201
|
Cahan P, Ahmad AM, Burke H, Fu S, Lai Y, Florea L, Dharker N, Kobrinski T, Kale P, McCaffrey TA. List of lists-annotated (LOLA): a database for annotation and comparison of published microarray gene lists. Gene 2005; 360:78-82. [PMID: 16140476 DOI: 10.1016/j.gene.2005.07.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/07/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
Microarray profiling of RNA expression is a powerful tool that generates large lists of transcripts that are potentially relevant to a disease or treatment. However, because the lists of changed transcripts are embedded in figures and tables, they are typically inaccessible for search engines. Due to differences in gene nomenclatures, the lists are difficult to compare between studies. LOLA (Lists of Lists Annotated) is an internet-based database for comparing gene lists from microarray studies or other genomic-scale methods. It serves as a common platform to compare and reannotate heterogeneous gene lists from different microarray platforms or different genomic methodologies such as serial analysis of gene expression (SAGE) or proteomics. LOLA () provides researchers with a means to store, annotate, and compare gene lists produced from different studies or different analyses of the same study. It is especially useful in identifying potentially "high interest" genes which are reported as significant across multiple studies and species. Its application to the fields of stem cell, cancer, and aging research is demonstrated by comparing published papers.
Collapse
Affiliation(s)
- Patrick Cahan
- The George Washington University Medical Center, Department of Biochemistry and Molecular Biology, 2300 I Street NW. Ross Hall 541, Washington, D.C. 20037, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
202
|
Liu BB, Qin LX, Liu YK. Adult stem cells and cancer stem cells: tie in or tear apart? J Cancer Res Clin Oncol 2005; 131:631-8. [PMID: 16136353 DOI: 10.1007/s00432-005-0007-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
Stem cell research is one of the new frontiers of medical science. Because of the unique self-renewable ability and powerful potential to differentiate, stem cells can be viewed as the mother of all cells in the body and have been investigated as a possible tool for reversing the degeneration and damage on organs. Recently, successful isolating cancerous stem cells from leukemia, breast and brain cancers provide a new target for eliminate cancer; however, it hints an increasing caution in using adult stem cells for organ repair. Cancerous stem cells share the same properties of self-renewal and differentiation with normal stem cells, with the addition of similar phenotype of adult stem cells isolated from the same tissue. Some believe that cancerous stem cells are derived from mutation of the normal stem cells, whereas others suspect it to be from different origins. Further investigation of the intrinsic factor underlying the behavior of adult stem cells and cancerous stem cells will shed light on both the fields of tissue engineering and cancer therapy. In this review, recent progresses in the studies of adult stem cells and cancerous stem cells are summarized to facilitate a better understanding and elicit much attention in this field.
Collapse
Affiliation(s)
- Bin-Bin Liu
- Liver Cancer Institute and Zhongshan Hospital, Fudan University, Shanghai, China
| | | | | |
Collapse
|
203
|
Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121:1109-21. [PMID: 15989959 DOI: 10.1016/j.cell.2005.05.026] [Citation(s) in RCA: 2365] [Impact Index Per Article: 118.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/29/2005] [Accepted: 05/13/2005] [Indexed: 12/21/2022]
Abstract
To improve our ability to identify hematopoietic stem cells (HSCs) and their localization in vivo, we compared the gene expression profiles of highly purified HSCs and non-self-renewing multipotent hematopoietic progenitors (MPPs). Cell surface receptors of the SLAM family, including CD150, CD244, and CD48, were differentially expressed among functionally distinct progenitors. HSCs were highly purified as CD150(+)CD244(-)CD48(-) cells while MPPs were CD244(+)CD150(-)CD48(-) and most restricted progenitors were CD48(+)CD244(+)CD150(-). The primitiveness of hematopoietic progenitors could thus be predicted based on the combination of SLAM family members they expressed. This is the first family of receptors whose combinatorial expression precisely distinguishes stem and progenitor cells. The ability to purify HSCs based on a simple combination of SLAM receptors allowed us to identify HSCs in tissue sections. Many HSCs were associated with sinusoidal endothelium in spleen and bone marrow, though some HSCs were associated with endosteum. HSCs thus occupy multiple niches, including sinusoidal endothelium in diverse tissues.
Collapse
Affiliation(s)
- Mark J Kiel
- Howard Hughes Medical Institute and Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | |
Collapse
|
204
|
Eckfeldt CE, Mendenhall EM, Verfaillie CM. The molecular repertoire of the 'almighty' stem cell. Nat Rev Mol Cell Biol 2005; 6:726-37. [PMID: 16103873 DOI: 10.1038/nrm1713] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Stem cells share the defining characteristics of self-renewal, which maintains or expands the stem-cell pool, and multi-lineage differentiation, which generates and regenerates tissues. Stem-cell self-renewal and differentiation are influenced by the convergence of intrinsic cellular signals and extrinsic microenvironmental cues from the surrounding stem-cell niche, but the specific signals involved are poorly understood. Recently, several studies have sought to identify the genetic mechanisms that underlie the stem-cell phenotype. Such a molecular road map of stem-cell function should lead to an understanding of the true potential of stem cells.
Collapse
Affiliation(s)
- Craig E Eckfeldt
- Department of Medicine and Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
205
|
Eckfeldt CE, Mendenhall EM, Flynn CM, Wang TF, Pickart MA, Grindle SM, Ekker SC, Verfaillie CM. Functional analysis of human hematopoietic stem cell gene expression using zebrafish. PLoS Biol 2005; 3:e254. [PMID: 16089502 PMCID: PMC1166352 DOI: 10.1371/journal.pbio.0030254] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 05/14/2005] [Indexed: 12/23/2022] Open
Abstract
Although several reports have characterized the hematopoietic stem cell (HSC) transcriptome, the roles of HSC-specific genes in hematopoiesis remain elusive. To identify candidate regulators of HSC fate decisions, we compared the transcriptome of human umbilical cord blood and bone marrow (CD34+)(CD33-)(CD38-)Rho(lo)(c-kit+) cells, enriched for hematopoietic stem/progenitor cells with (CD34+)(CD33-)(CD38-)Rho(hi) cells, enriched in committed progenitors. We identified 277 differentially expressed transcripts conserved in these ontogenically distinct cell sources. We next performed a morpholino antisense oligonucleotide (MO)-based functional screen in zebrafish to determine the hematopoietic function of 61 genes that had no previously known function in HSC biology and for which a likely zebrafish ortholog could be identified. MO knock down of 14/61 (23%) of the differentially expressed transcripts resulted in hematopoietic defects in developing zebrafish embryos, as demonstrated by altered levels of circulating blood cells at 30 and 48 h postfertilization and subsequently confirmed by quantitative RT-PCR for erythroid-specific hbae1 and myeloid-specific lcp1 transcripts. Recapitulating the knockdown phenotype using a second MO of independent sequence, absence of the phenotype using a mismatched MO sequence, and rescue of the phenotype by cDNA-based overexpression of the targeted transcript for zebrafish spry4 confirmed the specificity of MO targeting in this system. Further characterization of the spry4-deficient zebrafish embryos demonstrated that hematopoietic defects were not due to more widespread defects in the mesodermal development, and therefore represented primary defects in HSC specification, proliferation, and/or differentiation. Overall, this high-throughput screen for the functional validation of differentially expressed genes using a zebrafish model of hematopoiesis represents a major step toward obtaining meaningful information from global gene profiling of HSCs.
Collapse
Affiliation(s)
- Craig E Eckfeldt
- 1 Department of Medicine, Division of Hematology, Oncology, and Transplantation, and Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eric M Mendenhall
- 1 Department of Medicine, Division of Hematology, Oncology, and Transplantation, and Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Catherine M Flynn
- 1 Department of Medicine, Division of Hematology, Oncology, and Transplantation, and Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Tzu-Fei Wang
- 1 Department of Medicine, Division of Hematology, Oncology, and Transplantation, and Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael A Pickart
- 2 Genetics, Cell Biology, and Development and Arnold and Mabel Beckman Center for Transposon Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Suzanne M Grindle
- 3 Cancer Center Bioinformatics Division, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Stephen C Ekker
- 2 Genetics, Cell Biology, and Development and Arnold and Mabel Beckman Center for Transposon Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Catherine M Verfaillie
- 1 Department of Medicine, Division of Hematology, Oncology, and Transplantation, and Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
206
|
Suárez-Fariñas M, Noggle S, Heke M, Hemmati-Brivanlou A, Magnasco MO. Comparing independent microarray studies: the case of human embryonic stem cells. BMC Genomics 2005; 6:99. [PMID: 16042783 PMCID: PMC1183205 DOI: 10.1186/1471-2164-6-99] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Accepted: 07/22/2005] [Indexed: 11/10/2022] Open
Abstract
Background Microarray studies of the same phenomenon in different labs often appear at variance because the published lists of regulated transcripts have disproportionately small intersections. We demonstrate that comparing studies by intersecting lists in this manner is methodologically flawed by reanalyzing three studies of the molecular signature of "stemness" in human embryonic stem cells. There are only 7 genes common to all three published lists, suggesting disagreement. Results Carefully reanalyzing all three together from the raw data we detect 111 genes upregulated and 95 downregulated in all three studies. The upregulated list was subject to rtRTPCR analysis and 75% of the genes were confirmed. Conclusion Our findings show that the three studies have a substantial core of common genes, which is missed if only the published lists are examined. Combined analysis of multiple experiments can be a powerful way to distil coherent conclusions.
Collapse
Affiliation(s)
- Mayte Suárez-Fariñas
- Center for Studies in Physics and Biology, The Rockefeller University. 1230 York Ave, Box 212, New York, NY 10021, U.S.A
| | - Scott Noggle
- Department Laboratory of Molecular Vertebrate Embryology, Camridge, The Rockefeller University. 1230 York Ave, Box 32, New York, NY 10021, U.S.A
| | - Michael Heke
- Department Laboratory of Molecular Vertebrate Embryology, Camridge, The Rockefeller University. 1230 York Ave, Box 32, New York, NY 10021, U.S.A
| | - Ali Hemmati-Brivanlou
- Department Laboratory of Molecular Vertebrate Embryology, Camridge, The Rockefeller University. 1230 York Ave, Box 32, New York, NY 10021, U.S.A
| | - Marcelo O Magnasco
- Center for Studies in Physics and Biology, The Rockefeller University. 1230 York Ave, Box 212, New York, NY 10021, U.S.A
| |
Collapse
|
207
|
Abstract
Stem cells are unique in their capacity to self-renew and generate differentiated progeny to maintain tissues throughout life. A common molecular program for stem cells has remained elusive. We discuss what the molecular logic of stemness may be. We suggest that it may not be coupled to distinct cellular properties such as self-renewal or multipotency, but rather to the stable suspension at a specific developmental stage. In this view, the stem cell niche allows a cell to maintain a transcriptional accessibility enabling the generation of specific differentiated progeny.
Collapse
Affiliation(s)
- Harald Mikkers
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, Stockholm, Sweden
| | - Jonas Frisén
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, Stockholm, Sweden
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, Box 285, 17177 Stockholm, Sweden. Tel.: +46 8 524 87562; Fax: +46 8 324927; E-mail:
| |
Collapse
|
208
|
Abstract
Elucidation of the biology of stem cells of the lung parenchyma could revolutionise treatment of patients with lung disorders such as cancer, acute respiratory distress syndrome, emphysema, and fibrotic lung disease. How close is this goal? Despite remarkable observations and ensuing advances, more questions than answers have been generated. Progenitors of the alveolar epithelium remain largely mysterious, so the prospect of isolating enough of these cells and delivering them effectively to cure disease remains remote. Similarly, the bone-marrow-derived cell that might most effectively engraft the lung remains unknown. If this mechanism is an important process for lung repair, why will the administration of additional cells be more effective? Finally, there is an issue of control of multipotent cells to avoid the generation of multiple teratomas, longevity of the graft, and possible immunological reactions to gene products inserted to replace a deficiency. The biology is exciting but not yet well enough understood to support therapeutic advances.
Collapse
Affiliation(s)
- Mark J D Griffiths
- Unit of Critical Care, Imperial College London at National Heart and Lung Institute and Royal Brompton Hospital, London, UK
| | | | | |
Collapse
|
209
|
Burger PE, Xiong X, Coetzee S, Salm SN, Moscatelli D, Goto K, Wilson EL. Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proc Natl Acad Sci U S A 2005; 102:7180-5. [PMID: 15899981 PMCID: PMC1129148 DOI: 10.1073/pnas.0502761102] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We previously showed that prostatic stem cells are concentrated in the proximal regions of prostatic ducts. We now report that these stem cells can be purified from isolated proximal duct regions by virtue of their high expression of the cell surface protein stem cell antigen 1 (Sca-1). In an in vivo prostate reconstitution assay, the purified Sca-1-expressing cell population isolated from the proximal region of ducts was more effective in generating prostatic tissue than a comparable population of Sca-1-depleted cells (203.0 +/- 83.1 mg vs. 11.9 +/- 9.2 mg) or a population of Sca-1-expressing cells isolated from the remaining regions of ducts (transit-amplifying cells) (31.9 +/- 24.1 mg). Almost all of the proliferative capacity of the proximal duct Sca-1-expressing cell population resides within the fraction of cells that express high levels of Sca-1 (top one-third), with the proximal region of prostatic ducts containing 7.2-fold more Sca-1(high) cells than the remaining regions. More than 60% of the high-expressing cells coexpress alpha6 integrin and the anti-apoptotic factor Bcl-2, markers that are also characteristic of stem cells of other origins. Further stratification of the phenotype of the stem cells may enable the development of rational therapies for treating prostate cancer and benign prostatic hyperplasia.
Collapse
Affiliation(s)
- Patricia E Burger
- Division of Immunology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory 7925, South Africa.
| | | | | | | | | | | | | |
Collapse
|
210
|
Lauss M, Stary M, Tischler J, Egger G, Puz S, Bader-Allmer A, Seiser C, Weitzer G. Single inner cell masses yield embryonic stem cell lines differing in lifr expression and their developmental potential. Biochem Biophys Res Commun 2005; 331:1577-86. [PMID: 15883053 DOI: 10.1016/j.bbrc.2005.04.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2005] [Indexed: 12/27/2022]
Abstract
The unique differentiation potential of inner cell mass derived embryonic stem cells together with their outstanding self-renewal capacity makes them a desirable source for somatic cell therapy of human diseases. Somatic cells are gained by in vitro differentiation of embryonic stem cells, however, the differentiation potential of embryonic stem cells varied even between isogenic cell lines. Variable differentiation potentials may either be a consequence of an inherent inhomogeneity of gene expression in the inner cell mass or may have technical reasons. To understand variations in the differentiation potential, we generated pairs of isogenic, monozygotic twin, and single inner cell mass derived clonal embryonic stem cell lines, and demonstrate that they differentially express the leukaemia inhibitory factor receptor gene. Variations of leukaemia inhibitory factor receptor protein levels are already evident in the inner cell mass and predispose the cardiomyogenic potential of embryonic stem cell lines in a Janus activated kinase dependent manner. Thus, a single inner cell mass may give rise to embryonic stem cell lines with different developmental potentials.
Collapse
Affiliation(s)
- Martin Lauss
- Max F. Perutz Laboratories, University Institutes at the Vienna Biocenter, Department of Medical Biochemistry, Division of Molecular Cell Biology, Medical University of Vienna, Dr. Bohrgasse 9, A1030 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
211
|
Palmqvist L, Glover CH, Hsu L, Lu M, Bossen B, Piret JM, Humphries RK, Helgason CD. Correlation of Murine Embryonic Stem Cell Gene Expression Profiles with Functional Measures of Pluripotency. Stem Cells 2005; 23:663-80. [PMID: 15849174 DOI: 10.1634/stemcells.2004-0157] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Global gene expression profiling was performed on murine embryonic stem cells (ESCs) induced to differentiate by removal of leukemia inhibitory factor (LIF) to identify genes whose change in expression correlates with loss of pluripotency. To identify appropriate time points for the gene expression analysis, the dynamics of loss of pluripotency were investigated using three functional assays: chimeric mouse formation, embryoid body generation, and colony-forming ability. A rapid loss of pluripotency was detected within 24 hours, with very low residual activity in all assays by 72 hours. Gene expression profiles of undifferentiated ESCs and ESCs cultured for 18 and 72 hours in the absence of LIF were determined using the Affymetrix GeneChip U74v2. In total, 473 genes were identified as significantly differentially expressed, with approximately one third having unknown biological function. Among the 275 genes whose expression decreased with ESC differentiation were several factors previously identified as important for, or markers of, ESC pluripotency, including Stat3, Rex1, Sox2, Gbx2, and Bmp4. A significant number of the decreased genes also overlap with previously published mouse and human ESC data. Furthermore, several membrane proteins were among the 48 decreased genes correlating most closely with the functional assays, including the stem cell factor receptor c-Kit. Through identification of genes whose expression closely follows functional properties of ESCs during early differentiation, this study lays the foundation for further elucidating the molecular mechanisms regulating the maintenance of ESC pluripotency and facilitates the identification of more reliable molecular markers of the undifferentiated state.
Collapse
Affiliation(s)
- Lars Palmqvist
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
212
|
Sánchez Alvarado A, Kang H. Multicellularity, stem cells, and the neoblasts of the planarian Schmidtea mediterranea. Exp Cell Res 2005; 306:299-308. [PMID: 15925584 DOI: 10.1016/j.yexcr.2005.03.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 03/04/2005] [Accepted: 03/14/2005] [Indexed: 11/22/2022]
Abstract
All multicellular organisms depend on stem cells for their survival and perpetuation. Their central role in reproductive, embryonic, and post-embryonic processes, combined with their wide phylogenetic distribution in both the plant and animal kingdoms intimates that the emergence of stem cells may have been a prerequisite in the evolution of multicellular organisms. We present an evolutionary perspective on stem cells and extend this view to ascertain the value of current comparative studies on various invertebrate and vertebrate somatic and germ line stem cells. We suggest that somatic stem cells may be ancestral, with germ line stem cells being derived later in the evolution of multicellular organisms. We also propose that current studies of stem cell biology are likely to benefit from studying the somatic stem cells of simple metazoans. Here, we present the merits of neoblasts, a largely unexplored, yet experimentally accessible population of stem cells found in the planarian Schmidtea mediterranea. We introduce what we know about the neoblasts, and posit some of the questions that will need to be addressed in order to better resolve the relationship between planarian somatic stem cells and those found in other organisms, including humans.
Collapse
Affiliation(s)
- Alejandro Sánchez Alvarado
- University of Utah School of Medicine, Department of Neurobiology and Anatomy, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
213
|
Wolfe AD, Crimmins G, Cameron JA, Henry JJ. Early regeneration genes: Building a molecular profile for shared expression in cornea-lens transdifferentiation and hindlimb regeneration in Xenopus laevis. Dev Dyn 2005; 230:615-29. [PMID: 15254896 DOI: 10.1002/dvdy.20089] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Recent studies in Xenopus laevis have begun to compare gene expression during regeneration with that of the original development of specific structures (e.g., the hindlimb and lens), while other studies have sought differences in gene expression between regeneration-competent and regeneration-incompetent stages. To determine whether there are any similarities between the regeneration of different structures, we have used a differential screen to seek shared early gene expression between hindlimb regeneration and cornea-lens transdifferentiation in the Xenopus tadpole. We have isolated 13 clones representing genes whose expression is up-regulated within the first few days of both regenerating processes and which are not demonstrably up-regulated in the context of basic wound healing. Furthermore, all of these genes also show prominent late embryonic expression. The expression patterns and putative identities of all 13 genes are presented, and a model is considered that allows us to characterize and profile important changes in gene expression, which might be shared among various regenerating and developmental systems.
Collapse
Affiliation(s)
- Adam D Wolfe
- Department of Cell and Structural Biology and College of Medicine, University of Illinois, Urbana, 61801, USA
| | | | | | | |
Collapse
|
214
|
Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A 2005; 102:4783-8. [PMID: 15772165 PMCID: PMC554750 DOI: 10.1073/pnas.0501283102] [Citation(s) in RCA: 626] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Early-stage mammalian embryos develop in a low O(2) environment (hypoxia). hES cells, however, are generally cultured under an atmosphere of 21% O(2) (normoxia), under which conditions they tend to differentiate spontaneously. Such conditions may not be the most suitable, therefore, for hES cell propagation. Here we have tested two hypotheses. The first hypothesis was that hES cells would grow as well under hypoxic as under normoxic conditions. The second hypothesis was that hypoxic culture would reduce the amount of spontaneous cell differentiation that occurs in hES colonies. Both hypotheses proved to be correct. Cells proliferated as well under 3% and 5% O(2) as they did under 21% O(2), and growth was only slightly reduced at 1% O(2). The appearance of differentiated regions as assessed morphologically, biochemically (by the production of human chorionic gonadotropin and progesterone), and immunohistochemically (by the loss of stage-specific embryonic antigen-4 and Oct-4 and gain of stage-specific embryonic antigen-1 marker expression) was markedly reduced under hypoxic conditions. In addition, hES cell growth under hypoxia provided enhanced formation of embryoid bodies. Hypoxic culture would appear to be necessary to maintain full pluripotency of hES cells.
Collapse
Affiliation(s)
- Toshihiko Ezashi
- Department of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
215
|
Rao RR, Calhoun JD, Qin X, Rekaya R, Clark JK, Stice SL. Comparative transcriptional profiling of two human embryonic stem cell lines. Biotechnol Bioeng 2005; 88:273-86. [PMID: 15493035 DOI: 10.1002/bit.20245] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human embryonic stem cells (ESCs) have generated enormous interest due to their ability to self-renew and produce many different cell types. In conjunction with microarray technology, human ESCs provide a powerful tool for employing a systems-based approach to deciphering the molecular mechanisms that control pluripotency and early development. Recent work has focused on defining "stemness" and pluripotency based on different experimental and analytical approaches in both mouse and human ESCs. Using a mixed linear model statistical approach, we report a stringent direct comparison between data sets obtained from two human ESCs (BG01 and H1) in order to obtain a list of genes that are enriched in ESCs. In addition, we used another pluripotent population derived from BG01 ESCs to obtain a list of genes that we consider important to the maintenance of pluripotency. A total of 133 genes overlapped between the three pluripotent populations. A majority of the 133 genes were classified under the key functional categories of cell-cycle regulation, signaling, and regulation of transcription. Key genes expressed were Oct4, Sox2, LeftyA, and Fgf2. Also found to be enriched in all three populations is FLJ10713, a gene encoding a hypothetical protein of unknown function that has been shown in earlier studies to possess a homolog in mouse ESCs and also to cluster tightly with Oct4 in human ESCs. Although there were many genes unique to each pluripotent population, they shared similarities based on functional ontologies that define pluripotency. The significance of our studies underscores the need for direct comparison of stem cell populations that share biological similarities using uniform stringent analytical approaches, in order to better define pluripotency. Our findings have important implications for the maintenance of pluripotency and in developing directed differentiation strategies for various regenerative applications.
Collapse
Affiliation(s)
- Raj R Rao
- Rhodes Animal Science Center, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | |
Collapse
|
216
|
Hsieh YC, Hsu C, Yang RC, Lee PY, Hsu HK, Sun YM. Isolation of bona fide differentially expressed genes in the 18-hour sepsis liver by suppression subtractive hybridization. Shock 2005; 21:549-55. [PMID: 15167684 DOI: 10.1097/01.shk.0000126148.83935.6a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In late sepsis, it has been established that the liver plays a major role in the initiation of multiorgan failure, which is the most lethal complication in hospitals. The molecular mechanism underlying liver failure that results from sepsis remains elusive. This study was undertaken to identify the bona fide differentially expressed genes in the 18-h septic liver by suppression subtractive hybridization, and the data were corroborated by Northern blot analysis. The differential gene expression profile renders a clue as to the genes involved in septic liver failure. The cecal ligation and puncture (CLP) model of a polymicrobial septic rat was used, with the late sepsis referring to animals sacrificed at 18 h after CLP. We have identified three upregulated genes (TII-kininogen, serine protease inhibitor 2.2 [Spi2.2], and alpha 2 macroglobulin [alpha M]) and six down-regulated genes (hydroxysteroid dehydrogenase [3 alpha HSD], EST189895/mouse RNase4, bile acid-CoA-amino acid N-acyltransferase [kan-1/rBAT], IF1, albumin, and alpha 2u-globulins [alpha 2u-G PGCL1]). Among these genes, the 3 alpha HSD and kan-1/rBAT are involved in bile acid metabolism. The IF1 plays a crucial role in any disease that involves ATP hydrolysis by F1F0-ATPase. The alpha 2M, TII-kininogen, and Spi2.2 are protease inhibitors. The functions of the alpha 2u-G PGCL1 and EST189895/mouse RNase4 genes are unknown. The present results suggest that the roles of disturbance of bile acid metabolism/synthesis and the abolishment of ATP production may contribute to liver failure during late sepsis.
Collapse
Affiliation(s)
- Ya-Ching Hsieh
- Department of Physiology, Kaohsiung Medical University, Kaohsiung, Taiwan, Republic of China
| | | | | | | | | | | |
Collapse
|
217
|
Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, Su AI, Vellenga E, Wang J, Manly KF, Lu L, Chesler EJ, Alberts R, Jansen RC, Williams RW, Cooke MP, de Haan G. Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'. Nat Genet 2005; 37:225-32. [PMID: 15711547 DOI: 10.1038/ng1497] [Citation(s) in RCA: 291] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2004] [Accepted: 11/29/2004] [Indexed: 11/08/2022]
Abstract
We combined large-scale mRNA expression analysis and gene mapping to identify genes and loci that control hematopoietic stem cell (HSC) function. We measured mRNA expression levels in purified HSCs isolated from a panel of densely genotyped recombinant inbred mouse strains. We mapped quantitative trait loci (QTLs) associated with variation in expression of thousands of transcripts. By comparing the physical transcript position with the location of the controlling QTL, we identified polymorphic cis-acting stem cell genes. We also identified multiple trans-acting control loci that modify expression of large numbers of genes. These groups of coregulated transcripts identify pathways that specify variation in stem cells. We illustrate this concept with the identification of candidate genes involved with HSC turnover. We compared expression QTLs in HSCs and brain from the same mice and identified both shared and tissue-specific QTLs. Our data are accessible through WebQTL, a web-based interface that allows custom genetic linkage analysis and identification of coregulated transcripts.
Collapse
Affiliation(s)
- Leonid Bystrykh
- Department of Stem Cell Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Katayama K, Wada K, Nakajima A, Kamisaki Y, Mayumi T. Nuclear receptors as targets for drug development: the role of nuclear receptors during neural stem cell proliferation and differentiation. J Pharmacol Sci 2005; 97:171-6. [PMID: 15725702 DOI: 10.1254/jphs.fmj04008x3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The fate of stem cells, such as neural stem cells and hematopoietic stem cells, depends on strictly regulated signaling events including activation of nuclear receptors, resulting in subsequent gene induction. Recently, we demonstrated that PPARgamma, a ligand-activated nuclear receptor, plays an important role in regulating the proliferation and differentiation of murine neural stem cell (NSC). NSC prepared from heterozygous PPARgamma-deficient mouse exhibited a slower growth rate compared with that of wild-type mouse, which was also demonstrated in PPARgamma-knockdown NSC that was generated by the lentiviral-vector-mediated RNA interference approach. These studies have important implications for understanding central nervous system functions and developing a therapy for neurodegenerative disorders. In this review, recent findings on stem cell biology, especially focusing on nuclear receptors in NSCs, including our current study, will be discussed.
Collapse
Affiliation(s)
- Kazufumi Katayama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Science, Osaka University, Japan
| | | | | | | | | |
Collapse
|
219
|
Boquest AC, Shahdadfar A, Frønsdal K, Sigurjonsson O, Tunheim SH, Collas P, Brinchmann JE. Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol Biol Cell 2005; 16:1131-41. [PMID: 15635089 PMCID: PMC551479 DOI: 10.1091/mbc.e04-10-0949] [Citation(s) in RCA: 263] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Stromal stem cells proliferate in vitro and may be differentiated along several lineages. Freshly isolated, these cells have been too few or insufficiently pure to be thoroughly characterized. Here, we have isolated two populations of CD45-CD34+CD105+ cells from human adipose tissue which could be separated based on expression of CD31. Compared with CD31+ cells, CD31- cells overexpressed transcripts associated with cell cycle quiescence and stemness, and transcripts involved in the biology of cartilage, bone, fat, muscle, and neural tissues. In contrast, CD31+ cells overexpressed transcripts associated with endothelium and the major histocompatibility complex class II complex. Clones of CD31- cells could be expanded in vitro and differentiated into cells with characteristics of bone, fat, and neural-like tissue. On culture, transcripts associated with cell cycle quiescence, stemness, certain cytokines and organ specific genes were down-regulated, whereas transcripts associated with signal transduction, cell adhesion, and cytoskeletal +CD105+CD31- cells from human adipose tissue have stromal stem cell properties which may make them useful for tissue engineering.
Collapse
Affiliation(s)
- Andrew C Boquest
- Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | | | | | | | | | | | | |
Collapse
|
220
|
Ebata KT, Zhang X, Nagano MC. Expression patterns of cell-surface molecules on male germ line stem cells during postnatal mouse development. Mol Reprod Dev 2005; 72:171-81. [PMID: 16010662 DOI: 10.1002/mrd.20324] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spermatogonial stem cells (SSCs) are stem cells of the male germ line. In mice, SSCs are quiescent at birth but actively proliferate during the first postnatal week, while they rarely divide in adult, suggesting an age-dependent difference in SSC characteristics. As an approach to evaluate this possibility, we studied the expression pattern of cell-surface molecules on neonatal, pup, and adult mouse SSCs. Using immunomagnetic cell sorting, testis cells were selected for the expression of alpha(6) integrin, alpha(v) integrin, c-kit receptor tyrosine kinase (Kit), or a binding subunit of glial-cell-line-derived neurotrophic factor (GDNF) receptor, GFRalpha1. Selected cells were assayed for their stem cell activity using spermatogonial transplantation. The results showed that SSCs expressed alpha(6) integrin, but not alpha(v) integrin and Kit, regardless of age. The SSC activity in pup GFRalpha1(+) cells was higher than that in adult and neonatal cells, indicating that the expression pattern of GFRalpha1 varied age-dependently. To evaluate if SSCs show an age-dependent difference in their response to GDNF, we cultured highly enriched pup and adult SSCs with GDNF: we could not observe such an age-dependent difference in vitro. In addition, we failed to immunologically detect the expression of two types of GDNF receptor signaling subunits on SSCs. These results indicate that SSCs may change the expression patterns of cell-surface molecules during postnatal development, and suggest that GDNF receptor molecules may not be abundantly or specifically expressed in the in vivo population of mouse SSCs.
Collapse
Affiliation(s)
- Kevin T Ebata
- Department of Obstetrics and Gynecology, Royal Victoria Hospital, McGill University, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1
| | | | | |
Collapse
|
221
|
Brendel C, Kuklick L, Hartmann O, Kim TD, Boudriot U, Schwell D, Neubauer A. Distinct gene expression profile of human mesenchymal stem cells in comparison to skin fibroblasts employing cDNA microarray analysis of 9600 genes. Gene Expr 2005; 12:245-57. [PMID: 16355723 PMCID: PMC6009126 DOI: 10.3727/000000005783992043] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Broad differentiation capacity has been described for mesenchymal stem cells (MSC) from human bone marrow. We sought to identify genes associated with the immature state and pluripotency of this cell type. To prove the pluripotent state of the MSC, differentiation into osteocytes, adipocytes, and chondrocytes was performed in vitro. In contrast, normal skin cells did not harbor these differentiation abilities. We compared the expression profile of human bone marrow MSC with cDNA from one primary human skin cell line as control, using a cDNA chip providing 9600 genes. The identity of all relevant genes was confirmed by direct sequencing. Data of gene array expression were corroborated employing quantitative PCR analysis. About 80 genes were differently expressed more than threefold in MSC compared to mature skin fibroblasts. Interestingly, primary human MSC were found to upregulate a number of genes important for embryogenesis such as distal-less homeo box 5, Eyes absent homolog 2, inhibitor of DNA binding 3, and LIM protein. In contrast, mesenchymal lineage genes were downregulated in MSC in comparison to skin cells. We also detected expression of some genes involved in neural development, indicating the broad differentiation capabilities of MSC. We conclude that human mesenchymal stem cells harbor an expression profile distinct from mature skin fibroblast, and genes associated with developmental processes and stem cell function are highly expressed in adult mesenchymal stem cells.
Collapse
Affiliation(s)
- Cornelia Brendel
- Department of Hematology, Oncology and Immunology, Philipps-University Marburg, Baldingerstrasse, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
222
|
Gurok U, Steinhoff C, Lipkowitz B, Ropers HH, Scharff C, Nuber UA. Gene expression changes in the course of neural progenitor cell differentiation. J Neurosci 2004; 24:5982-6002. [PMID: 15229246 PMCID: PMC6729244 DOI: 10.1523/jneurosci.0809-04.2004] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The molecular changes underlying neural progenitor differentiation are essentially unknown. We applied cDNA microarrays with 13,627 clones to measure dynamic gene expression changes during the in vitro differentiation of neural progenitor cells that were isolated from the subventricular zone of postnatal day 7 mice and grown in vitro as neurospheres. In two experimental series in which we withdrew epidermal growth factor and added the neurotrophins Neurotrophin-4 or BDNF, four time points were investigated: undifferentiated cells grown as neurospheres, and cells 24, 48, and 96 hr after differentiation. Expression changes of selected genes were confirmed by semiquantitative RT-PCR. Ten different groups of gene expression dynamics obtained by cluster analysis are described. To correlate selected gene expression changes to the localization of respective proteins, we performed immunostainings of cultured neurospheres and of brain sections from adult mice. Our results provide new insights into the genetic program of neural progenitor differentiation and give strong hints to as yet unknown cellular communications within the adult subventricular zone stem cell niche.
Collapse
Affiliation(s)
- Ulf Gurok
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
223
|
Hiratani I, Leskovar A, Gilbert DM. Differentiation-induced replication-timing changes are restricted to AT-rich/long interspersed nuclear element (LINE)-rich isochores. Proc Natl Acad Sci U S A 2004; 101:16861-6. [PMID: 15557005 PMCID: PMC534734 DOI: 10.1073/pnas.0406687101] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The replication timing of some genes is developmentally regulated, but the significance of replication timing to cellular differentiation has been difficult to substantiate. Studies have largely been restricted to the comparison of a few genes in established cell lines derived from different tissues, and most of these genes do not change replication timing. Hence, it has not been possible to predict how many or what types of genes might be subject to such control. Here, we have evaluated the replication timing of 54 tissue-specific genes in mouse embryonic stem cells before and after differentiation to neural precursors. Strikingly, genes residing within isochores rich in GC and poor in long interspersed nuclear elements (LINEs) did not change their replication timing, whereas half of genes within isochores rich in AT and long interspersed nuclear elements displayed programmed changes in replication timing that accompanied changes in gene expression. Our results provide direct evidence that differentiation-induced autosomal replication-timing changes are a significant part of mammalian development, provide a means to predict genes subject to such regulation, and suggest that replication timing may be more related to the evolution of metazoan genomes than to gene function or expression pattern.
Collapse
Affiliation(s)
- Ichiro Hiratani
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | | | | |
Collapse
|
224
|
Damiola F, Keime C, Gonin-Giraud S, Dazy S, Gandrillon O. Global transcription analysis of immature avian erythrocytic progenitors: from self-renewal to differentiation. Oncogene 2004; 23:7628-43. [PMID: 15378009 DOI: 10.1038/sj.onc.1208061] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The molecular mechanisms regulating the cell fate decision between self-renewal and differentiation/apoptosis in stem and progenitor cells are poorly understood. Here, we report the first comprehensive identification of genes potentially involved in the switch from self-renewal toward differentiation of primary, non-immortalized erythroid avian progenitor cells (T2EC cells). We used the Serial Analysis of Gene Expression (SAGE) technique in order to identify and quantify the genome fraction functionally active in a self-renewing versus a differentiating cell population. We generated two SAGE libraries and sequenced a total of 37,589 tags, thereby obtaining the first transcriptional profile characterization of a chicken cell. Tag identification was performed using a new relational database (Identitag) developed in the laboratory, which allowed a highly satisfactory level of identification. Among 123 differentially expressed genes, 11 were investigated further and for nine of them the differential expression was subsequently confirmed by real-time PCR. The comparison of tag abundance between the two libraries revealed that only a small fraction of transcripts was differentially expressed. The analysis of their functions argue against a prominent role for a master switch in T2EC cells decision-making, but are in favor of a critical role for coordinated small variations in a relatively small number of genes that can lead to essential cellular identity changes.
Collapse
Affiliation(s)
- Francesca Damiola
- Equipe 'Signalisations et identités cellulaires', Centre de Génétique Moléculaire et Cellulaire CNRS UMR 5534, France.
| | | | | | | | | |
Collapse
|
225
|
Abstract
Stem cells are endowed with self-renewal and multipotential differentiation capacities. Contrary to the expectation that stem cells would selectively express specific genes, these cells have a highly promiscuous gene-expression pattern. Here, I suggest that the transient stem cell state, termed the 'stem state', may be assumed by any cell and that the search for specific genes expressed by all stem cells, which would characterize the stem cell as a cell type, might be futile.
Collapse
Affiliation(s)
- Dov Zipori
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
226
|
Carpenter L, Zernicka-Goetz M. Directing pluripotent cell differentiation using ?diced RNA? in transient transfection. Genesis 2004; 40:157-63. [PMID: 15515021 DOI: 10.1002/gene.20078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Embryonic stem (ES) and embryonic carcinoma (EC) cells are pluripotent and have the capacity to differentiate into many cell types. The ability to direct their differentiation should have considerable practical applications. Here, we first report the use of diced short interfering RNAi against Oct4 in a transient approach, to direct differentiation of ES towards the trophectoderm lineage. We then apply this approach to downregulate Smad4 in mouse P19 EC cells. We have found that this leads to an increase in the levels of Pax6 (a neuroectoderm marker), reduction in the levels of Brachyury (a mesoderm marker), and a 3-fold increase in the number of betaIII tubulin-positive colonies when these cells were allowed to differentiate. This indicates a redirection of cell fate towards the neuroectoderm lineage. Thus, transient RNAi could provide a valuable tool to direct pluripotent cells along specific pathways of differentiation while circumventing permanent genetic changes.
Collapse
Affiliation(s)
- Lee Carpenter
- University of Cambridge, Department of Genetics, Downing Street, Cambridge CB2 3EH, UK
| | | |
Collapse
|
227
|
Abstract
Proteins from the Polycomb group (PcG) are epigenetic chromatin modifiers involved in cancer development and also in the maintenance of embryonic and adult stem cells. The therapeutic potential of stem cells and the growing conviction that tumors contain stem cells highlights the importance of understanding the extrinsic and intrinsic circuitry controlling stem cell fate and their connections to cancer.
Collapse
Affiliation(s)
- Merel E Valk-Lingbeek
- The Netherlands Cancer Institute, Department of Molecular Genetics, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | |
Collapse
|
228
|
Venezia TA, Merchant AA, Ramos CA, Whitehouse NL, Young AS, Shaw CA, Goodell MA. Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol 2004; 2:e301. [PMID: 15459755 PMCID: PMC520599 DOI: 10.1371/journal.pbio.0020301] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2004] [Accepted: 07/13/2004] [Indexed: 12/05/2022] Open
Abstract
Stem cells resident in adult tissues are principally quiescent, yet harbor enormous capacity for proliferation to achieve self renewal and to replenish their tissue constituents. Although a single hematopoietic stem cell (HSC) can generate sufficient primitive progeny to repopulate many recipients, little is known about the molecular mechanisms that maintain their potency or regulate their self renewal. Here we have examined the gene expression changes that occur over a time course when HSCs are induced to proliferate and return to quiescence in vivo. These data were compared to data representing differences between naturally proliferating fetal HSCs and their quiescent adult counterparts. Bioinformatic strategies were used to group time-ordered gene expression profiles generated from microarrays into signatures of quiescent and dividing stem cells. A novel method for calculating statistically significant enrichments in Gene Ontology groupings for our gene lists revealed elemental subgroups within the signatures that underlie HSC behavior, and allowed us to build a molecular model of the HSC activation cycle. Initially, quiescent HSCs evince a state of readiness. The proliferative signal induces a preparative state, which is followed by active proliferation divisible into early and late phases. Re-induction of quiescence involves changes in migratory molecule expression, prior to reestablishment of homeostasis. We also identified two genes that increase in both gene and protein expression during activation, and potentially represent new markers for proliferating stem cells. These data will be of use in attempts to recapitulate the HSC self renewal process for therapeutic expansion of stem cells, and our model may correlate with acquisition of self renewal characteristics by cancer stem cells. This comprehensive study of gene expression in hematopoietic stem cells reveals some key cellular changes that occur when the stem cells transition from quiescence to proliferation and back again
Collapse
Affiliation(s)
- Teresa A Venezia
- 1Cell and Molecular Biology Program, Baylor College of MedicineHouston, TexasUnited States of America
- 2Center for Cell and Gene Therapy, Baylor College of MedicineHouston, TexasUnited States of America
| | - Akil A Merchant
- 2Center for Cell and Gene Therapy, Baylor College of MedicineHouston, TexasUnited States of America
- 3Department of Medicine, Baylor College of MedicineHouston, TexasUnited States of America
| | - Carlos A Ramos
- 2Center for Cell and Gene Therapy, Baylor College of MedicineHouston, TexasUnited States of America
- 3Department of Medicine, Baylor College of MedicineHouston, TexasUnited States of America
| | - Nathan L Whitehouse
- 4Department of Human and Molecular Genetics, Baylor College of MedicineHouston, TexasUnited States of America
| | - Andrew S Young
- 4Department of Human and Molecular Genetics, Baylor College of MedicineHouston, TexasUnited States of America
| | - Chad A Shaw
- 4Department of Human and Molecular Genetics, Baylor College of MedicineHouston, TexasUnited States of America
| | - Margaret A Goodell
- 1Cell and Molecular Biology Program, Baylor College of MedicineHouston, TexasUnited States of America
- 2Center for Cell and Gene Therapy, Baylor College of MedicineHouston, TexasUnited States of America
- 4Department of Human and Molecular Genetics, Baylor College of MedicineHouston, TexasUnited States of America
- 5Department of Pediatrics, Baylor College of MedicineHouston, TexasUnited States of America
| |
Collapse
|
229
|
Cai J, Weiss ML, Rao MS. In search of "stemness". Exp Hematol 2004; 32:585-98. [PMID: 15246154 PMCID: PMC3279197 DOI: 10.1016/j.exphem.2004.03.013] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Revised: 03/22/2004] [Accepted: 03/25/2004] [Indexed: 01/02/2023]
Abstract
Stem cells have been identified and characterized in a variety of tissues. In this review we examine possible shared properties of stem cells. We suggest that irrespective of their lineal origin, stem cells have to respond in similar ways to regulate self-renewal and differentiation and it is likely that cell-cycle control, asymmetry/differentiation controls, cellular protective and DNA repair mechanisms, and associated apoptosis/senescence signaling pathways all might be expected to be more highly regulated in stem cells, likely by similar mechanisms. We review the literature to suggest a set of candidate stemness genes that may serve as universal stem cell markers. While we predict many similarities, we also predict that differences will exist between stem cell populations and that when transdifferentiation is considered genes expected to be both similar and different need to be examined.
Collapse
Affiliation(s)
- Jingli Cai
- Gerontology Research Center, Stem Cell Biology Unit/Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
230
|
Tagliafico E, Brunelli S, Bergamaschi A, De Angelis L, Scardigli R, Galli D, Battini R, Bianco P, Ferrari S, Cossu G, Ferrari S. TGFβ/BMP activate the smooth muscle/bone differentiation programs in mesoangioblasts. J Cell Sci 2004; 117:4377-88. [PMID: 15331661 DOI: 10.1242/jcs.01291] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mesoangioblasts are vessel-derived stem cells that can be induced to differentiate into different cell types of the mesoderm such as muscle and bone. The gene expression profile of four clonal derived lines of mesoangioblasts was determined by DNA micro-array analysis: it was similar in the four lines but different from 10T1/2 embryonic fibroblasts, used as comparison. Many known genes expressed by mesoangioblasts belong to response pathways to developmental signalling molecules, such as Wnt or TGFβ/BMP. Interestingly, mesoangioblasts express receptors of the TGFβ/BMP family and several Smads and, accordingly, differentiate very efficiently into smooth muscle cells in response to TGFβ and into osteoblasts in response to BMP. In addition, insulin signalling promotes adipogenic differentiation, possibly through the activation of IGF-R. Several Wnts and Frizzled, Dishevelled and Tcfs are expressed, suggesting the existence of an autocrine loop for proliferation and indeed, forced expression of Frzb-1 inhibits cell division. Mesoangioblasts also express many neuro-ectodermal genes and yet undergo only abortive neurogenesis, even after forced expression of neurogenin 1 or 2, MASH or NeuroD. Finally, mesoangioblasts express several pro-inflammatory genes, cytokines and cytokine receptors, which may explain their ability to be recruited by tissue inflammation. Our data define a unique phenotype for mesoangioblasts, explain several of their biological features and set the basis for future functional studies on the role of these cells in tissue histogenesis and repair.
Collapse
Affiliation(s)
- Enrico Tagliafico
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Via G. Campi 287, 41100 Modena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Georgantas RW, Tanadve V, Malehorn M, Heimfeld S, Chen C, Carr L, Martinez-Murillo F, Riggins G, Kowalski J, Civin CI. Microarray and serial analysis of gene expression analyses identify known and novel transcripts overexpressed in hematopoietic stem cells. Cancer Res 2004; 64:4434-41. [PMID: 15231652 DOI: 10.1158/0008-5472.can-03-3247] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The human CD34(+)/CD38(-)/Lin(-) cell subset, comprising approximately 1-10% of the CD34(+) cell population, contains few of the less primitive hematopoietic (lineage-committed) progenitor cells (HPCs) but most of the primitive in vivo engrafting (lympho-)hematopoietic stem cells (HSCs). We analyzed gene expression in CD34(+)/CD38(-)/Lin(-) cell populations isolated from normal human adult donor bone marrow, neonatal placental/umbilical cord blood, and mobilized adult donor peripheral blood stem-progenitor cells. As measured by Affymetrix microarrays, 4746 genes were expressed in CD34(+)/CD38(-)/Lin(-) cells from all three tissues. We also determined the transcriptomes of the stem cell-depleted, HPC-enriched CD34(+)/[CD38/Lin](++) cell population from each tissue. Comparison of CD34(+)/CD38(-)/Lin(-) (HSC-enriched) versus CD34(+)/[CD38/Lin](++) (HPC-enriched, HSC-depleted) cells from each tissue yielded 81 genes overrepresented and 90 genes underrepresented, common to all three of the CD34(+)/CD38(-)/Lin(-) cell populations. These transcripts, which are selectively expressed in HSCs from all three tissues, include a number of known genes (e.g., transcription factors, receptors, and signaling molecules) that might play roles in key functions (e.g., survival, self-renewal, differentiation, and/or migration/adhesion) of human HSCs. Many genes/transcripts of unknown function were also detected by microarray analysis. Serial analysis of gene expression of the bone marrow HSC and HPC populations confirmed expression of most of the overrepresented transcripts for which reliable serial analysis of gene expression tags were detected and additionally suggested that current microarrays do not detect as many as 30% of the transcripts expressed in HSCs, including a number of previously unknown transcripts. This work is a step toward full definition of the transcriptome of normal human HSCs and may identify new genes involved in leukemogenesis and cancer stem cells.
Collapse
Affiliation(s)
- Robert W Georgantas
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland 21231, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Lin CY, Ström A, Vega VB, Li Kong S, Li Yeo A, Thomsen JS, Chan WC, Doray B, Bangarusamy DK, Ramasamy A, Vergara LA, Tang S, Chong A, Bajic VB, Miller LD, Gustafsson JÅ, Liu ET. Discovery of estrogen receptor alpha target genes and response elements in breast tumor cells. Genome Biol 2004; 5:R66. [PMID: 15345050 PMCID: PMC522873 DOI: 10.1186/gb-2004-5-9-r66] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 06/04/2004] [Accepted: 07/15/2004] [Indexed: 11/19/2022] Open
Abstract
Microarray analysis has identified 89 estrogen target genes. The cis-regulatory elements found upstream of those genes are not well conserved in mouse and human. Background Estrogens and their receptors are important in human development, physiology and disease. In this study, we utilized an integrated genome-wide molecular and computational approach to characterize the interaction between the activated estrogen receptor (ER) and the regulatory elements of candidate target genes. Results Of around 19,000 genes surveyed in this study, we observed 137 ER-regulated genes in T-47D cells, of which only 89 were direct target genes. Meta-analysis of heterogeneous in vitro and in vivo datasets showed that the expression profiles in T-47D and MCF-7 cells are remarkably similar and overlap with genes differentially expressed between ER-positive and ER-negative tumors. Computational analysis revealed a significant enrichment of putative estrogen response elements (EREs) in the cis-regulatory regions of direct target genes. Chromatin immunoprecipitation confirmed ligand-dependent ER binding at the computationally predicted EREs in our highest ranked ER direct target genes, NRIP1, GREB1 and ABCA3. Wider examination of the cis-regulatory regions flanking the transcriptional start sites showed species conservation in mouse-human comparisons in only 6% of predicted EREs. Conclusions Only a small core set of human genes, validated across experimental systems and closely associated with ER status in breast tumors, appear to be sufficient to induce ER effects in breast cancer cells. That cis-regulatory regions of these core ER target genes are poorly conserved suggests that different evolutionary mechanisms are operative at transcriptional control elements than at coding regions. These results predict that certain biological effects of estrogen signaling will differ between mouse and human to a larger extent than previously thought.
Collapse
Affiliation(s)
- Chin-Yo Lin
- Genome Institute of Singapore, Singapore 117528
| | - Anders Ström
- Center for Biotechnology, Karolinska Institute, Novum, S-141 57 Huddinge, Sweden
| | | | - Say Li Kong
- Genome Institute of Singapore, Singapore 117528
| | - Ai Li Yeo
- Genome Institute of Singapore, Singapore 117528
| | - Jane S Thomsen
- Center for Biotechnology, Karolinska Institute, Novum, S-141 57 Huddinge, Sweden
| | | | | | | | | | | | - Suisheng Tang
- Knowledge Extraction Lab, Institute for Infocomm Research, Singapore 119613
| | - Allen Chong
- Knowledge Extraction Lab, Institute for Infocomm Research, Singapore 119613
| | - Vladimir B Bajic
- Knowledge Extraction Lab, Institute for Infocomm Research, Singapore 119613
| | | | - Jan-Åke Gustafsson
- Center for Biotechnology, Karolinska Institute, Novum, S-141 57 Huddinge, Sweden
- Department of Medical Nutrition, Karolinska Institute, Novum, S-141 86 Huddinge, Sweden
| | | |
Collapse
|
233
|
|
234
|
Hohenstein KA, Shain DH. Changes in gene expression at the precursor --> stem cell transition in leech. Stem Cells 2004; 22:514-21. [PMID: 15277697 DOI: 10.1634/stemcells.22-4-514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The glossiphoniid leech, Theromyzon trizonare, displays particularly large and accessible embryonic precursor/stem cells during its early embryonic cleavages. We dissected populations of both cell types from staged embryos and examined gene expression profiles by differential display polymerase chain reaction methodology. Among the approximately 10,000 displayed cDNA fragments, 56 (approximately 0.5%) were differentially expressed at the precursor --> stem cell transition; 29 were turned off (degraded, precursor-specific); and 27 were turned on (transcribed, stem cell-specific). Several putative differentially expressed cDNAs from each category were confirmed by Northern blot analysis on staged embryos. DNA sequencing revealed that 19 of the cDNAs were related to a spectrum of genes including the CCR4 antiproliferation gene, Rad family members, and several transcriptional regulators, while the remainder encoded hypothetical (10) or novel (27) sequences. Collectively, these results identify dynamic changes in gene expression during stem cell formation in leech and provide a platform for examining the molecular aspects of stem cell genesis in a simple invertebrate organism.
Collapse
Affiliation(s)
- Kristi A Hohenstein
- Biology Department, Rutgers, The State University of New Jersey, 315 Penn Street, Camden 08102, USA
| | | |
Collapse
|
235
|
Hamra FK, Schultz N, Chapman KM, Grellhesl DM, Cronkhite JT, Hammer RE, Garbers DL. Defining the spermatogonial stem cell. Dev Biol 2004; 269:393-410. [PMID: 15110708 DOI: 10.1016/j.ydbio.2004.01.027] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 01/21/2004] [Accepted: 01/23/2004] [Indexed: 12/22/2022]
Abstract
Through the use of donor cells from transgenic rats expressing GFP exclusively in the germline, we have defined culture conditions where male germ cells lose (on STO cells) or maintain (on MSC-1 cells) stem cell activity. A cadre of germ cell transcripts strikingly decrease in relative abundance as a function of testis age or culture time on STO cells, but only a subset of these transcripts (approximately 248) remain elevated when cultured on MSC-1 cells. If specific gene expression regulates stem cell activity, some or all of these transcripts are candidates as such regulators. We establish a spermatogonial stem cell index (SSCI) that reliably predicts relative stem cell activity in rat or mouse testis cell cultures, and through the use of an antibody to a robust signal (Egr3) within the index find intense signals in single or paired cells. As germ cells form longer interconnected chains (incomplete cytokinesis), the Egr3 signal disappears coincident with a loss of stem cell activity. Thus, molecular markers specific for spermatogonial stem cells establish a reliable and rapid means by which to define these cells in culture and alleviate the need for laborious testicular transfers in initial cell culture studies.
Collapse
Affiliation(s)
- F Kent Hamra
- Cecil H and H Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
236
|
Wagner W, Ansorge A, Wirkner U, Eckstein V, Schwager C, Blake J, Miesala K, Selig J, Saffrich R, Ansorge W, Ho AD. Molecular evidence for stem cell function of the slow-dividing fraction among human hematopoietic progenitor cells by genome-wide analysis. Blood 2004; 104:675-86. [PMID: 15090461 DOI: 10.1182/blood-2003-10-3423] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms that regulate asymmetric divisions of hematopoietic progenitor cells (HPCs) are not yet understood. The slow-dividing fraction (SDF) of HPCs is associated with primitive function and self-renewal, whereas the fast-dividing fraction (FDF) predominantly proceeds to differentiation. CD34+/CD38- cells of human umbilical cord blood were separated into the SDF and FDF. Genomewide gene expression analysis of these populations was determined using the newly developed Human Transcriptome Microarray containing 51 145 cDNA clones of the Unigene Set-RZPD3. In addition, gene expression profiles of CD34+/CD38- cells were compared with those of CD34+/CD38+ cells. Among the genes showing the highest expression levels in the SDF were the following: CD133, ERG, cyclin G2, MDR1, osteopontin, CLQR1, IFI16, JAK3, FZD6, and HOXA9, a pattern compatible with their primitive function and self-renewal capacity. Furthermore, morphologic differences between the SDF and FDF were determined. Cells in the SDF have more membrane protrusions and CD133 is located on these lamellipodia. The majority of cells in the SDF are rhodamine-123dull. These results provide molecular evidence that the SDF is associated with primitive function and serves as basis for a detailed understanding of asymmetric division of stem cells.
Collapse
Affiliation(s)
- Wolfgang Wagner
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
237
|
McHale CM, Smith MT. Prenatal origin of chromosomal translocations in acute childhood leukemia: implications and future directions. Am J Hematol 2004; 75:254-7. [PMID: 15054823 DOI: 10.1002/ajh.20030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We, and others, have demonstrated an in utero origin for translocations associated with childhood leukemia, with latency periods in some cases exceeding 10 years. The mechanism of generation of most of the translocations is thought to be aberrant repair following abortive apoptosis, rather than V(D)J recombination or exposure to topoisomerase II inhibitors. Folate supplementation may prevent some of the chromosome breakage leading to translocation formation. Translocations t(8;21) and t(12;21) have been shown to occur in the normal population (before birth) at a frequency that is 100-fold greater than the risk of developing the corresponding leukemia. In most instances, additional genetic changes are required for progression to leukemia. Tyrosine kinase receptor (RTK) mutations, which give cells a survival/proliferative advantage, are proposed to act cooperatively with fusion genes, leading to transformation. However, translocations and cooperating RTK mutations have not been identified for all leukemia subtypes, particularly in acute myeloid leukemia. The core binding transcriptional pathway is frequently targeted by translocation in utero. We propose that this pathway is highly sensitive during fetal hematopoiesis and may be targeted by mechanisms other than translocation. For each leukemia subtype it is important to characterize the corresponding leukemic stem cell, which is thought to be the initial target for translocation. This would help to elucidate the molecular pathways involved in the progression from preleukemic clone harboring a translocation to fully disseminated leukemia.
Collapse
Affiliation(s)
- Cliona M McHale
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720-7360, USA.
| | | |
Collapse
|
238
|
Jakel RJ, Schneider BL, Svendsen CN. Using human neural stem cells to model neurological disease. Nat Rev Genet 2004; 5:136-44. [PMID: 14735124 DOI: 10.1038/nrg1268] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rebekah J Jakel
- Neuroscience Training Program, Waisman Center, University of Wisconsin-Madison Medical School, 1500 Highland Avenue, Madison, Wisconsin 53705, USA
| | | | | |
Collapse
|
239
|
Abstract
Stem cell scientists and ethicists have focused intently on questions relevant to the developmental stage and developmental capacities of stem cells. Comparably less attention has been paid to an equally important set of questions about the nature of stem cells, their common characteristics, their non-negligible differences and their possible developmental species specificity. Answers to these questions are essential to the project of justly inferring anything about human stem cell biology from studies in non-human model systems--and so to the possibility of eventually developing human therapies based on stem cell biology. After introducing and discussing these questions, I conclude with a brief discussion of the creation of novel model systems in stem cell biology: human-to-animal embryonic chimeras. Such novel model systems may help to overcome obstacles to extrapolation, but they are also scientifically and ethically contentious.
Collapse
Affiliation(s)
- Jason Scott Robert
- Department of Philosophy, Dalhousie University, 6135 University Avenue, Halifax, Nova Scotia B3H 4P9, Canada.
| |
Collapse
|