201
|
Seisel Q, Rädisch M, Gill NP, Madden DR, Boisguerin P. Optimization of the process of inverted peptides (PIPE PLUS) to screen PDZ domain ligands. Bioorg Med Chem Lett 2017; 27:3111-3116. [PMID: 28549735 PMCID: PMC5523833 DOI: 10.1016/j.bmcl.2017.05.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/12/2017] [Accepted: 05/13/2017] [Indexed: 11/21/2022]
Abstract
PDZ domains play crucial roles in cell signaling processes and are therefore attractive targets for the development of therapeutic inhibitors. In many cases, C-terminal peptides are the physiological binding partners of PDZ domains. To identify both native ligands and potential inhibitors we have screened arrays synthesized by the process of inverted peptides (PIPE), a variant of SPOT synthesis that generates peptides with free C-termini. Here, we present the development of a new functionalized cellulose membrane as solid support along with the optimized PIPEPLUS technology. Improved resolution and accuracy of the synthesis were shown with peptide arrays containing both natural and non-natural amino acids. These new screening possibilities will advance the development of active, selective and metabolically stable PDZ interactors.
Collapse
Affiliation(s)
- Quentin Seisel
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Marisa Rädisch
- Bioorganische Chemie, Universität Bayreuth, Gebäude NW I, 95440 Bayreuth, Germany
| | - Nicholas P Gill
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755-3844, United States
| | - Dean R Madden
- Department of Biochemistry & Cell Biology, Geisel School of Medicine at Dartmouth, 7200 Vail Building, Hanover, NH 03755-3844, United States
| | - Prisca Boisguerin
- Centre de Recherche de Biologie cellulaire de Montpellier, CNRS UMR 5237, Université de Montpellier, 1919 Route de Mende, 34293 Montpellier Cedex 5, France.
| |
Collapse
|
202
|
Dey N, De P, Leyland-Jones B. PI3K-AKT-mTOR inhibitors in breast cancers: From tumor cell signaling to clinical trials. Pharmacol Ther 2017; 175:91-106. [DOI: 10.1016/j.pharmthera.2017.02.037] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
203
|
Mariano R, Wuchty S. Structure-based prediction of host–pathogen protein interactions. Curr Opin Struct Biol 2017; 44:119-124. [DOI: 10.1016/j.sbi.2017.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/28/2017] [Indexed: 11/25/2022]
|
204
|
Miersch S, Maruthachalam BV, Geyer CR, Sidhu SS. Structure-Directed and Tailored Diversity Synthetic Antibody Libraries Yield Novel Anti-EGFR Antagonists. ACS Chem Biol 2017; 12:1381-1389. [PMID: 28375604 DOI: 10.1021/acschembio.6b00990] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We tested whether grafting an interaction domain into the hypervariable loop of a combinatorial antibody library could promote targeting to a specific epitope. Formation of the epidermal growth factor receptor (EGFR) signaling heterodimer involves extensive contacts mediated by a "dimerization loop." We grafted the dimerization loop into the third hypervariable loop of a synthetic antigen-binding fragment (Fab) library and diversified other loops using a tailored diversity strategy. This structure-directed Fab library and a naı̈ve synthetic Fab library were used to select Fabs against EGFR. Both libraries yielded high affinity Fabs that bound to overlapping epitopes on cell-surface EGFR, inhibited receptor activation, and targeted epitopes distinct from those of cetuximab and panitumumab. Epitope mapping experiments revealed complex sites of interaction, comprised of domains I and II but not exclusively localized to the receptor dimerization loop. These results validate the grafting approach for designing Fab libraries and also underscore the versatility of naı̈ve synthetic libraries.
Collapse
Affiliation(s)
- Shane Miersch
- Banting
and Best Department of Medical Research and Donnelly Centre for Cellular
and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | | | - C. Ronald Geyer
- Department
of Pathology and Lab Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 0W8
| | - Sachdev S. Sidhu
- Banting
and Best Department of Medical Research and Donnelly Centre for Cellular
and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| |
Collapse
|
205
|
Sha F, Salzman G, Gupta A, Koide S. Monobodies and other synthetic binding proteins for expanding protein science. Protein Sci 2017; 26:910-924. [PMID: 28249355 PMCID: PMC5405424 DOI: 10.1002/pro.3148] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 01/20/2023]
Abstract
Synthetic binding proteins are constructed using nonantibody molecular scaffolds. Over the last two decades, in‐depth structural and functional analyses of synthetic binding proteins have improved combinatorial library designs and selection strategies, which have resulted in potent platforms that consistently generate binding proteins to diverse targets with affinity and specificity that rival those of antibodies. Favorable attributes of synthetic binding proteins, such as small size, freedom from disulfide bond formation and ease of making fusion proteins, have enabled their unique applications in protein science, cell biology and beyond. Here, we review recent studies that illustrate how synthetic binding proteins are powerful probes that can directly link structure and function, often leading to new mechanistic insights. We propose that synthetic proteins will become powerful standard tools in diverse areas of protein science, biotechnology and medicine.
Collapse
Affiliation(s)
- Fern Sha
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, 60637
| | - Gabriel Salzman
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, 60637
| | - Ankit Gupta
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, 60637.,Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, 10016
| | - Shohei Koide
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, Illinois, 60637.,Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, 10016.,Department of Biochemistry and Molecular Pharmacology New York University School of Medicine, New York, NY, 10016
| |
Collapse
|
206
|
Application of the ATTRACT Coarse-Grained Docking and Atomistic Refinement for Predicting Peptide-Protein Interactions. Methods Mol Biol 2017. [PMID: 28236233 DOI: 10.1007/978-1-4939-6798-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Peptide-protein interactions are abundant in the cell and form an important part of the interactome. Large-scale modeling of peptide-protein complexes requires a fully blind approach; i.e., simultaneously predicting the peptide-binding site and the peptide conformation to high accuracy. Here, we present one of the first fully blind peptide-protein docking protocols, pepATTRACT. It combines a coarse-grained ensemble docking search of the entire protein surface with two stages of atomistic flexible refinement. pepATTRACT yields high-quality predictions for 70 % of the cases when tested on a large benchmark of peptide-protein complexes. This performance in fully blind mode is similar to state-of-the-art local docking approaches that use information on the location of the binding site. Limiting the search to the peptide-binding region, the resulting pepATTRACT-local approach further improves the performance. Docking scripts for pepATTRACT and pepATTRACT-local can be generated via a web interface at www.attract.ph.tum.de/peptide.html . Here, we explain how to set up a docking run with the pepATTRACT web interface and demonstrate its usage by an application on binding of disordered regions from tumor suppressor p53 to a partner protein.
Collapse
|
207
|
Haiying G, Mingjie H, Lingyu Z, Qingxiang W, Haisong W, Bingxi Z. Anesthetics inhibit extracellular signal-regulated Kinase1/2 phosphorylation via NMDA receptor, phospholipase C and protein kinase C in mouse hippocampal slices. Neurochem Int 2017; 103:36-44. [DOI: 10.1016/j.neuint.2016.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/25/2016] [Accepted: 12/29/2016] [Indexed: 11/16/2022]
|
208
|
Adhikary R, Zimmermann J, Romesberg FE. Transparent Window Vibrational Probes for the Characterization of Proteins With High Structural and Temporal Resolution. Chem Rev 2017; 117:1927-1969. [DOI: 10.1021/acs.chemrev.6b00625] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ramkrishna Adhikary
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Jörg Zimmermann
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Floyd E. Romesberg
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
209
|
Davey NE, Seo MH, Yadav VK, Jeon J, Nim S, Krystkowiak I, Blikstad C, Dong D, Markova N, Kim PM, Ivarsson Y. Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome. FEBS J 2017; 284:485-498. [PMID: 28002650 DOI: 10.1111/febs.13995] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 12/04/2016] [Accepted: 12/19/2016] [Indexed: 12/29/2022]
Abstract
The intrinsically disordered regions of eukaryotic proteomes are enriched in short linear motifs (SLiMs), which are of crucial relevance for cellular signaling and protein regulation; many mediate interactions by providing binding sites for peptide-binding domains. The vast majority of SLiMs remain to be discovered highlighting the need for experimental methods for their large-scale identification. We present a novel proteomic peptide phage display (ProP-PD) library that displays peptides representing the disordered regions of the human proteome, allowing direct large-scale interrogation of most potential binding SLiMs in the proteome. The performance of the ProP-PD library was validated through selections against SLiM-binding bait domains with distinct folds and binding preferences. The vast majority of identified binding peptides contained sequences that matched the known SLiM-binding specificities of the bait proteins. For SHANK1 PDZ, we establish a novel consensus TxF motif for its non-C-terminal ligands. The binding peptides mostly represented novel target proteins, however, several previously validated protein-protein interactions (PPIs) were also discovered. We determined the affinities between the VHS domain of GGA1 and three identified ligands to 40-130 μm through isothermal titration calorimetry, and confirmed interactions through coimmunoprecipitation using full-length proteins. Taken together, we outline a general pipeline for the design and construction of ProP-PD libraries and the analysis of ProP-PD-derived, SLiM-based PPIs. We demonstrated the methods potential to identify low affinity motif-mediated interactions for modular domains with distinct binding preferences. The approach is a highly useful complement to the current toolbox of methods for PPI discovery.
Collapse
Affiliation(s)
- Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Ireland
| | - Moon-Hyeong Seo
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | | | - Jouhyun Jeon
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | - Satra Nim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | - Izabella Krystkowiak
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Ireland
| | | | - Debbie Dong
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada
| | | | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Canada.,Department of Molecular Genetics and Department of Computer Science, University of Toronto, Canada
| | - Ylva Ivarsson
- Department of Chemistry - BMC, Uppsala University, Sweden
| |
Collapse
|
210
|
Yu Y, Nie Y, Feng Q, Qu J, Wang R, Bian L, Xia J. Targeted Covalent Inhibition of Grb2-Sos1 Interaction through Proximity-Induced Conjugation in Breast Cancer Cells. Mol Pharm 2017; 14:1548-1557. [PMID: 28060514 DOI: 10.1021/acs.molpharmaceut.6b00952] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Targeted covalent inhibitors of protein-protein interactions differ from reversible inhibitors in that the former bind and covalently bond the target protein at a specific site of the target. The site specificity is the result of the proximity of two reactive groups at the bound state, for example, one mild electrophile in the inhibitor and a natural cysteine in the target close to the ligand binding site. Only a few pharmaceutically relevant proteins have this structural feature. Grb2, a key adaptor protein in maintaining the ERK activity via binding Sos1 to activated RTKs, is one: the N-terminal SH3 domain of Grb2 (Grb2N-SH3) carries a unique solvent-accessible cysteine Cys32 close to its Sos1-binding site. Here we report the design of a peptide-based antagonist (a reactive peptide) that specifically binds to Grb2N-SH3 and subsequently undergoes a nucleophilic reaction with Cys32 to form a covalent bond thioether, to block Grb2-Sos1 interaction. Through rounds of optimization, we eventually obtained a dimeric reaction reactive peptide that can form a covalent adduct with endogenous Grb2 protein inside the cytosol of SK-BR-3 human breast cancer cells with pronounced inhibitory effect on cell mobility and viability. This work showcases a rational design of Grb2-targeted site-specific covalent inhibitor and its pronounced anticancer effect by targeting Grb2-Sos1 interaction.
Collapse
Affiliation(s)
- Yongsheng Yu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine , Shanghai, China.,Department of Chemistry, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Yunyu Nie
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Qian Feng
- Department of Biomedical Engineering, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Jiale Qu
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Rui Wang
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, Hong Kong SAR, China
| |
Collapse
|
211
|
Noguchi T, Ishiba H, Honda K, Kondoh Y, Osada H, Ohno H, Fujii N, Oishi S. Synthesis of Grb2 SH2 Domain Proteins for Mirror-Image Screening Systems. Bioconjug Chem 2017; 28:609-619. [DOI: 10.1021/acs.bioconjchem.6b00692] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taro Noguchi
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroyuki Ishiba
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Kaori Honda
- Chemical
Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Yasumitsu Kondoh
- Chemical
Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical
Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama 351-0198, Japan
| | - Hiroaki Ohno
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Nobutaka Fujii
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinya Oishi
- Graduate
School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
212
|
Sommese RF, Ritt M, Swanson CJ, Sivaramakrishnan S. The Role of Regulatory Domains in Maintaining Autoinhibition in the Multidomain Kinase PKCα. J Biol Chem 2017; 292:2873-2880. [PMID: 28049730 DOI: 10.1074/jbc.m116.768457] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/30/2016] [Indexed: 11/06/2022] Open
Abstract
Resolving the conformational dynamics of large multidomain proteins has proven to be a significant challenge. Here we use a variety of techniques to dissect the roles of individual protein kinase Cα (PKCα) regulatory domains in maintaining catalytic autoinhibition. We find that whereas the pseudosubstrate domain is necessary for autoinhibition it is not sufficient. Instead, each regulatory domain (C1a, C1b, and C2) appears to strengthen the pseudosubstrate-catalytic domain interaction in a nucleotide-dependent manner. The pseudosubstrate and C1a domains, however, are minimally essential for maintaining the inactivated state. Furthermore, disrupting known interactions between the C1a and other regulatory domains releases the autoinhibited interaction and increases basal activity. Modulating this interaction between the catalytic and regulatory domains reveals a direct correlation between autoinhibition and membrane translocation following PKC activation.
Collapse
Affiliation(s)
- Ruth F Sommese
- From the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Michael Ritt
- From the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Carter J Swanson
- the Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109
| | - Sivaraj Sivaramakrishnan
- From the Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455 and
| |
Collapse
|
213
|
Katz ZB, Novotná L, Blount A, Lillemeier BF. A cycle of Zap70 kinase activation and release from the TCR amplifies and disperses antigenic stimuli. Nat Immunol 2017; 18:86-95. [PMID: 27869819 PMCID: PMC5490839 DOI: 10.1038/ni.3631] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022]
Abstract
Cell-surface-receptor pathways amplify weak, rare and local stimuli to induce cellular responses. This task is accomplished despite signaling components that segregate into nanometer-scale membrane domains. Here we describe a 'catch-and-release' mechanism that amplified and dispersed stimuli by releasing activated kinases from receptors lacking intrinsic catalytic activity. Specifically, we discovered a cycle of recruitment, activation and release for Zap70 kinases at phosphorylated T cell antigen receptors (TCRs). This turned the TCR into a 'catalytic unit' that amplified antigenic stimuli. Zap70 released from the TCR remained at the membrane, translocated, and phosphorylated spatially distinct substrates. The mechanisms described here are based on widely used protein domains and post-translational modifications; therefore, many membrane-associated pathways might employ similar mechanisms for signal amplification and dispersion.
Collapse
Affiliation(s)
- Zachary B Katz
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Lucie Novotná
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Amy Blount
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Björn F Lillemeier
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
214
|
Protein intrinsic disorder-based liquid-liquid phase transitions in biological systems: Complex coacervates and membrane-less organelles. Adv Colloid Interface Sci 2017; 239:97-114. [PMID: 27291647 DOI: 10.1016/j.cis.2016.05.012] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/24/2016] [Indexed: 12/18/2022]
Abstract
It is clear now that eukaryotic cells contain numerous membrane-less organelles, many of which are formed in response to changes in the cellular environment. Being typically liquid in nature, many of these organelles can be described as products of the reversible and highly controlled liquid-liquid phase transitions in biological systems. Many of these membrane-less organelles are complex coacervates containing (almost invariantly) intrinsically disordered proteins and often nucleic acids. It seems that the lack of stable structure in major proteinaceous constituents of these organelles is crucial for the formation of phase-separated droplets. This review considers several biologically relevant liquid-liquid phase transitions, introduces some general features attributed to intrinsically disordered proteins, represents several illustrative examples of intrinsic disorder-based phase separation, and provides some reasons for the abundance of intrinsically disordered proteins in organelles formed as a result of biological liquid-liquid phase transitions.
Collapse
|
215
|
Hu L, Chan KCC. Extracting Coevolutionary Features from Protein Sequences for Predicting Protein-Protein Interactions. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2017; 14:155-166. [PMID: 26812730 DOI: 10.1109/tcbb.2016.2520923] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Knowing the ways proteins interact with each other are crucial to our understanding of the functional mechanisms of proteins. It is for this reason that different approaches have been developed in attempts to predict protein-protein interactions (PPIs) computationally. Among them, the sequence-based approaches are preferred to the others as they do not require any information about protein properties to perform their tasks. Instead, most sequence-based approaches make use of feature extraction methods to extract features directly from protein sequences so that for each protein sequence, we can construct a feature vector. The feature vectors of every pair of proteins are then concatenated to form two classes of interacting and non-interacting proteins. The prediction of whether or not two proteins interact with each other is then formulated as a classification problem. How accurate PPI predictions can be made therefore depends on how good the features are that can be extracted from the protein sequences to allow interacting or non-interacting to be best distinguished. To do so, instead of extracting such features from individual protein sequences independently of the other protein in the same pair, we propose to jointly consider features from both sequences in a protein pair during the feature extraction process through using a novel coevolutionary feature extraction approach called CoFex. Coevolutionary features extracted by CoFex refer to the covariations found at coevolving positions. Based on the presence and absence of these coevolutionary features in the sequences of two proteins, feature vectors can be composed for pairs of proteins rather than individual proteins. The experiment results show that CoFex is a promising feature extraction approach and can improve the performance of PPI prediction.
Collapse
|
216
|
Modeling Peptide-Protein Structure and Binding Using Monte Carlo Sampling Approaches: Rosetta FlexPepDock and FlexPepBind. Methods Mol Biol 2017; 1561:139-169. [PMID: 28236237 DOI: 10.1007/978-1-4939-6798-8_9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many signaling and regulatory processes involve peptide-mediated protein interactions, i.e., the binding of a short stretch in one protein to a domain in its partner. Computational tools that generate accurate models of peptide-receptor structures and binding improve characterization and manipulation of known interactions, help to discover yet unknown peptide-protein interactions and networks, and bring into reach the design of peptide-based drugs for targeting specific systems of medical interest.Here, we present a concise overview of the Rosetta FlexPepDock protocol and its derivatives that we have developed for the structure-based characterization of peptide-protein binding. Rosetta FlexPepDock was built to generate precise models of protein-peptide complex structures, by effectively addressing the challenge of the considerable conformational flexibility of the peptide. Rosetta FlexPepBind is an extension of this protocol that allows characterizing peptide-binding affinities and specificities of various biological systems, based on the structural models generated by Rosetta FlexPepDock. We provide detailed descriptions and guidelines for the usage of these protocols, and on a specific example, we highlight the variety of different challenges that can be met and the questions that can be answered with Rosetta FlexPepDock.
Collapse
|
217
|
Computational Approaches for Predicting Binding Partners, Interface Residues, and Binding Affinity of Protein-Protein Complexes. Methods Mol Biol 2017; 1484:237-253. [PMID: 27787830 DOI: 10.1007/978-1-4939-6406-2_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Studying protein-protein interactions leads to a better understanding of the underlying principles of several biological pathways. Cost and labor-intensive experimental techniques suggest the need for computational methods to complement them. Several such state-of-the-art methods have been reported for analyzing diverse aspects such as predicting binding partners, interface residues, and binding affinity for protein-protein complexes with reliable performance. However, there are specific drawbacks for different methods that indicate the need for their improvement. This review highlights various available computational algorithms for analyzing diverse aspects of protein-protein interactions and endorses the necessity for developing new robust methods for gaining deep insights about protein-protein interactions.
Collapse
|
218
|
Zeng L, Wu L, Liu L, Jiang X. Analyzing Structural Properties of Heterogeneous Cardiolipin-Bound Cytochrome C and Their Regulation by Surface-Enhanced Infrared Absorption Spectroscopy. Anal Chem 2016; 88:11727-11733. [DOI: 10.1021/acs.analchem.6b03360] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Li Zeng
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lie Wu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Li Liu
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiue Jiang
- State
Key Laboratory of Electroanalytical Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
219
|
Reichen C, Hansen S, Forzani C, Honegger A, Fleishman SJ, Zhou T, Parmeggiani F, Ernst P, Madhurantakam C, Ewald C, Mittl PR, Zerbe O, Baker D, Caflisch A, Plückthun A. Computationally Designed Armadillo Repeat Proteins for Modular Peptide Recognition. J Mol Biol 2016; 428:4467-4489. [DOI: 10.1016/j.jmb.2016.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
|
220
|
Ohlendorf R, Schumacher CH, Richter F, Möglich A. Library-Aided Probing of Linker Determinants in Hybrid Photoreceptors. ACS Synth Biol 2016; 5:1117-1126. [PMID: 27002379 DOI: 10.1021/acssynbio.6b00028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Signaling proteins comprise interaction and effector modules connected by linkers. Throughout evolution, these recurring modules have multiply been recombined to produce the present-day plethora of signaling proteins. Likewise, modular recombination lends itself to the engineering of hybrid signal receptors, whose functionality hinges on linker topology, sequence, and length. Often, numerous linkers must be assessed to obtain functional receptors. To expedite linker optimization, we devised the PATCHY strategy (primer-aided truncation for the creation of hybrid proteins) for the facile construction of hybrid gene libraries with defined linker distributions. Empowered by PATCHY, we engineered photoreceptors whose signal response was governed by linker length: whereas blue-light-repressed variants possessed linkers of 7n or 7n+5 residues, variants with 7n+1 residues were blue-light-activated. Related natural receptors predominantly displayed linker lengths of 7n and 7n+5 residues but rarely of 7n+1 residues. PATCHY efficiently explores linker sequence space to yield functional hybrid proteins including variants transcending the natural repertoire of signaling proteins.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Humboldt-Universität zu Berlin, Institut für Biologie,
Biophysikalische Chemie, Invalidenstraße 42, 10115 Berlin, Germany
| | - Charlotte Helene Schumacher
- Humboldt-Universität zu Berlin, Institut für Biologie,
Biophysikalische Chemie, Invalidenstraße 42, 10115 Berlin, Germany
| | - Florian Richter
- Humboldt-Universität zu Berlin, Institut für Biologie,
Biophysikalische Chemie, Invalidenstraße 42, 10115 Berlin, Germany
| | - Andreas Möglich
- Humboldt-Universität zu Berlin, Institut für Biologie,
Biophysikalische Chemie, Invalidenstraße 42, 10115 Berlin, Germany
- Universität Bayreuth, Lehrstuhl für Biochemie, Universitätsstraße 30,
Geb. NW III, 95447 Bayreuth, Germany
| |
Collapse
|
221
|
Fischer A, Weber W, Warscheid B, Radziwill G. AKT-dependent phosphorylation of the SAM domain induces oligomerization and activation of the scaffold protein CNK1. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1864:89-100. [PMID: 27769899 DOI: 10.1016/j.bbamcr.2016.10.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/06/2016] [Accepted: 10/15/2016] [Indexed: 12/27/2022]
Abstract
Scaffold proteins are hubs for the coordination of intracellular signaling networks. The scaffold protein CNK1 promotes several signal transduction pathway. Here we demonstrate that sterile motif alpha (SAM) domain-dependent oligomerization of CNK1 stimulates CNK1-mediated signaling in growth factor-stimulated cells. We identified Ser22 located within the SAM domain as AKT-dependent phosphorylation site triggering CNK1 oligomerization. Oligomeric CNK1 increased the affinity for active AKT indicating a positive AKT feedback mechanism. A CNK1 mutant lacking the SAM domain and the phosphorylation-defective mutant CNK1S22A antagonizes oligomerization and prevents CNK1-driven cell proliferation and matrix metalloproteinase 14 promoter activation. The phosphomimetic mutant CNK1S22D constitutively oligomerizes and stimulates CNK1 downstream signaling. Searching the COSMIC database revealed Ser22 as putative target for oncogenic activation of CNK1. Like the phosphomimetic mutant CNK1S22D, the oncogenic mutant CNK1S22F forms clusters in serum-starved cells comparable to clusters of CNK1 in growth factor-stimulated cells. CNK1 clusters induced by activating Ser22 mutants correlate with enhanced cell invasion and binding to and activation of ADP ribosylation factor 1 associated with tumor formation. Mutational analysis indicate that EGF-triggered phosphorylation of Thr8 within the SAM domain prevents AKT binding and antagonizes CNK1-mediated AKT signaling. Our findings reveal SAM domain-dependent oligomerization by AKT as switch for CNK1 activation.
Collapse
Affiliation(s)
- Adrian Fischer
- Department of Biochemistry and Synthetic Biology, Faculty of Biology, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; Department of Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - Wilfried Weber
- Department of Biochemistry and Synthetic Biology, Faculty of Biology, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; Department of Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
| | - Gerald Radziwill
- Department of Biochemistry and Synthetic Biology, Faculty of Biology, University of Freiburg, Schänzlestr. 18, 79104 Freiburg, Germany; Department of Biochemistry and Functional Proteomics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany; BIOSS - Centre for Biological Signalling Studies, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany.
| |
Collapse
|
222
|
Chen Y, Deng X, Deng J, Zhou J, Ren Y, Liu S, Prusak DJ, Wood TG, Bao X. Functional motifs responsible for human metapneumovirus M2-2-mediated innate immune evasion. Virology 2016; 499:361-368. [PMID: 27743962 PMCID: PMC5102771 DOI: 10.1016/j.virol.2016.09.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 01/12/2023]
Abstract
Human metapneumovirus (hMPV) is a major cause of lower respiratory infection in young children. Repeated infections occur throughout life, but its immune evasion mechanisms are largely unknown. We recently found that hMPV M2-2 protein elicits immune evasion by targeting mitochondrial antiviral-signaling protein (MAVS), an antiviral signaling molecule. However, the molecular mechanisms underlying such inhibition are not known. Our mutagenesis studies revealed that PDZ-binding motifs, 29-DEMI-32 and 39-KEALSDGI-46, located in an immune inhibitory region of M2-2, are responsible for M2-2-mediated immune evasion. We also found both motifs prevent TRAF5 and TRAF6, the MAVS downstream adaptors, to be recruited to MAVS, while the motif 39-KEALSDGI-46 also blocks TRAF3 migrating to MAVS. In parallel, these TRAFs are important in activating transcription factors NF-kB and/or IRF-3 by hMPV. Our findings collectively demonstrate that M2-2 uses its PDZ motifs to launch the hMPV immune evasion through blocking the interaction of MAVS and its downstream TRAFs. This manuscript describes a molecular mechanism underlying the immune evasion of hMPV. Results create the design basis for safer and more effective hMPV vaccines/therapeutic molecules. We demonstrate the contribution of TRAFs in antiviral responses to hMPV infection.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaoling Deng
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Junfang Deng
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States; Department of Hepatobiliary Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Jiehua Zhou
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China
| | - Yuping Ren
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Shengxuan Liu
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, China; Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States
| | - Deborah J Prusak
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Thomas G Wood
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, United States; Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, United States; The Institute of Translational Science, University of Texas Medical Branch, Galveston, TX, United States; The Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, United States.
| |
Collapse
|
223
|
Pal R, Ke Q, Pihan GA, Yesilaltay A, Penman ML, Wang L, Chitraju C, Kang PM, Krieger M, Kocher O. Carboxy-terminal deletion of the HDL receptor reduces receptor levels in liver and steroidogenic tissues, induces hypercholesterolemia, and causes fatal heart disease. Am J Physiol Heart Circ Physiol 2016; 311:H1392-H1408. [PMID: 27694217 DOI: 10.1152/ajpheart.00463.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/13/2016] [Indexed: 01/15/2023]
Abstract
The HDL receptor SR-BI mediates the transfer of cholesteryl esters from HDL to cells and controls HDL abundance and structure. Depending on the genetic background, loss of SR-BI causes hypercholesterolemia, anemia, reticulocytosis, splenomegaly, thrombocytopenia, female infertility, and fatal coronary heart disease (CHD). The carboxy terminus of SR-BI (505QEAKL509) must bind to the cytoplasmic adaptor PDZK1 for normal hepatic-but not steroidogenic cell-expression of SR-BI protein. To determine whether SR-BI's carboxy terminus is also required for normal protein levels in steroidogenic cells, we introduced into SR-BI's gene a 507Ala/STOP mutation that produces a truncated receptor (SR-BIΔCT). As expected, the dramatic reduction of hepatic receptor protein in SR-BIΔCT mice was similar to that in PDZK1 knockout (KO) mice. Unlike SR-BI KO females, SR-BIΔCT females were fertile. The severity of SR-BIΔCT mice's hypercholesterolemia was intermediate between those of SR-BI KO and PDZK1 KO mice. Substantially reduced levels of the receptor in adrenal cortical cells, ovarian cells, and testicular Leydig cells in SR-BIΔCT mice suggested that steroidogenic cells have an adaptor(s) functionally analogous to hepatic PDZK1. When SR-BIΔCT mice were crossed with apolipoprotein E KO mice (SR-BIΔCT/apoE KO), pathologies including hypercholesterolemia, macrocytic anemia, hepatic and splenic extramedullary hematopoiesis, massive splenomegaly, reticulocytosis, thrombocytopenia, and rapid-onset and fatal occlusive coronary arterial atherosclerosis and CHD (median age of death: 9 wk) were observed. These results provide new insights into the control of SR-BI in steroidogenic cells and establish SR-BIΔCT/apoE KO mice as a new animal model for the study of CHD.
Collapse
Affiliation(s)
- Rinku Pal
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Qingen Ke
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - German A Pihan
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Ayce Yesilaltay
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Marsha L Penman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Li Wang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Chandramohan Chitraju
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts
| | - Peter M Kang
- Division of Cardiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Monty Krieger
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Olivier Kocher
- Department of Pathology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts;
| |
Collapse
|
224
|
Abstract
Repeats are ubiquitous elements of proteins and they play important roles for cellular function and during evolution. Repeats are, however, also notoriously difficult to capture computationally and large scale studies so far had difficulties in linking genetic causes, structural properties and evolutionary trajectories of protein repeats. Here we apply recently developed methods for repeat detection and analysis to a large dataset comprising over hundred metazoan genomes. We find that repeats in larger protein families experience generally very few insertions or deletions (indels) of repeat units but there is also a significant fraction of noteworthy volatile outliers with very high indel rates. Analysis of structural data indicates that repeats with an open structure and independently folding units are more volatile and more likely to be intrinsically disordered. Such disordered repeats are also significantly enriched in sites with a high functional potential such as linear motifs. Furthermore, the most volatile repeats have a high sequence similarity between their units. Since many volatile repeats also show signs of recombination, we conclude they are often shaped by concerted evolution. Intriguingly, many of these conserved yet volatile repeats are involved in host-pathogen interactions where they might foster fast but subtle adaptation in biological arms races. KEY WORDS: protein evolution, domain rearrangements, protein repeats, concerted evolution.
Collapse
Affiliation(s)
- Andreas Schüler
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University, Huefferstrasse 1, Muenster, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, Westfalian Wilhelms University, Huefferstrasse 1, Muenster, Germany
| |
Collapse
|
225
|
Tyshchuk O, Völger HR, Ferrara C, Bulau P, Koll H, Mølhøj M. Detection of a phosphorylated glycine-serine linker in an IgG-based fusion protein. MAbs 2016; 9:94-103. [PMID: 27661266 PMCID: PMC5240648 DOI: 10.1080/19420862.2016.1236165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Molecular mass determination by electrospray ionization mass spectrometry of a recombinant IgG-based fusion protein (mAb1-F) produced in human embryonic kidney (HEK) cells demonstrated the presence of a dominant +79 Da product variant. Using LC-MS tryptic peptide mapping analysis and collision-induced dissociation (CID) and electron-transfer/higher-energy collision dissociation fragmentations, the modification was localized to the C-terminal serine residue of a glycine-serine linker [(G4S)2] of a fused heavy chain containing in total 2 (G4S)2-linkers. The modification was identified as a phosphorylation (+79.97 Da) by the presence of a 98 Da neutral loss reaction with CID, by spiking a synthetic phosphoserine peptide, and by dephosphorylation with alkaline phosphatase. A thermolysin digest combined with higher-energy collision dissociation (HCD) positioned the phosphoserine to one specific glycine-serine linker of the fused heavy chain, and the relative level of phosphorylated linker was determined to be 11.3% and 0.4% by LC-MS when the fusion protein was transiently expressed in HEK or in stably transformed Chinese hamster ovary cells, respectively. This observation demonstrates that fusions with glycine-serine linker sequences should be carefully evaluated during drug development to prevent the introduction of a phosphorylation site in therapeutic fusion proteins.
Collapse
Affiliation(s)
- Oksana Tyshchuk
- a Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH , Penzberg , Germany
| | - Hans Rainer Völger
- a Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH , Penzberg , Germany
| | - Claudia Ferrara
- b Oncology Discovery & Translational Area, Roche Innovation Center Zurich , Schlieren , Switzerland
| | - Patrick Bulau
- c Roche Pharma Technical Development Penzberg, Roche Diagnostics GmbH , Penzberg , Germany
| | - Hans Koll
- a Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH , Penzberg , Germany
| | - Michael Mølhøj
- a Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Roche Diagnostics GmbH , Penzberg , Germany
| |
Collapse
|
226
|
Zhu C, Zhang C, Zhang T, Zhang X, Shen Q, Tang B, Liang H, Lai L. Rational design of TNFα binding proteins based on the de novo designed protein DS119. Protein Sci 2016; 25:2066-2075. [PMID: 27571536 DOI: 10.1002/pro.3029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022]
Abstract
De novo protein design offers templates for engineering tailor-made protein functions and orthogonal protein interaction networks for synthetic biology research. Various computational methods have been developed to introduce functional sites in known protein structures. De novo designed protein scaffolds provide further opportunities for functional protein design. Here we demonstrate the rational design of novel tumor necrosis factor alpha (TNFα) binding proteins using a home-made grafting program AutoMatch. We grafted three key residues from a virus 2L protein to a de novo designed small protein, DS119, with consideration of backbone flexibility. The designed proteins bind to TNFα with micromolar affinities. We further optimized the interface residues with RosettaDesign and significantly improved the binding capacity of one protein Tbab1-4. These designed proteins inhibit the activity of TNFα in cellular luciferase assays. Our work illustrates the potential application of the de novo designed protein DS119 in protein engineering, biomedical research, and protein sequence-structure-function studies.
Collapse
Affiliation(s)
- Cheng Zhu
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Changsheng Zhang
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tao Zhang
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaoling Zhang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Qi Shen
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Bo Tang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Huanhuan Liang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Luhua Lai
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. .,Center for Quantitative Biology, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
227
|
Whitney DS, Volkman BF, Prehoda KE. Evolution of a Protein Interaction Domain Family by Tuning Conformational Flexibility. J Am Chem Soc 2016; 138:15150-15156. [PMID: 27502157 DOI: 10.1021/jacs.6b05954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Conformational flexibility allows proteins to adopt multiple functionally important conformations but can also lead to nonfunctional structures. We analyzed the dynamic behavior of the enzyme guanylate kinase as it evolved into the GK protein interaction domain (GKPID) to investigate the role of flexibility in the evolution of new protein functions. We found that the ancestral enzyme is very flexible, allowing it to adopt open conformations that can bind nucleotide and closed ones that enable catalysis of phosphotransfer from ATP to GMP. Historical mutations that converted the GK from an enzyme to a protein interaction domain dramatically reduce flexibility, predominantly by inhibiting rotations of the protein backbone that are coupled to the global closing motion. Removing flexibility prevents adoption of conformations that cannot fit the protein partner in the binding site. Our results highlight the importance of mutations that optimize protein conformational flexibility with function during evolution.
Collapse
Affiliation(s)
- Dustin S Whitney
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | - Brian F Volkman
- Department of Biochemistry, Medical College of Wisconsin , Milwaukee, Wisconsin 53226, United States
| | - Kenneth E Prehoda
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of Oregon , Eugene, Oregon 97403, United States
| |
Collapse
|
228
|
Zhou A, Li M, He B, Feng W, Huang F, Xu B, Dunker AK, Balch C, Li B, Liu Y, Wang Y. Lipopolysaccharide treatment induces genome-wide pre-mRNA splicing pattern changes in mouse bone marrow stromal stem cells. BMC Genomics 2016; 17 Suppl 7:509. [PMID: 27557078 PMCID: PMC5001229 DOI: 10.1186/s12864-016-2898-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipopolysaccharide (LPS) is a gram-negative bacterial antigen that triggers a series of cellular responses. LPS pre-conditioning was previously shown to improve the therapeutic efficacy of bone marrow stromal cells/bone-marrow derived mesenchymal stem cells (BMSCs) for repairing ischemic, injured tissue. RESULTS In this study, we systematically evaluated the effects of LPS treatment on genome-wide splicing pattern changes in mouse BMSCs by comparing transcriptome sequencing data from control vs. LPS-treated samples, revealing 197 exons whose BMSC splicing patterns were altered by LPS. Functional analysis of these alternatively spliced genes demonstrated significant enrichment of phosphoproteins, zinc finger proteins, and proteins undergoing acetylation. Additional bioinformatics analysis strongly suggest that LPS-induced alternatively spliced exons could have major effects on protein functions by disrupting key protein functional domains, protein-protein interactions, and post-translational modifications. CONCLUSION Although it is still to be determined whether such proteome modifications improve BMSC therapeutic efficacy, our comprehensive splicing characterizations provide greater understanding of the intracellular mechanisms that underlie the therapeutic potential of BMSCs.
Collapse
Affiliation(s)
- Ao Zhou
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Bioinformatics Program, Indiana University School of Informatics, Indianapolis, IN, 46202, USA
| | - Meng Li
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Bo He
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Weixing Feng
- College of Automation, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Fei Huang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Bing Xu
- Department of Medical and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - A Keith Dunker
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Curt Balch
- Bioscience Advising, Indianapolis, IN, 46227, USA
| | - Baiyan Li
- Department of Pharmacology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Medical and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yue Wang
- Department of Medical and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
229
|
Chong PA, Forman-Kay JD. Liquid-liquid phase separation in cellular signaling systems. Curr Opin Struct Biol 2016; 41:180-186. [PMID: 27552079 DOI: 10.1016/j.sbi.2016.08.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/29/2016] [Accepted: 08/01/2016] [Indexed: 12/29/2022]
Abstract
Liquid-liquid demixing or phase separation of protein with RNA is now recognized to be a key part of the mechanism for assembly of ribonucleoprotein granules. Cellular signaling also appears to employ phase separation as a mechanism for amplification or control of signal transduction both within the cytoplasm and at the membrane. The concept of receptor clustering, identified more than 3 decades ago, is now being examined through the lens of phase separation leading to new insights. Intrinsically disordered proteins or regions are central to these processes owing to their flexibility and accessibility for dynamic protein-protein interactions and post-translational modifications. We review some recent examples, examine the mechanisms driving phase separation and delineate the implications for signal transduction systems.
Collapse
Affiliation(s)
- P Andrew Chong
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julie D Forman-Kay
- Program in Molecular Structure and Function, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
230
|
Uslan V, Seker H. Binding affinity prediction of S. cerevisiae 14-3-3 and GYF peptide-recognition domains using support vector regression. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2016:3445-3448. [PMID: 28269042 DOI: 10.1109/embc.2016.7591469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Proteins interact with other proteins and bio-molecules to carry out biological processes in a cell. Computational models help understanding complex biochemical processes that happens throughout the life of a cell. Domain-mediated protein interaction to peptides one such complex problem in bioinformatics that requires computational predictive models to identify meaningful bindings. In this study, domain-peptide binding affinity prediction models are proposed based on support vector regression. Proposed models are applied to yeast bmh 14-3-3 and syh GYF peptide-recognition domains. The cross validated results of the domain-peptide binding affinity data sets show that predictive performance of the support vector based models are efficient.
Collapse
|
231
|
Boutin SR, Rogers AB, Shen Z, Fry RC, Love JA, Nambiar PR, Suerbaum S, Fox JG. Hepatic Temporal Gene Expression Profiling in Helicobacter hepaticus-Infected A/JCr Mice. Toxicol Pathol 2016; 32:678-93. [PMID: 15513911 DOI: 10.1080/01926230490524058] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Helicobacter hepaticus infection of A/JCr mice is a model of infectious liver cancer. We monitored hepatic global gene expression profiles in H. hepaticus infected and control male A/JCr mice at 3 months, 6 months, and 1 year of age using an Affymetrix-based oligonucleotide microarray platform on the premise that a specific genetic expression signature at isolated time points would be indicative of disease status. Model based expression index comparisons generated by dChip yielded consistent profiles of differential gene expression for H. hepaticus infected male mice with progressive liver disease versus uninfected control mice within each age group. Linear discriminant analysis and principal component analysis allowed segregation of mice based on combined age and lesion status, or age alone. Up-regulation of putative tumor markers correlated with advancing hepatocellular dysplasia. Transcriptionally down-regulated genes in mice with liver lesions included those related to peroxisome proliferator, fatty acid, and steroid metabolism pathways. In conclusion, transcriptional profiling of hepatic genes documented gene expression signatures in the livers of H. hepaticus infected male A/JCr mice with chronic progressive hepatitis and preneoplastic liver lesions, complemented the histopathological diagnosis, and suggested molecular targets for the monitoring and intervention of disease progression prior to the onset of hepatocellular neoplasia.
Collapse
Affiliation(s)
- Samuel R Boutin
- Division of Comparative Medicine, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Jhuraney A, Woods NT, Wright G, Rix L, Kinose F, Kroeger JL, Remily-Wood E, Cress WD, Koomen JM, Brantley SG, Gray JE, Haura EB, Rix U, Monteiro AN. PAXIP1 Potentiates the Combination of WEE1 Inhibitor AZD1775 and Platinum Agents in Lung Cancer. Mol Cancer Ther 2016; 15:1669-81. [PMID: 27196765 PMCID: PMC4936941 DOI: 10.1158/1535-7163.mct-15-0182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/09/2016] [Indexed: 11/16/2022]
Abstract
The DNA damage response (DDR) involves a complex network of signaling events mediated by modular protein domains such as the BRCA1 C-terminal (BRCT) domain. Thus, proteins that interact with BRCT domains and are a part of the DDR constitute potential targets for sensitization to DNA-damaging chemotherapy agents. We performed a pharmacologic screen to evaluate 17 kinases, identified in a BRCT-mediated interaction network as targets to enhance platinum-based chemotherapy in lung cancer. Inhibition of mitotic kinase WEE1 was found to have the most effective response in combination with platinum compounds in lung cancer cell lines. In the BRCT-mediated interaction network, WEE1 was found in complex with PAXIP1, a protein containing six BRCT domains involved in transcription and in the cellular response to DNA damage. We show that PAXIP1 BRCT domains regulate WEE1-mediated phosphorylation of CDK1. Furthermore, ectopic expression of PAXIP1 promotes enhanced caspase-3-mediated apoptosis in cells treated with WEE1 inhibitor AZD1775 (formerly, MK-1775) and cisplatin compared with cells treated with AZD1775 alone. Cell lines and patient-derived xenograft models expressing both PAXIP1 and WEE1 exhibited synergistic effects of AZD1775 and cisplatin. In summary, PAXIP1 is involved in sensitizing lung cancer cells to the WEE1 inhibitor AZD1775 in combination with platinum-based treatment. We propose that WEE1 and PAXIP1 levels may be used as mechanism-based biomarkers of response when WEE1 inhibitor AZD1775 is combined with DNA-damaging agents. Mol Cancer Ther; 15(7); 1669-81. ©2016 AACR.
Collapse
Affiliation(s)
- Ankita Jhuraney
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida. Cancer Biology PhD Program, University of South Florida, Tampa, Florida
| | - Nicholas T Woods
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Gabriela Wright
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Lily Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Fumi Kinose
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jodi L Kroeger
- Flow Cytometry Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Elizabeth Remily-Wood
- Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - W Douglas Cress
- Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - John M Koomen
- Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Stephen G Brantley
- M2Gen, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Jhanelle E Gray
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Eric B Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida
| | - Uwe Rix
- Department of Drug Discovery, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Alvaro N Monteiro
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.
| |
Collapse
|
233
|
Evolution of domain-peptide interactions to coadapt specificity and affinity to functional diversity. Proc Natl Acad Sci U S A 2016; 113:E3862-71. [PMID: 27317745 DOI: 10.1073/pnas.1518469113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Evolution of complexity in eukaryotic proteomes has arisen, in part, through emergence of modular independently folded domains mediating protein interactions via binding to short linear peptides in proteins. Over 30 years, structural properties and sequence preferences of these peptides have been extensively characterized. Less successful, however, were efforts to establish relationships between physicochemical properties and functions of domain-peptide interactions. To our knowledge, we have devised the first strategy to exhaustively explore the binding specificity of protein domain-peptide interactions. We applied the strategy to SH3 domains to determine the properties of their binding peptides starting from various experimental data. The strategy identified the majority (∼70%) of experimentally determined SH3 binding sites. We discovered mutual relationships among binding specificity, binding affinity, and structural properties and evolution of linear peptides. Remarkably, we found that these properties are also related to functional diversity, defined by depth of proteins within hierarchies of gene ontologies. Our results revealed that linear peptides evolved to coadapt specificity and affinity to functional diversity of domain-peptide interactions. Thus, domain-peptide interactions follow human-constructed gene ontologies, which suggest that our understanding of biological process hierarchies reflect the way chemical and thermodynamic properties of linear peptides and their interaction networks, in general, have evolved.
Collapse
|
234
|
Jain S, Bader GD. Predicting physiologically relevant SH3 domain mediated protein-protein interactions in yeast. Bioinformatics 2016; 32:1865-72. [PMID: 26861823 PMCID: PMC4908317 DOI: 10.1093/bioinformatics/btw045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/05/2015] [Accepted: 01/20/2016] [Indexed: 12/02/2022] Open
Abstract
MOTIVATION Many intracellular signaling processes are mediated by interactions involving peptide recognition modules such as SH3 domains. These domains bind to small, linear protein sequence motifs which can be identified using high-throughput experimental screens such as phage display. Binding motif patterns can then be used to computationally predict protein interactions mediated by these domains. While many protein-protein interaction prediction methods exist, most do not work with peptide recognition module mediated interactions or do not consider many of the known constraints governing physiologically relevant interactions between two proteins. RESULTS A novel method for predicting physiologically relevant SH3 domain-peptide mediated protein-protein interactions in S. cerevisae using phage display data is presented. Like some previous similar methods, this method uses position weight matrix models of protein linear motif preference for individual SH3 domains to scan the proteome for potential hits and then filters these hits using a range of evidence sources related to sequence-based and cellular constraints on protein interactions. The novelty of this approach is the large number of evidence sources used and the method of combination of sequence based and protein pair based evidence sources. By combining different peptide and protein features using multiple Bayesian models we are able to predict high confidence interactions with an overall accuracy of 0.97. AVAILABILITY AND IMPLEMENTATION Domain-Motif Mediated Interaction Prediction (DoMo-Pred) command line tool and all relevant datasets are available under GNU LGPL license for download from http://www.baderlab.org/Software/DoMo-Pred The DoMo-Pred command line tool is implemented using Python 2.7 and C ++. CONTACT gary.bader@utoronto.ca SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shobhit Jain
- Department of Computer Science and The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Gary D Bader
- Department of Computer Science and The Donnelly Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
235
|
Yang H, Hu HY. Sequestration of cellular interacting partners by protein aggregates: implication in a loss-of-function pathology. FEBS J 2016; 283:3705-3717. [PMID: 27016044 DOI: 10.1111/febs.13722] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/11/2016] [Accepted: 03/24/2016] [Indexed: 01/09/2023]
Abstract
Protein misfolding and aggregation are a hallmark of several neurodegenerative diseases (NDs). However, how protein aggregation leads to cytotoxicity and neurodegeneration is still controversial. Emerging evidence demonstrates that sequestration of cellular-interacting partners by protein aggregates contributes to the pathogenesis of these diseases. Here, we review current research on sequestration of cellular proteins by protein aggregates and its relation to proteinopathies. Based on different interaction modes, we classify these protein sequestrations into four types: protein coaggregation, domain/motif-mediated sequestration, RNA-assisted sequestration, and sequestration of molecular chaperones. Thus, the cellular essential proteins and/or RNA hijacked by protein aggregates may lose their biological functions, consequently resulting in cytotoxicity and neurodegeneration. We have proposed a hijacking model recapitulating the sequestration process and the loss-of-function pathology of ND.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
236
|
Piao W, Ru LW, Toshchakov VY. Differential adapter recruitment by TLR2 co-receptors. Pathog Dis 2016; 74:ftw043. [PMID: 27150837 DOI: 10.1093/femspd/ftw043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/01/2016] [Indexed: 11/14/2022] Open
Abstract
TLR2 heterodimers with TLR1 or TLR6 recognize distinct pathogen-associated molecules such as tri- and di-acylated lipopeptides. The activated TLR2 heterodimers recruit Toll-IL-1R domain- (TIR-) containing adapter proteins, TIRAP and MyD88, through the receptor TIR domains. Molecular recognition mechanisms responsible for agonist-driven, TIR domain-mediated receptor-adapter interactions as well as the structure of resultant signaling complexes remain unknown. We previously reported that the cell-permeable peptide derived from helix D of TLR2 TIR (2R9) specifically binds TIRAP in vitro and in cells and thereby inhibits TIRAP-dependent TLR signaling. This study demonstrates that cell-permeable peptides from D helix of TLR1 or TLR6, peptides 1R9 and 6R9 respectively, inhibit signaling mediated by cognate TLR2 co-receptors. Interestingly, 1R9 and 6R9 bind different TLR2 adapters, as they selectively bind MyD88 and TIRAP TIR, respectively. Both peptides block the agonist-induced co-immunoprecipitation (co-IP) of TLR2 with TIRAP or MyD88, but not TLR2 co-IP with co-receptors. Our data suggest that D helices of TLR1 and TLR6 TIR domains are adapter recruitment sites in both co-receptors; yet the sites recruit different adapters. The D helix in TLR1 is the MyD88 docking site, whereas in TLR6 this site recruits TIRAP.
Collapse
Affiliation(s)
- Wenji Piao
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore St., HSFI, Baltimore, MD 21201, USA
| | - Lisa W Ru
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore St., HSFI, Baltimore, MD 21201, USA
| | - Vladimir Y Toshchakov
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 West Baltimore St., HSFI, Baltimore, MD 21201, USA
| |
Collapse
|
237
|
Yue J, Xu W, Ban R, Huang S, Miao M, Tang X, Liu G, Liu Y. PTIR: Predicted Tomato Interactome Resource. Sci Rep 2016; 6:25047. [PMID: 27121261 PMCID: PMC4848565 DOI: 10.1038/srep25047] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 04/08/2016] [Indexed: 01/18/2023] Open
Abstract
Protein-protein interactions (PPIs) are involved in almost all biological processes and form the basis of the entire interactomics systems of living organisms. Identification and characterization of these interactions are fundamental to elucidating the molecular mechanisms of signal transduction and metabolic pathways at both the cellular and systemic levels. Although a number of experimental and computational studies have been performed on model organisms, the studies exploring and investigating PPIs in tomatoes remain lacking. Here, we developed a Predicted Tomato Interactome Resource (PTIR), based on experimentally determined orthologous interactions in six model organisms. The reliability of individual PPIs was also evaluated by shared gene ontology (GO) terms, co-evolution, co-expression, co-localization and available domain-domain interactions (DDIs). Currently, the PTIR covers 357,946 non-redundant PPIs among 10,626 proteins, including 12,291 high-confidence, 226,553 medium-confidence, and 119,102 low-confidence interactions. These interactions are expected to cover 30.6% of the entire tomato proteome and possess a reasonable distribution. In addition, ten randomly selected PPIs were verified using yeast two-hybrid (Y2H) screening or a bimolecular fluorescence complementation (BiFC) assay. The PTIR was constructed and implemented as a dedicated database and is available at http://bdg.hfut.edu.cn/ptir/index.html without registration.
Collapse
Affiliation(s)
- Junyang Yue
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wei Xu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Rongjun Ban
- School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Shengxiong Huang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Min Miao
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Xiaofeng Tang
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guoqing Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yongsheng Liu
- School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei 230009, China
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
238
|
Herrera MG, Zamarreño F, Costabel M, Ritacco H, Hütten A, Sewald N, Dodero VI. Circular dichroism and electron microscopy studies in vitro of 33-mer gliadin peptide revealed secondary structure transition and supramolecular organization. Biopolymers 2016; 101:96-106. [PMID: 23703327 DOI: 10.1002/bip.22288] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022]
Abstract
Gliadin, a protein present in wheat, rye, and barley, undergoes incomplete enzymatic degradation during digestion, producing an immunogenic 33-mer peptide, LQLQPF(PQPQLPY)3 PQPQPF. The special features of 33-mer that provoke a break in its tolerance leading to gliadin sensitivity and celiac disease remains elusive. Herein, it is reported that 33-mer gliadin peptide was not only able to fold into polyproline II secondary structure but also depending on concentration resulted in conformational transition and self-assembly under aqueous condition, pH 7.0. A 33-mer dimer is presented as one initial possible step in the self-assembling process obtained by partial electrostatics charge distribution calculation and molecular dynamics. In addition, electron microscopy experiments revealed supramolecular organization of 33-mer into colloidal nanospheres. In the presence of 1 mM sodium citrate, 1 mM sodium borate, 1 mM sodium phosphate buffer, 15 mM NaCl, the nanospheres were stabilized, whereas in water, a linear organization and formation of fibrils were observed. It is hypothesized that the self-assembling process could be the result of the combination of hydrophobic effect, intramolecular hydrogen bonding, and electrostatic complementarity due to 33-mer's high content of proline and glutamine amino acids and its calculated nonionic amphiphilic character. Although, performed in vitro, these experiments have revealed new features of the 33-mer gliadin peptide that could represent an important and unprecedented event in the early stage of 33-mer interaction with the gut mucosa prior to onset of inflammation. Moreover, these findings may open new perspectives for the understanding and treatment of gliadin intolerance disorders.
Collapse
Affiliation(s)
- María G Herrera
- Department of Chemistry, INQUISUR, National University of South, CONICET, Av. Alem 1253, 8000 Bahía Blanca, Argentina
| | | | | | | | | | | | | |
Collapse
|
239
|
Zientara-Rytter K, Subramani S. Autophagic degradation of peroxisomes in mammals. Biochem Soc Trans 2016; 44:431-40. [PMID: 27068951 PMCID: PMC4958620 DOI: 10.1042/bst20150268] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/21/2022]
Abstract
Peroxisomes are essential organelles required for proper cell function in all eukaryotic organisms. They participate in a wide range of cellular processes including the metabolism of lipids and generation, as well as detoxification, of hydrogen peroxide (H2O2). Therefore, peroxisome homoeostasis, manifested by the precise and efficient control of peroxisome number and functionality, must be tightly regulated in response to environmental changes. Due to the existence of many physiological disorders and diseases associated with peroxisome homoeostasis imbalance, the dynamics of peroxisomes have been widely examined. The increasing volume of reports demonstrating significant involvement of the autophagy machinery in peroxisome removal leads us to summarize current knowledge of peroxisome degradation in mammalian cells. In this review we present current models of peroxisome degradation. We particularly focus on pexophagy-the selective clearance of peroxisomes through autophagy. We also critically discuss concepts of peroxisome recognition for pexophagy, including signalling and selectivity factors. Finally, we present examples of the pathological effects of pexophagy dysfunction and suggest promising future directions.
Collapse
Affiliation(s)
- Katarzyna Zientara-Rytter
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, CA 92093-0322, U.S.A
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University California, San Diego, CA 92093-0322, U.S.A.
| |
Collapse
|
240
|
de Oliveira PSL, Ferraz FAN, Pena DA, Pramio DT, Morais FA, Schechtman D. Revisiting protein kinase-substrate interactions: Toward therapeutic development. Sci Signal 2016; 9:re3. [PMID: 27016527 DOI: 10.1126/scisignal.aad4016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the efforts of pharmaceutical companies to develop specific kinase modulators, few drugs targeting kinases have been completely successful in the clinic. This is primarily due to the conserved nature of kinases, especially in the catalytic domains. Consequently, many currently available inhibitors lack sufficient selectivity for effective clinical application. Kinases phosphorylate their substrates to modulate their activity. One of the important steps in the catalytic reaction of protein phosphorylation is the correct positioning of the target residue within the catalytic site. This positioning is mediated by several regions in the substrate binding site, which is typically a shallow crevice that has critical subpockets that anchor and orient the substrate. The structural characterization of this protein-protein interaction can aid in the elucidation of the roles of distinct kinases in different cellular processes, the identification of substrates, and the development of specific inhibitors. Because the region of the substrate that is recognized by the kinase can be part of a linear consensus motif or a nonlinear motif, advances in technology beyond simple linear sequence scanning for consensus motifs were needed. Cost-effective bioinformatics tools are already frequently used to predict kinase-substrate interactions for linear consensus motifs, and new tools based on the structural data of these interactions improve the accuracy of these predictions and enable the identification of phosphorylation sites within nonlinear motifs. In this Review, we revisit kinase-substrate interactions and discuss the various approaches that can be used to identify them and analyze their binding structures for targeted drug development.
Collapse
Affiliation(s)
- Paulo Sérgio L de Oliveira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Felipe Augusto N Ferraz
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Darlene A Pena
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Dimitrius T Pramio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Felipe A Morais
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil.
| |
Collapse
|
241
|
Abstract
Cardiac remodeling is regulated by an extensive intracellular signal transduction network. Each of the many signaling pathways in this network contributes uniquely to the control of cellular adaptation. In the last few years, it has become apparent that multimolecular signaling complexes or "signalosomes" are important for fidelity in intracellular signaling and for mediating crosstalk between the different signaling pathways. These complexes integrate upstream signals and control downstream effectors. In the cardiac myocyte, the protein mAKAPβ serves as a scaffold for a large signalosome that is responsive to cAMP, calcium, hypoxia, and mitogen-activated protein kinase signaling. The main function of mAKAPβ signalosomes is to modulate stress-related gene expression regulated by the transcription factors NFATc, MEF2, and HIF-1α and type II histone deacetylases that control pathological cardiac hypertrophy.
Collapse
|
242
|
Toto A, Pedersen SW, Karlsson OA, Moran GE, Andersson E, Chi CN, Strømgaard K, Gianni S, Jemth P. Ligand binding to the PDZ domains of postsynaptic density protein 95. Protein Eng Des Sel 2016; 29:169-75. [PMID: 26941280 DOI: 10.1093/protein/gzw004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 01/22/2016] [Indexed: 11/13/2022] Open
Abstract
Cellular scaffolding and signalling is generally governed by multidomain proteins, where each domain has a particular function. Postsynaptic density protein 95 (PSD-95) is involved in synapse formation and is a typical example of such a multidomain protein. Protein-protein interactions of PSD-95 are well studied and include the following three protein ligands: (i)N-methyl-d-aspartate-type ionotropic glutamate receptor subunit GluN2B, (ii) neuronal nitric oxide synthase and (iii) cysteine-rich protein (CRIPT), all of which bind to one or more of the three PDZ domains in PSD-95. While interactions for individual PDZ domains of PSD-95 have been well studied, less is known about the influence of neighbouring domains on the function of the respective individual domain. We therefore performed a systematic study on the ligand-binding kinetics of PSD-95 using constructs of different size for PSD-95 and its ligands. Regarding the canonical peptide-binding pocket and relatively short peptides (up to 15-mer), the PDZ domains in PSD-95 by and large work as individual binding modules. However, in agreement with previous studies, residues outside of the canonical binding pocket modulate the affinity of the ligands. In particular, the dissociation of the 101 amino acid CRIPT from PSD-95 is slowed down at least 10-fold for full-length PSD-95 when compared with the individual PDZ3 domain.
Collapse
Affiliation(s)
- Angelo Toto
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Sapienza, Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, University of Rome, Rome 00185, Italy
| | - Søren W Pedersen
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - O Andreas Karlsson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| | - Griffin E Moran
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Eva Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| | - Celestine N Chi
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Center for Biopharmaceuticals, University of Copenhagen, Universitetsparken 2, Copenhagen DK-2100, Denmark
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" Sapienza, Istituto Pasteur-Fondazione Cenci Bolognetti and Istituto di Biologia e Patologia Molecolari del CNR, University of Rome, Rome 00185, Italy Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Per Jemth
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC Box 582, Uppsala SE-75123, Sweden
| |
Collapse
|
243
|
Hansen S, Tremmel D, Madhurantakam C, Reichen C, Mittl PRE, Plückthun A. Structure and Energetic Contributions of a Designed Modular Peptide-Binding Protein with Picomolar Affinity. J Am Chem Soc 2016; 138:3526-32. [DOI: 10.1021/jacs.6b00099] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Simon Hansen
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Dirk Tremmel
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Chaithanya Madhurantakam
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Christian Reichen
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Peer R. E. Mittl
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
244
|
An Exquisitely Specific PDZ/Target Recognition Revealed by the Structure of INAD PDZ3 in Complex with TRP Channel Tail. Structure 2016; 24:383-91. [DOI: 10.1016/j.str.2015.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 12/09/2015] [Accepted: 12/22/2015] [Indexed: 11/22/2022]
|
245
|
Solution structure of Q388A3 PDZ domain from Trypanosoma brucei. J Struct Biol 2016; 194:214-7. [PMID: 26917351 DOI: 10.1016/j.jsb.2016.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 11/23/2022]
Abstract
PDZ domains are abundant protein interaction modules that often recognize short amino acid motifs at the C-termini of target proteins and regulate multiple biological processes. So far, no PDZ domain in Trypanosoma brucei, an eukaryotic parasite causing sleeping sickness, has been studied. Q388A3, conserved in the related kinetoplastid parasites, is a 1634-residue protein containing a PDZ domain at its C-terminus. In this work, the solution structure of Q388A3 PDZ domain was solved by NMR spectroscopy. Q388A3 PDZ domain adopts a PDZ-like fold composed by a five-stranded β-sheet capped by two α-helices, which is similar to the PDZ domains from HtrA family proteins. Meanwhile, Q388A3 PDZ domain shows some structural features quite different from HtrA PDZ domain.
Collapse
|
246
|
Sinzinger MD, Chung YD, Adjobo-Hermans MJW, Brock R. A microarray-based approach to evaluate the functional significance of protein-binding motifs. Anal Bioanal Chem 2016; 408:3177-84. [PMID: 26892640 PMCID: PMC4830892 DOI: 10.1007/s00216-016-9382-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 11/25/2022]
Abstract
Intracellular proteins comprise numerous peptide motifs that interact with protein-binding domains. However, using sequence information alone, the identification of functionally relevant interaction motifs remains a challenge. Here, we present a microarray-based approach for the evaluation of peptides as protein-binding motifs. To this end, peptides corresponding to protein interaction motifs were spotted as a microarray. First, peptides were titrated with a pan-specific binder and the apparent Kd value of this binder for each peptide was determined. For phosphotyrosine-containing peptides, an anti-phosphotyrosine antibody was employed. Then, in the presence of the pan-specific binder, arrays were competitively titrated with cell lysate and competition constants were determined. Using the Cheng-Prusoff equation, binding constants for the pan-specific binder and inhibition constants for the lysates were converted into affinity constants for the lysate. We experimentally validate this method using a phosphotyrosine-binding SH2 domain as a further reference. Furthermore, strong binders correlated with binding motifs engaging in numerous interactions as predicted by Scansite. This method provides a highly parallel and robust approach to identify peptides corresponding to interaction motifs with strong binding capacity for proteins in the cell lysate. Using an antibody as a pan-specific binder the capacity of interaction motifs to bind to proteins from cell lysates can be probed. Competition of the antibody is observed for only those peptides to which a lysate protein binds ![]()
Collapse
Affiliation(s)
- Michael D Sinzinger
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Yi-Da Chung
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Merel J W Adjobo-Hermans
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands
| | - Roland Brock
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
247
|
Ames RM, Talavera D, Williams SG, Robertson DL, Lovell SC. Binding interface change and cryptic variation in the evolution of protein-protein interactions. BMC Evol Biol 2016; 16:40. [PMID: 26892785 PMCID: PMC4758157 DOI: 10.1186/s12862-016-0608-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/02/2016] [Indexed: 12/03/2022] Open
Abstract
Background Physical interactions between proteins are essential for almost all biological functions and systems. To understand the evolution of function it is therefore important to understand the evolution of molecular interactions. Of key importance is the evolution of binding specificity, the set of interactions made by a protein, since change in specificity can lead to “rewiring” of interaction networks. Unfortunately, the interfaces through which proteins interact are complex, typically containing many amino-acid residues that collectively must contribute to binding specificity as well as binding affinity, structural integrity of the interface and solubility in the unbound state. Results In order to study the relationship between interface composition and binding specificity, we make use of paralogous pairs of yeast proteins. Immediately after duplication these paralogues will have identical sequences and protein products that make an identical set of interactions. As the sequences diverge, we can correlate amino-acid change in the interface with any change in the specificity of binding. We show that change in interface regions correlates only weakly with change in specificity, and many variants in interfaces are functionally equivalent. We show that many of the residue replacements within interfaces are silent with respect to their contribution to binding specificity. Conclusions We conclude that such functionally-equivalent change has the potential to contribute to evolutionary plasticity in interfaces by creating cryptic variation, which in turn may provide the raw material for functional innovation and coevolution. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0608-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ryan M Ames
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK. .,Current address: Wellcome Trust Centre for Biomedical Modelling and Analysis, University of Exeter, RILD Level 3, Exeter, EX2 5DW, UK.
| | - David Talavera
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK. .,Current address: Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - Simon G Williams
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK. .,Current address: Institute of Cardiovascular Sciences, Faculty of Medical and Human Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - David L Robertson
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| | - Simon C Lovell
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
248
|
Papaleo E, Saladino G, Lambrughi M, Lindorff-Larsen K, Gervasio FL, Nussinov R. The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery. Chem Rev 2016; 116:6391-423. [DOI: 10.1021/acs.chemrev.5b00623] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elena Papaleo
- Computational
Biology Laboratory, Unit of Statistics, Bioinformatics and Registry, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Giorgio Saladino
- Department
of Chemistry, University College London, London WC1E 6BT, United Kingdom
| | - Matteo Lambrughi
- Department
of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza
della Scienza 2, 20126 Milan, Italy
| | - Kresten Lindorff-Larsen
- Structural
Biology and NMR Laboratory, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | | | - Ruth Nussinov
- Cancer
and Inflammation Program, Leidos Biomedical Research, Inc., Frederick
National Laboratory for Cancer Research, National Cancer Institute Frederick, Frederick, Maryland 21702, United States
- Sackler Institute
of Molecular Medicine, Department of Human Genetics and Molecular
Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
249
|
Affiliation(s)
- Steven A Stacker
- a Tumour Angiogenesis Program, Peter MacCallum Cancer Centre , East Melbourne , VIC , Australia
- b Sir Peter MacCallum Department of Oncology , University of Melbourne , VIC , Australia , and
- c Department of Surgery , Royal Melbourne Hospital, University of Melbourne , Parkville , VIC , Australia
| |
Collapse
|
250
|
Maksimchuk KR, Alser KA, Mou R, Valdivia RH, McCafferty DG. The Chlamydia trachomatis Protease CPAF Contains a Cryptic PDZ-Like Domain with Similarity to Human Cell Polarity and Tight Junction PDZ-Containing Proteins. PLoS One 2016; 11:e0147233. [PMID: 26829550 PMCID: PMC4734761 DOI: 10.1371/journal.pone.0147233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/30/2015] [Indexed: 12/31/2022] Open
Abstract
The need for more effective anti-chlamydial therapeutics has sparked research efforts geared toward further understanding chlamydial pathogenesis mechanisms. Recent studies have implicated the secreted chlamydial serine protease, chlamydial protease-like activity factor (CPAF) as potentially important for chlamydial pathogenesis. By mechanisms that remain to be elucidated, CPAF is directed to a discrete group of substrates, which are subsequently cleaved or degraded. While inspecting the previously solved CPAF crystal structure, we discovered that CPAF contains a cryptic N-terminal PSD95 Dlg ZO-1 (PDZ) domain spanning residues 106–212 (CPAF106-212). This PDZ domain is unique in that it bears minimal sequence similarity to canonical PDZ-forming sequences and displays little sequence and structural similarity to known chlamydial PDZ domains. We show that the CPAF106-212 sequence is homologous to PDZ domains of human tight junction proteins.
Collapse
Affiliation(s)
- Kenneth R. Maksimchuk
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Katherine A. Alser
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
| | - Rui Mou
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
| | - Raphael H. Valdivia
- Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, United States of America
| | - Dewey G. McCafferty
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Chemistry, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|