201
|
Desselberger U, Lever AML. The role of cellular lipid droplets in rotavirus replication. Future Virol 2013. [DOI: 10.2217/fvl.13.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Viroplasms, cytoplasmic inclusion bodies in rotavirus (RV)-infected cells in which viral RNA replication and early morphogenesis take place, were found to be associated with the cellular organelles lipid droplets (LDs). Compounds affecting LD homoeostasis, including agents causing lipolysis and others that inhibit fatty acid biosynthesis, decrease RV replication. Gradient ultracentrifugation of infected cell extracts shows LD components cosedimenting with viroplasms in low-density fractions. Disturbance of fatty acid biosynthesis decreases the production of both double-layered and triple-layered (infectious) RV particles. Future studies should explore the LD components important for RV replication, and the potential of chemical compounds interfering with lipid metabolism for treatment of RV disease.
Collapse
Affiliation(s)
- Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Box 157 Cambridge CB2 0QQ, UK.
| | - Andrew ML Lever
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Box 157 Cambridge CB2 0QQ, UK
| |
Collapse
|
202
|
Perilipin1 promotes unilocular lipid droplet formation through the activation of Fsp27 in adipocytes. Nat Commun 2013; 4:1594. [PMID: 23481402 PMCID: PMC3615468 DOI: 10.1038/ncomms2581] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 02/06/2013] [Indexed: 12/25/2022] Open
Abstract
Mature white adipocytes contain a characteristic unilocular lipid droplet. However, the molecular mechanisms underlying unilocular lipid droplet formation are poorly understood. We previously showed that Fsp27, an adipocyte-specific lipid droplet-associated protein, promotes lipid droplet growth by initiating lipid exchange and transfer. Here, we identify Perilipin1 (Plin1), another adipocyte-specific lipid droplet-associated protein, as an Fsp27 activator. Plin1 interacts with the CIDE-N domain of Fsp27 and markedly increases Fsp27-mediated lipid exchange, lipid transfer and lipid droplet growth. Functional cooperation between Plin1 and Fsp27 is required for efficient lipid droplet growth in adipocytes, as depletion of either protein impairs lipid droplet growth. The CIDE-N domain of Fsp27 forms homodimers and disruption of CIDE-N homodimerization abolishes Fsp27-mediated lipid exchange and transfer. Interestingly, Plin1 can restore the activity of CIDE-N homodimerization-defective mutants of Fsp27. We thus uncover a novel mechanism underlying lipid droplet growth and unilocular lipid droplet formation that involves the cooperative action of Fsp27 and Plin1 in adipocytes. Adipocytes store lipid in spherical droplets whose size is determined by lipid exchange and transfer proteins. Sun et al. show that Perilipin1 promotes the growth of lipid droplets by activating the lipid transfer protein Fsp27.
Collapse
|
203
|
Nchoutmboube JA, Viktorova EG, Scott AJ, Ford LA, Pei Z, Watkins PA, Ernst RK, Belov GA. Increased long chain acyl-Coa synthetase activity and fatty acid import is linked to membrane synthesis for development of picornavirus replication organelles. PLoS Pathog 2013; 9:e1003401. [PMID: 23762027 PMCID: PMC3675155 DOI: 10.1371/journal.ppat.1003401] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 04/19/2013] [Indexed: 12/20/2022] Open
Abstract
All positive strand (+RNA) viruses of eukaryotes replicate their genomes in association with membranes. The mechanisms of membrane remodeling in infected cells represent attractive targets for designing future therapeutics, but our understanding of this process is very limited. Elements of autophagy and/or the secretory pathway were proposed to be hijacked for building of picornavirus replication organelles. However, even closely related viruses differ significantly in their requirements for components of these pathways. We demonstrate here that infection with diverse picornaviruses rapidly activates import of long chain fatty acids. While in non-infected cells the imported fatty acids are channeled to lipid droplets, in infected cells the synthesis of neutral lipids is shut down and the fatty acids are utilized in highly up-regulated phosphatidylcholine synthesis. Thus the replication organelles are likely built from de novo synthesized membrane material, rather than from the remodeled pre-existing membranes. We show that activation of fatty acid import is linked to the up-regulation of cellular long chain acyl-CoA synthetase activity and identify the long chain acyl-CoA syntheatse3 (Acsl3) as a novel host factor required for polio replication. Poliovirus protein 2A is required to trigger the activation of import of fatty acids independent of its protease activity. Shift in fatty acid import preferences by infected cells results in synthesis of phosphatidylcholines different from those in uninfected cells, arguing that the viral replication organelles possess unique properties compared to the pre-existing membranes. Our data show how poliovirus can change the overall cellular membrane homeostasis by targeting one critical process. They explain earlier observations of increased phospholipid synthesis in infected cells and suggest a simple model of the structural development of the membranous scaffold of replication complexes of picorna-like viruses, that may be relevant for other (+)RNA viruses as well. Eukaryotic cells feature astonishing complexity of regulatory networks, yet control over this fine-tuned machinery is easily overrun by viruses with expression of just a handful of proteins. One of the striking examples of such hostile take-over is the rewiring of normal cellular membrane metabolism by (+)RNA viruses towards development of new membranous organelles harboring viral replication machinery. (+)RNA viruses of eukaryotes infect organisms from unicellular algae to humans. Many of them induce diseases resulting in significant economic losses, public health burden, human suffering and sometimes fatal consequences. We show how picornaviruses reorganize cellular lipid metabolism by targeting long chain acyl-CoA synthetase activity. This induces increased import of fatty acids in infected cells and up-regulation of phospholipid synthesis, resulting in formation of replication organelles different from the pre-existing cellular membranes. This mechanism is utilized by diverse viruses and may represent an attractive target for anti-viral interventions.
Collapse
Affiliation(s)
- Jules A. Nchoutmboube
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Ekaterina G. Viktorova
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Alison J. Scott
- University of Maryland, School of Dentistry, Baltimore, Maryland, United States of America
| | - Lauren A. Ford
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
| | - Zhengtong Pei
- Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paul A. Watkins
- Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Robert K. Ernst
- University of Maryland, School of Dentistry, Baltimore, Maryland, United States of America
| | - George A. Belov
- Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
204
|
Abstract
Lipid droplets (LD) are depots of neutral lipids that exist virtually in all cells. Until recently, they were considered to be in the same category as glycogen granules, simple inert storage sites for energy. There is now increasing evidence that LD interact dynamically with different organelles, probably as means of providing these organelles with lipids for their membrane expansion. However, most of the mechanisms driving LD biogenesis, growth and intracellular movement remain unknown. Recent data suggest that LD remain functionally connected to the endoplasmic reticulum (ER) membrane and represent specialized ER domains rather than independent organelles. Nevertheless, they represent important cellular structures for which dysfunctions may lead to human diseases such as lypodystrophies or neurodegenerative diseases.
Collapse
Affiliation(s)
- Philippe Roingeard
- Inserm U966, laboratoire de biologie cellulaire, université François Rabelais et CHU de Tours, 10, boulevard Tonnellé, 37032 Tours, France.
| |
Collapse
|
205
|
Ruggles KV, Turkish A, Sturley SL. Making, baking, and breaking: the synthesis, storage, and hydrolysis of neutral lipids. Annu Rev Nutr 2013; 33:413-51. [PMID: 23701589 DOI: 10.1146/annurev-nutr-071812-161254] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The esterification of amphiphilic alcohols with fatty acids is a ubiquitous strategy implemented by eukaryotes and some prokaryotes to conserve energy and membrane progenitors and simultaneously detoxify fatty acids and other lipids. This key reaction is performed by at least four evolutionarily unrelated multigene families. The synthesis of this "neutral lipid" leads to the formation of a lipid droplet, which despite the clear selective advantage it confers is also a harbinger of cellular and organismal malaise. Neutral lipid deposition as a cytoplasmic lipid droplet may be thermodynamically favored but nevertheless is elaborately regulated. Optimal utilization of these resources by lipolysis is similarly multigenic in determination and regulation. We present here a perspective on these processes that originates from studies in model organisms, and we include our thoughts on interventions that target reductions in neutral lipids as therapeutics for human diseases such as obesity and diabetes.
Collapse
Affiliation(s)
- Kelly V Ruggles
- Institute of Human Nutrition, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | |
Collapse
|
206
|
Hepatic triacylglycerol synthesis and secretion: DGAT2 as the link between glycaemia and triglyceridaemia. Biochem J 2013; 451:1-12. [PMID: 23489367 DOI: 10.1042/bj20121689] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
lThe liver regulates both glycaemia and triglyceridaemia. Hyperglycaemia and hypertriglyceridaemia are both characteristic of (pre)diabetes. Recent observations on the specialised role of DGAT2 (diacylglycerol acyltransferase 2) in catalysing the de novo synthesis of triacylglycerols from newly synthesized fatty acids and nascent diacylglycerols identifies this enzyme as the link between the two. This places DGAT2 at the centre of carbohydrate-induced hypertriglyceridaemia and hepatic steatosis. This function is complemented, but not substituted for, by the ability of DGAT1 to rescue partial glycerides from complete hydrolysis. In peripheral tissues not normally considered to be lipogenic, synthesis of triacylglycerols may largely bypass DGAT2 except in hyperglycaemic/hyperinsulinaemic conditions, when induction of de novo fatty acid synthesis in these tissues may contribute towards increased triacylglycerol secretion (intestine) or insulin resistance (adipose tissue, and cardiac and skeletal muscle).
Collapse
|
207
|
Uchida A, Slipchenko MN, Eustaquio T, Leary JF, Cheng JX, Buhman KK. Intestinal acyl-CoA:diacylglycerol acyltransferase 2 overexpression enhances postprandial triglyceridemic response and exacerbates high fat diet-induced hepatic triacylglycerol storage. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1377-85. [PMID: 23643496 DOI: 10.1016/j.bbalip.2013.04.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 04/24/2013] [Accepted: 04/25/2013] [Indexed: 02/06/2023]
Abstract
Intestinal acyl-CoA:diacylglycerol acyltransferase 2 (DGAT2) is important in the cellular and physiological responses to dietary fat. To determine the effect of increased intestinal DGAT2 on cellular and physiological responses to acute and chronic dietary fat challenges, we generated mice with intestine-specific overexpression of DGAT2 and compared them with intestine-specific overexpression of DGAT1 and wild-type (WT) mice. We found that when intestinal DGAT2 is present in excess, triacylglycerol (TG) secretion from enterocytes is enhanced compared to WT mice; however, TG storage within enterocytes is similar compared to WT mice. We found that when intestinal DGAT2 is present in excess, mRNA levels of genes involved in fatty acid oxidation were reduced. This result suggests that reduced fatty acid oxidation may contribute to increased TG secretion by overexpression of DGAT2 in intestine. Furthermore, this enhanced supply of TG for secretion in Dgat2(Int) mice may be a significant contributing factor to the elevated fasting plasma TG and exacerbated hepatic TG storage in response to a chronic HFD. These results highlight that altering fatty acid and TG metabolism within enterocytes has the capacity to alter systemic delivery of dietary fat and may serve as an effective target for preventing and treating metabolic diseases such as hepatic steatosis.
Collapse
Affiliation(s)
- Aki Uchida
- Purdue University, West Lafayette, IN, USA.
| | | | | | | | | | | |
Collapse
|
208
|
Seyer A, Cantiello M, Bertrand-Michel J, Roques V, Nauze M, Bézirard V, Collet X, Touboul D, Brunelle A, Coméra C. Lipidomic and spatio-temporal imaging of fat by mass spectrometry in mice duodenum during lipid digestion. PLoS One 2013; 8:e58224. [PMID: 23560035 PMCID: PMC3616127 DOI: 10.1371/journal.pone.0058224] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/01/2013] [Indexed: 11/19/2022] Open
Abstract
Intestinal absorption of dietary fat is a complex process mediated by enterocytes leading to lipid assembly and secretion of circulating lipoproteins as chylomicrons, vLDL and intestinal HDL (iHDL). Understanding lipid digestion is of importance knowing the correlation between excessive fat absorption and atherosclerosis. By using time-of-flight secondary ion mass spectrometry (TOF-SIMS), we illustrated a spatio-temporal localization of fat in mice duodenum, at different times of digestion after a lipid gavage, for the first time. Fatty acids progressively increased in enterocytes as well as taurocholic acid, secreted by bile and engaged in the entero-hepatic re-absorption cycle. Cytosolic lipid droplets (CLD) from enterocytes were originally purified separating chylomicron-like, intermediate droplets and smaller HDL-like. A lipidomic quantification revealed their contents in triglycerides, free and esterified cholesterol, phosphatidylcholine, sphingomyelin and ceramides but also in free fatty acids, mono- and di-acylglycerols. An acyl-transferase activity was identified and the enzyme monoacylglycerol acyl transferase 2 (MGAT2) was immunodetected in all CLD. The largest droplets was also shown to contain the microsomal triglyceride transfer protein (MTTP), the acyl-coenzyme A-cholesterol acyltransferases (ACAT) 1 and 2, hormone sensitive lipase (HSL) and adipose triglyceride lipase (ATGL). This highlights the fact that during the digestion of fats, enterocyte CLD contain some enzymes involved in the different stages of the metabolism of diet fatty acids and cholesterol, in anticipation of the crucial work of endoplasmic reticulum in the process. The data further underlines the dual role of chylomicrons and iHDL in fat digestion which should help to efficiently complement lipid-lowering therapy.
Collapse
Affiliation(s)
- Alexandre Seyer
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
| | - Michela Cantiello
- Institut National de la Santé et de la Recherche Médicale (INSERM) U563, Hôpital Purpan, Toulouse, France
| | - Justine Bertrand-Michel
- Institut National de la Santé et de la Recherche Médicale U1048, Hôpital Rangueil, Toulouse, France
| | - Véronique Roques
- Institut National de la Santé et de la Recherche Médicale U1048, Hôpital Rangueil, Toulouse, France
| | - Michel Nauze
- Institut National de la Santé et de la Recherche Médicale U1048, Hôpital Rangueil, Toulouse, France
| | - Valérie Bézirard
- Institut National de la Recherche Agronomique (INRA) UMR 1331, TOXALIM, Toulouse, France
| | - Xavier Collet
- Institut National de la Santé et de la Recherche Médicale U1048, Hôpital Rangueil, Toulouse, France
| | - David Touboul
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
| | - Alain Brunelle
- Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
| | - Christine Coméra
- Institut National de la Santé et de la Recherche Médicale (INSERM) U563, Hôpital Purpan, Toulouse, France
- Institut National de la Recherche Agronomique (INRA) UMR 1331, TOXALIM, Toulouse, France
| |
Collapse
|
209
|
Melo RCN, Paganoti GF, Dvorak AM, Weller PF. The internal architecture of leukocyte lipid body organelles captured by three-dimensional electron microscopy tomography. PLoS One 2013; 8:e59578. [PMID: 23555714 PMCID: PMC3608657 DOI: 10.1371/journal.pone.0059578] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/15/2013] [Indexed: 01/04/2023] Open
Abstract
Lipid bodies (LBs), also known as lipid droplets, are complex organelles of all eukaryotic cells linked to a variety of biological functions as well as to the development of human diseases. In cells from the immune system, such as eosinophils, neutrophils and macrophages, LBs are rapidly formed in the cytoplasm in response to inflammatory and infectious diseases and are sites of synthesis of eicosanoid lipid mediators. However, little is known about the structural organization of these organelles. It is unclear whether leukocyte LBs contain a hydrophobic core of neutral lipids as found in lipid droplets from adipocytes and how diverse proteins, including enzymes involved in eicosanoid formation, incorporate into LBs. Here, leukocyte LB ultrastructure was studied in detail by conventional transmission electron microscopy (TEM), immunogold EM and electron tomography. By careful analysis of the two-dimensional ultrastructure of LBs from human blood eosinophils under different conditions, we identified membranous structures within LBs in both resting and activated cells. Cyclooxygenase, a membrane inserted protein that catalyzes the first step in prostaglandin synthesis, was localized throughout the internum of LBs. We used fully automated dual-axis electron tomography to study the three-dimensional architecture of LBs in high resolution. By tracking 4 nm-thick serial digital sections we found that leukocyte LBs enclose an intricate system of membranes within their “cores”. After computational reconstruction, we showed that these membranes are organized as a network of tubules which resemble the endoplasmic reticulum (ER). Our findings explain how membrane-bound proteins interact and are spatially arranged within LB “cores” and support a model for LB formation by incorporating cytoplasmic membranes of the ER, instead of the conventional view that LBs emerge from the ER leaflets. This is important to understand the functional capabilities of leukocyte LBs in health and during diverse diseases in which these organelles are functionally involved.
Collapse
Affiliation(s)
- Rossana C. N. Melo
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, MG, Brazil
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Guillherme F. Paganoti
- Laboratory of Cellular Biology, Department of Biology, Federal University of Juiz de Fora, UFJF, Juiz de Fora, MG, Brazil
| | - Ann M. Dvorak
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Peter F. Weller
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
210
|
Thiel K, Heier C, Haberl V, Thul PJ, Oberer M, Lass A, Jäckle H, Beller M. The evolutionarily conserved protein CG9186 is associated with lipid droplets, required for their positioning and for fat storage. J Cell Sci 2013; 126:2198-212. [PMID: 23525007 DOI: 10.1242/jcs.120493] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lipid droplets (LDs) are specialized cell organelles for the storage of energy-rich lipids. Although lipid storage is a conserved feature of all cells and organisms, little is known about fundamental aspects of the cell biology of LDs, including their biogenesis, structural assembly and subcellular positioning, and the regulation of organismic energy homeostasis. We identified a novel LD-associated protein family, represented by the Drosophila protein CG9186 and its murine homolog MGI:1916082. In the absence of LDs, both proteins localize at the endoplasmic reticulum (ER). Upon lipid storage induction, they translocate to LDs using an evolutionarily conserved targeting mechanism that acts through a 60-amino-acid targeting motif in the center of the CG9186 protein. Overexpression of CG9186, and MGI:1916082, causes clustering of LDs in both tissue culture and salivary gland cells, whereas RNAi knockdown of CG9186 results in a reduction of LDs. Organismal RNAi knockdown of CG9186 results in a reduction in lipid storage levels of the fly. The results indicate that we identified the first members of a novel and evolutionarily conserved family of lipid storage regulators, which are also required to properly position LDs within cells.
Collapse
Affiliation(s)
- Katharina Thiel
- Department of Molecular Developmental Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Gaunt ER, Zhang Q, Cheung W, Wakelam MJO, Lever AML, Desselberger U. Lipidome analysis of rotavirus-infected cells confirms the close interaction of lipid droplets with viroplasms. J Gen Virol 2013; 94:1576-1586. [PMID: 23515026 PMCID: PMC3709634 DOI: 10.1099/vir.0.049635-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rotaviruses (RVs) cause acute gastroenteritis in infants and young children, and are globally distributed. Within the infected host cell, RVs establish replication complexes in viroplasms (‘viral factories’) to which lipid droplet organelles are recruited. To further understand this recently discovered phenomenon, the lipidomes of RV-infected and uninfected MA104 cells were investigated. Cell lysates were subjected to equilibrium ultracentrifugation through iodixanol gradients. Fourteen different classes of lipids were differentiated by mass spectrometry. The concentrations of virtually all lipids were elevated in RV-infected cells. Fractions of low density (1.11–1.15 g ml−1), in which peaks of the RV dsRNA genome and lipid droplet- and viroplasm-associated proteins were observed, contained increased amounts of lipids typically found concentrated in the cellular organelle lipid droplets, confirming the close interaction of lipid droplets with viroplasms. A decrease in the ratio of the amounts of surface to internal components of lipid droplets upon RV infection suggested that the lipid droplet–viroplasm complexes became enlarged.
Collapse
Affiliation(s)
- Eleanor R Gaunt
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Qifeng Zhang
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Winsome Cheung
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | | | - Andrew M L Lever
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| | - Ulrich Desselberger
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK
| |
Collapse
|
212
|
Suzuki M, Iio Y, Saito N, Fujimoto T. Protein kinase Cη is targeted to lipid droplets. Histochem Cell Biol 2013; 139:505-11. [PMID: 23436195 DOI: 10.1007/s00418-013-1083-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 12/11/2022]
Abstract
Protein kinase C (PKC) is a family of kinases that regulate numerous cellular functions. They are classified into three subfamilies, i.e., conventional PKCs, novel PKCs, and atypical PKCs, that have different domain structures. Generally, PKCs exist as a soluble protein in the cytosol in resting cells and they are recruited to target membranes upon stimulation. In the present study, we found that PKCη tagged with EGFP distributed in lipid droplets (LD) and induced a significant reduction in LD size. Two other novel PKCs, PKCδ and PKCε, also showed some concentration around LDs, but it was less distinct and less frequent than that of PKCη. Conventional and atypical PKCs (α, βII, γ, and ζ) did not show any preferential distribution around LDs. 1,2-Diacylglycerol, which can activate novel PKCs without an increase of Ca(2+) concentration, is the immediate precursor of triacylglycerol and exists in LDs. The present results suggest that PKCη modifies lipid metabolism by phosphorylating unidentified targets in LDs.
Collapse
Affiliation(s)
- Michitaka Suzuki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, 466-8550, Japan
| | | | | | | |
Collapse
|
213
|
Abstract
LDs (lipid droplets) carrying TAG (triacylglycerol) and cholesteryl esters are emerging as dynamic cellular organelles that are generated in nearly every cell. They play a key role in lipid and membrane homoeostasis. Abnormal LD dynamics are associated with the pathophysiology of many metabolic diseases, such as obesity, diabetes, atherosclerosis, fatty liver and even cancer. Chylomicrons, stable droplets also consisting of TAG and cholesterol are generated in the intestinal epithelium to transport exogenous (dietary) lipids after meals from the small intestine to tissues for degradation. Defective chylomicron formation is responsible for inherited lipoprotein deficiencies, including abetalipoproteinaemia, hypobetalipoproteinaemia and chylomicron retention disease. These are disorders sharing characteristics such as fat malabsorption, low levels of circulating lipids and fat-soluble vitamins, failure to thrive in early childhood, ataxic neuropathy and visual impairment. Thus understanding the molecular mechanisms governing the dynamics of LDs and chylomicrons, namely, their biogenesis, growth, maintenance and degradation, will not only clarify their molecular role, but might also provide additional indications to treatment of metabolic diseases. In this review, we highlight the role of two small GTPases [ARFRP1 (ADP-ribosylation factor related protein 1) and ARL1 (ADP-ribosylation factor-like 1)] and their downstream targets acting on the trans-Golgi (Golgins and Rab proteins) on LD and chylomicron formation.
Collapse
|
214
|
Wilfling F, Wang H, Haas JT, Krahmer N, Gould TJ, Uchida A, Cheng JX, Graham M, Christiano R, Fröhlich F, Liu X, Buhman KK, Coleman RA, Bewersdorf J, Farese RV, Walther TC. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev Cell 2013; 24:384-99. [PMID: 23415954 DOI: 10.1016/j.devcel.2013.01.013] [Citation(s) in RCA: 584] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/01/2012] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
Abstract
Lipid droplets (LDs) store metabolic energy and membrane lipid precursors. With excess metabolic energy, cells synthesize triacylglycerol (TG) and form LDs that grow dramatically. It is unclear how TG synthesis relates to LD formation and growth. Here, we identify two LD subpopulations: smaller LDs of relatively constant size, and LDs that grow larger. The latter population contains isoenzymes for each step of TG synthesis. Glycerol-3-phosphate acyltransferase 4 (GPAT4), which catalyzes the first and rate-limiting step, relocalizes from the endoplasmic reticulum (ER) to a subset of forming LDs, where it becomes stably associated. ER-to-LD targeting of GPAT4 and other LD-localized TG synthesis isozymes is required for LD growth. Key features of GPAT4 ER-to-LD targeting and function in LD growth are conserved between Drosophila and mammalian cells. Our results explain how TG synthesis is coupled with LD growth and identify two distinct LD subpopulations based on their capacity for localized TG synthesis.
Collapse
Affiliation(s)
- Florian Wilfling
- Department of Cell Biology, Yale School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
215
|
Manteiga S, Choi K, Jayaraman A, Lee K. Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:425-47. [PMID: 23408581 DOI: 10.1002/wsbm.1213] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Adipose tissue (AT) depots actively regulate whole body energy homeostasis by orchestrating complex communications with other physiological systems as well as within the tissue. Adipocytes readily respond to hormonal and nutritional inputs to store excess nutrients as intracellular lipids or mobilize the stored fat for utilization. Co-ordinated regulation of metabolic pathways balancing uptake, esterification, and hydrolysis of lipids is accomplished through positive and negative feedback interactions of regulatory hubs comprising several pleiotropic protein kinases and nuclear receptors. Metabolic regulation in adipocytes encompasses biogenesis and remodeling of uniquely large lipid droplets (LDs). The regulatory hubs also function as energy and nutrient sensors, and integrate metabolic regulation with intercellular signaling. Over-nutrition causes hypertrophic expansion of adipocytes, which, through incompletely understood mechanisms, initiates a cascade of metabolic and signaling events leading to tissue remodeling and immune cell recruitment. Macrophage activation and polarization toward a pro-inflammatory phenotype drives a self-reinforcing cycle of pro-inflammatory signals in the AT, establishing an inflammatory state. Sustained inflammation accelerates lipolysis and elevates free fatty acids in circulation, which robustly correlates with development of obesity-related diseases. The adipose regulatory network coupling metabolism, growth, and signaling of multiple cell types is exceedingly complex. While components of the regulatory network have been individually studied in exquisite detail, systems approaches have rarely been utilized to comprehensively assess the relative engagements of the components. Thus, need and opportunity exist to develop quantitative models of metabolic and signaling networks to achieve a more complete understanding of AT biology in both health and disease.
Collapse
Affiliation(s)
- Sara Manteiga
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | | | | | | |
Collapse
|
216
|
Pulido MR, Rabanal-Ruiz Y, Almabouada F, Díaz-Ruiz A, Burrell MA, Vázquez MJ, Castaño JP, Kineman RD, Luque RM, Diéguez C, Vázquez-Martínez R, Malagón MM. Nutritional, hormonal, and depot-dependent regulation of the expression of the small GTPase Rab18 in rodent adipose tissue. J Mol Endocrinol 2013; 50:19-29. [PMID: 23093555 DOI: 10.1530/jme-12-0140] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is increasing evidence that proteins associated with lipid droplets (LDs) play a key role in the coordination of lipid storage and mobilization in adipocytes. The small GTPase, RAB18, has been recently identified as a novel component of the protein coat of LDs and proposed to play a role in both β-adrenergic stimulation of lipolysis and insulin-induced lipogenesis in 3T3-L1 adipocytes. In order to better understand the role of Rab18 in the regulation of lipid metabolism in adipocytes, we evaluated the effects of age, fat location, metabolic status, and hormonal milieu on Rab18 expression in rodent white adipose tissue (WAT). Rab18 mRNA was undetectable at postnatal day 15 (P15), but reached adult levels by P45, in both male and female rats. In adult rats, Rab18 immunolocalized around LDs, as well as within the cytoplasm of mature adipocytes. A weak Rab18 signal was also detected in the stromal-vascular fraction of WAT. In mice, fasting significantly increased, though with a distinct time-course pattern, Rab18 mRNA and protein levels in visceral and subcutaneous WAT. The expression of Rab18 was also increased in visceral and subcutaneous WAT of obese mice (diet-induced, ob/ob, and New Zealand obese mice) compared with lean controls. Rab18 expression in rats was unaltered by castration, adrenalectomy, or GH deficiency but was increased by hypophysectomy, as well as hypothyroidism. When viewed together, our results suggest the participation of Rab18 in the regulation of lipid processing in adipose tissue under both normal and pathological conditions.
Collapse
Affiliation(s)
- Marina R Pulido
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba, University of Córdoba/Hospital Universitario Reina Sofia, Edificio Severo-Ochoa, Pl. 3, Campus Univ. de Rabanales, E-14014 Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
217
|
|
218
|
Abstract
Lipid droplets (LDs) are highly dynamic cellular organelles found in most eukaryotic cell types. In white adipocytes, LDs grow into a characteristic unilocular morphology that is well suited for its specialized role as an efficient energy storage organelle. Overexpansion of LDs in white adipocytes results in the development of obesity and insulin resistance. Besides its central role in lipid storage and mobilization, LDs play crucial roles in various cellular processes including virus packaging, host defense, protein storage, and degradation. CIDE proteins, in particular Fsp27, initiates a unique LD fusion process in adipocytes by clustering and enriching at LD contact site and promoting neutral lipid exchange and transfer between contacted LDs. Here, we summarize our approaches to quantitatively measure intracellular LD size and neutral lipid exchange between LDs. Utilization of these methods has greatly facilitated our understanding of molecular pathways governing LD growth in adipocytes.
Collapse
Affiliation(s)
- Zhiqi Sun
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | | | | | | |
Collapse
|
219
|
Abstract
The powerful forward and reverse genetic tools, and emerging sets of biochemical assays for fat metabolites, make Caenorhabditis elegans an attractive model organism for elucidating conserved mechanisms in fat storage. The ability to observe lipid droplets in live animals at single cell resolution offers a unique advantage for studying cellular fat storage in vivo. In this chapter, we describe transgenic technologies for expressing fluorescent lipid droplet marker proteins at near-physiological levels. Methods to visualize these markers using sensitive confocal microscopy systems are detailed. Additional methods for visualizing lipid droplets by transmission electron microscopy and detection of lipid droplet associated proteins by immunoelectron microscopy are described.
Collapse
Affiliation(s)
- Ho Yi Mak
- Stowers Institute for Medical Research, Kansas City, Missouri, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
220
|
A Lys49 phospholipase A2, isolated from Bothrops asper snake venom, induces lipid droplet formation in macrophages which depends on distinct signaling pathways and the C-terminal region. BIOMED RESEARCH INTERNATIONAL 2012; 2013:807982. [PMID: 23509782 PMCID: PMC3591195 DOI: 10.1155/2013/807982] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/11/2012] [Indexed: 11/25/2022]
Abstract
MT-II, a Lys49PLA2 homologue devoid of catalytic activity from B. asper venom, stimulates inflammatory events in macrophages. We investigated the ability of MT-II to induce formation of lipid droplets (LDs), key elements of inflammatory responses, in isolated macrophages and participation of protein kinases and intracellular PLA2s in this effect. Influence of MT-II on PLIN2 recruitment and expression was assessed, and the effects of some synthetic peptides on LD formation were further evaluated. At noncytotoxic concentrations, MT-II directly activated macrophages to form LDs. This effect was reproduced by a synthetic peptide corresponding to the C-terminal sequence 115–129 of MT-II, evidencing the critical role of C-terminus for MT-II-induced effect. Moreover, MT-II induced expression and recruitment of PLIN2. Pharmacological interventions with specific inhibitors showed that PKC, PI3K, ERK1/2, and iPLA2, but not P38MAPK or cPLA2, signaling pathways are involved in LD formation induced by MT-II. This sPLA2 homologue also induced synthesis of PGE2 that colocalized to LDs. In conclusion, MT-II is able to induce formation of LDs committed to PGE2 formation in a process dependent on C-terminal loop engagement and regulated by distinct protein kinases and iPLA2. LDs may constitute an important inflammatory mechanism triggered by MT-II in macrophages.
Collapse
|
221
|
Penno A, Hackenbroich G, Thiele C. Phospholipids and lipid droplets. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:589-94. [PMID: 23246574 DOI: 10.1016/j.bbalip.2012.12.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
Abstract
Lipid droplets are ubiquitous cellular organelles that allow cells to store large amounts of neutral lipids for membrane synthesis and energy supply in times of starvation. Compared to other cellular organelles, lipid droplets are structurally unique as they are made of a hydrophobic core of neutral lipids and are separated to the cytosol only by a surrounding phospholipid monolayer. This phospholipid monolayer consists of over a hundred different phospholipid molecular species of which phosphatidylcholine is the most abundant lipid class. However, lipid droplets lack some indispensable activities of the phosphatidylcholine biogenic pathways suggesting that they partially depend on other organelles for phosphatidylcholine synthesis. Here, we discuss very recent data on the composition, origin, transport and function of the phospholipid monolayer with a particular emphasis on the phosphatidylcholine metabolism on and for lipid droplets. In addition, we highlight two very important quantitative aspects: (i) The amount of phospholipid required for lipid droplet monolayer expansion is remarkably small and (ii) to maintain the invariably round shape of lipid droplets, a cell must have a highly sensitive but so far unknown mechanism that regulates the ratio of phospholipid to neutral lipid in lipid droplets. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.
Collapse
Affiliation(s)
- Anke Penno
- Life and Medical Sciences (LIMES) Institute, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | | | | |
Collapse
|
222
|
Triacylglycerol biosynthesis occurs via the glycerol-3-phosphate pathway in the insect Rhodnius prolixus. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1462-71. [DOI: 10.1016/j.bbalip.2012.08.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/21/2012] [Accepted: 08/02/2012] [Indexed: 11/17/2022]
|
223
|
Stevanovic A, Thiele C. Monotopic topology is required for lipid droplet targeting of ancient ubiquitous protein 1. J Lipid Res 2012. [PMID: 23197321 DOI: 10.1194/jlr.m033852] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Ancient ubiquitous protein 1 (AUP1) is a multifunctional protein, which acts on both lipid droplets (LDs) and the endoplasmic reticulum (ER) membrane. Double localization to these two organelles, featuring very different membrane characteristics, was observed also for several other integral proteins, but little is known about the signals and mechanisms behind dual protein targeting to ER and LDs. Here we dissect the AUP1 targeting signals by analyses of localization and topology of several deletion and point mutants. We found that AUP1 is inserted into the membrane of the ER in a monotopic hairpin fashion, and subsequently transported to the hemi-membrane of LDs. A single domain localized in the N-terminal part of AUP1 enables its ER residence, the monotopic insertion, and the LD localization. Different specific residues within this multifunctional domain are responsible for achieving the complex spatial distribution pattern. A mutation of three amino acids, which changes AUP1 topology from hairpin to transmembrane, abolishes LD localization. These findings suggest that the cell is able to target a protein to multiple intracellular locations using a single domain.
Collapse
Affiliation(s)
- Ana Stevanovic
- LIMES Life and Medical Sciences Institute, University of Bonn, D-53115 Bonn, Germany
| | | |
Collapse
|
224
|
Palgunow D, Klapper M, Döring F. Dietary restriction during development enlarges intestinal and hypodermal lipid droplets in Caenorhabditis elegans. PLoS One 2012. [PMID: 23185233 PMCID: PMC3502458 DOI: 10.1371/journal.pone.0046198] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dietary restriction (DR) extends lifespan in man species and modulates evolutionary conserved signalling and metabolic pathways. Most of these studies were done in adult animals. Here we investigated fat phenotypes of C. elegans larvae and adults which were exposed to DR during development. This approach was named "developmental-DR" (dDR). Moderate as well as stringent dDR increased the triglyceride to protein ratio in L4 larvae and adult worms. This alteration was accompanied by a marked expansion of intestinal and hypodermal lipid droplets. In comparison to ad libitum condition, the relative proportion of fat stored in large lipid droplets (>50 µm(3)) was increased by a factor of about 5 to 6 in larvae exposed to dDR. Microarray-based expression profiling identified several dDR-regulated genes of lipolysis and lipogenesis which may contribute to the observed fat phenotypes. In conclusion, dDR increases the triglyceride to protein ratio, enlarges lipid droplets and alters the expression of genes functioning in lipid metabolism in C. elegans. These changes might be an effective adaptation to conserve fat stores in animals subjected to limiting food supply during development.
Collapse
Affiliation(s)
| | | | - Frank Döring
- Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
225
|
Cao H, Chapital DC, Howard OD, Deterding LJ, Mason CB, Shockey JM, Klasson KT. Expression and purification of recombinant tung tree diacylglycerol acyltransferase 2. Appl Microbiol Biotechnol 2012; 96:711-27. [PMID: 22270236 PMCID: PMC11338361 DOI: 10.1007/s00253-012-3869-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/19/2011] [Accepted: 12/23/2011] [Indexed: 12/11/2022]
Abstract
Diacylglycerol acyltransferases (DGATs) esterify sn-1,2-diacylglycerol with a long-chain fatty acyl-CoA, the last and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. At least 74 DGAT2 sequences from 61 organisms have been identified, but the expression of any DGAT2 as a partial or full-length protein in Escherichia coli had not been reported. The main objective of this study was to express and purify recombinant DGAT2 (rDGAT2) from E. coli for antigen production with a minor objective to compare rDGAT2 expression in yeast. A plasmid was engineered to express tung tree DGAT2 fused to maltose binding protein and poly-histidine (His) affinity tags. Immunoblotting showed that rDGAT2 was detected in the soluble, insoluble, and membrane fractions. The rDGAT2 in the soluble fraction was partially purified by amylose resin, nickel-nitrilotriacetic agarose (Ni-NTA) beads, and tandem affinity chromatography. Multiple proteins co-purified with rDGAT2. Size exclusion chromatography estimated the size of the rDGAT2-enriched fraction to be approximately eight times the monomer size. Affinity-purified rDGAT2 fractions had a yellow tint and contained fatty acids. The rDGAT2 in the insoluble fraction was partially solubilized by seven detergents with SDS being the most effective. Recombinant DGAT2 was purified to near homogeneity by SDS solubilization and Ni-NTA affinity chromatography. Mass spectrometry identified rDGAT2 as a component in the bands corresponding to the monomer and dimer forms as observed by SDS-PAGE. Protein bands with monomer and dimer sizes were also observed in the microsomal membranes of Saccharomyces cerevisiae expressing hemagglutinin-tagged DGAT2. Nonradioactive assay showed TAG synthesis activity of DGAT2 from yeast but not E. coli. The results suggest that rDGAT2 is present as monomer and dimer forms on SDS-PAGE, associated with other proteins, lipids, and membranes, and that post-translational modification of rDGAT2 may be required for its enzymatic activity and/or the E. coli protein is misfolded.
Collapse
Affiliation(s)
- Heping Cao
- Commodity Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA.
| | | | | | | | | | | | | |
Collapse
|
226
|
Ernst AM, Contreras FX, Thiele C, Wieland F, Brügger B. Mutual recognition of sphingolipid molecular species in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2616-22. [DOI: 10.1016/j.bbamem.2012.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 06/04/2012] [Indexed: 01/11/2023]
|
227
|
Layerenza JP, González P, García de Bravo MM, Polo MP, Sisti MS, Ves-Losada A. Nuclear lipid droplets: a novel nuclear domain. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:327-40. [PMID: 23098923 DOI: 10.1016/j.bbalip.2012.10.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 10/02/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
We investigated nuclear neutral-lipid (NL) composition and organization, as NL may represent an alternative source for providing fatty acids and cholesterol (C) to membranes, signaling paths, and transcription factors in the nucleus. We show here that nuclear NL were organized into nonpolar domains in the form of nuclear-lipid droplets (nLD). By fluorescent confocal microscopy, representative nLD were observed in situ within the nuclei of rat hepatocytes in vivo and HepG2 cells, maintained under standard conditions in culture, and within nuclei isolated from rat liver. nLD were resistant to Triton X-100 and became stained with Sudan Red, OsO4, and BODIPY493/503. nLD and control cytosolic-lipid droplets (cLD) were isolated from rat-liver nuclei and from homogenates, respectively, by sucrose-gradient sedimentation. Lipids were extracted, separated by thin-layer chromatography, and quantified. nLD were composed of 37% lipids and 63% proteins. The nLD lipid composition was as follows: 19% triacylglycerols (TAG), 39% cholesteryl esters, 27% C, and 15% polar lipids; whereas the cLD composition contained different proportions of these same lipid classes, in particular 91% TAG. The TAG fatty acids from both lipid droplets were enriched in oleic, linoleic, and palmitic acids. The TAG from the nLD corresponded to a small pool, whereas the TAG from the cLD constituted the main cellular pool (at about 100% yield from the total homogenate). In conclusion, nLD are a domain within the nucleus where NL are stored and organized and may be involved in nuclear lipid homeostasis.
Collapse
Affiliation(s)
- J P Layerenza
- INIBIOLP (CCT-La Plata-CONICET-UNLP), La Plata, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
228
|
Zhan T, Poppelreuther M, Ehehalt R, Füllekrug J. Overexpressed FATP1, ACSVL4/FATP4 and ACSL1 increase the cellular fatty acid uptake of 3T3-L1 adipocytes but are localized on intracellular membranes. PLoS One 2012; 7:e45087. [PMID: 23024797 PMCID: PMC3443241 DOI: 10.1371/journal.pone.0045087] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 08/17/2012] [Indexed: 01/23/2023] Open
Abstract
Long chain acyl-CoA synthetases are essential enzymes of lipid metabolism, and have also been implicated in the cellular uptake of fatty acids. It is controversial if some or all of these enzymes have an additional function as fatty acid transporters at the plasma membrane. The most abundant acyl-CoA synthetases in adipocytes are FATP1, ACSVL4/FATP4 and ACSL1. Previous studies have suggested that they increase fatty acid uptake by direct transport across the plasma membrane. Here, we used a gain-of-function approach and established FATP1, ACSVL4/FATP4 and ACSL1 stably expressing 3T3-L1 adipocytes by retroviral transduction. All overexpressing cell lines showed increased acyl-CoA synthetase activity and fatty acid uptake. FATP1 and ACSVL4/FATP4 localized to the endoplasmic reticulum by confocal microscopy and subcellular fractionation whereas ACSL1 was found on mitochondria. Insulin increased fatty acid uptake but without changing the localization of FATP1 or ACSVL4/FATP4. We conclude that overexpressed acyl-CoA synthetases are able to facilitate fatty acid uptake in 3T3-L1 adipocytes. The intracellular localization of FATP1, ACSVL4/FATP4 and ACSL1 indicates that this is an indirect effect. We suggest that metabolic trapping is the mechanism behind the influence of acyl-CoA synthetases on cellular fatty acid uptake.
Collapse
Affiliation(s)
- Tianzuo Zhan
- Molecular Cell Biology Laboratory, Internal Medicine IV, University of Heidelberg, Heidelberg, Germany
| | - Margarete Poppelreuther
- Molecular Cell Biology Laboratory, Internal Medicine IV, University of Heidelberg, Heidelberg, Germany
| | - Robert Ehehalt
- Molecular Cell Biology Laboratory, Internal Medicine IV, University of Heidelberg, Heidelberg, Germany
| | - Joachim Füllekrug
- Molecular Cell Biology Laboratory, Internal Medicine IV, University of Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
229
|
Xu N, Zhang SO, Cole RA, McKinney SA, Guo F, Haas JT, Bobba S, Farese RV, Mak HY. The FATP1-DGAT2 complex facilitates lipid droplet expansion at the ER-lipid droplet interface. ACTA ACUST UNITED AC 2012; 198:895-911. [PMID: 22927462 PMCID: PMC3432760 DOI: 10.1083/jcb.201201139] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A complex between the ER resident protein FATP1 and the lipid droplet–localized DGAT2 protein facilitates lipid droplet expansion in C. elegans and mammalian cells. At the subcellular level, fat storage is confined to the evolutionarily conserved compartments termed lipid droplets (LDs), which are closely associated with the endoplasmic reticulum (ER). However, the molecular mechanisms that enable ER–LD interaction and facilitate neutral lipid loading into LDs are poorly understood. In this paper, we present evidence that FATP1/acyl-CoA synthetase and DGAT2/diacylglycerol acyltransferase are components of a triglyceride synthesis complex that facilitates LD expansion. A loss of FATP1 or DGAT2 function blocked LD expansion in Caenorhabditis elegans. FATP1 preferentially associated with DGAT2, and they acted synergistically to promote LD expansion in mammalian cells. Live imaging indicated that FATP1 and DGAT2 are ER and LD resident proteins, respectively, and electron microscopy revealed FATP1 and DGAT2 foci close to the LD surface. Furthermore, DGAT2 that was retained in the ER failed to support LD expansion. We propose that the evolutionarily conserved FATP1–DGAT2 complex acts at the ER–LD interface and couples the synthesis and deposition of triglycerides into LDs both physically and functionally.
Collapse
Affiliation(s)
- Ningyi Xu
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Lipid body biogenesis and the role of microtubules in lipid synthesis in Ornithogalum umbellatum lipotubuloids. Cell Biol Int 2012; 36:455-62. [PMID: 22295975 DOI: 10.1042/cbi20100638] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Lipid bodies present in lipotubuloids of Ornithogalum umbellatum ovary epidermis take the form of a lens between leaflets of ER (endoplasmic reticulum) membrane filled with a highly osmiophilic substance. The two enzymes, DGAT1 [DAG (diacylglycerol) acyltransferase 1] and DGAT2 (DAG acyltransferase 2), involved in this process are synthesized on rough ER and localized in the ER near a monolayer surrounding entities like lipid bodies. After reaching the appropriate size, newly formed lipid bodies transform into mature spherical lipid bodies filled with less osmiophilic content. They appear to be surrounded by a half-unit membrane, with numerous microtubules running adjacently in different directions. The ER, no longer continuous with lipid bodies, makes contact with them through microtubules. At this stage, lipid synthesis takes place at the periphery of lipid bodies. This presumption, and a hypothesis that microtubules are involved in lipid synthesis delivering necessary components to lipid bodies, is based on strong arguments: (i) silver grains first appear over microtubules after a short [3H]palmitic acid incubation and before they are observed over lipid bodies; (ii) blockade of [3H]palmitic acid incorporation into lipotubuloids by propyzamide, an inhibitor of microtubule function; and (iii) the presence of gold grains above the microtubules after DGAT1 and DGAT2 reactions, as also near microtubules after an immunogold method that identifies phospholipase D1.
Collapse
|
231
|
Yang H, Galea A, Sytnyk V, Crossley M. Controlling the size of lipid droplets: lipid and protein factors. Curr Opin Cell Biol 2012; 24:509-16. [DOI: 10.1016/j.ceb.2012.05.012] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 05/23/2012] [Indexed: 01/23/2023]
|
232
|
Wurie HR, Buckett L, Zammit VA. Diacylglycerol acyltransferase 2 acts upstream of diacylglycerol acyltransferase 1 and utilizes nascent diglycerides and de novo synthesized fatty acids in HepG2 cells. FEBS J 2012; 279:3033-47. [PMID: 22748069 DOI: 10.1111/j.1742-4658.2012.08684.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The two diacylglycerol acyltransferases, DGAT1 and DGAT2, are known to have non-redundant functions, in spite of catalysing the same reaction and being present in the same cell types. The basis for this distinctiveness, which is reflected in the very different phenotypes of Dgat1(-/-) and Dgat2(-/-) mice, has not been resolved. Using selective inhibitors of human DGAT1 and DGAT2 on HepG2 cells and gene silencing, we show that, although DGAT2 activity accounts for a modest fraction (< 20%) of overall cellular DGAT activity, inhibition of DGAT2 activity specifically inhibits (and is rate-limiting for) the incorporation of de novo synthesized fatty acids and of glycerol into cellular and secreted triglyceride to a much greater extent than it affects the incorporation of exogenously added oleate. By contrast, inhibition of DGAT1 affects equally the incorporation of glycerol and exogenous (preformed) oleate into cellular and secreted triacylglycerol (TAG). These data indicate that DGAT2 acts upstream of DGAT1, largely determines the rate of de novo synthesis of triglyceride, and uses nascent diacylglycerol and de novo synthesized fatty acids as substrates. By contrast, the data suggest that DGAT1 functions in the re-esterification of partial glycerides generated by intracellular lipolysis, using preformed (exogenous) fatty acids. Therefore, we describe distinct but synergistic roles of the two DGATs in an integrated pathway of TAG synthesis and secretion, with DGAT2 acting upstream of DGAT1.
Collapse
Affiliation(s)
- Haja R Wurie
- Division of Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry, UK
| | | | | |
Collapse
|
233
|
Jiang W, Napoli JL. Reorganization of cellular retinol-binding protein type 1 and lecithin:retinol acyltransferase during retinyl ester biosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1820:859-69. [PMID: 22498138 PMCID: PMC3366551 DOI: 10.1016/j.bbagen.2012.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 12/26/2022]
Abstract
BACKGROUND Cellular retinol-binding protein, type 1 (Crbp1), chaperones retinyl ester (RE) biosynthesis catalyzed by lecithin:retinol acyltransferase (LRAT). METHODS We monitored the subcellular loci of LRAT and Crbp1 before and during RE biosynthesis, and compared the results to diacylglycerol:acyltransferase type 2 (DGAT2) during triacylglycerol biosynthesis in three cell lines: COS7, CHO and HepG2. RESULTS Before initiation of RE biosynthesis, LRAT distributed throughout the endoplasmic reticulum (ER), similar to DGAT2, and Crpb1 localized with mitochondria associated membranes (MAM), surrounded by LRAT. Upon initiating RE biosynthesis in cells transfected with low amounts of vector to simulate physiological expression levels, Crpb1 remained with MAM, and both Crbp1 and MAM re-localized with LRAT. LRAT formed rings around the growing lipid droplets. LRAT activity was higher in these rings relative to the general ER. LRAT-containing rings colocalized with the lipid-droplet surface proteins, desnutrin/adipose triglyceride lipase and perilipin 2. Colocalization with lipid droplets required the 38 N-terminal amino acid residues of LRAT, and specifically K36 and R38. Formation of rings around the growing lipid droplets did not require functional microtubules. GENERAL SIGNIFICANCE These data indicate a relationship between LRAT and Crbp1 during RE biosynthesis in which MAM-associated Crpb1 and LRAT colocalize, and both surround the growing RE-containing lipid droplet. The N-terminus of LRAT, especially K36 and R38, is essential to colocalization with the lipid droplet.
Collapse
Affiliation(s)
- Weiya Jiang
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, College of Natural Resources, University of California, Berkeley, California 94720, USA
| | - Joseph L. Napoli
- Graduate Program in Metabolic Biology, Nutritional Sciences and Toxicology, College of Natural Resources, University of California, Berkeley, California 94720, USA
| |
Collapse
|
234
|
Murphy DJ. The dynamic roles of intracellular lipid droplets: from archaea to mammals. PROTOPLASMA 2012; 249:541-85. [PMID: 22002710 DOI: 10.1007/s00709-011-0329-7] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/28/2011] [Indexed: 05/02/2023]
Abstract
During the past decade, there has been a paradigm shift in our understanding of the roles of intracellular lipid droplets (LDs). New genetic, biochemical and imaging technologies have underpinned these advances, which are revealing much new information about these dynamic organelles. This review takes a comparative approach by examining recent work on LDs across the whole range of biological organisms from archaea and bacteria, through yeast and Drosophila to mammals, including humans. LDs probably evolved originally in microorganisms as temporary stores of excess dietary lipid that was surplus to the immediate requirements of membrane formation/turnover. LDs then acquired roles as long-term carbon stores that enabled organisms to survive episodic lack of nutrients. In multicellular organisms, LDs went on to acquire numerous additional roles including cell- and organism-level lipid homeostasis, protein sequestration, membrane trafficking and signalling. Many pathogens of plants and animals subvert their host LD metabolism as part of their infection process. Finally, malfunctions in LDs and associated proteins are implicated in several degenerative diseases of modern humans, among the most serious of which is the increasingly prevalent constellation of pathologies, such as obesity and insulin resistance, which is associated with metabolic syndrome.
Collapse
Affiliation(s)
- Denis J Murphy
- Division of Biological Sciences, University of Glamorgan, Cardiff, CF37 4AT, UK.
| |
Collapse
|
235
|
Liu Q, Siloto RMP, Lehner R, Stone SJ, Weselake RJ. Acyl-CoA:diacylglycerol acyltransferase: molecular biology, biochemistry and biotechnology. Prog Lipid Res 2012; 51:350-77. [PMID: 22705711 DOI: 10.1016/j.plipres.2012.06.001] [Citation(s) in RCA: 236] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Triacylglycerol (TG) is a storage lipid which serves as an energy reservoir and a source of signalling molecules and substrates for membrane biogenesis. TG is essential for many physiological processes and its metabolism is widely conserved in nature. Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC 2.3.1.20) catalyzes the final step in the sn-glycerol-3-phosphate pathway leading to TG. DGAT activity resides mainly in two distinct membrane bound polypeptides, known as DGAT1 and DGAT2 which have been identified in numerous organisms. In addition, a few other enzymes also hold DGAT activity, including the DGAT-related acyl-CoA:monoacylglycerol acyltransferases (MGAT). Progress on understanding structure/function in DGATs has been limited by the lack of detailed three-dimensional structural information due to the hydrophobic properties of theses enzymes and difficulties associated with purification. This review examines several aspects of DGAT and MGAT genes and enzymes, including current knowledge on their gene structure, expression pattern, biochemical properties, membrane topology, functional motifs and subcellular localization. Recent progress in probing structural and functional aspects of DGAT1 and DGAT2, using a combination of molecular and biochemical techniques, is emphasized. Biotechnological applications involving DGAT enzymes ranging from obesity therapeutics to oilseed engineering are also discussed.
Collapse
Affiliation(s)
- Qin Liu
- Agricultural Lipid Biotechnology Program, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada T6H 2P5.
| | | | | | | | | |
Collapse
|
236
|
Watt MJ, Hoy AJ. Lipid metabolism in skeletal muscle: generation of adaptive and maladaptive intracellular signals for cellular function. Am J Physiol Endocrinol Metab 2012; 302:E1315-28. [PMID: 22185843 DOI: 10.1152/ajpendo.00561.2011] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fatty acids derived from adipose tissue lipolysis, intramyocellular triacylglycerol lipolysis, or de novo lipogenesis serve a variety of functions in skeletal muscle. The two major fates of fatty acids are mitochondrial oxidation to provide energy for the myocyte and storage within a variety of lipids, where they are stored primarily in discrete lipid droplets or serve as important structural components of membranes. In this review, we provide a brief overview of skeletal muscle fatty acid metabolism and highlight recent notable advances in the field. We then 1) discuss how lipids are stored in and mobilized from various subcellular locations to provide adaptive or maladaptive signals in the myocyte and 2) outline how lipid metabolites or metabolic byproducts derived from the actions of triacylglycerol metabolism or β-oxidation act as positive and negative regulators of insulin action. We have placed an emphasis on recent developments in the lipid biology field with respect to understanding skeletal muscle physiology and discuss unanswered questions and technical limitations for assessing lipid signaling in skeletal muscle.
Collapse
Affiliation(s)
- Matthew J Watt
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
237
|
Saka HA, Valdivia R. Emerging roles for lipid droplets in immunity and host-pathogen interactions. Annu Rev Cell Dev Biol 2012; 28:411-37. [PMID: 22578141 DOI: 10.1146/annurev-cellbio-092910-153958] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lipid droplets (LDs) are neutral lipid storage organelles ubiquitous to eukaryotic cells. It is increasingly recognized that LDs interact extensively with other organelles and that they perform functions beyond passive lipid storage and lipid homeostasis. One emerging function for LDs is the coordination of immune responses, as these organelles participate in the generation of prostaglandins and leukotrienes, which are important inflammation mediators. Similarly, LDs are also beginning to be recognized as playing a role in interferon responses and in antigen cross presentation. Not surprisingly, there is emerging evidence that many pathogens, including hepatitis C and Dengue viruses, Chlamydia, and Mycobacterium, target LDs during infection either for nutritional purposes or as part of an anti-immunity strategy. We here review recent findings that link LDs to the regulation and execution of immune responses in the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Hector Alex Saka
- Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
238
|
Kumari M, Schoiswohl G, Chitraju C, Paar M, Cornaciu I, Rangrez AY, Wongsiriroj N, Nagy HM, Ivanova PT, Scott SA, Knittelfelder O, Rechberger GN, Birner-Gruenberger R, Eder S, Brown HA, Haemmerle G, Oberer M, Lass A, Kershaw EE, Zimmermann R, Zechner R. Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab 2012; 15:691-702. [PMID: 22560221 PMCID: PMC3361708 DOI: 10.1016/j.cmet.2012.04.008] [Citation(s) in RCA: 224] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 02/17/2012] [Accepted: 04/10/2012] [Indexed: 12/12/2022]
Abstract
Numerous studies in humans link a nonsynonymous genetic polymorphism (I148M) in adiponutrin (ADPN) to various forms of fatty liver disease and liver cirrhosis. Despite its high clinical relevance, the molecular function of ADPN and the mechanism by which I148M variant affects hepatic metabolism are unclear. Here we show that ADPN promotes cellular lipid synthesis by converting lysophosphatidic acid (LPA) into phosphatidic acid. The ADPN-catalyzed LPA acyltransferase (LPAAT) reaction is specific for LPA and long-chain acyl-CoAs. Wild-type mice receiving a high-sucrose diet exhibit substantial upregulation of Adpn in the liver and a concomitant increase in LPAAT activity. In Adpn-deficient mice, this diet-induced increase in hepatic LPAAT activity is reduced. Notably, the I148M variant of human ADPN exhibits increased LPAAT activity leading to increased cellular lipid accumulation. This gain of function provides a plausible biochemical mechanism for the development of liver steatosis in subjects carrying the I148M variant.
Collapse
Affiliation(s)
- Manju Kumari
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Poppelreuther M, Rudolph B, Du C, Großmann R, Becker M, Thiele C, Ehehalt R, Füllekrug J. The N-terminal region of acyl-CoA synthetase 3 is essential for both the localization on lipid droplets and the function in fatty acid uptake. J Lipid Res 2012; 53:888-900. [PMID: 22357706 PMCID: PMC3329388 DOI: 10.1194/jlr.m024562] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 02/21/2012] [Indexed: 12/19/2022] Open
Abstract
Cytosolic lipid droplets (LDs) are storage organelles for neutral lipids derived from endogenous metabolism. Acyl-CoA synthetase family proteins are essential enzymes in this biosynthetic pathway, contributing activated fatty acids. Fluorescence microscopy showed that ACSL3 is localized to the endoplasmic reticulum (ER) and LDs, with the distribution dependent on the cell type and the supply of fatty acids. The N-terminus of ACSL3 was necessary and sufficient for targeting reporter proteins correctly, as demonstrated by subcellular fractionation and confocal microscopy. The N-terminal region of ACSL3 was also found to be functionally required for the enzyme activity. Selective permeabilization and in silico analysis suggest that ACSL3 assumes a hairpin membrane topology, with the N-terminal hydrophobic amino acids forming an amphipathic helix restricted to the cytosolic leaflet of the ER membrane. ACSL3 was effectively translocated from the ER to nascent LDs when neutral lipid synthesis was stimulated by the external addition of fatty acids. Cellular fatty acid uptake was increased by overexpression and reduced by RNA interference of ACSL3. In conclusion, the structural organization of ACSL3 allows the fast and efficient movement from the ER to emerging LDs. ACSL3 not only esterifies fatty acids with CoA but is also involved in the cellular uptake of fatty acids, presumably indirectly by metabolic trapping. The unique localization of the acyl-CoA synthetase ACSL3 on LDs suggests a function in the local synthesis of lipids.
Collapse
Affiliation(s)
- Margarete Poppelreuther
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | - Berenice Rudolph
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | - Chen Du
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | - Regina Großmann
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | - Melanie Becker
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | | | - Robert Ehehalt
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and
| | - Joachim Füllekrug
- Molecular Cell Biology Laboratory Internal Medicine IV, University of Heidelberg, Germany; and.
| |
Collapse
|
240
|
Abstract
Among organelles, lipid droplets (LDs) uniquely constitute a hydrophobic phase in the aqueous environment of the cytosol. Their hydrophobic core of neutral lipids stores metabolic energy and membrane components, making LDs hubs for lipid metabolism. In addition, LDs are implicated in a number of other cellular functions, ranging from protein storage and degradation to viral replication. These processes are functionally linked to many physiological and pathological conditions, including obesity and related metabolic diseases. Despite their important functions and nearly ubiquitous presence in cells, many aspects of LD biology are unknown. In the past few years, the pace of LD investigation has increased, providing new insights. Here, we review the current knowledge of LD cell biology and its translation to physiology.
Collapse
Affiliation(s)
- Tobias C Walther
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| | | |
Collapse
|
241
|
Ariotti N, Murphy S, Hamilton NA, Wu L, Green K, Schieber NL, Li P, Martin S, Parton RG. Postlipolytic insulin-dependent remodeling of micro lipid droplets in adipocytes. Mol Biol Cell 2012; 23:1826-37. [PMID: 22456503 PMCID: PMC3350548 DOI: 10.1091/mbc.e11-10-0847] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Micro lipid droplets (mLDs) form during lipolysis in both primary and cultured adipocytes. Surprisingly, mLDs do not appear to bud from large LDs or require an intact cytoskeleton to form. Insulin and fatty acids trigger fusion and growth of mLDs to reform macroLDs, a process that is microtubule dependent. Despite the lipolysis–lipogenesis cycle being a fundamental process in adipocyte biology, very little is known about the morphological changes that occur during this process. The remodeling of lipid droplets to form micro lipid droplets (mLDs) is a striking feature of lipolysis in adipocytes, but once lipolysis ceases, the cell must regain its basal morphology. We characterized mLD formation in cultured adipocytes, and in primary adipocytes isolated from mouse epididymal fat pads, in response to acute activation of lipolysis. Using real-time quantitative imaging and electron tomography, we show that formation of mLDs in cultured adipocytes occurs throughout the cell to increase total LD surface area by ∼30% but does not involve detectable fission from large LDs. Peripheral mLDs are monolayered structures with a neutral lipid core and are sites of active lipolysis. Electron tomography reveals preferential association of mLDs with the endoplasmic reticulum. Treatment with insulin and fatty acids results in the reformation of macroLDs and return to the basal state. Insulin-dependent reformation of large LDs involves two distinct processes: microtubule-dependent homotypic fusion of mLDs and expansion of individual mLDs. We identify a physiologically important role for LD fusion that is involved in a reversible lipolytic cycle in adipocytes.
Collapse
Affiliation(s)
- Nicholas Ariotti
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Long AP, Manneschmidt AK, VerBrugge B, Dortch MR, Minkin SC, Prater KE, Biggerstaff JP, Dunlap JR, Dalhaimer P. Lipid droplet de novo formation and fission are linked to the cell cycle in fission yeast. Traffic 2012; 13:705-14. [PMID: 22300234 DOI: 10.1111/j.1600-0854.2012.01339.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/31/2012] [Accepted: 02/02/2012] [Indexed: 12/13/2022]
Abstract
Cells sequester neutral lipids in bodies called lipid droplets. Thus, the formation and breakdown of the droplets are important for cellular metabolism; unfortunately, these processes are difficult to quantify. Here, we used time-lapse confocal microscopy to track the formation, movement and size changes of lipid droplets throughout the cell cycle in fission yeast Schizosaccharomyces pombe. In theory, the number of lipid droplets in these cells must increase for daughter cells to have the same number of droplets as the parent at a reference point in the cell cycle. We observed stable droplet formation events in G2 phase that were divided evenly between de novo formation of nascent droplets and fission of preexisting droplets. The observations that lipid droplet number is linked to the cell cycle and that droplets can form via fission were both new discoveries. Thus, we scrutinized each fission event for multiple signatures to eliminate possible artifacts from our microscopy. We augmented our time-lapse confocal microscopy with electron microscopy, which showed lipid droplet 'intermediates': droplets shaped like dumbbells that are potentially in transition states between two spherical droplets. Using these complementary microscopy techniques and also dynamic simulations, we show that lipid droplets can form by fission.
Collapse
Affiliation(s)
- Allan P Long
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
243
|
The proteome of cytosolic lipid droplets isolated from differentiated Caco-2/TC7 enterocytes reveals cell-specific characteristics. Biol Cell 2012; 103:499-517. [PMID: 21787361 PMCID: PMC3181828 DOI: 10.1042/bc20110024] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background information. Intestinal absorption of alimentary lipids is a complex process ensured by enterocytes and leading to TRL [TAG (triacylglycerol)-rich lipoprotein] assembly and secretion. The accumulation of circulating intestine-derived TRL is associated with atherosclerosis, stressing the importance of the control of postprandial hypertriglyceridaemia. During the postprandial period, TAGs are also transiently stored as CLDs (cytosolic lipid droplets) in enterocytes. As a first step for determining whether CLDs could play a role in the control of enterocyte TRL secretion, we analysed the protein endowment of CLDs isolated by sucrose-gradient centrifugation from differentiated Caco-2/TC7 enterocytes, the only human model able to secrete TRL in culture and to store transiently TAGs as CLDs when supplied with lipids. Cells were analysed after a 24 h incubation with lipid micelles and thus in a state of CLD-associated TAG mobilization. Results. Among the 105 proteins identified in the CLD fraction by LC-MS/MS (liquid chromatography coupled with tandem MS), 27 were directly involved in lipid metabolism pathways potentially relevant to enterocyte-specific functions. The transient feature of CLDs was consistent with the presence of proteins necessary for fatty acid activation (acyl-CoA synthetases) and for TAG hydrolysis. In differentiated Caco-2/TC7 enterocytes, we identified for the first time LPCAT2 (lysophosphatidylcholine acyltransferase 2), involved in PC (phosphatidylcholine) synthesis, and 3BHS1 (3-β-hydroxysteroid dehydrogenase 1), involved in steroid metabolism, and confirmed their partial CLD localization by immunofluorescence. In enterocytes, LPCAT2 may provide an economical source of PC, necessary for membrane synthesis and lipoprotein assembly, from the lysoPC present in the intestinal lumen. We also identified proteins involved in lipoprotein metabolism, such as ApoA-IV (apolipoprotein A-IV), which is specifically expressed by enterocytes and has been proposed to play many functions in vivo, including the formation of lipoproteins and the control of their size. The association of ApoA-IV with CLD was confirmed by confocal and immunoelectron microscopy and validated in vivo in the jejunum of mice fed with a high-fat diet. Conclusions. We report for the first time the protein endowment of Caco-2/TC7 enterocyte CLDs. Our results suggest that their formation and mobilization may participate in the control of enterocyte TRL secretion in a cell-specific manner.
Collapse
|
244
|
Paar M, Jüngst C, Steiner NA, Magnes C, Sinner F, Kolb D, Lass A, Zimmermann R, Zumbusch A, Kohlwein SD, Wolinski H. Remodeling of lipid droplets during lipolysis and growth in adipocytes. J Biol Chem 2012; 287:11164-73. [PMID: 22311986 PMCID: PMC3322829 DOI: 10.1074/jbc.m111.316794] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Synthesis, storage, and turnover of triacylglycerols (TAGs) in adipocytes are critical cellular processes to maintain lipid and energy homeostasis in mammals. TAGs are stored in metabolically highly dynamic lipid droplets (LDs), which are believed to undergo fragmentation and fusion under lipolytic and lipogenic conditions, respectively. Time lapse fluorescence microscopy showed that stimulation of lipolysis in 3T3-L1 adipocytes causes progressive shrinkage and almost complete degradation of all cellular LDs but without any detectable fragmentation into micro-LDs (mLDs). However, mLDs were rapidly formed after induction of lipolysis in the absence of BSA in the culture medium that acts as a fatty acid scavenger. Moreover, mLD formation was blocked by the acyl-CoA synthetase inhibitor triacsin C, implicating that mLDs are synthesized de novo in response to cellular fatty acid overload. Using label-free coherent anti-Stokes Raman scattering microscopy, we demonstrate that LDs grow by transfer of lipids from one organelle to another. Notably, this lipid transfer between closely associated LDs is not a rapid and spontaneous process but rather occurs over several h and does not appear to require physical interaction over large LD surface areas. These data indicate that LD growth is a highly regulated process leading to the heterogeneous LD size distribution within and between individual cells. Our findings suggest that lipolysis and lipogenesis occur in parallel in a cell to prevent cellular fatty acid overflow. Furthermore, we propose that formation of large LDs requires a yet uncharacterized protein machinery mediating LD interaction and lipid transfer.
Collapse
Affiliation(s)
- Margret Paar
- Institute of Molecular Biosciences, Lipidomics Research Center LRC Graz, University of Graz, 8010 Graz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Re-evaluating lipotoxic triggers in skeletal muscle: Relating intramyocellular lipid metabolism to insulin sensitivity. Prog Lipid Res 2012; 51:36-49. [DOI: 10.1016/j.plipres.2011.11.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
246
|
Gong J, Sun Z, Wu L, Xu W, Schieber N, Xu D, Shui G, Yang H, Parton RG, Li P. Fsp27 promotes lipid droplet growth by lipid exchange and transfer at lipid droplet contact sites. ACTA ACUST UNITED AC 2011; 195:953-63. [PMID: 22144693 PMCID: PMC3241734 DOI: 10.1083/jcb.201104142] [Citation(s) in RCA: 273] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The lipid droplet–associated protein Fsp27 mediates lipid droplet growth by promoting directional lipid transfer from smaller to larger lipid droplets. Lipid droplets (LDs) are dynamic cellular organelles that control many biological processes. However, molecular components determining LD growth are poorly understood. Genetic analysis has indicated that Fsp27, an LD-associated protein, is important in controlling LD size and lipid storage in adipocytes. In this paper, we demonstrate that Fsp27 is focally enriched at the LD–LD contacting site (LDCS). Photobleaching revealed the occurrence of lipid exchange between contacted LDs in wild-type adipocytes and Fsp27-overexpressing cells but not Fsp27-deficient adipocytes. Furthermore, live-cell imaging revealed a unique Fsp27-mediated LD growth process involving a directional net lipid transfer from the smaller to larger LDs at LDCSs, which is in accordance with the biophysical analysis of the internal pressure difference between the contacting LD pair. Thus, we have uncovered a novel molecular mechanism of LD growth mediated by Fsp27.
Collapse
Affiliation(s)
- Jingyi Gong
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Brasaemle DL, Wolins NE. Packaging of fat: an evolving model of lipid droplet assembly and expansion. J Biol Chem 2011; 287:2273-9. [PMID: 22090029 DOI: 10.1074/jbc.r111.309088] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Lipid droplets (LDs) are organelles found in most types of cells in the tissues of vertebrates, invertebrates, and plants, as well as in bacteria and yeast. They differ from other organelles in binding a unique complement of proteins and lacking an aqueous core but share aspects of protein trafficking with secretory membrane compartments. In this minireview, we focus on recent evidence supporting an endoplasmic reticulum origin for LD formation and discuss recent findings regarding LD maturation and fusion.
Collapse
Affiliation(s)
- Dawn L Brasaemle
- Rutgers Center for Lipid Research and Department of Nutritional Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA.
| | | |
Collapse
|
248
|
Abstract
Lipid droplets (LDs) are highly dynamic cell organelles involved in energy homeostasis and membrane trafficking. Here, we review how select pathogens interact with LDs. Several RNA viruses use host LDs at different steps of their life cycle. Some intracellular bacteria and parasites usurp host LDs or encode their own lipid biosynthesis machinery, thus allowing production of LDs independently of their host. Although many mechanistic details of host/pathogen LD interactions are unknown, a picture emerges in which the unique cellular architecture and energy stored in LDs are important in the replication of diverse pathogens.
Collapse
Affiliation(s)
- Eva Herker
- Gladstone Institute of Virology and Immunology, San Francisco, California 94158, USA
| | | |
Collapse
|
249
|
Mak HY. Lipid droplets as fat storage organelles in Caenorhabditis elegans: Thematic Review Series: Lipid Droplet Synthesis and Metabolism: from Yeast to Man. J Lipid Res 2011; 53:28-33. [PMID: 22049244 DOI: 10.1194/jlr.r021006] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Lipid droplets are evolutionarily conserved organelles where cellular fat storage and mobilization are exquisitely regulated. Recent studies have defined lipid droplets in C. elegans and explored how they are regulated by genetic and dietary factors. C. elegans offers unique opportunities to visualize lipid droplets at single-cell resolution in live animals. The development of novel microscopy techniques and protein markers for lipid droplets will accelerate studies on how nutritional states and subcellular organization are linked in vivo. Together with powerful tools for genetic and biochemical analysis of metabolic pathways, alteration in lipid droplet abundance, size, and distribution in C. elegans can be readily connected to whole-animal energy homeostasis, behavior, and life span. Therefore, further studies on lipid droplets in C. elegans promise to yield valuable insights that complement our knowledge gained from yeast, Drosophila, and mammalian systems on cellular and organismal fat storage.
Collapse
Affiliation(s)
- Ho Yi Mak
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| |
Collapse
|
250
|
Bates PD, Browse J. The pathway of triacylglycerol synthesis through phosphatidylcholine in Arabidopsis produces a bottleneck for the accumulation of unusual fatty acids in transgenic seeds. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:387-99. [PMID: 21711402 DOI: 10.1111/j.1365-313x.2011.04693.x] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Engineering of oilseed plants to accumulate unusual fatty acids (FAs) in seed triacylglycerol (TAG) requires not only the biosynthetic enzymes for unusual FAs but also efficient utilization of the unusual FAs by the host-plant TAG biosynthetic pathways. Competing pathways of diacylglycerol (DAG) and subsequent TAG synthesis ultimately affect TAG FA composition. The membrane lipid phosphatidylcholine (PC) is the substrate for many FA-modifying enzymes (desaturases, hydroxylases, etc.) and DAG can be derived from PC for TAG synthesis. The relative proportion of PC-derived DAG versus de novo synthesized DAG utilized for TAG synthesis, and the ability of each pathway to utilize unusual FA substrates, are unknown for most oilseed plants, including Arabidopsis thaliana. Through metabolic labeling experiments we demonstrate that the relative flux of de novo DAG into the PC-derived DAG pathway versus direct conversion to TAG is ∼14/1 in wild-type Arabidopsis. Expression of the Ricinus communis FA hydroxylase reduced the flux of de novo DAG into PC by ∼70%. Synthesis of TAG directly from de novo DAG did not increase, resulting in lower total synthesis of labeled lipids. Hydroxy-FA containing de novo DAG was rapidly synthesized, but it was not efficiently accumulated or converted to PC and TAG, and appeared to be in a futile cycle of synthesis and degradation. However, FA hydroxylation on PC and conversion to DAG allowed some hydroxy-FA to accumulate in sn-2 TAG. Therefore, the flux of DAG through PC represents a major bottleneck for the accumulation of unusual FAs in TAG of transgenic Arabidopsis seeds.
Collapse
Affiliation(s)
- Philip D Bates
- Institute of Biological Chemistry, Washington State University, Clark Hall, Pullman, WA 99164-6340, USA
| | | |
Collapse
|