201
|
Urban-Ciecko J, Wen JA, Parekh PK, Barth AL. Experience-dependent regulation of presynaptic NMDARs enhances neurotransmitter release at neocortical synapses. ACTA ACUST UNITED AC 2014; 22:47-55. [PMID: 25512577 PMCID: PMC4274331 DOI: 10.1101/lm.035741.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sensory experience can selectively alter excitatory synaptic strength at neocortical synapses. The rapid increase in synaptic strength induced by selective whisker stimulation (single-row experience/SRE, where all but one row of whiskers has been removed from the mouse face) is due, at least in part, to the trafficking of AMPA receptors (AMPARs) to the post-synaptic membrane, and is developmentally regulated. How enhanced sensory experience can alter presynaptic release properties in the developing neocortex has not been investigated. Using paired-pulse stimulation at layer 4-2/3 synapses in acute brain slices, we found that presynaptic release probability progressively increases in the spared-whisker barrel column over the first 24 h of SRE. Enhanced release probability can be at least partly attributed to presynaptic NMDA receptors (NMDARs). We find that the influence of presynaptic NMDARs in enhancing EPSC amplitude markedly increases during SRE. This occurs at the same time when recently potentiated synapses become highly susceptible to a NMDAR-dependent form of synaptic depression, during the labile phase of plasticity. Thus, these data show that augmented sensory stimulation can enhance release probability at layer 4-2/3 synapses and enhance the function of presynaptic NMDARs. Because presynaptic NMDARs have been linked to synaptic depression at layer 4-2/3 synapses, we propose that SRE-dependent up-regulation of presynaptic NMDARs is responsible for enhanced synaptic depression during the labile stage of plasticity.
Collapse
Affiliation(s)
- Joanna Urban-Ciecko
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jing A Wen
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Puja K Parekh
- Center for Neuroscience at the University of Pittsburgh, Department of Psychiatry, Pittsburgh, Pennsylvania 15219, USA
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
202
|
Nichols WA, Henderson BJ, Yu C, Parker RL, Richards CI, Lester HA, Miwa JM. Lynx1 shifts α4β2 nicotinic receptor subunit stoichiometry by affecting assembly in the endoplasmic reticulum. J Biol Chem 2014; 289:31423-32. [PMID: 25193667 PMCID: PMC4223341 DOI: 10.1074/jbc.m114.573667] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 08/30/2014] [Indexed: 01/11/2023] Open
Abstract
Glycosylphosphatidylinositol-anchored neurotoxin-like receptor binding proteins, such as lynx modulators, are topologically positioned to exert pharmacological effects by binding to the extracellular portion of nAChRs. These actions are generally thought to proceed when both lynx and the nAChRs are on the plasma membrane. Here, we demonstrate that lynx1 also exerts effects on α4β2 nAChRs within the endoplasmic reticulum. Lynx1 affects assembly of nascent α4 and β2 subunits and alters the stoichiometry of the receptor population that reaches the plasma membrane. Additionally, these data suggest that lynx1 shifts nAChR stoichiometry to low sensitivity (α4)3(β2)2 pentamers primarily through this interaction in the endoplasmic reticulum, rather than solely via direct modulation of activity on the plasma membrane. To our knowledge, these data represent the first test of the hypothesis that a lynx family member, or indeed any glycosylphosphatidylinositol-anchored protein, could act within the cell to alter assembly of a multisubunit protein.
Collapse
Affiliation(s)
- Weston A Nichols
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Brandon J Henderson
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Caroline Yu
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Rell L Parker
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | | | - Henry A Lester
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125
| | - Julie M Miwa
- From the Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, the Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| |
Collapse
|
203
|
Miyata S, Kitagawa H. Mechanisms for modulation of neural plasticity and axon regeneration by chondroitin sulphate. J Biochem 2014; 157:13-22. [PMID: 25381371 DOI: 10.1093/jb/mvu067] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Chondroitin sulphate proteoglycans (CSPGs), consisting of core proteins linked to one or more chondroitin sulphate (CS) chains, are major extracellular matrix (ECM) components of the central nervous system (CNS). Multi-functionality of CSPGs can be explained by the diversity in structure of CS chains that undergo dynamic changes during development and under pathological conditions. CSPGs, together with other ECM components, form mesh-like structures called perineuronal nets around a subset of neurons. Enzymatic digestion or genetic manipulation of CSPGs reactivates neural plasticity in the adult brain and improves regeneration of damaged axons after CNS injury. Recent studies have shown that CSPGs not only act as non-specific physical barriers that prevent rearrangement of synaptic connections but also regulate neural plasticity through specific interaction of CS chains with its binding partners in a manner that depends on the structure of the CS chain.
Collapse
Affiliation(s)
- Shinji Miyata
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan; and Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan; and Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Kobe 658-8558, Japan; and Institute for Advanced Research, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
204
|
|
205
|
Demars MP, Morishita H. Cortical parvalbumin and somatostatin GABA neurons express distinct endogenous modulators of nicotinic acetylcholine receptors. Mol Brain 2014; 7:75. [PMID: 25359633 PMCID: PMC4228157 DOI: 10.1186/s13041-014-0075-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/17/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inhibition from GABAergic interneurons in brain circuits is a critical component of cognitive function. This inhibition is regulated through a diverse network of neuromodulation. A number of recent studies suggest that one of the major regulators of interneuron function is nicotinic acetylcholinergic transmission and dysregulation of both systems is common in psychiatric conditions. However, how nicotinic modulation impacts specific subpopulations of diverse GABAergic interneurons remains in question. One potential way of conferring specificity to the convergence of GABAergic and nicotinic signaling is through the expression of a unique family of nicotinic acetycholine receptor modulators, the Lynx family. The present study sought to identify members of the Lynx family enriched in cortical interneurons and to elucidate subpopulations of GABAergic neurons that express unique nicotinic modulators. RESULTS We utilize double fluorescence in situ hybridization to examine the interneuronal expression of the Lynx family in adult mouse visual cortex. We find that two of the Lynx family members, Lynx1 and Lypd6, are enriched in interneuron populations in cortex. Nearly all parvalbumin interneurons express Lynx1 but we did not detect Lypd6 in this population. Conversely, in somatostatin interneurons Lypd6 was found in a subset localized to deep cortical layers but no somatostatin neurons show detectable levels of Lynx1. Using a combination of genetic and viral manipulations we further show that a subpopulation of deep-layer cortico-cortical long-range somatostatin neurons also express Lypd6. CONCLUSIONS This work shows that distinct subpopulations of GABAergic interneurons express unique Lynx family members. The pattern of expression of Lynx family members within interneurons places them in a unique position to potentially regulate the convergence of GABAergic and nicotinic systems, dysfunction of which are characteristic of psychiatric disorders.
Collapse
Affiliation(s)
- Michael P Demars
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
206
|
Abstract
The closure of developmental critical periods consolidates neural circuitry but also limits recovery from early abnormal sensory experience. Degrading vision by one eye throughout a critical period both perturbs ocular dominance (OD) in primary visual cortex and impairs visual acuity permanently. Yet understanding how binocularity and visual acuity interrelate has proven elusive. Here we demonstrate the plasticity of binocularity and acuity are separable and differentially regulated by the neuronal nogo receptor 1 (NgR1). Mice lacking NgR1 display developmental OD plasticity as adults and their visual acuity spontaneously improves after prolonged monocular deprivation. Restricting deletion of NgR1 to either cortical interneurons or a subclass of parvalbumin (PV)-positive interneurons alters intralaminar synaptic connectivity in visual cortex and prevents closure of the critical period for OD plasticity. However, loss of NgR1 in PV neurons does not rescue deficits in acuity induced by chronic visual deprivation. Thus, NgR1 functions with PV interneurons to limit plasticity of binocularity, but its expression is required more extensively within brain circuitry to limit improvement of visual acuity following chronic deprivation.
Collapse
|
207
|
Priebe NJ, McGee AW. Mouse vision as a gateway for understanding how experience shapes neural circuits. Front Neural Circuits 2014; 8:123. [PMID: 25324730 PMCID: PMC4183107 DOI: 10.3389/fncir.2014.00123] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/18/2014] [Indexed: 01/28/2023] Open
Abstract
Genetic programs controlling ontogeny drive many of the essential connectivity patterns within the brain. Yet it is activity, derived from the experience of interacting with the world, that sculpts the precise circuitry of the central nervous system. Such experience-dependent plasticity has been observed throughout the brain but has been most extensively studied in the neocortex. A prime example of this refinement of neural circuitry is found in primary visual cortex (V1), where functional connectivity changes have been observed both during development and in adulthood. The mouse visual system has become a predominant model for investigating the principles that underlie experience-dependent plasticity, given the general conservation of visual neural circuitry across mammals as well as the powerful tools and techniques recently developed for use in rodent. The genetic tractability of mice has permitted the identification of signaling pathways that translate experience-driven activity patterns into changes in circuitry. Further, the accessibility of visual cortex has allowed neural activity to be manipulated with optogenetics and observed with genetically-encoded calcium sensors. Consequently, mouse visual cortex has become one of the dominant platforms to study experience-dependent plasticity.
Collapse
Affiliation(s)
- Nicholas J Priebe
- Section of Neurobiology, School of Biological Sciences, University of Texas at Austin Austin, TX, USA
| | - Aaron W McGee
- Developmental Neuroscience Program, Saban Research Institute, Children's Hospital of Los Angeles, Department of Pediatrics, Keck School of Medicine, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
208
|
Takesian AE, Hensch TK. Balancing plasticity/stability across brain development. PROGRESS IN BRAIN RESEARCH 2014; 207:3-34. [PMID: 24309249 DOI: 10.1016/b978-0-444-63327-9.00001-1] [Citation(s) in RCA: 397] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potency of the environment to shape brain function changes dramatically across the lifespan. Neural circuits exhibit profound plasticity during early life and are later stabilized. A focus on the cellular and molecular bases of these developmental trajectories has begun to unravel mechanisms, which control the onset and closure of such critical periods. Two important concepts have emerged from the study of critical periods in the visual cortex: (1) excitatory-inhibitory circuit balance is a trigger; and (2) molecular "brakes" limit adult plasticity. The onset of the critical period is determined by the maturation of specific GABA circuits. Targeting these circuits using pharmacological or genetic approaches can trigger premature onset or induce a delay. These manipulations are so powerful that animals of identical chronological age may be at the peak, before, or past their plastic window. Thus, critical period timing per se is plastic. Conversely, one of the outcomes of normal development is to stabilize the neural networks initially sculpted by experience. Rather than being passively lost, the brain's intrinsic potential for plasticity is actively dampened. This is demonstrated by the late expression of brake-like factors, which reversibly limit excessive circuit rewiring beyond a critical period. Interestingly, many of these plasticity regulators are found in the extracellular milieu. Understanding why so many regulators exist, how they interact and, ultimately, how to lift them in noninvasive ways may hold the key to novel therapies and lifelong learning.
Collapse
Affiliation(s)
- Anne E Takesian
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
209
|
Kang JI, Huppé-Gourgues F, Vaucher E. Boosting visual cortex function and plasticity with acetylcholine to enhance visual perception. Front Syst Neurosci 2014; 8:172. [PMID: 25278848 PMCID: PMC4167004 DOI: 10.3389/fnsys.2014.00172] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 08/31/2014] [Indexed: 11/29/2022] Open
Abstract
The cholinergic system is a potent neuromodulatory system that plays critical roles in cortical plasticity, attention and learning. In this review, we propose that the cellular effects of acetylcholine (ACh) in the primary visual cortex during the processing of visual inputs might induce perceptual learning; i.e., long-term changes in visual perception. Specifically, the pairing of cholinergic activation with visual stimulation increases the signal-to-noise ratio, cue detection ability and long-term facilitation in the primary visual cortex. This cholinergic enhancement would increase the strength of thalamocortical afferents to facilitate the treatment of a novel stimulus while decreasing the cortico-cortical signaling to reduce recurrent or top-down modulation. This balance would be mediated by different cholinergic receptor subtypes that are located on both glutamatergic and GABAergic neurons of the different cortical layers. The mechanisms of cholinergic enhancement are closely linked to attentional processes, long-term potentiation (LTP) and modulation of the excitatory/inhibitory balance. Recently, it was found that boosting the cholinergic system during visual training robustly enhances sensory perception in a long-term manner. Our hypothesis is that repetitive pairing of cholinergic and sensory stimulation over a long period of time induces long-term changes in the processing of trained stimuli that might improve perceptual ability. Various non-invasive approaches to the activation of the cholinergic neurons have strong potential to improve visual perception.
Collapse
Affiliation(s)
- Jun Il Kang
- École d'optométrie, Université de Montréal Montréal, QC, Canada ; Département de Neuroscience, Université de Montréal Montréal, QC, Canada
| | | | - Elvire Vaucher
- École d'optométrie, Université de Montréal Montréal, QC, Canada
| |
Collapse
|
210
|
Medini P. Experience-dependent plasticity of visual cortical microcircuits. Neuroscience 2014; 278:367-84. [PMID: 25171791 DOI: 10.1016/j.neuroscience.2014.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/05/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022]
Abstract
The recent decade testified a tremendous increase in our knowledge on how cell-type-specific microcircuits process sensory information in the neocortex and on how such circuitry reacts to manipulations of the sensory environment. Experience-dependent plasticity has now been investigated with techniques endowed with cell resolution during both postnatal development and in adult animals. This review recapitulates the main recent findings in the field using mainly the primary visual cortex as a model system to highlight the more important questions and physiological principles (such as the role of non-competitive mechanisms, the role of inhibition in excitatory cell plasticity, the functional importance of spine and axonal plasticity on a microscale level). I will also discuss on which scientific problems the debate and controversies are more pronounced. New technologies that allow to perturbate cell-type-specific subcircuits will certainly shine new light in the years to come at least on some of the still open questions.
Collapse
Affiliation(s)
- P Medini
- Institutionen för Molekylärbiologi, and Institutionen för Integrativ Medicinsk Biologi (IMB), Fysiologi Avdelning, Umeå Universitet, 90187 Umeå, Sweden.
| |
Collapse
|
211
|
Pielecka-Fortuna J, Wagener RJ, Martens AK, Goetze B, Schmidt KF, Staiger JF, Löwel S. The disorganized visual cortex in reelin-deficient mice is functional and allows for enhanced plasticity. Brain Struct Funct 2014; 220:3449-67. [PMID: 25119525 PMCID: PMC4575689 DOI: 10.1007/s00429-014-0866-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/29/2014] [Indexed: 01/28/2023]
Abstract
A hallmark of neocortical circuits is the segregation of processing streams into six distinct layers. The importance of this layered organization for cortical processing and plasticity is little understood. We investigated the structure, function and plasticity of primary visual cortex (V1) of adult mice deficient for the glycoprotein reelin and their wild-type littermates. In V1 of rl-/- mice, cells with different laminar fates are present at all cortical depths. Surprisingly, the (vertically) disorganized cortex maintains a precise retinotopic (horizontal) organization. Rl-/- mice have normal basic visual capabilities, but are compromised in more challenging perceptual tasks, such as orientation discrimination. Additionally, rl-/- animals learn and memorize a visual task as well as their wild-type littermates. Interestingly, reelin deficiency enhances visual cortical plasticity: juvenile-like ocular dominance plasticity is preserved into late adulthood. The present data offer an important insight into the capabilities of a disorganized cortical system to maintain basic functional properties.
Collapse
Affiliation(s)
- Justyna Pielecka-Fortuna
- Department of Systems Neuroscience, Bernstein Fokus Neurotechnologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Von-Siebold-Str. 6, 37075, Göttingen, Germany.
| | - Robin Jan Wagener
- Institute for Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Ann-Kristin Martens
- Department of Systems Neuroscience, Bernstein Fokus Neurotechnologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Von-Siebold-Str. 6, 37075, Göttingen, Germany
| | - Bianka Goetze
- Department of Systems Neuroscience, Bernstein Fokus Neurotechnologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Von-Siebold-Str. 6, 37075, Göttingen, Germany
| | - Karl-Friedrich Schmidt
- Department of Systems Neuroscience, Bernstein Fokus Neurotechnologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Von-Siebold-Str. 6, 37075, Göttingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, Universitätsmedizin Göttingen, Georg-August-Universität Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany.
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany.
- Collaborative Research Center 889, University of Göttingen, 37075, Göttingen, Germany.
| | - Siegrid Löwel
- Department of Systems Neuroscience, Bernstein Fokus Neurotechnologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität Göttingen, Von-Siebold-Str. 6, 37075, Göttingen, Germany.
- Collaborative Research Center 889, University of Göttingen, 37075, Göttingen, Germany.
| |
Collapse
|
212
|
Ma Y. Relationship between monocularly deprivation and amblyopia rats and visual system development. ASIAN PAC J TROP MED 2014; 7:568-71. [PMID: 25063288 DOI: 10.1016/s1995-7645(14)60095-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/15/2014] [Accepted: 06/15/2014] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To explore the changes of lateral geniculate body and visual cortex in monocular strabismus and form deprived amblyopic rat, and visual development plastic stage and visual plasticity in adult rats. METHODS A total of 60 SD rats ages 13 d were randomly divided into A, B, C three groups with 20 in each group, group A was set as the normal control group without any processing, group B was strabismus amblyopic group, using the unilateral extraocular rectus resection to establish the strabismus amblyopia model, group C was monocular form deprivation amblyopia group using unilateral eyelid edge resection + lid suture. At visual developmental early phase (P25), meta phase (P35), late phase (P45) and adult phase (P120), the lateral geniculate body and visual cortex area 17 of five rats in each group were exacted for C-fos Immunocytochemistry. Neuron morphological changes in lateral geniculate body and visual cortex was observed, the positive neurons differences of C-fos expression induced by light stimulation was measured in each group, and the condition of radiation development of P120 amblyopic adult rats was observed. RESULTS In groups B and C, C-fos positive cells were significantly lower than the control group at P25 (P<0.05), there was no statistical difference of C-fos protein positive cells between group B and group A (P>0.05), C-fos protein positive cells level of group B was significantly lower than that of group A (P<0.05). The binoculus C-fos protein positive cells level of groups B and C were significantly higher than that of control group at P35, P45 and P120 with statistically significant differences (P<0.05). CONCLUSIONS The increasing of C-fos expression in geniculate body and visual cortex neurons of adult amblyopia suggests the visual cortex neurons exist a certain degree of visual plasticity.
Collapse
Affiliation(s)
- Yu Ma
- Department of Ophthalmology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
213
|
Kobayashi A, Parker RL, Wright AP, Brahem H, Ku P, Oliver KM, Walz A, Lester HA, Miwa JM. Lynx1 supports neuronal health in the mouse dorsal striatum during aging: an ultrastructural investigation. J Mol Neurosci 2014; 53:525-36. [PMID: 25027556 DOI: 10.1007/s12031-014-0352-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 06/09/2014] [Indexed: 10/25/2022]
Abstract
Nicotinic acetylcholine receptors have been shown to participate in neuroprotection in the aging brain. Lynx protein modulators dampen the activity of the cholinergic system through direct interaction with nicotinic receptors. Although lynx1 null mutant mice exhibit augmented learning and plasticity, they also exhibit macroscopic vacuolation in the dorsal striatum as they age, detectable at the optical microscope level. Despite the relevance of the lynx1 gene to brain function, little is known about the cellular ultrastructure of these age-related changes. In this study, we assessed degeneration in the dorsal striatum in 1-, 3-, 7-, and 13-month-old mice, using optical and transmission electron microscopy. We observed a loss of nerve fibers, a breakdown in nerve fiber bundles, and a loss of neuronal nuclei in the 13-month-old lynx1 null striatum. At higher magnification, these nerve fibers displayed intracellular vacuoles and disordered myelin sheaths. Few or none of these morphological alterations were present in younger lynx1 null mutant mice or in heterozygous lynx1 null mutant mice at any age. These data indicate that neuronal health can be maintained by titrating lynx1 dosage and that the lynx1 gene may participate in a trade-off between neuroprotection and augmented learning.
Collapse
Affiliation(s)
- Atsuko Kobayashi
- Biology Division, California Institute of Technology, MC156-29, 1200 E. California Blvd., Pasadena, CA, 91125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
214
|
Bonaccorsi J, Berardi N, Sale A. Treatment of amblyopia in the adult: insights from a new rodent model of visual perceptual learning. Front Neural Circuits 2014; 8:82. [PMID: 25076874 PMCID: PMC4100600 DOI: 10.3389/fncir.2014.00082] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/27/2014] [Indexed: 11/19/2022] Open
Abstract
Amblyopia is the most common form of impairment of visual function affecting one eye, with a prevalence of about 1–5% of the total world population. Amblyopia usually derives from conditions of early functional imbalance between the two eyes, owing to anisometropia, strabismus, or congenital cataract, and results in a pronounced reduction of visual acuity and severe deficits in contrast sensitivity and stereopsis. It is widely accepted that, due to a lack of sufficient plasticity in the adult brain, amblyopia becomes untreatable after the closure of the critical period in the primary visual cortex. However, recent results obtained both in animal models and in clinical trials have challenged this view, unmasking a previously unsuspected potential for promoting recovery even in adulthood. In this context, non invasive procedures based on visual perceptual learning, i.e., the improvement in visual performance on a variety of simple visual tasks following practice, emerge as particularly promising to rescue discrimination abilities in adult amblyopic subjects. This review will survey recent work regarding the impact of visual perceptual learning on amblyopia, with a special focus on a new experimental model of perceptual learning in the amblyopic rat.
Collapse
Affiliation(s)
- Joyce Bonaccorsi
- Department of Medicine, Institute of Neuroscience CNR, National Research Council (CNR) Pisa, Italy
| | - Nicoletta Berardi
- Department of Medicine, Institute of Neuroscience CNR, National Research Council (CNR) Pisa, Italy ; Department of Psychology, Florence University Florence, Italy
| | - Alessandro Sale
- Department of Medicine, Institute of Neuroscience CNR, National Research Council (CNR) Pisa, Italy
| |
Collapse
|
215
|
Fritschy JM, Panzanelli P. GABAAreceptors and plasticity of inhibitory neurotransmission in the central nervous system. Eur J Neurosci 2014; 39:1845-65. [DOI: 10.1111/ejn.12534] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 01/29/2014] [Accepted: 01/29/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Jean-Marc Fritschy
- Institute of Pharmacology and Toxicology; University of Zurich; Winterthurerstrasse 190 8057 Zurich Switzerland
- Neuroscience Center Zurich; University of Zurich and ETH; Zurich Switzerland
| | - Patrizia Panzanelli
- Department of Neuroscience Rita Levi Montalcini; University of Turin; Turin Italy
| |
Collapse
|
216
|
SLEEPLESS is a bifunctional regulator of excitability and cholinergic synaptic transmission. Curr Biol 2014; 24:621-9. [PMID: 24613312 DOI: 10.1016/j.cub.2014.02.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/15/2014] [Accepted: 02/11/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND Although sleep is conserved throughout evolution, the molecular basis of its control is still largely a mystery. We previously showed that the quiver/sleepless (qvr/sss) gene encodes a membrane-tethered protein that is required for normal sleep in Drosophila. SLEEPLESS (SSS) protein functions, at least in part, by upregulating the levels and open probability of Shaker (Sh) potassium channels to suppress neuronal excitability and enable sleep. Consistent with this proposed mechanism, loss-of-function mutations in Sh phenocopy qvr/sss-null mutants. However, sleep is more genetically modifiable in Sh than in qvr/sss mutants, suggesting that SSS may regulate additional molecules to influence sleep. RESULTS Here we show that SSS also antagonizes nicotinic acetylcholine receptors (nAChRs) to reduce synaptic transmission and promote sleep. Mimicking this antagonism with the nAChR inhibitor mecamylamine or by RNAi knockdown of specific nAChR subunits is sufficient to restore sleep to qvr/sss mutants. Regulation of nAChR activity by SSS occurs posttranscriptionally, since the levels of nAChR mRNAs are unchanged in qvr/sss mutants. Regulation of nAChR activity by SSS may in fact be direct, since SSS forms a stable complex with and antagonizes nAChR function in transfected cells. Intriguingly, lynx1, a mammalian homolog of SSS, can partially restore normal sleep to qvr/sss mutants, and lynx1 can form stable complexes with Shaker-type channels and nAChRs. CONCLUSIONS Together, our data point to an evolutionarily conserved, bifunctional role for SSS and its homologs in controlling excitability and synaptic transmission in fundamental processes of the nervous system such as sleep.
Collapse
|
217
|
Mitchell DE, Duffy KR. The case from animal studies for balanced binocular treatment strategies for human amblyopia. Ophthalmic Physiol Opt 2014; 34:129-45. [DOI: 10.1111/opo.12122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 01/15/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Donald E. Mitchell
- Department of Psychology and Neuroscience; Dalhousie University; Halifax Canada
| | - Kevin R. Duffy
- Department of Psychology and Neuroscience; Dalhousie University; Halifax Canada
| |
Collapse
|
218
|
Strait DL, Kraus N. Biological impact of auditory expertise across the life span: musicians as a model of auditory learning. Hear Res 2014; 308:109-21. [PMID: 23988583 PMCID: PMC3947192 DOI: 10.1016/j.heares.2013.08.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 08/08/2013] [Accepted: 08/11/2013] [Indexed: 01/19/2023]
Abstract
Experience-dependent characteristics of auditory function, especially with regard to speech-evoked auditory neurophysiology, have garnered increasing attention in recent years. This interest stems from both pragmatic and theoretical concerns as it bears implications for the prevention and remediation of language-based learning impairment in addition to providing insight into mechanisms engendering experience-dependent changes in human sensory function. Musicians provide an attractive model for studying the experience-dependency of auditory processing in humans due to their distinctive neural enhancements compared to nonmusicians. We have only recently begun to address whether these enhancements are observable early in life, during the initial years of music training when the auditory system is under rapid development, as well as later in life, after the onset of the aging process. Here we review neural enhancements in musically trained individuals across the life span in the context of cellular mechanisms that underlie learning, identified in animal models. Musicians' subcortical physiologic enhancements are interpreted according to a cognitive framework for auditory learning, providing a model in which to study mechanisms of experience-dependent changes in human auditory function.
Collapse
Affiliation(s)
- Dana L Strait
- Auditory Neuroscience Laboratory, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA; Institute for Neuroscience, Northwestern University, Chicago, IL 60611, USA
| | - Nina Kraus
- Auditory Neuroscience Laboratory, Northwestern University, 2240 Campus Drive, Evanston, IL 60208, USA; Institute for Neuroscience, Northwestern University, Chicago, IL 60611, USA; Department of Communication Sciences, Northwestern University, Evanston, IL 60208, USA; Department of Neurobiology & Physiology, Northwestern University, Evanston, IL 60208, USA; Department of Otolaryngology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
219
|
Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke-induced impairments of plasticity. Proc Natl Acad Sci U S A 2014; 111:1150-5. [PMID: 24395770 DOI: 10.1073/pnas.1313385111] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ocular dominance (OD) plasticity in mouse primary visual cortex (V1) declines during postnatal development and is absent beyond postnatal day 110 if mice are raised in standard cages (SCs). An enriched environment (EE) promotes OD plasticity in adult rats. Here, we explored cellular mechanisms of EE in mouse V1 and the therapeutic potential of EE to prevent impairments of plasticity after a cortical stroke. Using in vivo optical imaging, we observed that monocular deprivation in adult EE mice (i) caused a very strong OD plasticity previously only observed in 4-wk-old animals, (ii) restored already lost OD plasticity in adult SC-raised mice, and (iii) preserved OD plasticity after a stroke in the primary somatosensory cortex. Using patch-clamp electrophysiology in vitro, we also show that (iv) local inhibition was significantly reduced in V1 slices of adult EE mice and (v) the GABA/AMPA ratio was like that in 4-wk-old SC-raised animals. These observations were corroborated by in vivo analyses showing that diazepam treatment significantly reduced the OD shift of EE mice after monocular deprivation. Taken together, EE extended the sensitive phase for OD plasticity into late adulthood, rejuvenated V1 after 4 mo of SC-rearing, and protected adult mice from stroke-induced impairments of cortical plasticity. The EE effect was mediated most likely by preserving low juvenile levels of inhibition into adulthood, which potentially promoted adaptive changes in cortical circuits.
Collapse
|
220
|
Sale A, Berardi N, Maffei L. Environment and Brain Plasticity: Towards an Endogenous Pharmacotherapy. Physiol Rev 2014; 94:189-234. [DOI: 10.1152/physrev.00036.2012] [Citation(s) in RCA: 265] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Brain plasticity refers to the remarkable property of cerebral neurons to change their structure and function in response to experience, a fundamental theoretical theme in the field of basic research and a major focus for neural rehabilitation following brain disease. While much of the early work on this topic was based on deprivation approaches relying on sensory experience reduction procedures, major advances have been recently obtained using the conceptually opposite paradigm of environmental enrichment, whereby an enhanced stimulation is provided at multiple cognitive, sensory, social, and motor levels. In this survey, we aim to review past and recent work concerning the influence exerted by the environment on brain plasticity processes, with special emphasis on the underlying cellular and molecular mechanisms and starting from experimental work on animal models to move to highly relevant work performed in humans. We will initiate introducing the concept of brain plasticity and describing classic paradigmatic examples to illustrate how changes at the level of neuronal properties can ultimately affect and direct key perceptual and behavioral outputs. Then, we describe the remarkable effects elicited by early stressful conditions, maternal care, and preweaning enrichment on central nervous system development, with a separate section focusing on neurodevelopmental disorders. A specific section is dedicated to the striking ability of environmental enrichment and physical exercise to empower adult brain plasticity. Finally, we analyze in the last section the ever-increasing available knowledge on the effects elicited by enriched living conditions on physiological and pathological aging brain processes.
Collapse
Affiliation(s)
- Alessandro Sale
- Institute of Neuroscience, National Research Council, Pisa, Italy; Department of Psychology, Florence University, Florence, Italy; and Scuola Normale Superiore, Pisa, Italy
| | - Nicoletta Berardi
- Institute of Neuroscience, National Research Council, Pisa, Italy; Department of Psychology, Florence University, Florence, Italy; and Scuola Normale Superiore, Pisa, Italy
| | - Lamberto Maffei
- Institute of Neuroscience, National Research Council, Pisa, Italy; Department of Psychology, Florence University, Florence, Italy; and Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|
221
|
Abstract
Visual circuits mature and are refined by sensory experience. However, significant gaps remain in our understanding how deprivation influences the development of visual acuity in mice. Here, we perform a longitudinal study assessing the effects of chronic deprivation on the development of the mouse subcortical and cortical visual circuits using a combination of behavioral optomotor testing, in vivo visual evoked responses (VEP) and single-unit cortical recordings. As previously reported, orientation tuning was degraded and onset of ocular dominance plasticity was delayed and remained open in chronically deprived mice. Surprisingly, we found that the development of optomotor threshold and VEP acuity can occur in an experience-independent manner, although at a significantly slower rate. Moreover, monocular deprivation elicited amblyopia only during a discrete period of development in the dark. The rate of recovery of optomotor threshold upon exposure of deprived mice to light confirmed a maturational transition regardless of visual input. Together our results revealed a dissociable developmental trajectory for visual receptive-field properties in dark-reared mice suggesting a differential role for spontaneous activity within thalamocortical and intracortical circuits.
Collapse
|
222
|
Maya-Vetencourt JF, Pizzorusso T. Molecular mechanisms at the basis of plasticity in the developing visual cortex: epigenetic processes and gene programs. J Exp Neurosci 2013; 7:75-83. [PMID: 25157210 PMCID: PMC4089832 DOI: 10.4137/jen.s12958] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Neuronal circuitries in the mammalian visual system change as a function of experience. Sensory experience modifies neuronal networks connectivity via the activation of different physiological processes such as excitatory/inhibitory synaptic transmission, neurotrophins, and signaling of extracellular matrix molecules. Long-lasting phenomena of plasticity occur when intracellular signal transduction pathways promote epigenetic alterations of chromatin structure that regulate the induction of transcription factors that in turn drive the expression of downstream targets, the products of which then work via the activation of structural and functional mechanisms that modify synaptic connectivity. Here, we review recent findings in the field of visual cortical plasticity while focusing on how physiological mechanisms associated with experience promote structural changes that determine functional modifications of neural circuitries in V1. We revise the role of microRNAs as molecular transducers of environmental stimuli and the role of immediate early genes that control gene expression programs underlying plasticity in the developing visual cortex.
Collapse
Affiliation(s)
- José Fernando Maya-Vetencourt
- Centre for Nanotechnology Innovation, Piazza San Silvestro 12, 56127 Pisa, Italy. ; Centre for Neuroscience and Cognitive Systems, Corso Bettini 31, 38068 Rovereto, Italian Institute of Technology, Italy
| | - Tommaso Pizzorusso
- CNR Neuroscience Institute, Via Moruzzi 1, 56124 Pisa, Italy. ; Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA, University of Florence, Via San Salvi 12, 50135 Florence, Italy
| |
Collapse
|
223
|
A theory of the transition to critical period plasticity: inhibition selectively suppresses spontaneous activity. Neuron 2013; 80:51-63. [PMID: 24094102 DOI: 10.1016/j.neuron.2013.07.022] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2013] [Indexed: 11/20/2022]
Abstract
What causes critical periods (CPs) to open? For the best-studied case, ocular dominance plasticity in primary visual cortex in response to monocular deprivation (MD), the maturation of inhibition is necessary and sufficient. How does inhibition open the CP? We present a theory: the transition from pre-CP to CP plasticity arises because inhibition preferentially suppresses responses to spontaneous relative to visually driven input activity, switching learning cues from internal to external sources. This differs from previous proposals in (1) arguing that the CP can open without changes in plasticity mechanisms when activity patterns become more sensitive to sensory experience through circuit development, and (2) explaining not simply a transition from no plasticity to plasticity, but a change in outcome of MD-induced plasticity from pre-CP to CP. More broadly, hierarchical organization of sensory-motor pathways may develop through a cascade of CPs induced as circuit maturation progresses from "lower" to "higher" cortical areas.
Collapse
|
224
|
Activity-dependent NPAS4 expression and the regulation of gene programs underlying plasticity in the central nervous system. Neural Plast 2013; 2013:683909. [PMID: 24024041 PMCID: PMC3759247 DOI: 10.1155/2013/683909] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 07/09/2013] [Indexed: 11/17/2022] Open
Abstract
The capability of the brain to change functionally in response to sensory experience is most active during early stages of development but it decreases later in life when major alterations of neuronal network structures no longer take place in response to experience. This view has been recently challenged by experimental strategies based on the enhancement of environmental stimulation levels, genetic manipulations, and pharmacological treatments, which all have demonstrated that the adult brain retains a degree of plasticity that allows for a rewiring of neuronal circuitries over the entire life course. A hot spot in the field of neuronal plasticity centres on gene programs that underlie plastic phenomena in adulthood. Here, I discuss the role of the recently discovered neuronal-specific and activity-dependent transcription factor NPAS4 as a critical mediator of plasticity in the nervous system. A better understanding of how modifications in the connectivity of neuronal networks occur may shed light on the treatment of pathological conditions such as brain damage or disease in adult life, some of which were once considered untreatable.
Collapse
|
225
|
Neurochemical changes within human early blind occipital cortex. Neuroscience 2013; 252:222-33. [PMID: 23954804 DOI: 10.1016/j.neuroscience.2013.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 01/01/2023]
Abstract
Early blindness results in occipital cortex neurons responding to a wide range of auditory and tactile stimuli. These changes in tuning properties are accompanied by an extensive reorganization of the occipital cortex that includes alterations in anatomical structure, neurochemical and metabolic pathways. Although it has been established in animal models that neurochemical pathways are heavily affected by early visual deprivation, the effects of blindness on these pathways in humans is still not well characterized. Here, using (1)H magnetic resonance spectroscopy in nine early blind and normally sighted subjects, we find that early blindness is associated with higher levels of creatine, choline and myo-Inositol and indications of lower levels of GABA within the occipital cortex. These results suggest that the cross-modal responses associated with early blindness may, at least in part, be driven by changes within occipital biochemical pathways.
Collapse
|
226
|
Abstract
Although training-based auditory cortical plasticity in the adult brain has been previously demonstrated in multiparametric sound domains, neurochemical mechanisms responsible for this form of plasticity are not well understood. In this study, we trained adult rats to identify a target sound stimulus at a specific azimuth angle by using a reward-contingent auditory discrimination task. We found that auditory spatial discrimination training significantly enhanced representation of sound azimuths in the primary auditory cortex, as shown by sharper azimuth-selective curves and more evenly distributed best angles of cortical neurons. Training also facilitated long-term potentiation of field potentials in the primary auditory cortex induced by theta burst stimulation of the white matter. In parallel, there were significant alterations in expression levels of certain cortical GABA(A) and NMDA receptor subunits, resulting in a marked decrease in the level of GABA(A) relative to NMDA receptors. These changes in the expression profile of inhibitory and excitatory neurotransmitter receptor subunits might enhance synaptic transmission, thereby facilitating training-induced cortical plasticity in the spatial domain.
Collapse
|
227
|
Expression of the Ly-6 family proteins Lynx1 and Ly6H in the rat brain is compartmentalized, cell-type specific, and developmentally regulated. Brain Struct Funct 2013; 219:1923-34. [DOI: 10.1007/s00429-013-0611-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 07/08/2013] [Indexed: 12/31/2022]
|
228
|
Gene expression patterns underlying the reinstatement of plasticity in the adult visual system. Neural Plast 2013; 2013:605079. [PMID: 23936678 PMCID: PMC3710606 DOI: 10.1155/2013/605079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 06/10/2013] [Indexed: 12/16/2022] Open
Abstract
The nervous system is highly sensitive to experience during early postnatal life, but this phase of heightened plasticity decreases with age. Recent studies have demonstrated that developmental-like plasticity can be reactivated in the visual cortex of adult animals through environmental or pharmacological manipulations. These findings provide a unique opportunity to study the cellular and molecular mechanisms of adult plasticity. Here we used the monocular deprivation paradigm to investigate large-scale gene expression patterns underlying the reinstatement of plasticity produced by fluoxetine in the adult rat visual cortex. We found changes, confirmed with RT-PCRs, in gene expression in different biological themes, such as chromatin structure remodelling, transcription factors, molecules involved in synaptic plasticity, extracellular matrix, and excitatory and inhibitory neurotransmission. Our findings reveal a key role for several molecules such as the metalloproteases Mmp2 and Mmp9 or the glycoprotein Reelin and open up new insights into the mechanisms underlying the reopening of the critical periods in the adult brain.
Collapse
|
229
|
Tan AYY, Andoni S, Priebe NJ. A spontaneous state of weakly correlated synaptic excitation and inhibition in visual cortex. Neuroscience 2013; 247:364-75. [PMID: 23727451 DOI: 10.1016/j.neuroscience.2013.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 11/18/2022]
Abstract
Cortical spontaneous activity reflects an animal's behavioral state and affects neural responses to sensory stimuli. The correlation between excitatory and inhibitory synaptic input to single neurons is a key parameter in models of cortical circuitry. Recent measurements demonstrated highly correlated synaptic excitation and inhibition during spontaneous "up-and-down" states, during which excitation accounted for approximately 80% of inhibitory variance (Shu et al., 2003; Haider et al., 2006). Here we report in vivo whole-cell estimates of the correlation between excitation and inhibition in the rat visual cortex under pentobarbital anesthesia, during which up-and-down states are absent. Excitation and inhibition are weakly correlated, relative to the up-and-down state: excitation accounts for less than 40% of inhibitory variance. Although these correlations are lower than when the circuit cycles between up-and-down states, both behaviors may arise from the same circuitry. Our observations provide evidence that different correlational patterns of excitation and inhibition underlie different cortical states.
Collapse
Affiliation(s)
- A Y Y Tan
- Center for Perceptual Systems, Section of Neurobiology, School of Biological Sciences, College of Natural Sciences, The University of Texas at Austin, 2400 Speedway, Austin, TX 78705, USA.
| | | | | |
Collapse
|
230
|
Kang JI, Groleau M, Dotigny F, Giguère H, Vaucher E. Visual training paired with electrical stimulation of the basal forebrain improves orientation-selective visual acuity in the rat. Brain Struct Funct 2013; 219:1493-507. [DOI: 10.1007/s00429-013-0582-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/10/2013] [Indexed: 12/25/2022]
|
231
|
Bachatene L, Bharmauria V, Cattan S, Molotchnikoff S. Fluoxetine and serotonin facilitate attractive-adaptation-induced orientation plasticity in adult cat visual cortex. Eur J Neurosci 2013; 38:2065-77. [DOI: 10.1111/ejn.12206] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/26/2013] [Accepted: 02/28/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Lyes Bachatene
- Department of Biological Sciences; University of Montreal; Montreal; QC; Canada
| | - Vishal Bharmauria
- Department of Biological Sciences; University of Montreal; Montreal; QC; Canada
| | - Sarah Cattan
- Department of Biological Sciences; University of Montreal; Montreal; QC; Canada
| | | |
Collapse
|
232
|
Lyukmanova EN, Shulepko MA, Buldakova SL, Kasheverov IE, Shenkarev ZO, Reshetnikov RV, Filkin SY, Kudryavtsev DS, Ojomoko LO, Kryukova EV, Dolgikh DA, Kirpichnikov MP, Bregestovski PD, Tsetlin VI. Water-soluble LYNX1 residues important for interaction with muscle-type and/or neuronal nicotinic receptors. J Biol Chem 2013; 288:15888-99. [PMID: 23585571 DOI: 10.1074/jbc.m112.436576] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human LYNX1, belonging to the Ly6/neurotoxin family of three-finger proteins, is membrane-tethered with a glycosylphosphatidylinositol anchor and modulates the activity of nicotinic acetylcholine receptors (nAChR). Recent preparation of LYNX1 as an individual protein in the form of water-soluble domain lacking glycosylphosphatidylinositol anchor (ws-LYNX1; Lyukmanova, E. N., Shenkarev, Z. O., Shulepko, M. A., Mineev, K. S., D'Hoedt, D., Kasheverov, I. E., Filkin, S. Y., Krivolapova, A. P., Janickova, H., Dolezal, V., Dolgikh, D. A., Arseniev, A. S., Bertrand, D., Tsetlin, V. I., and Kirpichnikov, M. P. (2011) NMR structure and action on nicotinic acetylcholine receptors of water-soluble domain of human LYNX1. J. Biol. Chem. 286, 10618-10627) revealed the attachment at the agonist-binding site in the acetylcholine-binding protein (AChBP) and muscle nAChR but outside it, in the neuronal nAChRs. Here, we obtained a series of ws-LYNX1 mutants (T35A, P36A, T37A, R38A, K40A, Y54A, Y57A, K59A) and examined by radioligand analysis or patch clamp technique their interaction with the AChBP, Torpedo californica nAChR and chimeric receptor composed of the α7 nAChR extracellular ligand-binding domain and the transmembrane domain of α1 glycine receptor (α7-GlyR). Against AChBP, there was either no change in activity (T35A, T37A), slight decrease (K40A, K59A), and even enhancement for the rest mutants (most pronounced for P36A and R38A). With both receptors, many mutants lost inhibitory activity, but the increased inhibition was observed for P36A at α7-GlyR. Thus, there are subtype-specific and common ws-LYNX1 residues recognizing distinct targets. Because ws-LYNX1 was inactive against glycine receptor, its "non-classical" binding sites on α7 nAChR should be within the extracellular domain. Micromolar affinities and fast washout rates measured for ws-LYNX1 and its mutants are in contrast to nanomolar affinities and irreversibility of binding for α-bungarotoxin and similar snake α-neurotoxins also targeting α7 nAChR. This distinction may underlie their different actions, i.e. nAChRs modulation versus irreversible inhibition, for these two types of three-finger proteins.
Collapse
Affiliation(s)
- Ekaterina N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, 117997 Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
Effects of digesting chondroitin sulfate proteoglycans on plasticity in cat primary visual cortex. J Neurosci 2013; 33:234-43. [PMID: 23283337 DOI: 10.1523/jneurosci.2283-12.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Monocular deprivation (MD) during a critical period of postnatal development produces significant changes in the anatomy and physiology of the visual cortex, and the deprived eye becomes amblyopic. Extracellular matrix molecules have a major role in restricting plasticity such that the ability to recover from MD decreases with age. Chondroitin sulfate proteoglycans (CSPGs) act as barriers to cell migration and axon growth. Previous studies showing that degradation of CSPGs by the bacterial enzyme chondroitinase can restore plasticity in the adult rat visual cortex suggest a potential treatment for amblyopia. Here MD was imposed in cats from the start of the critical period until 3.5 months of age. The deprived eye was reopened, the functional architecture of the visual cortex was assessed by optical imaging of intrinsic signals, and chondroitinase was injected into one hemisphere. Imaging was repeated 1 and 2 weeks postinjection, and visually evoked potentials (VEPs) and single-cell activity were recorded. Immunohistochemistry showed that digestion of CSPGs had been successful. After 2 weeks of binocular exposure, some recovery of deprived-eye responses occurred when chondroitinase had been injected into the hemisphere contralateral to that eye; when injected into the ipsilateral hemisphere, no recovery was seen. Deprived-eye VEPs were no larger in the injected hemisphere than in the opposite hemisphere. The small number of neurons dominated by the deprived eye exhibited poor tuning characteristics. These results suggest that despite structural effects of chondroitinase in adult cat V1, plasticity was not sufficiently restored to enable significant functional recovery of the deprived eye.
Collapse
|
234
|
Lövdén M, Wenger E, Mårtensson J, Lindenberger U, Bäckman L. Structural brain plasticity in adult learning and development. Neurosci Biobehav Rev 2013; 37:2296-310. [PMID: 23458777 DOI: 10.1016/j.neubiorev.2013.02.014] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/04/2013] [Accepted: 02/19/2013] [Indexed: 12/31/2022]
Abstract
Recent research using magnetic resonance imaging has documented changes in the adult human brain's grey matter structure induced by alterations in experiential demands. We review this research and relate it to models of brain plasticity from related strands of research, such as work on animal models. This allows us to generate recommendations and predictions for future research that may advance the understanding of the function, sequential progression, and microstructural nature of experience-dependent changes in regional brain volumes. Informed by recent evidence on adult age differences in structural brain plasticity, we show how understanding learning-related changes in human brain structure can expand our knowledge about adult development and aging. We hope that this review will promote research on the mechanisms regulating experience-dependent structural plasticity of the adult human brain.
Collapse
Affiliation(s)
- Martin Lövdén
- Aging Research Center, Karolinska Institutet & Stockholm University, Gävlegatan 16, 113 30 Stockholm, Sweden; Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany.
| | | | | | | | | |
Collapse
|
235
|
Duffy KR, Mitchell DE. Darkness alters maturation of visual cortex and promotes fast recovery from monocular deprivation. Curr Biol 2013; 23:382-6. [PMID: 23416100 DOI: 10.1016/j.cub.2013.01.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/04/2012] [Accepted: 01/03/2013] [Indexed: 11/25/2022]
Abstract
The existence of heightened brain plasticity during critical periods in early postnatal life is a central tenet of developmental sensory neuroscience and helps explain the enduring deficits induced by early abnormal sensory exposure. The human visual disorder amblyopia has been linked to unbalanced visual input to the two eyes in early postnatal visual cortical development and has been modeled in animals by depriving them of patterned visual input to one eye, a procedure known as monocular deprivation (MD). We investigated the possibility that a period of darkness might reset the central visual pathways to a more plastic stage and hence increase the capacity for recovery from early MD. Here we show that a 10 day period of complete darkness reverses maturation of stable cytoskeleton components in kitten visual cortex and also results in rapid elimination of, or even immunity from, visual deficits linked to amblyogenic rearing by MD. The heightened instability of the cytoskeleton induced by darkness likely represents just one of many parallel molecular changes that promote visual recovery, possibly by release of the various brakes on cortical plasticity.
Collapse
Affiliation(s)
- Kevin R Duffy
- Department of Psychology and Neuroscience, Dalhousie University, 1459 Oxford Street, Halifax, NS B3H 4R2, Canada.
| | | |
Collapse
|
236
|
Visual experience and subsequent sleep induce sequential plastic changes in putative inhibitory and excitatory cortical neurons. Proc Natl Acad Sci U S A 2013; 110:3101-6. [PMID: 23300282 DOI: 10.1073/pnas.1208093110] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ocular dominance plasticity in the developing primary visual cortex is initiated by monocular deprivation (MD) and consolidated during subsequent sleep. To clarify how visual experience and sleep affect neuronal activity and plasticity, we continuously recorded extragranular visual cortex fast-spiking (FS) interneurons and putative principal (i.e., excitatory) neurons in freely behaving cats across periods of waking MD and post-MD sleep. Consistent with previous reports in mice, MD induces two related changes in FS interneurons: a response shift in favor of the closed eye and depression of firing. Spike-timing-dependent depression of open-eye-biased principal neuron inputs to FS interneurons may mediate these effects. During post-MD nonrapid eye movement sleep, principal neuron firing increases and becomes more phase-locked to slow wave and spindle oscillations. Ocular dominance (OD) shifts in favor of open-eye stimulation--evident only after post-MD sleep--are proportional to MD-induced changes in FS interneuron activity and to subsequent sleep-associated changes in principal neuron activity. OD shifts are greatest in principal neurons that fire 40-300 ms after neighboring FS interneurons during post-MD slow waves. Based on these data, we propose that MD-induced changes in FS interneurons play an instructive role in ocular dominance plasticity, causing disinhibition among open-eye-biased principal neurons, which drive plasticity throughout the visual cortex during subsequent sleep.
Collapse
|
237
|
Abstract
Brain development in neurodevelopmental disorders has been considered to comprise a sequence of critical periods, and abnormalities occurring during early development have been considered irreversible in adulthood. However, findings in mouse models of neurodevelopmental disorders, including fragile X, Rett syndrome, Down syndrome, and neurofibromatosis type I suggest that it is possible to reverse certain molecular, electrophysiological, and behavioral deficits associated with these disorders in adults by genetic or pharmacological manipulations. Furthermore, recent studies have suggested that critical period-like plasticity can be reactivated in the adult brain by environmental manipulations or by pharmacotherapy. These studies open up a tantalizing possibility that targeted pharmacological treatments in combination with regimes of training or rehabilitation might alleviate or reverse the symptoms of neurodevelopmental disorders even after the end of critical developmental periods. Even though translation from animal experimentation to clinical practice is challenging, these results suggest a rational basis for treatment of neurodevelopmental disorders in adulthood.
Collapse
|
238
|
Sur M, Nagakura I, Chen N, Sugihara H. Mechanisms of plasticity in the developing and adult visual cortex. PROGRESS IN BRAIN RESEARCH 2013; 207:243-54. [PMID: 24309257 DOI: 10.1016/b978-0-444-63327-9.00002-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The visual cortex provides powerful evidence for experience-dependent plasticity during development, and for stimulus and reinforcement-dependent plasticity in adulthood. The synaptic and circuit mechanisms underlying such plasticity are being progressively understood. Increasing evidence supports the hypothesis that plasticity in both the developing and adult visual cortex is initiated by a transient reduction of inhibitory drive, and implemented by persistent changes at excitatory synapses. Developmental plasticity may be induced by alterations in the balance of activity from the two eyes and is implemented by a cascade of signals that lead to feedforward and feedback changes at synapses. Adult plasticity is imposed on mature synapses and requires additional neurotransmitter-dependent mechanisms that alter inhibition and subsequently response gain.
Collapse
Affiliation(s)
- Mriganka Sur
- Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | |
Collapse
|
239
|
Picciotto MR, Kenny PJ. Molecular mechanisms underlying behaviors related to nicotine addiction. Cold Spring Harb Perspect Med 2013; 3:a012112. [PMID: 23143843 PMCID: PMC3530035 DOI: 10.1101/cshperspect.a012112] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tobacco smoking results in more than 5 million deaths each year and accounts for almost 90% of all deaths from lung cancer. Nicotine, the major reinforcing component of tobacco smoke, acts in the brain through the neuronal nicotinic acetylcholine receptors (nAChRs). The nAChRs are allosterically regulated, ligand-gated ion channels consisting of five membrane-spanning subunits. Twelve mammalian α subunits (α2-α10) and β subunits (β2-β4) have been cloned. The predominant nAChR subtypes in mammalian brain are those containing α4 and β2 subunits (denoted as α4β2* nAChRs). The α4β2* nAChRs mediate many behaviors related to nicotine addiction and are the primary targets for currently approved smoking cessation agents. Considering the large number of nAChR subunits in the brain, it is likely that nAChRs containing subunits in addition to α4 and β2 also play a role in tobacco smoking. Indeed, genetic variation in the CHRNA5-CHRNA3-CHRNB4 gene cluster, encoding the α5, α3, and β4 nAChR subunits, respectively, has been shown to increase vulnerability to tobacco dependence and smoking-associated diseases including lung cancer. Moreover, mice in which expression of α5 or β4 subunits has been genetically modified have profoundly altered patterns of nicotine consumption. In addition to the reinforcing properties of nicotine, the effects of nicotine on appetite, attention, and mood are also thought to contribute to establishment and maintenance of the tobacco smoking habit. Here we review recent insights into the behavioral actions of nicotine and the nAChRs subtypes involved, which likely contribute to the development of tobacco dependence in smokers.
Collapse
Affiliation(s)
- Marina R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA.
| | | |
Collapse
|
240
|
Nabel EM, Morishita H. Regulating critical period plasticity: insight from the visual system to fear circuitry for therapeutic interventions. Front Psychiatry 2013; 4:146. [PMID: 24273519 PMCID: PMC3822369 DOI: 10.3389/fpsyt.2013.00146] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/25/2013] [Indexed: 11/13/2022] Open
Abstract
Early temporary windows of heightened brain plasticity called critical periods developmentally sculpt neural circuits and contribute to adult behavior. Regulatory mechanisms of visual cortex development - the preeminent model of experience-dependent critical period plasticity-actively limit adult plasticity and have proved fruitful therapeutic targets to reopen plasticity and rewire faulty visual system connections later in life. Interestingly, these molecular mechanisms have been implicated in the regulation of plasticity in other functions beyond vision. Applying mechanistic understandings of critical period plasticity in the visual cortex to fear circuitry may provide a conceptual framework for developing novel therapeutic tools to mitigate aberrant fear responses in post traumatic stress disorder. In this review, we turn to the model of experience-dependent visual plasticity to provide novel insights for the mechanisms regulating plasticity in the fear system. Fear circuitry, particularly fear memory erasure, also undergoes age-related changes in experience-dependent plasticity. We consider the contributions of molecular brakes that halt visual critical period plasticity to circuitry underlying fear memory erasure. A major molecular brake in the visual cortex, perineuronal net formation, recently has been identified in the development of fear systems that are resilient to fear memory erasure. The roles of other molecular brakes, myelin-related Nogo receptor signaling and Lynx family proteins - endogenous inhibitors for nicotinic acetylcholine receptor, are explored in the context of fear memory plasticity. Such fear plasticity regulators, including epigenetic effects, provide promising targets for therapeutic interventions.
Collapse
Affiliation(s)
- Elisa M Nabel
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | | |
Collapse
|
241
|
Obata K. Synaptic inhibition and γ-aminobutyric acid in the mammalian central nervous system. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2013; 89:139-56. [PMID: 23574805 PMCID: PMC3669732 DOI: 10.2183/pjab.89.139] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 02/25/2013] [Indexed: 05/26/2023]
Abstract
Signal transmission through synapses connecting two neurons is mediated by release of neurotransmitter from the presynaptic axon terminals and activation of its receptor at the postsynaptic neurons. γ-Aminobutyric acid (GABA), non-protein amino acid formed by decarboxylation of glutamic acid, is a principal neurotransmitter at inhibitory synapses of vertebrate and invertebrate nervous system. On one hand glutamic acid serves as a principal excitatory neurotransmitter. This article reviews GABA researches on; (1) synaptic inhibition by membrane hyperpolarization, (2) exclusive localization in inhibitory neurons, (3) release from inhibitory neurons, (4) excitatory action at developmental stage, (5) phenotype of GABA-deficient mouse produced by gene-targeting, (6) developmental adjustment of neural network and (7) neurological/psychiatric disorder. In the end, GABA functions in simple nervous system and plants, and non-amino acid neurotransmitters were supplemented.
Collapse
Affiliation(s)
- Kunihiko Obata
- National Institute for Physiological Sciences, Okazaki, Japan.
| |
Collapse
|
242
|
Spatazza J, Di Lullo E, Joliot A, Dupont E, Moya KL, Prochiantz A. Homeoprotein signaling in development, health, and disease: a shaking of dogmas offers challenges and promises from bench to bed. Pharmacol Rev 2013; 65:90-104. [PMID: 23300132 DOI: 10.1124/pr.112.006577] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Homeoproteins constitute a major class of transcription factors active throughout development and in adulthood. Their membrane transduction properties were discovered over 20 years ago, opening an original field of research in the domain of vector peptides and signal transduction. In early development, homeoprotein transfer participates in tissue patterning, cell/axon guidance, and migration. In the axon guidance model, homeoproteins exert their non-cell autonomous activity through the regulation of translation, in particular, that of nuclear-transcribed mitochondrial mRNAs. An important aspect of these studies on patterning and migration is that homeoproteins sensitize the cells to the action of other growth factors, thus cooperating with established signaling pathways. The role of homeoprotein signaling at later developmental stages is also of interest. In particular, the transfer of homeoprotein Otx2 into parvalbumin-expressing inhibitory neurons (PV-cells) in the visual cortex regulates cortical plasticity. The molecular deciphering of the interaction of Otx2 with binding sites at the surface of PV-cells has allowed the development of a specific Otx2 antagonist that reopens plasticity in the adult cortex and cures mice from experimental amblyopia, a neurodevelopmental disease. Finally, the use of homeoproteins as therapeutic proteins in mouse models of glaucoma and Parkinson disease is reviewed. In the latter case, engrailed homeoproteins protect mesencephalic dopaminergic neurons by increasing the local translation of complex I mitochondrial mRNAs. In conclusion, this review synthesizes 20 years of work on the fundamental and potentially translational aspects of homeoprotein signaling.
Collapse
Affiliation(s)
- Julien Spatazza
- Development and Neuropharmacology Group, College de France, Centre for Interdisciplinary Research in Biology, CNRS UMR 7241/INSERM U1050, Labex Memolife, PSL Research University, Paris, France
| | | | | | | | | | | |
Collapse
|
243
|
Miwa JM, Lester HA, Walz A. Optimizing cholinergic tone through lynx modulators of nicotinic receptors: implications for plasticity and nicotine addiction. Physiology (Bethesda) 2012; 27:187-99. [PMID: 22875450 DOI: 10.1152/physiol.00002.2012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The cholinergic system underlies both adaptive (learning and memory) and nonadaptive (addiction and dependency) behavioral changes through its ability to shape and regulate plasticity. Protein modulators such as lynx family members can fine tune the activity of the cholinergic system and contribute to the graded response of the cholinergic system, stabilizing neural circuitry through direct interaction with nicotinic receptors. Release of this molecular brake can unmask cholinergic-dependent mechanisms in the brain. Lynx proteins have the potential to provide top-down control over plasticity mechanisms, including addictive propensity. If this is indeed the case, then, what regulates the regulator? Transcriptional changes of lynx genes in response to pharmacological, physiological, and pathological alterations are explored in this review.
Collapse
Affiliation(s)
- Julie M Miwa
- California Institute of Technology, Pasadena, California, USA.
| | | | | |
Collapse
|
244
|
Ferchmin PA, Pérez D, Castro Alvarez W, Penzo MA, Maldonado HM, Eterovic VA. γ-Aminobutyric acid type A receptor inhibition triggers a nicotinic neuroprotective mechanism. J Neurosci Res 2012; 91:416-25. [PMID: 23280428 DOI: 10.1002/jnr.23155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 08/09/2012] [Accepted: 09/14/2012] [Indexed: 01/09/2023]
Abstract
Nicotinic acetylcholine receptor (nAChR)-mediated neuroprotection has been implicated in the treatment of neurodegenerative disorders such as Alzheimer's and Parkinson's diseases and hypoxic ischemic events as well as other diseases hallmarked by excitotoxic and apoptotic neuronal death. Several modalities of nicotinic neuroprotection have been reported. However, although this process generally involves α4β2 and α7 subtypes, the underlying mechanisms are largely unknown. Interestingly, both activation and inhibition of α7 nAChRs have been reported to be neuroprotective. We have shown that inhibition of α7 nAChRs protects the function of acute hippocampal slices against excitotoxicity in an α4β2-dependent manner. Neuroprotection was assessed as the prevention of the N-methyl-D-aspartate-dependent loss of the area of population spikes (PSs) in the CA1 area of acute hippocampal slices. Our results support a model in which α7 AChRs control the release of γ-aminobutyric acid (GABA). Blocking either α7 or GABA(A) receptors reduces the inhibitory tone on cholinergic terminals, thereby promoting α4β2 activation, which in turn mediates neuroprotection. These results shed light on how α7 nAChR inhibition can be neuroprotective through a mechanism mediated by activation of α4β2 nAChRs.
Collapse
Affiliation(s)
- P A Ferchmin
- School of Medicine, Universidad Central del Caribe, Bayamón, Puerto Rico.
| | | | | | | | | | | |
Collapse
|
245
|
Wallace TL, Bertrand D. Alpha7 neuronal nicotinic receptors as a drug target in schizophrenia. Expert Opin Ther Targets 2012; 17:139-55. [PMID: 23231385 DOI: 10.1517/14728222.2013.736498] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Schizophrenia is a profoundly debilitating disease that represents not only an individual, but a societal problem. Once characterized solely by the hyperactivity of the dopaminergic system, therapies directed to dampen dopaminergic neurotransmission were developed. However, these drugs do not address the significant impairments in cognition and the negative symptoms of the disease, and it is now apparent that disequilibrium of many neurotransmitter systems is involved. Despite enormous efforts, minimal progress has been made toward the development of safer, more effective therapies to date. AREAS COVERED The high preponderance of smoking in schizophrenics suggests that nicotine may provide symptomatic improvement, which has led to investigation for selective molecules targeted to individual nicotinic receptor (nAChR) subtypes. Of special interest is activation of the homomeric α7nAChR, which is widely distributed in the brain and has been implicated in the pathophysiology of schizophrenia through numerous approaches. EXPERT OPINION Preclinical and clinical data suggest that neuronal α7nAChRs play an important role in cognitive functions. Moreover, some, but not all, early clinical trials conducted with α7nAChR agonists show cognitive benefits in schizophrenics. These encouraging results suggest that development of compounds targeting α7nAChRs will represent a valuable tool to mitigate symptoms associated with schizophrenia, and open new strategies for better pharmacological treatment of these patients.
Collapse
Affiliation(s)
- Tanya L Wallace
- SRI International, 333 Ravenswood Avenue, Menlo Park, CA, USA
| | | |
Collapse
|
246
|
Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron 2012; 76:116-29. [PMID: 23040810 DOI: 10.1016/j.neuron.2012.08.036] [Citation(s) in RCA: 898] [Impact Index Per Article: 69.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2012] [Indexed: 11/22/2022]
Abstract
Acetylcholine in the brain alters neuronal excitability, influences synaptic transmission, induces synaptic plasticity, and coordinates firing of groups of neurons. As a result, it changes the state of neuronal networks throughout the brain and modifies their response to internal and external inputs: the classical role of a neuromodulator. Here, we identify actions of cholinergic signaling on cellular and synaptic properties of neurons in several brain areas and discuss consequences of this signaling on behaviors related to drug abuse, attention, food intake, and affect. The diverse effects of acetylcholine depend on site of release, receptor subtypes, and target neuronal population; however, a common theme is that acetylcholine potentiates behaviors that are adaptive to environmental stimuli and decreases responses to ongoing stimuli that do not require immediate action. The ability of acetylcholine to coordinate the response of neuronal networks in many brain areas makes cholinergic modulation an essential mechanism underlying complex behaviors.
Collapse
|
247
|
Prentice award lecture 2011: removing the brakes on plasticity in the amblyopic brain. Optom Vis Sci 2012; 89:827-38. [PMID: 22581119 DOI: 10.1097/opx.0b013e318257a187] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Experience-dependent plasticity is closely linked with the development of sensory function. Beyond this sensitive period, developmental plasticity is actively limited; however, new studies provide growing evidence for plasticity in the adult visual system. The amblyopic visual system is an excellent model for examining the "brakes" that limit recovery of function beyond the critical period. While amblyopia can often be reversed when treated early, conventional treatment is generally not undertaken in older children and adults. However, new clinical and experimental studies in both animals and humans provide evidence for neural plasticity beyond the critical period. The results suggest that perceptual learning and video game play may be effective in improving a range of visual performance measures and importantly the improvements may transfer to better visual acuity and stereopsis. These findings, along with the results of new clinical trials, suggest that it might be time to reconsider our notions about neural plasticity in amblyopia.
Collapse
|
248
|
Miwa JM, Walz A. Enhancement in motor learning through genetic manipulation of the Lynx1 gene. PLoS One 2012; 7:e43302. [PMID: 23139735 PMCID: PMC3489911 DOI: 10.1371/journal.pone.0043302] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 07/18/2012] [Indexed: 11/18/2022] Open
Abstract
The cholinergic system is a neuromodulatory neurotransmitter system involved in a variety of brain processes, including learning and memory, attention, and motor processes, among others. The influence of nicotinic acetylcholine receptors of the cholinergic system are moderated by lynx proteins, which are GPI-anchored membrane proteins forming tight associations with nicotinic receptors. Previous studies indicate lynx1 inhibits nicotinic receptor function and limits neuronal plasticity. We sought to investigate the mechanism of action of lynx1 on nicotinic receptor function, through the generation of lynx mouse models, expressing a soluble version of lynx and comparing results to the full length overexpression. Using rotarod as a test for motor learning, we found that expressing a secreted variant of lynx leads to motor learning enhancements whereas overexpression of full-length lynx had no effect. Further, adult lynx1KO mice demonstrated comparable motor learning enhancements as the soluble transgenic lines, whereas previously, aged lynx1KO mice showed performance augmentation only with nicotine treatment. From this we conclude the motor learning is more sensitive to loss of lynx function, and that the GPI anchor plays a role in the normal function of the lynx protein. In addition, our data suggests that the lynx gene plays a modulatory role in the brain during aging, and that a soluble version of lynx has potential as a tool for adjusting cholinergic-dependent plasticity and learning mechanisms in the brain.
Collapse
Affiliation(s)
- Julie M Miwa
- California Institute of Technology, Pasadena, California, USA.
| | | |
Collapse
|
249
|
Espinosa JS, Stryker MP. Development and plasticity of the primary visual cortex. Neuron 2012; 75:230-49. [PMID: 22841309 DOI: 10.1016/j.neuron.2012.06.009] [Citation(s) in RCA: 480] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2012] [Indexed: 01/17/2023]
Abstract
Hubel and Wiesel began the modern study of development and plasticity of primary visual cortex (V1), discovering response properties of cortical neurons that distinguished them from their inputs and that were arranged in a functional architecture. Their findings revealed an early innate period of development and a later critical period of dramatic experience-dependent plasticity. Recent studies have used rodents to benefit from biochemistry and genetics. The roles of spontaneous neural activity and molecular signaling in innate, experience-independent development have been clarified, as have the later roles of visual experience. Plasticity produced by monocular visual deprivation (MD) has been dissected into stages governed by distinct signaling mechanisms, some of whose molecular players are known. Many crucial questions remain, but new tools for perturbing cortical cells and measuring plasticity at the level of changes in connections among identified neurons now exist. The future for the study of V1 to illuminate cortical development and plasticity is bright.
Collapse
Affiliation(s)
- J Sebastian Espinosa
- Center for Integrative Neuroscience, Department of Physiology, 675 Nelson Rising Lane, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | | |
Collapse
|
250
|
Fu XW, Rekow SS, Spindel ER. The ly-6 protein, lynx1, is an endogenous inhibitor of nicotinic signaling in airway epithelium. Am J Physiol Lung Cell Mol Physiol 2012; 303:L661-8. [PMID: 22923641 PMCID: PMC3469634 DOI: 10.1152/ajplung.00075.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 08/21/2012] [Indexed: 02/08/2023] Open
Abstract
Our laboratory has previously reported that bronchial epithelial cells (BEC) express a regulatory cascade of classic neurotransmitters and receptors that communicate in an almost neuronal-like manner to achieve physiological regulation. In this paper we show that the similarity between neurotransmitter signaling in neurons and BEC extends to the level of transmitter receptor allosteric modulators. Lynx1 is a member of the ly-6/three-finger superfamily of proteins, many of which modulate receptor signaling activity. Lynx1 specifically has been shown to modulate nicotinic acetylcholine receptor (nAChR) function in neurons by altering receptor sensitivity and desensitization. We now report that lynx1 forms a complex with α7 nAChR in BEC and serves to negatively regulate α7 downstream signaling events. Treatment of primary cultures of BEC with nicotine increased levels of nAChR subunits and that increase was potentiated by lynx1 knockdown. Lynx1 knockdown also potentiated the nicotine-induced increase in GABA(A) receptors (GABA(A)R) and MUC5AC mRNA expression, and that effect was blocked by α7 antagonists and α7 knockdown. In parallel with the increases in nAChR, GABA(A)R, and mucin mRNA levels, lynx1 knockdown also increased levels of p-Src. Consistent with this, inhibition of Src signaling blocked the ability of the lynx1 knockdown to increase basal and nicotine-stimulated GABA(A)R and mucin mRNA expression. Thus lynx1 appears to act as a negative modulator of α7 nAChR-induced events by inhibiting Src activation. This suggests that lynx1 agonists or mimetics are a potentially important therapeutic target to develop new therapies for smoking-related diseases characterized by increased mucin expression.
Collapse
MESH Headings
- Animals
- Antigens, Ly/genetics
- Antigens, Ly/immunology
- Antigens, Ly/metabolism
- Asthma/immunology
- Asthma/metabolism
- Bronchi/cytology
- Cells, Cultured
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- GPI-Linked Proteins/metabolism
- Gene Knockdown Techniques
- Macaca mulatta
- Mucin 5AC/immunology
- Mucin 5AC/metabolism
- Nicotine/immunology
- Nicotine/metabolism
- Nicotinic Agonists/immunology
- Nicotinic Agonists/metabolism
- Pulmonary Disease, Chronic Obstructive/immunology
- Pulmonary Disease, Chronic Obstructive/metabolism
- RNA, Small Interfering/genetics
- Receptors, GABA-A/immunology
- Receptors, GABA-A/metabolism
- Receptors, Nicotinic/immunology
- Receptors, Nicotinic/metabolism
- Respiratory Mucosa/cytology
- Respiratory Mucosa/immunology
- Respiratory Mucosa/metabolism
- Signal Transduction/immunology
- Smoking/immunology
- Smoking/metabolism
- alpha7 Nicotinic Acetylcholine Receptor
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Xiao Wen Fu
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | | | | |
Collapse
|