201
|
Cheong R, Paliwal S, Levchenko A. Models at the single cell level. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 2:34-48. [PMID: 20836009 DOI: 10.1002/wsbm.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Many cellular behaviors cannot be completely captured or appropriately described at the cell population level. Noise induced by stochastic chemical reactions, spatially polarized signaling networks, and heterogeneous cell-cell communication are among the many phenomena that require fine-grained analysis. Accordingly, the mathematical models used to describe such systems must be capable of single cell or subcellular resolution. Here, we review techniques for modeling single cells, including models of stochastic chemical kinetics, spatially heterogeneous intracellular signaling, and spatial stochastic systems. We also briefly discuss applications of each type of model.
Collapse
Affiliation(s)
- Raymond Cheong
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Saurabh Paliwal
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Andre Levchenko
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.,Whitaker Institute of Biomedical Engineering and Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
202
|
Hanel R, Pöchacker M, Thurner S. Living on the edge of chaos: minimally nonlinear models of genetic regulatory dynamics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2010; 368:5583-5596. [PMID: 21078635 DOI: 10.1098/rsta.2010.0267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Linearized catalytic reaction equations (modelling, for example, the dynamics of genetic regulatory networks), under the constraint that expression levels, i.e. molecular concentrations of nucleic material, are positive, exhibit non-trivial dynamical properties, which depend on the average connectivity of the reaction network. In these systems, an inflation of the edge of chaos and multi-stability have been demonstrated to exist. The positivity constraint introduces a nonlinearity, which makes chaotic dynamics possible. Despite the simplicity of such minimally nonlinear systems, their basic properties allow us to understand the fundamental dynamical properties of complex biological reaction networks. We analyse the Lyapunov spectrum, determine the probability of finding stationary oscillating solutions, demonstrate the effect of the nonlinearity on the effective in- and out-degree of the active interaction network, and study how the frequency distributions of oscillatory modes of such a system depend on the average connectivity.
Collapse
Affiliation(s)
- Rudolf Hanel
- Section for Science of Complex Systems, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria
| | | | | |
Collapse
|
203
|
Lourenço R, Lopes SS, Saúde L. Left-right function of dmrt2 genes is not conserved between zebrafish and mouse. PLoS One 2010; 5:e14438. [PMID: 21203428 PMCID: PMC3010978 DOI: 10.1371/journal.pone.0014438] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 12/07/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Members of the Dmrt family, generally associated with sex determination, were shown to be involved in several other functions during embryonic development. Dmrt2 has been studied in the context of zebrafish development where, due to a duplication event, two paralog genes dmrt2a and dmrt2b are present. Both zebrafish dmrt2a/terra and dmrt2b are important to regulate left-right patterning in the lateral plate mesoderm. In addition, dmrt2a/terra is necessary for symmetric somite formation while dmrt2b regulates somite differentiation impacting on slow muscle development. One dmrt2 gene is also expressed in the mouse embryo, where it is necessary for somite differentiation but with an impact on axial skeleton development. However, nothing was known about its role during left-right patterning in the lateral plate mesoderm or in the symmetric synchronization of somite formation. METHODOLOGY/PRINCIPAL FINDINGS Using a dmrt2 mutant mouse line, we show that this gene is not involved in symmetric somite formation and does not regulate the laterality pathway that controls left-right asymmetric organ positioning. We reveal that dmrt2a/terra is present in the zebrafish laterality organ, the Kupffer's vesicle, while its homologue is excluded from the mouse equivalent structure, the node. On the basis of evolutionary sub-functionalization and neo-functionalization theories we discuss this absence of functional conservation. CONCLUSIONS/SIGNIFICANCE Our results show that the role of dmrt2 gene is not conserved during zebrafish and mouse embryonic development.
Collapse
Affiliation(s)
- Raquel Lourenço
- Instituto de Medicina Molecular e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Susana S. Lopes
- Instituto de Medicina Molecular e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Leonor Saúde
- Instituto de Medicina Molecular e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- * E-mail:
| |
Collapse
|
204
|
Chapman G, Sparrow DB, Kremmer E, Dunwoodie SL. Notch inhibition by the ligand Delta-Like 3 defines the mechanism of abnormal vertebral segmentation in spondylocostal dysostosis. Hum Mol Genet 2010; 20:905-16. [DOI: 10.1093/hmg/ddq529] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
205
|
|
206
|
Shankaran H, Wiley HS. Oscillatory dynamics of the extracellular signal-regulated kinase pathway. Curr Opin Genet Dev 2010; 20:650-5. [PMID: 20810275 DOI: 10.1016/j.gde.2010.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 07/23/2010] [Accepted: 08/05/2010] [Indexed: 11/28/2022]
Affiliation(s)
- Harish Shankaran
- Computational Biology and Bioinformatics, Pacific Northwest National Laboratory, 902 Battelle Boulevard, Richland, WA 99352, USA
| | | |
Collapse
|
207
|
Modeling oscillatory control in NF-κB, p53 and Wnt signaling. Curr Opin Genet Dev 2010; 20:656-64. [PMID: 20934871 DOI: 10.1016/j.gde.2010.08.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/11/2010] [Accepted: 08/31/2010] [Indexed: 01/22/2023]
Abstract
Oscillations are commonly observed in cellular behavior and span a wide range of timescales, from seconds in calcium signaling to 24 hours in circadian rhythms. In between lie oscillations with time periods of 1-5 hours seen in NF-κB, p53 and Wnt signaling, which play key roles in the immune system, cell growth/death and embryo development, respectively. In the first part of this article, we provide a brief overview of simple deterministic models of oscillations. In particular, we explain the mechanism of saturated degradation that has been used to model oscillations in the NF-κB, p53 and Wnt systems. The second part deals with the potential physiological role of oscillations. We use the simple models described earlier to explore whether oscillatory signals can encode more information than steady-state signals. We then discuss a few simple genetic circuits that could decode information stored in the average, amplitude or frequency of oscillations. The presence of frequency-detector circuit downstream of NF-κB or p53 would be a strong clue that oscillations are important for the physiological response of these signaling systems.
Collapse
|
208
|
Gibb S, Maroto M, Dale JK. The segmentation clock mechanism moves up a notch. Trends Cell Biol 2010; 20:593-600. [PMID: 20724159 PMCID: PMC2954312 DOI: 10.1016/j.tcb.2010.07.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Revised: 07/08/2010] [Accepted: 07/15/2010] [Indexed: 12/19/2022]
Abstract
The vertebrate segmentation clock is a molecular oscillator that regulates the periodicity of somite formation. Three signalling pathways have been proposed to underlie the molecular mechanism of the oscillator, namely the Notch, Wnt and Fgf pathways. Characterizing the roles and hierarchy of these three pathways in the oscillator mechanism is currently the focus of intense research. Recent publications report the first identification of a molecular mechanism involved in the regulation of the pace of this oscillator. We review these and other recent findings regarding the interaction between the three pathways in the oscillator mechanism that have significantly expanded our understanding of the segmentation clock.
Collapse
|
209
|
Aulehla A, Pourquié O. Signaling gradients during paraxial mesoderm development. Cold Spring Harb Perspect Biol 2010; 2:a000869. [PMID: 20182616 DOI: 10.1101/cshperspect.a000869] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The sequential formation of somites along the anterior-posterior axis is under control of multiple signaling gradients involving the Wnt, FGF, and retinoic acid (RA) pathways. These pathways show graded distribution of signaling activity within the paraxial mesoderm of vertebrate embryos. Although Wnt and FGF signaling show highest activity in the posterior, unsegmented paraxial mesoderm (presomitic mesoderm [PSM]), RA signaling establishes a countergradient with the highest activity in the somites. The generation of these graded activities relies both on classical source-sink mechanisms (for RA signaling) and on an RNA decay mechanism (for FGF signaling). Numerous studies reveal the tight interconnection among Wnt, FGF, and RA signaling in controlling paraxial mesoderm differentiation and in defining the somite-forming unit. In particular, the relationship to a molecular oscillator acting in somite precursors in the PSM-called the segmentation clock-has been recently addressed. These studies indicate that high levels of Wnt and FGF signaling are required for the segmentation clock activity. Furthermore, we discuss how these signaling gradients act in a dose-dependent manner in the progenitors of the paraxial mesoderm, partly by regulating cell movements during gastrulation. Finally, links between the process of axial specification of vertebral segments and Hox gene expression are discussed.
Collapse
Affiliation(s)
- Alexander Aulehla
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | |
Collapse
|
210
|
Abstract
The Wnt/β-catenin pathway plays an important role in development and disease. Theoretical approaches have been used to describe this pathway and have provided intriguing insights into its signalling characteristics. In the present paper, we review mathematical models of the pathway. We focus on a quantitative kinetic model for canonical Wnt/β-catenin signalling describing the reactions of the pathway's core compounds [Lee, Salic, Krüger, Heinrich and Kirschner (2003) PLoS Biol. 1, 116–132]. Numerous modifications and further analyses with respect to signalling characteristics, transcriptional feedback and cross-talk were performed. In addition, the role of β-catenin in gene expression and cell–cell adhesion as well as spatial aspects of signalling are investigated in various theoretical models.
Collapse
|
211
|
Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN. Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 2010; 329:1306-11. [PMID: 20829477 PMCID: PMC2976612 DOI: 10.1126/science.1191937] [Citation(s) in RCA: 445] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Plants and animals produce modular developmental units in a periodic fashion. In plants, lateral roots form as repeating units along the root primary axis; however, the developmental mechanism regulating this process is unknown. We found that cyclic expression pulses of a reporter gene mark the position of future lateral roots by establishing prebranch sites and that prebranch site production and root bending are periodic. Microarray and promoter-luciferase studies revealed two sets of genes oscillating in opposite phases at the root tip. Genetic studies show that some oscillating transcriptional regulators are required for periodicity in one or both developmental processes. This molecular mechanism has characteristics that resemble molecular clock-driven activities in animal species.
Collapse
Affiliation(s)
- Miguel A. Moreno-Risueno
- Department of Biology and Institute for Genome Sciences and Policy Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | - Jaimie M. Van Norman
- Department of Biology and Institute for Genome Sciences and Policy Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | - Antonio Moreno
- Departamento de Acustica Ambiental, Instituto de Acustica, Consejo Superior de Investigaciones Cientificas, Serrano 144, Madrid 28006, Spain
| | - Jingyuan Zhang
- Department of Biology and Institute for Genome Sciences and Policy Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | - Sebastian E. Ahnert
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Philip N. Benfey
- Department of Biology and Institute for Genome Sciences and Policy Center for Systems Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
212
|
González A, Kageyama R. Automatic reconstruction of the mouse segmentation network from an experimental evidence database. Biosystems 2010; 102:16-21. [PMID: 20682331 DOI: 10.1016/j.biosystems.2010.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 07/15/2010] [Indexed: 12/11/2022]
Abstract
Mammalian vertebrae, ribs, body wall musculature and back skin develop from repetitive embryonic tissues called somites. The development of somites depends on the molecular oscillations of the products of so-called cyclic genes. The underlying network involves the Wnt, Fgf/Mapk, Notch signaling pathways and the T-box genes. The discovery of this network is based on genetic interactions. Because of regulatory feedbacks and cross-regulation between pathways, it is often difficult to intuitively identify direct molecular interactions underlying genetic interactions. To address this problem, we developed a method based on a database and graph theory algorithms. We first encoded genetic and non-genetic experiments in a relational database. Next, we built a reference network with the data from non-genetic experiments and the KEGG pathway database. Then, we computed the shortest path between the nodes for each genetic interaction in the reference network to propose direct molecular interactions. The resulting network is the largest computational representation of the mammalian segmentation network to date with 36 nodes and 57 interactions. In some instances, a number of genetic interactions could be explained by adding a single link to the reference network, which leads to experimentally testable hypotheses. Two examples of such predictions are the direct transcriptional regulation of Dll3 and Fgf8 genes by the Rbpj and Ctnnb1 products, respectively. Furthermore, the computed shortest paths suggest that cross-talks from the Wnt to the Fgf/Mapk and Notch pathways might be mediated by the Dvl genes. This method can be applied in any system where gene expression changes are observed as a response to some gene perturbation, for instance in cancer cells.
Collapse
Affiliation(s)
- Aitor González
- Institute for Virus Research, Kyoto University, Shogoin-Kawahara, Sakyo-ku, Kyoto 606-8507, Japan.
| | | |
Collapse
|
213
|
Cibois M, Gautier-Courteille C, Legagneux V, Paillard L. Post-transcriptional controls - adding a new layer of regulation to clock gene expression. Trends Cell Biol 2010; 20:533-41. [PMID: 20630760 DOI: 10.1016/j.tcb.2010.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/10/2010] [Accepted: 06/11/2010] [Indexed: 12/22/2022]
Abstract
Living organisms undergo biochemical, physiological and behavioral cycles with periods ranging from seconds to years. Cycles with intermediate periods are governed by endogenous clocks that depend on oscillating gene expression. Here we illustrate the modalities and specific functions of post-transcriptional control of gene expression (exerted on pre-mRNAs and mRNAs) in biological clocks through two examples: the circadian clock and the vertebrate somite segmentation clock, an embryonic clock with a period far below a day. We conclude that both constitutive and cyclic post-transcriptional controls underpin clock function.
Collapse
Affiliation(s)
- Marie Cibois
- Université de Rennes 1, Université Européenne de Bretagne, Institut Fédératif de Recherche 140, France
| | | | | | | |
Collapse
|
214
|
Abstract
Vertebrate embryo somite formation is temporally controlled by the cyclic expression of somitogenesis clock genes in the presomitic mesoderm (PSM). The somitogenesis clock is believed to be an intrinsic property of this tissue, operating independently of embryonic midline structures and the signaling molecules produced therein, namely Sonic hedgehog (Shh). This work revisits the notochord signaling contribution to temporal control of PSM segmentation by assessing the rate and number of somites formed and somitogenesis molecular clock gene expression oscillations upon notochord ablation. The absence of the notochord causes a delay in somite formation, accompanied by an increase in the period of molecular clock oscillations. Shh is the notochord-derived signal responsible for this effect, as these alterations are recapitulated by Shh signaling inhibitors and rescued by an external Shh supply. We have characterized chick smoothened expression pattern and have found that the PSM expresses both patched1 and smoothened Shh signal transducers. Upon notochord ablation, patched1, gli1, and fgf8 are down-regulated, whereas gli2 and gli3 are overexpressed. Strikingly, notochord-deprived PSM segmentation rate recovers over time, concomitant with raldh2 overexpression. Accordingly, exogenous RA supplement rescues notochord ablation effects on somite formation. A model is presented in which Shh and RA pathways converge to inhibit PSM Gli activity, ensuring timely somite formation. Altogether, our data provide evidence that a balance between different pathways ensures the robustness of timely somite formation and that notochord-derived Shh is a component of the molecular network regulating the pace of the somitogenesis clock.
Collapse
|
215
|
Orlando DA, Brady SM, Fink TMA, Benfey PN, Ahnert SE. Detecting separate time scales in genetic expression data. BMC Genomics 2010; 11:381. [PMID: 20565716 PMCID: PMC3017766 DOI: 10.1186/1471-2164-11-381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 06/16/2010] [Indexed: 01/11/2023] Open
Abstract
Background Biological processes occur on a vast range of time scales, and many of them occur concurrently. As a result, system-wide measurements of gene expression have the potential to capture many of these processes simultaneously. The challenge however, is to separate these processes and time scales in the data. In many cases the number of processes and their time scales is unknown. This issue is particularly relevant to developmental biologists, who are interested in processes such as growth, segmentation and differentiation, which can all take place simultaneously, but on different time scales. Results We introduce a flexible and statistically rigorous method for detecting different time scales in time-series gene expression data, by identifying expression patterns that are temporally shifted between replicate datasets. We apply our approach to a Saccharomyces cerevisiae cell-cycle dataset and an Arabidopsis thaliana root developmental dataset. In both datasets our method successfully detects processes operating on several different time scales. Furthermore we show that many of these time scales can be associated with particular biological functions. Conclusions The spatiotemporal modules identified by our method suggest the presence of multiple biological processes, acting at distinct time scales in both the Arabidopsis root and yeast. Using similar large-scale expression datasets, the identification of biological processes acting at multiple time scales in many organisms is now possible.
Collapse
Affiliation(s)
- David A Orlando
- Department of Biology and IGSP Center for Systems Biology, Duke University, Durham, NC, USA
| | | | | | | | | |
Collapse
|
216
|
Antin PB, Pier M, Sesepasara T, Yatskievych TA, Darnell DK. Embryonic expression of the chicken Krüppel-like (KLF) transcription factor gene family. Dev Dyn 2010; 239:1879-87. [PMID: 20503383 PMCID: PMC2925473 DOI: 10.1002/dvdy.22318] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The Krüppel-like transcription factors (KLF) are zinc finger proteins that activate and suppress target gene transcription. Although KLF factors have been implicated in regulating many developmental processes, a comprehensive gene expression analysis has not been reported. Here we present the chicken KLF gene family and expression during the first five days of embryonic development. Fourteen chicken KLF genes or expressed sequences have been previously identified. Through synteny analysis and cDNA mapping, we have identified the KLF9 gene and determined that the gene presently named KLF1 is the true ortholog of KLF17 in other species. In situ hybridization expression analyses show that in general KLFs are broadly expressed in multiple cell and tissue types. Expression of KLFs 3, 7, 8, and 9, is widespread at all stages examined. KLFs 2, 4, 5, 6, 10, 11, 15, and 17 show more restricted patterns that suggest multiple functions during early stages of embryonic development.
Collapse
Affiliation(s)
- Parker B Antin
- Department of Cell Biology and Anatomy, University of Arizona, Tucson, Arizona 85724-5217, USA.
| | | | | | | | | |
Collapse
|
217
|
|
218
|
Johnson BR, Linksvayer TA. Deconstructing the superorganism: social physiology, groundplans, and sociogenomics. QUARTERLY REVIEW OF BIOLOGY 2010; 85:57-79. [PMID: 20337260 DOI: 10.1086/650290] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Our understanding of insect societies is rapidly expanding due to an emphasis on integrative approaches. Emerging tools enabling the molecular dissection of social behavior, together with novel hypotheses for the evolution of eusociality, are emblematic of this progress. However, an obstacle to a truly integrative approach remains, as social physiology--the basis of group-level coordination--has generally been neglected by geneticists. In this paper, we begin a synthesis of these fields by first reviewing three classes of social insect organization that mark major transitions in increasing social complexity. We then develop an expansion of the superorganism concept in order to place eusociality into a broad evolutionary context, and we also interpret current molecular and genetic work on the evolution of eusociality. The ground plan hypothesis proposes that eusociality arose via simple changes in the regulation of ancestral gene sets affecting reproductive physiology and behavior, and we argue that this hypothesis is explanatory for the evolution of division of labor (social anatomy) but not for the regulatory systems that ensure group-level coordination of action (social physiology), which we propose is dependent on previously unrelated traits that are brought together into novel genetic networks. We conclude with a review of recent work in sociogenomics that supports our hypotheses.
Collapse
Affiliation(s)
- Brian R Johnson
- Department of Ecology, Behavior, and Evolution, University of California, San Diego, La Jolla, CA 92093-0116, USA.
| | | |
Collapse
|
219
|
Campanelli M, Gedeon T. Somitogenesis clock-wave initiation requires differential decay and multiple binding sites for clock protein. PLoS Comput Biol 2010; 6:e1000728. [PMID: 20369016 PMCID: PMC2848544 DOI: 10.1371/journal.pcbi.1000728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/02/2010] [Indexed: 11/18/2022] Open
Abstract
Somitogenesis is a process common to all vertebrate embryos in which repeated blocks of cells arise from the presomitic mesoderm (PSM) to lay a foundational pattern for trunk and tail development. Somites form in the wake of passing waves of periodic gene expression that originate in the tailbud and sweep posteriorly across the PSM. Previous work has suggested that the waves result from a spatiotemporally graded control protein that affects the oscillation rate of clock-gene expression. With a minimally constructed mathematical model, we study the contribution of two control mechanisms to the initial formation of this gene-expression wave. We test four biologically motivated model scenarios with either one or two clock protein transcription binding sites, and with or without differential decay rates for clock protein monomers and dimers. We examine the sensitivity of wave formation with respect to multiple model parameters and robustness to heterogeneity in cell population. We find that only a model with both multiple binding sites and differential decay rates is able to reproduce experimentally observed waveforms. Our results show that the experimentally observed characteristics of somitogenesis wave initiation constrain the underlying genetic control mechanisms. The vertebral column is a characteristic structure of all vertebrates. Individual vertebrae, together with ribs and attached muscles, develop from repeated embryonic structures called somites. The somite pattern forms in the embryo during somitogenesis. We know that this process uses periodic gene expression (a biomolecular “clock”) to generate the pattern, but we do not know precisely how this expression is controlled within the cell and coordinated across multiple cells. We propose a mathematical model that incorporates experimentally confirmed features of somitogenesis. We then test four different mechanisms that may control the clock and ask if the comparison between model simulations and experimental observation can select the best model and thus suggest how the clock is controlled. We find that the model scenario with both multiple DNA binding sites and differential protein decay rates is best able to reproduce experimental observations. Because these findings can be tested experimentally, our results should help guide future experiments.
Collapse
Affiliation(s)
- Mark Campanelli
- Department of Mathematics and Computer Science, Southwest Minnesota State University, Marshall, Minnesota, United States of America
| | - Tomáš Gedeon
- Department of Mathematical Sciences and Center for Computational Biology, Montana State University, Bozeman, Montana, United States of America
- * E-mail:
| |
Collapse
|
220
|
Oginuma M, Takahashi Y, Kitajima S, Kiso M, Kanno J, Kimura A, Saga Y. The oscillation of Notch activation, but not its boundary, is required for somite border formation and rostral-caudal patterning within a somite. Development 2010; 137:1515-22. [PMID: 20335362 DOI: 10.1242/dev.044545] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Notch signaling exerts multiple roles during different steps of mouse somitogenesis. We have previously shown that segmental boundaries are formed at the interface of the Notch activity boundary, suggesting the importance of the Notch on/off state for boundary formation. However, a recent study has shown that mouse embryos expressing Notch-intracellular domain (NICD) throughout the presomitic mesoderm (PSM) can still form more than ten somites, indicating that the NICD on/off state is dispensable for boundary formation. To clarify this discrepancy in our current study, we created a transgenic mouse lacking NICD boundaries in the anterior PSM but retaining Notch signal oscillation in the posterior PSM by manipulating the expression pattern of a Notch modulator, lunatic fringe. In this mouse, clearly segmented somites are continuously generated, indicating that the NICD on/off state is unnecessary for somite boundary formation. Surprisingly, this mouse also showed a normal rostral-caudal compartment within a somite, conferred by a normal Mesp2 expression pattern with a rostral-caudal gradient. To explore the establishment of normal Mesp2 expression, we performed computer simulations, which revealed that oscillating Notch signaling induces not only the periodic activation of Mesp2 but also a rostral-caudal gradient of Mesp2 in the absence of striped Notch activity in the anterior PSM. In conclusion, we propose a novel function of Notch signaling, in which a progressive oscillating wave of Notch activity is translated into the rostral-caudal polarity of a somite by regulating Mesp2 expression in the anterior PSM. This indicates that the initial somite pattern can be defined as a direct output of the segmentation clock.
Collapse
Affiliation(s)
- Masayuki Oginuma
- Department of Genetics, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | | | | | |
Collapse
|
221
|
Wright D, Ferjentsik Z, Chong SW, Qiu X, Yun-Jin J, Malapert P, Pourquié O, Van Hateren N, Wilson SA, Franco C, Gerhardt H, Dale JK, Maroto M. Cyclic Nrarp mRNA expression is regulated by the somitic oscillator but Nrarp protein levels do not oscillate. Dev Dyn 2010; 238:3043-3055. [PMID: 19882724 DOI: 10.1002/dvdy.22139] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Somites are formed progressively from the presomitic mesoderm (PSM) in a highly regulated process according to a strict periodicity driven by an oscillatory mechanism. The Notch and Wnt pathways are key components in the regulation of this somitic oscillator and data from Xenopus and zebrafish embryos indicate that the Notch-downstream target Nrarp participates in the regulation of both activities. We have analyzed Nrarp/nrarp-a expression in the PSM of chick, mouse and zebrafish embryos, and we show that it cycles in synchrony with other Notch regulated cyclic genes. In the mouse its transcription is both Wnt- and Notch-dependent, whereas in the chick and fish embryo it is simply Notch-dependent. Despite oscillating mRNA levels, Nrarp protein does not oscillate in the PSM. Finally, neither gain nor loss of Nrarp function interferes with the normal expression of Notch-related cyclic genes.
Collapse
Affiliation(s)
- David Wright
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Zoltan Ferjentsik
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Shang-Wei Chong
- Laboratory of Developmental Signalling and Patterning, Genes and Development Division, Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Xuehui Qiu
- Laboratory of Developmental Signalling and Patterning, Genes and Development Division, Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Jiang Yun-Jin
- Laboratory of Developmental Signalling and Patterning, Genes and Development Division, Institute of Molecular and Cell Biology, Proteos, Singapore
| | - Pascale Malapert
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, and Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Missouri
| | - Olivier Pourquié
- Howard Hughes Medical Institute, Stowers Institute for Medical Research, and Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Missouri
| | - Nick Van Hateren
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Stuart A Wilson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Claudio Franco
- Vascular Biology Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom
| | - Holger Gerhardt
- Vascular Biology Laboratory, London Research Institute-Cancer Research UK, London, United Kingdom
| | - J Kim Dale
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Miguel Maroto
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
222
|
Unmasking chaotic attributes in time series of living cell populations. PLoS One 2010; 5:e9346. [PMID: 20179755 PMCID: PMC2825257 DOI: 10.1371/journal.pone.0009346] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 01/26/2010] [Indexed: 11/19/2022] Open
Abstract
Background Long-range oscillations of the mammalian cell proliferation rate are commonly observed both in vivo and in vitro. Such complicated dynamics are generally the result of a combination of stochastic events and deterministic regulation. Assessing the role, if any, of chaotic regulation is difficult. However, unmasking chaotic dynamics is essential for analysis of cellular processes related to proliferation rate, including metabolic activity, telomere homeostasis, gene expression, and tumor growth. Methodology/Principal Findings Using a simple, original, nonlinear method based on return maps, we previously found a geometrical deterministic structure coordinating such fluctuations in populations of various cell types. However, nonlinearity and determinism are only necessary conditions for chaos; they do not by themselves constitute a proof of chaotic dynamics. Therefore, we used the same analytical method to analyze the oscillations of four well-known, low-dimensional, chaotic oscillators, originally designed in diverse settings and all possibly well-adapted to model the fluctuations of cell populations: the Lorenz, Rössler, Verhulst and Duffing oscillators. All four systems also display this geometrical structure, coordinating the oscillations of one or two variables of the oscillator. No such structure could be observed in periodic or stochastic fluctuations. Conclusion/Significance Theoretical models predict various cell population dynamics, from stable through periodically oscillating to a chaotic regime. Periodic and stochastic fluctuations were first described long ago in various mammalian cells, but by contrast, chaotic regulation had not previously been evidenced. The findings with our nonlinear geometrical approach are entirely consistent with the notion that fluctuations of cell populations can be chaotically controlled.
Collapse
|
223
|
Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation. Proc Natl Acad Sci U S A 2010; 107:4224-9. [PMID: 20160088 DOI: 10.1073/pnas.0909375107] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The development of multicellular organisms is controlled by transcriptional networks. Understanding the role of these networks requires a full understanding of transcriptome regulation during embryogenesis. Several microarray studies have characterized the temporal evolution of the transcriptome during development in different organisms [Wang QT, et al. (2004) Dev Cell 6:133-144; Furlong EE, Andersen EC, Null B, White KP, Scott MP (2001) Science 293:1629-1633; Mitiku N, Baker JC (2007) Dev Cell 13:897-907]. In all cases, however, experiments were performed on whole embryos, thus averaging gene expression among many different tissues. Here, we took advantage of the local synchrony of the differentiation process in the paraxial mesoderm. This approach provides a unique opportunity to study the systems-level properties of muscle differentiation. Using high-resolution, spatiotemporal profiling of the early stages of muscle development in the zebrafish embryo, we identified a major reorganization of the transcriptome taking place in the presomitic mesoderm. We further show that the differentiation process is associated with a striking modular compartmentalization of the transcription of essential components of cellular physiological programs. Particularly, we identify a tight segregation of cell cycle/DNA metabolic processes and translation/oxidative metabolism at the tissue level, highly reminiscent of the yeast metabolic cycle. These results should expand more investigations into the developmental control of metabolism.
Collapse
|
224
|
Brend T, Holley SA. Expression of the oscillating gene her1 is directly regulated by Hairy/Enhancer of Split, T-box, and Suppressor of Hairless proteins in the zebrafish segmentation clock. Dev Dyn 2010; 238:2745-59. [PMID: 19795510 DOI: 10.1002/dvdy.22100] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Somites are segmental units of the mesoderm in vertebrate embryos that give rise to the axial skeleton, muscle, and dermis. Somitogenesis occurs in a periodic manner and is governed by a segmentation clock that causes cells to undergo repeated oscillations of gene expression. Here, we present a detailed analysis of cis-regulatory elements that control oscillating expression of the zebrafish her1 gene in the anterior presomitic mesoderm. We identify binding sites for Her proteins and demonstrate that they are necessary for transcriptional repression. This result confirms that direct negative autoregulation of her gene expression constitutes part of the oscillator mechanism. We also characterize binding sites for fused somites/Tbx24 and Suppressor of Hairless proteins and show that they are required for activation of her1 expression. These data provide the foundation for a precise description of the regulatory grammar that defines oscillating gene expression in the zebrafish segmentation clock.
Collapse
Affiliation(s)
- Tim Brend
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06520-8103, USA
| | | |
Collapse
|
225
|
Goda T, Takagi C, Ueno N. Xenopus Rnd1 and Rnd3 GTP-binding proteins are expressed under the control of segmentation clock and required for somite formation. Dev Dyn 2010; 238:2867-76. [PMID: 19795516 DOI: 10.1002/dvdy.22099] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The process of segmentation in vertebrates is described by a clock and wavefront model consisting of a Notch signal and an fibroblast growth factor-8 (FGF8) gradient, respectively. To further investigate the segmentation process, we screened gene expression profiles for downstream targets of the segmentation clock. The Rnd1 and Rnd3 GTP-binding proteins comprise a subgroup of the Rho GTPase family that show a specific expression pattern similar to the Notch signal component ESR5, suggesting an association between Rnd1/3 and the segmentation clock. Rnd1/3 expression patterns are disrupted by overexpression of dominant-negative or active forms of Notch signaling genes, and responds to the FGF inhibitor SU5402 by a posterior shift analogous to other segmentation-related genes, suggesting that Rnd1/3 expressions are regulated by the segmentation clock machinery. We also show that antisense morpholino oligonucleotides to Rnd1/3 inhibit somite segmentation and differentiation in Xenopus embryos. These results suggest that Rnd1/3 are required for Xenopus somitogenesis.
Collapse
Affiliation(s)
- Tadahiro Goda
- Division of Morphogenesis, National Institute for Basic Biology, Myodaiji, Okazaki, Japan.
| | | | | |
Collapse
|
226
|
Zhang SO, Mathur S, Hattem G, Tassy O, Pourquié O. Sex-dimorphic gene expression and ineffective dosage compensation of Z-linked genes in gastrulating chicken embryos. BMC Genomics 2010; 11:13. [PMID: 20055996 PMCID: PMC2821371 DOI: 10.1186/1471-2164-11-13] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 01/07/2010] [Indexed: 11/10/2022] Open
Abstract
Background Considerable progress has been made in our understanding of sex determination and dosage compensation mechanisms in model organisms such as C. elegans, Drosophila and M. musculus. Strikingly, the mechanism involved in sex determination and dosage compensation are very different among these three model organisms. Birds present yet another situation where the heterogametic sex is the female. Sex determination is still poorly understood in birds and few key determinants have so far been identified. In contrast to most other species, dosage compensation of bird sex chromosomal genes appears rather ineffective. Results By comparing microarrays from microdissected primitive streak from single chicken embryos, we identified a large number of genes differentially expressed between male and female embryos at a very early stage (Hamburger and Hamilton stage 4), long before any sexual differentiation occurs. Most of these genes are located on the Z chromosome, which indicates that dosage compensation is ineffective in early chicken embryos. Gene ontology analyses, using an enhanced annotation tool for Affymetrix probesets of the chicken genome developed in our laboratory (called Manteia), show that among these male-biased genes found on the Z chromosome, more than 20 genes play a role in sex differentiation. Conclusions These results corroborate previous studies demonstrating the rather inefficient dosage compensation for Z chromosome in birds and show that this sexual dimorphism in gene regulation is observed long before the onset of sexual differentiation. These data also suggest a potential role of non-compensated Z-linked genes in somatic sex differentiation in birds.
Collapse
Affiliation(s)
- Shaobing O Zhang
- Stowers Institute for Medical Research, 1000 E, 50th Street, Kansas City, MO 64110, USA
| | | | | | | | | |
Collapse
|
227
|
The pedestrian watchmaker: genetic clocks from engineered oscillators. FEBS Lett 2010; 583:3931-7. [PMID: 19903483 DOI: 10.1016/j.febslet.2009.10.089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 10/26/2009] [Indexed: 01/29/2023]
Abstract
The crucial role of time-keeping has required organisms to develop sophisticated regulatory networks to ensure the reliable propagation of periodic behavior. These biological clocks have long been a focus of research; however, a clear understanding of how they maintain oscillations in the face of unpredictable environments and the inherent noise of biological systems remains elusive. Here, we review the current understanding of circadian oscillations using Drosophila melanogaster as a typical example and discuss the utility of an alternative synthetic biology approach to studying these highly intricate systems.
Collapse
|
228
|
Alexander T, Nolte C, Krumlauf R. Hox genes and segmentation of the hindbrain and axial skeleton. Annu Rev Cell Dev Biol 2010; 25:431-56. [PMID: 19575673 DOI: 10.1146/annurev.cellbio.042308.113423] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Segmentation is an important process that is frequently used during development to segregate groups of cells with distinct features. Segmental compartments provide a mechanism for generating and organizing regional properties along an embryonic axis and within tissues. In vertebrates the development of two major systems, the hindbrain and the paraxial mesoderm, displays overt signs of compartmentalization and depends on the process of segmentation for their functional organization. The hindbrain plays a key role in regulating head development, and it is a complex coordination center for motor activity, breathing rhythms, and many unconscious functions. The paraxial mesoderm generates somites, which give rise to the axial skeleton. The cellular processes of segmentation in these two systems depend on ordered patterns of Hox gene expression as a mechanism for generating a combinatorial code that specifies unique identities of the segments and their derivatives. In this review, we compare and contrast the signaling inputs and transcriptional mechanisms by which Hox gene regulatory networks are established during segmentation in these two different systems.
Collapse
Affiliation(s)
- Tara Alexander
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA.
| | | | | |
Collapse
|
229
|
Numerical and Experimental Analysis of the p53-mdm2 Regulatory Pathway. LECTURE NOTES OF THE INSTITUTE FOR COMPUTER SCIENCES, SOCIAL INFORMATICS AND TELECOMMUNICATIONS ENGINEERING 2010. [DOI: 10.1007/978-3-642-14859-0_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
230
|
Kageyama R, Niwa Y, Shimojo H, Kobayashi T, Ohtsuka T. Ultradian oscillations in Notch signaling regulate dynamic biological events. Curr Top Dev Biol 2010; 92:311-31. [PMID: 20816400 DOI: 10.1016/s0070-2153(10)92010-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Notch signaling regulates many dynamic processes; accordingly, expression of genes in this pathway is also dynamic. In mouse embryos, one dynamic process regulated by Notch is somite segmentation, which occurs with a 2-h periodicity. This periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the Notch effector gene Hes7. Loss of Hes7 expression and sustained expression of Hes7 result in identical and severe somite defects, suggesting that Hes7 oscillation is required for proper somite segmentation. Mathematical models of this oscillator have been used to generate and test hypothesis, helping to uncover the role of negative feedback in regulating the oscillator. Oscillations of another Notch effector gene, Hes1, plays an important role in maintenance of neural stem cells. Hes1 expression oscillates with a period of about 2-3h in neural stem cells, whereas sustained Hes1 expression inhibits proliferation and differentiation of these cells, suggesting that Hes1 oscillations are important for their proper activities. Hes1 inhibits its own expression as well as the expression of the proneural gene Neurogenin2 and the Notch ligand Delta1, driving oscillations of these two genes. Delta1 oscillations in turn maintain neural stem cells by mutual activation of Notch signaling, which re-activates Hes1 to close the cycle. Hes1 expression also oscillates in embryonic stem (ES) cells. Cells expressing low and high levels of Hes1 tend to differentiate into neural and mesodermal cells, respectively. Furthermore, Hes1-null ES cells display early and uniform neural differentiation, indicating that Hes1 oscillations act to promote multipotency by generating heterogeneity in both the differentiation timing and the fate choice. Taken together, these results suggest that Notch signaling can drive short-period oscillatory expression of Hes7 and Hes1 (ultradian oscillation) and that ultradian oscillations are important for many biological events.
Collapse
|
231
|
|
232
|
Abstract
Cellular rhythms represent a field of choice for studies in system biology. The examples of circadian rhythms and of the cell cycle show how the experimental and modeling approaches contribute to clarify the conditions in which periodic behavior spontaneously arises in regulatory networks at the cellular level. Circadian rhythms originate from intertwined positive and negative feedback loops controlling the expression of several clock genes. Models can be used to address the dynamical bases of physiological disorders related to dysfunctions of the mammalian circadian clock. The cell cycle is driven by a network of cyclin-dependent kinases (Cdks). Modeled in the form of four modules coupled through multiple regulatory interactions, the Cdk network operates in an oscillatory manner in the presence of sufficient amounts of growth factor. For circadian rhythms and the cell cycle, as for other recently observed cellular rhythms, periodic behavior represents an emergent property of biological systems related to their regulatory structure.
Collapse
Affiliation(s)
- Albert Goldbeter
- Unité de chronobiologie théorique, Université Libre de Bruxelles, Campus Plaine, CP 231, B-1050 Bruxelles, Belgique.
| | | | | |
Collapse
|
233
|
Stauber M, Sachidanandan C, Morgenstern C, Ish-Horowicz D. Differential axial requirements for lunatic fringe and Hes7 transcription during mouse somitogenesis. PLoS One 2009; 4:e7996. [PMID: 19956724 PMCID: PMC2776510 DOI: 10.1371/journal.pone.0007996] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 10/28/2009] [Indexed: 12/19/2022] Open
Abstract
Vertebrate segmentation is regulated by the “segmentation clock”, which drives cyclic expression of several genes in the caudal presomitic mesoderm (PSM). One such gene is Lunatic fringe (Lfng), which encodes a modifier of Notch signalling, and which is also expressed in a stripe at the cranial end of the PSM, adjacent to the newly forming somite border. We have investigated the functional requirements for these modes of Lfng expression during somitogenesis by generating mice in which Lfng is expressed in the cranial stripe but strongly reduced in the caudal PSM, and find that requirements for Lfng activity alter during axial growth. Formation of cervical, thoracic and lumbar somites/vertebrae, but not sacral and adjacent tail somites/vertebrae, depends on caudal, cyclic Lfng expression. Indeed, the sacral region segments normally in the complete absence of Lfng and shows a reduced requirement for another oscillating gene, Hes7, indicating that the architecture of the clock alters as segmentation progresses. We present evidence that Lfng controls dorsal-ventral axis specification in the tail, and also suggest that Lfng controls the expression or activity of a long-range signal that regulates axial extension.
Collapse
Affiliation(s)
- Michael Stauber
- Developmental Genetics Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Chetana Sachidanandan
- Developmental Genetics Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - Christina Morgenstern
- Developmental Genetics Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
| | - David Ish-Horowicz
- Developmental Genetics Laboratory, Cancer Research UK, London Research Institute, London, United Kingdom
- * E-mail:
| |
Collapse
|
234
|
Mutations in the human naked cuticle homolog NKD1 found in colorectal cancer alter Wnt/Dvl/beta-catenin signaling. PLoS One 2009; 4:e7982. [PMID: 19956716 PMCID: PMC2776356 DOI: 10.1371/journal.pone.0007982] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Accepted: 10/19/2009] [Indexed: 12/27/2022] Open
Abstract
Background Mutation of Wnt signal antagonists Apc or Axin activates β-catenin signaling in many cancers including the majority of human colorectal adenocarcinomas. The phenotype of apc or axin mutation in the fruit fly Drosophila melanogaster is strikingly similar to that caused by mutation in the segment-polarity gene, naked cuticle (nkd). Nkd inhibits Wnt signaling by binding to the Dishevelled (Dsh/Dvl) family of scaffold proteins that link Wnt receptor activation to β-catenin accumulation and TCF-dependent transcription, but human NKD genes have yet to be directly implicated in cancer. Methodology/Principal Findings We identify for the first time mutations in NKD1 - one of two human nkd homologs - in a subset of DNA mismatch repair-deficient colorectal tumors that are not known to harbor mutations in other Wnt-pathway genes. The mutant Nkd1 proteins are defective at inhibiting Wnt signaling; in addition, the mutant Nkd1 proteins stabilize β-catenin and promote cell proliferation, in part due to a reduced ability of each mutant Nkd1 protein to bind and destabilize Dvl proteins. Conclusions/Significance Our data raise the hypothesis that specific NKD1 mutations promote Wnt-dependent tumorigenesis in a subset of DNA mismatch-repair-deficient colorectal adenocarcinomas and possibly other Wnt-signal driven human cancers.
Collapse
|
235
|
Ferjentsik Z, Hayashi S, Dale JK, Bessho Y, Herreman A, De Strooper B, del Monte G, de la Pompa JL, Maroto M. Notch is a critical component of the mouse somitogenesis oscillator and is essential for the formation of the somites. PLoS Genet 2009; 5:e1000662. [PMID: 19779553 PMCID: PMC2739441 DOI: 10.1371/journal.pgen.1000662] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 08/26/2009] [Indexed: 11/25/2022] Open
Abstract
Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways. The literature contains controversial reports as to the absolute role(s) of Notch signalling during the process of somite formation. Recent data in the zebrafish have suggested that the only role of Notch signalling is to synchronise clock gene oscillations across the PSM and that somite formation can continue in the absence of Notch activity. However, it is not clear in the mouse if an FGF/Wnt-based oscillator is sufficient to generate segmented structures, such as the somites, in the absence of all Notch activity. We have investigated the requirement for Notch signalling in the mouse somitogenesis clock by analysing embryos carrying a mutation in different components of the Notch pathway, such as Lunatic fringe (Lfng), Hes7, Rbpj, and presenilin1/presenilin2 (Psen1/Psen2), and by pharmacological blocking of the Notch pathway. In contrast to the fish studies, we show that mouse embryos lacking all Notch activity do not show oscillatory activity, as evidenced by the absence of waves of clock gene expression across the PSM, and they do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for the formation of a segmented body axis. Vertebrate animals generate their segmented body plan during embryogenesis. These embryonic segments, or somites, form one after another from tissue at the tail end of the embryo in a highly regulated process controlled by a molecular oscillator. This oscillator drives the expression of a group of genes in this tissue and determines the periodicity of somite formation. To date the genes regulated by this molecular clock comprise components of the Notch, Wnt, and FGF pathways. Recent data in the zebrafish embryo have suggested that the only role of Notch signalling in this process is to synchronise gene oscillations between neighbouring cells and that somite formation can continue in the absence of Notch activity. However, we show that mouse embryos lacking all Notch activity do not show oscillatory activity and do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for building a segmented body axis.
Collapse
Affiliation(s)
- Zoltan Ferjentsik
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Shinichi Hayashi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - J. Kim Dale
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Yasumasa Bessho
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - An Herreman
- Department of Molecular and Developmental Genetics, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Center for Human Genetics, KULeuven, Leuven, Belgium
| | - Bart De Strooper
- Department of Molecular and Developmental Genetics, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Center for Human Genetics, KULeuven, Leuven, Belgium
| | - Gonzalo del Monte
- Cardiovascular Developmental Biology Department, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Jose Luis de la Pompa
- Cardiovascular Developmental Biology Department, Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Miguel Maroto
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
- * E-mail:
| |
Collapse
|
236
|
Baker RE, Schnell S, Maini PK. Waves and patterning in developmental biology: vertebrate segmentation and feather bud formation as case studies. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2009; 53:783-94. [PMID: 19557684 DOI: 10.1387/ijdb.072493rb] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this article we will discuss the integration of developmental patterning mechanisms with waves of competency that control the ability of a homogeneous field of cells to react to pattern forming cues and generate spatially heterogeneous patterns. We base our discussion around two well known patterning events that take place in the early embryo: somitogenesis and feather bud formation. We outline mathematical models to describe each patterning mechanism, present the results of numerical simulations and discuss the validity of each model in relation to our example patterning processes.
Collapse
Affiliation(s)
- Ruth E Baker
- Centre for Mathematical Biology, University of Oxford, UK.
| | | | | |
Collapse
|
237
|
Ben-Tabou de-Leon S, Davidson EH. Experimentally based sea urchin gene regulatory network and the causal explanation of developmental phenomenology. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2009; 1:237-246. [PMID: 20228891 PMCID: PMC2836836 DOI: 10.1002/wsbm.24] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene regulatory networks for development underlie cell fate specification and differentiation. Network topology, logic and dynamics can be obtained by thorough experimental analysis. Our understanding of the gene regulatory network controlling endomesoderm specification in the sea urchin embryo has attained an advanced level such that it explains developmental phenomenology. Here we review how the network explains the mechanisms utilized in development to control the formation of dynamic expression patterns of transcription factors and signaling molecules. The network represents the genomic program controlling timely activation of specification and differentiation genes in the correct embryonic lineages. It can also be used to study evolution of body plans. We demonstrate how comparing the sea urchin gene regulatory network to that of the sea star and to that of later developmental stages in the sea urchin, reveals mechanisms underlying the origin of evolutionary novelty. The experimentally based gene regulatory network for endomesoderm specification in the sea urchin embryo provides unique insights into the system level properties of cell fate specification and its evolution.
Collapse
Affiliation(s)
| | - Eric H Davidson
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
238
|
González A, Kageyama R. Hopf bifurcation in the presomitic mesoderm during the mouse segmentation. J Theor Biol 2009; 259:176-89. [DOI: 10.1016/j.jtbi.2009.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 01/13/2023]
|
239
|
Abstract
Although a common approach in large vertebrate embryos such as chick or frog, manipulation at the tissue level is only rarely applied to zebrafish embryos. Despite its relatively small size, the zebrafish embryo can be readily used for micromanipulations such as tissue and organ primordium transplantation, explantation, and microbead implantation, to study inductive tissue interactions and tissue autonomy of pleiotropic, mutant phenotypes or to isolate tissue for organotypic and primary cell culture or RNA isolation. Since this requires special handling techniques, tools, and tricks, which are rarely published and thus difficult to apply without hands-on demonstration, this article provides detailed instructions and protocols on tissue micromanipulation. The goal is to introduce a broader scientific audience to these surgical techniques, which can be applied to a wide range of questions and used as a starting point for many downstream applications in the genetically tractable zebrafish embryo.
Collapse
|
240
|
Gibb S, Zagorska A, Melton K, Tenin G, Vacca I, Trainor P, Maroto M, Dale JK. Interfering with Wnt signalling alters the periodicity of the segmentation clock. Dev Biol 2009; 330:21-31. [PMID: 19272372 PMCID: PMC2686089 DOI: 10.1016/j.ydbio.2009.02.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 02/25/2009] [Accepted: 02/26/2009] [Indexed: 01/03/2023]
Abstract
Somites are embryonic precursors of the ribs, vertebrae and certain dermis tissue. Somite formation is a periodic process regulated by a molecular clock which drives cyclic expression of a number of clock genes in the presomitic mesoderm. To date the mechanism regulating the period of clock gene oscillations is unknown. Here we show that chick homologues of the Wnt pathway genes that oscillate in mouse do not cycle across the chick presomitic mesoderm. Strikingly we find that modifying Wnt signalling changes the period of Notch driven oscillations in both mouse and chick but these oscillations continue. We propose that the Wnt pathway is a conserved mechanism that is involved in regulating the period of cyclic gene oscillations in the presomitic mesoderm.
Collapse
Affiliation(s)
- Sarah Gibb
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Anna Zagorska
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Kristin Melton
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
- Cincinnati Children's Hospital Medical Center, Division of Neonatology 3333 Burnet Avenue, ML#7009 Cincinnati, OH 45229, USA
| | - Gennady Tenin
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Irene Vacca
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - Paul Trainor
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
- University of Kansas School of Medicine, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Miguel Maroto
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| | - J. Kim Dale
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland, UK
| |
Collapse
|
241
|
Sansom SN, Griffiths DS, Faedo A, Kleinjan DJ, Ruan Y, Smith J, van Heyningen V, Rubenstein JL, Livesey FJ. The level of the transcription factor Pax6 is essential for controlling the balance between neural stem cell self-renewal and neurogenesis. PLoS Genet 2009; 5:e1000511. [PMID: 19521500 PMCID: PMC2686252 DOI: 10.1371/journal.pgen.1000511] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 05/12/2009] [Indexed: 11/18/2022] Open
Abstract
Neural stem cell self-renewal, neurogenesis, and cell fate determination are processes that control the generation of specific classes of neurons at the correct place and time. The transcription factor Pax6 is essential for neural stem cell proliferation, multipotency, and neurogenesis in many regions of the central nervous system, including the cerebral cortex. We used Pax6 as an entry point to define the cellular networks controlling neural stem cell self-renewal and neurogenesis in stem cells of the developing mouse cerebral cortex. We identified the genomic binding locations of Pax6 in neocortical stem cells during normal development and ascertained the functional significance of genes that we found to be regulated by Pax6, finding that Pax6 positively and directly regulates cohorts of genes that promote neural stem cell self-renewal, basal progenitor cell genesis, and neurogenesis. Notably, we defined a core network regulating neocortical stem cell decision-making in which Pax6 interacts with three other regulators of neurogenesis, Neurog2, Ascl1, and Hes1. Analyses of the biological function of Pax6 in neural stem cells through phenotypic analyses of Pax6 gain- and loss-of-function mutant cortices demonstrated that the Pax6-regulated networks operating in neural stem cells are highly dosage sensitive. Increasing Pax6 levels drives the system towards neurogenesis and basal progenitor cell genesis by increasing expression of a cohort of basal progenitor cell determinants, including the key transcription factor Eomes/Tbr2, and thus towards neurogenesis at the expense of self-renewal. Removing Pax6 reduces cortical stem cell self-renewal by decreasing expression of key cell cycle regulators, resulting in excess early neurogenesis. We find that the relative levels of Pax6, Hes1, and Neurog2 are key determinants of a dynamic network that controls whether neural stem cells self-renew, generate cortical neurons, or generate basal progenitor cells, a mechanism that has marked parallels with the transcriptional control of embryonic stem cell self-renewal.
Collapse
Affiliation(s)
- Stephen N. Sansom
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Dean S. Griffiths
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Andrea Faedo
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, California, United States of America
| | - Dirk-Jan Kleinjan
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Youlin Ruan
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, California, United States of America
| | - James Smith
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Veronica van Heyningen
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - John L. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California at San Francisco, San Francisco, California, United States of America
| | - Frederick J. Livesey
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
242
|
Kageyama R, Niwa Y, Shimojo H. Rhythmic gene expression in somite formation and neural development. Mol Cells 2009; 27:497-502. [PMID: 19466597 DOI: 10.1007/s10059-009-0068-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Accepted: 03/20/2009] [Indexed: 01/19/2023] Open
Abstract
In mouse embryos, somite formation occurs every two hours, and this periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 expression oscillates by negative feedback and is cooperatively regulated by Fgf and Notch signaling. Both loss of expression and sustained expression of Hes7 result in severe somite fusion, suggesting that Hes7 oscillation is required for proper somite segmentation. Expression of a related gene, Hes1, also oscillates by negative feedback with a period of about two hours in many cell types such as neural progenitor cells. Hes1 is required for maintenance of neural progenitor cells, but persistent Hes1 expression inhibits proliferation and differentiation of these cells, suggesting that Hes1 oscillation is required for their proper activities. Hes1 oscillation regulates cyclic expression of the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta1, which in turn lead to maintenance of neural progenitor cells by mutual activation of Notch signaling. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) plays an important role in many biological events.
Collapse
|
243
|
Lewis J, Hanisch A, Holder M. Notch signaling, the segmentation clock, and the patterning of vertebrate somites. J Biol 2009; 8:44. [PMID: 19486506 PMCID: PMC2688916 DOI: 10.1186/jbiol145] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The Notch signaling pathway has multifarious functions in the organization of the developing vertebrate embryo. One of its most fundamental roles is in the emergence of the regular pattern of somites that will give rise to the musculoskeletal structures of the trunk. The parts it plays in the early operation of the segmentation clock and the later definition and differentiation of the somites are beginning to be understood.
Collapse
Affiliation(s)
- Julian Lewis
- Vertebrate Development Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, UK.
| | | | | |
Collapse
|
244
|
Hayashi S, Shimoda T, Nakajima M, Tsukada Y, Sakumura Y, Dale JK, Maroto M, Kohno K, Matsui T, Bessho Y. Sprouty4, an FGF inhibitor, displays cyclic gene expression under the control of the notch segmentation clock in the mouse PSM. PLoS One 2009; 4:e5603. [PMID: 19440349 PMCID: PMC2680047 DOI: 10.1371/journal.pone.0005603] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 04/22/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND During vertebrate embryogenesis, somites are generated at regular intervals, the temporal and spatial periodicity of which is governed by a gradient of fibroblast growth factor (FGF) and/or Wnt signaling activity in the presomitic mesoderm (PSM) in conjunction with oscillations of gene expression of components of the Notch, Wnt and FGF signaling pathways. PRINCIPAL FINDINGS Here, we show that the expression of Sprouty4, which encodes an FGF inhibitor, oscillates in 2-h cycles in the mouse PSM in synchrony with other oscillating genes from the Notch signaling pathway, such as lunatic fringe. Sprouty4 does not oscillate in Hes7-null mutant mouse embryos, and Hes7 can inhibit FGF-induced transcriptional activity of the Sprouty4 promoter. CONCLUSIONS Thus, periodic expression of Sprouty4 is controlled by the Notch segmentation clock and may work as a mediator that links the temporal periodicity of clock gene oscillations with the spatial periodicity of boundary formation which is regulated by the gradient of FGF/Wnt activity.
Collapse
Affiliation(s)
- Shinichi Hayashi
- Laboratory of Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
- Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Taiju Shimoda
- Laboratory of Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
- Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Masato Nakajima
- Laboratory of Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
- Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Yuki Tsukada
- Laboratory for Systems Biology, Graduate School of Information Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
- Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Yuichi Sakumura
- Laboratory for Systems Biology, Graduate School of Information Science, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
- Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - J. Kim Dale
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Miguel Maroto
- Division of Cell and Developmental Biology, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kenji Kohno
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takaaki Matsui
- Laboratory of Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
- Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), Tokyo, Japan
| | - Yasumasa Bessho
- Laboratory of Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
- Institute for Bioinformatics Research and Development (BIRD), Japan Science and Technology Agency (JST), Tokyo, Japan
| |
Collapse
|
245
|
Sewell W, Sparrow DB, Smith AJ, Gonzalez DM, Rappaport EF, Dunwoodie SL, Kusumi K. Cyclical expression of the Notch/Wnt regulator Nrarp requires modulation by Dll3 in somitogenesis. Dev Biol 2009; 329:400-9. [PMID: 19268448 PMCID: PMC2697309 DOI: 10.1016/j.ydbio.2009.02.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2008] [Revised: 01/19/2009] [Accepted: 02/19/2009] [Indexed: 11/30/2022]
Abstract
Delta-like 3 (Dll3) is a divergent ligand and modulator of the Notch signaling pathway only identified so far in mammals. Null mutations of Dll3 disrupt cycling expression of Notch targets Hes1, Hes5, and Lfng, but not of Hes7. Compared with Dll1 or Notch1, the effects of Dll3 mutations are less severe for gene expression in the presomitic mesoderm, yet severe segmentation phenotypes and vertebral defects result in both human and mouse. Reasoning that Dll3 specifically disrupts key regulators of somite cycling, we carried out functional analysis to identify targets accounting for the segmental phenotype. Using microdissected embryonic tissue from somitic and presomitic mesodermal tissue, we identified new genes enriched in these tissues, including Limch1, Rhpn2, and A130022J15Rik. Surprisingly, we only identified a small number of genes disrupted by the Dll3 mutation. These include Uncx, a somite gene required for rib and vertebral patterning, and Nrarp, a regulator of Notch/Wnt signaling in zebrafish and a cycling gene in mouse. To determine the effects of Dll3 mutation on Nrarp, we characterized the cycling expression of this gene from early (8.5 dpc) to late (10.5 dpc) somitogenesis. Nrarp displays a distinct pattern of cycling phases when compared to Lfng and Axin2 (a Wnt pathway gene) at 9.5 dpc but appears to be in phase with Lfng by 10.5 dpc. Nrarp cycling appears to require Dll3 but not Lfng modulation. In Dll3 null embryos, Nrarp displayed static patterns. However, in Lfng null embryos, Nrarp appeared static at 8.5 dpc but resumed cycling expression by 9.5 and dynamic expression at 10.5 dpc stages. By contrast, in Wnt3a null embryos, Nrarp expression was completely absent in the presomitic mesoderm. Towards identifying the role of Dll3 in regulating somitogenesis, Nrarp emerges as a potentially important regulator that requires Dll3 but not Lfng for normal function.
Collapse
Affiliation(s)
- William Sewell
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Duncan B. Sparrow
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
| | | | | | - Eric F. Rappaport
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sally L. Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, NSW 2052, Australia
| | - Kenro Kusumi
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Dept. of Basic Medical Sciences, The University of Arizona College of Medicine–Phoenix in partnership with Arizona State University, Phoenix, AZ 85004, USA
| |
Collapse
|
246
|
Burks PJ, Isaacs HV, Pownall ME. FGF signalling modulates transcriptional repression by Xenopus groucho-related-4. Biol Cell 2009; 101:301-8. [PMID: 18983265 DOI: 10.1042/bc20080136] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2025]
Abstract
BACKGROUND INFORMATION Developmental cell signals co-operate in the processes of cell specification and tissue patterning during embryogenesis. Interactions between the FGF (fibroblast growth factor) and Wnt signalling pathways have been demonstrated in a number of developmental processes, including mesoderm formation in amphibian embryos. However, the mechanism underlying the interactions between these key signalling pathways remains unclear. RESULTS In the present study, we find that the ability of TLE4/Xgrg4 (transducin-like enhancer of split 4/Xenopus groucho-related gene 4) to inhibit a transcriptional target of canonical Wnt signalling is reduced in the presence of FGF and that this is partially dependent on a consensus site for MAPK (mitogen-activated protein kinase) phosphorylation in TLE4/Xgrg4. CONCLUSIONS These data suggest to us a novel molecular mechanism where FGF and Wnt signalling pathways interact at the level of the co-repressor TLE4/Xgrg4: the weakening of TLE4/Xgrg4 repression by FGF signalling, combined with the stabilization of beta-catenin by Wnt signals, enhances expression of Wnt target genes.
Collapse
|
247
|
Alvares LE, Winterbottom FL, Rodrigues Sobreira D, Xavier-Neto J, Schubert FR, Dietrich S. Chicken dapper genes are versatile markers for mesodermal tissues, embryonic muscle stem cells, neural crest cells, and neurogenic placodes. Dev Dyn 2009; 238:1166-78. [DOI: 10.1002/dvdy.21950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
248
|
Giampietro PF, Dunwoodie SL, Kusumi K, Pourquié O, Tassy O, Offiah AC, Cornier AS, Alman BA, Blank RD, Raggio CL, Glurich I, Turnpenny PD. Progress in the understanding of the genetic etiology of vertebral segmentation disorders in humans. Ann N Y Acad Sci 2009; 1151:38-67. [PMID: 19154516 DOI: 10.1111/j.1749-6632.2008.03452.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Vertebral malformations contribute substantially to the pathophysiology of kyphosis and scoliosis, common health problems associated with back and neck pain, disability, cosmetic disfigurement, and functional distress. This review explores (1) recent advances in the understanding of the molecular embryology underlying vertebral development and relevance to elucidation of etiologies of several known human vertebral malformation syndromes; (2) outcomes of molecular studies elucidating genetic contributions to congenital and sporadic vertebral malformation; and (3) complex interrelationships between genetic and environmental factors that contribute to the pathogenesis of isolated syndromic and nonsyndromic congenital vertebral malformation. Discussion includes exploration of the importance of establishing improved classification systems for vertebral malformation, future directions in molecular and genetic research approaches to vertebral malformation, and translational value of research efforts to clinical management and genetic counseling of affected individuals and their families.
Collapse
Affiliation(s)
- Philip F Giampietro
- Department of Medical Genetic Services, Marshfield Clinic, 1000 North Oak Avenue, Marshfield, WI 54449, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Zhu D. Semi-supervised gene shaving method for predicting low variation biological pathways from genome-wide data. BMC Bioinformatics 2009; 10 Suppl 1:S54. [PMID: 19208157 PMCID: PMC2648790 DOI: 10.1186/1471-2105-10-s1-s54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND The gene shaving algorithm and many other clustering algorithms identify gene clusters showing high variation across samples. However, gene expression in many signaling pathways show only modest and concordant changes that fail to be identified by these methods. The increasingly available signaling pathway prior knowledge provide new opportunity to solve this problem. RESULTS We propose an innovative semi-supervised gene clustering algorithm, where the original gene shaving algorithm was extended and generalized so that prior knowledge of signaling pathways can be incorporated. Different from other methods, our method identifies gene clusters showing concerted and modest expression variation as well as strong expression correlation. Using available pathway gene sets as prior knowledge, whether complete or incomplete, our algorithm is capable of forming tightly regulated gene clusters showing modest variation across samples. We demonstrate the advantages of our algorithm over the original gene shaving algorithm using two microarray data sets. The stability of the gene clusters was accessed using a jackknife approach. CONCLUSION Our algorithm represents one of the first clustering algorithms that is particularly designed to identify signaling pathways of low and concordant gene expression variation. The discriminating power is achieved by manufacturing a principal component enriched by signaling pathways.
Collapse
Affiliation(s)
- Dongxiao Zhu
- Department of Computer Science, University of New Orleans, New Orleans, LA 70148, USA.
| |
Collapse
|
250
|
Baker RE, Schnell S. How can mathematics help us explore vertebrate segmentation? HFSP JOURNAL 2009; 3:1-5. [PMID: 19649154 DOI: 10.2976/1.3072371] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 12/24/2008] [Indexed: 12/15/2022]
Abstract
Since the discovery of gene products oscillating during the formation of vertebral segments, much attention has been directed toward eluciating the molecular basis of the so-called segmentation clock. What research has told us is, that even in the most simple vertebrates, enormously complicated gene networks act in each cell to give rise to oscillations, and that cell-cell communication synchronizes these oscillations between neighboring cells. A number of theories have been proposed to explain both the initiation and maintenance of oscillations in a single cell and the synchronization of such oscillations between cells. We discuss these theories in this Commentary.
Collapse
|