201
|
Jin LY, Li J, Wang KF, Xia WW, Zhu ZQ, Wang CR, Li XF, Liu HY. Blood-Spinal Cord Barrier in Spinal Cord Injury: A Review. J Neurotrauma 2021; 38:1203-1224. [PMID: 33292072 DOI: 10.1089/neu.2020.7413] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The blood-spinal cord barrier (BSCB), a physical barrier between the blood and spinal cord parenchyma, prevents the toxins, blood cells, and pathogens from entering the spinal cord and maintains a tightly controlled chemical balance in the spinal environment, which is necessary for proper neural function. A BSCB disruption, however, plays an important role in primary and secondary injury processes related to spinal cord injury (SCI). After SCI, the structure of the BSCB is broken down, which leads directly to leakage of blood components. At the same time, the permeability of the BSCB is also increased. Repairing the disruption of the BSCB could alleviate the SCI pathology. We review the morphology and pathology of the BSCB and progression of therapeutic methods targeting BSCB in SCI.
Collapse
Affiliation(s)
- Lin-Yu Jin
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Jie Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China
| | - Kai-Feng Wang
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Wei-Wei Xia
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Zhen-Qi Zhu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| | - Chun-Ru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, P.R. China
| | - Xin-Feng Li
- Department of Spinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P.R. China
| | - Hai-Ying Liu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, P.R. China
| |
Collapse
|
202
|
Bao X, Wu J, Jiang J, Tien AC, Sanai N, Li J. Quantitative protein expression of blood-brain barrier transporters in the vasculature of brain metastases of patients with lung and breast cancer. Clin Transl Sci 2021; 14:1265-1271. [PMID: 33566445 PMCID: PMC8301582 DOI: 10.1111/cts.12978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
This study determined absolute transporter protein abundances in isolated microvessels of human noncancerous cerebral cortex as well as brain metastases of patients with lung and breast cancer, using a validated targeted proteomics approach. As compared with those in microvessels of noncancerous cerebral cortex, the median protein abundances of glucose transporter 1 (a brain endothelial marker) and sodium‐potassium pump (Na/K ATPase, a plasma membrane marker) were decreased by ~ 80% in brain metastasis microvessels. The major efflux transporters (ABCB1 and ABCG2) fell to undetectable in microvessels of more than 80% of brain metastasis specimens. Monocarboxylate transporter 1 was undetectable in microvessels of more than 80% of brain metastases, whereas large neutral amino acid transporter 1 levels remained unchanged. In conclusion, the integrity of the physical and biochemical barrier with respect to transporter protein expression is largely disrupted in brain metastasis tumor vasculatures. Differential transporter protein abundances at the blood‐brain barrier and blood‐brain tumor barrier provided mechanistic and quantitative basis for prediction of heterogeneous drug penetration into human brain and brain tumors, which is critical not only to the understanding of the success or failure of systemic chemotherapy in the treatment of brain tumors but also to the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Xun Bao
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jianmei Wu
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Jun Jiang
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - An-Chi Tien
- Barrow Neurological Institute, St. Joseph's Hospital & Medical Center, Phoenix, Arizona, USA
| | - Nader Sanai
- Barrow Neurological Institute, St. Joseph's Hospital & Medical Center, Phoenix, Arizona, USA
| | - Jing Li
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
203
|
Schaffenrath J, Wyss T, He L, Rushing EJ, Delorenzi M, Vasella F, Regli L, Neidert MC, Keller A. Blood-brain barrier alterations in human brain tumors revealed by genome-wide transcriptomic profiling. Neuro Oncol 2021; 23:2095-2106. [PMID: 33560373 DOI: 10.1093/neuonc/noab022] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Brain tumors, whether primary or secondary, have limited therapeutic options despite advances in understanding driver gene mutations and heterogeneity within tumor cells. The cellular and molecular composition of brain tumor stroma, an important modifier of tumor growth, has been less investigated to date. Only few studies have focused on the vasculature of human brain tumors despite the fact that the blood-brain barrier (BBB) represents the major obstacle for efficient drug delivery. METHODS In this study, we employed RNA sequencing to characterize transcriptional alterations of endothelial cells isolated from primary and secondary human brain tumors. We used an immunoprecipitation approach to enrich for endothelial cells from normal brain, glioblastoma (GBM) and lung cancer brain metastasis (BM). RESULTS Analysis of the endothelial transcriptome showed deregulation of genes implicated in cell proliferation, angiogenesis and deposition of extracellular matrix (ECM) in the vasculature of GBM and BM. Deregulation of genes defining the BBB dysfunction module were found in both tumor types. We identified deregulated expression of genes in vessel-associated fibroblasts in GBM. CONCLUSION We characterize alterations in BBB genes in GBM and BM vasculature and identify proteins that might be exploited for developing drug delivery platforms. In addition, our analysis on vessel-associated fibroblasts in GBM shows that the cellular composition of brain tumor stroma merits further investigation.
Collapse
Affiliation(s)
- Johanna Schaffenrath
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| | - Tania Wyss
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Oncology, University Lausanne, Lausanne, Switzerland
| | - Liqun He
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland.,Department of Oncology, University Lausanne, Lausanne, Switzerland
| | - Flavio Vasella
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland
| | - Luca Regli
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland
| | - Marian Christoph Neidert
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland
| | - Annika Keller
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zürich, Zürich University, Zürich, Switzerland.,Neuroscience Center Zürich, University of Zürich and ETH Zürich, Zürich, Switzerland
| |
Collapse
|
204
|
Bittner A, Gosselet F, Sevin E, Dehouck L, Ducray AD, Gaschen V, Stoffel MH, Cho H, Mevissen M. Time-Dependent Internalization of Polymer-Coated Silica Nanoparticles in Brain Endothelial Cells and Morphological and Functional Effects on the Blood-Brain Barrier. Int J Mol Sci 2021; 22:ijms22041657. [PMID: 33562136 PMCID: PMC7915594 DOI: 10.3390/ijms22041657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 11/16/2022] Open
Abstract
Nanoparticle (NP)-assisted procedures including laser tissue soldering (LTS) offer advantages compared to conventional microsuturing, especially in the brain. In this study, effects of polymer-coated silica NPs used in LTS were investigated in human brain endothelial cells (ECs) and blood-brain barrier models. In the co-culture setting with ECs and pericytes, only the cell type directly exposed to NPs displayed a time-dependent internalization. No transfer of NPs between the two cell types was observed. Cell viability was decreased relatively to NP exposure duration and concentration. Protein expression of the nuclear factor ĸ-light-chain-enhancer of activated B cells and various endothelial adhesion molecules indicated no initiation of inflammation or activation of ECs after NP exposure. Differentiation of CD34+ ECs into brain-like ECs co-cultured with pericytes, blood-brain barrier (BBB) characteristics were obtained. The established endothelial layer reduced the passage of integrity tracer molecules. NP exposure did not result in alterations of junctional proteins, BBB formation or its integrity. In a 3-dimensional setup with an endothelial tube formation and tight junctions, barrier formation was not disrupted by the NPs and NPs do not seem to cross the blood-brain barrier. Our findings suggest that these polymer-coated silica NPs do not damage the BBB.
Collapse
Affiliation(s)
- Aniela Bittner
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland; (A.B.); (A.D.D.)
| | - Fabien Gosselet
- Blood-Brain-Barrier Laboratory, University of Artois, UR265, Faculté Jean Perrin, Rue Jean Souvraz–SP 18, 62307 Lens, France; (F.G.); (E.S.); (L.D.)
| | - Emmanuel Sevin
- Blood-Brain-Barrier Laboratory, University of Artois, UR265, Faculté Jean Perrin, Rue Jean Souvraz–SP 18, 62307 Lens, France; (F.G.); (E.S.); (L.D.)
| | - Lucie Dehouck
- Blood-Brain-Barrier Laboratory, University of Artois, UR265, Faculté Jean Perrin, Rue Jean Souvraz–SP 18, 62307 Lens, France; (F.G.); (E.S.); (L.D.)
| | - Angélique D. Ducray
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland; (A.B.); (A.D.D.)
| | - Véronique Gaschen
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland; (V.G.); (M.H.S.)
| | - Michael H. Stoffel
- Division of Veterinary Anatomy, Vetsuisse Faculty, University of Bern, Länggassstrasse 120, 3012 Bern, Switzerland; (V.G.); (M.H.S.)
| | - Hansang Cho
- Institute of Quantum Biophysics, Department of Biophysics, Department of Intelligent Precision Healthcare Concergence, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, #868715 N-Center Suwon-si, Gyeonggi-do 16419, Korea;
| | - Meike Mevissen
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012 Bern, Switzerland; (A.B.); (A.D.D.)
- Correspondence: ; Tel.: +41-31-631-22-31
| |
Collapse
|
205
|
Masmudi-Martín M, Zhu L, Sanchez-Navarro M, Priego N, Casanova-Acebes M, Ruiz-Rodado V, Giralt E, Valiente M. Brain metastasis models: What should we aim to achieve better treatments? Adv Drug Deliv Rev 2021; 169:79-99. [PMID: 33321154 DOI: 10.1016/j.addr.2020.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/16/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Brain metastasis is emerging as a unique entity in oncology based on its particular biology and, consequently, the pharmacological approaches that should be considered. We discuss the current state of modelling this specific progression of cancer and how these experimental models have been used to test multiple pharmacologic strategies over the years. In spite of pre-clinical evidences demonstrating brain metastasis vulnerabilities, many clinical trials have excluded patients with brain metastasis. Fortunately, this trend is getting to an end given the increasing importance of secondary brain tumors in the clinic and a better knowledge of the underlying biology. We discuss emerging trends and unsolved issues that will shape how we will study experimental brain metastasis in the years to come.
Collapse
|
206
|
Wang L, Liu C, Qiao F, Li M, Xin H, Chen N, Wu Y, Liu J. Analysis of the cytotoxic effects, cellular uptake and cellular distribution of paclitaxel-loaded nanoparticles in glioblastoma cells in vitro. Exp Ther Med 2021; 21:292. [PMID: 33717235 PMCID: PMC7885080 DOI: 10.3892/etm.2021.9723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma is the most common and aggressive type of brain tumor. Although treatments for glioblastoma have been improved recently, patients still suffer from local recurrence in addition to poor prognosis. Previous studies have indicated that the efficacy of chemotherapeutic or bioactive agents is severely compromised by the blood-brain barrier and the inherent drug resistance of glioblastoma. The present study developed a delivery system to improve the efficiency of delivering therapeutic agents into glioblastoma cells. The anticancer drug paclitaxel (PTX) was packed into nanoparticles that were composed of amphiphilic poly (γ-glutamic-acid-maleimide-co-L-lactide)-1,2-dipalmitoylsn-glycero-3-phosphoethanolaminecopolymer conjugated with targeting moiety transferrin (Tf). The Tf nanoparticles (Tf-NPs) may enter glioblastoma cells via transferrin receptor-mediated endocytosis. MTT assay and flow cytometry were used to explore the cytotoxic effects, cellular uptake and cellular distribution of paclitaxel-loaded nanoparticles. The results indicated that both PTX and PTX-Tf-NPs inhibited the viability of rat glioblastoma C6 cells in a dose-dependent manner, but the PTX-Tf-NPs exhibited a greater inhibitory effect compared with PTX, even at higher concentrations (0.4, 2 and 10 µg/ml). However, both PTX and PTX-Tf-NPs exhibited a reduced inhibitory effect on the viability of mouse hippocampal neuronal HT22 cells compared with that on C6 cells. Additionally, in contrast to PTX alone, PTX-Tf-NPs treatment of C6 cells at lower concentrations (0.0032, 0.0160 and 0.0800 µg/ml) induced increased G2/M arrest, although this difference did not occur at a higher drug concentration (0.4 µg/ml). It was observed that FITC-labeled PTX-Tf-NPs were endocytosed by C6 cells within 4 h. Furthermore, FITC-labeled PTX-Tf-NPs or Tf-NPs co-localized with a lysosomal tracker, Lysotracker Red DND-99. These results of the present study indicated that Tf-NPs enhanced the cytotoxicity of PTX in glioblastoma C6 cells, suggesting that PTX-Tf-NPs should be further explored in animal models of glioblastoma.
Collapse
Affiliation(s)
- Lin Wang
- Clinical Laboratory, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Chunhui Liu
- Clinical Laboratory, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Feng Qiao
- Clinical Laboratory, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Mingjun Li
- Clinical Laboratory, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Hua Xin
- Clinical Laboratory, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Naifeng Chen
- Department of Pathology and Physiology, School of Basic Medical Sciences of Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Yan Wu
- Division of Nanomedicine and Nanobiology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Junxing Liu
- Department of Pathology and Physiology, School of Basic Medical Sciences of Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| |
Collapse
|
207
|
Bourasset F, Auvity S, Thorne RG, Scherrmann JM. Brain Distribution of Drugs: Brain Morphology, Delivery Routes, and Species Differences. Handb Exp Pharmacol 2021; 273:97-120. [PMID: 33474672 DOI: 10.1007/164_2020_402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Neuropharmacokinetics considers cerebral drug distribution as a critical process for central nervous system drug action as well as for drug penetration through the CNS barriers. Brain distribution of small molecules obeys classical rules of drug partition, permeability, binding to fluid proteins or tissue components, and tissue perfusion. The biodistribution of all drugs, including both small molecules and biologics, may also be influenced by specific brain properties related to brain anatomy and physiological barriers, fluid dynamics, and cellular and biochemical composition, each of which can exhibit significant interspecies differences. All of these properties contribute to select optimal dosing paradigms and routes of drug delivery to reach brain targets for classical small molecule drugs as well as for biologics. The importance of these properties for brain delivery and exposure also highlights the need for efficient new analytical technologies to more comprehensively investigate drug distribution in the CNS, a complex multi-compartmentalized organ system.
Collapse
Affiliation(s)
- Fanchon Bourasset
- Faculty of Pharmacy, University of Paris, Paris, France.,INSERM UMR-S1144, Paris, France
| | - Sylvain Auvity
- Faculty of Pharmacy, University of Paris, Paris, France.,INSERM UMR-S1144, Paris, France
| | - Robert G Thorne
- Denali Therapeutics, Inc., South San Francisco, CA, USA. .,Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, USA.
| | - Jean-Michel Scherrmann
- Faculty of Pharmacy, University of Paris, Paris, France. .,INSERM UMR-S1144, Paris, France.
| |
Collapse
|
208
|
Saleh MAA, de Lange ECM. Impact of CNS Diseases on Drug Delivery to Brain Extracellular and Intracellular Target Sites in Human: A "WHAT-IF" Simulation Study. Pharmaceutics 2021; 13:95. [PMID: 33451111 PMCID: PMC7828633 DOI: 10.3390/pharmaceutics13010095] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/05/2021] [Accepted: 01/08/2021] [Indexed: 12/23/2022] Open
Abstract
The blood-brain barrier (BBB) is equipped with unique physical and functional processes that control central nervous system (CNS) drug transport and the resulting concentration-time profiles (PK). In CNS diseases, the altered BBB and CNS pathophysiology may affect the CNS PK at the drug target sites in the brain extracellular fluid (brainECF) and intracellular fluid (brainICF) that may result in changes in CNS drug effects. Here, we used our human CNS physiologically-based PK model (LeiCNS-PK3.0) to investigate the impact of altered cerebral blood flow (CBF), tight junction paracellular pore radius (pararadius), brainECF volume, and pH of brainECF (pHECF) and of brainICF (pHICF) on brainECF and brainICF PK for 46 small drugs with distinct physicochemical properties. LeiCNS-PK3.0 simulations showed a drug-dependent effect of the pathophysiological changes on the rate and extent of BBB transport and on brainECF and brainICF PK. Altered pararadius, pHECF, and pHICF affected both the rate and extent of BBB drug transport, whereas changes in CBF and brainECF volume modestly affected the rate of BBB drug transport. While the focus is often on BBB paracellular and active transport processes, this study indicates that also changes in pH should be considered for their important implications on brainECF and brainICF target site PK.
Collapse
Affiliation(s)
| | - Elizabeth C. M. de Lange
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands;
| |
Collapse
|
209
|
Telbisz Á, Ambrus C, Mózner O, Szabó E, Várady G, Bakos É, Sarkadi B, Özvegy-Laczka C. Interactions of Potential Anti-COVID-19 Compounds with Multispecific ABC and OATP Drug Transporters. Pharmaceutics 2021; 13:pharmaceutics13010081. [PMID: 33435273 PMCID: PMC7827085 DOI: 10.3390/pharmaceutics13010081] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/28/2020] [Accepted: 12/31/2020] [Indexed: 12/14/2022] Open
Abstract
During the COVID-19 pandemic, several repurposed drugs have been proposed to alleviate the major health effects of the disease. These drugs are often applied with analgesics or non-steroid anti-inflammatory compounds, and co-morbid patients may also be treated with anticancer, cholesterol-lowering, or antidiabetic agents. Since drug ADME-tox properties may be significantly affected by multispecific transporters, in this study, we examined the interactions of the repurposed drugs with the key human multidrug transporters present in the major tissue barriers and strongly affecting the pharmacokinetics. Our in vitro studies, using a variety of model systems, explored the interactions of the antimalarial agents chloroquine and hydroxychloroquine; the antihelmintic ivermectin; and the proposed antiviral compounds ritonavir, lopinavir, favipiravir, and remdesivir with the ABCB1/Pgp, ABCG2/BCRP, and ABCC1/MRP1 exporters, as well as the organic anion-transporting polypeptide (OATP)2B1 and OATP1A2 uptake transporters. The results presented here show numerous pharmacologically relevant transporter interactions and may provide a warning on the potential toxicities of these repurposed drugs, especially in drug combinations at the clinic.
Collapse
Affiliation(s)
- Ágnes Telbisz
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - Csilla Ambrus
- SOLVO Biotechnology, Irinyi József Street 4-20, 1117 Budapest, Hungary;
- Doctoral School of Molecular Medicine, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Orsolya Mózner
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
- Doctoral School of Molecular Medicine, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
| | - Edit Szabó
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - György Várady
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - Éva Bakos
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
| | - Balázs Sarkadi
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
- Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó u. 37-47, 1094 Budapest, Hungary
- Correspondence: (B.S.); (C.Ö.-L.)
| | - Csilla Özvegy-Laczka
- Institute of Enzymology, ELKH Research Centre for Natural Sciences, Magyar Tudósok krt. 2, 1117 Budapest, Hungary; (Á.T.); (O.M.); (E.S.); (G.V.); (É.B.)
- Correspondence: (B.S.); (C.Ö.-L.)
| |
Collapse
|
210
|
Patel W, Rimmer L, Smith M, Moss L, Smith MA, Snodgrass HR, Pirmohamed M, Alfirevic A, Dickens D. Probenecid Increases the Concentration of 7-Chlorokynurenic Acid Derived from the Prodrug 4-Chlorokynurenine within the Prefrontal Cortex. Mol Pharm 2021; 18:113-123. [PMID: 33307708 DOI: 10.1021/acs.molpharmaceut.0c00727] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent advances in the understanding of depression have led to increasing interest in ketamine and the role that N-methyl-d-aspartate (NMDA) receptor inhibition plays in depression. l-4-Chlorokynurenine (4-Cl-KYN, AV-101), a prodrug, has shown promise as an antidepressant in preclinical studies, but this promise has not been realized in recent clinical trials. We sought to determine if transporters in the CNS could be playing a role in this clinical response. We used radiolabeled uptake assays and microdialysis studies to determine how 4-Cl-KYN and its active metabolite, 7-chlorokynurenic acid (7-Cl-KYNA), cross the blood-brain barrier (BBB) to access the brain and its extracellular fluid compartment. Our data indicates that 4-Cl-KYN crosses the blood-brain barrier via the amino acid transporter LAT1 (SLC7A5) after which the 7-Cl-KYNA metabolite leaves the brain extracellular fluid via probenecid-sensitive organic anion transporters OAT1/3 (SLC22A6 and SLC22A8) and MRP4 (ABCC4). Microdialysis studies further validated our in vitro data, indicating that probenecid may be used to boost the bioavailability of 7-Cl-KYNA. Indeed, we found that coadministration of 4-Cl-KYN with probenecid caused a dose-dependent increase by as much as an 885-fold increase in 7-Cl-KYNA concentration in the prefrontal cortex. In summary, our data show that 4-Cl-KYN crosses the BBB using LAT1, while its active metabolite, 7-Cl-KYNA, is rapidly transported out of the brain via OAT1/3 and MRP4. We also identify a hitherto unreported mechanism by which the brain extracellular concentration of 7-Cl-KYNA may be increased to produce significant boosting of the drug concentration at its site of action that could potentially lead to an increased therapeutic effect.
Collapse
Affiliation(s)
- Waseema Patel
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, U.K
| | - Lara Rimmer
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, U.K
| | - Martin Smith
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, U.K
| | - Lucie Moss
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, U.K
| | - Mark A Smith
- VistaGen Therapeutics, Inc., 343 Allerton Ave, South San Francisco, California 94080, United States
- Medical College of Georgia, 1120 15th Street, Augusta, Georgia 30912, United States
| | - H Ralph Snodgrass
- VistaGen Therapeutics, Inc., 343 Allerton Ave, South San Francisco, California 94080, United States
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, U.K
| | - Ana Alfirevic
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, U.K
| | - David Dickens
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool L69 3GL, U.K
| |
Collapse
|
211
|
Central nervous system delivery of molecules across the blood-brain barrier. Neurochem Int 2021; 144:104952. [PMID: 33400964 DOI: 10.1016/j.neuint.2020.104952] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/20/2022]
Abstract
Therapies targeting neurological conditions such as Alzheimer's or Parkinson's diseases are hampered by the presence of the blood-brain barrier (BBB). During the last decades, several approaches have been developed to overcome the BBB, such as the use of nanoparticles (NPs) based on biomaterials, or alternative methods to open the BBB. In this review, we briefly highlight these strategies and the most recent advances in this field. Limitations and advantages of each approach are discussed. Combination of several methods such as functionalized NPs targeting the receptor-mediated transcytosis system with the use of magnetic resonance imaging-guided focused ultrasound (FUS) might be a promising strategy to develop theranostic tools as well as to safely deliver therapeutic molecules, such as drugs, neurotrophic factors or antibodies within the brain parenchyma.
Collapse
|
212
|
Miyazaki T, Nakagawa Y, Cabral H. Strategies for ligand-installed nanocarriers. HANDBOOK OF NANOTECHNOLOGY APPLICATIONS 2021:633-655. [DOI: 10.1016/b978-0-12-821506-7.00024-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
213
|
Mochizuki T, Mizuno T, Kurosawa T, Yamaguchi T, Higuchi K, Tega Y, Nozaki Y, Kawabata K, Deguchi Y, Kusuhara H. Functional Investigation of Solute Carrier Family 35, Member F2, in Three Cellular Models of the Primate Blood-Brain Barrier. Drug Metab Dispos 2021; 49:3-11. [PMID: 33144341 DOI: 10.1124/dmd.120.000115] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
Understanding the mechanisms of drug transport across the blood-brain barrier (BBB) is an important issue for regulating the pharmacokinetics of drugs in the central nervous system. In this study, we focused on solute carrier family 35, member F2 (SLC35F2), whose mRNA is highly expressed in the BBB. SLC35F2 protein was enriched in isolated mouse and monkey brain capillaries relative to brain homogenates and was localized exclusively on the apical membrane of MDCKII cells and brain microvascular endothelial cells (BMECs) differentiated from human induced pluripotent stem cells (hiPS-BMECs). SLC35F2 activity was assessed using its substrate, YM155, and pharmacological experiments revealed SLC35F2 inhibitors, such as famotidine (half-maximal inhibitory concentration, 160 μM). Uptake of YM155 was decreased by famotidine or SLC35F2 knockdown in immortalized human BMECs (human cerebral microvascular endothelial cell/D3 cells). Furthermore, famotidine significantly inhibited the apical (A)-to-basal (B) transport of YM155 in primary cultured monkey BMECs and hiPS-BMECs. Crucially, SLC35F2 knockout diminished the A-to-B transport and intracellular accumulation of YM155 in hiPS-BMECs. By contrast, in studies using an in situ brain perfusion technique, neither deletion of Slc35f2 nor famotidine reduced brain uptake of YM155, even though YM155 is a substrate of mouse SLC35F2. YM155 uptake was decreased significantly by losartan and naringin, inhibitors for the organic anion transporting polypeptide (OATP) 1A4. These findings suggest SLC35F2 is a functional transporter in various cellular models of the primate BBB that delivers its substrates to the brain and that its relative importance in the BBB is modified by differences in the expression of OATPs between primates and rodents. SIGNIFICANCE STATEMENT: This study demonstrated that SLC35F2 is a functional drug influx transporter in three different cellular models of the primate blood-brain barrier (i.e., human cerebral microvascular endothelial cell/D3 cells, primary cultured monkey BMECs, and human induced pluripotent stem-BMECs) but has limited roles in mouse brain. SLC35F2 facilitates apical-to-basal transport across the tight cell monolayer. These findings will contribute to the development of improved strategies for targeting drugs to the central nervous system.
Collapse
Affiliation(s)
- Tatsuki Mochizuki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Tadahaya Mizuno
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Toshiki Kurosawa
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Tomoko Yamaguchi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Kei Higuchi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Yuma Tega
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Yoshitane Nozaki
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Kenji Kawabata
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Yoshiharu Deguchi
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| | - Hiroyuki Kusuhara
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (T.Mo., T.Mi., H.K.); Laboratory of Drug Disposition and Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University, Tokyo, Japan (T.K., K.H., Y.T., Y.D.); Laboratory of Stem Cell Regulation, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan (T.Y., K.K.); and Drug Metabolism and Pharmacokinetics Tsukuba, Tsukuba Research Laboratories, Eisai Co., Ltd., Tsukuba, Ibaraki, Japan (Y.N.)
| |
Collapse
|
214
|
Montaser AB, Järvinen J, Löffler S, Huttunen J, Auriola S, Lehtonen M, Jalkanen A, Huttunen KM. L-Type Amino Acid Transporter 1 Enables the Efficient Brain Delivery of Small-Sized Prodrug across the Blood-Brain Barrier and into Human and Mouse Brain Parenchymal Cells. ACS Chem Neurosci 2020; 11:4301-4315. [PMID: 33228353 DOI: 10.1021/acschemneuro.0c00564] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Membrane transporters have long been utilized to improve the oral, hepatic, and renal (re)absorption. In the brain, however, the transporter-mediated drug delivery has not yet been fully achieved due to the complexity of the blood-brain barrier (BBB). Because L-type amino acid transporter 1 (LAT1) is a good candidate to improve the brain delivery, we developed here four novel LAT1-utilizing prodrugs of four nonsteroidal anti-inflammatory drugs. As a result, all the prodrugs were able to cross the BBB and localize into the brain cells. The brain uptake of salicylic acid (SA) was improved five times, not only across the mouse BBB but also into the cultured mouse and human brain cells. The naproxen prodrug was also transported efficiently into the mouse brain achieving less peripheral exposure, but the brain release of naproxen from the prodrug was not improved. Contrarily, the high plasma protein binding of the flurbiprofen prodrug and the premature bioconversion of the ibuprofen prodrug in the mouse blood hindered the efficient brain delivery. Thus, the structure of the parent drug affects the successful brain delivery of the LAT1-utilizing prodrugs, and the small-sized LAT1-utilizing prodrug of SA constituted a successful model to specifically deliver its parent drug across the mouse BBB and into the cultured mouse and human brain cells.
Collapse
Affiliation(s)
- Ahmed B. Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Juulia Järvinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Susanne Löffler
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Marko Lehtonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Aaro Jalkanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland
| |
Collapse
|
215
|
Griffith JI, Rathi S, Zhang W, Zhang W, Drewes LR, Sarkaria JN, Elmquist WF. Addressing BBB Heterogeneity: A New Paradigm for Drug Delivery to Brain Tumors. Pharmaceutics 2020; 12:E1205. [PMID: 33322488 PMCID: PMC7763839 DOI: 10.3390/pharmaceutics12121205] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 12/11/2022] Open
Abstract
Effective treatments for brain tumors remain one of the most urgent and unmet needs in modern oncology. This is due not only to the presence of the neurovascular unit/blood-brain barrier (NVU/BBB) but also to the heterogeneity of barrier alteration in the case of brain tumors, which results in what is referred to as the blood-tumor barrier (BTB). Herein, we discuss this heterogeneity, how it contributes to the failure of novel pharmaceutical treatment strategies, and why a "whole brain" approach to the treatment of brain tumors might be beneficial. We discuss various methods by which these obstacles might be overcome and assess how these strategies are progressing in the clinic. We believe that by approaching brain tumor treatment from this perspective, a new paradigm for drug delivery to brain tumors might be established.
Collapse
Affiliation(s)
- Jessica I. Griffith
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| | - Sneha Rathi
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| | - Wenqiu Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| | - Wenjuan Zhang
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| | - Lester R. Drewes
- Department of Biomedical Sciences, University of Minnesota Medical School—Duluth, Duluth, MN 55812, USA;
| | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55902, USA;
| | - William F. Elmquist
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN 55455, USA; (S.R.); (W.Z.); (W.Z.)
| |
Collapse
|
216
|
Yokoyama R, Taharabaru T, Nishida T, Ohno Y, Maeda Y, Sato M, Ishikura K, Yanagihara K, Takagi H, Nakamura T, Ito S, Ohtsuki S, Arima H, Onodera R, Higashi T, Motoyama K. Lactose-appended β-cyclodextrin as an effective nanocarrier for brain delivery. J Control Release 2020; 328:722-735. [PMID: 33002523 DOI: 10.1016/j.jconrel.2020.09.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
The blood-brain barrier (BBB) prevents the permeability of drugs into the brain, and as such limits the management of various brain diseases. To overcome this barrier, drug-encapsulating nanoparticles or vesicles, drug conjugates, and other types of drug delivery systems (DDSs) have been developed. However, the brain-targeting ability of nanoparticles or vesicles is still insufficient. Recently, among the various brain-targeting ligands previously studied for facilitating transcellular BBB transport, several sugar-appended nanocarriers for brain delivery were identified. Meanwhile, cyclodextrins (CyDs) have been used as nanocarriers for drug delivery since they can encapsulate hydrophobic compounds with high biocompatibility. Therefore, in this study, we created various sugar-appended β-cyclodextrins (β-CyDs) to discover novel brain-targeting ligands. As a result, of the six sugar-appended CyDs, lactose-appended β-CyD (Lac-β-CyD) showed greater cellular uptake in hCMEC/D3 cells, human brain microvascular endothelial cells, than other sugar-appended β-CyDs did. In addition, the permeability of Lac-β-CyD within the in vitro human BBB model was greater than that of other sugar-appended β-CyDs. Moreover, Lac-β-CyD significantly accumulated in the mouse brain after intravenous administration. Thus, Lac-β-CyD efficiently facilitated the accumulation of the model drug into the mouse brain. These findings suggest that Lac-β-CyD has the potential to be a novel carrier for drugs across the BBB.
Collapse
Affiliation(s)
- Ryoma Yokoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Toru Taharabaru
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takumi Nishida
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoshitaka Ohno
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Maeda
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Program for Leading Graduate Schools "HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Masahiro Sato
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kandai Ishikura
- Research Institute of Nihon Shokuhin Kako Co., Ltd, 30 Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Kazunori Yanagihara
- Research Institute of Nihon Shokuhin Kako Co., Ltd, 30 Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Hiroki Takagi
- Research Institute of Nihon Shokuhin Kako Co., Ltd, 30 Tajima, Fuji, Shizuoka 417-8530, Japan
| | - Teruya Nakamura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shingo Ito
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Sumio Ohtsuki
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hidetoshi Arima
- Laboratory of Evidence-Based Pharmacotherapy, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka 815-8511, Japan
| | - Risako Onodera
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
217
|
Methods to optimize CNS exposure of drug candidates. Bioorg Med Chem Lett 2020; 30:127503. [DOI: 10.1016/j.bmcl.2020.127503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
|
218
|
Pardridge WM. Brain Delivery of Nanomedicines: Trojan Horse Liposomes for Plasmid DNA Gene Therapy of the Brain. FRONTIERS IN MEDICAL TECHNOLOGY 2020; 2:602236. [PMID: 35047884 PMCID: PMC8757841 DOI: 10.3389/fmedt.2020.602236] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
Non-viral gene therapy of the brain is enabled by the development of plasmid DNA brain delivery technology, which requires the engineering and manufacturing of nanomedicines that cross the blood-brain barrier (BBB). The development of such nanomedicines is a multi-faceted problem that requires progress at multiple levels. First, the type of nanocontainer, e.g., nanoparticle or liposome, which encapsulates the plasmid DNA, must be developed. Second, the type of molecular Trojan horse, e.g., peptide or receptor-specific monoclonal antibody (MAb), must be selected for incorporation on the surface of the nanomedicine, as this Trojan horse engages specific receptors expressed on the BBB, and the brain cell membrane, to trigger transport of the nanomedicine from blood into brain cells beyond the BBB. Third, the plasmid DNA must be engineered without bacterial elements, such as antibiotic resistance genes, to enable administration to humans; the plasmid DNA must also be engineered with tissue-specific gene promoters upstream of the therapeutic gene, to insure gene expression in the target organ with minimal off-target expression. Fourth, upstream manufacturing of the nanomedicine must be developed and scalable so as to meet market demand for the target disease, e.g., annual long-term treatment of 1,000 patients with an orphan disease, short term treatment of 10,000 patients with malignant glioma, or 100,000 patients with new onset Parkinson's disease. Fifth, downstream manufacturing problems, such as nanomedicine lyophilization, must be solved to ensure the nanomedicine has a commercially viable shelf-life for treatment of CNS disease in humans.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
219
|
Luo H, Saubamea B, Chasseigneaux S, Cochois V, Smirnova M, Glacial F, Perrière N, Chaves C, Cisternino S, Declèves X. Molecular and Functional Study of Transient Receptor Potential Vanilloid 1-4 at the Rat and Human Blood-Brain Barrier Reveals Interspecies Differences. Front Cell Dev Biol 2020; 8:578514. [PMID: 33262985 PMCID: PMC7686441 DOI: 10.3389/fcell.2020.578514] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/21/2020] [Indexed: 12/30/2022] Open
Abstract
Transient receptor potential vanilloid 1-4 (TRPV1-4) expression and functionality were investigated in brain microvessel endothelial cells (BMEC) forming the blood-brain barrier (BBB) from rat and human origins. In rat, Trpv1-4 were detected by qRT-PCR in the brain cortex, brain microvessels, and in primary cultures of brain microvessel endothelial cells [rat brain microvessel endothelial cells (rPBMEC)]. A similar Trpv1-4 expression profile in isolated brain microvessels and rPBMEC was found with the following order: Trpv4 > Trpv2 > Trpv3 > Trpv1. In human, TRPV1-4 were detected in the BBB cell line human cerebral microvessel endothelial cells D3 cells (hCMEC/D3) and in primary cultures of BMEC isolated from human adult and children brain resections [human brain microvascular endothelial cells (hPBMEC)], showing a similar TRPV1-4 expression profile in both hCMEC/D3 cells and hPBMECs as follow: TRPV2 > > TRPV4 > TRPV1 > TRPV3. Western blotting and immunofluorescence experiments confirmed that TRPV2 and TRPV4 are the most expressed TRPV isoforms in hCMEC/D3 cells with a clear staining at the plasma membrane. A fluorescent dye Fluo-4 AM ester was applied to record intracellular Ca2+ levels. TRPV4 functional activity was demonstrated in mediating Ca2+ influx under stimulation with the specific agonist GSK1016790A (ranging from 3 to 1000 nM, EC50 of 16.2 ± 4.5 nM), which was inhibited by the specific TRPV4 antagonist, RN1734 (30 μM). In contrast, TRPV1 was slightly activated in hCMEC/D3 cells as shown by the weak Ca2+ influx induced by capsaicin at a high concentration (3 μM), a highly potent and specific TRPV1 agonist. Heat-induced Ca2+ influx was not altered by co-treatment with a selective potent TRPV1 antagonist capsazepine (20 μM), in agreement with the low expression of TRPV1 as assessed by qRT-PCR. Our present study reveals an interspecies difference between Rat and Human. Functional contributions of TRPV1-4 subtype expression were not identical in rat and human tissues reflective of BBB integrity. TRPV2 was predominant in the human whereas TRPV4 had a larger role in the rat. This interspecies difference from a gene expression point of view should be taken into consideration when modulators of TRPV2 or TRPV4 are investigated in rat models of brain disorders.
Collapse
Affiliation(s)
- Huilong Luo
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Bruno Saubamea
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
| | - Stéphanie Chasseigneaux
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
| | - Véronique Cochois
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
| | - Maria Smirnova
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
| | | | | | - Catarina Chaves
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
| | - Salvatore Cisternino
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
- Service Pharmacie, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Universitaire Necker – Enfants Malades, Paris, France
| | - Xavier Declèves
- Faculté de Pharmacie, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, Université de Paris, Paris, France
- Biologie du médicament et toxicologie, Assistance Publique Hôpitaux de Paris (AP-HP), Hôpital Universitaire Cochin, Paris, France
| |
Collapse
|
220
|
Nagaya Y, Katayama K, Kusuhara H, Nozaki Y. Impact of P-Glycoprotein-Mediated Active Efflux on Drug Distribution into Lumbar Cerebrospinal Fluid in Nonhuman Primates. Drug Metab Dispos 2020; 48:1183-1190. [PMID: 32862147 DOI: 10.1124/dmd.120.000099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022] Open
Abstract
Estimation of unbound drug concentration in the brain (Cu,brain) is an essential part of central nervous system (CNS) drug development. As a surrogate for Cu,brain in humans and nonhuman primates, drug concentration in cerebrospinal fluid (CCSF) collected by lumbar puncture is often used; however, the predictability of Cu,brain by lumbar CCSF is unclear, particularly for substrates of the active efflux transporter P-glycoprotein (P-gp). Here, we measured lumbar CCSF in cynomolgus monkey after single intravenous administration of 10 test compounds with varying P-gp transport activities. The in vivo lumbar cerebrospinal fluid (CSF)-to-plasma unbound drug concentration ratios (Kp,uu,lumbar CSF) of nonsubstrates or weak substrates of P-gp were in the range 0.885-1.34, whereas those of good substrates of P-gp were in the range 0.195-0.458 and were strongly negatively correlated with in vitro P-gp transport activity. Moreover, concomitant treatment with a P-gp inhibitor, zosuquidar, increased the Kp,uu,lumbar CSF values of the good P-gp substrates, indicating that P-gp-mediated active efflux contributed to the low Kp,uu,lumbar CSF values of these compounds. Compared with the drug concentrations in the cisternal CSF and interstitial fluid (ISF) that we previously determined in cynomolgus monkeys, the lumbar CCSF were more than triple for two and all of the good P-gp substrates examined, respectively. Although lumbar CCSF may overestimate cisternal CSF and ISF concentrations of good P-gp substrates, lumbar CCSF allowed discrimination of good P-gp substrates from the weak and nonsubstrates and can be used to estimate the impact of P-gp-mediated active efflux on drug CNS penetration. SIGNIFICANCE STATEMENT: This is the first study to systematically evaluate the penetration of various P-glycoprotein (P-gp) substrates into lumbar cerebrospinal fluid (CSF) in nonhuman primates. Lumbar CSF may contain >3-fold higher concentrations of good P-gp substrates than interstitial fluid (ISF) and cisternal CSF but was able to discriminate the good substrates from the weak or nonsubstrates. Because lumbar CSF is more accessible than ISF and cisternal CSF in nonhuman primates, these findings will help increase our understanding of drug central nervous system penetration at the nonclinical stage.
Collapse
Affiliation(s)
- Yoko Nagaya
- Drug Metabolism and Pharmacokinetics Tsukuba, Biopharmaceutical Assessments Core Function Unit, Eisai Co., Ltd., Ibaraki, Japan (Y.Na., Y.No.); Exploratory Group, DMPK&Bioanalysis Unit, Tsukuba R&D Supporting Division, Sunplanet Co., Ltd., Ibaraki, Japan (K.K.); and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.)
| | - Kazuhide Katayama
- Drug Metabolism and Pharmacokinetics Tsukuba, Biopharmaceutical Assessments Core Function Unit, Eisai Co., Ltd., Ibaraki, Japan (Y.Na., Y.No.); Exploratory Group, DMPK&Bioanalysis Unit, Tsukuba R&D Supporting Division, Sunplanet Co., Ltd., Ibaraki, Japan (K.K.); and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.)
| | - Hiroyuki Kusuhara
- Drug Metabolism and Pharmacokinetics Tsukuba, Biopharmaceutical Assessments Core Function Unit, Eisai Co., Ltd., Ibaraki, Japan (Y.Na., Y.No.); Exploratory Group, DMPK&Bioanalysis Unit, Tsukuba R&D Supporting Division, Sunplanet Co., Ltd., Ibaraki, Japan (K.K.); and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.)
| | - Yoshitane Nozaki
- Drug Metabolism and Pharmacokinetics Tsukuba, Biopharmaceutical Assessments Core Function Unit, Eisai Co., Ltd., Ibaraki, Japan (Y.Na., Y.No.); Exploratory Group, DMPK&Bioanalysis Unit, Tsukuba R&D Supporting Division, Sunplanet Co., Ltd., Ibaraki, Japan (K.K.); and Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan (H.K.)
| |
Collapse
|
221
|
Improved In Vitro-In Vivo Correlation by Using the Unbound-Fraction-Adjusted IC 50 for Breast Cancer Resistance Protein Inhibition. Pharm Res 2020; 37:230. [PMID: 33123823 DOI: 10.1007/s11095-020-02954-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/09/2020] [Indexed: 01/16/2023]
Abstract
PURPOSE One function of the blood-brain barrier (BBB) is the efflux of xenobiotics by breast cancer resistance protein (BCRP), and inhibition of BCRP can cause unexpected central nervous system toxicity. Despite the importance of BCRP inhibition and the associated risk of BBB penetration in vivo, there has been little investigation of it to date. In this study, inhibition of BCRP-mediated transport was assessed by in vitro assay in the presence of bovine serum albumin (BSA) to change the unbound inhibitor concentrations, and the in vitro-in vivo correlation (IVIVC) at the BBB was evaluated. METHODS AND RESULTS The IC50 values of BCRP inhibitors were determined in vitro with and without BSA and the inhibitors were categorized into two groups. One group of compounds had little risk of inhibiting BCRP because of their low unbound concentrations. In contrast, the other group has the potential to facilitate BBB penetration by inhibiting BCRP. In the IVIVC approach, brain concentrations and the brain-to-plasma ratio were better correlated with the ratio of the unbound plasma concentration at steady-state to the unbound-fraction-adjusted IC50. CONCLUSION We have found a way to obtain a better in vitro-in vivo correlation for BCRP-mediated transport.
Collapse
|
222
|
Shalgunov V, Xiong M, L'Estrade ET, Raval NR, Andersen IV, Edgar FG, Speth NR, Baerentzen SL, Hansen HD, Donovan LL, Nasser A, Peitersen ST, Kjaer A, Knudsen GM, Syvänen S, Palner M, Herth MM. Blocking of efflux transporters in rats improves translational validation of brain radioligands. EJNMMI Res 2020; 10:124. [PMID: 33074370 PMCID: PMC7572968 DOI: 10.1186/s13550-020-00718-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/24/2020] [Indexed: 11/24/2022] Open
Abstract
Background Positron emission tomography (PET) is a molecular imaging technique that can be used to investigate the in vivo pharmacology of drugs. Initial preclinical evaluation of PET tracers is often conducted in rodents due to the accessibility of disease models as well as economic considerations. Compared to larger species, rodents display a higher expression and/or activity of efflux transporters such as the P-glycoprotein (P-gp). Low brain uptake could, therefore, be species-specific and uptake in rodents not be predictive for that in humans. We hypothesized that a better prediction from rodent data could be achieved when a tracer is evaluated under P-gp inhibition. Consequently, we compared the performance of eight neuroreceptor tracers in rats with and without P-gp inhibition including a specific binding blockade. This data set was then used to predict the binding of these eight tracers in pigs. Methods PET tracers targeting serotonin 5-HT2A receptors ([18F]MH.MZ, [18F]Altanserin, [11C]Cimbi-36, [11C]Pimavanserin), serotonin 5-HT7 receptors ([11C]Cimbi-701, [11C]Cimbi-717 and [11C]BA-10) and dopamine D2/3 receptors ([18F]Fallypride) were used in the study. The brain uptake and target-specific binding of these PET radiotracers were evaluated in rats with and without inhibition of P-gp. Rat data were subsequently compared to the results obtained in pigs. Results Without P-gp inhibition, the amount of target-specific binding in the rat brain was sufficient to justify further translation for three out of eight evaluated tracers. With P-gp inhibition, results for five out of eight tracers justified further translation. The performance in pigs could correctly be predicted for six out of eight tracers when rat data obtained under P-gp inhibition were used, compared to four out of eight tracers without P-gp inhibition. Conclusions P-gp strongly affects the uptake of PET tracers in rodents, but false prediction outcomes can be reduced by evaluating a tracer under P-gp inhibition.
Collapse
Affiliation(s)
- Vladimir Shalgunov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Mengfei Xiong
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Department of Public Health and Caring Sciences/Geriatrics, Rudbeck Laboratory, Uppsala University, 75185, Uppsala, Sweden
| | - Elina T L'Estrade
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Radiation Physics, Nuclear Medicine Physics Unit, Skånes University Hospital, Barngatan 3, 222 42, Lund, Sweden
| | - Nakul R Raval
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Ida V Andersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark.,Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Fraser G Edgar
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark
| | - Nikolaj R Speth
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Simone L Baerentzen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Hanne D Hansen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 13th Street, Charlestown, MA, 02129, USA
| | - Lene L Donovan
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Siv T Peitersen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Cluster for Molecular Imaging, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Institute of Clinical Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Stina Syvänen
- Department of Public Health and Caring Sciences/Geriatrics, Rudbeck Laboratory, Uppsala University, 75185, Uppsala, Sweden
| | - Mikael Palner
- Neurobiology Research Unit, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.,Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Matthias M Herth
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, 2100, Copenhagen, Denmark. .,Department of Clinical Physiology, Nuclear Medicine and PET, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| |
Collapse
|
223
|
Non-Human Primate Blood-Brain Barrier and In Vitro Brain Endothelium: From Transcriptome to the Establishment of a New Model. Pharmaceutics 2020; 12:pharmaceutics12100967. [PMID: 33066641 PMCID: PMC7602447 DOI: 10.3390/pharmaceutics12100967] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
The non-human primate (NHP)-brain endothelium constitutes an essential alternative to human in the prediction of molecule trafficking across the blood–brain barrier (BBB). This study presents a comparison between the NHP transcriptome of freshly isolated brain microcapillaries and in vitro-selected brain endothelial cells (BECs), focusing on important BBB features, namely tight junctions, receptors mediating transcytosis (RMT), ABC and SLC transporters, given its relevance as an alternative model for the molecule trafficking prediction across the BBB and identification of new brain-specific transport mechanisms. In vitro BECs conserved most of the BBB key elements for barrier integrity and control of molecular trafficking. The function of RMT via the transferrin receptor (TFRC) was characterized in this NHP-BBB model, where both human transferrin and anti-hTFRC antibody showed increased apical-to-basolateral passage in comparison to control molecules. In parallel, eventual BBB-related regional differences were Investig.igated in seven-day in vitro-selected BECs from five brain structures: brainstem, cerebellum, cortex, hippocampus, and striatum. Our analysis retrieved few differences in the brain endothelium across brain regions, suggesting a rather homogeneous BBB function across the brain parenchyma. The presently established NHP-derived BBB model closely mimics the physiological BBB, thus representing a ready-to-use tool for assessment of the penetration of biotherapeutics into the human CNS.
Collapse
|
224
|
Novel Intrinsic Mechanisms of Active Drug Extrusion at the Blood-Brain Barrier: Potential Targets for Enhancing Drug Delivery to the Brain? Pharmaceutics 2020; 12:pharmaceutics12100966. [PMID: 33066604 PMCID: PMC7602420 DOI: 10.3390/pharmaceutics12100966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The blood-brain barrier (BBB) limits the pharmacotherapy of several brain disorders. In addition to the structural and metabolic characteristics of the BBB, the ATP-driven, drug efflux transporter P-glycoprotein (Pgp) is a selective gatekeeper of the BBB; thus, it is a primary hindrance to drug delivery into the brain. Here, we review the complex regulation of Pgp expression and functional activity at the BBB with an emphasis on recent studies from our laboratory. In addition to traditional processes such as transcriptional regulation and posttranscriptional or posttranslational modification of Pgp expression and functionality, novel mechanisms such as intra- and intercellular Pgp trafficking and intracellular Pgp-mediated lysosomal sequestration in BBB endothelial cells with subsequent disposal by blood neutrophils are discussed. These intrinsic mechanisms of active drug extrusion at the BBB are potential therapeutic targets that could be used to modulate P-glycoprotein activity in the treatment of brain diseases and enhance drug delivery to the brain.
Collapse
|
225
|
Opioid-Mediated HIV-1 Immunopathogenesis. J Neuroimmune Pharmacol 2020; 15:628-642. [PMID: 33029670 DOI: 10.1007/s11481-020-09960-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
Despite the ability of combination antiretroviral therapy to dramatically suppress viremia, the brain continues to be a reservoir of HIV-1 low-level replication. Adding further complexity to this is the comorbidity of drug abuse with HIV-1 associated neurocognitive disorders and neuroHIV. Among several abused drugs, the use of opiates is highly prevalent in HIV-1 infected individuals, both as an abused drug as well as for pain management. Opioids and their receptors have attained notable attention owing to their ability to modulate immune functions, in turn, impacting disease progression. Various cell culture, animal and human studies have implicated the role of opioids and their receptors in modulating viral replication and virus-mediated pathology both positively and negatively. Further, the combinatorial effects of HIV-1/HIV-1 proteins and morphine have demonstrated activation of inflammatory signaling in the host system. Herein, we summarized the current knowledge on the role of opioids on peripheral immunopathogenesis, viral immunopathogenesis, epigenetic profiles of the host and viral genome, neuropathogenesis of SIV/SHIV-infected non-human primates, blood-brain-barrier, HIV-1 viral latency, and viral rebound. Overall, this review provides recent insights into the role of opioids in HIV-1 immunopathogenesis. Graphical abstract.
Collapse
|
226
|
Masuda T, Mori A, Ito S, Ohtsuki S. Quantitative and targeted proteomics-based identification and validation of drug efficacy biomarkers. Drug Metab Pharmacokinet 2020; 36:100361. [PMID: 33097418 DOI: 10.1016/j.dmpk.2020.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022]
Abstract
Proteomics refers to the large-scale study of proteins, providing comprehensive and quantitative information on proteins in tissue, blood, and cell samples. In many studies, proteomics utilizes liquid chromatography-mass spectrometry. Proteomics has developed from a qualitative methodology of protein identification to a quantitative methodology for comparing protein expression, and it is currently classified into two distinct methodologies: quantitative and targeted proteomics. Quantitative proteomics comprehensively identifies proteins in samples, providing quantitative information on large-scale comparative profiles of protein expression. Targeted proteomics simultaneously quantifies only target proteins with high sensitivity and specificity. Therefore, in biomarker research, quantitative proteomics is used for the identification of biomarker candidates, and targeted proteomics is used for the validation of biomarkers. Understanding the specific characteristics of each method is important for conducting appropriate proteomics studies. In this review, we introduced the different characteristics and applications of quantitative and targeted proteomics, and then discussed the results of our recent proteomics studies that focused on the identification and validation of biomarkers of drug efficacy. These findings may enable us to predict the outcomes of cancer therapy and drug-drug interactions with antibiotics through changes in the intestinal microbiome.
Collapse
Affiliation(s)
- Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Ayano Mori
- Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; Department of Pharmaceutical Microbiology, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan.
| |
Collapse
|
227
|
Chiba Y, Murakami R, Matsumoto K, Wakamatsu K, Nonaka W, Uemura N, Yanase K, Kamada M, Ueno M. Glucose, Fructose, and Urate Transporters in the Choroid Plexus Epithelium. Int J Mol Sci 2020; 21:E7230. [PMID: 33008107 PMCID: PMC7582461 DOI: 10.3390/ijms21197230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
The choroid plexus plays a central role in the regulation of the microenvironment of the central nervous system by secreting the majority of the cerebrospinal fluid and controlling its composition, despite that it only represents approximately 1% of the total brain weight. In addition to a variety of transporter and channel proteins for solutes and water, the choroid plexus epithelial cells are equipped with glucose, fructose, and urate transporters that are used as energy sources or antioxidative neuroprotective substrates. This review focuses on the recent advances in the understanding of the transporters of the SLC2A and SLC5A families (GLUT1, SGLT2, GLUT5, GLUT8, and GLUT9), as well as on the urate-transporting URAT1 and BCRP/ABCG2, which are expressed in choroid plexus epithelial cells. The glucose, fructose, and urate transporters repertoire in the choroid plexus epithelium share similar features with the renal proximal tubular epithelium, although some of these transporters exhibit inversely polarized submembrane localization. Since choroid plexus epithelial cells have high energy demands for proper functioning, a decline in the expression and function of these transporters can contribute to the process of age-associated brain impairment and pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Ryuta Murakami
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Koichi Matsumoto
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Keiji Wakamatsu
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Wakako Nonaka
- Department of Supportive and Promotive Medicine of the Municipal Hospital, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Naoya Uemura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (N.U.); (K.Y.)
| | - Ken Yanase
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (N.U.); (K.Y.)
| | - Masaki Kamada
- Department of Neurological Intractable Disease Research, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| |
Collapse
|
228
|
Salman MM, Marsh G, Kusters I, Delincé M, Di Caprio G, Upadhyayula S, de Nola G, Hunt R, Ohashi KG, Gray T, Shimizu F, Sano Y, Kanda T, Obermeier B, Kirchhausen T. Design and Validation of a Human Brain Endothelial Microvessel-on-a-Chip Open Microfluidic Model Enabling Advanced Optical Imaging. Front Bioeng Biotechnol 2020; 8:573775. [PMID: 33117784 PMCID: PMC7576009 DOI: 10.3389/fbioe.2020.573775] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/21/2020] [Indexed: 01/30/2023] Open
Abstract
We describe here the design and implementation of an in vitro microvascular open model system using human brain microvascular endothelial cells. The design has several advantages over other traditional closed microfluidic platforms: (1) it enables controlled unidirectional flow of media at physiological rates to support vascular function, (2) it allows for very small volumes which makes the device ideal for studies involving biotherapeutics, (3) it is amenable for multiple high resolution imaging modalities such as transmission electron microscopy (TEM), 3D live fluorescence imaging using traditional spinning disk confocal microscopy, and advanced lattice light sheet microscopy (LLSM). Importantly, we miniaturized the design, so it can fit within the physical constraints of LLSM, with the objective to study physiology in live cells at subcellular level. We validated barrier function of our brain microvessel-on-a-chip by measuring permeability of fluorescent dextran and a human monoclonal antibody. One potential application is to investigate mechanisms of transcytosis across the brain microvessel-like barrier of fluorescently-tagged biologics, viruses or nanoparticles.
Collapse
Affiliation(s)
- Mootaz M. Salman
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
| | | | - Ilja Kusters
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Matthieu Delincé
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Giuseppe Di Caprio
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Srigokul Upadhyayula
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Giovanni de Nola
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Ronan Hunt
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
| | - Kazuka G. Ohashi
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
| | | | | | - Yasuteru Sano
- Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Takashi Kanda
- Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | - Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
229
|
Abstract
Group B Streptococcus (GBS) remains the leading cause of neonatal meningitis, a disease associated with high rates of adverse neurological sequelae. The in vivo relationship between GBS and brain tissues remains poorly characterized, partly because past studies had focused on microbial rather than host processes. Additionally, the field has not capitalized on systems-level technologies to probe the host-pathogen relationship. Here, we use multiplexed quantitative proteomics to investigate the effect of GBS infection in the murine brain at various levels of tissue complexity, beginning with the whole organ and moving to brain vascular substructures. Infected whole brains showed classical signatures associated with the acute-phase response. In isolated brain microvessels, classical blood-brain barrier proteins were unaltered, but interferon signaling and leukocyte recruitment proteins were upregulated. The choroid plexus showed increases in peripheral immune cell proteins. Proteins that increased in abundance in the vasculature during GBS invasion were associated with major histocompatibility complex (MHC) class I antigen processing and endoplasmic reticulum dysfunction, a finding which correlated with altered host protein glycosylation profiles. Globally, there was low concordance between the infection proteome of whole brains and isolated vascular tissues. This report underscores the utility of unbiased, systems-scale analyses of functional tissue substructures for understanding disease.IMPORTANCE Group B Streptococcus (GBS) meningitis remains a major cause of poor health outcomes very early in life. Both the host-pathogen relationship leading to disease and the massive host response to infection contributing to these poor outcomes are orchestrated at the tissue and cell type levels. GBS meningitis is thought to result when bacteria present in the blood circumvent the selectively permeable vascular barriers that feed the brain. Additionally, tissue damage subsequent to bacterial invasion is mediated by inflammation and by immune cells from the periphery crossing the blood-brain barrier. Indeed, the vasculature plays a central role in disease processes occurring during GBS infection of the brain. Here, we employed quantitative proteomic analysis of brain vascular substructures during invasive GBS disease. We used the generated data to map molecular alterations associated with tissue perturbation, finding widespread intracellular dysfunction and punctuating the importance of investigations relegated to tissue type over the whole organ.
Collapse
|
230
|
Ari C, Murdun C, Goldhagen C, Koutnik AP, Bharwani SR, Diamond DM, Kindy M, D’Agostino DP, Kovacs Z. Exogenous Ketone Supplements Improved Motor Performance in Preclinical Rodent Models. Nutrients 2020; 12:nu12082459. [PMID: 32824223 PMCID: PMC7468837 DOI: 10.3390/nu12082459] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/05/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Nutritional ketosis has been proven effective for neurometabolic conditions and disorders linked to metabolic dysregulation. While inducing nutritional ketosis, ketogenic diet (KD) can improve motor performance in the context of certain disease states, but it is unknown whether exogenous ketone supplements—alternatives to KDs—may have similar effects. Therefore, we investigated the effect of ketone supplements on motor performance, using accelerating rotarod test and on postexercise blood glucose and R-beta-hydroxybutyrate (R-βHB) levels in rodent models with and without pathology. The effect of KD, butanediol (BD), ketone-ester (KE), ketone-salt (KS), and their combination (KE + KS: KEKS) or mixtures with medium chain triglyceride (MCT) (KE + MCT: KEMCT; KS + MCT: KSMCT) was tested in Sprague-Dawley (SPD) and WAG/Rij (WR) rats and in GLUT-1 Deficiency Syndrome (G1D) mice. Motor performance was enhanced by KEMCT acutely, KE and KS subchronically in SPD rats, by KEKS and KEMCT groups in WR rats, and by KE chronically in G1D mice. We demonstrated that exogenous ketone supplementation improved motor performance to various degrees in rodent models, while effectively elevated R-βHB and in some cases offsets postexercise blood glucose elevations. Our results suggest that improvement of motor performance varies depending on the strain of rodents, specific ketone formulation, age, and exposure frequency.
Collapse
Affiliation(s)
- Csilla Ari
- Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, Tampa, FL 33620, USA; (S.R.B.); (D.M.D.)
- Ketone Technologies, Tampa, FL 33612, USA;
- Correspondence: or ; Tel.: +1-813-240-9925
| | - Cem Murdun
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (C.G.); (A.P.K.)
| | - Craig Goldhagen
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (C.G.); (A.P.K.)
| | - Andrew P. Koutnik
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (C.G.); (A.P.K.)
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Sahil R. Bharwani
- Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, Tampa, FL 33620, USA; (S.R.B.); (D.M.D.)
| | - David M. Diamond
- Department of Psychology, Behavioral Neuroscience Research Laboratory, University of South Florida, Tampa, FL 33620, USA; (S.R.B.); (D.M.D.)
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (C.G.); (A.P.K.)
| | - Mark Kindy
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL 33612, USA;
- James A. Haley VA Medical Center, Tampa, FL 33612, USA
- Shriners Hospital for Children, Tampa, FL 33612, USA
| | - Dominic P. D’Agostino
- Ketone Technologies, Tampa, FL 33612, USA;
- Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA; (C.M.); (C.G.); (A.P.K.)
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Zsolt Kovacs
- Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Károlyi Gáspár tér 4., 9700 Szombathely, Hungary;
| |
Collapse
|
231
|
Yoneyama T, Sato S, Sykes A, Fradley R, Stafford S, Bechar S, Howley E, Patel T, Tagawa Y, Moriwaki T, Asahi S. Mechanistic Multilayer Quantitative Model for Nonlinear Pharmacokinetics, Target Occupancy and Pharmacodynamics (PK/TO/PD) Relationship of D-Amino Acid Oxidase Inhibitor, TAK-831 in Mice. Pharm Res 2020; 37:164. [PMID: 32901384 PMCID: PMC7478952 DOI: 10.1007/s11095-020-02893-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
Purpose TAK-831 is a highly selective and potent inhibitor of D-amino acid oxidase (DAAO) currently under clinical development for schizophrenia. In this study, a mechanistic multilayer quantitative model that parsimoniously connects pharmacokinetics (PK), target occupancy (TO) and D-serine concentrations as a pharmacodynamic (PD) readout was established in mice. Methods PK, TO and PD time-profiles were obtained in mice and analyzed by mechanistic binding kinetics model connected with an indirect response model in a step wise fashion. Brain distribution was investigated to elucidate a possible mechanism driving the hysteresis between PK and TO. Results The observed nonlinear PK/TO/PD relationship was well captured by mechanistic modeling framework within a wide dose range of TAK-831 in mice. Remarkably different brain distribution was observed between target and reference regions, suggesting that the target-mediated slow binding kinetics rather than slow penetration through the blood brain barrier caused the observed distinct kinetics between PK and TO. Conclusion A quantitative mechanistic model for concentration- and time-dependent nonlinear PK/TO/PD relationship was established for TAK-831 in mice with accounting for possible rate-determining process. The established mechanistic modeling framework will provide a quantitative means for multilayer biomarker-assisted clinical development in multiple central nervous system indications. Electronic supplementary material The online version of this article (10.1007/s11095-020-02893-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomoki Yoneyama
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan.
| | - Sho Sato
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Andy Sykes
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Cambridge Ltd, Cambridge, UK
| | - Rosa Fradley
- Pharmacology, Takeda Cambridge Ltd, Cambridge, UK
| | | | - Shyam Bechar
- Pharmacology, Takeda Cambridge Ltd, Cambridge, UK
| | | | - Toshal Patel
- Pharmacology, Takeda Cambridge Ltd, Cambridge, UK
| | - Yoshihiko Tagawa
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Toshiya Moriwaki
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| | - Satoru Asahi
- Drug Metabolism and Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Kanagawa, Japan
| |
Collapse
|
232
|
Herland A, Maoz BM, FitzGerald EA, Grevesse T, Vidoudez C, Sheehy SP, Budnik N, Dauth S, Mannix R, Budnik B, Parker KK, Ingber DE. Proteomic and Metabolomic Characterization of Human Neurovascular Unit Cells in Response to Methamphetamine. ACTA ACUST UNITED AC 2020; 4:e1900230. [PMID: 32744807 DOI: 10.1002/adbi.201900230] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 07/02/2020] [Indexed: 01/31/2023]
Abstract
The functional state of the neurovascular unit (NVU), composed of the blood-brain barrier and the perivasculature that forms a dynamic interface between the blood and the central nervous system (CNS), plays a central role in the control of brain homeostasis and is strongly affected by CNS drugs. Human primary brain microvascular endothelium, astrocyte, pericyte, and neural cell cultures are often used to study NVU barrier functions as well as drug transport and efficacy; however, the proteomic and metabolomic responses of these different cell types are not well characterized. Culturing each cell type separately, using deep coverage proteomic analysis and characterization of the secreted metabolome, as well as measurements of mitochondrial activity, the responses of these cells under baseline conditions and when exposed to the NVU-impairing stimulant methamphetamine (Meth) are analyzed. These studies define the previously unknown metabolic and proteomic profiles of human brain pericytes and lead to improved characterization of the phenotype of each of the NVU cell types as well as cell-specific metabolic and proteomic responses to Meth.
Collapse
Affiliation(s)
- Anna Herland
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.,Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, 10044, Sweden.,AIMES, Center for the Advancement of Integrated Engineering and Medical Sciences, Department of Neuroscience, Karolinska Institute, Stockholm, 17177, Sweden
| | - Ben M Maoz
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.,Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel.,Department of Biomedical Engineering, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Edward A FitzGerald
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Thomas Grevesse
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Charles Vidoudez
- Small Molecule Mass Spectrometry Facility, Harvard University, Cambridge, MA, 02138, USA
| | - Sean P Sheehy
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Nikita Budnik
- Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Stephanie Dauth
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Robert Mannix
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Bogdan Budnik
- Mass Spectrometry and Proteomics Resource Laboratory, Harvard University, Cambridge, MA, 02138, USA
| | - Kevin Kit Parker
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.,Disease Biophysics Group, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA.,Vascular Biology Program and Department of Pathology, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.,Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
233
|
Montaser A, Markowicz-Piasecka M, Sikora J, Jalkanen A, Huttunen KM. L-type amino acid transporter 1 (LAT1)-utilizing efflux transporter inhibitors can improve the brain uptake and apoptosis-inducing effects of vinblastine in cancer cells. Int J Pharm 2020; 586:119585. [DOI: 10.1016/j.ijpharm.2020.119585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022]
|
234
|
Delsing L, Herland A, Falk A, Hicks R, Synnergren J, Zetterberg H. Models of the blood-brain barrier using iPSC-derived cells. Mol Cell Neurosci 2020; 107:103533. [PMID: 32717317 DOI: 10.1016/j.mcn.2020.103533] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 02/08/2023] Open
Abstract
The blood-brain barrier (BBB) constitutes the interface between the blood and the brain tissue. Its primary function is to maintain the tightly controlled microenvironment of the brain. Models of the BBB are useful for studying the development and maintenance of the BBB as well as diseases affecting it. Furthermore, BBB models are important tools in drug development and support the evaluation of the brain-penetrating properties of novel drug molecules. Currently used in vitro models of the BBB include immortalized brain endothelial cell lines and primary brain endothelial cells of human and animal origin. Unfortunately, many cell lines and primary cells do not recreate physiological restriction of transport in vitro. Human-induced pluripotent stem cell (iPSC)-derived brain endothelial cells have proven a promising alternative source of brain endothelial-like cells that replicate tight cell layers with low paracellular permeability. Given the possibility to generate large amounts of human iPSC-derived brain endothelial cells they are a feasible alternative when modelling the BBB in vitro. iPSC-derived brain endothelial cells form tight cell layers in vitro and their barrier properties can be enhanced through coculture with other cell types of the BBB. Currently, many different models of the BBB using iPSC-derived cells are under evaluation to study BBB formation, maintenance, disruption, drug transport and diseases affecting the BBB. This review summarizes important functions of the BBB and current efforts to create iPSC-derived BBB models in both static and dynamic conditions. In addition, it highlights key model requirements and remaining challenges for human iPSC-derived BBB models in vitro.
Collapse
Affiliation(s)
- Louise Delsing
- Institute of Neuroscience and Physiology, Department of Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden; Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Mölndal, Sweden.
| | - Anna Herland
- Division of Micro and Nanosystems, KTH Royal Institute of Technology, Stockholm, Sweden; AIMES, Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Anna Falk
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ryan Hicks
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Jane Synnergren
- Systems Biology Research Centre, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
235
|
Song HW, Foreman KL, Gastfriend BD, Kuo JS, Palecek SP, Shusta EV. Transcriptomic comparison of human and mouse brain microvessels. Sci Rep 2020; 10:12358. [PMID: 32704093 PMCID: PMC7378255 DOI: 10.1038/s41598-020-69096-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/02/2020] [Indexed: 12/13/2022] Open
Abstract
The brain vasculature maintains brain homeostasis by tightly regulating ionic, molecular, and cellular transport between the blood and the brain parenchyma. These blood-brain barrier (BBB) properties are impediments to brain drug delivery, and brain vascular dysfunction accompanies many neurological disorders. The molecular constituents of brain microvascular endothelial cells (BMECs) and pericytes, which share a basement membrane and comprise the microvessel structure, remain incompletely characterized, particularly in humans. To improve the molecular database of these cell types, we performed RNA sequencing on brain microvessel preparations isolated from snap-frozen human and mouse tissues by laser capture microdissection (LCM). The resulting transcriptome datasets from LCM microvessels were enriched in known brain endothelial and pericyte markers, and global comparison identified previously unknown microvessel-enriched genes. We used these datasets to identify mouse-human species differences in microvessel-associated gene expression that may have relevance to BBB regulation and drug delivery. Further, by comparison of human LCM microvessel data with existing human BMEC transcriptomic datasets, we identified novel putative markers of human brain pericytes. Together, these data improve the molecular definition of BMECs and brain pericytes, and are a resource for rational development of new brain-penetrant therapeutics and for advancing understanding of brain vascular function and dysfunction.
Collapse
Affiliation(s)
- Hannah W Song
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI, 53706, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Koji L Foreman
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI, 53706, USA
| | - Benjamin D Gastfriend
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI, 53706, USA
| | - John S Kuo
- Department of Neurosurgery and Mulva Clinic for the Neurosciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI, 53706, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, WI, 53706, USA.
- Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
236
|
Zhang W, Liu QY, Haqqani AS, Leclerc S, Liu Z, Fauteux F, Baumann E, Delaney CE, Ly D, Star AT, Brunette E, Sodja C, Hewitt M, Sandhu JK, Stanimirovic DB. Differential expression of receptors mediating receptor-mediated transcytosis (RMT) in brain microvessels, brain parenchyma and peripheral tissues of the mouse and the human. Fluids Barriers CNS 2020; 17:47. [PMID: 32698806 PMCID: PMC7376922 DOI: 10.1186/s12987-020-00209-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/13/2020] [Indexed: 12/04/2022] Open
Abstract
Receptor-mediated transcytosis (RMT) is a principal pathway for transport of macromolecules essential for brain function across the blood–brain barrier (BBB). Antibodies or peptide ligands which bind RMT receptors are often co-opted for brain delivery of biotherapeutics. Constitutively recycling transferrin receptor (TfR) is a prototype receptor utilized to shuttle therapeutic cargos across the BBB. Several other BBB-expressed receptors have been shown to mediate transcytosis of antibodies or protein ligands including insulin receptor (INSR) and insulin-like growth factor-1 receptor (IGF1R), lipid transporters LRP1, LDLR, LRP8 and TMEM30A, solute carrier family transporter SLC3A2/CD98hc and leptin receptor (LEPR). In this study, we analyzed expression patterns of genes encoding RMT receptors in isolated brain microvessels, brain parenchyma and peripheral organs of the mouse and the human using RNA-seq approach. IGF1R, INSR and LRP8 were highly enriched in mouse brain microvessels compared to peripheral tissues. In human brain microvessels only INSR was enriched compared to either the brain or the lung. The expression levels of SLC2A1, LRP1, IGF1R, LRP8 and TFRC were significantly higher in the mouse compared to human brain microvessels. The protein expression of these receptors analyzed by Western blot and immunofluorescent staining of the brain microvessels correlated with their transcript abundance. This study provides a molecular transcriptomics map of key RMT receptors in mouse and human brain microvessels and peripheral tissues, important to translational studies of biodistribution, efficacy and safety of antibodies developed against these receptors.
Collapse
Affiliation(s)
- Wandong Zhang
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada.
| | - Qing Yan Liu
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Arsalan S Haqqani
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Sonia Leclerc
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Ziying Liu
- Scientific Data Mining/Digital Technology Research Centre, National Research Council of Canada, Ottawa, Canada
| | - François Fauteux
- Scientific Data Mining/Digital Technology Research Centre, National Research Council of Canada, Ottawa, Canada
| | - Ewa Baumann
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Christie E Delaney
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Dao Ly
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Alexandra T Star
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Eric Brunette
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Caroline Sodja
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Melissa Hewitt
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Jagdeep K Sandhu
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada
| | - Danica B Stanimirovic
- Human Health Therapeutics Research Centre, National Research Council of Canada, 1200 Montreal Road, M54, Ottawa, ON, K1A0R6, Canada.
| |
Collapse
|
237
|
Hoshi Y, Uchida Y, Kuroda T, Tachikawa M, Couraud PO, Suzuki T, Terasaki T. Distinct roles of ezrin, radixin and moesin in maintaining the plasma membrane localizations and functions of human blood-brain barrier transporters. J Cereb Blood Flow Metab 2020; 40:1533-1545. [PMID: 31409174 PMCID: PMC7308513 DOI: 10.1177/0271678x19868880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to clarify the roles of ERM proteins (ezrin/radixin/moesin) in the regulation of membrane localization and transport activity of transporters at the human blood-brain barrier (BBB). Ezrin or moesin knockdown in a human in vitro BBB model cell line (hCMEC/D3) reduced both BCRP and GLUT1 protein expression levels on the plasma membrane. Radixin knockdown reduced not only BCRP and GLUT1, but also P-gp membrane expression. These results indicate that P-gp, BCRP and GLUT1 proteins are maintained on the plasma membrane via different ERM proteins. Furthermore, moesin knockdown caused the largest decrease of P-gp and BCRP efflux activity among the ERM proteins, whereas GLUT1 influx activity was similarly reduced by knockdown of each ERM protein. To investigate how moesin knockdown reduced P-gp efflux activity without loss of P-gp from the plasma membrane, we examined the role of PKCβI. PKCβI increased P-gp phosphorylation and reduced P-gp efflux activity. Radixin and moesin proteins were detected in isolated human brain capillaries, and their protein abundances were within a 3-fold range, compared with those in hCMEC/D3 cell line. These findings may mean that ezrin, radixin and moesin maintain the functions of different transporters in different ways at the human BBB.
Collapse
Affiliation(s)
- Yutaro Hoshi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takashi Kuroda
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Masanori Tachikawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | - Takashi Suzuki
- Department of Pathology and Histotechnology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tetsuya Terasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
238
|
Löscher W, Potschka H, Sisodiya SM, Vezzani A. Drug Resistance in Epilepsy: Clinical Impact, Potential Mechanisms, and New Innovative Treatment Options. Pharmacol Rev 2020; 72:606-638. [PMID: 32540959 PMCID: PMC7300324 DOI: 10.1124/pr.120.019539] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epilepsy is a chronic neurologic disorder that affects over 70 million people worldwide. Despite the availability of over 20 antiseizure drugs (ASDs) for symptomatic treatment of epileptic seizures, about one-third of patients with epilepsy have seizures refractory to pharmacotherapy. Patients with such drug-resistant epilepsy (DRE) have increased risks of premature death, injuries, psychosocial dysfunction, and a reduced quality of life, so development of more effective therapies is an urgent clinical need. However, the various types of epilepsy and seizures and the complex temporal patterns of refractoriness complicate the issue. Furthermore, the underlying mechanisms of DRE are not fully understood, though recent work has begun to shape our understanding more clearly. Experimental models of DRE offer opportunities to discover, characterize, and challenge putative mechanisms of drug resistance. Furthermore, such preclinical models are important in developing therapies that may overcome drug resistance. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of ASD resistance and discuss how to overcome this problem. Encouragingly, better elucidation of the pathophysiological mechanisms underpinning epilepsies and drug resistance by concerted preclinical and clinical efforts have recently enabled a revised approach to the development of more promising therapies, including numerous potential etiology-specific drugs ("precision medicine") for severe pediatric (monogenetic) epilepsies and novel multitargeted ASDs for acquired partial epilepsies, suggesting that the long hoped-for breakthrough in therapy for as-yet ASD-resistant patients is a feasible goal. SIGNIFICANCE STATEMENT: Drug resistance provides a major challenge in epilepsy management. Here, we will review the current understanding of the molecular, genetic, and structural mechanisms of drug resistance in epilepsy and discuss how the problem might be overcome.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Heidrun Potschka
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Sanjay M Sisodiya
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| | - Annamaria Vezzani
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine, Hannover, Germany (W.L.); Center for Systems Neuroscience, Hannover, Germany (W.L.); Institute of Pharmacology, Toxicology and Pharmacy, Ludwig-Maximilians-University, Munich, Germany (H.P.); Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, United Kingdom (S.S); and Department of Neuroscience, Mario Negri Institute for Pharmacological Research Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy (A.V.)
| |
Collapse
|
239
|
Achour B, Al-Majdoub ZM, Rostami-Hodjegan A, Barber J. Mass Spectrometry of Human Transporters. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2020; 13:223-247. [PMID: 32084322 DOI: 10.1146/annurev-anchem-091719-024553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transporters are key to understanding how an individual will respond to a particular dose of a drug. Two patients with similar systemic concentrations may have quite different local concentrations of a drug at the required site. The transporter profile of any individual depends upon a variety of genetic and environmental factors, including genotype, age, and diet status. Robust models (virtual patients) are therefore required and these models are data hungry. Necessary data include quantitative transporter profiles at the relevant organ. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) is currently the most powerful method available for obtaining this information. Challenges include sourcing the tissue, isolating the hydrophobic membrane-embedded transporter proteins, preparing the samples for MS (including proteolytic digestion), choosing appropriate quantification methodology, and optimizing the LC-MS/MS conditions. Great progress has been made with all of these, especially within the last few years, and is discussed here.
Collapse
Affiliation(s)
- Brahim Achour
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Zubida M Al-Majdoub
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
- Certara, Princeton, New Jersey 08540, USA
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester M13 9PT, United Kingdom;
| |
Collapse
|
240
|
Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS)-Based Proteomics of Drug-Metabolizing Enzymes and Transporters. Molecules 2020; 25:molecules25112718. [PMID: 32545386 PMCID: PMC7321193 DOI: 10.3390/molecules25112718] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 12/19/2022] Open
Abstract
Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics is a powerful tool for identifying and quantifying proteins in biological samples, outperforming conventional antibody-based methods in many aspects. LC-MS/MS-based proteomics studies have revealed the protein abundances of many drug-metabolizing enzymes and transporters (DMETs) in tissues relevant to drug metabolism and disposition. Previous studies have consistently demonstrated marked interindividual variability in DMET protein expression, suggesting that varied DMET function is an important contributing factor for interindividual variability in pharmacokinetics (PK) and pharmacodynamics (PD) of medications. Moreover, differential DMET expression profiles were observed across different species and in vitro models. Therefore, caution must be exercised when extrapolating animal and in vitro DMET proteomics findings to humans. In recent years, DMET proteomics has been increasingly utilized for the development of physiologically based pharmacokinetic models, and DMET proteins have also been proposed as biomarkers for prediction of the PK and PD of the corresponding substrate drugs. In sum, despite the existence of many challenges in the analytical technology and data analysis methods of LC-MS/MS-based proteomics, DMET proteomics holds great potential to advance our understanding of PK behavior at the individual level and to optimize treatment regimens via the DMET protein biomarker-guided precision pharmacotherapy.
Collapse
|
241
|
Arora S, Sharma D, Singh J. GLUT-1: An Effective Target To Deliver Brain-Derived Neurotrophic Factor Gene Across the Blood Brain Barrier. ACS Chem Neurosci 2020; 11:1620-1633. [PMID: 32352752 DOI: 10.1021/acschemneuro.0c00076] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia, inflicts enormous suffering to patients and their family members. It is the third deadliest disease, affecting 46.8 million people worldwide. Brain-derived neurotrophic factor (BDNF) is involved in the development, maintenance, and plasticity of the central nervous system. This crucial protein is significantly reduced in AD patients leading to reduced plasticity and neuronal death. In this study, we demonstrate the targeted delivery of the BDNF gene to the brain using liposome nanoparticles. These liposomes were surface modified with glucose transporter-1 targeting ligand (mannose) and cell penetrating peptides (penetratin or rabies virus glycoprotein) to promote selective and enhanced delivery to the brain. Surface modified liposomes showed significantly higher transfection of BDNF in primary astrocytes and neurons, compared to unmodified (plain) liposomes. BDNF transfection via dual modified liposomes resulted in an increase in presynaptic marker synaptophysin protein in primary neuronal cells, which is usually found to be reduced in AD patients. Liposomes surface modified with mannose and cell penetrating peptides demonstrated ∼50% higher transport across the in vitro blood brain barrier (BBB) model and showed significantly higher transfection efficiency in primary neuronal cells compared to plain liposomes. These results were correlated with significantly higher transport of surface modified liposomes (∼7% of injected dose/gram of tissue) and BDNF transfection (∼1.7 times higher than baseline level) across BBB following single intravenous administration in C57BL/6 mice without any signs of inflammation or toxicity. Overall, this study suggests a safe and targeted strategy to increase BDNF protein in the brain, which has the potential to reverse AD pathophysiology.
Collapse
Affiliation(s)
- Sanjay Arora
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Divya Sharma
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, North Dakota 58105, United States
| |
Collapse
|
242
|
Xu Y, Wei L, Wang H. Progress and perspectives on nanoplatforms for drug delivery to the brain. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
243
|
Verscheijden LFM, van Hattem AC, Pertijs JCLM, de Jongh CA, Verdijk RM, Smeets B, Koenderink JB, Russel FGM, de Wildt SN. Developmental patterns in human blood-brain barrier and blood-cerebrospinal fluid barrier ABC drug transporter expression. Histochem Cell Biol 2020; 154:265-273. [PMID: 32448916 PMCID: PMC7502061 DOI: 10.1007/s00418-020-01884-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2020] [Indexed: 01/04/2023]
Abstract
When drugs exert their effects in the brain, linear extrapolation of doses from adults could be harmful for children as the blood-brain barrier (BBB) and blood-CSF barrier (BCSFB) function is still immature. More specifically, age-related variation in membrane transporters may impact brain disposition. As human data on brain transporter expression is scarce, age dependent [gestational age (GA), postnatal age (PNA), and postmenstrual age (PMA)] variation in immunohistochemical localization and staining intensity of the ABC transporters P-glycoprotein (Pgp), breast cancer resistance protein (BCRP), and multidrug resistance-associated proteins 1, 2, 4, and 5 (MRP1/2/4/5) was investigated. Post mortem brain cortical and ventricular tissue was derived from 23 fetuses (GA range 12.9-39 weeks), 17 neonates (GA range 24.6-41.3 weeks, PNA range 0.004-3.5 weeks), 8 children (PNA range 0.1-3 years), and 4 adults who died from a wide variety of underlying conditions. In brain cortical BBB, immunostaining increased with age for Pgp and BCRP, while in contrast, MRP1 and MRP2 staining intensity appeared higher in fetuses, neonates, and children, as compared to adults. BCSFB was positively stained for Pgp, MRP1, and MRP2 and appeared stable across age, while BCRP was not detected. MRP4 and MRP5 were not detected in BBB or BCSFB. In conclusion, human BBB and BCSFB ABC membrane transporters show brain location and transporter-specific maturation.
Collapse
Affiliation(s)
- L F M Verscheijden
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Institutes for Molecular Life and Health Sciences, Nijmegen, The Netherlands
| | - A C van Hattem
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Institutes for Molecular Life and Health Sciences, Nijmegen, The Netherlands
| | - J C L M Pertijs
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Institutes for Molecular Life and Health Sciences, Nijmegen, The Netherlands
| | - C A de Jongh
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Institutes for Molecular Life and Health Sciences, Nijmegen, The Netherlands
| | - R M Verdijk
- Section Neuropathology and Ophthalmic Pathology, Department of Pathology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - B Smeets
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - J B Koenderink
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Institutes for Molecular Life and Health Sciences, Nijmegen, The Netherlands
| | - F G M Russel
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Institutes for Molecular Life and Health Sciences, Nijmegen, The Netherlands
| | - S N de Wildt
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Institutes for Molecular Life and Health Sciences, Nijmegen, The Netherlands.
- Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.
| |
Collapse
|
244
|
Astrocyte glutathione maintains endothelial barrier stability. Redox Biol 2020; 34:101576. [PMID: 32502899 PMCID: PMC7267730 DOI: 10.1016/j.redox.2020.101576] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022] Open
Abstract
Blood-brain barrier (BBB) impairment clearly accelerates brain disease progression. As ways to prevent injury-induced barrier dysfunction remain elusive, better understanding of how BBB cells interact and modulate barrier integrity is needed. Our metabolomic profiling study showed that cell-specific adaptation to injury correlates well with metabolic reprogramming at the BBB. In particular we noted that primary astrocytes (AC) contain comparatively high levels of glutathione (GSH)-related metabolites compared to primary endothelial cells (EC). Injury significantly disturbed redox balance in 10.13039/501100000780EC but not AC motivating us to assess 1) whether an AC-10.13039/501100000780EC GSH shuttle supports barrier stability and 2) the impact of GSH on 10.13039/501100000780EC function. Using an isotopic labeling/tracking approach combined with Time-of-Flight Mass Spectrometry (TOF-MS) we prove that AC constantly shuttle GSH to EC even under resting conditions - a flux accelerated by injury conditions in vitro. In correlation, co-culture studies revealed that blocking AC GSH generation and secretion via siRNA-mediated γ-glutamyl cysteine ligase (GCL) knockdown significantly compromises EC barrier integrity. Using different GSH donors, we further show that exogenous GSH supplementation improves barrier function by maintaining organization of tight junction proteins and preventing injury-induced tight junction phosphorylation. Thus the AC GSH shuttle is key for maintaining EC redox homeostasis and BBB stability suggesting GSH supplementation could improve recovery after brain injury. Astrocytes maintain better redox homeostasis during injury conditions than brain endothelial cells. Astrocyte-secreted glutathione abrogates injury-induced endothelial permeability. Exogenous GSH prevents injury-induced tight junction disruption. Better understanding of metabolic paracellular crosstalk could offer more opportunities to safeguard BBB integrity.
Collapse
|
245
|
Huang L, Wells MC, Zhao Z. A Practical Perspective on the Evaluation of Small Molecule CNS Penetration in Drug Discovery. Drug Metab Lett 2020; 13:78-94. [PMID: 30854983 DOI: 10.2174/1872312813666190311125652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 01/16/2023]
Abstract
The separation of the brain from blood by the blood-brain barrier and the bloodcerebrospinal fluid (CSF) barrier poses unique challenges for the discovery and development of drugs targeting the central nervous system (CNS). This review will describe the role of transporters in CNS penetration and examine the relationship between unbound brain (Cu-brain) and unbound plasma (Cu-plasma) or CSF (CCSF) concentration. Published data demonstrate that the relationship between Cu-brain and Cu-plasma or CCSF can be affected by transporter status and passive permeability of a drug and CCSF may not be a reliable surrogate for CNS penetration. Indeed, CCSF usually over-estimates Cu-brain for efflux substrates and it provides no additional value over Cu-plasma as the surrogate of Cu-brain for highly permeable non-efflux substrates. A strategy described here for the evaluation of CNS penetration is to use in vitro permeability, P-glycoprotein (Pgp) and breast cancer resistance protein efflux assays and Cu-brain/Cu-plasma in preclinical species. Cu-plasma should be used as the surrogate of Cu-brain for highly permeable non-efflux substrates with no evidence of impaired distribution into the brain. When drug penetration into the brain is impaired, we recommend using (total brain concentration * unbound fraction in the brain) as Cu-brain in preclinical species or Cu-plasma/in vitro Pgp efflux ratio if Pgp is the major limiting mechanism for brain penetration.
Collapse
Affiliation(s)
- Liyue Huang
- Epizyme Inc, 400 Technology Square, Cambridge, MA-02139, United States
| | - Mary C Wells
- Vertex Pharmaceuticals, 50 Northern Ave, Boston, MA-02210, United States
| | - Zhiyang Zhao
- Alliance Pharma, Inc. 17 Lee Blvd. Malvern, PA-19355, United States
| |
Collapse
|
246
|
Pardridge WM. The Isolated Brain Microvessel: A Versatile Experimental Model of the Blood-Brain Barrier. Front Physiol 2020; 11:398. [PMID: 32457645 PMCID: PMC7221163 DOI: 10.3389/fphys.2020.00398] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022] Open
Abstract
A versatile experimental model for the investigation of the blood-brain barrier (BBB), including the neuro-vascular unit, is the isolated brain microvessel preparation. Brain microvessels are primarily comprised of endothelial cells, but also include pericytes, pre-capillary arteriolar smooth muscle cells, astrocyte foot processes, and occasional nerve endings. These microvessels can be isolated from brain with a 3 h procedure, and the microvessels are free of brain parenchyma. Brain microvessels have been isolated from fresh animal brain, fresh human brain obtained at neurosurgery, as well as fresh or frozen autopsy human brain. Brain microvessels are the starting point for isolation of brain microvessel RNA, which then enables the production of BBB cDNA libraries and a genomics analysis of the brain microvasculature. Brain microvessels, combined with quantitative targeted absolute proteomics, allow for the quantitation of specific transporters or receptors expressed at the brain microvasculature. Brain microvessels, combined with specific antibodies and immune labeling of isolated capillaries, allow for the cellular location of proteins expressed within the neuro-vascular unit. Isolated brain microvessels can be used as an “in vitro” preparation of the BBB for the study of the kinetic parameters of BBB carrier-mediated transport (CMT) systems, or for the determination of dissociation constants of peptide binding to BBB receptor-mediated transport (RMT) systems expressed at either the animal or the human BBB. This review will discuss how the isolated brain microvessel model system has advanced our understanding of the organization and functional properties of the BBB, and highlight recent renewed interest in this 50 year old model of the BBB.
Collapse
Affiliation(s)
- William M Pardridge
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
247
|
Puris E, Gynther M, Auriola S, Huttunen KM. L-Type amino acid transporter 1 as a target for drug delivery. Pharm Res 2020; 37:88. [PMID: 32377929 PMCID: PMC7203094 DOI: 10.1007/s11095-020-02826-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022]
Abstract
Our growing understanding of membrane transporters and their substrate specificity has opened a new avenue in the field of targeted drug delivery. The L-type amino acid transporter 1 (LAT1) has been one of the most extensively investigated transporters for delivering drugs across biological barriers. The transporter is predominantly expressed in cerebral cortex, blood-brain barrier, blood-retina barrier, testis, placenta, bone marrow and several types of cancer. Its physiological function is to mediate Na+ and pH independent exchange of essential amino acids: leucine, phenylalanine, etc. Several drugs and prodrugs designed as LAT1 substrates have been developed to improve targeted delivery into the brain and cancer cells. Thus, the anti-parkinsonian drug, L-Dopa, the anti-cancer drug, melphalan and the anti-epileptic drug gabapentin, all used in clinical practice, utilize LAT1 to reach their target site. These examples provide supporting evidence for the utility of the LAT1-mediated targeted delivery of the (pro)drug. This review comprehensively summarizes recent advances in LAT1-mediated targeted drug delivery. In addition, the use of LAT1 is critically evaluated and limitations of the approach are discussed.
Collapse
Affiliation(s)
- Elena Puris
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
- Institute of Pharmacy and Molecular Biotechnology, Ruprecht-Karls-University, 69120, Heidelberg, Germany.
| | - Mikko Gynther
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Seppo Auriola
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Kristiina M Huttunen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
248
|
Zoufal V, Mairinger S, Krohn M, Wanek T, Filip T, Sauberer M, Stanek J, Kuntner C, Pahnke J, Langer O. Measurement of cerebral ABCC1 transport activity in wild-type and APP/PS1-21 mice with positron emission tomography. J Cereb Blood Flow Metab 2020; 40:954-965. [PMID: 31195936 PMCID: PMC7181082 DOI: 10.1177/0271678x19854541] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/17/2019] [Accepted: 05/05/2019] [Indexed: 12/11/2022]
Abstract
Previous data suggest a possible link between multidrug resistance-associated protein 1 (ABCC1) and brain clearance of beta-amyloid (Aβ). We used PET with 6-bromo-7-[11C]methylpurine ([11C]BMP) to measure cerebral ABCC1 transport activity in a beta-amyloidosis mouse model (APP/PS1-21) and in wild-type mice aged 50 and 170 days, without and with pretreatment with the ABCC1 inhibitor MK571. One hundred seventy days-old-animals additionally underwent [11C]PiB PET scans to measure Aβ load. While baseline [11C]BMP PET scans detected no differences in the elimination slope of radioactivity washout from the brain (kelim) between APP/PS1-21 and wild-type mice of both age groups, PET scans after MK571 pretreatment revealed significantly higher kelim values in APP/PS1-21 mice than in wild-type mice aged 170 days, suggesting increased ABCC1 activity. The observed increase in kelim occurred across all investigated brain regions and was independent of the presence of Aβ plaques measured with [11C]PiB. Western blot analysis revealed a trend towards increased whole brain ABCC1 levels in 170 days-old-APP/PS1-21 mice versus wild-type mice and a significant positive correlation between ABCC1 levels and kelim. Our data point to an upregulation of ABCC1 in APP/PS1-21 mice, which may be related to an induction of ABCC1 in astrocytes as a protective mechanism against oxidative stress.
Collapse
Affiliation(s)
- Viktoria Zoufal
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Severin Mairinger
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Markus Krohn
- Department of Neuro/Pathology,
University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- University of Lübeck Institute for
Experimental und Clinical Pharmacology and Toxicology Center of Brain, Behavior and
Metabolism (CBBM), Lübeck, Germany
| | - Thomas Wanek
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Thomas Filip
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Michael Sauberer
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Johann Stanek
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Claudia Kuntner
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
| | - Jens Pahnke
- Department of Neuro/Pathology,
University of Oslo (UiO) and Oslo University Hospital (OUS), Oslo, Norway
- LIED, University of Lübeck,
Germany
- Leibniz-Institute of Plant Biochemistry,
Halle, Germany
- Medical Faculty, Department of
Pharmacology, University of Latvia, Rīga, Latvia
| | - Oliver Langer
- Preclinical Molecular Imaging, AIT
Austrian Institute of Technology GmbH, Seibersdorf, Austria
- Department of Clinical Pharmacology,
Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging und
Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna,
Vienna, Austria
| |
Collapse
|
249
|
Recent advances in human iPSC-derived models of the blood-brain barrier. Fluids Barriers CNS 2020; 17:30. [PMID: 32321511 PMCID: PMC7178976 DOI: 10.1186/s12987-020-00191-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/07/2020] [Indexed: 01/07/2023] Open
Abstract
The blood–brain barrier (BBB) is a critical component of the central nervous system that protects neurons and other cells of the brain parenchyma from potentially harmful substances found in peripheral circulation. Gaining a thorough understanding of the development and function of the human BBB has been hindered by a lack of relevant models given significant species differences and limited access to in vivo tissue. However, advances in induced pluripotent stem cell (iPSC) and organ-chip technologies now allow us to improve our knowledge of the human BBB in both health and disease. This review focuses on the recent progress in modeling the BBB in vitro using human iPSCs.
Collapse
|
250
|
Uchida Y, Yagi Y, Takao M, Tano M, Umetsu M, Hirano S, Usui T, Tachikawa M, Terasaki T. Comparison of Absolute Protein Abundances of Transporters and Receptors among Blood–Brain Barriers at Different Cerebral Regions and the Blood–Spinal Cord Barrier in Humans and Rats. Mol Pharm 2020; 17:2006-2020. [DOI: 10.1021/acs.molpharmaceut.0c00178] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yuta Yagi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masaki Takao
- Department of Neurology and Brain Bank, Mihara Memorial Hospital, Isesaki 372-0006, Japan
- Department of Neurology, Saitama International Medical Center, Saitama Medical University, Hidaka 350-0495, Japan
| | - Mitsutoshi Tano
- Department of Neurology and Brain Bank, Mihara Memorial Hospital, Isesaki 372-0006, Japan
| | - Mina Umetsu
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Satoshi Hirano
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Takuya Usui
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masanori Tachikawa
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Tetsuya Terasaki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|