1/PDL1 therapy resistant patients.
Collapse
|
242
|
Huang JT, Zhang S, Yang YH, Zhang ZC, Jiang N, Li WC, Shen J, Zhong BY, Zhu XL. Recent Update on Immunotherapy and Its Combination With Interventional Therapies for Hepatocellular Carcinoma. Clin Med Insights Oncol 2022; 16:11795549221134832. [PMID: 36387611 PMCID: PMC9661563 DOI: 10.1177/11795549221134832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly malignancies worldwide. Approximately, 80% of patients are initially diagnosed at intermediate or advanced stages, which means that curative therapies are unable to be performed. In most cases, systemic treatment is ineffective, especially when conventional cytotoxic agents are used. Sorafenib has been the only systemic agent proven to be effective in treating advanced HCC for over a decade. The rapid development of immunotherapy has remarkably revolutionized the management of advanced HCC. Besides, the combination of immunotherapy with molecular targeted agents or locoregional treatments is emerging as an effective tool for enhancing immunity. In the review, an overview of immunotherapy and its combination therapies for HCC is presented.
Collapse
Affiliation(s)
| | | | | | - Zi-Chen Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Nan Jiang
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wan-Ci Li
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Shen
- Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | | | - Xiao-Li Zhu
- Xiao-Li Zhu, Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, No. 899, Pinghai Road, Suzhou 215006, Jiangsu, China.
| |
Collapse
|
243
|
Kirchhammer N, Trefny MP, Auf der Maur P, Läubli H, Zippelius A. Combination cancer immunotherapies: Emerging treatment strategies adapted to the tumor microenvironment. Sci Transl Med 2022; 14:eabo3605. [DOI: 10.1126/scitranslmed.abo3605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Immune checkpoint blockade (ICB) has revolutionized cancer treatment. However, resistance to ICB occurs frequently due to tumor-intrinsic alterations or extrinsic factors in the tumor microenvironment. This Viewpoint aims to give an update on recent developments in immunotherapy for solid tumors and highlights progress in translational research and clinical practice.
Collapse
Affiliation(s)
- Nicole Kirchhammer
- Cancer Immunology, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland
| | - Marcel P. Trefny
- Cancer Immunology, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland
| | - Priska Auf der Maur
- Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University and University Hospital of Basel, Basel 4031, Switzerland
| | - Heinz Läubli
- Cancer Immunotherapy, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland
- Medical Oncology, University Hospital Basel, Basel 4031, Switzerland
| | - Alfred Zippelius
- Cancer Immunology, Department of Biomedicine, University and University Hospital Basel, Basel 4031, Switzerland
- Medical Oncology, University Hospital Basel, Basel 4031, Switzerland
| |
Collapse
|
244
|
de la Torre M, Sangro P, D Avola D, Sangro B. Immunotherapy in hepatocellular carcinoma. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2022; 114:663-670. [PMID: 35704367 DOI: 10.17235/reed.2022.8876/2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hepatocellular carcinoma is a highly prevalent tumor worldwide and when it reaches an advanced stage, few systemic treatments are available to improve the survival of these patients. However, greater knowledge about the tumor microenvironment and the role of the immune system in the control of tumor progression has allowed the development of treatments targeting immune checkpoints, which result in encouraging tumor response rates and prolonged survival. Although most of these treatments are well tolerated, up to 20 % of patients may experience side effects derived from non-specific stimulation of the immune system. In the cirrhotic patient, the early diagnosis and treatment of such adverse events is particularly challenging. Therefore, the ongoing investigation on the use of these new therapies will allow us to better understand the profile of the patients who will benefit most.
Collapse
Affiliation(s)
| | | | | | - Bruno Sangro
- Hepatología, Clinica Universidad de Navarra, España
| |
Collapse
|
245
|
Alptekin A, Parvin M, Chowdhury HI, Rashid MH, Arbab AS. Engineered exosomes for studies in tumor immunology. Immunol Rev 2022; 312:76-102. [PMID: 35808839 DOI: 10.1111/imr.13107] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Exosomes are a type of extracellular vesicle (EV) with diameters of 30-150 nm secreted by most of the cells into the extracellular spaces and can alter the microenvironment through cell-to-cell interactions by fusion with the plasma membrane and subsequent endocytosis and release of the cargo. Because of their biocompatibility, low toxicity and immunogenicity, permeability (even through the blood-brain barrier (BBB)), stability in biological fluids, and ability to accumulate in the lesions with higher specificity, investigators have started making designer's exosomes or engineered exosomes to carry biologically active protein on the surface or inside the exosomes as well as using exosomes to carry drugs, micro RNA, and other products to the site of interest. In this review, we have discussed biogenesis, markers, and contents of various exosomes including exosomes of immune cells. We have also discussed the current methods of making engineered and designer's exosomes as well as the use of engineered exosomes targeting different immune cells in the tumors, stroke, as well as at peripheral blood. Genetic engineering and customizing exosomes create an unlimited opportunity to use in diagnosis and treatment. Very little use has been discovered, and we are far away to reach its limits.
Collapse
Affiliation(s)
- Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Mahrima Parvin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | | | | | - Ali S Arbab
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
246
|
Chi H, Peng G, Wang R, Yang F, Xie X, Zhang J, Xu K, Gu T, Yang X, Tian G. Cuprotosis Programmed-Cell-Death-Related lncRNA Signature Predicts Prognosis and Immune Landscape in PAAD Patients. Cells 2022; 11:3436. [PMID: 36359832 PMCID: PMC9658590 DOI: 10.3390/cells11213436] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 12/03/2022] Open
Abstract
In terms of mortality and survival, pancreatic cancer is one of the worst malignancies. Known as a unique type of programmed cell death, cuprotosis contributes to tumor cell growth, angiogenesis, and metastasis. Cuprotosis programmed-cell-death-related lncRNAs (CRLs) have been linked to PAAD, although their functions in the tumor microenvironment and prognosis are not well understood. This study included data from the TCGA-PAAD cohort. Random sampling of PAAD data was conducted, splitting the data into two groups for use as a training set and test set (7:3). We searched for differentially expressed genes that were substantially linked to prognosis using univariate Cox and Lasso regression analysis. Through the use of multivariate Cox proportional risk regression, a risk-rating system for prognosis was developed. Correlations between the CRL signature and clinicopathological characteristics, tumor microenvironment, immunotherapy response, and chemotherapy sensitivity were further evaluated. Lastly, qRT-PCR was used to compare CRL expression in healthy tissues to that in tumors. Some CRLs are thought to have strong correlations with PAAD outcomes. These CRLs include AC005332.6, LINC02041, LINC00857, and AL117382.1. The CRL-based signature construction exhibited outstanding predictive performance and offers a fresh approach to evaluating pre-immune effectiveness, paving the way for future studies in precision immuno-oncology.
Collapse
Affiliation(s)
- Hao Chi
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Gaoge Peng
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Rui Wang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Fengyi Yang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Xixi Xie
- School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Jinhao Zhang
- School of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Ke Xu
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Tao Gu
- Clinical Medical College, Southwest Medical University, Luzhou 646000, China
| | - Xiaoli Yang
- Department of General Surgery (Hepatobiliary Surgery), The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
- Academician (Expert) Workstation of Sichuan Province, Luzhou 646000, China
| | - Gang Tian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
247
|
Feng Y, Ma F, Wu E, Cheng Z, Wang Z, Yang L, Zhang J. Ginsenosides: Allies of gastrointestinal tumor immunotherapy. Front Pharmacol 2022; 13:922029. [PMID: 36386161 PMCID: PMC9659574 DOI: 10.3389/fphar.2022.922029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/26/2022] [Indexed: 09/25/2023] Open
Abstract
In the past decade, immunotherapy has been the most promising treatment for gastrointestinal tumors. But the low response rate and drug resistance remain major concerns. It is therefore imperative to develop adjuvant therapies to increase the effectiveness of immunotherapy and prevent drug resistance. Ginseng has been used in Traditional Chinese medicine as a natural immune booster for thousands of years. The active components of ginseng, ginsenosides, have played an essential role in tumor treatment for decades and are candidates for anti-tumor adjuvant therapy. They are hypothesized to cooperate with immunotherapy drugs to improve the curative effect and reduce tumor resistance and adverse reactions. This review summarizes the research into the use of ginsenosides in immunotherapy of gastrointestinal tumors and discusses potential future applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiwei Zhang
- Shanghai Key Laboratory of Compound Chinese Medicines, The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
248
|
Heterogeneity and Differentiation Trajectories of Infiltrating CD8+ T Cells in Lung Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14215183. [PMID: 36358600 PMCID: PMC9658355 DOI: 10.3390/cancers14215183] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary CD8+ T cells infiltrating the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) play a crucial role in establishing anti-tumor immunotherapy. The number of CD8+ T cells affects the treatment response, but their functional status plays a more critical role, and this global landscape is still unclear. We divided CD8+ T cells into ten subsets by analyzing a LUAD single-cell dataset. The dynamic process of cell differentiation and functional exhaustion of CD8+ T cells was further discussed, and potential biomarkers in this process were screened. This study deepens the understanding of the heterogeneity of infiltrating CD8+ T cells in LUAD, and the prognostic marker provides a new target for targeted therapy and immunotherapy in LUAD patients. Abstract CD8+ T cells infiltrating the tumor microenvironment (TME) of lung adenocarcinoma (LUAD) are critical for establishing antitumor immunity. Nevertheless, the global landscape of their numbers, functional status, and differentiation trajectories remains unclear. In the single-cell RNA-sequencing (scRNA-seq) dataset GSE131907 of LUAD, the CD8+T cells were selected for TSNE clustering, and the results showed that they could be divided into ten subsets. The cell differentiation trajectory showed the presence of abundant transition-state CD8+ T cells during the differentiation of naive-like CD8+ T cells into cytotoxic CD8+ T cells and exhausted CD8+ T cells. The differentially expressed marker genes among subsets were used to construct the gene signature matrix, and the proportion of each subset was identified and calculated in The Cancer Genome Atlas (TCGA) samples. Survival analysis showed that the higher the proportion of the exhausted CD8+ T lymphocyte (ETL) subset, the shorter the overall survival (OS) time of LUAD patients (p = 0.0098). A total of 61 genes were obtained by intersecting the differentially expressed genes (DEGs) of the ETL subset, and the DEGs of the TCGA samples were divided into a high and a low group according to the proportion of the ETL subset. Through protein interaction network analysis and survival analysis, four hub genes that can significantly affect the prognosis of LUAD patients were finally screened, and RT-qPCR and Western blot verified the differential expression of the above four genes. Our study further deepens the understanding of the heterogeneity and functional exhaustion of infiltrating CD8+ T cells in LUAD. The screened prognostic marker genes provide potential targets for targeted therapy and immunotherapy in LUAD patients.
Collapse
|
249
|
Liu Z, Yang H, Chen Z, Jing C. A novel chromatin regulator-related immune checkpoint related gene prognostic signature and potential candidate drugs for endometrial cancer patients. Hereditas 2022; 159:40. [PMID: 36253800 PMCID: PMC9578220 DOI: 10.1186/s41065-022-00253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/22/2022] [Indexed: 11/14/2022] Open
Abstract
Background Endometrial cancer (EC) is the most common gynecologic malignancy in developed countries and its prevalence is increasing. As an emerging therapy with a promising efficacy, immunotherapy has been extensively applied in the treatment of solid tumors. In addition, chromatin regulators (CRs), as essential upstream regulators of epigenetics, play a significant role in tumorigenesis and cancer development. Methods CRs and immune checkpoint-related genes (ICRGs) were obtained from the previous top research. The Genome Cancer Atlas (TCGA) was utilized to acquire the mRNA expression and clinical information of patients with EC. Correlation analysis was utilized for screen CRs-related ICRGs (CRRICRGs). By Cox regression and least absolute shrinkage and selection operator (LASSO) analysis, prognosis related CRRICRGs were screened out and risk model was constructed. The Kaplan–Meier curve was used to estimate the prognosis between high- and low-risk group. By comparing the IC50 value, the drugs sensitivity difference was explored. We obtained small molecule drugs for the treatment of UCEC patients based on CAMP dataset. Results We successfully constructed a 9 CRRICRs-based prognostic signature for patients with UCEC and found the riskscore was an independent prognostic factor. The results of functional analysis suggested that CRRICRGs may be involved in immune processes associated with cancer. Immune characteristics analysis provided further evidence that the CRRICRGs-based model was correlated with immune cells infiltration and immune checkpoint. Eight small molecule drugs that may be effective for the treatment of UCEC patients were screened. Effective drugs identified by drug sensitivity profiling in high- and low-risk groups. Conclusion In summary, our study provided novel insights into the function of CRRICRGs in UCEC. We also developed a reliable prognostic panel for the survival of patients with UCEC. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-022-00253-w.
Collapse
Affiliation(s)
- Zesi Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Hongxia Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Ziyu Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Chunli Jing
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China.
| |
Collapse
|
250
|
Chen Z, Liu Y, Chen N, Xing H, Tian Z, Tang K, Rao Q, Xu Y, Wang Y, Wang M, Wang J. Loop CD20/CD19 CAR-T cells eradicate B-cell malignancies efficiently. SCIENCE CHINA LIFE SCIENCES 2022; 66:754-770. [PMID: 36251156 DOI: 10.1007/s11427-022-2173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022]
Abstract
CD19 chimeric antigen receptor (CAR) T cells have shown robust efficacy in relapsed and refractory acute lymphoblastic leukemia (R/R ALL), but compromising result in chronic lymphoblastic leukemia (CLL) and non-Hodgkin's lymphoma (NHL). CD19 relapse and the lack of CAR-T cell persistence which result in treatment failure are considerable obstacles to overcome. CAR-T targeting CD20 is an option for salvaging CD19 CAR-T failure. Previous studies have established variant structures of bispecific CAR-T which could avoid antigen-loss and immune escape. Here, we constructed tandem and loop CAR structures targeting both CD19 and CD20 antigen. Bispecific CAR-T cells could eliminate either CD19 or CD20 negative lymphoma cells, suggesting they exhibited dual antigen targeting of CD19 and CD20. By comparing the efficiency of four bispecific CAR modified T cells, it was found that loop2019 CAR was the best structure among them to eradicate lymphoma cell lines and patients' primary lymphoma or CLL cells in a very low dose in vitro and prolong the survival time dramatically in lymphoma xenograft mice model. These data highlighted the potential of loop2019 CAR-T in clinical treatment.
Collapse
|