201
|
Torres-Morquecho A, Giono-Cerezo S, Camorlinga-Ponce M, Vargas-Mendoza CF, Torres J. Evolution of bacterial genes: evidences of positive Darwinian selection and fixation of base substitutions in virulence genes of Helicobacter pylori. INFECTION GENETICS AND EVOLUTION 2010; 10:764-76. [PMID: 20434592 DOI: 10.1016/j.meegid.2010.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 04/15/2010] [Accepted: 04/18/2010] [Indexed: 01/30/2023]
Abstract
Gene diversity in Helicobacter pylori from different origins results in a phylogeographic differentiation, and this genetic variation among populations might be driven by random drift or by selective forces. However, only the selective forces would contribute to adaptation of the bacteria to the physiology and environment of its local host and to its association with gastroduodenal diseases. We studied evolutionary forces acting on variable regions of virulence genes cagA, babA and oipA, which present geographic differences among H. pylori strains from different human groups. Gene sequences in H. pylori strains from Asia, Europe and America were analysed using state of the art analytical methods like the Maximum Likelihood method. The rate and nature of polymorphisms in these virulence genes were also compared among populations using the AMOVA and McDonald-Kreitman tests. We found strong and significant positive selection acting on variable regions of cagA, babA and oipA. We found in cagA from Asian strains regions under positive selection, which localised in amino acid sites defining the Asian fingerprint for this gene and in sites with important biological activity. Different evolutionary forces are acting on the variable region of virulence genes; they partly explain the source of genetic diversity and the differences in risk for gastroduodenal diseases among different human populations.
Collapse
Affiliation(s)
- Araceli Torres-Morquecho
- Infectious Diseases Research Unit, Hospital de Pediatría, Instituto Mexicano del Seguro Social, Mexico
| | | | | | | | | |
Collapse
|
202
|
Host-interactive genes in Amerindian Helicobacter pylori diverge from their Old World homologs and mediate inflammatory responses. J Bacteriol 2010; 192:3078-92. [PMID: 20400544 DOI: 10.1128/jb.00063-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is the dominant member of the gastric microbiota and has been associated with an increased risk of gastric cancer and peptic ulcers in adults. H. pylori populations have migrated and diverged with human populations, and health effects vary. Here, we describe the whole genome of the cag-positive strain V225d, cultured from a Venezuelan Piaroa Amerindian subject. To gain insight into the evolution and host adaptation of this bacterium, we undertook comparative H. pylori genomic analyses. A robust multiprotein phylogenetic tree reflects the major human migration out of Africa, across Europe, through Asia, and into the New World, placing Amerindian H. pylori as a particularly close sister group to East Asian H. pylori. In contrast, phylogenetic analysis of the host-interactive genes vacA and cagA shows substantial divergence of Amerindian from Old World forms and indicates new genotypes (e.g., VacA m3) involving these loci. Despite deletions in CagA EPIYA and CRPIA domains, V225d stimulates interleukin-8 secretion and the hummingbird phenotype in AGS cells. However, following a 33-week passage in the mouse stomach, these phenotypes were lost in isolate V225-RE, which had a 15-kb deletion in the cag pathogenicity island that truncated CagA and eliminated some of the type IV secretion system genes. Thus, the unusual V225d cag architecture was fully functional via conserved elements, but the natural deletion of 13 cag pathogenicity island genes and the truncation of CagA impaired the ability to induce inflammation.
Collapse
|
203
|
Abstract
The relative contribution of founder effects and natural selection to the observed distribution of human blood groups has been debated since blood group frequencies were shown to differ between populations almost a century ago. Advances in our understanding of the migration patterns of early humans from Africa to populate the rest of the world obtained through the use of Y chromosome and mtDNA markers do much to inform this debate. There are clear examples of protection against infectious diseases from inheritance of polymorphisms in genes encoding and regulating the expression of ABH and Lewis antigens in bodily secretions particularly in respect of Helicobacter pylori, norovirus, and cholera infections. However, available evidence suggests surviving malaria is the most significant selective force affecting the expression of blood groups. Red cells lacking or having altered forms of blood group-active molecules are commonly found in regions of the world in which malaria is endemic, notably the Fy(a-b-) phenotype and the S-s- phenotype in Africa and the Ge- and SAO phenotypes in South East Asia. Founder effects provide a more convincing explanation for the distribution of the D- phenotype and the occurrence of hemolytic disease of the fetus and newborn in Europe and Central Asia.
Collapse
|
204
|
Molecular characterization and susceptibility testing of Helicobacter pylori strains isolated in western Argentina. Int J Infect Dis 2010; 14 Suppl 3:e85-92. [PMID: 20304694 DOI: 10.1016/j.ijid.2009.11.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 10/27/2009] [Accepted: 11/10/2009] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To characterize Helicobacter pylori isolates from western Argentina using virulence markers and antimicrobial susceptibility patterns in order to assess the association between virulent genotypes, antimicrobial resistance, and disease. DNA fingerprinting was also evaluated for the segregation of virulent or resistant strain clusters. METHODS Genotyping of 299 H. pylori isolates was performed by PCR using specific primers for the cagA, vacA and iceA genes. Random amplification of polymorphic DNA (RAPD)-PCR and rep-PCR genetic clustering were assessed using five random primers and BOXA1R and ERIC primers, respectively. Resistance to clarithromycin (Cla) and metronidazole (Mtz) was assessed by the agar dilution method. RESULTS It was observed that 40.8% of the genotypes were cagA-positive; 66.9% were vacA s1m1 genotype and the iceA1 allele was found in 40.8%. A significant correlation (p=0.0000) was observed between cagA positivity and vacA s1m1/iceA1 genotypes. Triple virulent genotypes were statistically associated with peptic ulcer (PU) (p=0.0001) and Cla resistance (p=0.0000). RAPD fingerprints obtained with AO2 primers identified clusters that were strongly associated with PU, virulence markers, and resistance to Cla and Mtz. CONCLUSIONS The H. pylori isolates that harbored two or three virulence markers were more resistant to Cla and Mtz. Combined analysis of virulent genotypes and resistance patterns may permit identification of high-risk patients to prevent PU later in life or to avoid antimicrobial treatment failure.
Collapse
|
205
|
Henriques-Normark B, Normark S. Commensal pathogens, with a focus on Streptococcus pneumoniae, and interactions with the human host. Exp Cell Res 2010; 316:1408-14. [PMID: 20227406 DOI: 10.1016/j.yexcr.2010.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 03/05/2010] [Indexed: 01/29/2023]
Abstract
Many important pathogens have humans as their normal ecological niche where healthy carriage dominates over disease. The ability of these commensal pathogens, such as Streptococcus pneumoniae, to cause disease depends on a series of microbial factors as well as of genetic and environmental factors in the human host affecting the clearing capacity mediated by the innate and adaptive immune system. This delicate interplay between microbe and host affects not only the likelihood for a commensal pathogen to cause disease, but also disease type and disease severity.
Collapse
|
206
|
Kao PH, Lin SR, Chang LS. Interaction of Naja naja atra cardiotoxin 3 with H-trisaccharide modulates its hemolytic activity and membrane-damaging activity. Toxicon 2010; 55:1387-95. [PMID: 20193704 DOI: 10.1016/j.toxicon.2010.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2009] [Revised: 01/19/2010] [Accepted: 02/16/2010] [Indexed: 11/16/2022]
Abstract
To address whether saccharide moieties of blood groups A, B and O antigens modulate hemolytic activity of Naja naja atra cardiotoxins (CTXs), the present study was carried out. Unlike other CTX isotoxins, hemolytic activity of CTX3 toward blood group O cholesterol-depleted red blood cells (RBCs) was notably lower than that of blood groups A and B cholesterol-depleted RBCs. Conversion of blood group B RBCs into blood group O RBCs by alpha-galactosidase treatment attenuated the susceptibility for hemolytic activity of CTX3, suggesting that H-antigen affected hemolytic potency of CTX3. Pre-incubation with H-trisaccharide reduced hemolytic activity and membrane-damaging activity of CTX3. Moreover, CTX3 showed a higher binding capability with H-trisaccharide than other CTXs did. CD spectra showed that the binding with H-trisaccharide induced changes in gross conformation of CTX3. Self-quenching studies revealed that oligomerization of CTX3 was affected in the presence of H-trisaccharide. Taken together, our data suggest that the binding of CTX3 with H-antigen alters its membrane-bound mode, thus reducing its hemolytic activity toward blood group O cholesterol-depleted RBCs.
Collapse
Affiliation(s)
- Pei-Hsiu Kao
- Institute of Biomedical Sciences, National Sun Yat-Sen University-Kaohsiung Medical University Joint Research Center, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | | | | |
Collapse
|
207
|
Risch HA, Yu H, Lu L, Kidd MS. ABO blood group, Helicobacter pylori seropositivity, and risk of pancreatic cancer: a case-control study. J Natl Cancer Inst 2010; 102:502-5. [PMID: 20181960 DOI: 10.1093/jnci/djq007] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Carriage of a non-O ABO blood group and colonization by Helicobacter pylori are thought to be risk factors for pancreatic cancer. We examined these associations in a population-based case-control study of 373 case patients and 690 control subjects frequency matched on sex and age. Control subjects were selected by random-digit dialing. Seropositivity for H pylori and its virulence protein CagA was determined by enzyme-linked immunosorbent assay (ELISA). Increased risk of pancreatic cancer was associated with non-O blood group (adjusted odds ratio [OR] = 1.37, 95% confidence interval [CI] = 1.02 to 1.83, P = .034) and CagA-negative H pylori seropositivity (OR = 1.68, 95% CI = 1.07 to 2.66, P = .025), but no association was observed for CagA seropositivity (OR = 0.77, 95% CI = 0.52 to 1.16). An association between pancreatic cancer risk and CagA-negative H pylori seropositivity was found among individuals with non-O blood type but not among those with O blood type (OR = 2.78, 95% CI = 1.49 to 5.20, P = .0014; OR = 1.28, 95% CI = 0.62 to 2.64, P = .51, respectively). This study demonstrates an association between pancreatic cancer and H pylori colonization, particularly for individuals with non-O blood types.
Collapse
Affiliation(s)
- Harvey A Risch
- Department of Epidemiology and Public Health, Yale University School of Medicine, 60 College St, PO Box 208034, New Haven, CT 06520-8034, USA.
| | | | | | | |
Collapse
|
208
|
Expression of the BabA adhesin during experimental infection with Helicobacter pylori. Infect Immun 2010; 78:1593-600. [PMID: 20123715 DOI: 10.1128/iai.01297-09] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Helicobacter pylori babA gene encodes an outer membrane protein that mediates binding to fucosylated ABH antigens of the ABO blood group. We recently demonstrated that BabA expression is lost during experimental infection of rhesus macaques with H. pylori J166. We sought to test the generality of this observation by comparison of different H. pylori strains and different animal hosts. Challenge of macaques with H. pylori J99 yielded output strains that lost BabA expression, either by selection and then expansion of a subpopulation of J99 that had a single-base-pair mutation that encoded a stop codon or by gene conversion of babA with a duplicate copy of babB, a paralog of unknown function. Challenge of mice with H. pylori J166, which unlike J99, has 5' CT repeats in babA, resulted in loss of BabA expression due to phase variation. In the gerbil, Leb binding was lost by replacement of the babA gene that encoded Leb binding with a nonbinding allele that differed at six amino acid residues. Complementation experiments confirmed that change in these six amino acids of BabA was sufficient to eliminate binding to Leb and to gastric tissue. These results demonstrate that BabA expression in vivo is highly dynamic, and the findings implicate specific amino acid residues as critical for binding to fucosylated ABH antigens. We hypothesize that modification of BabA expression during H. pylori infection is a mechanism to adapt to changing conditions of inflammation and glycan expression at the epithelial surface.
Collapse
|
209
|
Con SA, Takeuchi H, Nishioka M, Morimoto N, Sugiura T, Yasuda N, Con-Wong R. Clinical relevance of Helicobacter pylori babA2 and babA2/B in Costa Rica and Japan. World J Gastroenterol 2010; 16:474-8. [PMID: 20101774 PMCID: PMC2811801 DOI: 10.3748/wjg.v16.i4.474] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the prevalence of Helicobacter pylori (H. pylori) babA2, babB and a recombinant gene between babA2 and babB (babA2/B), and their role in the development of atrophic gastritis in Costa Rican and Japanese clinical isolates.
METHODS: A total of 95 continuous H. pylori-positive Costa Rican (41 males and 54 females; mean age, 50.65 years; SD, ± 13.04 years) and 95 continuous H. pylori-positive Japanese (50 males and 45 females; mean age, 63.43; SD, ± 13.21 years) patients underwent upper endoscopy from October 2005 to July 2006. They were enrolled for the polymerase chain reaction (PCR)-based genotyping of the H. pylori babA2, babB and babA2/B genes. Statistical analysis was performed using the χ2 test and the Fisher’s exact probability test and multivariate analysis was performed by logistic regression adjusting for gender and age. P < 0.05 was regarded as statistically significant.
RESULTS: The PCR-based genotyping of 95 Costa Rican and 95 Japanese isolates showed a higher prevalence of babA2 in Japan (96.8%) than in Costa Rica (73.7%), while that of babA2/B was higher in Costa Rica (11.6%) than in Japan (1.1%). In Costa Rican isolates only, babA2 was significantly associated with atrophic gastritis (P = 0.01).
CONCLUSION: These results suggest that the status of babA2 and babA2/B shows geographic differences, and that babA2 has clinical relevance in Costa Rica.
Collapse
|
210
|
Miyazaki T, Sato T, Furukawa K, Ajisaka K. Enzymatic synthesis of lacto-N-difucohexaose I which binds to Helicobacter pylori. Methods Enzymol 2010; 480:511-24. [PMID: 20816225 DOI: 10.1016/s0076-6879(10)80023-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helicobacter pylori is known to bind with sugar chains possessing Lewis b structure. We are trying to combine oligosaccharides containing Lewis b sugar chain to water insoluble polysaccharide through some linker. Lacto-N-difucohexaose I (LNDFH I; Fucalpha1-->2Galbeta1-->3[Fucalpha1-->4]GlcNAcbeta1-->3Galbeta1-->4Glc) fits for that purpose, since it consists of Lewis b tetrasaccharide and lactose whose d-glucose residue can be utilized as a linker. We thus developed a method to synthesize this hexaose enzymatically. First, beta-1,3-N-acetylglucosaminyltransferase (beta-1,3-GnT) was partially purified from bovine blood by an established method. Using this enzyme preparation, d-GlcNAc was attached to the d-galactose residue of lactose with a beta-1,3-linkage to produce lacto-N-triose II at 44% yield. The low yield was thought to be due to contaminating N-acetylglucosaminidase that would have hydrolyzed the product, lacto-N-triose II. Next, d-galactose was attached by transglycosylation using ortho-nitrophenyl beta-d-galactopyranoside as a donor with the aid of recombinant beta-1,3-galactosidase from Bacillus circulans to generate lacto-N-tetraose (LNT) at 22% yield. l-Fucose was then linked to the d-galactose residue of LNT via an alpha-1,2-linkage using recombinant human fucosyltransferase I (FUT1) expressed in a baculovirus system (71% yield). The obtained pentasaccharide was subsequently incubated with GDP-beta-l-fucose and commercial fucosyltransferase III (FUT3) to attach l-fucose to the d-GlcNAc residue of LNT with an alpha-1,4-linkage. After purification with an activated carbon column chromatography, 1.7 mg of LNDFH I was obtained (85% yield). We thus produced LNDFH I over four enzymatic steps with a yield of 6%.
Collapse
Affiliation(s)
- Tatsuo Miyazaki
- Department of Applied Life Sciences, Niigata University of Pharmacy and Applied Life Sciences, Akiha-ku, Niigata, Japan
| | | | | | | |
Collapse
|
211
|
Magalhães A, Gomes J, Ismail MN, Haslam SM, Mendes N, Osório H, David L, Le Pendu J, Haas R, Dell A, Borén T, Reis CA. Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa. Glycobiology 2009; 19:1525-36. [PMID: 19706747 PMCID: PMC2782244 DOI: 10.1093/glycob/cwp131] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/21/2009] [Accepted: 08/21/2009] [Indexed: 12/14/2022] Open
Abstract
Glycoconjugates expressed on gastric mucosa play a crucial role in host-pathogen interactions. The FUT2 enzyme catalyzes the addition of terminal alpha(1,2)fucose residues, producing the H type 1 structure expressed on the surface of epithelial cells and in mucosal secretions of secretor individuals. Inactivating mutations in the human FUT2 gene are associated with reduced susceptibility to Helicobacter pylori infection. H. pylori infects over half the world's population and causes diverse gastric lesions, from gastritis to gastric cancer. H. pylori adhesion constitutes a crucial step in the establishment of a successful infection. The BabA adhesin binds the Le(b) and H type 1 structures expressed on gastric mucins, while SabA binds to sialylated carbohydrates mediating the adherence to inflamed gastric mucosa. In this study, we have used an animal model of nonsecretors, Fut2-null mice, to characterize the glycosylation profile and evaluate the effect of the observed glycan expression modifications in the process of H. pylori adhesion. We have demonstrated expression of terminal difucosylated glycan structures in C57Bl/6 mice gastric mucosa and that Fut2-null mice showed marked alteration in gastric mucosa glycosylation, characterized by diminished expression of alpha(1,2)fucosylated structures as indicated by lectin and antibody staining and further confirmed by mass spectrometry analysis. This altered glycosylation profile was further confirmed by the absence of Fucalpha(1,2)-dependent binding of calicivirus virus-like particles. Finally, using a panel of H. pylori strains, with different adhesin expression profiles, we have demonstated an impairment of BabA-dependent adhesion of H. pylori to Fut2-null mice gastric mucosa, whereas SabA-mediated binding was not affected.
Collapse
Affiliation(s)
- Ana Magalhães
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Joana Gomes
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Mohd Nazri Ismail
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Stuart M Haslam
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Nuno Mendes
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Hugo Osório
- Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | | | | | - Rainer Haas
- Max von Pettenkofer Institute, LMU München, München, Germany
| | - Anne Dell
- Division of Molecular Biosciences, Faculty of Natural Sciences, Imperial College London, London, UK
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Celso A Reis
- To whom correspondence should be addressed: Tel: +351-225570700; Fax: +351-225570799; e-mail:
| |
Collapse
|
212
|
Atherton JC, Blaser MJ. Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J Clin Invest 2009. [PMID: 19729845 DOI: 10.1172/jci38605.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Humans have been colonized by Helicobacter pylori for at least 50,000 years and probably throughout their evolution. H. pylori has adapted to humans, colonizing children and persisting throughout life. Most strains possess factors that subtly modulate the host environment, increasing the risk of peptic ulceration, gastric adenocarcinoma, and possibly other diseases. H. pylori genes encoding these and other factors rapidly evolve through mutation and recombination, changing the bacteria-host interaction. Although immune and physiologic responses to H. pylori also contribute to pathogenesis, humans have evolved in concert with the bacterium, and its recent absence throughout the life of many individuals has led to new human physiological changes. These may have contributed to recent increases in esophageal adenocarcinoma and, more speculatively, other modern diseases.
Collapse
Affiliation(s)
- John C Atherton
- Nottingham Digestive Diseases Centre Biomedical Research Unit and Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom.
| | | |
Collapse
|
213
|
Atherton JC, Blaser MJ. Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J Clin Invest 2009; 119:2475-87. [PMID: 19729845 DOI: 10.1172/jci38605] [Citation(s) in RCA: 393] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Humans have been colonized by Helicobacter pylori for at least 50,000 years and probably throughout their evolution. H. pylori has adapted to humans, colonizing children and persisting throughout life. Most strains possess factors that subtly modulate the host environment, increasing the risk of peptic ulceration, gastric adenocarcinoma, and possibly other diseases. H. pylori genes encoding these and other factors rapidly evolve through mutation and recombination, changing the bacteria-host interaction. Although immune and physiologic responses to H. pylori also contribute to pathogenesis, humans have evolved in concert with the bacterium, and its recent absence throughout the life of many individuals has led to new human physiological changes. These may have contributed to recent increases in esophageal adenocarcinoma and, more speculatively, other modern diseases.
Collapse
Affiliation(s)
- John C Atherton
- Nottingham Digestive Diseases Centre Biomedical Research Unit and Institute of Infection, Immunity and Inflammation, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, United Kingdom.
| | | |
Collapse
|
214
|
Liu H, Merrell DS, Semino-Mora C, Goldman M, Rahman A, Mog S, Dubois A. Diet synergistically affects helicobacter pylori-induced gastric carcinogenesis in nonhuman primates. Gastroenterology 2009; 137:1367-79.e1-6. [PMID: 19622359 PMCID: PMC2774828 DOI: 10.1053/j.gastro.2009.07.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 06/04/2009] [Accepted: 07/09/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Gastric cancer results from a combination of Helicobacter pylori (H pylori) infection, exposure to dietary carcinogens, and predisposing genetic make-up. Because the role of these factors in gastric carcinogenesis cannot be determined readily in human beings, the present study examined the role of an oral carcinogen and H pylori infection in rhesus monkeys. METHODS Gastroscopies were performed in 23 monkeys assigned to 4 groups: controls; nitrosating carcinogen ethyl-nitro-nitrosoguanidine administration alone; inoculation of a virulent H pylori strain alone (H); and ethyl-nitro-nitrosoguanidine in combination with H pylori (EH). Follow-up gastroscopies and biopsies were performed at 3-month intervals for 5 years for pathologic and molecular studies. RESULTS Postinoculation, H and EH groups showed persistent infection and antral gastritis. Starting at 2 and 5 years, respectively, gastric intestinal metaplasia and intraepithelial neoplasia developed in 3 EH monkeys but in no other groups. Transcriptional analysis of biopsy specimens at 5 years revealed group-specific expression profiles, with striking changes in EH monkeys, plus a neoplasia-specific expression profile characterized by changes in multiple cancer-associated genes. Importantly, this neoplastic profile was evident in nonneoplastic mucosa, suggesting that the identified genes may represent markers preceding cancer. CONCLUSIONS Gastric intraglandular neoplasia is induced in primates when H pylori infection is associated with consumption of a carcinogen similar to the nitrosamines found in pickled vegetables, suggesting that H pylori and the carcinogen synergistically induce gastric neoplasia in primates.
Collapse
Affiliation(s)
- Hui Liu
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - D. Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD
- United States Military Cancer Institute, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Cristina Semino-Mora
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Matthew Goldman
- Department of Pediatrics, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Arifur Rahman
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Steven Mog
- Armed Forces Radiobiology Research Institute Veterinary Sciences Department, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Andre Dubois
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD
- United States Military Cancer Institute, Uniformed Services University of the Health Sciences, Bethesda, MD
| |
Collapse
|
215
|
Wen S, Moss SF. Helicobacter pylori virulence factors in gastric carcinogenesis. Cancer Lett 2009; 282:1-8. [PMID: 19111390 PMCID: PMC2746929 DOI: 10.1016/j.canlet.2008.11.016] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2008] [Revised: 11/10/2008] [Accepted: 11/17/2008] [Indexed: 02/09/2023]
Abstract
Helicobacter pylori infection is the most important risk factor in the development of non-cardia gastric adenocarcinoma; host genetic variability and dietary co-factors also modulate risk. Because most H. pylori infections do not cause cancer, H. pylori heterogeneity has been investigated to identify possible virulence factors. The strongest candidates are genes within the cag (cytotoxin-associated antigen) pathogenicity island, including the gene encoding the CagA protein, as well as polymorphic variation in the VacA vacuolating exotoxin and the blood group antigen binding adhesin BabA. Improved understanding of the pathogenesis of H. pylori-associated gastric cancer may improve risk stratification for prevention and therapy.
Collapse
Affiliation(s)
- Sicheng Wen
- Department of Medicine, Division of Gastroenterology, Rhode Island Hospital and Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | | |
Collapse
|
216
|
Kersulyte D, Lee W, Subramaniam D, Anant S, Herrera P, Cabrera L, Balqui J, Barabas O, Kalia A, Gilman RH, Berg DE. Helicobacter Pylori's plasticity zones are novel transposable elements. PLoS One 2009; 4:e6859. [PMID: 19727398 PMCID: PMC2731543 DOI: 10.1371/journal.pone.0006859] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/07/2009] [Indexed: 01/17/2023] Open
Abstract
Background Genes present in only certain strains of a bacterial species can strongly affect cellular phenotypes and evolutionary potentials. One segment that seemed particularly rich in strain-specific genes was found by comparing the first two sequenced Helicobacter pylori genomes (strains 26695 and J99) and was named a “plasticity zone”. Principal Findings We studied the nature and evolution of plasticity zones by sequencing them in five more Helicobacter strains, determining their locations in additional strains, and identifying them in recently released genome sequences. They occurred as discrete units, inserted at numerous chromosomal sites, and were usually flanked by direct repeats of 5′AAGAATG, a sequence generally also present in one copy at unoccupied sites in other strains. This showed that plasticity zones are transposable elements, to be called TnPZs. Each full length TnPZ contained a cluster of type IV protein secretion genes (tfs3), a tyrosine recombinase family gene (“xerT”), and a large (≥2800 codon) orf encoding a protein with helicase and DNA methylase domains, plus additional orfs with no homology to genes of known function. Several TnPZ types were found that differed in gene arrangement or DNA sequence. Our analysis also indicated that the first-identified plasticity zones (in strains 26695 and J99) are complex mosaics of TnPZ remnants, formed by multiple TnPZ insertions, and spontaneous and transposable element mediated deletions. Tests using laboratory-generated deletions showed that TnPZs are not essential for viability, but identified one TnPZ that contributed quantitatively to bacterial growth during mouse infection and another that affected synthesis of proinflammatory cytokines in cell culture. Conclusions We propose that plasticity zone genes are contained in conjugative transposons (TnPZs) or remnants of them, that TnPZ insertion is mediated by XerT recombinase, and that some TnPZ genes affect bacterial phenotypes and fitness.
Collapse
Affiliation(s)
- Dangeruta Kersulyte
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - WooKon Lee
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Dharmalingam Subramaniam
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shrikant Anant
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Phabiola Herrera
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Lima, Peru
- Asociacion Benefica PRISMA, Lima, Peru
| | - Lilia Cabrera
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Lima, Peru
- Asociacion Benefica PRISMA, Lima, Peru
| | - Jacqueline Balqui
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Lima, Peru
- Asociacion Benefica PRISMA, Lima, Peru
| | - Orsolya Barabas
- Laboratory of Molecular Biology, National Institute of Digestive and Kidney Diseases, National Institute of Health, Bethesda, Maryland, United States of America
| | - Awdhesh Kalia
- Department of Biology, University of Louisville, Louisville, Kentucky, United States of America
| | - Robert H. Gilman
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias, Universidad Peruana Cayetano Heredia, Lima, Peru
- Asociacion Benefica PRISMA, Lima, Peru
- Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Douglas E. Berg
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Departments of Genetics and Medicine, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
217
|
Abstract
ABH(O) blood group polymorphisms are based on well-known intraspecies variations in structures of neutral blood cell surface glycans in humans and other primates. Whereas natural antibodies against these glycans can act as barriers to blood transfusion and transplantation, the normal functions of this long-standing evolutionary polymorphism remain largely unknown. Although microbial interactions have been suggested as a selective force, direct binding of lethal pathogens to ABH antigens has not been reported. We show in this study that ABH antigens found on human erythrocytes modulate the specific interactions of 3 sialic acid-recognizing proteins (human Siglec-2, 1918SC influenza hemagglutinin, and Sambucus nigra agglutinin) with sialylated glycans on the same cell surface. Using specific glycosidases that convert A and B glycans to the underlying H(O) structure, we show ABH antigens stabilize sialylated glycan clusters on erythrocyte membranes uniquely for each blood type, generating differential interactions of the 3 sialic acid-binding proteins with erythrocytes from each blood type. We further show that by stabilizing such structures ABH antigens can also modulate sialic acid-mediated interaction of pathogens such as Plasmodium falciparum malarial parasite. Thus, ABH antigens can noncovalently alter the presentation of other cell surface glycans to cognate-binding proteins, without themselves being a direct ligand.
Collapse
|
218
|
Fischer W, Prassl S, Haas R. Virulence Mechanisms and Persistence Strategies of the Human Gastric Pathogen Helicobacter pylori. Curr Top Microbiol Immunol 2009; 337:129-71. [DOI: 10.1007/978-3-642-01846-6_5] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
219
|
Outer membrane protein expression profile in Helicobacter pylori clinical isolates. Infect Immun 2009; 77:3782-90. [PMID: 19546190 DOI: 10.1128/iai.00364-09] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The gram-negative gastric pathogen Helicobacter pylori is equipped with an extraordinarily large set of outer membrane proteins (OMPs), whose role in the infection process is not well understood. The Hop (Helicobacter outer membrane porins) and Hor (Hop-related proteins) groups constitute a large paralogous family consisting of 33 members. The OMPs AlpA, AlpB, BabA, SabA, and HopZ have been identified as adhesins or adherence-associated proteins. To better understand the relevance of these and other OMPs during infection, we analyzed the expression of eight different omp genes (alpA, alpB, babA, babB, babC, sabA, hopM, and oipA) in a set of 200 patient isolates, mostly from symptomatic children or young adults. Virtually all clinical isolates produced the AlpA and AlpB proteins, supporting their essential function. All other OMPs were produced at extremely variable rates, ranging from 35% to 73%, indicating a function in close adaptation to the individual host or gastric niche. In 11% of the isolates, BabA was produced, and SabA was produced in 5% of the isolates, but the strains failed to bind their cognate substrates. Interleukin-8 (IL-8) expression in gastric cells was strictly dependent on the presence of the cag pathogenicity island, whereas the presence of OipA clearly enhanced IL-8 production. The presence of the translocated effector protein CagA correlated well with BabA and OipA production. In conclusion, we found unexpectedly diverse omp expression profiles in individual H. pylori strains and hypothesize that this reflects the selective pressure for adhesion, which may differ across different hosts as well as within an individual over time.
Collapse
|
220
|
Walz A, Odenbreit S, Stühler K, Wattenberg A, Meyer HE, Mahdavi J, Borén T, Ruhl S. Identification of glycoprotein receptors within the human salivary proteome for the lectin-like BabA and SabA adhesins of Helicobacter pylori by fluorescence-based 2-D bacterial overlay. Proteomics 2009; 9:1582-92. [PMID: 19253298 DOI: 10.1002/pmic.200700808] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Because gastric infection by Helicobacter pylori takes place via the oral route, possible interactions of this bacterium with human salivary proteins could occur. By using modified 1- and 2-D bacterial overlay, binding of H. pylori adhesins BabA and SabA to the whole range of salivary proteins was explored. Bound salivary receptor molecules were identified by MALDI-MS and by comparison to previously established proteome maps of whole and glandular salivas. By use of adhesin-deficient mutants, binding of H. pylori to MUC7 and gp-340 could be linked to the SabA and BabA adhesins, respectively, whereas binding to MUC5B was associated with both adhesins. Binding of H. pylori to the proline-rich glycoprotein was newly detected and assigned to BabA adhesin whereas the SabA adhesin was found to mediate binding to newly detected receptor molecules, including carbonic anhydrase VI, secretory component, heavy chain of secretory IgA1, parotid secretory protein and zinc-alpha(2)-glycoprotein. Some of these salivary glycoproteins are known to act as scavenger molecules or are involved in innate immunity whereas others might come to modify the pathogenetic properties of this organism. In general, this 2-D bacterial overlay technique represents a useful supplement in adhesion studies of bacteria with complex protein mixtures.
Collapse
Affiliation(s)
- Anke Walz
- Department of Operative Dentistry and Periodontology, Dental School, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Proença-Modena JL, Acrani GO, Brocchi M. Helicobacter pylori: phenotypes, genotypes and virulence genes. Future Microbiol 2009; 4:223-40. [PMID: 19257848 DOI: 10.2217/17460913.4.2.223] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Helicobacter pylori is a Gram-negative, microaerophilic bacterium that colonizes the gastric mucus overlying the epithelium of the stomach in more than 50% of the world's population. This gastric colonization induces chronic gastric inflammation in all infected individuals, but only induces clinical diseases in 10-20% of infected individuals. These include peptic ulcers, acute and atrophic gastritis, intestinal metaplasia, gastric adenocarcinoma and gastric B-cell lymphoma. Various bacterial virulence factors are associated with the development of such gastric diseases, and the characterization of these markers could aid medical prognosis, which could be extremely important in predicting clinical outcomes. The purpose of this review is to summarize the role of the phenotypes, virulence-related genes and genotypes of H. pylori in the establishment of gastric colonization and the development of associated diseases.
Collapse
Affiliation(s)
- José Luiz Proença-Modena
- Department of Cell & Molecular Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Brazil.
| | | | | |
Collapse
|
222
|
Differential carbohydrate recognition by Campylobacter jejuni strain 11168: influences of temperature and growth conditions. PLoS One 2009; 4:e4927. [PMID: 19290056 PMCID: PMC2654152 DOI: 10.1371/journal.pone.0004927] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Accepted: 02/19/2009] [Indexed: 12/27/2022] Open
Abstract
The pathogenic clinical strain NCTC11168 was the first Campylobacter jejuni strain to be sequenced and has been a widely used laboratory model for studying C. jejuni pathogenesis. However, continuous passaging of C. jejuni NCTC11168 has been shown to dramatically affect its colonisation potential. Glycan array analysis was performed on C. jejuni NCTC11168 using the frequently passaged, non-colonising, genome sequenced (11168-GS) and the infrequently passaged, original, virulent (11168-O) isolates grown or maintained under various conditions. Glycan structures recognised and bound by C. jejuni included terminal mannose, N-acetylneuraminic acid, galactose and fucose. Significantly, it was found that only when challenged with normal oxygen at room temperature did 11168-O consistently bind to sialic acid or terminal mannose structures, while 11168-GS bound these structures regardless of growth/maintenance conditions. Further, binding of un-capped galactose and fucosylated structures was significantly reduced when C. jejuni was maintained at 25°C under atmospheric oxygen conditions. These binding differences identified through glycan array analysis were confirmed by the ability of specific lectins to competitively inhibit the adherence of C. jejuni to a Caco-2 intestinal cell line. Our data suggests that the binding of mannose and/or N-acetylneuraminic acid may provide the initial interactions important for colonisation following environmental exposure.
Collapse
|
223
|
Amano J, Sugahara D, Osumi K, Tanaka K. Negative-ion MALDI-QIT-TOFMSn for structural determination of fucosylated and sialylated oligosaccharides labeled with a pyrene derivative. Glycobiology 2009; 19:592-600. [DOI: 10.1093/glycob/cwp024] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
224
|
Coddens A, Diswall M, Angström J, Breimer ME, Goddeeris B, Cox E, Teneberg S. Recognition of blood group ABH type 1 determinants by the FedF adhesin of F18-fimbriated Escherichia coli. J Biol Chem 2009; 284:9713-26. [PMID: 19208633 DOI: 10.1074/jbc.m807866200] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
F18-fimbriated Escherichia coli are associated with porcine postweaning diarrhea and edema disease. Adhesion of F18-fimbriated bacteria to the small intestine of susceptible pigs is mediated by the minor fimbrial subunit FedF. However, the target cell receptor for FedF has remained unidentified. Here we report that F18-fimbriated E. coli selectively interact with glycosphingolipids having blood group ABH determinants on type 1 core, and blood group A type 4 heptaglycosylceramide. The minimal binding epitope was identified as the blood group H type 1 determinant (Fucalpha2Galbeta3GlcNAc), while an optimal binding epitope was created by addition of the terminal alpha3-linked galactose or N-acetylgalactosamine of the blood group B type 1 determinant (Galalpha3(Fucalpha2)Galbeta3GlcNAc) and the blood group A type 1 determinant (GalNAcalpha3(Fucalpha2)-Galbeta3GlcNAc). To assess the role of glycosphingolipid recognition by F18-fimbriated E. coli in target tissue adherence, F18-binding glycosphingolipids were isolated from the small intestinal epithelium of blood group O and A pigs and characterized by mass spectrometry and proton NMR. The only glycosphingolipid with F18-binding activity of the blood group O pig was an H type 1 pentaglycosylceramide (Fucalpha2Galbeta3GlcNAc-beta3Galbeta4Glcbeta1Cer). In contrast, the blood group A pig had a number of F18-binding glycosphingolipids, characterized as A type 1 hexaglycosylceramide (GalNAcalpha3(Fucalpha2)Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer), A type 4 heptaglycosylceramide (GalNAcalpha3(Fucalpha2)Galbeta3GalNAcbeta3Galalpha4Galbeta4Glcbeta1Cer), A type 1 octaglycosylceramide (GalNAcalpha3(Fucalpha2)Galbeta3GlcNAcbeta3Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer), and repetitive A type 1 nonaglycosylceramide (GalNAcalpha3(Fucalpha2)Galbeta3GalNAcalpha3-(Fucalpha2)Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer). No blood group antigen-carrying glycosphingolipids were recognized by a mutant E. coli strain with deletion of the FedF adhesin, demonstrating that FedF is the structural element mediating binding of F18-fimbriated bacteria to blood group ABH determinants.
Collapse
Affiliation(s)
- Annelies Coddens
- Laboratory of Veterinary Immunology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke 9820, Belgium
| | | | | | | | | | | | | |
Collapse
|
225
|
Kobayashi M, Lee H, Nakayama J, Fukuda M. Roles of gastric mucin-type O-glycans in the pathogenesis of Helicobacter pylori infection. Glycobiology 2009; 19:453-61. [PMID: 19150806 DOI: 10.1093/glycob/cwp004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that infects over 50% of the world's population. This organism causes various gastric diseases such as chronic gastritis, peptic ulcer, and gastric cancer. H. pylori possesses lipopolysaccharides that share structural similarity to Lewis blood group antigens in gastric mucosa. Such antigenic mimicry could result in immune tolerance against antigens of this pathogen. On the other hand, H. pylori colonizes gastric mucosa by utilizing adhesins that bind Lewis blood group antigen-related carbohydrates expressed on gastric epithelial cells. After colonization, H. pylori induces acute inflammatory responses mainly by neutrophils. This acute phase is gradually replaced by a chronic inflammatory response. In chronic gastritis, lymphocytes infiltrate the lamina propria, and such infiltration is facilitated by the interaction between L-selectin on lymphocytes and peripheral lymph node addressin (PNAd), which contains 6-sulfo sialyl Lewis X-capped O-glycans, on high endothelial venule (HEV)-like vessels. H. pylori barely colonizes gland mucous cell-derived mucin where alpha1,4-GlcNAc-capped O-glycans exist. In vitro experiments show that alpha1,4-GlcNAc-capped O-glycans function as a natural antibiotic to inhibit H. pylori growth. These findings show that distinct sets of carbohydrates expressed in the stomach are closely associated with pathogenesis and prevention of H. pylori-related diseases, providing therapeutic potentialities based on specific carbohydrate modulation.
Collapse
Affiliation(s)
- Motohiro Kobayashi
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
| | | | | | | |
Collapse
|
226
|
Kobayashi M, Lee H, Nakayama J, Fukuda M. Carbohydrate-dependent defense mechanisms against Helicobacter pylori infection. Curr Drug Metab 2009; 10:29-40. [PMID: 19149511 PMCID: PMC2666621 DOI: 10.2174/138920009787048428] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a Gram-negative bacterium that infects over 50% of the world's population. This organism causes various gastric diseases such as chronic gastritis, peptic ulcer, and gastric cancer. H. pylori possesses lipopolysaccharide, which shares structural similarity to Lewis blood group antigens in gastric mucosa. Such antigenic mimicry could result in immune tolerance against antigens of this pathogen. On the other hand, H. pylori colonize gastric mucosa by utilizing adhesins, which bind Lewis blood group antigen-related carbohydrates expressed on gastric epithelial cells. In chronic gastritis, lymphocytes infiltrate the lamina propria, and such infiltration is facilitated by 6-sulfo sialyl Lewis X-capped O-glycans, peripheral lymph node addressin (PNAd), on high endothelial venule (HEV)-like vessels. The number of HEV-like vessels increases as chronic inflammation progresses. Furthermore, PNAd formed on HEV-like vessels disappear once H. pylori is eradicated. These results indicate that PNAd plays an important role in H. pylori-associated inflammation. H. pylori barely colonizes gland mucous cell-derived mucin where alpha1,4-GlcNAc-capped O-glycans exist. In vitro experiments show that alpha1,4-GlcNAc-capped O-glycans function as a natural antibiotic to inhibit H. pylori growth. We recently identified cholesterol alpha-glucosyltransferase (CHLalphaGcT) using an expression cloning strategy and showed that this enzyme is specifically inhibited by mucin-type O-glycans like those present in deeper portions of the gastric mucosa. These findings show that a battery of carbohydrates expressed in the stomach is closely associated with pathogenesis and also prevention of H. pylori-related diseases.
Collapse
Affiliation(s)
- Motohiro Kobayashi
- Department of Molecular Pathology, Shinshu University Graduate School of Medicine, Matsumoto, Japan.
| | | | | | | |
Collapse
|
227
|
Abstract
Helicobacter pylori infection is the most important risk factor in the development of non-cardia gastric adenocarcinoma; host genetic variability and dietary co-factors also modulate risk. Because most H. pylori infections do not cause cancer, H. pylori heterogeneity has been investigated to identify possible virulence factors. The strongest candidates are genes within the cag (cytotoxin-associated antigen) pathogenicity island, including the gene encoding the CagA protein, as well as polymorphic variation in the VacA vacuolating exotoxin and the blood group antigen binding adhesin BabA. Improved understanding of the pathogenesis of H. pylori-associated gastric cancer may improve risk stratification for prevention and therapy.
Collapse
Affiliation(s)
- Sicheng Wen
- Department of Medicine, Division of Gastroenterology, Rhode Island Hospital and Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | | |
Collapse
|
228
|
Rydell GE, Nilsson J, Rodriguez-Diaz J, Ruvoën-Clouet N, Svensson L, Le Pendu J, Larson G. Human noroviruses recognize sialyl Lewis x neoglycoprotein. Glycobiology 2008; 19:309-20. [PMID: 19054801 DOI: 10.1093/glycob/cwn139] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The carbohydrate binding characteristics of a norovirus GII.3 (Chron1) and a GII.4 (Dijon) strain were investigated using virus-like particles (VLPs) and saliva samples from 81 individuals genotyped for FUT2 (secretor) and FUT3 (Lewis) and phenotyped for ABO and Lewis blood groups. The two VLPs showed a typical secretor-gene-dependent binding and bound significantly stronger to saliva from A, B, and AB than from O individuals (P < 0.0001 and P < 0.001) but did not bind to any samples from secretor-negative individuals. The GII.3 strain showed larger interindividual variation and bound stronger to saliva from B than from A(2) secretors (P < 0.01). When assaying for binding to neoglycoproteins, the GII.3 and GII.4 strains were compared with the Norwalk GI.1 prototype strain. Although all three strains bound to Lewis b (and H type 1 chain) glycoconjugates, only the two GII strains showed an additional binding to sialyl Lewis x. This novel binding was specific since the VLPs did not bind to structural analogs, e.g., Lewis x or sialyl Lewis a, but only to sialyl Lewis x, sialyl diLewis x and sialylated type 2 chain conjugates. In inhibition experiments, the sialyl Lewis x conjugate was the most potent inhibitor. The minimal requirement for this potential receptor structure is Neu5Ac alpha 3Gal beta 4(Fuc alpha 3)GlcNAc beta 3Gal beta- where Fuc is not absolutely necessary for binding. Our study shows that some human norovirus GII strains have at least two binding specificities: one secretor-gene-dependent related to alpha1,2-fucosylated carbohydrates and another related to alpha2,3-sialylated carbohydrates of the type 2 chain, e.g., sialyl Lewis x.
Collapse
Affiliation(s)
- Gustaf E Rydell
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
229
|
Loh JT, Torres VJ, Scott Algood HM, McClain MS, Cover TL. Helicobacter pylori HopQ outer membrane protein attenuates bacterial adherence to gastric epithelial cells. FEMS Microbiol Lett 2008; 289:53-8. [PMID: 19065710 PMCID: PMC2651568 DOI: 10.1111/j.1574-6968.2008.01368.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori genomes contain about 30 hop genes that encode outer membrane proteins. Helicobacter pylori hopQ alleles exhibit a high level of genetic diversity, and two families of hopQ alleles have been described. Type I hopQ alleles are found more commonly in cag-positive H. pylori strains from patients with peptic ulcer disease than in cag-negative strains from patients without ulcer disease. In this study, we mutated hopQ in four H. pylori strains that each contained a type I hopQ allele, and then analyzed interactions of the wild-type and hopQ mutant strains with AGS cells. In comparison with the wild-type strains, two of the hopQ mutant strains exhibited increased adherence to AGS cells and two hopQ mutants did not exhibit any detectable differences in adherence. Higher levels of tyrosine-phosphorylated CagA were detected when AGS cells were cocultured with a hyperadherent hopQ mutant strain than when cocultured with the corresponding wild-type strain. These data indicate that in some strains of H. pylori, the HopQ protein can attenuate bacterial adherence to gastric epithelial cells.
Collapse
Affiliation(s)
- John T. Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Victor. J. Torres
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Holly M. Scott Algood
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212
| | - Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Timothy L. Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212
| |
Collapse
|
230
|
Fagerberg D, Angström J, Halim A, Hultberg A, Rakhimova L, Hammarström L, Borén T, Teneberg S. Novel Leb-like Helicobacter pylori-binding glycosphingolipid created by the expression of human alpha-1,3/4-fucosyltransferase in FVB/N mouse stomach. Glycobiology 2008; 19:182-91. [PMID: 18997175 DOI: 10.1093/glycob/cwn125] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The "Le(b) mouse" was established as a model for investigations of the molecular events following Le(b)-mediated adhesion of Helicobacter pylori to the gastric epithelium. By the expression of a human alpha-1,3/4-fucosyltransferase in the gastric pit cell lineage of FVB/N transgenic mice, a production of Le(b) glycoproteins in gastric pit and surface mucous cells was obtained in this "Le(b) mouse," as demonstrated by binding of monoclonal anti-Le(b) antibodies. To explore the effects of the human alpha-1,3/4-fucosyltransferase on glycosphingolipid structures, neutral glycosphingolipids were isolated from stomachs of transgenic alpha-1,3/4-fucosyltransferase-expressing mice. A glycosphingolipid recognized by BabA-expressing H. pylori was isolated and characterized by mass spectrometry and proton NMR as Fuc alpha 2Gal beta 3(Fuc alpha 4)GalNAc beta 4 Gal beta 4 Glc beta 1Cer, i.e., a novel Le(b)-like glycosphingolipid on a ganglio core. In addition, two other novel glycosphingolipids were isolated from the mouse stomach epithelium that were found to be nonbinding with regard to H. pylori. The first was a pentaglycosylceramide, GalNAc beta 3 Gal alpha 3(Fuc alpha 2)Gal beta 4 Glc beta 1Cer, in which the isoglobotetrasaccharide has been combined with Fuc alpha 2 to yield an isoglobotetraosylceramide with an internal blood group B determinant. The second one was an elongated fucosyl-gangliotetraosylceramide, GalNAc beta 3(Fuc alpha 2)Gal beta 3GalNAc beta 4Gal beta 4 Glc beta 1Cer.
Collapse
Affiliation(s)
- David Fagerberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, PO Box 440, University of Gothenburg, S-405 30 Göteborg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Henriques-Normark B, Blomberg C, Dagerhamn J, Bättig P, Normark S. The rise and fall of bacterial clones: Streptococcus pneumoniae. Nat Rev Microbiol 2008; 6:827-37. [DOI: 10.1038/nrmicro2011] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
232
|
G M, Tiwari SK, Sharma V, Habeeb MA, Khan AA, Cm H. Association of Helicobacter pylori restriction endonuclease-replacing gene, hrgA with overt gastrointestinal diseases. ARQUIVOS DE GASTROENTEROLOGIA 2008; 45:225-9. [PMID: 18852951 DOI: 10.1590/s0004-28032008000300011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 02/01/2008] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Helicobacter pylori has been proven to be responsible for causing various gastrointestinal disorders including gastric adenocarcinoma. Several genes of pathogen (the genes of the cag-PAI, vacA, iceA, and babA) either in combination or independently have been reported to significantly increase the risk of ulceration/gastric carcinoma, with the cagA gene having the strongest predictive value. Pursuit to identify new genes which could serve as a marker of overt disease progression, lead to the discovery of hrgA gene. METHODS Fifty-six indigenous strains of H. pylori from subjects with various gastric disorder were screened to assess the status of hrgA gene along with the cagA gene using simple polymerase chain reaction using specific oligonucleotide primers. Post-amplification, amplicons were subjected for sequencing to identify any strain specific variations in sequences from the H. pylori isolated from different disease manifestations. Histopathological analysis was done to ascertain any significant change in the histological scores of subjects infected with cagA+/hrgA+ and cagA-/hrg+ strains. RESULTS All the 56 (100%) subjects amplified with the oligonucleotide primers specific to hrgA gene, whereas 81.71% subjects showed the presence of cagA gene. Sequencing of the amplimers showed 99% homology. Histology of the cagA+/hrgA+ and cagA-/hrg+ subjects did not show any significant difference. CONCLUSION hrgA gene of Helicobacter pylori is not a ideal surrogate marker for identifying individuals with higher risk of developing overt gastro-duodenal diseases such as neoplasia of the stomach.
Collapse
Affiliation(s)
- Manoj G
- Center for Liver Research and Diagnostics, Deccan College of Medical Sciences and Allied Hospitals, Kanchanbagh, Hyderabad, Andhra Pradesh, India
| | | | | | | | | | | |
Collapse
|
233
|
DNA-level diversity and relatedness of Helicobacter pylori strains in shantytown families in Peru and transmission in a developing-country setting. J Clin Microbiol 2008; 46:3912-8. [PMID: 18842944 DOI: 10.1128/jcm.01453-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The efficiency of transmission of a pathogen within families compared with that between unrelated persons can affect both the strategies needed to control or eradicate infection and how the pathogen evolves. In industrialized countries, most cases of transmission of the gastric pathogen Helicobacter pylori seems to be from mother to child. An alternative model, potentially applicable among the very poor in developing countries, where infection is more common and the sanitary infrastructure is often deficient, invokes frequent transmission among unrelated persons, often via environmental sources. In the present study, we compared the genotypes of H. pylori from members of shantytown households in Peru to better understand the transmission of H. pylori in developing-country settings. H. pylori cultures and/or DNAs were obtained with informed consent by the string test (a minimally invasive alternative to endoscopy) from at least one child and one parent from each of 62 families. The random amplified polymorphic DNA fingerprints of 57 of 81 (70%) child-mother strain pairs did not match, nor did the diagnostic gene sequences (>1% DNA sequence difference), independent of the child's age (range, 1 to 39 years). Most strains from siblings or other paired family members were also unrelated. These results suggest that H. pylori infections are often community acquired in the society studied. Transmission between unrelated persons should facilitate the formation of novel recombinant genotypes by interstrain DNA transfer and selection for genotypes that are well suited for individual hosts. It also implies that the effective prevention of H. pylori infection and associated gastroduodenal disease will require anti-H. pylori measures to be applied communitywide.
Collapse
|
234
|
Kinoshita H, Wakahara N, Watanabe M, Kawasaki T, Matsuo H, Kawai Y, Kitazawa H, Ohnuma S, Miura K, Horii A, Saito T. Cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of Lactobacillus plantarum LA 318 recognizes human A and B blood group antigens. Res Microbiol 2008; 159:685-91. [PMID: 18790050 DOI: 10.1016/j.resmic.2008.07.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 07/16/2008] [Accepted: 07/29/2008] [Indexed: 11/25/2022]
Abstract
Lactobacillus plantarum LA 318 is a potential probiotic strain isolated from normal human intestinal tissue that shows high adhesion to human colonic mucin mediated by the bacterial cell surface glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We report the adhesion mechanism of the lactobacilli is in part due to GAPDH binding to human ABO-type blood group antigens expressed on human colonic mucin (HCM). After periodate oxidation of HCM, adhesion of L. plantarum LA 318 bacterial cells significantly decreased compared to normal HCM. A BIACORE binding assay of GAPDH to blood group antigens was then performed. High binding was observed to A and B group antigens, while binding to H group antigen was lower (P<0.01). No interaction was observed between GAPDH and various monosaccharides. Furthermore, GAPDH binding to the B-trisaccharide biotinyl polymer (BP)-probe [Galalpha1-3 (Fucalpha1-2) Gal-] was significantly higher as compared to B-disaccharide, Lewis D-trisaccharide, 3-fucosyl-N-acetylglucosamine and alpha-N-acetylneuraminic acid BP-probes. The data suggests the trisaccharide structure is important in binding to the blood group antigens. The binding of GAPDH to HCM significantly decreased after incubation with NAD+. This suggests that the NAD binding domain on GAPDH may be related to binding to HCM.
Collapse
Affiliation(s)
- Hideki Kinoshita
- Laboratory of Animal Products Chemistry, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi 1-1,Aoba-ku, Sendai, Miyagi 981-8555, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Tu QV, McGuckin MA, Mendz GL. Campylobacter jejuni response to human mucin MUC2: modulation of colonization and pathogenicity determinants. J Med Microbiol 2008; 57:795-802. [PMID: 18566135 DOI: 10.1099/jmm.0.47752-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Campylobacter jejuni is the main cause of bacterial acute gastroenteritis worldwide. In its colonization of the host intestinal tract, it encounters secreted mucins in the mucus layer and surface mucins in the epithelial cells. Mucins are complex glycoproteins that comprise the major component of mucus and give mucus its viscous consistency. MUC2 is the most abundant secreted mucin in the human intestine; it is a major chemoattractant for C. jejuni, and the bacterium binds to it. There are no studies on the transcriptional response of the bacterium to this mucin. Here, cell-culture techniques and quantitative RT-PCR were used to characterize in vitro the effects of MUC2 on C. jejuni growth and the changes in expression of 20 C. jejuni genes related to various functions. The genes encoding cytolethal distending toxin protein (cdtABC), vacuolating cytotoxin (vacB), C. jejuni lipoprotein (jlpA), Campylobacter invasion antigen (ciaB), the multidrug efflux system (cmeAB), putative mucin-degrading enzymes (cj1344c, cj0843c, cj0256 and cj1055c), flagellin A (flaA) and putative rod-shape-determining proteins (mreB and mreC) were upregulated, whereas those encoding Campylobacter adhesion fibronectin-binding protein (cadF) and sialic acid synthase (neuB1) were downregulated. These results showed that C. jejuni utilizes MUC2 as an environmental cue for the modulation of expression of genes with various functions including colonization and pathogenicity.
Collapse
Affiliation(s)
- Quoc V Tu
- School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael A McGuckin
- Mucosal Diseases Program, Mater Medical Research Institute, Mater Misericordiae Hospitals, South Brisbane, QLD 4101, Australia
| | - George L Mendz
- School of Medicine, Sydney, The University of Notre Dame Australia, Darlinghurst, NSW 2010, Australia.,School of Medical Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
236
|
Yamaoka Y. Roles of Helicobacter pylori BabA in gastroduodenal pathogenesis. World J Gastroenterol 2008; 14:4265-72. [PMID: 18666312 PMCID: PMC2731175 DOI: 10.3748/wjg.14.4265] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 05/04/2008] [Accepted: 05/11/2008] [Indexed: 02/06/2023] Open
Abstract
Interactions between BabA and Lewis b (Le(b)) related antigens are the best characterized adhesin-receptor interactions in Helicobacter pylori (H pylori). Several mechanisms for the regulation of BabA expression are predicted, including at both transcriptional and translational levels. The formation of chimeric proteins (babA/B or babB/A chimeras) seems to play an especially important role in translational regulation. Chimeric BabB/A protein had the potential to bind Le(b); however, protein production was subject to phase variation through slipped strand mispairing. The babA gene was cloned initially from strain CCUG17875, which contains a silent babA1 gene and an expressed babA2 gene. The sequence of these two genes differs only by the presence of a 10 bp deletion in the signal peptide sequence of babA1 that eliminates its translational initiation codon. However, the babA1 type deletion was found only in strain CCUG17875. A few studies evaluated BabA status by immunoblot and confirmed that BabA-positive status in Western strains was closely associated with severe clinical outcomes. BabA-positive status also was associated with the presence of other virulence factors (e.g. cagA-positive status and vacA s1 genotype). A small class of strains produced low levels of the BabA protein and lacked Le(b) binding activity. These were more likely to be associated with increased mucosal inflammation and severe clinical outcomes than BabA-positive strains that exhibited Le(b) binding activity. The underlying mechanism is unclear, and further studies will be necessary to investigate how the complex BabA-receptor network is functionally coordinated during the interaction of H pylori with the gastric mucosa.
Collapse
|
237
|
Lee H, Wang P, Hoshino H, Ito Y, Kobayashi M, Nakayama J, Seeberger PH, Fukuda M. Alpha1,4GlcNAc-capped mucin-type O-glycan inhibits cholesterol alpha-glucosyltransferase from Helicobacter pylori and suppresses H. pylori growth. Glycobiology 2008; 18:549-58. [PMID: 18458030 PMCID: PMC2758100 DOI: 10.1093/glycob/cwn037] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 04/23/2008] [Accepted: 04/29/2008] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori infects over half of the world's population and is thought to be a leading cause of gastric ulcer, gastric carcinoma, and gastric malignant lymphoma of mucosa-associated lymphoid tissue type. Previously, we reported that a gland mucin (MUC6) present in the lower portion of the gastric mucosa containing alpha1,4-N-acetylglucosamine (alpha1,4GlcNAc)-capped core 2-branched O-glycans suppresses H. pylori growth by inhibiting the synthesis of alpha-glucosyl cholesterol, a major constituent of the H. pylori cell wall (Kawakubo et al. 2004. Science. 305:1003-1006). Therefore, we cloned the genomic DNA encoding cholesterol alpha-glucosyltransferase (HP0421) and expressed its soluble form in Escherichia coli. Using this soluble HP0421, we show herein that HP0421 sequentially acts on uridine diphosphoglucose and cholesterol in an ordered Bi-Bi manner. We found that competitive inhibition of HP0421 by alpha1,4GlcNAc-capped core 2-branched O-glycan is much more efficient than noncompetitive inhibition by newly synthesized alpha-glucosyl cholesterol. Utilizing synthetic oligosaccharides, alpha-glucosyl cholesterol, and monosaccharides, we found that alpha1,4GlcNAc-capped core 2-branched O-glycan most efficiently inhibits H. pylori growth. These findings together indicate that alpha1,4GlcNAc-capped O-glycans suppress H. pylori growth by inhibiting HP0421, and that alpha1,4GlcNAc-capped core 2 O-glycans may be useful to treat patients infected with H. pylori.
Collapse
Affiliation(s)
- Heeseob Lee
- Tumor Microenvironment Program, Glycobiology Unit, Cancer Center, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | - Ping Wang
- Tumor Microenvironment Program, Glycobiology Unit, Cancer Center, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | - Hitomi Hoshino
- Department of Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Yuki Ito
- Tumor Microenvironment Program, Glycobiology Unit, Cancer Center, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | - Motohiro Kobayashi
- Department of Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Jun Nakayama
- Department of Pathology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Peter H Seeberger
- Tumor Microenvironment Program, Glycobiology Unit, Cancer Center, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| | - Minoru Fukuda
- Tumor Microenvironment Program, Glycobiology Unit, Cancer Center, Burnham Institute for Medical Research, La Jolla, CA 92037, USA
| |
Collapse
|
238
|
Azevedo M, Eriksson S, Mendes N, Serpa J, Figueiredo C, Resende LP, Ruvoën-Clouet N, Haas R, Borén T, Le Pendu J, David L. Infection by Helicobacter pylori expressing the BabA adhesin is influenced by the secretor phenotype. J Pathol 2008; 215:308-16. [PMID: 18498114 DOI: 10.1002/path.2363] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2008] [Accepted: 04/02/2008] [Indexed: 12/25/2022]
Abstract
Helicobacter pylori (Hp) infects half the world's population and causes diverse gastric lesions, from gastritis to gastric cancer. Our aim was to evaluate the significance of secretor and Lewis status in infection and in vitro adherence by Hp expressing BabA adhesin. We enrolled 304 Hp-infected individuals from Northern Portugal. Gastric biopsies, blood and saliva were collected. Polymerase chain reaction (PCR) and immunofluorescence were used to detect BabA+ Hp in gastric biopsies. In vitro adherence by a BabA expressing Hp strain to gastric biopsies was performed. Secretor status was identified by Ulex, a lectin that recognizes secretor-dependent glycan structures in saliva and in gastric mucosa, and by Lewis(a/b) antibodies, and indirectly by identification of an inactivating mutation in the FUT2 gene (G428A). BabA status of infecting Hp was associated with CagA and VacAs1 (p < 0.05), intercellular localization of Hp (p < 0.01) and the presence of intestinal metaplasia (p < 0.05) and degenerative alterations (p < 0.005) in the biopsies. BabA was associated (p < 0.05) with Ulex staining of gastric biopsies and, although not significantly, to absence of homozygosity for FUT2 G428A inactivating polymorphism. In vitro Hp adherence was higher in cases wild-type or heterozygous for FUT2 G428A mutation (p < 0.0001), cases staining for Ulex (p < 0.0001) and a(-)b+ and a(-)b(-) secretor phenotypes (p < 0.001). In conclusion, BabA+ Hp infection/adhesion is secretor-dependent and associated with the severity of gastric lesions.
Collapse
Affiliation(s)
- M Azevedo
- IPATIMUP, Institute of Molecular Pathology and Immunology of the University of Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Yamaoka Y, Kato M, Asaka M. Geographic differences in gastric cancer incidence can be explained by differences between Helicobacter pylori strains. Intern Med 2008; 47:1077-83. [PMID: 18552463 PMCID: PMC3732488 DOI: 10.2169/internalmedicine.47.0975] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Certain populations with high incidences of Helicobacter pylori infection, such as those in East Asian countries, have high incidences of gastric cancer, while other highly infected populations, such as those in Africa and South Asia, do not. The various rates of gastric cancer associated with different geographic areas can be explained, at least in part, by the differences in the genotypes of H. pylori cagA and vacA. Populations expressing a high incidence of gastric cancer are mostly identical with regions where East Asian type CagA is predominant. In contrast, incidence of gastric cancer is low in Africa, South Asia, and Europe, where strains typically possess Western type CagA. Within East Asia, strains from northern parts, where the incidence of gastric cancer is high, predominantly possess the vacA m1 genotype, whereas the m2 genotype is predominant in southern parts where the gastric cancer incidence is low.
Collapse
Affiliation(s)
- Yoshio Yamaoka
- Department of Medicine-Gastroenterology, Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Texas, USA.
| | | | | |
Collapse
|
240
|
Nox enzymes and oxidative stress in the immunopathology of the gastrointestinal tract. Semin Immunopathol 2008; 30:315-27. [PMID: 18521607 DOI: 10.1007/s00281-008-0124-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 05/08/2008] [Indexed: 02/07/2023]
Abstract
Chronic inflammation caused by Helicobacter pylori infection or inflammatory bowel disease (IBD) is closely linked to cancer development. Innate immune abnormalities and enhanced production of reactive oxygen species through a phagocyte NADPH oxidase (Nox2) are key issues in understanding the pathogenesis of inflammation-dependent carcinogenesis. Besides Nox2, functionally distinct homologues (Nox1, Nox3, Nox4, Nox5, Duox1, and Duox2) have been identified. Nox1 and Duox2 are highly expressed in the gastrointestinal tract. Although the functional roles of Nox/Duox in the gastrointestinal tract are still unclear, we will review their potential roles in the gastrointestinal immunopathology, particularly in H. pylori-induced inflammation, IBD, and malignancy.
Collapse
|
241
|
Thornton DJ, Rousseau K, McGuckin MA. Structure and function of the polymeric mucins in airways mucus. Annu Rev Physiol 2008; 70:459-86. [PMID: 17850213 DOI: 10.1146/annurev.physiol.70.113006.100702] [Citation(s) in RCA: 618] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The airways mucus gel performs a critical function in defending the respiratory tract against pathogenic and environmental challenges. In normal physiology, the secreted mucins, in particular the polymeric mucins MUC5AC and MUC5B, provide the organizing framework of the airways mucus gel and are major contributors to its rheological properties. However, overproduction of mucins is an important factor in the morbidity and mortality of chronic airways disease (e.g., asthma, cystic fibrosis, and chronic obstructive pulmonary disease). The roles of these enormous, multifunctional, O-linked glycoproteins in health and disease are discussed.
Collapse
Affiliation(s)
- David J Thornton
- Wellcome Trust Center for Cell Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
242
|
Löfling J, Diswall M, Eriksson S, Borén T, Breimer ME, Holgersson J. Studies of Lewis antigens and H. pylori adhesion in CHO cell lines engineered to express Lewis b determinants. Glycobiology 2008; 18:494-501. [PMID: 18400963 DOI: 10.1093/glycob/cwn030] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many microbes bind and adhere via adhesins to host cell carbohydrates as an initial step for infection. Therefore, cell lines expressing Lewis b (Le(b)) determinants were generated as a potential model system for Helicobacter pylori colonization and infection, and their expression of blood group Lewis determinants was characterized. CHO-K1 cells were stably transfected with selected glycosyltransferase cDNAs, and two Le(b) positive clones, 1C5 and 2C2, were identified. Expression of Lewis (Le(a), Le(b), Le(x), and Le(y)) determinants was analyzed by flow cytometry of intact cells, SDS-PAGE/Western blot of solubilized glycoproteins, and thin layer chromatography immunostaining of isolated glycolipids (GL). Binding of H. pylori to cells was examined by microscopy and quantified. Flow cytometry showed that 1C5 and 2C2 were Le(a) and Le(b) positive. 1C5 expressed Le(b) on O-linked, but not N-linked, glycans and only weakly on GLs. In contrast, 2C2 expressed Le(b) on N-, O-glycans, and GLs. Furthermore, both clones expressed Le(a) on N- and O-glycans but not on GLs. 2C2, but not 1C5, stained positively for Le(y) on N-linked glycans and GLs. Both clones, as well as the parental CHO-K1 cells, expressed Le(x) on GLs. A Le(b)-binding H. pylori strain bound to the 1C5 and 2C2 cells. In summary, two glycosyltransferase transfected CHO-K1 cell clones differed regarding Lewis antigen expression on N- and O-linked glycans as well as on GLs. Both clones examined supported adhesion of a Le(b)-binding H. pylori strain and may thus be a useful in vitro model system for H. pylori colonization/infection studies.
Collapse
Affiliation(s)
- Jonas Löfling
- Division of Clinical Immunology and Transfusion Medicine, Karolinska Institute, SE 14186 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
243
|
Caws M, Thwaites G, Dunstan S, Hawn TR, Lan NTN, Thuong NTT, Stepniewska K, Huyen MNT, Bang ND, Loc TH, Gagneux S, van Soolingen D, Kremer K, van der Sande M, Small P, Anh PTH, Chinh NT, Quy HT, Duyen NTH, Tho DQ, Hieu NT, Torok E, Hien TT, Dung NH, Nhu NTQ, Duy PM, van Vinh Chau N, Farrar J. The influence of host and bacterial genotype on the development of disseminated disease with Mycobacterium tuberculosis. PLoS Pathog 2008; 4:e1000034. [PMID: 18369480 PMCID: PMC2268004 DOI: 10.1371/journal.ppat.1000034] [Citation(s) in RCA: 364] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 02/26/2008] [Indexed: 12/13/2022] Open
Abstract
The factors that govern the development of tuberculosis disease are incompletely understood. We hypothesized that some strains of Mycobacterium tuberculosis (M. tuberculosis) are more capable of causing disseminated disease than others and may be associated with polymorphisms in host genes responsible for the innate immune response to infection. We compared the host and bacterial genotype in 187 Vietnamese adults with tuberculous meningitis (TBM) and 237 Vietnamese adults with uncomplicated pulmonary tuberculosis. The host genotype of tuberculosis cases was also compared with the genotype of 392 cord blood controls from the same population. Isolates of M. tuberculosis were genotyped by large sequence polymorphisms. The hosts were defined by polymorphisms in genes encoding Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) and Toll-like receptor-2 (TLR-2). We found a significant protective association between the Euro-American lineage of M. tuberculosis and pulmonary rather than meningeal tuberculosis (Odds ratio (OR) for causing TBM 0.395, 95% confidence intervals (C.I.) 0.193–0.806, P = 0.009), suggesting these strains are less capable of extra-pulmonary dissemination than others in the study population. We also found that individuals with the C allele of TLR-2 T597C allele were more likely to have tuberculosis caused by the East-Asian/Beijing genotype (OR = 1.57 [95% C.I. 1.15–2.15]) than other individuals. The study provides evidence that M. tuberculosis genotype influences clinical disease phenotype and demonstrates, for the first time, a significant interaction between host and bacterial genotypes and the development of tuberculosis. Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, kills over 2 million people each year. It is estimated that approximately one-third of the world population is infected with M. tuberculosis, though the majority will never develop active disease. The most severe form of tuberculosis occurs when the bacterium spreads to the brain to cause meningitis. We examined whether the genetic variation of the person and the bacteria influenced the type of disease a person develops. We have previously shown that certain mutations in genes of the human immune system can predispose adults in Vietnam to developing tuberculous meningitis. In this study we show that some strains of M. tuberculosis commonly found in Europe and America are less likely to cause tuberculous meningitis in Vietnamese adults than strains predominantly found in Asia. We then looked at the interaction between M. tuberculosis strains and mutations in human immune genes and show that a particular mutation, TLR2 T597C, is more commonly found in patients infected with the East-Asian/Beijing strains of M. tuberculosis. This is the first study to look at both the host and pathogen genotypes together in tuberculosis infection, and the findings suggest that the outcome of exposure to M. tuberculosis can depend on both the human genotype and the bacterial genotype.
Collapse
Affiliation(s)
- Maxine Caws
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, District 5, Ho Chi Minh City, Vietnam.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Lindén S, Mahdavi J, Semino-Mora C, Olsen C, Carlstedt I, Borén T, Dubois A. Role of ABO secretor status in mucosal innate immunity and H. pylori infection. PLoS Pathog 2008; 4:e2. [PMID: 18179282 PMCID: PMC2174967 DOI: 10.1371/journal.ppat.0040002] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 11/21/2007] [Indexed: 12/14/2022] Open
Abstract
The fucosylated ABH antigens, which constitute the molecular basis for the ABO blood group system, are also expressed in salivary secretions and gastrointestinal epithelia in individuals of positive secretor status; however, the biological function of the ABO blood group system is unknown. Gastric mucosa biopsies of 41 Rhesus monkeys originating from Southern Asia were analyzed by immunohistochemistry. A majority of these animals were found to be of blood group B and weak-secretor phenotype (i.e., expressing both Lewis a and Lewis b antigens), which are also common in South Asian human populations. A selected group of ten monkeys was inoculated with Helicobacter pylori and studied for changes in gastric mucosal glycosylation during a 10-month period. We observed a loss in mucosal fucosylation and concurrent induction and time-dependent dynamics in gastric mucosal sialylation (carbohydrate marker of inflammation), which affect H. pylori adhesion targets and thus modulate host-bacterial interactions. Of particular relevance, gastric mucosal density of H. pylori, gastritis, and sialylation were all higher in secretor individuals compared to weak-secretors, the latter being apparently "protected." These results demonstrate that the secretor status plays an intrinsic role in resistance to H. pylori infection and suggest that the fucosylated secretor ABH antigens constitute interactive members of the human and primate mucosal innate immune system.
Collapse
Affiliation(s)
- Sara Lindén
- Laboratory of Gastrointestinal and Liver Studies, Digestive Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- United States Military Cancer Institute, Bethesda, Maryland, United States of America
- Mucosal Diseases Program, Mater Medical Research Institute, South Brisbane, Australia
| | - Jafar Mahdavi
- Division of Microbiology and Infectious Diseases, Queen's Medical Centre, Nottingham, United Kingdom
| | - Cristina Semino-Mora
- Laboratory of Gastrointestinal and Liver Studies, Digestive Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- United States Military Cancer Institute, Bethesda, Maryland, United States of America
| | - Cara Olsen
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Ingemar Carlstedt
- Mucosal Biology Group, Department of Cell- and Molecular Biology, BMC, Lund University, Lund, Sweden
| | - Thomas Borén
- Department of Medical Biochemistry and Biophysics, and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
| | - Andre Dubois
- Laboratory of Gastrointestinal and Liver Studies, Digestive Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- United States Military Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
245
|
Amieva MR, El-Omar EM. Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology 2008; 134:306-23. [PMID: 18166359 DOI: 10.1053/j.gastro.2007.11.009] [Citation(s) in RCA: 391] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 10/21/2007] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori are spiral-shaped gram-negative bacteria with polar flagella that live near the surface of the human gastric mucosa. They have evolved intricate mechanisms to avoid the bactericidal acid in the gastric lumen and to survive near, to attach to, and to communicate with the human gastric epithelium and host immune system. This interaction sometimes results in severe gastric pathology. H pylori infection is the strongest known risk factor for the development of gastroduodenal ulcers, with infection being present in 60%-80% of gastric and 95% of duodenal ulcers.(1)H pylori is also the first bacterium to be classified as a definite carcinogen by the World Health Organization's International Agency for Research on Cancer because of its epidemiologic relationship to gastric adenocarcinoma and gastric mucosa-associated lymphoid tissue lymphoma.(2) In the last 25 years, since H pylori was first described and cultured, a complete paradigm shift has occurred in our clinical approach to these gastric diseases, and more than 20,000 scientific publications have appeared on the subject. From the medical point of view, H pylori is a formidable pathogen responsible for much morbidity and mortality worldwide. However, H pylori infection occurs in approximately half of the world population, with disease being an exception rather than the rule. Understanding how this organism interacts with its host is essential for formulating an intelligent strategy for dealing with its most important clinical consequences. This review offers an insight into H pylori host-bacterial interactions.
Collapse
Affiliation(s)
- Manuel R Amieva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| | | |
Collapse
|
246
|
Teneberg S. The Multiple Carbohydrate Binding Specificities of Helicobacter pylori. Top Curr Chem (Cham) 2008; 288:121-38. [PMID: 22328028 DOI: 10.1007/128_2008_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Persistent colonization of the human stomach by Helicobacter pylori is a risk factor for the development of peptic ulcer disease and gastric cancer. Adhesion of microbes to the target tissue is an important determinant for successful initiation, establishment and maintenance of infection, and a variety of different candidate carbohydrate receptors for H. pylori have been identified. Here the different the binding specifities, and their potential role in adhesion to human gastric epithelium are described. Finally, recent findings on the roles of sialic acid binding SabA adhesin in interactions with human neutrophils and erythrocytes are discussed.
Collapse
Affiliation(s)
- Susann Teneberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Göteborg University, P.O. Box 440, 405 30 Göteborg, Sweden,
| |
Collapse
|
247
|
Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA. Mucins in the mucosal barrier to infection. Mucosal Immunol 2008; 1:183-97. [PMID: 19079178 PMCID: PMC7100821 DOI: 10.1038/mi.2008.5] [Citation(s) in RCA: 860] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mucosal tissues of the gastrointestinal, respiratory, reproductive, and urinary tracts, and the surface of the eye present an enormous surface area to the exterior environment. All of these tissues are covered with resident microbial flora, which vary considerably in composition and complexity. Mucosal tissues represent the site of infection or route of access for the majority of viruses, bacteria, yeast, protozoa, and multicellular parasites that cause human disease. Mucin glycoproteins are secreted in large quantities by mucosal epithelia, and cell surface mucins are a prominent feature of the apical glycocalyx of all mucosal epithelia. In this review, we highlight the central role played by mucins in accommodating the resident commensal flora and limiting infectious disease, interplay between underlying innate and adaptive immunity and mucins, and the strategies used by successful mucosal pathogens to subvert or avoid the mucin barrier, with a particular focus on bacteria.
Collapse
Affiliation(s)
- S K Linden
- grid.1003.20000 0000 9320 7537Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, Level 3 Aubigny Place, Mater Hospitals, South Brisbane, Queensland Australia
| | - P Sutton
- grid.1008.90000 0001 2179 088XCentre for Animal Biotechnology, School of Veterinary Science, University of Melbourne, Melbourne, Victoria Australia
| | - N G Karlsson
- grid.6142.10000 0004 0488 0789Department of Chemistry, Centre for BioAnalytical Sciences, National University of Ireland, Galway, Ireland
| | - V Korolik
- grid.1022.10000 0004 0437 5432Institute for Glycomics, Griffith University, Gold Coast, Queensland Australia
| | - M A McGuckin
- grid.1003.20000 0000 9320 7537Mucosal Diseases Program, Mater Medical Research Institute and The University of Queensland, Level 3 Aubigny Place, Mater Hospitals, South Brisbane, Queensland Australia
| |
Collapse
|
248
|
Atherton JC. The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 1:63-96. [PMID: 18039108 DOI: 10.1146/annurev.pathol.1.110304.100125] [Citation(s) in RCA: 409] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Helicobacter pylori is the main cause of peptic ulceration, distal gastric adenocarcinoma, and gastric lymphoma. Only 15% of those colonized develop disease, and pathogenesis depends upon strain virulence, host genetic susceptibility, and environmental cofactors. Virulence factors include the cag pathogenicity island, which induces proinflammatory, pro-proliferative epithelial cell signaling; the cytotoxin VacA, which causes epithelial damage; and an adhesin, BabA. Host genetic polymorphisms that lead to high-level pro-inflammatory cytokine release in response to infection increase cancer risk. Pathogenesis is dependent upon inflammation, a Th-1 acquired immune response and hormonal changes including hypergastrinaemia. Antral-predominant inflammation leads to increased acid production from the uninflamed corpus and predisposes to duodenal ulceration; corpus-predominant gastritis leads to hypochlorhydria and predisposes to gastric ulceration and adenocarcinoma. Falling prevalence of H. pylori in developed countries has led to a falling incidence of associated diseases. However, whether there are disadvantages of an H. pylori-free stomach, for example increased risk of esosphageal adenocarcinoma, remains unclear.
Collapse
Affiliation(s)
- John C Atherton
- Wolfson Digestive Diseases Centre and Institute of Infections, Immunity, and Inflammation, University of Nottingham, Nottingham NG7 2UH, United Kingdom.
| |
Collapse
|
249
|
Becker-Ritt AB, Martinelli AHS, Mitidieri S, Feder V, Wassermann GE, Santi L, Vainstein MH, Oliveira JTA, Fiuza LM, Pasquali G, Carlini CR. Antifungal activity of plant and bacterial ureases. Toxicon 2007; 50:971-83. [PMID: 17825863 DOI: 10.1016/j.toxicon.2007.07.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/10/2007] [Accepted: 07/11/2007] [Indexed: 10/23/2022]
Abstract
Ureases (EC 3.5.1.5) are nickel-dependent metalloenzymes that catalyze the hydrolysis of urea to ammonia and carbon dioxide. Produced by plants, fungi and bacteria, but not by animals, ureases share significant homology and similar mechanisms of catalysis, although differing in quaternary structures. While fungal and plant ureases are homo-oligomeric proteins of 90 kDa subunits, bacterial ureases are multimers of two (e.g. Helicobacter pylori) or three subunit complexes. It has been proposed that in plants these enzymes are involved in nitrogen bioavailability and in protection against pathogens. Previous studies by our group have shown that plant ureases, but not a bacterial (Bacillus pasteurii) urease, display insecticidal activity. Herein we demonstrate that (Glycine max) embryo-specific soybean urease, jackbean (Canavalia ensiformis) major urease and a recombinant H. pylori urease impair growth of selected phytopathogenic fungi at sub-micromolar concentrations. This antifungal property of ureases is not affected by treatment of the proteins with an irreversible inhibitor of the ureolytic activity. Scanning electron microscopy of urease-treated fungi suggests plasmolysis and cell wall injuries. Altogether, our data indicate that ureases probably contribute to the plant arsenal of defense compounds against predators and phytopathogens and that the urease defense mechanism is independent of ammonia release from urea.
Collapse
Affiliation(s)
- A B Becker-Ritt
- Graduate Program in Molecular and Cellular Biology, Center of Biotechnology, Universidade Federal do Rio Grande do Sul-UFRGS, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, Misselwitz R, Berger J, Sewald N, König W, Backert S. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature 2007; 449:862-6. [PMID: 17943123 DOI: 10.1038/nature06187] [Citation(s) in RCA: 508] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 08/21/2007] [Indexed: 02/06/2023]
Abstract
Integrins are important mammalian receptors involved in normal cellular functions as well as pathogenesis of chronic inflammation and cancer. We propose that integrins are exploited by the gastric pathogen and type-1 carcinogen Helicobacter pylori for injection of the bacterial oncoprotein cytotoxin-associated gene A (CagA) into gastric epithelial cells. Virulent H. pylori express a type-IV secretion pilus that injects CagA into the host cell; CagA then becomes tyrosine-phosphorylated by Src family kinases. However, the identity of the host cell receptor involved in this process has remained unknown. Here we show that the H. pylori CagL protein is a specialized adhesin that is targeted to the pilus surface, where it binds to and activates integrin alpha5beta1 receptor on gastric epithelial cells through an arginine-glycine-aspartate motif. This interaction triggers CagA delivery into target cells as well as activation of focal adhesion kinase and Src. Our findings provide insights into the role of integrins in H.-pylori-induced pathogenesis. CagL may be exploited as a new molecular tool for our further understanding of integrin signalling.
Collapse
Affiliation(s)
- Terry Kwok
- Department of Medical Microbiology, Otto von Guericke University, Leipziger Strasse 44, D-39120 Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|