201
|
Adu FA, Hunter CH. Screening and Identification of Lipopeptide Biosurfactants Produced by Two Aerobic Endospore-Forming Bacteria Isolated from Mfabeni Peatland, South Africa. Curr Microbiol 2021; 78:2615-2622. [PMID: 33988742 DOI: 10.1007/s00284-021-02516-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 04/26/2021] [Indexed: 10/21/2022]
Abstract
Two aerobic endospore-forming bacteria (AEFB), isolates SAB19 and SAD18, capable of biosurfactant production were isolated from a sediment core sampled from Mfabeni peatland, St Lucia, KwaZulu-Natal, South Africa. The isolates were screened for biosurfactant activity using drop collapse assay, hemolysis assay, oil spreading assay, emulsification, and surface tension measurement. The effect of environmental parameters--temperature [35 - 100 °C], pH [3.0 - 10.0], and salinity [0.5 - 15%]--on biosurfactant stability was also determined. Ultra-performance liquid chromatography in conjunction with electrospray ionization time-of-flight mass spectrometry (UPLC ESI-TOF MS) analysis revealed that both isolates produced surfactin isomers and a common mass peak of m/z 1326.1 that was ascribed to a precursor of the antibiotic plantazolicin (PZN). Isolate SAD18 was also found to produce the lipopeptides fengycin and iturin. Taxonomic classification based on partial 16S rRNA gene sequencing revealed that isolates SAB19 and SAD18 belonged to the Brevibacillus and Bacillus genera, respectively. The GenBank accession numbers obtained for SAB19 and SAD18 are MW429226 and MW441217. Biosurfactant extracts from isolate SAD18 exhibited the greatest level of surfactant activity and stability over the range of environmental parameters tested. Although no novel biosurfactants were identified, it was confirmed that the peatland environment represents an untapped source of microbial diversity with potential biotechnological applications.
Collapse
Affiliation(s)
- Folasade A Adu
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban, 4000, South Africa.
| | - Charles H Hunter
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal (Pietermaritzburg Campus), Private Bag X01, Pietermaritzburg, 3209, South Africa
| |
Collapse
|
202
|
Isolation and Characterization of Probiotic Bacillus subtilis MKHJ 1-1 Possessing L-Asparaginase Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to isolate functional Bacillus strains from Korean fermented soybeans and to evaluate their potential as probiotics. The L-asparaginase activity of MKHJ 1-1 was the highest among 162 Bacillus strains. This strain showed nonhemolysis and did not produce β-glucuronidase. Among the nine target bacteria, MKHJ 1-1 inhibited the growth of Escherichia coli, Pseudomonas aeruginosa, Shigella sonnei, Shigella flexneri, Klebsiella pneumoniae, Staphylococcus aureus, and Bacillus cereus. 16S rRNA gene sequence analysis resulted in MKHJ 1-1 identified as Bacillus subtilis subsp. stercoris D7XPN1. As a result of measuring the survival rate in 0.1% pepsin solution (pH 2.5) and 0.3% bile salt solution for 3 h, MKHJ 1-1 exhibited high acid resistance and was able to grow in the presence of bile salt. MKHJ 1-1 showed outstanding autoaggregation ability after 24 h. In addition, its coaggregation with pathogens was strong. Therefore, MKHJ 1-1 is a potential probiotic with L-asparaginase activity and without L-glutaminase activity, suggesting that it could be a new resource for use in the food and pharmaceutical industry.
Collapse
|
203
|
Anith KN, Nysanth NS, Natarajan C. Novel and rapid agar plate methods for in vitro assessment of bacterial biocontrol isolates' antagonism against multiple fungal phytopathogens. Lett Appl Microbiol 2021; 73:229-236. [PMID: 33948964 DOI: 10.1111/lam.13495] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 11/28/2022]
Abstract
Biological control of plant diseases with antagonistic bacteria is a promising alternative to conventional chemical control strategies. In vitro screening for inhibition of mycelial growth of phytopathogenic fungi by bacterial isolates is the first step in selecting putative bacterial biocontrol agents. Dual culture plate assay is the most common method involved in this first-line selection process. However, it needs independent agar plates to test antagonism by a specific bacterial isolate against each of the fungal phytopathogen. Two modified in vitro antagonism tests are proposed here. Antagonistic activity of a putative biocontrol bacterial strain against four different fungal phytopathogens could be assessed in a single agar plate simultaneously. A comparison of the new methods with conventional dual culture plate assay was also done. The proposed methods are easy to perform and results of antagonism are obtained rapidly. Results of fungal inhibition were qualitatively comparable with that generated through dual culture plate assay. Quantity of resources such as agar medium and plates required for the modified antagonistic assays is several folds less than that required for dual culture plate assay.
Collapse
Affiliation(s)
- K N Anith
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| | - N S Nysanth
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| | - C Natarajan
- Department of Agricultural Microbiology, College of Agriculture, Kerala Agricultural University, Thiruvananthapuram, Kerala, India
| |
Collapse
|
204
|
Zheng W, Wang X, Zhou H, Zhang Y, Li A, Bian X. Establishment of recombineering genome editing system in Paraburkholderia megapolitana empowers activation of silent biosynthetic gene clusters. Microb Biotechnol 2021; 13:397-405. [PMID: 32053291 PMCID: PMC7017819 DOI: 10.1111/1751-7915.13535] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/12/2019] [Accepted: 12/30/2019] [Indexed: 12/30/2022] Open
Abstract
The Burkholderiales are an emerging source of bioactive natural products. Their genomes contain a large number of cryptic biosynthetic gene clusters (BGCs), indicating great potential for novel structures. However, the lack of genetic tools for the most of Burkholderiales strains restricts the mining of these cryptic BGCs. We previously discovered novel phage recombinases Redαβ7029 from Burkholderiales strain DSM 7029 that could help in efficiently editing several Burkholderiales genomes and established the recombineering genome editing system in Burkholderialse species. Herein, we report the application of this phage recombinase system in another species Paraburkholderia megapolitana DSM 23488, resulting in activation of two silent non‐ribosomal peptide synthetase/polyketide synthase BGCs. A novel class of lipopeptide, haereomegapolitanin, was identified through spectroscopic characterization. Haereomegapolitanin A represents an unusual threonine‐tagged lipopeptide which is longer than the predicted NRPS assembly line. This recombineering‐mediated genome editing system shows great potential for genetic manipulation of more Burkholderiales species to activate silent BGCs for bioactive metabolites discovery.
Collapse
Affiliation(s)
- Wentao Zheng
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xue Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
205
|
Akbar N, Siddiqui R, Iqbal M, Sagathevan K, Kim KS, Habib F, Khan NA. Gut Bacteria of Rattus rattus (Rat) Produce Broad-Spectrum Antibacterial Lipopeptides. ACS OMEGA 2021; 6:12261-12273. [PMID: 34056379 PMCID: PMC8154139 DOI: 10.1021/acsomega.1c01137] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/14/2021] [Indexed: 05/14/2023]
Abstract
Among several animals, Rattus rattus (rat) lives in polluted environments and feeds on organic waste/small invertebrates, suggesting the presence of inherent mechanisms to thwart infections. In this study, we isolated gut bacteria of rats for their antibacterial activities. Using antibacterial assays, the findings showed that the conditioned media from selected bacteria exhibited bactericidal activities against Gram-negative (Escherichia coli K1, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, and Salmonella enterica) and Gram-positive (Bacillus cereus, methicillin-resistant Staphylococcus aureus, and Streptococcus pyogenes) pathogenic bacteria. The conditioned media retained their antibacterial properties upon heat treatment at boiling temperature for 10 min. Using MTT assays, the conditioned media showed minimal cytotoxic effects against human keratinocyte cells. Active conditioned media were subjected to tandem mass spectrometry, and the results showed that conditioned media from Bacillus subtilis produced a large repertoire of surfactin and iturin A (lipopeptides) molecules. To our knowledge, this is the first report of isolation of lipopeptides from bacteria isolated from the rat gut. In short, these findings are important and provide a platform to develop effective antibacterial drugs.
Collapse
Affiliation(s)
- Noor Akbar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad 44000, Pakistan
| | - Kuppusamy Sagathevan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Bandar Sunway 47500, Malaysia
| | - Kwang Sik Kim
- Division of Pediatrics Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Fazal Habib
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad 44000, Pakistan
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, Sharjah 27272, Unites Arab Emirates
| |
Collapse
|
206
|
Craig K, Johnson BR, Grunden A. Leveraging Pseudomonas Stress Response Mechanisms for Industrial Applications. Front Microbiol 2021; 12:660134. [PMID: 34040596 PMCID: PMC8141521 DOI: 10.3389/fmicb.2021.660134] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022] Open
Abstract
Members of the genus Pseudomonas are metabolically versatile and capable of adapting to a wide variety of environments. Stress physiology of Pseudomonas strains has been extensively studied because of their biotechnological potential in agriculture as well as their medical importance with regards to pathogenicity and antibiotic resistance. This versatility and scientific relevance led to a substantial amount of information regarding the stress response of a diverse set of species such as Pseudomonas chlororaphis, P. fluorescens, P. putida, P. aeruginosa, and P. syringae. In this review, environmental and industrial stressors including desiccation, heat, and cold stress, are cataloged along with their corresponding mechanisms of survival in Pseudomonas. Mechanisms of survival are grouped by the type of inducing stress with a focus on adaptations such as synthesis of protective substances, biofilm formation, entering a non-culturable state, enlisting chaperones, transcription and translation regulation, and altering membrane composition. The strategies Pseudomonas strains utilize for survival can be leveraged during the development of beneficial strains to increase viability and product efficacy.
Collapse
Affiliation(s)
- Kelly Craig
- AgBiome Inc., Research Triangle Park, NC, United States
| | | | - Amy Grunden
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
207
|
Isidori A, Loscocco F, Visani G, Chiarucci M, Musto P, Kubasch AS, Platzbecker U, Vinchi F. Iron Toxicity and Chelation Therapy in Hematopoietic Stem Cell Transplant. Transplant Cell Ther 2021; 27:371-379. [PMID: 33969823 DOI: 10.1016/j.jtct.2020.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 01/19/2023]
Abstract
Many patients with hematologic malignancies receive RBC transfusion support, which often causes systemic and tissue iron toxicity. Because of their compromised bone marrow function, hematopoietic stem cell transplant (HSCT) recipients are especially vulnerable to excess iron levels. Iron toxicity may compromise transplant engraftment and eventually promote relapse by mediating oxidative and genotoxic stress in hematopoietic stem cells (HSCs) and further impairing the already dysfunctional bone marrow microenvironment in HSCT recipients. Iron toxicity is thought to be primarily mediated by its ability to induce reactive oxygen species and trigger inflammation. Elevated iron levels in the bone marrow can decrease the number of HSCs and progenitor cells, as well as their clonogenic potential, alter mesenchymal stem cell differentiation, and inhibit the expression of chemokines and adhesion molecules involved in hematopoiesis. In vivo, in vitro, and clinical studies support the concept that iron chelation therapy may limit iron toxicity in the bone marrow and promote hematologic improvement and engraftment in HSCT recipients. This review will provide an overview of the current knowledge of the detrimental impact of iron toxicity in the setting of HSCT in patients with hematologic malignancies and the use of iron restriction approaches to improve transplant outcome.
Collapse
Affiliation(s)
- Alessandro Isidori
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy.
| | - Federica Loscocco
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Giuseppe Visani
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Martina Chiarucci
- Hematology and Stem Cell Transplant Center, AORMN Hospital, Pesaro, Italy
| | - Pellegrino Musto
- Unit of Hematology and Stem Cell Transplantation, Department of Emergency and Organ Transplantation, "Aldo Moro" University School of Medicine, AOU Consorziale Policlinico, Bari, Italy
| | - Anne-Sophie Kubasch
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Uwe Platzbecker
- Department of Hematology, Cellular Therapy and Hemostaseology, Leipzig University Hospital, Leipzig, Germany
| | - Francesca Vinchi
- Iron Research Program, Lindsley Kimball Research Institute, New York Blood Center, New York, New York; Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
208
|
Biosurfactants Produced by Phyllosphere-Colonizing Pseudomonads Impact Diesel Degradation but Not Colonization of Leaves of Gnotobiotic Arabidopsis thaliana. Appl Environ Microbiol 2021; 87:AEM.00091-21. [PMID: 33608298 DOI: 10.1128/aem.00091-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/12/2021] [Indexed: 11/20/2022] Open
Abstract
Biosurfactant production is a common trait in leaf surface-colonizing bacteria that has been associated with increased survival and movement on leaves. At the same time, the ability to degrade aliphatics is common in biosurfactant-producing leaf colonizers. Pseudomonads are common leaf colonizers and have been recognized for their ability to produce biosurfactants and degrade aliphatic compounds. In this study, we investigated the role of biosurfactants in four non-plant-pathogenic Pseudomonas strains by performing a series of experiments to characterize their surfactant properties and their role during leaf colonization and diesel degradation. The biosurfactants produced were identified using mass spectrometry. Two strains produced viscosin-like biosurfactants, and the other two produced massetolide A-like biosurfactants, which aligned with the phylogenetic relatedness between the strains. To further investigate the role of surfactant production, random Tn5 transposon mutagenesis was performed to generate knockout mutants. The knockout mutants were compared to their respective wild types with regard to their ability to colonize gnotobiotic Arabidopsis thaliana and to degrade diesel or dodecane. It was not possible to detect negative effects during plant colonization in direct competition or individual colonization experiments. When grown on diesel, knockout mutants grew significantly slower than their respective wild types. When grown on dodecane, knockout mutants were less impacted than during growth on diesel. By adding isolated wild-type biosurfactants, it was possible to complement the growth of the knockout mutants.IMPORTANCE Many leaf-colonizing bacteria produce surfactants and are able to degrade aliphatic compounds; however, whether surfactant production provides a competitive advantage during leaf colonization is unclear. Furthermore, it is unclear if leaf colonizers take advantage of the aliphatic compounds that constitute the leaf cuticle and cuticular waxes. Here, we tested the effect of surfactant production on leaf colonization, and we demonstrate that the lack of surfactant production decreases the ability to degrade aliphatic compounds. This indicates that leaf surface-dwelling, surfactant-producing bacteria contribute to degradation of environmental hydrocarbons and may be able to utilize leaf surface waxes. This has implications for plant-microbe interactions and future studies.
Collapse
|
209
|
Ceresa C, Fracchia L, Fedeli E, Porta C, Banat IM. Recent Advances in Biomedical, Therapeutic and Pharmaceutical Applications of Microbial Surfactants. Pharmaceutics 2021; 13:466. [PMID: 33808361 PMCID: PMC8067001 DOI: 10.3390/pharmaceutics13040466] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
The spread of antimicrobial-resistant pathogens typically existing in biofilm formation and the recent COVID-19 pandemic, although unrelated phenomena, have demonstrated the urgent need for methods to combat such increasing threats. New avenues of research for natural molecules with desirable properties to alleviate this situation have, therefore, been expanding. Biosurfactants comprise a group of unique and varied amphiphilic molecules of microbial origin capable of interacting with lipidic membranes/components of microorganisms and altering their physicochemical properties. These features have encouraged closer investigations of these microbial metabolites as new pharmaceutics with potential applications in clinical, hygiene and therapeutic fields. Mounting evidence has indicated that biosurfactants have antimicrobial, antibiofilm, antiviral, immunomodulatory and antiproliferative activities that are exploitable in new anticancer treatments and wound healing applications. Some biosurfactants have already been approved for use in clinical, food and environmental fields, while others are currently under investigation and development as antimicrobials or adjuvants to antibiotics for microbial suppression and biofilm eradication strategies. Moreover, due to the COVID-19 pandemic, biosurfactants are now being explored as an alternative to current products or procedures for effective cleaning and handwash formulations, antiviral plastic and fabric surface coating agents for shields and masks. In addition, biosurfactants have shown promise as drug delivery systems and in the medicinal relief of symptoms associated with SARS-CoV-2 acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Chiara Ceresa
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Letizia Fracchia
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Emanuele Fedeli
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
| | - Chiara Porta
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy; (C.C.); (E.F.); (C.P.)
- Center for Translational Research on Autoimmune & Allergic Diseases (CAAD), Università del Piemonte Orientale “A. Avogadro”, 28100 Novara, Italy
| | - Ibrahim M. Banat
- Pharmaceutical Science Research Group, Biomedical Science Research Institute, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK;
| |
Collapse
|
210
|
Plant Growth-Promoting Bacteria as an Emerging Tool to Manage Bacterial Rice Pathogens. Microorganisms 2021; 9:microorganisms9040682. [PMID: 33810209 PMCID: PMC8065915 DOI: 10.3390/microorganisms9040682] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 01/16/2023] Open
Abstract
As a major food crop, rice (Oryza sativa) is produced and consumed by nearly 90% of the population in Asia with less than 9% produced outside Asia. Hence, reports on large scale grain losses were alarming and resulted in a heightened awareness on the importance of rice plants' health and increased interest against phytopathogens in rice. To serve this interest, this review will provide a summary on bacterial rice pathogens, which can potentially be controlled by plant growth-promoting bacteria (PGPB). Additionally, this review highlights PGPB-mediated functional traits, including biocontrol of bacterial rice pathogens and enhancement of rice plant's growth. Currently, a plethora of recent studies address the use of PGPB to combat bacterial rice pathogens in an attempt to replace existing methods of chemical fertilizers and pesticides that often lead to environmental pollutions. As a tool to combat bacterial rice pathogens, PGPB presented itself as a promising alternative in improving rice plants' health and simultaneously controlling bacterial rice pathogens in vitro and in the field/greenhouse studies. PGPB, such as Bacillus, Pseudomonas, Enterobacter, Streptomyces, are now very well-known. Applications of PGPB as bioformulations are found to be effective in improving rice productivity and provide an eco-friendly alternative to agroecosystems.
Collapse
|
211
|
Castaldi S, Petrillo C, Donadio G, Piaz FD, Cimmino A, Masi M, Evidente A, Isticato R. Plant Growth Promotion Function of Bacillus sp. Strains Isolated from Salt-Pan Rhizosphere and Their Biocontrol Potential against Macrophomina phaseolina. Int J Mol Sci 2021; 22:3324. [PMID: 33805133 PMCID: PMC8036593 DOI: 10.3390/ijms22073324] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
In recent decades, intensive crop management has involved excessive use of pesticides or fertilizers, compromising environmental integrity and public health. Accordingly, there has been worldwide pressure to find an eco-friendly and safe strategy to ensure agricultural productivity. Among alternative approaches, Plant Growth-Promoting (PGP) rhizobacteria are receiving increasing attention as suitable biocontrol agents against agricultural pests. In the present study, 22 spore-forming bacteria were selected among a salt-pan rhizobacteria collection for their PGP traits and their antagonistic activity against the plant pathogen fungus Macrophomina phaseolina. Based on the higher antifungal activity, strain RHFS10, identified as Bacillus vallismortis, was further examined and cell-free supernatant assays, column purification, and tandem mass spectrometry were employed to purify and preliminarily identify the antifungal metabolites. Interestingly, the minimum inhibitory concentration assessed for the fractions active against M. phaseolina was 10 times lower and more stable than the one estimated for the commercial fungicide pentachloronitrobenzene. These results suggest the use of B. vallismortis strain RHFS10 as a potential plant growth-promoting rhizobacteria as an alternative to chemical pesticides to efficiently control the phytopathogenic fungus M. phaseolina.
Collapse
Affiliation(s)
- Stefany Castaldi
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (S.C.); (C.P.)
| | - Claudia Petrillo
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (S.C.); (C.P.)
| | - Giuliana Donadio
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy;
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Alessio Cimmino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (A.C.); (M.M.); (A.E.)
| | - Marco Masi
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (A.C.); (M.M.); (A.E.)
| | - Antonio Evidente
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (A.C.); (M.M.); (A.E.)
| | - Rachele Isticato
- Department of Biology, University of Naples Federico II, Complesso Universitario Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy; (S.C.); (C.P.)
| |
Collapse
|
212
|
Hou Q, Kolodkin-Gal I. Harvesting the complex pathways of antibiotic production and resistance of soil bacilli for optimizing plant microbiome. FEMS Microbiol Ecol 2021; 96:5872479. [PMID: 32672816 DOI: 10.1093/femsec/fiaa142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/13/2020] [Indexed: 01/04/2023] Open
Abstract
A sustainable future increasing depends on our capacity to utilize beneficial plant microbiomes to meet our growing needs. Plant microbiome symbiosis is a hallmark of the beneficial interactions between bacteria and their host. Specifically, colonization of plant roots by biocontrol agents and plant growth-promoting bacteria can play an important role in maintaining the optimal rhizosphere environment, supporting plant growth and promoting its fitness. Rhizosphere communities confer immunity against a wide range of foliar diseases by secreting antibiotics and activating plant defences. At the same time, the rhizosphere is a highly competitive niche, with multiple microbial species competing for space and resources, engaged in an arms race involving the production of a vast array of antibiotics and utilization of a variety of antibiotic resistance mechanisms. Therefore, elucidating the mechanisms that govern antibiotic production and resistance in the rhizosphere is of great significance for designing beneficial communities with enhanced biocontrol properties. In this review, we used Bacillus subtilis and B. amyloliquefaciens as models to investigate the genetics of antibiosis and the potential for its translation of into improved plant microbiome performance.
Collapse
Affiliation(s)
- Qihui Hou
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ilana Kolodkin-Gal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
213
|
Gutiérrez-Chávez C, Benaud N, Ferrari BC. The ecological roles of microbial lipopeptides: Where are we going? Comput Struct Biotechnol J 2021; 19:1400-1413. [PMID: 33777336 PMCID: PMC7960500 DOI: 10.1016/j.csbj.2021.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/30/2022] Open
Abstract
Lipopeptides (LPs) are secondary metabolites produced by a diversity of bacteria and fungi. Their unique chemical structure comprises both a peptide and a lipid moiety. LPs are of major biotechnological interest owing to their emulsification, antitumor, immunomodulatory, and antimicrobial activities. To date, these versatile compounds have been applied across multiple industries, from pharmaceuticals through to food processing, cosmetics, agriculture, heavy metal, and hydrocarbon bioremediation. The variety of LP structures and the diversity of the environments from which LP-producing microorganisms have been isolated suggest important functions in their natural environment. However, our understanding of the ecological role of LPs is limited. In this review, the mode of action and the role of LPs in motility, antimicrobial activity, heavy metals removal and biofilm formation are addressed. We include discussion on the need to characterise LPs from a diversity of microorganisms, with a focus on taxa inhabiting 'extreme' environments. We introduce the use of computational target fishing and molecular dynamics simulations as powerful tools to investigate the process of interaction between LPs and cell membranes. Together, these advances will provide new understanding of the mechanism of action of novel LPs, providing greater insights into the roles of LPs in the natural environment.
Collapse
Affiliation(s)
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney 2052, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney 2052, Australia
| |
Collapse
|
214
|
Zhang W, Gao W, Whalley WR, Ren T. Physical properties of a sandy soil as affected by incubation with a synthetic root exudate: Strength, thermal and hydraulic conductivity, and evaporation. EUROPEAN JOURNAL OF SOIL SCIENCE 2021; 72:782-792. [PMID: 33776539 PMCID: PMC7984329 DOI: 10.1111/ejss.13007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 05/22/2023]
Abstract
Plant roots release various organic materials that may modify soil structure and affect heat and mass transfer processes. The objective of this study was to determine the effects of a synthetic root exudate (SRE) on penetrometer resistance (PR), thermal conductivity (λ), hydraulic conductivity (k) and evaporation of water in a sandy soil. Soil samples, mixed with either distilled water or the SRE, were packed into columns at a designated bulk density and water content, and incubated for 7 days at 18°C. Soil PR, λ, k and evaporation rate were monitored during drying processes. Compared with those incubated with water, samples incubated with SRE had visible hyphae, greater PR (0.7-5.5 MPa in the water content range of 0.11 to 0.22 m3 m-3) and λ (0.2-0.7 W m-1 K-1 from 0.05 to 0.22 m3 m-3), and increased k in the wet region but decreased k in the dry region. SRE treatment also reduced the overall soil water evaporation rate and cumulative water loss. Analysis of X-ray computed tomography (CT) scanning showed that the SRE-treated samples had a greater proportion of small pores (<60 μm). These changes were attributed mainly to SRE-stimulated microbial activities. HIGHLIGHTS The effects of incubating a sandy soil with a synthetic root exudate (SRE) on soil physical properties and evaporation are examined.SRE incubation increased the fraction of small pores.SRE incubation increased soil penetrometer resistance and thermal conductivity.Soil hydraulic conductivity was increased in the wet region but was reduced in the dry region.SRE incubation reduced the overall evaporation rate and cumulative water loss.
Collapse
Affiliation(s)
- Wencan Zhang
- Department of Soil and Water SciencesChina Agricultural UniversityBeijingChina
| | - Weida Gao
- Department of Soil and Water SciencesChina Agricultural UniversityBeijingChina
| | | | - Tusheng Ren
- Department of Soil and Water SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
215
|
Szmigiel I, Kwiatkowska D, Łukaszewicz M, Krasowska A. Xylan Decomposition in Plant Cell Walls as an Inducer of Surfactin Synthesis by Bacillus subtilis. Biomolecules 2021; 11:239. [PMID: 33567643 PMCID: PMC7915361 DOI: 10.3390/biom11020239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 01/21/2023] Open
Abstract
Hemicellulose is the second most abundant plant heterogenous biopolymer. Among products obtained from a wide range of agro-residues, biosurfactants, e.g., surfactin (SU), are gaining increasing interest. Our previous studies have shown that a Bacillus subtilis strain can successfully produce a significant amount of SU using a rapeseed cake. This work aimed to investigate plant hemicellulose components as substrates promoting SU's efficient production by B. subtilis 87Y. Analyses of SU production, enzymatic activity and cell wall composition of hulled oat caryopses suggest that the main ingredients of plant hemicellulose, in particular xylan and its derivatives, may be responsible for an increased biosurfactant yield.
Collapse
Affiliation(s)
- Ida Szmigiel
- Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland; (I.S.); (M.Ł.)
| | - Dorota Kwiatkowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environment Protection, University of Silesia in Katowice, Jagiellońska 28, 40-032 Katowice, Poland;
| | - Marcin Łukaszewicz
- Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland; (I.S.); (M.Ł.)
| | - Anna Krasowska
- Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a, 50-383 Wrocław, Poland; (I.S.); (M.Ł.)
| |
Collapse
|
216
|
Zhong L, Diao X, Zhang N, Li F, Zhou H, Chen H, Bai X, Ren X, Zhang Y, Wu D, Bian X. Engineering and elucidation of the lipoinitiation process in nonribosomal peptide biosynthesis. Nat Commun 2021; 12:296. [PMID: 33436600 PMCID: PMC7804268 DOI: 10.1038/s41467-020-20548-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 12/02/2020] [Indexed: 12/18/2022] Open
Abstract
Nonribosomal peptide synthetases containing starter condensation domains direct the biosynthesis of nonribosomal lipopeptides, which generally exhibit wide bioactivities. The acyl chain has strong impacts on bioactivity and toxicity, but the lack of an in-depth understanding of starter condensation domain-mediated lipoinitiation limits the bioengineering of NRPSs to obtain novel derivatives with desired acyl chains. Here, we show that the acyl chains of the lipopeptides rhizomide, holrhizin, and glidobactin were modified by engineering the starter condensation domain, suggesting a workable approach to change the acyl chain. Based on the structure of the mutated starter condensation domain of rhizomide biosynthetic enzyme RzmA in complex with octanoyl-CoA and related point mutation experiments, we identify a set of residues responsible for the selectivity of substrate acyl chains and extend the acyl chains from acetyl to palmitoyl. Furthermore, we illustrate three possible conformational states of starter condensation domains during the reaction cycle of the lipoinitiation process. Our studies provide further insights into the mechanism of lipoinitiation and the engineering of nonribosomal peptide synthetases.
Collapse
Affiliation(s)
- Lin Zhong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xiaotong Diao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Na Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Fengwei Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Hanna Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Xintong Ren
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
| | - Dalei Wu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
- Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, 215123, China.
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.
| |
Collapse
|
217
|
Kumar B, Maity J, Shankar B, Kumar S, Kavita, Prasad AK. Synthesis of d-glycopyranosyl depsipeptides using Passerini reaction. Carbohydr Res 2021; 500:108236. [PMID: 33516073 DOI: 10.1016/j.carres.2021.108236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/16/2022]
Abstract
A protocol based on Passerini multi-component reaction has been developed for facile, efficient and atom economical synthesis of a small library of twenty potential bioactive (2R)-2-(d-glycopyranosyl)-2-acyloxyacetamides using perbenzylated d-glycopyranosyl aldehydes, substituted isocyanides and different aliphatic/aromatic carboxylic acids. All twenty synthesized d-glycopyranosyl α-acyloxy amides, commonly known as depsipeptides were unambiguously identified on the basis of their spectral (IR, 1H, 13C NMR, COSY, HSQC, NOESY and HRMS) data analysis.
Collapse
Affiliation(s)
- Banty Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Department of Chemistry, Rajdhani College, University of Delhi, Delhi, 110015, India
| | - Jyotirmoy Maity
- Department of Chemistry, St. Stephen's College, University of Delhi, Delhi, 110007, India
| | - Bhawani Shankar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India; Department of Chemistry, Deshbandhu College, University of Delhi, Delhi, 110019, India
| | - Sandeep Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Kavita
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India
| | - Ashok K Prasad
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
218
|
Théatre A, Hoste ACR, Rigolet A, Benneceur I, Bechet M, Ongena M, Deleu M, Jacques P. Bacillus sp.: A Remarkable Source of Bioactive Lipopeptides. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 181:123-179. [DOI: 10.1007/10_2021_182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
219
|
Falqueto SA, Pitaluga BF, de Sousa JR, Targanski SK, Campos MG, de Oliveira Mendes TA, da Silva GF, Silva DHS, Soares MA. Bacillus spp. metabolites are effective in eradicating Aedes aegypti (Diptera: Culicidae) larvae with low toxicity to non-target species. J Invertebr Pathol 2020; 179:107525. [PMID: 33383067 DOI: 10.1016/j.jip.2020.107525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 11/18/2022]
Abstract
The growing spread of dengue, chikungunya and Zika viruses demand the development of new and environmentally safe control methods for their vector, the mosquito Aedes aegypti. This study aims to find novel larvicidal agents from mutualistic (endophytic and rhizospheric) or edaphic bacteria that have no action against non-target organisms. Eleven out of the 254 bacterial strains tested were able to kill Ae. aegypti larvae. Larvicidal activity did not depend on presence of cells, since culture supernatants or crude lipopeptide extracts (CLEs) killed the larvae. Bacillus safensis BacI67 and Bacillus paranthracis C21 supernatants were the best performing supernatants, displaying the lowest lethal concentrations (LC50 = 31.11 µL/mL and 45.84 µL/mL, respectively). Bacillus velezensis B64a and Bacillus velezensis B15 produced the best performing CLEs (LC50 = 0.11 mg/mL and 0.12 mg/mL, respectively). Mass spectrometry analysis of CLEs detected a mixture of surfactins, iturins, and fengycins. The samples tested were weakly- or non-toxic to mammalian cells (RAW 264.7 macrophages and VERO cells) and non-target organisms (Caenorhabditis elegans, Galleria mellonella, Scenedesmus obliquus, and Tetrahymena pyriformis) - especially B. velezensis B15 CLE. The biosynthetic gene clusters related to secondary metabolism identified by whole genome sequencing of the four best performing bacteria strains revealed clusters for bacteriocin, beta-lactone, lanthipeptide, non-ribosomal peptide synthetases, polyketide synthases (PKS), siderophores, T3PKS, type 1 PKS-like, terpenes, thiopeptides, and trans-AT-PKS. Purification of lipopeptides may clarify the mechanisms by which these extracts kill Ae. aegypti larvae.
Collapse
Affiliation(s)
- Silvia Altoé Falqueto
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil
| | - Bruno Faria Pitaluga
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil
| | - Janaína Rosa de Sousa
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil
| | - Sabrina Ketrin Targanski
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil
| | - Mateus Gandra Campos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | - Dulce Helena Siqueira Silva
- Centro de Inovação em Biodiversidade e Fármacos, Instituto de Química, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, Brazil
| | - Marcos Antônio Soares
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil.
| |
Collapse
|
220
|
Vishwakarma K, Kumar N, Shandilya C, Mohapatra S, Bhayana S, Varma A. Revisiting Plant-Microbe Interactions and Microbial Consortia Application for Enhancing Sustainable Agriculture: A Review. Front Microbiol 2020; 11:560406. [PMID: 33408698 PMCID: PMC7779480 DOI: 10.3389/fmicb.2020.560406] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/23/2020] [Indexed: 12/20/2022] Open
Abstract
The present scenario of agricultural sector is dependent hugely on the use of chemical-based fertilizers and pesticides that impact the nutritional quality, health status, and productivity of the crops. Moreover, continuous release of these chemical inputs causes toxic compounds such as metals to accumulate in the soil and move to the plants with prolonged exposure, which ultimately impact the human health. Hence, it becomes necessary to bring out the alternatives to chemical pesticides/fertilizers for improvement of agricultural outputs. The rhizosphere of plant is an important niche with abundant microorganisms residing in it. They possess the properties of plant growth promotion, disease suppression, removal of toxic compounds, and assimilating nutrients to plants. Utilizing such beneficial microbes for crop productivity presents an efficient way to modulate the crop yield and productivity by maintaining healthy status and quality of the plants through bioformulations. To understand these microbial formulation compositions, it becomes essential to understand the processes going on in the rhizosphere as well as their concrete identification for better utilization of the microbial diversity such as plant growth–promoting bacteria and arbuscular mycorrhizal fungi. Hence, with this background, the present review article highlights the plant microbiome aboveground and belowground, importance of microbial inoculants in various plant species, and their subsequent interactive mechanisms for sustainable agriculture.
Collapse
Affiliation(s)
| | - Nitin Kumar
- Department of Biotechnology, Periyar Maniammai Institute of Science and Technology, Thanjavur, India
| | | | - Swati Mohapatra
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Sahil Bhayana
- Amity Institute of Microbial Technology, Amity University, Noida, India
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University, Noida, India
| |
Collapse
|
221
|
Gong H, Sani MA, Hu X, Fa K, Hart JW, Liao M, Hollowell P, Carter J, Clifton LA, Campana M, Li P, King SM, Webster JRP, Maestro A, Zhu S, Separovic F, Waigh TA, Xu H, McBain AJ, Lu JR. How do Self-Assembling Antimicrobial Lipopeptides Kill Bacteria? ACS APPLIED MATERIALS & INTERFACES 2020; 12:55675-55687. [PMID: 33259204 DOI: 10.1021/acsami.0c17222] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Antimicrobial peptides are promising alternatives to traditional antibiotics. A group of self-assembling lipopeptides was formed by attaching an acyl chain to the N-terminus of α-helix-forming peptides with the sequence Cx-G(IIKK)yI-NH2 (CxGy, x = 4-12 and y = 2). CxGy self-assemble into nanofibers above their critical aggregation concentrations (CACs). With increasing x, the CACs decrease and the hydrophobic interactions increase, promoting secondary structure transitions within the nanofibers. Antimicrobial activity, determined by the minimum inhibition concentration (MIC), also decreases with increasing x, but the MICs are significantly smaller than the CACs, suggesting effective bacterial membrane-disrupting power. Unlike conventional antibiotics, both C8G2 and C12G2 can kill Staphylococcus aureus and Escherichia coli after only minutes of exposure under the concentrations studied. C12G2 nanofibers have considerably faster killing dynamics and lower cytotoxicity than their nonaggregated monomers. Antimicrobial activity of peptide aggregates has, to date, been underexploited, and it is found to be a very promising mechanism for peptide design. Detailed evidence for the molecular mechanisms involved is provided, based on superresolution fluorescence microscopy, solid-state nuclear magnetic resonance, atomic force microscopy, neutron scattering/reflectivity, circular dichroism, and Brewster angle microscopy.
Collapse
Affiliation(s)
- Haoning Gong
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Xuzhi Hu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Ke Fa
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jack William Hart
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Mingrui Liao
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Peter Hollowell
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jessica Carter
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Luke A Clifton
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Mario Campana
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Peixun Li
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Stephen M King
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - John R P Webster
- ISIS Pulsed Neutron & Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0QX, U.K
| | - Armando Maestro
- Institute Laue Langevin, 71 Avenue des Martyrs, CS-20156, Grenoble 38042, France
| | - Shiying Zhu
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Thomas A Waigh
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
- Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and the Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Andrew J McBain
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Jian Ren Lu
- Biological Physics Laboratory, Department of Physics and Astronomy, Faculty of Science and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
222
|
Biniarz P, Henkel M, Hausmann R, Łukaszewicz M. Development of a Bioprocess for the Production of Cyclic Lipopeptides Pseudofactins With Efficient Purification From Collected Foam. Front Bioeng Biotechnol 2020; 8:565619. [PMID: 33330412 PMCID: PMC7719756 DOI: 10.3389/fbioe.2020.565619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022] Open
Abstract
Microbial surfactants (biosurfactants) have gained interest as promising substitutes of synthetic surface-active compounds. However, their production and purification are still challenging, with significant room for efficiency and costs optimization. In this work, we introduce a method for the enhanced production and purification of cyclic lipopeptides pseudofactins (PFs) from Pseudomonas fluorescens BD5 cultures. The method is directly applicable in a technical scale with the possibility of further upscaling. Comparing to the original protocol for production of PFs (cultures in mineral salt medium in shaken flasks followed by solvent-solvent extraction of PFs), our process offers not only ∼24-fold increased productivity, but also easier and more efficient purification. The new process combines high yield of PFs (∼7.2 grams of PFs per 30 L of working volume), with recovery levels of 80–90% and purity of raw PFs up to 60–70%. These were achieved with an innovative, single-step thermal co-precipitation and extraction of PFs directly from collected foam, as a large amount of PF-enriched foam was produced during the bioprocess. Besides we present a protocol for the selective production of PF structural analogs and their separation with high-performance liquid chromatography. Our approach can be potentially utilized in the efficient production and purification of other lipopeptides of Pseudomonas and Bacillus origin.
Collapse
Affiliation(s)
- Piotr Biniarz
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.,Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Marius Henkel
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Rudolf Hausmann
- Department of Bioprocess Engineering (150 k), Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Marcin Łukaszewicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
223
|
Al-Dhabi NA, Esmail GA, Valan Arasu M. Enhanced Production of Biosurfactant from Bacillus subtilis Strain Al-Dhabi-130 under Solid-State Fermentation Using Date Molasses from Saudi Arabia for Bioremediation of Crude-Oil-Contaminated Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228446. [PMID: 33203064 PMCID: PMC7698024 DOI: 10.3390/ijerph17228446] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/16/2022]
Abstract
Crude oil and its derivatives are the most important pollutants in natural environments. Bioremediation of crude oil using bacteria has emerged as a green cleanup approach in recent years. In this study, biosurfactant-producing Bacillus subtilis strain Al-Dhabi-130 was isolated from the marine soil sediment. This organism was cultured in solid-state fermentation using agro-residues to produce cost-effective biosurfactants for the bioremediation of crude-oil contaminated environments. Date molasses improved biosurfactant production and were used for further optimization studies. The traditional “one-variable-at-a-time approach”, “two-level full factorial designs”, and a response surface methodology were used to optimize the concentrations of date molasses and nutrient supplements for surfactant production. The optimum bioprocess conditions were 79.3% (v/w) moisture, 34 h incubation period, and 8.3% (v/v) glucose in date molasses. To validate the quadratic model, the production of biosurfactant was performed in triplicate experiments, with yields of 74 mg/g substrate. These findings support the applications of date molasses for the production of biosurfactants by B. subtilis strain Al-Dhabi-130. Analytical experiments revealed that the bacterial strain degraded various aromatic hydrocarbons and n-alkanes within two weeks of culture with 1% crude oil. The crude biosurfactant produced by the B. subtilis strain Al-Dhabi-130 desorbed 89% of applied crude oil from the soil sample. To conclude, biosurfactant-producing bacterial strains can increase emulsification of crude oil and support the degradation of crude oil.
Collapse
|
224
|
Benaud N, Edwards RJ, Amos TG, D'Agostino PM, Gutiérrez-Chávez C, Montgomery K, Nicetic I, Ferrari BC. Antarctic desert soil bacteria exhibit high novel natural product potential, evaluated through long-read genome sequencing and comparative genomics. Environ Microbiol 2020; 23:3646-3664. [PMID: 33140504 DOI: 10.1111/1462-2920.15300] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022]
Abstract
Actinobacteria and Proteobacteria are important producers of bioactive natural products (NP), and these phyla dominate in the arid soils of Antarctica, where metabolic adaptations influence survival under harsh conditions. Biosynthetic gene clusters (BGCs) which encode NPs, are typically long and repetitious high G + C regions difficult to sequence with short-read technologies. We sequenced 17 Antarctic soil bacteria from multi-genome libraries, employing the long-read PacBio platform, to optimize capture of BGCs and to facilitate a comprehensive analysis of their NP capacity. We report 13 complete bacterial genomes of high quality and contiguity, representing 10 different cold-adapted genera including novel species. Antarctic BGCs exhibited low similarity to known compound BGCs (av. 31%), with an abundance of terpene, non-ribosomal peptide and polyketide-encoding clusters. Comparative genome analysis was used to map BGC variation between closely related strains from geographically distant environments. Results showed the greatest biosynthetic differences to be in a psychrotolerant Streptomyces strain, as well as a rare Actinobacteria genus, Kribbella, while two other Streptomyces spp. were surprisingly similar to known genomes. Streptomyces and Kribbella BGCs were predicted to encode antitumour, antifungal, antibacterial and biosurfactant-like compounds, and the synthesis of NPs with antibacterial, antifungal and surfactant properties was confirmed through bioactivity assays.
Collapse
Affiliation(s)
- Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, 2052, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, 2052, Australia
| | - Timothy G Amos
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, 2052, Australia
| | - Paul M D'Agostino
- Technische Universität Dresden, Chair of Technical Biochemistry, Bergstraße 66, 01602 Dresden, Germany
| | | | - Kate Montgomery
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, 2052, Australia
| | - Iskra Nicetic
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, 2052, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, 2052, Australia
| |
Collapse
|
225
|
Li FZ, Zeng YJ, Zong MH, Yang JG, Lou WY. Bioprospecting of a novel endophytic Bacillus velezensis FZ06 from leaves of Camellia assamica: Production of three groups of lipopeptides and the inhibition against food spoilage microorganisms. J Biotechnol 2020; 323:42-53. [PMID: 32739396 DOI: 10.1016/j.jbiotec.2020.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023]
Abstract
Food contamination caused by microorganisms has become a threat to consumers' health. Exploring antagonistic endophytes from plants of food raw-material and applying bioactive metabolites to inhibit the contamination has been an alternative and safer solution. In this study, we isolated and screened potential antagonistic endophytes from fresh Camellia assamica leaves, which were widely used in tea beverage production. We focused on a strain that showed visible inhibitory activity to Gram-positive bacteria, Gram-negative bacteria, and fungi. It was identified as a member of Bacillus velezensis and named FZ06. The results of genome analysis showed the strain FZ06 had 167 single-copy specific genes, much higher than those of most related strains. Also, 11 potential gene clusters of antimicrobial metabolites were found. Three groups of lipopeptides (surfactin, iturin, and fengycin) were identified by UPLC-MS/MS in purified antimicrobial methanol fraction of strain FZ06. The results of minimum inhibitory concentration (MIC) test proved the lipopeptide extract showed significant inhibitory effect on food spoilage bacteria (MIC 512-2048 μg/mL) and toxigenic fungi (MIC 128-256 μg/mL). In conclusion, this study suggests that the endophytic B. velezensis FZ06 and its lipopeptide extract hold great potential applications in the inhibition of food spoilage bacteria and toxic fungi in food industry.
Collapse
Affiliation(s)
- Fang-Zhou Li
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, 510640, Guangdong, China
| | - Ying-Jie Zeng
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, 510640, Guangdong, China; College of Life Science & Technology, Southwest Minzu University, No. 16 South 4th Section of First Ring Road, Chengdu, 610041, Sichuan, China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, 510640, Guangdong, China
| | - Ji-Guo Yang
- South China Institute of Collaborative Innovation, Xincheng Road, Dongguan, 523808, China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou, 510640, Guangdong, China; South China Institute of Collaborative Innovation, Xincheng Road, Dongguan, 523808, China.
| |
Collapse
|
226
|
Storey N, Rabiey M, Neuman BW, Jackson RW, Mulley G. Genomic Characterisation of Mushroom Pathogenic Pseudomonads and Their Interaction with Bacteriophages. Viruses 2020; 12:E1286. [PMID: 33182769 PMCID: PMC7696170 DOI: 10.3390/v12111286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/02/2020] [Accepted: 11/05/2020] [Indexed: 01/16/2023] Open
Abstract
Bacterial diseases of the edible white button mushroom Agaricus bisporus caused by Pseudomonas species cause a reduction in crop yield, resulting in considerable economic loss. We examined bacterial pathogens of mushrooms and bacteriophages that target them to understand the disease and opportunities for control. The Pseudomonastolaasii genome encoded a single type III protein secretion system (T3SS), but contained the largest number of non-ribosomal peptide synthase (NRPS) genes, multimodular enzymes that can play a role in pathogenicity, including a putative tolaasin-producing gene cluster, a toxin causing blotch disease symptom. However, Pseudomonasagarici encoded the lowest number of NRPS and three putative T3SS while non-pathogenic Pseudomonas sp. NS1 had intermediate numbers. Potential bacteriophage resistance mechanisms were identified in all three strains, but only P. agarici NCPPB 2472 was observed to have a single Type I-F CRISPR/Cas system predicted to be involved in phage resistance. Three novel bacteriophages, NV1, ϕNV3, and NV6, were isolated from environmental samples. Bacteriophage NV1 and ϕNV3 had a narrow host range for specific mushroom pathogens, whereas phage NV6 was able to infect both mushroom pathogens. ϕNV3 and NV6 genomes were almost identical and differentiated within their T7-like tail fiber protein, indicating this is likely the major host specificity determinant. Our findings provide the foundations for future comparative analyses to study mushroom disease and phage resistance.
Collapse
Affiliation(s)
- Nathaniel Storey
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
| | - Mojgan Rabiey
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Benjamin W. Neuman
- Biology Department, College of Arts, Sciences and Education, TAMUT, Texarkana, TX 75503, USA;
| | - Robert W. Jackson
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham B15 2TT, UK
| | - Geraldine Mulley
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading RG6 6AJ, UK; (N.S.); (R.W.J.); (G.M.)
| |
Collapse
|
227
|
Vahidinasab M, Lilge L, Reinfurt A, Pfannstiel J, Henkel M, Morabbi Heravi K, Hausmann R. Construction and description of a constitutive plipastatin mono-producing Bacillus subtilis. Microb Cell Fact 2020; 19:205. [PMID: 33167976 PMCID: PMC7654001 DOI: 10.1186/s12934-020-01468-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/29/2020] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Plipastatin is a potent Bacillus antimicrobial lipopeptide with the prospect to replace conventional antifungal chemicals for controlling plant pathogens. However, the application of this lipopeptide has so far been investigated in a few cases, principally because of the yield in low concentration and unknown regulation of biosynthesis pathways. B. subtilis synthesizes plipastatin by a non-ribosomal peptide synthetase encoded by the ppsABCDE operon. In this study, B. subtilis 3NA (a non-sporulation strain) was engineered to gain more insights about plipastatin mono-production. RESULTS The 4-phosphopantetheinyl transferase Sfp posttranslationally converts non-ribosomal peptide synthetases from inactive apoforms into their active holoforms. In case of 3NA strain, sfp gene is inactive. Accordingly, the first step was an integration of a repaired sfp version in 3NA to construct strain BMV9. Subsequently, plipastatin production was doubled after integration of a fully expressed degQ version from B. subtilis DSM10T strain (strain BMV10), ensuring stimulation of DegU-P regulatory pathway that positively controls the ppsABSDE operon. Moreover, markerless substitution of the comparably weak native plipastatin promoter (Ppps) against the strong constitutive promoter Pveg led to approximately fivefold enhancement of plipastatin production in BMV11 compared to BMV9. Intriguingly, combination of both repaired degQ expression and promoter exchange (Ppps::Pveg) did not increase the plipastatin yield. Afterwards, deletion of surfactin (srfAA-AD) operon by the retaining the regulatory comS which is located within srfAB and is involved in natural competence development, resulted in the loss of plipastatin production in BMV9 and significantly decreased the plipastatin production of BMV11. We also observed that supplementation of ornithine as a precursor for plipastatin formation caused higher production of plipastatin in mono-producer strains, albeit with a modified pattern of plipastatin composition. CONCLUSIONS This study provides evidence that degQ stimulates the native plipastatin production. Moreover, a full plipastatin production requires surfactin synthetase or some of its components. Furthermore, as another conclusion of this study, results point towards ornithine provision being an indispensable constituent for a plipastatin mono-producer B. subtilis strain. Therefore, targeting the ornithine metabolic flux might be a promising strategy to further investigate and enhance plipastatin production by B. subtilis plipastatin mono-producer strains.
Collapse
Affiliation(s)
- Maliheh Vahidinasab
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Lars Lilge
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany.
| | - Aline Reinfurt
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility Hohenheim, Mass Spectrometry Unit, University of Hohenheim, August-von-Hartmann-Str. 3, 70599, Stuttgart, Germany
| | - Marius Henkel
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Kambiz Morabbi Heravi
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| | - Rudolf Hausmann
- Institute of Food Science and Biotechnology, Department of Bioprocess Engineering (150K), University of Hohenheim, Fruwirthstraße 12, 70599, Stuttgart, Germany
| |
Collapse
|
228
|
Ueda A, Ogasawara S, Horiuchi K. Identification of the genes controlling biofilm formation in the plant commensal Pseudomonas protegens Pf-5. Arch Microbiol 2020; 202:2453-2459. [PMID: 32607723 DOI: 10.1007/s00203-020-01966-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/20/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Determinant genes controlling biofilm formation in a plant commensal bacterium, Pseudomonas protegens Pf-5, were identified by transposon mutagenesis. Comprehensive screening of 7500 transposon-inserted mutants led to the isolation of four mutants exhibiting decreased and five mutants exhibiting increased biofilm formation. Mutations in the genes encoding MFS drug resistance transporter, LapA adhesive protein, RetS sensor histidine kinase/response regulator, and HecA adhesin/hemagglutinin led to decreased biofilm formation, indicating that these genes are necessary for biofilm formation in Pf-5. The mutants exhibiting increased biofilm formation had transposon insertions in the genes coding for an outer membrane protein, a GGDEF domain-containing protein, AraC transcriptional regulator, non-ribosomal peptide synthetase OfaB, and the intergenic region of a DNA-binding protein and the Aer aerotaxis receptor, suggesting that these genes are negative regulators of biofilm formation. Some of these mutants also showed altered swimming and swarming motilities, and a negative correlation between biofilm formation and swarming motility was observed. Thus, sessile-motile lifestyle is regulated by divergent regulatory genes in Pf-5.
Collapse
Affiliation(s)
- Akihiro Ueda
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan.
| | - Shinta Ogasawara
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| | - Keishi Horiuchi
- School of Applied Biological Science, Hiroshima University, Higashi-Hiroshima, 739-8528, Japan
| |
Collapse
|
229
|
Antibacterial Activity of Bacillus inaquosorum Strain T1 against pirABVp -Bearing Vibrio parahaemolyticus: Genetic and Physiological Characterization. Appl Environ Microbiol 2020; 86:AEM.01950-20. [PMID: 32859595 DOI: 10.1128/aem.01950-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/24/2020] [Indexed: 11/20/2022] Open
Abstract
Acute hepatopancreatic necrosis disease (AHPND) is caused by PirAB toxin-producing Vibrio parahaemolyticus and has devastated the global shrimp aquaculture industry. One approach for preventing the growth of AHPND-producing Vibrio spp. is through the application of beneficial bacteria capable of inhibiting these pathogens. In this study, we focused on the inhibitory activity of Bacillus inaquosorum strain T1, which hinders V. parahaemolyticus growth in coculture experiments in a density-dependent manner; inhibition was also observed using cell-free supernatants from T1 stationary-phase cultures. Using mariner-based transposon mutagenesis, 17 mutants having a complete or partial loss of inhibitory activity were identified. Of those displaying a total loss of activity, 13 had insertions within a 42.6-kb DNA region comprising 15 genes whose deduced products were homologous to nonribosomal polypeptide synthetases (NRPSs), polyketide synthases (PKSs), and related activities, which were mapped as one transcriptional unit. Mutants with partial activity contained insertions in spo0A and oppA, indicating stationary-phase control. The levels of expression of NRPS and PKS lacZ transcriptional fusions were negligible during growth and were the highest during early stationary phase. Inactivation of sigH resulted in a loss of inhibitor activity, indicating a role for σH in transcription. Disruption of abrB resulted in NRPS and PKS gene overexpression during growth as well as enhanced growth inhibition. Our characterization of the expression and control of an NRPS-PKS gene cluster in B. inaquosorum T1 provides an understanding of the factors involved in inhibitor production, enabling this strain's development for use as a tool against AHPND-causing Vibrio pathogens in shrimp aquaculture.IMPORTANCE The shrimp aquaculture industry has been significantly impacted by acute hepatopancreatic necrosis disease (AHPND), resulting in significant financial losses annually. AHPND is caused by strains of the bacterial pathogen Vibrio parahaemolyticus, and treatment of AHPND involves the use of antibiotics, which leads to a rise in the number of antibiotic-resistant strains. Alternative treatments include the application of beneficial microorganisms having inhibitory activities against pathogens causing AHPND. In this study, we examined the ability of Bacillus inaquosorum strain T1 to inhibit the growth of an AHPND-causing Vibrio strain, and we show that this activity involves a gene cluster associated with antibacterial compound production. We found that gene expression is under stationary-phase control and that enhanced activity occurs upon inactivation of a global transition state regulator. Our approach for understanding the factors involved in producing B. inaquosorum strain T1 inhibitory activity will allow for the development of this strain as a tool for AHPND prevention and treatment.
Collapse
|
230
|
Mishra I, Fatima T, Egamberdieva D, Arora NK. Novel Bioformulations Developed from Pseudomonas putida BSP9 and its Biosurfactant for Growth Promotion of Brassica juncea (L.). PLANTS 2020; 9:plants9101349. [PMID: 33053904 PMCID: PMC7601481 DOI: 10.3390/plants9101349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
In this study, Pseudomonas putida BSP9 isolated from rhizosphere of Brassica juncea was investigated for its plant growth promoting and biosurfactant producing activities. The isolate showed the ability to produce indole acetic acid, siderophore, phosphate solubilization activity and was an efficient producer of biosurfactant. Purification (of the biosurfactant) by thin layer chromatography (TLC) and further characterization by Fourier transform infrared spectroscopy (FTIR) revealed that biosurfactant produced by the isolate belonged to the glycolipid category, which is largely produced by Pseudomonas sp. In addition, liquid chromatography-mass spectroscopy (LC-MS) analysis showed the presence of a mixture of six mono-rhamnolipidic and a di-rhamnolipidic congeners, confirming it as a rhamnolipid biosurfactant. Bioformulations were developed using BSP9 and its biosurfactant to check their impact on promoting plant growth in B. juncea. It was noted from the study that bioformulations amended with biosurfactant (singly or in combination with BSP9) resulted in enhancement in the growth parameters of B. juncea as compared to untreated control. Maximum increment was achieved by plants inoculated with bioformulation that had BSP9 plus biosurfactant. The study also suggested that growth promotion was significant up to a threshold level of biosurfactant and that further increasing the concentration did not further enhance the growth parameter values of the plant. The study proves that novel bioformulations can be developed by integrating plant growth promoting rhizobacteria (PGPR) and their biosurfactant, and they can be effectively used for increasing agricultural productivity while minimizing our dependence on agrochemicals.
Collapse
Affiliation(s)
- Isha Mishra
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raebareli Road, Lucknow 226025, India; (I.M.); (T.F.)
| | - Tahmish Fatima
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raebareli Road, Lucknow 226025, India; (I.M.); (T.F.)
| | - Dilfuza Egamberdieva
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Correspondence: (D.E.); (N.K.A.)
| | - Naveen Kumar Arora
- Department of Environmental Science, School for Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar Raebareli Road, Lucknow 226025, India
- Correspondence: (D.E.); (N.K.A.)
| |
Collapse
|
231
|
Thakur S, Singh A, Sharma R, Aurora R, Jain SK. Biosurfactants as a Novel Additive in Pharmaceutical Formulations: Current Trends and Future Implications. Curr Drug Metab 2020; 21:885-901. [PMID: 33032505 DOI: 10.2174/1389200221666201008143238] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 08/13/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Surfactants are an important category of additives that are used widely in most of the formulations as solubilizers, stabilizers, and emulsifiers. Current drug delivery systems comprise of numerous synthetic surfactants (such as Cremophor EL, polysorbate 80, Transcutol-P), which are associated with several side effects though used in many formulations. Therefore, to attenuate the problems associated with conventional surfactants, a new generation of surface-active agents is obtained from the metabolites of fungi, yeast, and bacteria, which are termed as biosurfactants. OBJECTIVES In this article, we critically analyze the different types of biosurfactants, their origin along with their chemical and physical properties, advantages, drawbacks, regulatory status, and detailed pharmaceutical applications. METHODS 243 papers were reviewed and included in this review. RESULTS Briefly, Biosurfactants are classified as glycolipids, rhamnolipids, sophorolipids, trehalolipids, surfactin, lipopeptides & lipoproteins, lichenysin, fatty acids, phospholipids, and polymeric biosurfactants. These are amphiphilic biomolecules with lipophilic and hydrophilic ends and are used as drug delivery vehicles (foaming, solubilizer, detergent, and emulsifier) in the pharmaceutical industry. Despite additives, they have some biological activity as well (anti-cancer, anti-viral, anti-microbial, P-gp inhibition, etc.). These biomolecules possess better safety profiles and are biocompatible, biodegradable, and specific at different temperatures. CONCLUSION Biosurfactants exhibit good biomedicine and additive properties that can be used in developing novel drug delivery systems. However, more research should be driven due to the lack of comprehensive toxicity testing and high production cost which limits their use.
Collapse
Affiliation(s)
- Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Amrinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Ritika Sharma
- Sri Sai College of Pharmacy, Badhani, Pathankot, 145001, India
| | - Rohan Aurora
- The International School Bangalore, Karnataka, 562125, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| |
Collapse
|
232
|
Wang Y, Zhang C, Liang J, Wu L, Gao W, Jiang J. Iturin A Extracted From Bacillus subtilis WL-2 Affects Phytophthora infestans via Cell Structure Disruption, Oxidative Stress, and Energy Supply Dysfunction. Front Microbiol 2020; 11:536083. [PMID: 33013776 PMCID: PMC7509112 DOI: 10.3389/fmicb.2020.536083] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/19/2020] [Indexed: 01/07/2023] Open
Abstract
Potato late blight, caused by Phytophthora infestans (Mont.) de Bary, represents a great food security threat worldwide and is difficult to control. Recently, Bacillus spp. have been considered biocontrol agents to control many plant diseases. Here, Bacillus subtilis WL-2 was selected as a potent strain against P. infestans mycelium growth, and its functional metabolite was identified as Iturin A via electrospray ionization mass spectrometry (ESI-MS). Analyses using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that Iturin A caused cell membrane disruption and an irregular internal cell structure. In addition, Iturin A triggered oxidative stress reactions similarly to reactive oxygen species (ROS) in P. infestans cells and caused mitochondrial damage, including mitochondrial membrane potential (MMP), mitochondrial respiratory chain complex activity (MRCCA), and ATP production decline. These results highlight that the cell structure disruption, oxidative stress, and energy supply dysfunction induced by Iturin A play an important role in inhibiting P. infestans. Additionally, B. subtilis WL-2 and Iturin A have great potential for inhibiting P. infestans mycelium growth and controlling potato late blight in the future.
Collapse
Affiliation(s)
- Youyou Wang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Congying Zhang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jiao Liang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Lufang Wu
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Wenbin Gao
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| | - Jizhi Jiang
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
233
|
Rodriguez Ayala F, Bartolini M, Grau R. The Stress-Responsive Alternative Sigma Factor SigB of Bacillus subtilis and Its Relatives: An Old Friend With New Functions. Front Microbiol 2020; 11:1761. [PMID: 33042030 PMCID: PMC7522486 DOI: 10.3389/fmicb.2020.01761] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/06/2020] [Indexed: 12/13/2022] Open
Abstract
Alternative sigma factors have led the core RNA polymerase (RNAP) to recognize different sets of promoters to those recognized by the housekeeping sigma A-directed RNAP. This change in RNAP promoter selectivity allows a rapid and flexible reformulation of the genetic program to face environmental and metabolic stimuli that could compromise bacterial fitness. The model bacterium Bacillus subtilis constitutes a matchless living system in the study of the role of alternative sigma factors in gene regulation and physiology. SigB from B. subtilis was the first alternative sigma factor described in bacteria. Studies of SigB during the last 40 years have shown that it controls a genetic universe of more than 150 genes playing crucial roles in stress response, adaption, and survival. Activation of SigB relies on three separate pathways that specifically respond to energy, environmental, and low temperature stresses. SigB homologs, present in other Gram-positive bacteria, also play important roles in virulence against mammals. Interestingly, during recent years, other unexpected B. subtilis responses were found to be controlled by SigB. In particular, SigB controls the efficiencies of spore and biofilm formation, two important features that play critical roles in adaptation and survival in planktonic and sessile B. subtilis communities. In B. subtilis, SigB induces the expression of the Spo0E aspartyl-phosphatase, which is responsible for the blockage of sporulation initiation. The upregulated activity of Spo0E connects the two predominant adaptive pathways (i.e., sporulation and stress response) present in B. subtilis. In addition, the RsbP serine-phosphatase, belonging to the energy stress arm of the SigB regulatory cascade, controls the expression of the key transcription factor SinR to decide whether cells residing in the biofilm remain in and maintain biofilm growth or scape to colonize new niches through biofilm dispersal. SigB also intervenes in the recognition of and response to surrounding microorganisms, a new SigB role that could have an agronomic impact. SigB is induced when B. subtilis is confronted with phytopathogenic fungi (e.g., Fusarium verticillioides) and halts fungal growth to the benefit of plant growth. In this article, we update and review literature on the different regulatory networks that control the activation of SigB and the new roles that have been described the recent years.
Collapse
Affiliation(s)
- Facundo Rodriguez Ayala
- Departamento de Micro y Nanotecnología, Instituto de Nanociencia y Nanotecnología - Comisión Nacional de Energía Atómica (CNEA), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marco Bartolini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Roberto Grau
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
234
|
Crouzet J, Arguelles-Arias A, Dhondt-Cordelier S, Cordelier S, Pršić J, Hoff G, Mazeyrat-Gourbeyre F, Baillieul F, Clément C, Ongena M, Dorey S. Biosurfactants in Plant Protection Against Diseases: Rhamnolipids and Lipopeptides Case Study. Front Bioeng Biotechnol 2020; 8:1014. [PMID: 33015005 PMCID: PMC7505919 DOI: 10.3389/fbioe.2020.01014] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/03/2020] [Indexed: 12/17/2022] Open
Abstract
Biosurfactants are amphiphilic surface-active molecules that are produced by a variety of microorganisms including fungi and bacteria. Pseudomonas, Burkholderia, and Bacillus species are known to secrete rhamnolipids and lipopeptides that are used in a wide range of industrial applications. Recently, these compounds have been studied in a context of plant-microbe interactions. This mini-review describes the direct antimicrobial activities of these compounds against plant pathogens. We also provide the current knowledge on how rhamnolipids and lipopeptides stimulate the plant immune system leading to plant resistance to phytopathogens. Given their low toxicity, high biodegradability and ecological acceptance, we discuss the possible role of these biosurfactants as alternative strategies to reduce or even replace pesticide use in agriculture.
Collapse
Affiliation(s)
- Jérôme Crouzet
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Anthony Arguelles-Arias
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Sylvain Cordelier
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Jelena Pršić
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Gregory Hoff
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | | | - Fabienne Baillieul
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Christophe Clément
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| | - Marc Ongena
- MiPI laboratory, Gembloux Agro-Bio Tech, SFR Condorcet FR CNRS 3417, University of LieÌge, Gembloux, Belgium
| | - Stéphan Dorey
- Unité RIBP EA 4707, SFR Condorcet FR CNRS 3417, University of Reims Champagne-Ardenne, Reims, France
| |
Collapse
|
235
|
Chen R, Wong HL, Kindler GS, MacLeod FI, Benaud N, Ferrari BC, Burns BP. Discovery of an Abundance of Biosynthetic Gene Clusters in Shark Bay Microbial Mats. Front Microbiol 2020; 11:1950. [PMID: 32973707 PMCID: PMC7472256 DOI: 10.3389/fmicb.2020.01950] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/24/2020] [Indexed: 01/27/2023] Open
Abstract
Microbial mats are geobiological multilayered ecosystems that have significant evolutionary value in understanding the evolution of early life on Earth. Shark Bay, Australia has some of the best examples of modern microbial mats thriving under harsh conditions of high temperatures, salinity, desiccation, and ultraviolet (UV) radiation. Microorganisms living in extreme ecosystems are thought to potentially encode for secondary metabolites as a survival strategy. Many secondary metabolites are natural products encoded by a grouping of genes known as biosynthetic gene clusters (BGCs). Natural products have diverse chemical structures and functions which provide competitive advantages for microorganisms and can also have biotechnology applications. In the present study, the diversity of BGC were described in detail for the first time from Shark Bay microbial mats. A total of 1477 BGCs were detected in metagenomic data over a 20 mm mat depth horizon, with the surface layer possessing over 200 BGCs and containing the highest relative abundance of BGCs of all mat layers. Terpene and bacteriocin BGCs were highly represented and their natural products are proposed to have important roles in ecosystem function in these mat systems. Interestingly, potentially novel BGCs were detected from Heimdallarchaeota and Lokiarchaeota, two evolutionarily significant archaeal phyla not previously known to possess BGCs. This study provides new insights into how secondary metabolites from BGCs may enable diverse microbial mat communities to adapt to extreme environments.
Collapse
Affiliation(s)
- Ray Chen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Gareth S Kindler
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Fraser Iain MacLeod
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| | - Brendan P Burns
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia.,Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
236
|
Wang Y, Liang J, Zhang C, Wang L, Gao W, Jiang J. Bacillus megaterium WL-3 Lipopeptides Collaborate Against Phytophthora infestans to Control Potato Late Blight and Promote Potato Plant Growth. Front Microbiol 2020; 11:1602. [PMID: 32733429 PMCID: PMC7363778 DOI: 10.3389/fmicb.2020.01602] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Abstract
Oomycete Phytophthora infestans [(Mont.) de Bary] is the cause of potato late blight, a plant disease which poses a serious threat to our global food security and is responsible for huge economic losses worldwide. Lipopeptides produced by Bacillus species are known to be potent antibacterial compounds against many plant pathogens. In this study, we show that Bacillus megaterium WL-3 has an antagonistic effect against potato late blight. Electrospray ionization mass spectrometry (ESI-MS) revealed that lipopeptides derived from the WL-3 strain contained three subfamilies, surfactin (C13 - C15), Iturin A (C14 - C16), and Fengycin A (C15 - C19). The Iturin A and Fengycin A lipopeptide families were each confirmed to have anti-oomycete effects against P. infestans mycelium growth as well as obvious controlling effects against potato late blight in greenhouse experiments and field assays. Furthermore, Iturin A and Fengycin A were able to promote plant photosynthetic efficiency, plant growth, and potato yield. Most importantly, the combination of Iturin A and Fengycin A (I + F) was superior to individual lipopeptides in controlling potato late blight and in the promotion of plant growth. The results of this study indicate that B. megaterium WL-3 and its lipopeptides are potential candidates for the control of late blight and the promotion of potato plant growth.
Collapse
Affiliation(s)
- Youyou Wang
- College of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Jiao Liang
- College of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Congying Zhang
- College of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Le Wang
- College of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Wenbin Gao
- College of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Jizhi Jiang
- College of Life Science, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
237
|
Abdallah DB, Krier F, Jacques P, Tounsi S, Frikha-Gargouri O. Agrobacterium tumefaciens C58 presence affects Bacillus velezensis 32a ecological fitness in the tomato rhizosphere. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28429-28437. [PMID: 32415456 DOI: 10.1007/s11356-020-09124-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
The persistence of pathogenic Agrobacterium strains as soil-associated saprophytes may cause an inconsistency in the efficacy of the biocontrol inoculants under field condition. The study of the interaction occurring in the rhizosphere between the beneficial and the pathogenic microbes is thus interesting for the development of effective biopesticides for the management of crown gall disease. However, very little is still known about the influence of these complex interactions on the biocontrol determinants of beneficial bacteria, especially Bacillus strains. This study aimed to evaluate the effect of the soil borne pathogen Agrobacterium tumefaciens C58 on root colonization and lipopeptide production by Bacillus velezensis strain 32a during interaction with tomato plants. Results show that the presence of A. tumefaciens C58 positively impacted the root colonization level of the Bacillus strain. However, negative impact on surfactin production was observed in Agrobacterium-treated seedling, compared with control. Further investigation suggests that these modulations are due to a modified tomato root exudate composition during the tripartite interaction. Thus, this work contributes to enhance the knowledge on the impact of interspecies interaction on the ecological fitness of Bacillus cells living in the rhizosphere.
Collapse
Affiliation(s)
- Dorra Ben Abdallah
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, P.O. Box 1177, 3018, Sfax, Tunisia
| | - François Krier
- Université de Lille, INRA, Université d'Artois, Université du Littoral-Côte d'Opale, EA 7394 - ICV-Institut Charles Viollette, F-59000, Lille, France
| | - Philippe Jacques
- Microbial Processes and Interactions (MiPI), TERRA Teaching and Research Centre, Gembloux Agro-Bio Tech University of Liege, B-5030, Gembloux, Belgium
| | - Slim Tounsi
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, P.O. Box 1177, 3018, Sfax, Tunisia
| | - Olfa Frikha-Gargouri
- Biopesticides Laboratory, Centre of Biotechnology of Sfax, Sfax University, P.O. Box 1177, 3018, Sfax, Tunisia.
| |
Collapse
|
238
|
Yang X, Zhang L, Xiang Y, Du L, Huang X, Liu Y. Comparative transcriptome analysis of Sclerotinia sclerotiorum revealed its response mechanisms to the biological control agent, Bacillus amyloliquefaciens. Sci Rep 2020; 10:12576. [PMID: 32724140 PMCID: PMC7387486 DOI: 10.1038/s41598-020-69434-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 07/12/2020] [Indexed: 11/08/2022] Open
Abstract
Biological control mechanisms of plant diseases have been intensively studied. However, how plant pathogens respond to and resist or alleviate biocontrol agents remains largely unknown. In this study, a comparative transcriptome analysis was performed to elucidate how the pathogen of sclerotinia stem rot, Sclerotinia sclerotiorum, responds and resists to the biocontrol agent, Bacillus amyloliquefaciens. Results revealed that a total of 2,373 genes were differentially expressed in S. sclerotiorum samples treated with B. amyloliquefaciens fermentation broth (TS) when compared to control samples (CS). Among these genes, 2,017 were upregulated and 356 were downregulated. Further analyses indicated that various genes related to fungal cell wall and cell membrane synthesis, antioxidants, and the autophagy pathway were significantly upregulated, including glucan synthesis, ergosterol biosynthesis pathway, fatty acid synthase, heme-binding peroxidase related to oxidative stress, glutathione S-transferase, ABC transporter, and autophagy-related genes. These results suggest that S. sclerotiorum recruits numerous genes to respond to or resist the biocontrol of B. amyloliquefaciens. Thus, this study serves as a valuable resource regarding the mechanisms of fungal pathogen resistance to biocontrol agents.
Collapse
Affiliation(s)
- Xiaoxiang Yang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, Sichuan, People's Republic of China
| | - Lei Zhang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, Sichuan, People's Republic of China
| | - Yunjia Xiang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China
| | - Lei Du
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China
| | - Xiaoqin Huang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China.
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, Sichuan, People's Republic of China.
| | - Yong Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, People's Republic of China.
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, 610066, Sichuan, People's Republic of China.
| |
Collapse
|
239
|
Oni FE, Geudens N, Onyeka JT, Olorunleke OF, Salami AE, Omoboye OO, Arias AA, Adiobo A, De Neve S, Ongena M, Martins JC, Höfte M. Cyclic lipopeptide-producing Pseudomonas koreensis group strains dominate the cocoyam rhizosphere of a Pythium root rot suppressive soil contrasting with P. putida prominence in conducive soils. Environ Microbiol 2020; 22:5137-5155. [PMID: 32524747 DOI: 10.1111/1462-2920.15127] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 11/29/2022]
Abstract
Pseudomonas isolates from tropical environments have been underexplored and may form an untapped reservoir of interesting secondary metabolites. In this study, we compared Pseudomonas and cyclic lipopeptide (CLP) diversity in the rhizosphere of a cocoyam root rot disease (CRRD) suppressive soil in Boteva, Cameroon with those from four conducive soils in Cameroon and Nigeria. Compared with other soils, Boteva andosols were characterized by high silt, organic matter, nitrogen and calcium. Besides, the cocoyam rhizosphere at Boteva was characterized by strains belonging mainly to the P. koreensis and P. putida (sub)groups, with representations in the P. fluorescens, P. chlororaphis, P. jessenii and P. asplenii (sub)groups. In contrast, P. putida isolates were prominent in conducive soils. Regarding CLP diversity, Boteva was characterized by strains producing 11 different CLP types with cocoyamide A producers, belonging to the P. koreensis group, being the most abundant. However, putisolvin III-V producers were the most dominant in the rhizosphere of conducive soils in both Cameroon and Nigeria. Furthermore, we elucidated the chemical structure of putisolvin derivatives-putisolvin III-V, and described its biosynthetic gene cluster. We show that high Pseudomonas and metabolic diversity may be driven by microbial competition, which likely contributes to soil suppressiveness to CRRD.
Collapse
Affiliation(s)
- Feyisara Eyiwumi Oni
- Phytopathology Laboratory, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Unit for Environmental Sciences and Management, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Niels Geudens
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Ghent, Belgium
| | - Joseph T Onyeka
- Plant Pathology Unit, National Root Crops Research Institute (NRCRI), Umudike, Abia, Nigeria
| | - Oluwatoyin Faith Olorunleke
- Phytopathology Laboratory, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ayodeji Ekundayo Salami
- Department of Crop, Horticulture and Landscape Design, Faculty of Agricultural Sciences, Ekiti State University (EKSU), Ado-Ekiti, Nigeria
| | - Olumide Owolabi Omoboye
- Phytopathology Laboratory, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anthony Arguelles Arias
- Microbial Processes and Interactions Unit, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Amayana Adiobo
- Institute for Agricultural Research for Development (IRAD), Ekona, Cameroon
| | - Stefaan De Neve
- Research Group of Soil Fertility and Nutrient Management, Department of Environment, Ghent University, Ghent, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions Unit, Faculty of Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - José C Martins
- NMR and Structure Analysis Unit, Department of Organic and Macromolecular Chemistry, Faculty of Science, Ghent University, Ghent, Belgium
| | - Monica Höfte
- Phytopathology Laboratory, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
240
|
Andrić S, Meyer T, Ongena M. Bacillus Responses to Plant-Associated Fungal and Bacterial Communities. Front Microbiol 2020; 11:1350. [PMID: 32655531 PMCID: PMC7324712 DOI: 10.3389/fmicb.2020.01350] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 05/26/2020] [Indexed: 12/22/2022] Open
Abstract
Some members of root-associated Bacillus species have been developed as biocontrol agents due to their contribution to plant protection by directly interfering with the growth of pathogens or by stimulating systemic resistance in their host. As rhizosphere-dwelling bacteria, these bacilli are surrounded and constantly interacting with other microbes via different types of communications. With this review, we provide an updated vision of the molecular and phenotypic responses of Bacillus upon sensing other rhizosphere microorganisms and/or their metabolites. We illustrate how Bacillus spp. may react by modulating the production of secondary metabolites, such as cyclic lipopeptides or polyketides. On the other hand, some developmental processes, such as biofilm formation, motility, and sporulation may also be modified upon interaction, reflecting the adaptation of Bacillus multicellular communities to microbial competitors for preserving their ecological persistence. This review also points out the limited data available and a global lack of knowledge indicating that more research is needed in order to, not only better understand the ecology of bacilli in their natural soil niche, but also to better assess and improve their promising biocontrol potential.
Collapse
Affiliation(s)
- Sofija Andrić
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Thibault Meyer
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions Laboratory, Terra Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
241
|
Hasan A, Saxena V, Castelletto V, Zimbitas G, Seitsonen J, Ruokolainen J, Pandey LM, Sefcik J, Hamley IW, Lau KHA. Chain-End Modifications and Sequence Arrangements of Antimicrobial Peptoids for Mediating Activity and Nano-Assembly. Front Chem 2020; 8:416. [PMID: 32528930 PMCID: PMC7253723 DOI: 10.3389/fchem.2020.00416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Poly(N-substituted glycine) "peptoids" are an interesting class of peptidomimics that can resist proteolysis and mimic naturally found antimicrobial peptides (AMPs), which exhibit wide spectrum activity against bacteria. This work investigates the possibility of modifying peptoid AMP mimics (AMPMs) with aliphatic lipid "tails" to generate "lipopeptoids" that can assemble into micellar nanostructures, and evaluates their antimicrobial activities. Two families of AMPMs with different distributions of hydrophobic and cationic residues were employed-one with a uniform repeating amphiphilicity, the other with a surfactant-like head-to-tail amphiphilicity. To further evaluate the interplay between self-assembly and activity, the lipopeptoids were variously modified at the AMPM chain ends with a diethylene glycol (EG2) and/or a cationic group (Nlys-Nlys dipeptoid) to adjust amphiphilicity and chain flexibility. Self-assembly was investigated by critical aggregation concentration (CAC) fluorescence assays and dynamic light scattering (DLS). The structure of a key species was also verified by small-angle X-ray scattering (SAXS) and cryo-electron microscopy (cryo-EM). To screen for antibacterial properties, we measured the minimum inhibitory concentrations (MIC) against S. aureus, E. coli, and P. aeruginosa. We found that certain combinations of lipid tail and AMPM sequences exhibit increased antibacterial activity (i.e., decreased MICs). Perhaps counter-intuitively, we were particularly interested in increased MICs in combination with low CACs. Concealing antimicrobial interactions due to packing of AMPMs in nano-assemblies could pave the way to AMPMs that may be "inert" even if unintentionally released and prevent microbes from gaining resistance to the lipopeptoids. Overall, incorporation of EG2 significantly improved lipopeptoids packing while the hydrophobic tail length was found to have a major influence over the MIC. One particular sequence, which we named C15-EG2-(kss)4, exhibited a very low CAC of 34 μM (0.0075 wt.%) and a significantly increased MIC above values for the unmodified AMPM. With the sequence design trends uncovered from this study, future work will focus on discovering more species such as C15-EG2-(kss)4 and on investigating release mechanisms and the potency of the released lipopeptoids.
Collapse
Affiliation(s)
- Abshar Hasan
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Varun Saxena
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | | | - Georgina Zimbitas
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, United Kingdom
| | | | | | - Lalit M. Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, India
| | - Jan Sefcik
- Department of Chemical and Process Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Ian W. Hamley
- Department of Chemistry, University of Reading, Reading, United Kingdom
| | - King Hang Aaron Lau
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
242
|
Benaud N, Zhang E, van Dorst J, Brown MV, Kalaitzis JA, Neilan BA, Ferrari BC. Harnessing long-read amplicon sequencing to uncover NRPS and Type I PKS gene sequence diversity in polar desert soils. FEMS Microbiol Ecol 2020; 95:5372416. [PMID: 30848780 DOI: 10.1093/femsec/fiz031] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/07/2019] [Indexed: 02/02/2023] Open
Abstract
The severity of environmental conditions at Earth's frigid zones present attractive opportunities for microbial biomining due to their heightened potential as reservoirs for novel secondary metabolites. Arid soil microbiomes within the Antarctic and Arctic circles are remarkably rich in Actinobacteria and Proteobacteria, bacterial phyla known to be prolific producers of natural products. Yet the diversity of secondary metabolite genes within these cold, extreme environments remain largely unknown. Here, we employed amplicon sequencing using PacBio RS II, a third generation long-read platform, to survey over 200 soils spanning twelve east Antarctic and high Arctic sites for natural product-encoding genes, specifically targeting non-ribosomal peptides (NRPS) and Type I polyketides (PKS). NRPS-encoding genes were more widespread across the Antarctic, whereas PKS genes were only recoverable from a handful of sites. Many recovered sequences were deemed novel due to their low amino acid sequence similarity to known protein sequences, particularly throughout the east Antarctic sites. Phylogenetic analysis revealed that a high proportion were most similar to antifungal and biosurfactant-type clusters. Multivariate analysis showed that soil fertility factors of carbon, nitrogen and moisture displayed significant negative relationships with natural product gene richness. Our combined results suggest that secondary metabolite production is likely to play an important physiological component of survival for microorganisms inhabiting arid, nutrient-starved soils.
Collapse
Affiliation(s)
- Nicole Benaud
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Eden Zhang
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Josie van Dorst
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Mark V Brown
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - John A Kalaitzis
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, 2052, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Belinda C Ferrari
- School of Biotechnology and Biomolecular Sciences, UNSW, Sydney, NSW, 2052, Australia
| |
Collapse
|
243
|
De Vrieze M, Varadarajan AR, Schneeberger K, Bailly A, Rohr RP, Ahrens CH, Weisskopf L. Linking Comparative Genomics of Nine Potato-Associated Pseudomonas Isolates With Their Differing Biocontrol Potential Against Late Blight. Front Microbiol 2020; 11:857. [PMID: 32425922 PMCID: PMC7204214 DOI: 10.3389/fmicb.2020.00857] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/09/2020] [Indexed: 01/22/2023] Open
Abstract
For plants, the advantages of associating with beneficial bacteria include plant growth promotion, reduction of abiotic and biotic stresses and enhanced protection against various pests and diseases. Beneficial bacteria rightly equipped for successful plant colonization and showing antagonistic activity toward plant pathogens seem to be actively recruited by plants. To gain more insights into the genetic determinants responsible for plant colonization and antagonistic activities, we first sequenced and de novo assembled the complete genomes of nine Pseudomonas strains that had exhibited varying antagonistic potential against the notorious oomycete Phytophthora infestans, placed them into the phylogenomic context of known Pseudomonas biocontrol strains and carried out a comparative genomic analysis to define core, accessory (i.e., genes found in two or more, but not all strains) and unique genes. Next, we assessed the colonizing abilities of these strains and used bioassays to characterize their inhibitory effects against different stages of P. infestans' lifecycle. The phenotype data were then correlated with genotype information, assessing over three hundred genes encoding known factors for plant colonization and antimicrobial activity as well as secondary metabolite biosynthesis clusters predicted by antiSMASH. All strains harbored genes required for successful plant colonization but also distinct arsenals of antimicrobial compounds. We identified genes coding for phenazine, hydrogen cyanide, 2-hexyl, 5-propyl resorcinol and pyrrolnitrin synthesis, as well as various siderophores, pyocins and type VI secretion systems. Additionally, the comparative genomic analysis revealed about a hundred accessory genes putatively involved in anti-Phytophthora activity, including a type II secretion system (T2SS), several peptidases and a toxin. Transcriptomic studies and mutagenesis are needed to further investigate the putative involvement of the novel candidate genes and to identify the various mechanisms involved in the inhibition of P. infestans by different Pseudomonas strains.
Collapse
Affiliation(s)
- Mout De Vrieze
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Adithi R. Varadarajan
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Kerstin Schneeberger
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Aurélien Bailly
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Rudolf P. Rohr
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Christian H. Ahrens
- Agroscope, Research Group Molecular Diagnostics, Genomics and Bioinformatics & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
244
|
Daura-Pich O, Hernández I, Pinyol-Escala L, Lara JM, Martínez-Servat S, Fernández C, López-García B. No antibiotic and toxic metabolites produced by the biocontrol agent Pseudomonas putida strain B2017. FEMS Microbiol Lett 2020; 367:5826813. [DOI: 10.1093/femsle/fnaa075] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
ABSTRACTPseudomonas putida and closely-related species such as Pseudomonas fluorescens and Pseudomonas brassicacearum have been reported as potential biocontrol agents and plant growth-promoters. Recently, we have described the biocontrol activity of P. putida B2017 against several phytopathogens of agricultural relevance. In this study, its ability to produce potential antibiotic / toxic metabolites was assessed by functional, chromatography-mass spectrometry and genomic analysis. Our results show that B2017 is not able to synthesize surfactants and common antibiotics produced by Pseudomonas spp., i.e. pyrrolnitrin, 2,4-diacetylphloroglucinol, pyoluteorin and pyocyanin, but it produces pyoverdine, a siderophore which is involved in its biocontrol activity. The non-production of other metabolites, such as cyanide, safracin, promysalin and lipopeptides between others, is also discussed. Our data suggest that the mode of action of B2017 is not mainly due to the production of antimicrobial / toxic metabolites. Moreover, these features make P. putida B2017 a promising biocontrol microorganism for plant protection without side effects on environment, non-target organisms and human health.
Collapse
Affiliation(s)
- Oriol Daura-Pich
- Futureco Bioscience S. A., Avinguda del Cadí 19–23, 08799 Olérdola (Barcelona), Spain
| | - Iker Hernández
- Futureco Bioscience S. A., Avinguda del Cadí 19–23, 08799 Olérdola (Barcelona), Spain
| | - Lola Pinyol-Escala
- Futureco Bioscience S. A., Avinguda del Cadí 19–23, 08799 Olérdola (Barcelona), Spain
| | - Jose M Lara
- Futureco Bioscience S. A., Avinguda del Cadí 19–23, 08799 Olérdola (Barcelona), Spain
| | - Sonia Martínez-Servat
- Futureco Bioscience S. A., Avinguda del Cadí 19–23, 08799 Olérdola (Barcelona), Spain
| | - Carolina Fernández
- Futureco Bioscience S. A., Avinguda del Cadí 19–23, 08799 Olérdola (Barcelona), Spain
| | - Belén López-García
- Futureco Bioscience S. A., Avinguda del Cadí 19–23, 08799 Olérdola (Barcelona), Spain
| |
Collapse
|
245
|
De Vleeschouwer M, Van Kersavond T, Verleysen Y, Sinnaeve D, Coenye T, Martins JC, Madder A. Identification of the Molecular Determinants Involved in Antimicrobial Activity of Pseudodesmin A, a Cyclic Lipopeptide From the Viscosin Group. Front Microbiol 2020; 11:646. [PMID: 32373092 PMCID: PMC7187754 DOI: 10.3389/fmicb.2020.00646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Cyclic lipo(depsi)peptides (CLiPs) from Pseudomonas constitute a class of natural products involved in a broad range of biological functions for their producers. They also display interesting antimicrobial potential including activity against Gram-positive bacteria. Literature has indicated that these compounds can induce membrane permeabilization, possibly through pore-formation, leading to the general view that the cellular membrane constitutes the primary target in their mode of action. In support of this view, we previously demonstrated that the enantiomer of pseudodesmin A, a member of the viscosin group of CLiPs, shows identical activity against a test panel of six Gram-positive bacterial strains. Here, a previously developed total organic synthesis route is used and partly adapted to generate 20 novel pseudodesmin A analogs in an effort to derive links between molecular constitution, structure and activity. From these, the importance of a macrocycle closed by an ester bond as well as a critical length of β-OH fatty acid chain capping the N-terminus is conclusively demonstrated, providing further evidence for the importance of peptide-membrane interactions in the mode of action. Moreover, an alanine scan is used to unearth the contribution of specific amino acid residues to biological activity. Subsequent interpretation in terms of a structural model describing the location and orientation of pseudodesmin A in a membrane environment, allows first insight in the peptide-membrane interactions involved. The biological screening also identified residue positions that appear less sensitive to conservative modifications, allowing the introduction of a non-perturbing tryptophan residue which will pave the way toward biophysical studies using fluorescence spectroscopy.
Collapse
Affiliation(s)
- Matthias De Vleeschouwer
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium.,NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Tim Van Kersavond
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium.,NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Yentl Verleysen
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium.,NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Davy Sinnaeve
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Department of Pharmaceutical Analysis, Ghent University, Ghent, Belgium
| | - José C Martins
- NMR and Structure Analysis Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University, Ghent, Belgium
| |
Collapse
|
246
|
Characterization of biosurfactant produced by the endophyte Burkholderia sp. WYAT7 and evaluation of its antibacterial and antibiofilm potentials. J Biotechnol 2020; 313:1-10. [PMID: 32151643 DOI: 10.1016/j.jbiotec.2020.03.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 12/29/2022]
Abstract
The endophyte Burkholderia sp. WYAT7 isolated from the medicinal plant Artemisia nilagirica (Clarke) Pamp. was analyzed for its ability to produce biosurfactant. The evaluation of biosurfactant production was conducted using different screening methods which confirmed the presence of biosurfactant in the culture supernatant. CTAB- methylene blue agar plate method was used for the screening of glycolipid biosurfactant production. The biosurfactant produced by the bacteria effectively metabolized hydrocarbons present in the bacterial culture media. Fourier transform infrared spectroscopic (FTIR) analysis of biosurfactant provided the details regarding OH stretching, stretching vibrations of acyl chain, CO stretching, stretching vibrations of ether and vibrations of glycosidic linkages in the biosurfactant. The stretching vibrations of glycosidic linkage in the fingerprint regions of FTIR spectrum (1200 cm-1 to 800 cm-1 regions) confirms that the biosurfactant produced was a glycolipid. The GC-MS analysis confirmed the methyl and ethyl esters of fatty acids. The biosurfactant from the bacteria exhibited antibacterial activity against bacterial pathogens such as Pseudomonas aeruginosa (MTCC 2453), Escherichia coli (MTCC 1610), Salmonella paratyphi and Bacillus subtilis. The glycolipid biosurfactant had antibiofilm activity as evidenced in Staphylococcus aureus (MTCC 1430). All these results indicated the beneficial effect of the biosurfactant in plant-endophyte interactions. The properties exhibited by the biosurfactant suggest that it can be exploited commercially for the production of novel antibiotics.
Collapse
|
247
|
Xiong W, Song Y, Yang K, Gu Y, Wei Z, Kowalchuk GA, Xu Y, Jousset A, Shen Q, Geisen S. Rhizosphere protists are key determinants of plant health. MICROBIOME 2020; 8:27. [PMID: 32127034 PMCID: PMC7055055 DOI: 10.1186/s40168-020-00799-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/05/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plant health is intimately influenced by the rhizosphere microbiome, a complex assembly of organisms that changes markedly across plant growth. However, most rhizosphere microbiome research has focused on fractions of this microbiome, particularly bacteria and fungi. It remains unknown how other microbial components, especially key microbiome predators-protists-are linked to plant health. Here, we investigated the holistic rhizosphere microbiome including bacteria, microbial eukaryotes (fungi and protists), as well as functional microbial metabolism genes. We investigated these communities and functional genes throughout the growth of tomato plants that either developed disease symptoms or remained healthy under field conditions. RESULTS We found that pathogen dynamics across plant growth is best predicted by protists. More specifically, communities of microbial-feeding phagotrophic protists differed between later healthy and diseased plants at plant establishment. The relative abundance of these phagotrophs negatively correlated with pathogen abundance across plant growth, suggesting that predator-prey interactions influence pathogen performance. Furthermore, phagotrophic protists likely shifted bacterial functioning by enhancing pathogen-suppressing secondary metabolite genes involved in mitigating pathogen success. CONCLUSIONS We illustrate the importance of protists as top-down controllers of microbiome functioning linked to plant health. We propose that a holistic microbiome perspective, including bacteria and protists, provides the optimal next step in predicting plant performance. Video Abstract.
Collapse
Affiliation(s)
- Wu Xiong
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Yuqi Song
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Keming Yang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yian Gu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhong Wei
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| | - George A Kowalchuk
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Yangchun Xu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Ecology and Biodiversity Group, Department of Biology, Institute of Environmental Biology, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Stefan Geisen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Key Lab of Plant Immunity, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
- Department of Terrestrial Ecology, Netherlands Institute for Ecology (NIOO-KNAW), 6708, PB, Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University & Research, 6700, ES, Wageningen, The Netherlands
| |
Collapse
|
248
|
Friend or foe? Exploring the fine line between Pseudomonas brassicacearum and phytopathogens. J Med Microbiol 2020; 69:347-360. [DOI: 10.1099/jmm.0.001145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas brassicacearum
is one of over fifty species of bacteria classified into the
P. fluorescens
group. Generally considered a harmless commensal, these bacteria are studied for their plant-growth promotion (PGP) and biocontrol characteristics. Intriguingly,
P. brassicacearum
is closely related to
P. corrugata
, which is classified as an opportunistic phytopathogen. Twenty-one
P. brassicacearum
genomes have been sequenced to date. In the current review, genomes of
P. brassicacearum
and strains from the
P. corrugata
clade were mined for regions associated with PGP, biocontrol and pathogenicity. We discovered that ‘beneficial’ bacteria and those classified as plant pathogens have many genes in common; thus, only a fine line separates beneficial/harmless commensals from those capable of causing disease in plants. The genotype and physiological state of the plant, the presence of biotic/abiotic stressors, and the ability of bacteria to manipulate the plant immune system collectively contribute to how the bacterial-plant interaction plays out. Because production of extracellular metabolites is energetically costly, these compounds are expected to impart a fitness advantage to the producer.
P. brassicacearum
is able to reduce the threat of nematode predation through release of metabolites involved in biocontrol. Moreover this bacterium has the unique ability to form biofilms on the head of Caenorhabditis elegans, as a second mechanism of predator avoidance. Rhizobacteria, plants, fungi, and microfaunal predators have occupied a shared niche for millions of years and, in many ways, they function as a single organism. Accordingly, it is essential that we appreciate the dynamic interplay among these members of the community.
Collapse
|
249
|
Isolation and Characterization of Root-Associated Bacterial Endophytes and Their Biocontrol Potential against Major Fungal Phytopathogens of Rice ( Oryza sativa L.). Pathogens 2020; 9:pathogens9030172. [PMID: 32121142 PMCID: PMC7157602 DOI: 10.3390/pathogens9030172] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 11/17/2022] Open
Abstract
Rice (Oryza sativa L.) is a major cereal food crop worldwide, and its growth and yield are affected by several fungal phytopathogens, including Magnaporthe oryzae, Fusarium graminearum, F. moniliforme, and Rhizoctonia solani. In the present study, we have isolated and characterized root-associated bacterial endophytes that have antifungal activities against rice fungal phytopathogens. A total of 122 root-associated bacterial endophytes, belonging to six genera (Bacillus, Fictibacillus, Lysinibacillus, Paenibacillus, Cupriavidus, and Microbacterium) and 22 species were isolated from three rice cultivars. Furthermore, the 16S rRNA sequence-based phylogeny results revealed that Bacillus was the most dominant bacterial genera, and that there were 15 different species among the isolates. Moreover, 71 root-associated endophytes showed antagonistic effects against four major fungal phytopathogens, including M. oryzae, F. graminearum,F. moniliforme, and R. solani. Additionally, the biochemical, physiological, and PCR amplification results of the antibiotic-related genes further supported the endophytes as potential biocontrolling agents against the rice fungal pathogens. Consequently, the findings in this study suggested that the isolated bacterial endophytes might have beneficial roles in rice defense responses, including several bioactive compound syntheses. The outcomes of this study advocate the use of natural endophytes as an alternative strategy towards the rice resistance response.
Collapse
|
250
|
Shi Y, Zaleta-Pinet DA, Clark BR. Isolation, Identification, and Decomposition of Antibacterial Dialkylresorcinols from a Chinese Pseudomonas aurantiaca Strain. JOURNAL OF NATURAL PRODUCTS 2020; 83:194-201. [PMID: 31999458 DOI: 10.1021/acs.jnatprod.9b00315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A chemical investigation of a Chinese Pseudomonas aurantiaca strain has yielded a new benzoquinone (4) and furanone (5), in addition to the known dialkylresorcinols 1 and 2. Extensive decomposition studies on the major metabolite 1 produced an additional furanone derivative (6), a hydroxyquinone (7), and two unusual resorcinol and hydroxyquinone dimers (8 and 9). Structures were elucidated by nuclear magnetic resonance spectroscopy in combination with tandem mass spectrometry analysis. These studies illustrate the potential of artifacts as a source of additional chemical diversity. Compounds 1 and 2 showed moderate antibacterial activity against a panel of Gram-positive pathogens, while the antibacterial activities of the artifacts (4-9) were reduced.
Collapse
Affiliation(s)
- Yue Shi
- School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Diana A Zaleta-Pinet
- School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| | - Benjamin R Clark
- School of Pharmaceutical Science and Technology , Tianjin University , Tianjin 300072 , People's Republic of China
| |
Collapse
|