201
|
Michelini M, Rosellini A, Simoncini T, Papini S, Revoltella RP. A three-dimensional organotypic culture of the human uterine exocervix for studying mucosal epithelial differentiation and migrating leukocytes. Differentiation 2004; 72:138-49. [PMID: 15157237 DOI: 10.1111/j.1432-0436.2004.07204001.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on a three-dimensional organotypic culture in vitro of explants from the human uterine exocervix. Exocervical fragments (2-3 mm3) from pre-menopausal women were cultured on sponges submerged in Dulbecco's Modified Eagle's Medium containing p-nonylphenol and 10% fetal bovine serum for up to 3 weeks and the viability and cellular responses were assayed. The fragments were analyzed by immunohistochemistry for the expression and distribution of a broad spectrum of cellular markers: p63, Ki-67, involucrin, high molecular weight cytokeratins, estrogen receptor-alpha, vimentin, CD45, and CD31. The fragments preserved their tissue architecture and cellular heterogeneity comparable to that observed in exocervical tissue in vivo. Prior to culture, the original epithelium was composed of stratified multilayered keratinocytes with integrated monocyte/dendritic-like cells in the basal and suprabasal layers. The epithelium began to exfoliate in culture and within 4 days appeared to have lost its differentiated high-zone layers of keratinocytes. After 10 days a new epithelium, slightly different from the original one, was formed; it displayed an increasing prominence of basal and suprabasal keratinocyte layers, containing infiltrating leukocytes that had probably migrated from the submucosa. The epithelium subsequently lost its organization, concomitant with a progressive involution of the stroma. Subepithelial capillaries appeared to be well maintained throughout the culture period. Aside from the maintenance of cellular heterogeneity within the fragments of exocervix, these culture systems are a valuable tool for studying the mechanisms of epithelial regeneration, and may prove to be a useful model for studying mucosal immunity.
Collapse
Affiliation(s)
- Monica Michelini
- Institute of Biomedical Technologies, Immunobiology and Cell Differentiation Unit, CNR, Via G. Moruzzi 1, 56100 Pisa, Italy
| | | | | | | | | |
Collapse
|
202
|
Sen E, Alam S, Meyers C. Genetic and biochemical analysis of cis regulatory elements within the keratinocyte enhancer region of the human papillomavirus type 31 upstream regulatory region during different stages of the viral life cycle. J Virol 2004; 78:612-29. [PMID: 14694093 PMCID: PMC368763 DOI: 10.1128/jvi.78.2.612-629.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using linker scanning mutational analysis, we recently identified potential cis regulatory elements contained within the 5' upstream regulatory region (URR) domain and auxiliary enhancer (AE) region of the human papillomavirus type 31 (HPV31) URR involved in the regulation of E6/E7 promoter activity at different stages of the viral life cycle. For the present study, we extended the linker scanning mutational analysis to identify potential cis elements located in the keratinocyte enhancer (KE) region (nucleotides 7511 to 7762) of the HPV31 URR and to characterize cellular factors that bind to these elements under conditions representing different stages of the viral life cycle. The linker scanning mutational analysis identified viral cis elements located in the KE region that regulate transcription in the presence and absence of any viral gene products or viral DNA replication and determine the role of host tissue differentiation on viral transcriptional regulation. Using electrophoretic mobility shift assays, we illustrated defined reorganization in the composition of cellular transcription factors binding to the same cis regulatory elements at different stages of the HPV differentiation-dependent life cycle. Our studies provide an extensive map of functional elements in the KE region of the HPV31 URR, identify cis regulatory elements that exhibit significant transcription regulatory potential, and illustrate changes in specific protein-DNA interactions at different stages of the viral life cycle. The variable recruitment of transcription factors to the same cis element under different cellular conditions may represent a mechanism underlying the tight link between keratinocyte differentiation and E6/E7 expression.
Collapse
Affiliation(s)
- Ellora Sen
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
203
|
Lee JH, Yi SMP, Anderson ME, Berger KL, Welsh MJ, Klingelhutz AJ, Ozbun MA. Propagation of infectious human papillomavirus type 16 by using an adenovirus and Cre/LoxP mechanism. Proc Natl Acad Sci U S A 2004; 101:2094-9. [PMID: 14769917 PMCID: PMC357057 DOI: 10.1073/pnas.0308615100] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human papillomavirus type 16 (HPV16) infection is a major risk factor for the development of squamous cell cancers of the cervix and of the head and neck. A major barrier to understanding the progression from initial infection to cancer has been the lack of in vitro models that allow infection, replication, and persistence of the viral genome as an episome in differentiated epithelial cells. To overcome this barrier, we designed an adenoviral delivery vector that contained a full HPV16 genome flanked by LoxP homologous recombination sites and a fluorescent reporter that was expressed only after the HPV genome was excised by Cre recombinase. This system delivered circular HPV16 genomes to cervical epithelial cells and well differentiated human airway epithelia. After delivery, the HPV16 genome replicated and persisted as an episome in cervical keratinocytes. These cells developed an immortalized phenotype and a dysplastic epithelial appearance. Moreover, induction of differentiation led to the expression of late genes and production of infectious HPV16 virions. This work provides a means of introducing biologically active HPV genomes into epithelial cells, which are normally difficult to transfect. These methods allow the study of HPV genome replication and gene expression in the earliest stages of HPV genome establishment, and they may provide a means to study nononcogenic HPV viral types.
Collapse
Affiliation(s)
- John H Lee
- Department of Otolaryngology, Head and Neck Surgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
204
|
Culp TD, Christensen ND. Kinetics of in vitro adsorption and entry of papillomavirus virions. Virology 2004; 319:152-61. [PMID: 14967496 DOI: 10.1016/j.virol.2003.11.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 11/04/2003] [Accepted: 11/07/2003] [Indexed: 11/18/2022]
Abstract
There has been much incongruence in reports addressing the rate at which papillomaviruses enter cultured cells. We used a recently developed QRT-PCR assay (J. Virol. Methods 111 (2003) 135) to analyze the expression, adsorption, and entry kinetics of human papillomavirus type 11 (HPV-11) in multiple cell lines. Parallel experiments with HPV-40 and cottontail rabbit papillomavirus (CRPV) were also performed with biologically relevant lines. Infection was determined by the expression of early transcripts containing the E1 E4 splice junction. Results support previous observations that papillomaviruses may enter cultured cells much more slowly than rates reported for similarly structured viruses (Virology 207 (1995) 136; Virology 307 (2003) 1; J. Virol. 75 (2001) 1565). Additionally, our data suggest that, following adsorption to the cell surface, capsomeric structure remains largely unchanged for many hours as HPV-11 virions remain equally susceptible to neutralization by a nonspecific microbicide and by L1-specific monoclonal antibodies (MAb) targeting both linear and conformationally sensitive epitopes.
Collapse
Affiliation(s)
- Timothy D Culp
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033-2390, USA
| | | |
Collapse
|
205
|
Abstract
Cervical cancer and precancerous cervical lesions constitute a major problem in women's health. Every year 470,000 cases of cervical cancer are diagnosed worldwide, and about half the women afflicted will die. In the United States alone, approximately 14,000 cases of cervical cancer are diagnosed each year despite the availability of screening and access to high-quality gynecological care. With the confirmation that cervical cancer is caused by an infectious agent, human papillomavirus, the possibility of fighting this disease with either prophylactic or therapeutic vaccination arose. This review describes advances in vaccine development and very promising first results for prophylactic vaccination against cervical cancer.
Collapse
Affiliation(s)
- Kathrin U Jansen
- Merck & Co., Inc., 770 Sumneytown Pike, West Point, Pennsylvania 19486, USA.
| | | |
Collapse
|
206
|
Shafti-Keramat S, Handisurya A, Kriehuber E, Meneguzzi G, Slupetzky K, Kirnbauer R. Different heparan sulfate proteoglycans serve as cellular receptors for human papillomaviruses. J Virol 2004; 77:13125-35. [PMID: 14645569 PMCID: PMC296080 DOI: 10.1128/jvi.77.24.13125-13135.2003] [Citation(s) in RCA: 200] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Papillomaviruses replicate in stratified epithelia of skin and mucosa. Infection with certain human papillomavirus (HPV) types is the main cause of anogenital neoplasia, in particular cervical cancer. Early events of papillomavirus infectivity are poorly understood. While heparan sulfate proteoglycans (HSPGs) mediate initial binding to the cell surface, the class of proteins carrying heparan sulfates has not been defined. Here we examined two processes of papillomavirus infection, attachment of virus-like particles (VLP) to cells and infection with authentic HPV type 11 (HPV11) virions. Of the HSPGs, syndecan-1 is the major epithelial form and is strongly upregulated in wound edge keratinocytes. We employed K562 cells, which lack HSPGs except minor amounts of endogenous betaglycan, and stable clones that express cDNAs of syndecan-1, syndecan-4, or glypican-1. Binding of VLP correlated with levels of heparan sulfate on the cell surface. Parental K562 bound HPV16 VLP weakly, whereas all three K562 transfectants demonstrated enhanced binding, with the highest binding capacity observed for syndecan-1-transfected cells, which also expressed the most HSPG. For HPV11 infectivity assays, a high virion inoculum was required to infect K562 cells, whereas ectopic expression of syndecan-1 increased permissiveness eightfold and expression of syndecan-4 or glypican-1 fourfold. Infection of keratinocytes was eliminated by treatment with heparitinase, but not phospholipase C, further implicating the syndecan family of integral membrane proteins as receptor proteins. Human keratinocytes with a homozygous deletion of alpha6 integrin are permissive for HPV11 infection. These results indicate that several HSPGs can serve as HPV receptors and support a putative role for syndecan-1, rather than alpha6 integrin, as a primary receptor protein in natural HPV infection of keratinocytes.
Collapse
Affiliation(s)
- Saeed Shafti-Keramat
- Laboratory of Viral Oncology, Department of Dermatology, Division of Immunology, Allergy and Infectious Diseases (DIAID), University of Vienna Medical School, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
207
|
Lehr EE, Qadadri B, Brown CR, Brown DR. Human papillomavirus type 59 immortalized keratinocytes express late viral proteins and infectious virus after calcium stimulation. Virology 2003; 314:562-71. [PMID: 14554084 DOI: 10.1016/s0042-6822(03)00492-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human papillomavirus type 59 (HPV 59) is an oncogenic type related to HPV 18. HPV 59 was recently propagated in the athymic mouse xenograft system. A continuous keratinocyte cell line infected with HPV 59 was created from a foreskin xenograft grown in an athymic mouse. Cells were cultured beyond passage 50. The cells were highly pleomorphic, containing numerous abnormally shaped nuclei and mitotic figures. HPV 59 sequences were detected in the cells by DNA in situ hybridization in a diffuse nuclear distribution. Southern blots were consistent with an episomal state of HPV 59 DNA at approximately 50 copies per cell. Analysis of the cells using a PCR/reverse blot strip assay, which amplifies a portion of the L1 open reading frame, was strongly positive. Differentiation of cells in monolayers was induced by growth in F medium containing 2 mM calcium chloride for 10 days. Cells were harvested as a single tissue-like sheet, and histologic analysis revealed a four-to-six cell-thick layer. Transcripts encoding involucrin, a cornified envelope protein, and the E1/E4 and E1/E4/L1 viral transcripts were detected after several days of growth in F medium containing 2 mM calcium chloride. The E1/E4 and L1 proteins were detected by immunohistochemical analysis, and virus particles were seen in electron micrographs in a subset of differentiated cells. An extract of differentiated cells was prepared by vigorous sonication and was used to infect foreskin fragments. These fragments were implanted into athymic mice. HPV 59 was detected in the foreskin xenografts removed 4 months later by DNA in situ hybridization and PCR/reverse blot assay. Thus, the complete viral growth cycle, including production on infectious virus, was demonstrated in the HPV 59 immortalized cells grown in a simple culture system.
Collapse
Affiliation(s)
- Elizabeth E Lehr
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
208
|
Prasad CK, Meyers C, Zhan DJ, You H, Chiriva-Internati M, Mehta JL, Liu Y, Hermonat PL. The adeno-associated virus major regulatory protein Rep78-c-Jun-DNA motif complex modulates AP-1 activity. Virology 2003; 314:423-31. [PMID: 14517094 DOI: 10.1016/s0042-6822(03)00439-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple epidemiologic studies show that adeno-associated virus (AAV) is negatively associated with cervical cancer (CX CA), a cancer which is positively associated with human papillomavirus (HPV) infection. Mechanisms for this correlation may be by Rep78's (AAV's major regulatory protein) ability to bind the HPV-16 p97 promoter DNA and inhibit transcription, to bind and interfere with the functions of the E7 oncoprotein of HPV-16, and to bind a variety of HPV-important cellular transcription factors such as Sp1 and TBP. c-Jun is another important cellular factor intimately linked to the HPV life cycle, as well as keratinocyte differentiation and skin development. Skin is the natural host tissue for both HPV and AAV. In this article it is demonstrated that Rep78 directly interacts with c-Jun, both in vitro and in vivo, as analyzed by Western blot, yeast two-hybrid cDNA, and electrophoretic mobility shift-supershift assay (EMSA supershift). Addition of anti-Rep78 antibodies inhibited the EMSA supershift. Investigating the biological implications of this interaction, Rep78 inhibited the c-Jun-dependent c-jun promoter in transient and stable chloramphenicol acetyl-transferase (CAT) assays. Rep78 also inhibited c-Jun-augmented c-jun promoter as well as the HPV-16 p97 promoter activity (also c-Jun regulated) in in vitro transcription assays in T47D nuclear extracts. Finally, the Rep78-c-Jun interaction mapped to the amino-half of Rep78. The ability of Rep78 to interact with c-Jun and down-regulate AP-1-dependent transcription suggests one more mechanism by which AAV may modulate the HPV life cycle and the carcinogenesis process.
Collapse
Affiliation(s)
- C Krishna Prasad
- Department of Internal Medicine, Gene Therapy Center for Molecular Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | |
Collapse
|
209
|
You H, Liu Y, Agrawal N, Prasad CK, Chiriva-Internati M, Lowery CL, Kay HH, Hermonat PL. Infection, replication, and cytopathology of human papillomavirus type 31 in trophoblasts. Virology 2003; 316:281-9. [PMID: 14644610 DOI: 10.1016/j.virol.2003.08.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Human papillomavirus (HPV) DNA is preferentially found in spontaneous abortions, specifically residing in trophoblasts, and transfected HPV-16 DNA replicates and produces progeny in 3A trophoblasts in culture. In this study 3A trophoblasts were shown to display both HPV receptors and infection by HPV-31b and HPV-6 virus resulted in de novo (increasing) HPV DNA replication in these cells (inhibited by neutralizing anti-HPV31b antibodies). Reverse transcription-polymerase chain reaction analysis revealed that E1;E4, E6, and L1 were significantly expressed at days 5 (early) and 10 (late), respectively, and in situ immunocytochemistry verified L1 protein expression. Perhaps most important, HPV 31b virus infection caused both a decrease in 3A trophoblast cell numbers in a dose-dependent manner and a low trophoblast-endometrial cell adhesion (both inhibited by neutralizing anti-HPV-31 antibodies). These data further support the hypothesis that HPVs are fully active in trophoblasts and may cause some spontaneous abortions.
Collapse
Affiliation(s)
- Hong You
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, 4301 West Markham St, Little Rock, AR 72205, USA
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Meyers C, Andreansky SS, Courtney RJ. Replication and interaction of herpes simplex virus and human papillomavirus in differentiating host epithelial tissue. Virology 2003; 315:43-55. [PMID: 14592758 DOI: 10.1016/s0042-6822(03)00466-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have investigated the interactions and consequences of superinfecting and coreplication of human papillomavirus (HPV) and herpes simplex virus (HSV) in human epithelial organotypic (raft) culture tissues. In HPV-positive tissues, HSV infection and replication induced significant cytopathic effects (CPE), but the tissues were able to recover and maintain a certain degree of tissue integrity and architecture. HPV31b not only maintained the episomal state of its genomic DNA but also maintained its genomic copy number even during times of extensive HSV-induced CPE. E2 transcripts encoded by HPV31b were undetectable even though HPV31b replication was maintained in HSV- infected raft tissues. Expression of HPV31b oncogenes (E6 and E7) was also repressed but to a lesser degree than was E2 expression. The extent of CPE induced by HSV is dependent on the magnitude of HPV replication and gene expression at the time of HSV infection. During active HSV infection, HPV maintains its genomic copy number even though genes required for its replication were repressed. These studies provide new insight into the complex interaction between two common human sexually transmitted viruses in an in vitro system, modeling their natural host tissue in vivo.
Collapse
MESH Headings
- Cell Differentiation
- Cell Line, Transformed
- Cells, Cultured
- Culture Techniques
- Cytopathogenic Effect, Viral
- DNA, Viral/analysis
- Epithelial Cells
- Female
- Herpesvirus 1, Human/genetics
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/genetics
- Herpesvirus 2, Human/pathogenicity
- Herpesvirus 2, Human/physiology
- Humans
- Immunohistochemistry
- Papillomaviridae/genetics
- Papillomaviridae/pathogenicity
- Papillomaviridae/physiology
- Tumor Cells, Cultured
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- Craig Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | |
Collapse
|
211
|
Bromberg-White JL, Sen E, Alam S, Bodily JM, Meyers C. Induction of the upstream regulatory region of human papillomavirus type 31 by dexamethasone is differentiation dependent. J Virol 2003; 77:10975-83. [PMID: 14512546 PMCID: PMC225009 DOI: 10.1128/jvi.77.20.10975-10983.2003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2002] [Accepted: 07/10/2003] [Indexed: 11/20/2022] Open
Abstract
Glucocorticoids have been shown to play a role in the transforming abilities of human papillomaviruses (HPVs), and glucocorticoid response elements (GREs) have been identified in the upstream regulatory regions (URRs) of various HPV types. These findings have made glucocorticoids potential therapeutic targets for HPV infection. We have previously shown that the URR of HPV type 31 (HPV31) is insensitive to induction by the synthetic glucocorticoid dexamethasone (dex) in monolayer culture, despite the identification of three potential GREs in the 5' region of the URR. Due to the fact that the HPV life cycle is intimately linked to the differentiation of the host tissue, we chose to determine whether the URR of HPV31 was inducible by dex under differentiating conditions. Upon suspension of cells in a semisolid medium of methylcellulose, we found that the URR of HPV31 was inducible by dex. The three GREs appear to play roles as independent repressors of this inducibility. By 5' deletion analysis, the element(s) responsible for this induction was localized to nucleotides (nt) 7238 to 7557. Furthermore, we found that the region between nt 7883 and 7900 appears to act as a repressor of dex inducibility. These findings indicate that epithelial differentiation has a profound effect on the action of dex on the URR of HPV31, suggesting that glucocorticoids play an important role in the differentiation-dependent life cycle of HPV.
Collapse
Affiliation(s)
- Jennifer L Bromberg-White
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | |
Collapse
|
212
|
Abstract
Early events in the life cycle of the human papillomaviruses (HPV) have been difficult to investigate due to both the scarcity of authentic HPV virions and limitations in assays to detect and quantify nonpermissive infections in monolayer cell culture. We have developed a quantitative reverse transcription-PCR (QRT-PCR) assay for the E1( wedge )E4 transcript of HPV-11. This assay is both sensitive, and capable of differentiating between infections caused by a wide range of virus input. The QRT-PCR assay measured accurately the relative amount of viral transcripts present in samples during validation experiments using RNAs from three cell lines. Infections in all three cell lines, using titrations of HPV-11 virions ranging from 20 to 600 particles per cell, produced linear expression profiles suggesting that these multiplicities of infection are below the saturation level for viral uptake and transcription. Comparison of the QRT-PCR assay with the commonly used nested RT-PCR assay revealed that although the nested RT-PCR assay was more sensitive, it did not differentiate between infections caused by >1000-fold difference in viral inputs. Potential applications of the QRT-PCR assay are demonstrated in experiments measuring the ability of a capsid-specific monoclonal antibody and a nonspecific microbicide to block HPV-11 infection.
Collapse
Affiliation(s)
- Timothy D Culp
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
213
|
McLaughlin-Drubin ME, Wilson S, Mullikin B, Suzich J, Meyers C. Human papillomavirus type 45 propagation, infection, and neutralization. Virology 2003; 312:1-7. [PMID: 12890615 DOI: 10.1016/s0042-6822(03)00312-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The organotypic (raft) culture system has allowed the study of the entire differentiation-dependent life cycle of human papillomaviruses (HPVs), including virion morphogenesis. We introduced linearized HPV45 genomic DNA into primary keratinocytes, where it recircularized and maintained episomally at a range of 10-50 copies of HPV genomic DNA. Following epithelial stratification and differentiation in organotypic culture, virion morphogenesis occurred. HPV45 virions were purified from raft cultures and were able to infect keratinocytes in vitro. By testing a panel of HPV VLP antisera, we were able to demonstrate that the infection was neutralized not only with human HPV45 VLP-specific antiserum, but also with human HPV18 VLP-specific antiserum, demonstrating serological cross-reactivity between HPV18 and HPV45.
Collapse
Affiliation(s)
- Margaret E McLaughlin-Drubin
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | |
Collapse
|
214
|
Yang R, Yutzy WH, Viscidi RP, Roden RBS. Interaction of L2 with beta-actin directs intracellular transport of papillomavirus and infection. J Biol Chem 2003; 278:12546-53. [PMID: 12560332 DOI: 10.1074/jbc.m208691200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viruses that replicate in the nucleus, including the primary causative agent of cervical cancer, human papillomavirus type 16 (HPV16), must first cross the cytoplasm. We compared the uptake of HPV16 virus-like particles (VLPs) either with or without the minor capsid protein L2. Whereas VLPs containing only the major capsid protein L1 were diffusely distributed within the cytoplasm even 6 h post-infection, VLPs comprising both L1 and L2 exhibited a radial distribution in the cytoplasm and accumulated in the perinuclear region of BPHE-1 cells within 2 h. L2 of HPV16 or bovine papillomavirus was shown to bind to a 43-kDa cellular protein that was subsequently identified as beta-actin by matrix-assisted laser desorption ionization time-of-flight analysis. A conserved domain comprising residues 25-45 of HPV16 L2 was sufficient for interaction with beta-actin. HPV16 L2 residues 25-45 fused to green fluorescent protein, but not green fluorescent protein alone, colocalized with actin and caused cell retraction and disruption of the microfilament network. Finally, wild-type L2, but not L2 with residues 25-45 deleted, facilitated HPV16 pseudovirion infection. Thus, binding of beta-actin by L2 residues 25-45 facilitates transport of HPV16 across the cytoplasm during infection, and blockade of this novel interaction may be useful for prophylaxis.
Collapse
Affiliation(s)
- Rongcun Yang
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
215
|
Chen RW, Aalto Y, Teesalu T, Dürst M, Knuutila S, Aaltonen LM, Vaheri A. Establishment and characterisation of human papillomavirus type 16 DNA immortalised human tonsillar epithelial cell lines. Eur J Cancer 2003; 39:698-707. [PMID: 12628851 DOI: 10.1016/s0959-8049(02)00772-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oncogenic human papillomavirus (HPV) plays a possible aetiological role in a subset of head and neck cancers, particularly in tonsillar carcinomas. For establishing a model to study mechanisms involved in HPV-associated tonsillar carcinogenesis, normal human tonsillar epithelial (HTE) cells were transfected with full-length HPV-16 DNA. The transfections produced four immortalised cell lines, designated HTE-114/K1, HTE-114/K2, HTE-114/K3 and HTE-114/B. All transfected HTE cell lines were cytogenetically abnormal. They exhibited altered morphology and impaired expression of cytokeratins in organotypic cultures. They failed to form colonies in soft agarose and formed no tumours in nude mice within 6 months. Each of them contained integrated viral DNA in a distinctive pattern as shown by Southern blot hybridisation. Early viral transcripts containing the E7 gene were detected by northern blot hybridisation. In conclusion, primary HTE cells can be immortalised following transfection with full-length HPV-16 DNA; the immortalised cell lines had partially retained epithelial characteristics in their morphology and function. They seem to represent early stages of premalignant epithelial cells and thus provide a useful model for studying further the multistep molecular events of HPV-16-associated tonsillar carcinogenesis.
Collapse
Affiliation(s)
- R W Chen
- Department of Virology, Haartman Institute, 00014 University of Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
216
|
Abstract
There is a renewed enthusiasm for therapeutic vaccination as a viable treatment for patients with cancer. Early tumor vaccines were comprised of whole tumor cells, fragments of tumor cells, or protein lysate from tumor cells. Limited results with these approaches led investigators to begin developing the next generation of cancer vaccines based on defined tumor-associated antigens (TAAs). Defining and characterizing TAAs for human cancer, development of new approaches for identifying TAAs, and novel strategies to deliver the antigens as potent therapeutic vaccines have all been the focus of intense research in the past decade and will continue to be the focus for decades to come.
Collapse
Affiliation(s)
- Jennifer D Lewis
- Department of Microbiology and Immunology and the Southwest Cancer Center, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | |
Collapse
|
217
|
Bromberg-White JL, Meyers C. Comparison of the basal and glucocorticoid-inducible activities of the upstream regulatory regions of HPV18 and HPV31 in multiple epithelial cell lines. Virology 2003; 306:197-202. [PMID: 12642092 DOI: 10.1016/s0042-6822(02)00041-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Steroid hormone receptors have been shown to bind to response elements in the upstream regulatory region (URR) of human papillomavirus (HPV) in a ligand-dependent manner to affect viral promoter activity. To better understand how the enhancer activity of the URR differs between high risk HPV types, we chose to compare the basal and glucocorticoid-dependent activities of the URRs of HPV18 and HPV31. We found that the URR of HPV18 is a stronger enhancer than the URR of HPV31 in six different cell lines of epithelial origin. Furthermore, the activity of the URR of HPV31 was not inducible by the synthetic glucocorticoid dexamethasone (dex) in any cell line tested, while the URR of HPV18 was dex-inducible in the majority of these lines. These studies indicate significant differences between the URRs of high risk HPV types.
Collapse
Affiliation(s)
- Jennifer L Bromberg-White
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | |
Collapse
|
218
|
Abstract
Of the many types of human papillomavirus (HPV), more than 30 infect the genital tract. The association between certain oncogenic (high-risk) strains of HPV and cervical cancer is well established. Although HPV is essential to the transformation of cervical epithelial cells, it is not sufficient, and a variety of cofactors and molecular events influence whether cervical cancer will develop. Early detection and treatment of precancerous lesions can prevent progression to cervical cancer. Identification of precancerous lesions has been primarily by cytologic screening of cervical cells. Cellular abnormalities, however, may be missed or may not be sufficiently distinct, and a portion of patients with borderline or mildly dyskaryotic cytomorphology will have higher-grade disease identified by subsequent colposcopy and biopsy. Sensitive and specific molecular techniques that detect HPV DNA and distinguish high-risk HPV types from low-risk HPV types have been introduced as an adjunct to cytology. Earlier detection of high-risk HPV types may improve triage, treatment, and follow-up in infected patients. Currently, the clearest role for HPV DNA testing is to improve diagnostic accuracy and limit unnecessary colposcopy in patients with borderline or mildly abnormal cytologic test results.
Collapse
|
219
|
Zhao KN, Frazer IH. Saccharomyces cerevisiae is permissive for replication of bovine papillomavirus type 1. J Virol 2002; 76:12265-73. [PMID: 12414966 PMCID: PMC136905 DOI: 10.1128/jvi.76.23.12265-12273.2002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently demonstrated that Saccharomyces cerevisiae protoplasts can take up bovine papillomavirus type 1 (BPV1) virions and that viral episomal DNA is replicated after uptake. Here we demonstrate that BPV virus-like particles are assembled in infected S. cerevisiae cultures from newly synthesized capsid proteins and also package newly synthesized DNA, including full-length and truncated viral DNA and S. cerevisiae-derived DNA. Virus particles prepared in S. cerevisiae are able to convey packaged DNA to Cos1 cells and to transform C127 cells. Infectivity was blocked by antisera to BPV1 L1 but not antisera to BPV1 E4. We conclude that S. cerevisiae is permissive for the replication of BPV1 virus.
Collapse
Affiliation(s)
- Kong-Nan Zhao
- Centre for Immunology and Cancer Research, The University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland 4102, Australia.
| | | |
Collapse
|
220
|
Ozbun MA. Infectious human papillomavirus type 31b: purification and infection of an immortalized human keratinocyte cell line. J Gen Virol 2002; 83:2753-2763. [PMID: 12388811 DOI: 10.1099/0022-1317-83-11-2753] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human papillomaviruses (HPVs) are aetiological agents of human malignancies, most notably cervical cancers. The life-cycles of HPVs are dependent on epithelial differentiation, and this has impeded many basic studies of HPV biology. The organotypic (raft) culture system supports epithelial differentiation such that infectious virions are synthesized in raft tissues from epithelial cells that replicate extrachromosomal HPV genomes. The CIN-612 9E cell line maintains episomal copies of HPV type 31b (HPV31b), an HPV type associated with cervical cancers. Many previous studies, including our own, have focused on characterizing the later stages of the HPV31b life-cycle in CIN-612 9E raft tissues. In this study, we have used the raft system to generate large numbers of HPV31b viral DNA (vDNA)-containing particles. We found a biologically contained homogenization system to be efficient at virion extraction from raft epithelial tissues. We also determined that vDNA-containing particles could be directly quantified from density-gradient fractions. Using an RT-PCR assay, the presence of newly synthesized, spliced HPV31b transcripts was detected following HPV31b infection of the immortalized HaCaT epithelial cell line. Spliced E6 and E1( wedge )E4 RNAs were detected using a single round of RT-PCR from cells infected with a dose as low as 1.0 vDNA-containing particle per cell. Spliced E1*I,E2 transcripts were found in cells infected with an HPV31b dose as low as 10 vDNA-containing particles per cell. Infectivity was blocked by HPV31 antiserum, but was not affected by DNase I. This work lays a foundation for a detailed analysis of the early events in HPV infection.
Collapse
Affiliation(s)
- Michelle A Ozbun
- Department of Molecular Genetics and Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA1
| |
Collapse
|
221
|
Ozbun MA. Human papillomavirus type 31b infection of human keratinocytes and the onset of early transcription. J Virol 2002; 76:11291-300. [PMID: 12388689 PMCID: PMC136784 DOI: 10.1128/jvi.76.22.11291-11300.2002] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2002] [Accepted: 08/12/2002] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses (HPVs) cause a number of human tumors and malignancies, including cervical cancers. Epithelial differentiation is required for the complete HPV life cycle and can be achieved using the organotypic (raft) culture system. The CIN-612 9E cell line maintains episomal copies of HPV type 31b (HPV31b), an HPV type associated with cervical cancers. When grown in the raft system, CIN-612 9E cells form a differentiated epithelium such that infectious virions can be synthesized. Many aspects of the later stages of the HPV31b life cycle have been investigated in CIN-612 9E raft tissues. We used a biologically contained homogenization system for efficient virion extraction from raft epithelial tissues. Purified HPV31b virions were used to infect low-passage-number human foreskin keratinocytes and a variety of epithelial cell lines. Newly synthesized, spliced HPV31b transcripts were detected by reverse transcription and PCR (RT-PCR) following HPV31b infection. HPV31b infection was most efficient and reproducible in HaCaT cells. The onset of viral transcription following infection was also investigated using RT-PCR techniques. Spliced E1(*)I,E2 RNAs were present as early as 4 h postinfection (p.i.), whereas the other major viral transcripts were detected by 8 to 10 h p.i. Furthermore, we characterized the structures and temporal expression of seven novel spliced early transcripts expressed following infection.
Collapse
Affiliation(s)
- Michelle A Ozbun
- Department of Molecular Genetics and Microbiology, The University of New Mexico School of Medicine, Albuquerque, New Mexico 87131, USA.
| |
Collapse
|
222
|
Bromberg-White JL, Meyers C. The upstream regulatory region of human papillomavirus type 31 is insensitive to glucocorticoid induction. J Virol 2002; 76:9702-15. [PMID: 12208949 PMCID: PMC136493 DOI: 10.1128/jvi.76.19.9702-9715.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2002] [Accepted: 06/19/2002] [Indexed: 11/20/2022] Open
Abstract
The upstream regulatory region (URR) of various types of human papillomaviruses (HPVs) has been shown to contain functional glucocorticoid response elements (GREs), including HPV type 11 (HPV11), HPV16, and HPV18. Glucocorticoids have been demonstrated to induce the transcriptional activity of the early promoters of these HPV types. Although it has been assumed that the URR of HPV31 contains at least one GRE, no functionality has been demonstrated. We attempt to show here inducibility of the URR of HPV31 by the synthetic glucocorticoid dexamethasone (dex). By sequence analysis we identified three potential GREs in the URR of HPV31. Gel shift analysis indicated that each of these three sites has the potential to be a functional GRE. However, constructs containing the full-length URR, 5' deletions of the URR, and an internal fragment of the URR containing all three putative GREs were only weakly inducible by dex. Linker scanning mutants, whereby each potential GRE was replaced individually, in double combination, or in triple combination by a unique polylinker, had no effect on dex inducibility. Replacement of each of the three HPV31 GREs with the GRE of HPV18 failed to induce a response to dex. Placement of the HPV18 GRE into the URR of HPV31 in a region similar to its location in the HPV18 URR was also unable to result in a strong dex induction of the HPV31 URR. These data suggest that the lack of dex inducibility is due to the overall context of the HPV31 URR and may be dependent on the requirements of the major early promoter for transcriptional activation. Finally, replacement of the HPV18 GRE with each of the HPV31 GREs in HPV18 only showed weak inducibility, indicating that the three GREs of HPV31 are in fact only weak inducers of dex. Overall, these data suggest that dex responsiveness, along with oncogenic potential, may provide a possible explanation for the classification of HPV31 as an intermediate-risk virus and demonstrate the complexity of transcriptional regulation of the URR of HPV.
Collapse
Affiliation(s)
- Jennifer L Bromberg-White
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | |
Collapse
|
223
|
Garner-Hamrick PA, Fisher C. HPV episomal copy number closely correlates with cell size in keratinocyte monolayer cultures. Virology 2002; 301:334-41. [PMID: 12359435 DOI: 10.1006/viro.2002.1558] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
W12E keratinocytes maintaining episomal copies of HPV DNA were separated according to size by centrifugal elutriation. HPV DNA copy number was greatly increased in the largest, most differentiated cells of the population. The large cells with the highest HPV copy number also showed evidence of endoreduplication of host cell DNA. Other cell lines maintaining episomal copies of HPV18 and HPV31 were also tested with all lines showing similar results. The results demonstrate that increase in HPV DNA copy number correlates well with increased cell size, a fundamental marker of keratinocyte differentiation. The results also indicate that simple monolayer cultures may be useful for studying the relationship between differentiation, HPV DNA replication, and cell-cycle events.
Collapse
|
224
|
Duensing S, Münger K. Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability. Oncogene 2002; 21:6241-8. [PMID: 12214255 DOI: 10.1038/sj.onc.1205709] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The majority of human cancers are genomically unstable, often with gains or losses of whole chromosomes. In high-risk human papillomavirus (HPV)-associated cervical neoplasia, the two HPV-encoded oncoproteins E6 and E7 have been implicated in mitotic infidelity by their ability to induce centrosome-related mitotic disturbances. However, the mechanisms by which HPV E6 and E7 subvert centrosome homeostasis are strikingly different. Whereas the E7 oncoprotein rapidly drives centrosome duplication errors in cells that appear phenotypically normal, expression of the HPV E6 oncoprotein results in an accumulation of supernumerary centrosomes in multinucleated cells. The primary centrosome duplication defect in HPV E7 expressing cells may be linked to the ability of E7 to disrupt regulatory nodes that govern both the host cell division cycle machinery and the initiation of centrosome duplication. Most importantly, the E7 oncoprotein has been shown to dysregulate cdk2 activity, a major determinant for the initiation of centrosome duplication. HPV-induced centrosome abnormalities, multipolar mitoses, and aneuploidy often occur at early stages during cervical carcinogenesis and increase with malignant conversion. These findings suggest that HPV oncoprotein-induced chromosomal instability increases the risk for genetic changes that may ultimately facilitate carcinogenic progression.
Collapse
Affiliation(s)
- Stefan Duensing
- Department of Pathology, Harvard Medical School, Armenise Research Building, D2-537, 200 Longwood Avenue, Boston, Massachusetts, MA 02115, USA
| | | |
Collapse
|
225
|
Chang YE, Pena L, Sen GC, Park JK, Laimins LA. Long-term effect of interferon on keratinocytes that maintain human papillomavirus type 31. J Virol 2002; 76:8864-74. [PMID: 12163606 PMCID: PMC136980 DOI: 10.1128/jvi.76.17.8864-8874.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The long-term effects of interferon treatment on cell lines that maintain human papillomavirus type 31 (HPV-31) episomes have been examined. High doses and prolonged interferon treatment resulted in growth arrest of HPV-positive cells, with a high percentage of cells undergoing apoptosis. These effects were not seen with interferon treatment of either normal human keratinocytes or cells derived from HPV-negative squamous carcinomas, which exhibited only slight decreases in their rates of growth. Within 2 weeks of the initiation of treatment, a population of HPV-31-positive cells that were resistant to interferon appeared consistently and reproducibly. The resistant cells had growth and morphological characteristics similar to those of untreated cells. Long-term interferon treatment of HPV-positive cells also resulted in a reduction in HPV episome levels but did not significantly decrease the number of integrated copies of HPV. Cells that maintained HPV genomes lacking E5 were sensitive to interferon, while cells expressing only the E6/E7 genes were resistant. In contrast, cells that expressed E2 from a tetracycline-inducible promoter were found to be significantly more sensitive to interferon treatment than parental cells. This suggests that at least a portion of the sensitivity to interferon could be mediated through the E2 protein. These studies indicate that cells maintaining HPV episomes are highly sensitive to interferon treatment but that resistant populations arise quickly.
Collapse
Affiliation(s)
- Yijan E Chang
- Department of Microbiology-Immunology, The Fineberg Medical School, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
226
|
Steele BK, Meyers C, Ozbun MA. Variable expression of some "housekeeping" genes during human keratinocyte differentiation. Anal Biochem 2002; 307:341-7. [PMID: 12202253 DOI: 10.1016/s0003-2697(02)00045-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the expression levels of four cellular "housekeeping" genes during epithelial differentiation. Differentiation is a dynamic process and various cellular RNAs have been targeted for use as internal controls during differentiation of human keratinocytes, but the consistent expression of such standards has not been previously validated. We used the organotypic (raft) culture system to grow stratified and differentiated epithelium in vitro. We compared cellular RNAs from epithelial tissues of both normal human keratinocytes and keratinocytes whose differentiation scheme is altered by the replication of human papillomavirus. Using ribonuclease protection assays to quantify RNA expression levels, we found that beta-actin and glyceraldehyde-3-phosphate dehydrogenase levels fluctuated during epithelial differentiation, whereas cyclophilin RNA and 28S-ribosomal RNA were the most consistently expressed during epithelial differentiation. These stably expressed cellular RNAs can be targeted as controls to permit quantitative expression analyses of cellular and pathogen RNAs during epithelial differentiation under various experimental conditions.
Collapse
Affiliation(s)
- Brandi K Steele
- Department of Molecular Genetics and Microbiology, The University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | |
Collapse
|
227
|
Abstract
Recurrent respiratory papillomatosis (RRP) is a disease which affects both children (juvenile-onset RRP) and adults (adult-onset RRP). While a greater amount of information is known about the epidemiology of juvenile-onset than adult-onset RRP, fundamental work is still needed to more fully describe areas such as the mode of transmission. The primary management approach focuses on the removal of the papillomas by surgical debulking, although persistence of the human papillomavirus genome and subsequent recurrence of disease is the typical outcome. In a minority of patients, surgical management must be supplemented with adjuvant medical therapy, with IFN being the best studied and most commonly used. Other adjuvant treatments being employed include photodynamic therapy, indole-3-carbinol, ribavirin and cidofovir. Large controlled trials are lacking for all but IFN, making it extremely difficult to assess clinical benefit and risk in a systematic fashion at the current time. As with surgical management, viral persistence occurs following treatment with these adjuvant modalities, further contributing to the challenge of managing patients with this potentially devastating disease.
Collapse
Affiliation(s)
- David W Kimberlin
- Division of Pediatric Infectious Diseases, The University of Alabama at Birmingham, 35233, USA.
| |
Collapse
|
228
|
Agrawal N, Mane M, Chiriva-Internati M, Roman JJ, Hermonat PL. Temporal acceleration of the human papillomavirus life cycle by adeno-associated virus (AAV) type 2 superinfection in natural host tissue. Virology 2002; 297:203-10. [PMID: 12083819 DOI: 10.1006/viro.2002.1405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidemiologically, certain human papillomaviruses are positively associated with cervical cancer, while adeno-associated viruses (AAV-2) are negatively associated with this same cancer. Both HPV and AAV productively replicate in differentiating keratinocytes of the skin and interact with each other. However, AAV has a relatively fast life cycle, generating infectious progeny by the third to fourth day of an organotypic epithelial raft culture. In contrast, HPV is slow, generating infectious progeny only after 10-12 days. As earlier studies indicated that these two skin-tropic virus types significantly affect each other's life cycle, we investigated if the temporal kinetics of the slow HPV life cycle was affected by the fast AAV in raft cultures. Here it is shown that the presence of AAV-2 at a variety of multiplicities of infection (m.o.i.) resulted in early onset HPV-31b DNA replication. Using plasmids which each expressed only one of the four rep proteins, an enhancement affect was seen for all four rep proteins of AAV, with Rep40 having the highest activity. Furthermore, AAV (m.o.i. of 5) also resulted in a temporally accelerated production of HPV infectious units, seen as early as Day 4, with high levels of viral progeny being produced by Day 6.5. Like earlier studies at Day 12, histological differences were seen at Day 6.5 between AAV-infected and mock-infected HPV/rafts. These data suggest that under specific conditions the AAV rep trans-factors can positively regulate HPV gene expression in addition to the usual negative regulation that has been consistently observed by the rep proteins. These data also suggest that AAV has a significant effect upon the temporal kinetics of the HPV life cycle in natural host tissue. However, it is unclear if or how this AAV-induced fast HPV life cycle mechanistically correlates with lower rates of HPV-associated cervical disease.
Collapse
Affiliation(s)
- Nalini Agrawal
- Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA
| | | | | | | | | |
Collapse
|
229
|
Sen E, Bromberg-White JL, Meyers C. Genetic analysis of cis regulatory elements within the 5' region of the human papillomavirus type 31 upstream regulatory region during different stages of the viral life cycle. J Virol 2002; 76:4798-809. [PMID: 11967297 PMCID: PMC136139 DOI: 10.1128/jvi.76.10.4798-4809.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of the 5' region of the upstream regulatory region (URR) in regulating E6/E7 expression in cancer-associated papillomaviruses has been largely uncharacterized. In this study we used linker-scanning mutational analysis to identify potential cis regulatory elements contained within a portion of the 5' region of the URR that are involved in regulating transcription of the E6/E7 promoter at different stages of the viral life cycle. The mutational analysis illustrated differences in the transcriptional utilization of specific regions of the URR depending on the stage of the viral life cycle. This study identified (i) viral cis elements that regulate transcription in the presence and absence of any viral gene products or viral DNA replication, (ii) the role of host tissue differentiation in viral transcriptional regulation, and (iii) cis regulatory regions that are effected by induction of the protein kinase C pathway. Our studies have provided an extensive map of functional elements in the 5' region (nuncleotides 7259 to 7510) of the human papillomavirus type 31 URR that are involved in the regulation of p99 promoter activity at different stages of the viral life cycle.
Collapse
Affiliation(s)
- Ellora Sen
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | |
Collapse
|
230
|
Meyers C, Bromberg-White JL, Zhang J, Kaupas ME, Bryan JT, Lowe RS, Jansen KU. Infectious virions produced from a human papillomavirus type 18/16 genomic DNA chimera. J Virol 2002; 76:4723-33. [PMID: 11967289 PMCID: PMC136126 DOI: 10.1128/jvi.76.10.4723-4733.2002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The organotypic raft culture system has allowed the study of the differentiation-dependent aspects of the human papillomavirus (HPV) life cycle. However, genetic strategies to more completely understand the HPV life cycle are limited. The generation of chimeric viruses has been a useful tool in other virus systems to analyze infection and replication. To investigate the specificity of the interaction of nonstructural genes of one HPV type with the structural genes of another HPV type, we have replaced the L2 and L1 open reading frames (ORFs) of HPV type 18 (HPV18) with the L2 and L1 ORFs of HPV type 16 (HPV16). The resulting HPV18/16 chimeric construct was introduced into primary keratinocytes, where it was stably maintained episomally at a range of 50 to 100 copies of HPV genomic DNA, similar to that typically found in HPV-infected cells in vivo. The integrity of the HPV18/16 genomic DNA chimera was demonstrated. Upon differentiation in raft cultures, late viral functions, including viral DNA amplification, capsid gene expression, and virion morphogenesis, occurred. Chimeric HPV18/16 virions were purified from the raft cultures and were capable of infecting keratinocytes in vitro. Additionally, infection was specifically neutralized with human HPV16 virus-like particle (VLP)-specific antiserum and not with human HPV18 VLP-specific antiserum. Our data demonstrate that the nonstructural genes of HPV18 functionally interact with the structural genes of HPV16, allowing the complete HPV life cycle to occur. We believe that this is the first report of the propagation of chimeric HPV by normal life cycle pathways.
Collapse
Affiliation(s)
- Craig Meyers
- Department of Microbiology and Immunology, College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania 17033, USA.
| | | | | | | | | | | | | |
Collapse
|
231
|
Christensen ND, Cladel NM, Reed CA, Budgeon LR, Embers ME, Skulsky DM, McClements WL, Ludmerer SW, Jansen KU. Hybrid papillomavirus L1 molecules assemble into virus-like particles that reconstitute conformational epitopes and induce neutralizing antibodies to distinct HPV types. Virology 2001; 291:324-34. [PMID: 11878901 DOI: 10.1006/viro.2001.1220] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human papillomavirus (HPV) hybrid virus-like particles (VLPs) were prepared using complementary regions of the major capsid L1 proteins of HPV-11 and -16. These hybrid L1 proteins were tested for assembly into VLPs, for presentation and mapping of conformational neutralizing epitopes, and as immunogens in rabbits and mice. Two small noncontiguous hypervariable regions of HPV-16 L1, when replaced into the HPV-11 L1 backbone, produced an assembly-positive hybrid L1 which was recognized by the type-specific, conformationally dependent HPV-16 neutralizing monoclonal antibody (N-MAb) H16.V5. Several new N-MAbs that were generated following immunization of mice with wild-type HPV-16 L1 VLPs also recognized this reconstructed VLP, demonstrating that these two hypervariable regions collectively constituted an immunodominant epitope. When a set of hybrid VLPs was tested as immunogens in rabbits, antibodies to both HPV-11 and -16 wild-type L1 VLPs were obtained. One of the hybrid VLPs containing hypervariable FG and HI loops of HPV-16 L1 replaced into an HPV-11 L1 background provoked neutralizing activity against both HPV-11 and HPV-16. In addition, conformationally dependent and type-specific MAbs to both HPV-11 and HPV-16 L1 VLP were obtained from mice immunized with hybrid L1 VLPs. These data indicated that hybrid L1 proteins can be constructed that retain VLP-assembly properties, retain type-specific conformational neutralizing epitopes, can map noncontiguous regions of L1 which constitute type-specific conformational neutralizing epitopes recognized by N-MAbs, and trigger polyclonal antibodies which can neutralize antigenically unrelated HPV types.
Collapse
Affiliation(s)
- N D Christensen
- The Jake Gittlen Cancer Research Institute, Pathology Department, Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
232
|
Kukimoto I, Kanda T. Displacement of YY1 by differentiation-specific transcription factor hSkn-1a activates the P(670) promoter of human papillomavirus type 16. J Virol 2001; 75:9302-11. [PMID: 11533193 PMCID: PMC114498 DOI: 10.1128/jvi.75.19.9302-9311.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription from human papillomavirus type 16 (HPV16) P(670), a promoter in the E7 open reading frame, is repressed in undifferentiated keratinocytes but becomes activated upon differentiation. We showed that the transient luciferase expression driven by P(670) was markedly enhanced in HeLa cells cotransfected with an expression plasmid for human Skn-1a (hSkn-1a), a transcription factor specific to differentiating keratinocytes. The hSkn-1a POU domain alone, which mediates sequence-specific DNA binding, was sufficient to activate the expression of luciferase. Electrophoretic mobility shift assay revealed the presence of two binding sites, sites 1 and 2, upstream of P(670), which were shared by hSkn-1a and YY1. Site 1 bound more strongly to hSkn-1a than site 2 did. YY1 complexing with a short DNA fragment having site 1 was displaced by hSkn-1a, indicating that hSkn-1a's affinity with site 1 was stronger than YY1's. Disrupting the binding sites by nucleotide substitutions raised the basal expression level of luciferase and decreased the enhancing effect of hSkn-1a. In HeLa cells transfected with circular HPV16 DNA along with the expression plasmid for hSkn-1a, the transcript from P(670) was detectable, which indicates that the results obtained with the reporter plasmids are likely to have mimicked the regulation of P(670) in authentic HPV16 DNA. The data strongly suggest that the transcription from P(670) is repressed primarily by YY1 binding to the two sites, and the displacement of YY1 by hSkn-1a releases P(670) from the repression.
Collapse
Affiliation(s)
- I Kukimoto
- Division of Molecular Genetics, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | | |
Collapse
|
233
|
del Mar Peña LM, Laimins LA. Differentiation-dependent chromatin rearrangement coincides with activation of human papillomavirus type 31 late gene expression. J Virol 2001; 75:10005-13. [PMID: 11559836 PMCID: PMC114575 DOI: 10.1128/jvi.75.20.10005-10013.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The life cycle of human papillomaviruses (HPVs) is tightly linked to the differentiation status of the host cell. While early genes are expressed during the initial stages of viral infection, late gene expression occurs in the suprabasal layers of the cervical epithelium. Late genes encode E1-E4, a cytosolic protein, and capsid proteins L1 and L2. We have mapped over 30 initiation sites for late transcripts and show that the transcripts initiate in a 200-nucleotide region within the E7 open reading frame. The mechanisms regulating the activation of late gene expression, however, are not yet understood. DNase I hypersensitivity analysis of HPV-31 chromatin in cell lines that maintain viral genomes extrachromosomally indicates that a major shift in nuclease digestion occurs upon differentiation. In undifferentiated cells, hypersensitive regions exist in the upstream regulatory region proximal to the E6 open reading frame. Upon differentiation, a region between nucleotides 659 and 811 in the E7 open reading frame becomes accessible to DNase I. These results indicate that the late transcript initiation region becomes accessible to transcription factor binding upon differentiation. Several complexes mediate chromatin rearrangement, and we tested whether histone acetylation was sufficient for late transcript activation. Treatment with the histone deacetylase inhibitor trichostatin A was found to be insufficient to activate late gene expression in undifferentiated cells. However, it did activate expression of early transcripts. These results suggest that chromatin remodeling around the late promoter occurs upon epithelial differentiation and that mechanisms in addition to histone deacetylation contribute to activation of late gene expression.
Collapse
Affiliation(s)
- L M del Mar Peña
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
234
|
Terhune SS, Hubert WG, Thomas JT, Laimins LA. Early polyadenylation signals of human papillomavirus type 31 negatively regulate capsid gene expression. J Virol 2001; 75:8147-57. [PMID: 11483760 PMCID: PMC115059 DOI: 10.1128/jvi.75.17.8147-8157.2001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The L1 and L2 capsid genes of human papillomavirus type 31 (HPV-31) are expressed upon keratinocyte differentiation from a promoter located in the E7 open reading frame (ORF) of the early region. Late transcripts must therefore pass through and ignore the early polyadenylation sequences to use the downstream late AAUAAA element located at the end of the L1 ORF. To identify sequences which modulate downstream capsid gene expression, a variety of substitution mutations were introduced into the early polyadenylation signal and studied first in the context of polycistronic luciferase reporter constructs. Removal of the G/U-rich cleavage stimulation factor (CstF) binding sites and the degenerate cleavage and polyadenylation specificity factor binding sites, UAUAUA, had minimal effect on downstream expression as defined by luciferase activities. This is in contrast to the deletion of the HPV-31 early AAUAAA element, which resulted in a dramatic increase in downstream expression. Additional sequences within the first 800 bp of the L2 ORF were also found to negatively regulate capsid expression in luciferase assays. To determine how these mutations influence gene expression in the context of the complete HPV-31 genome, recombinant genomes were constructed that contained a substitution in the AAUAAA sequence, an inserted strong CstF binding site, an inserted simian virus 40 (SV40) late poly(A) signal, or a substitution of the 5'-most 800 nucleotides of the L2 ORF. Reductions in both transient and stable replication were observed with the recombinant genomes containing the strong CstF site or the late SV40 signal, suggesting that alterations in the strength of the upstream poly(A) signal influence expression of viral replication factors. Similarly, disruption of the L2 ORF resulted in a significant reduction in genome replication and an inability to be maintained stably. In contrast, genomes containing a substitution of the AAUAAA sequence had increased levels of transient and stable replication. Quantitation of late transcripts following keratinocyte differentiation in methylcellulose also showed a reduction in downstream capsid gene expression in lines containing genomes with the strong CstF site or the late SV40 signal mutations, while a significant increase in expression was detected in the lines with genomes lacking the AAUAAA sequence. These studies demonstrate that capsid gene expression in HPV-31 requires an inefficient early poly(A) signal which is defined primarily by the AAUAAA element as well as a major negative regulatory element located within the L2 ORF.
Collapse
Affiliation(s)
- S S Terhune
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 606113, USA
| | | | | | | |
Collapse
|
235
|
Meyers C, Alam S, Mane M, Hermonat PL. Altered biology of adeno-associated virus type 2 and human papillomavirus during dual infection of natural host tissue. Virology 2001; 287:30-9. [PMID: 11504539 DOI: 10.1006/viro.2001.0968] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adeno-associated virus (AAV), a common genital virus, may have a "protective" role against human papillomavirus (HPV)-associated cervical cancer. Epidemiological studies indicate a negative correlation between AAV infection and the incidence of cervical cancer. In contrast, HPV is positively associated with cervical cancer. To investigate interactions between these two viruses we used the organotypic "raft" culture system. The raft culture system is capable of supporting the complete HPV life cycle. Raft tissues that were actively replicating HPV were superinfected with AAV type 2 (AAV-2). We observed a multiplicity of infection (m.o.i.)-dependent enhancement and inhibition of HPV DNA replication, concomitant with AAV-2 replication. The data suggest that at low m.o.i. of AAV-2 infection, HPV DNA replication was slightly increased compared to controls and AAV-2 replicated poorly. At high AAV-2 m.o.i., HPV DNA replication was reduced and AAV-2 replicated to high levels. AAV-2 replication was increased in the presence of HPV compared to primary human keratinocyte, squamous cell carcinoma, and HaCat raft cultures infected with AAV-2 alone. These data suggest that HPV may provide types of "enhancer/helper" functions for AAV-2 replication and progeny formation. Infection with AAV-2 had significant effects on epithelial morphology. During infection with low m.o.i. of AAV-2 the epithelium stratified to a greater extent than in controls. With high m.o.i. of AAV-2 infections, tissue cytopathic effects were observed, indicating an additional factor responsible for the effect of AAV-2 on HPV replication and infection. Our results demonstrate a complex interaction between AAV-2, HPV, and skin during dual infection.
Collapse
Affiliation(s)
- C Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
236
|
Thomas JT, Oh ST, Terhune SS, Laimins LA. Cellular changes induced by low-risk human papillomavirus type 11 in keratinocytes that stably maintain viral episomes. J Virol 2001; 75:7564-71. [PMID: 11462028 PMCID: PMC114991 DOI: 10.1128/jvi.75.16.7564-7571.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections by low-risk papillomavirus types, such as human papillomavirus (HPV) type 6 (HPV-6) and HPV-11, induce benign genital warts that rarely progress to malignancy. In contrast, lesions induced by high-risk HPV types have the potential to progress to cancer. Considerable information is available concerning the pathogenesis of high-risk HPV types, but little is known about the life cycle of low-risk HPV types. Although functionally distinct, both high- and low-risk virus types infect keratinocytes and induce virion production upon differentiation. This information suggests that they may share common mechanisms for regulating their productive life cycles. Using tissue culture methods developed to study high-risk HPV types, we examined the ability of HPV-11 to be stably maintained as episomes following transfection of normal human keratinocytes with cloned viral DNA. HPV-11 genomes were found to be maintained in keratinocytes for extended passages in cultures in 14 independent experiments involving transfection of cloned HPV-11 DNA. Interestingly, the HPV-11-positive cells exhibited an extended life span that averaged approximately twofold longer than that of control neomycin-transfected cells. In organotypic cultures, HPV-11-positive cells exhibited altered differentiation patterns, but the extent of disruption was less severe than that seen with high-risk HPV types. In addition, the amplification of HPV-11 DNA, as well as the induction of several viral messages, was observed following differentiation of transfected cells in semisolid media. To determine whether global changes in cellular gene expression induced by HPV-11 were similar to those observed with high-risk HPV-31 (Y. E. Chang and L. A. Laimins, J. Virol. 74:4174-4182, 2000), microarray analysis of 7,075 expressed sequences was performed. A spectrum of cellular genes different from that previously reported for HPV-31 was found to be activated or repressed by HPV-11. The expression of only a small set of genes was similarly altered by both high- and low-risk HPV types. This result suggests that different classes of HPVs have distinct effects on global cellular transcription patterns during infection. The methods described allow for a genetic analysis of HPV-11 in the context of its differentiation-dependent life cycle.
Collapse
Affiliation(s)
- J T Thomas
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | | | | | |
Collapse
|
237
|
Nicholls PK, Doorbar J, Moore RA, Peh W, Anderson DM, Stanley MA. Detection of Viral DNA and E4 Protein in Basal Keratinocytes of Experimental Canine Oral Papillomavirus Lesions. Virology 2001; 284:82-98. [PMID: 11352670 DOI: 10.1006/viro.2001.0868] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We studied experimental canine oral papillomavirus (COPV) infection by in situ hybridization and immunohistochemistry of weekly biopsies. After 4 weeks, viral DNA in rete ridges suggested a keratinocyte stem cell target. Abundant viral DNA was seen in E4-positive cells only. E4 was predominantly cytoplasmic but also nuclear, being concentrated in the nucleoli during wart formation. Infected cells spread laterally along the basal layer and into the parabasal layers, accompanied by E7 transcription and increased mitoses. Most of the lower epithelium was positive for viral DNA, but, in mature warts, higher levels of E4 expression and genome amplification occurred in only sporadic superficial cells. L1 expression was late and in only a subset of E4-positive cells. During regression, viral DNA was less abundant in deep epithelial layers, suggesting downregulation of replication prior to replacement of infected cells from beneath. Detection of viral DNA in post-regression tissue indicated latent infection.
Collapse
Affiliation(s)
- P K Nicholls
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom.
| | | | | | | | | | | |
Collapse
|
238
|
Nicholls PK, Moore PF, Anderson DM, Moore RA, Parry NR, Gough GW, Stanley MA. Regression of canine oral papillomas is associated with infiltration of CD4+ and CD8+ lymphocytes. Virology 2001; 283:31-9. [PMID: 11312659 DOI: 10.1006/viro.2000.0789] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Canine oral papillomavirus (COPV) infection is used in vaccine development against mucosal papillomaviruses. The predictable, spontaneous regression of the papillomas makes this an attractive system for analysis of cellular immunity. Immunohistochemical analysis of the timing and phenotype of immune cell infiltration revealed a marked influx of leukocytes during wart regression, including abundant CD4+ and CD8+ cells, with CD4+ cells being most numerous. Comparison of these findings, and those of immunohistochemistry using TCRalphabeta-, TCRgammadelta-, CD1a-, CD1c-, CD11a-, CD11b-, CD11c-, CD18-, CD21-, and CD49d-specific monoclonal antibodies, with previously published work in the human, ox, and rabbit models revealed important differences between these systems. Unlike bovine papillomavirus lesions, those of COPV do not have a significant gamma/delta T-cell infiltrate. Furthermore, COPV lesions had numerous CD4+ cells, unlike cottontail rabbit papillomavirus lesions. The lymphocyte infiltrate in the dog resembled that in human papillomavirus lesions, indicating that COPV is an appropriate model for human papillomavirus immunity.
Collapse
Affiliation(s)
- P K Nicholls
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
239
|
Giroglou T, Florin L, Schäfer F, Streeck RE, Sapp M. Human papillomavirus infection requires cell surface heparan sulfate. J Virol 2001; 75:1565-70. [PMID: 11152531 PMCID: PMC114064 DOI: 10.1128/jvi.75.3.1565-1570.2001] [Citation(s) in RCA: 380] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Using pseudoinfection of cell lines, we demonstrate that cell surface heparan sulfate is required for infection by human papillomavirus type 16 (HPV-16) and HPV-33 pseudovirions. Pseudoinfection was inhibited by heparin but not dermatan or chondroitin sulfate, reduced by reducing the level of surface sulfation, and abolished by heparinase treatment. Carboxy-terminally deleted HPV-33 virus-like particles still bound efficiently to heparin. The kinetics of postattachment neutralization by antiserum or heparin indicated that pseudovirions were shifted on the cell surface from a heparin-sensitive into a heparin-resistant mode of binding, possibly involving a secondary receptor. Alpha-6 integrin is not a receptor for HPV-33 pseudoinfection.
Collapse
Affiliation(s)
- T Giroglou
- Institute for Medical Microbiology and Hygiene, University of Mainz, 55101 Mainz, Germany
| | | | | | | | | |
Collapse
|
240
|
Mayer TJ, Frauenhoffer EE, Meyers AC. Expression of epidermal growth factor and platelet-derived growth factor receptors during cervical carcinogenesis. In Vitro Cell Dev Biol Anim 2000; 36:667-76. [PMID: 11229599 DOI: 10.1290/1071-2690(2000)036<0667:eoegfa>2.0.co;2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Altered expression of epidermal growth factor receptor (EGFR) is common in a variety of epithelial malignancies, including cervical cancer. However, the prognostic significance of EGFR expression is controversial for cervical cancer. Platelet-derived growth factor receptor (PDGFR) expression status is unknown in cervical cancer. Our results demonstrated that expression of EGFR and PDGFR was greatly enhanced in vivo and in organotypic cultures of low-grade cervical dysplastic tissues, but levels were decreased in high-grade lesions. To our knowledge, this is the first report identifying the expression of PDGFR in human epithelium. When low-grade dysplastic organotypic culture tissues were induced to differentiate more completely, EGFR expression, but not PDGFR expression, was relocalized to the basal layer as seen in normal tissues. Differentiation also induced phosphorylation of EGFR but not PDGFR. Our results suggest a role for EGFR and PDGFR during the early stages of cervical carcinogenesis, and demonstrate the facility of organotypic cultures to study the role of these growth factors in the development of cervical cancer.
Collapse
Affiliation(s)
- T J Mayer
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine. The Milton S. Hershey Medical Center, Hershey 17033, USA
| | | | | |
Collapse
|
241
|
Meyers C, Mane M, Kokorina N, Alam S, Hermonat PL. Ubiquitous human adeno-associated virus type 2 autonomously replicates in differentiating keratinocytes of a normal skin model. Virology 2000; 272:338-46. [PMID: 10873777 DOI: 10.1006/viro.2000.0385] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since its discovery in 1966, adeno-associated virus type 2 (AAV) has been described as a helper-dependent parvovirus. However, in this study we demonstrate that AAV undergoes its complete life cycle, devoid of helper viruses or genotoxic agents, in the organotypic epithelial raft tissue culture system, a model of normal skin. AAV progeny production directly correlated with epithelial differentiation, as nondifferentiating keratinocytes were defective for this activity. Large nuclear virus arrays of particles of approximately 26 nm (parvovirus size) were observed in the granular layers of the raft epithelium by electron microscopy. Additionally, dosage-dependent histologic changes, some of which might be interpreted as cytopathology, were induced in the AAV-infected epithelial tissues. These data suggest a new biological model for AAV; that is, AAV is an epithelial-tropic autonomous parvovirus that can alter normal squamous differentiation.
Collapse
Affiliation(s)
- C Meyers
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, 17033, USA
| | | | | | | | | |
Collapse
|
242
|
Boxman IL, Mulder LH, Vermeer BJ, Bavinck JN, ter Schegget J, Ponec M. HPV-DNA is not detectable in outgrowing cells from explant cultures of skin lesions established at the air-liquid-interface. J Med Virol 2000; 61:281-8. [PMID: 10861634 DOI: 10.1002/1096-9071(200007)61:3<281::aid-jmv1>3.0.co;2-p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Keratinocyte cultures established from HPV containing skin cancers were described earlier to lose their HPV DNA after passaging in vitro. A different approach was therefore used in this study. Explant cultures were generated by depositing small pieces of various benign and (pre)malignant skin specimens of renal transplant recipients and non-immunosuppressed patients on fibroblast-populated collagen lattices or on de-epidermized dermis. Subsequently, the cultures were maintained at the air-liquid interface. At various time points, samples were collected for both HPV analysis, using a nested PCR approach, and morphology. The outgrowing keratinocytes developed into multilayered epithelial structures showing terminal differentiation. No histological differences were observed between cultures established from HPV positive and negative lesions. Eighteen biopsy specimens were tested for their HPV content before and after culture. Before culture 11 out of these skin specimens contained DNA of the Epidermodysplasia Verruciformis-related HPV types (EV-HPV). Comparison of the HPV types detected in two different parts of the same skin specimen before culture was strongly suggestive for a non-homogeneous distribution of EV-HPV in the lesions. From the explant cultures derived from the 11 HPV-positive biopsies, 31 samples from the originally explanted pieces of tissue and 38 samples from the outgrowing multilayered epithelial sections were collected. HPV DNA was detected in 10 of the 31 and in 3 of the 38 samples (Chi-square test, P = 0.01), respectively. These results indicate that EV-HPV positive keratinocytes do not efficiently proliferate or lose their HPV DNA in this culture system or EV-HPV DNA is present in only a few basal cells, making it improbable that these cells are located at the outgrowing margins.
Collapse
Affiliation(s)
- I L Boxman
- Department of Virology, Academic Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
243
|
Craigo J, Callahan M, Huang RC, DeLucia AL. Inhibition of human papillomavirus type 16 gene expression by nordihydroguaiaretic acid plant lignan derivatives. Antiviral Res 2000; 47:19-28. [PMID: 10930643 DOI: 10.1016/s0166-3542(00)00089-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Several methylated derivatives of a plant lignan, nordihydroguaiaretic acid (NDGA) were found to be potent anti-viral agents by suppressing Sp1 regulated transcription within the sexually transmitted viruses human immunodeficiency virus (HIV) and herpes simplex virus (HSV). A prominent Sp1 DNA binding site within many human papillomavirus (HPV) promoters has been noted to play an active role in HPV gene expression. In this report it is shown that the three NDGA derivatives, Mal.4, M(4)N, and tetra-acetyl NDGA can also inhibit gene expression from the early promoter P(97) of HPV16. The drug activity on gene expression was measured after DNA transfection of recombinant vector constructs linking the viral promoter and enhancer elements to the luciferase reporter gene. Using the specific luciferase activity as the indicator of gene expression, Mal.4 and M(4)N were found to be active in a dose dependent manner that is in the same range of concentrations reported for the promoters of HIV, HSV, and simian virus 40 (SV40) while tetra-acetyl NDGA was much more active in suppression of the HPV P(97) promoter activity than Mal.4 and M(4)N. The drugs showed limited to no effect on gene expression driven by the adenovirus major late promoter and the cytomegalovirus (CMV) promoter. Hence, such drug derivatives may be significant in the therapy of papillomavirus infections and their associated induced human cancers.
Collapse
Affiliation(s)
- J Craigo
- Department of Microbiology and Immunology, Northeastern Ohio Universities College of Medicine, 4209 State RT 44, Rootstown, OH 44272, USA
| | | | | | | |
Collapse
|
244
|
|
245
|
Ai W, Narahari J, Roman A. Yin yang 1 negatively regulates the differentiation-specific E1 promoter of human papillomavirus type 6. J Virol 2000; 74:5198-205. [PMID: 10799595 PMCID: PMC110873 DOI: 10.1128/jvi.74.11.5198-5205.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Human papillomavirus type 6 (HPV-6) is a low-risk HPV whose replication cycle, like that of all HPVs, is differentiation dependent. We have previously shown that CCAAT displacement protein (CDP) binds the differentiation-induced HPV-6 E1 promoter and negatively regulates its activity in undifferentiated cells (W. Ai, E. Toussaint, and A. Roman, J. Virol. 73:4220-4229, 1999). Using electrophoretic mobility shift assays (EMSAs), we now report that Yin Yang 1 (YY1), a multifunctional protein that can act as a transcriptional activator or repressor and that can also inhibit HPV replication in vitro, binds the HPV-6 E1 promoter. EMSAs, using subfragments of the promoter as competitors, showed that the YY1 binding site is located at the 5' end of the E1 promoter. When a putative YY1 site was mutated, the ability of YY1 to bind was greatly decreased. The activity of the mutated E1 promoter, monitored with the reporter gene luciferase, was threefold greater than that of the wild-type promoter, suggesting that YY1 negatively regulates HPV-6 E1 promoter activity. Nuclear extracts from differentiated keratinocytes showed decreased binding of YY1 to the wild-type promoter. Consistent with this, in differentiated keratinocytes, the activity of the transfected luciferase gene transcribed from the mutated promoter was comparable to that of the wild-type promoter; both promoters were up-regulated in differentiated keratinocytes compared to undifferentiated cells. These data suggest that YY1 functions in undifferentiated keratinocytes but not in differentiated keratinocytes. Both the wild-type and mutated promoters could be negatively regulated by overexpression of a plasmid encoding CDP. Thus, both YY1 and CDP appear to be negative regulators of the differentiation-induced HPV-6 E1 promoter and thereby the HPV life cycle. In contrast, only binding of CDP was detected using the E1 promoter of the high-risk HPV-31.
Collapse
Affiliation(s)
- W Ai
- Department of Microbiology and Immunology, Indiana University School of Medicine, and Walther Cancer Institute, Indianapolis, Indiana 46202-5120, USA
| | | | | |
Collapse
|
246
|
Chang YE, Laimins LA. Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J Virol 2000; 74:4174-82. [PMID: 10756030 PMCID: PMC111932 DOI: 10.1128/jvi.74.9.4174-4182.2000] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human papillomaviruses (HPVs) infect keratinocytes and induce proliferative lesions. In infected cells, viral gene products alter the activities of cellular proteins, such as Rb and p53, resulting in altered cell cycle response. It is likely that HPV gene products also alter expression of cellular genes. In this study we used microarray analysis to examine the global changes in gene expression induced by high-risk HPV type 31 (HPV31). Among 7,075 known genes and ESTs (expressed sequence tags) tested, we found that 178 were upregulated and 150 were downregulated twofold or more in HPV31 cells compared to normal human keratinocytes. While no specific pattern could be deduced from the list of genes that were upregulated, downregulated genes could be classified to three groups: genes that are involved in the regulation of cell growth, genes that are specifically expressed in keratinocytes, and genes whose expression is increased in response to interferon stimulation. The basal level of expression of several interferon-responsive genes was found to be downregulated in HPV31 cells by both microarray analysis and Northern blot analysis in different HPV31 cell lines. When cells were treated with alpha or gamma interferon, expression of interferon-inducible genes was impaired. At high doses of interferon, the effects were less pronounced. Among the genes repressed by HPV31 was the signal transducer and activator of transcription (Stat-1), which plays a major role in mediating the interferon response. Suppression of Stat-1 expression may contribute to a suppressed response to interferon as well as immune evasion.
Collapse
Affiliation(s)
- Y E Chang
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
247
|
Stubenrauch F, Hummel M, Iftner T, Laimins LA. The E8E2C protein, a negative regulator of viral transcription and replication, is required for extrachromosomal maintenance of human papillomavirus type 31 in keratinocytes. J Virol 2000; 74:1178-86. [PMID: 10627528 PMCID: PMC111452 DOI: 10.1128/jvi.74.3.1178-1186.2000] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The viral E2 protein is a major regulator of papillomavirus DNA replication. An important way to influence viral replication is through modulation of the activity of the E2 protein. This could occur through the action of truncated E2 proteins, called E2 repressors, whose role in the replication cycle of human papillomaviruses (HPVs) has not been determined. In this study, using cell lines that contain episomal copies of the "high-risk" HPV type 31 (HPV31), we have identified viral transcripts with a splice from nucleotide (nt) 1296 to 3295. These transcripts are similar to RNAs from other animal and human papillomaviruses and have the potential to fuse a small open reading frame (E8) to the C terminus of E2, resulting in an E8E2C fusion protein. E8E2C transcripts were present throughout the complete replication cycle of HPV31. A genetic analysis of E8E2C in the context of the HPV31 genome revealed that mutation of the single ATG of the E8 gene, introduction of a stop codon downstream of the ATG, or disruption of the splice donor site at nt 1296 led to a dramatic 30- to 40-fold increase in the transient DNA replication levels in both normal and immortalized human keratinocytes. High-level expression of E8E2C from heterologous vectors was found to inhibit E1-E2-dependent DNA replication of an HPV31 origin of replication construct as well as to interfere with E2's ability to transactivate reporter gene constructs. In addition, HPV31 E8E2C strongly repressed the basal activity of the major viral early promoter P97 independent of E2. E8E2C may therefore exert its negative effect on viral DNA replication through modulating E2's ability to enhance E1-dependent DNA replication as well as by regulating viral gene expression. Surprisingly, HPV31 genomes that were unable to express E8E2C could not be maintained extrachromosomally in human keratinocytes in long-term assays despite high transient DNA replication levels. This suggests that the E8E2C protein may play a role in copy number control as well as in the stable maintenance of HPV episomes.
Collapse
MESH Headings
- Base Sequence
- Blotting, Southern
- Cells, Cultured
- DNA Replication
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Viral
- Genome, Viral
- Humans
- Keratinocytes/virology
- Molecular Sequence Data
- Mutation
- Papillomaviridae/genetics
- Papillomaviridae/physiology
- Plasmids
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- RNA, Viral/analysis
- RNA, Viral/genetics
- Recombinant Fusion Proteins/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Ribonucleases/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virus Replication
Collapse
Affiliation(s)
- F Stubenrauch
- Sektion Experimentelle Virologie, Abteilung Medizinische Virologie, Universitätsklinikum Tuebingen, D-72076 Tuebingen, Germany.
| | | | | | | |
Collapse
|
248
|
Kimberlin DW, Malis DJ. Juvenile onset recurrent respiratory papillomatosis: possibilities for successful antiviral therapy. Antiviral Res 2000; 45:83-93. [PMID: 10809017 DOI: 10.1016/s0166-3542(00)00064-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Recurrent respiratory papillomatosis (RRP) is a potentially devastating disease that can have significant morbidity, and can even result in mortality due to airway compromise or, less commonly, malignant transformation. Two distinct types of RRP exist: adult-onset RRP (AO-RRP) and juvenile-onset RRP (JO-RRP). Acquisition of human papillomavirus (HPV), the causative agent of RRP, is believed to occur in the peripartum period in the case of JO-RRP, with disease symptoms (primarily hoarseness) becoming apparent during the first several years of life. Treatment currently consists of surgical debulking of the papillomas to relieve airway obstruction. However, numerous antiviral therapies have also been evaluated, albeit primarily under uncontrolled settings. This article will review the biology, natural history and management of HPV infection, with particular emphasis on JO-RRP.
Collapse
Affiliation(s)
- D W Kimberlin
- Division of Infectious Diseases, The University of Alabama at Birmingham, 35233, USA.
| | | |
Collapse
|
249
|
Hiroshima K, Toyozaki T, Iyoda A, Ohwada H, Kado S, Shirasawa H, Fujisawa T. Ultrastructural study of intranuclear inclusion bodies of pulmonary adenocarcinoma. Ultrastruct Pathol 1999; 23:383-9. [PMID: 10626688 DOI: 10.1080/019131299281356] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Intranuclear inclusion bodies are sometimes observed in pulmonary adenocarcinoma by light microscopy. Electron microscopic characteristics of lung cancer cells with intranuclear inclusion bodies were studied. In addition, polymerase chain reaction (PCR) was performed using primers coding for human papillomavirus (HPV) types 16, 18, and 33. Eosinophilic intranuclear inclusion bodies were observed in 22 out of 285 cases by light microscopy. Immunohistochemically, cancer cell nuclei stained with PE-10. Three types of intranuclear inclusion bodies were classified electron microscopically. Type A showed aggregation of electron dense particles (30-40 nm) with an electron-dense core and was most frequently observed. Type B consisted of a mass of branching and whirling tubular structures. Type B intranuclear inclusions had a relationship with inner nuclear membrane. In type C, several spherical inclusions were observed in one nucleus. HPV DNA was detected using PCR and type-specific probes in a case with type A inclusion bodies. This study suggests that intranuclear inclusion bodies in pulmonary adenocarcinoma are formed by several different mechanisms.
Collapse
Affiliation(s)
- K Hiroshima
- Division of Pathology, Institute of Pulmonary Cancer Research, Chiba University School of Medicine, Japan.
| | | | | | | | | | | | | |
Collapse
|
250
|
Flores ER, Allen-Hoffmann BL, Lee D, Sattler CA, Lambert PF. Establishment of the human papillomavirus type 16 (HPV-16) life cycle in an immortalized human foreskin keratinocyte cell line. Virology 1999; 262:344-54. [PMID: 10502513 DOI: 10.1006/viro.1999.9868] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study of human papillomaviruses (HPVs) in cell culture has been hindered because of the difficulty in recreating the three-dimensional structure of the epithelium on which the virus depends to complete its life cycle. Additionally, the study of genetic mutations in the HPV genome and its effects on the viral life cycle are difficult using the current method of transfecting molecularly cloned HPV genomes into early-passage human foreskin keratinocytes (HFKs) because of the limited life span of these cells. Unless the HPV genome transfected into the early-passage HFK extends the life span of the cell, analysis of stable transfectants becomes difficult. In this study, we have used BC-1-Ep/SL cells, an immortalized human foreskin keratinocyte cell line, to recreate the HPV-16 life cycle. This cell line exhibits many characteristics of the early-passage HFKs including the ability to stratify and terminally differentiate in an organotypic raft culture system. Because of their similarity to early-passage HFKs, these cells were tested for their ability to support the HPV-16 life cycle. The BC-1-Ep/SL cells could stably maintain two HPV genotypes, HPV-16 and HPV-31b, episomally. Additionally, when the BC-1-Ep/SL cell line was stably transfected with HPV-16 and cultured using the organotypic raft culture system (rafts), it sustained the HPV-16 life cycle. Evidence for the productive stage of the HPV-16 life cycle was provided by: DNA in situ hybridization demonstrating HPV-16 DNA amplification in the suprabasal layers of the rafts, immunohistochemical staining for L1 showing the presence of capsid protein in the suprabasal layers of the rafts, and electron microscopy indicating the presence of virus like particles (VLPs) in nuclei from cells in the differentiated layers of the rafts.
Collapse
Affiliation(s)
- E R Flores
- McArdle Laboratory for Cancer Research, Department of Pathology, University of Wisconsin Medical School, 1400 University Avenue, Madison, Wisconsin, 53706, USA
| | | | | | | | | |
Collapse
|