201
|
Ding H, Li Y, Zhang Y, Meng H, Wang K, Sun Q, Li X, Dong H, Chen L, He F. Bioinformatics analysis of Myelin Transcription Factor 1. Technol Health Care 2021; 29:441-453. [PMID: 33682781 PMCID: PMC8150646 DOI: 10.3233/thc-218042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVE: We aimed to further study the role of Myelin Transcription Factor 1(MyT1) in tumor and other diseases and epigenetic regulation, and better understand the regulatory mechanism of MyT1. METHODS: Using bioinformatics analysis, the structure and function of MyT1sequence were predicted and analyzed using bioinformatics analysis, and providing a theoretical basis for further experimental verification and understanding the regulatory mechanism of MyT1. The first, second and third-level structures of MyT1 were predicted and analyzed by bioinformatics analysis tools. RESULTS: MyT1 is found to be an unstable hydrophilic protein, rather than a secretory protein, with no signal peptide or trans-membrane domain; total amino acids located on the surface of the cell membrane. It contains seven zinc finger domains structurally. At sub-cellular level, MyT1 is localized in the nucleus. The phosphorylation site mainly exists in serine, and its secondary structure is mainly composed of random coils and alpha helices; the three-dimensional structure is analyzed by modeling. CONCLUSIONS: In this study, the structure and function of MyT1 protein were predicted, thereby providing a basis for subsequent expression analysis and functional research; it laid the foundation for further investigation of the molecular mechanism involved in the development of diseases.
Collapse
Affiliation(s)
- Hongjun Ding
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China.,Tianjin Public Security Profession College, Tianjin, China.,School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Yanju Li
- Medical Laboratory Department, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute, Tianjin, China.,School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Yanlong Zhang
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Huipeng Meng
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Keqiang Wang
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Qian Sun
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| | - Xichuan Li
- College of Life Sciences, Tianjin Normal University, Tianjin, China
| | - Huajiang Dong
- Logistics University of Chinese People's Armed Police Forces, Tianjin, China
| | - Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Feng He
- School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
202
|
Yuan L, Pan J, Zhu S, Li Y, Yao J, Li Q, Fang S, Liu C, Wang X, Li B, Chen W, Zhang Y. Evolution and Functional Divergence of SUN Genes in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:646622. [PMID: 33763102 PMCID: PMC7982736 DOI: 10.3389/fpls.2021.646622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/18/2021] [Indexed: 05/27/2023]
Abstract
SUN-domain containing proteins are crucial nuclear membrane proteins involved in a plethora of biological functions, including meiosis, nuclear morphology, and embryonic development, but their evolutionary history and functional divergence are obscure. In all, 216 SUN proteins from protists, fungi, and plants were divided into two monophyletic clades (Cter-SUN and Mid-SUN). We performed comprehensive evolutionary analyses, investigating the characteristics of different subfamilies in plants. Mid-SUNs further evolved into two subgroups, SUN3 and SUN5, before the emergence of the ancestor of angiosperms, while Cter-SUNs retained one subfamily of SUN1. The two clades were distinct from each other in the conserved residues of the SUN domain, the TM motif, and exon/intron structures. The gene losses occurred with equal frequency between these two clades, but duplication events of Mid-SUNs were more frequent. In cotton, SUN3 proteins are primarily expressed in petals and stamens and are moderately expressed in other tissues, whereas SUN5 proteins are specifically expressed in mature pollen. Virus-induced knock-down and the CRISPR/Cas9-mediated knockout of GbSUN5 both showed higher ratios of aborted seeds, although pollen viability remained normal. Our results indicated divergence of biological function between SUN3 and SUN5, and that SUN5 plays an important role in reproductive development.
Collapse
Affiliation(s)
- Li Yuan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingwen Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shouhong Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yan Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinbo Yao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qiulin Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shengtao Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Chunyan Liu
- College of Plant Science, Tarim University, Xinjiang, China
| | - Xinyu Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Bei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yongshan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| |
Collapse
|
203
|
Bazan R, Schröfel A, Joachimiak E, Poprzeczko M, Pigino G, Wloga D. Ccdc113/Ccdc96 complex, a novel regulator of ciliary beating that connects radial spoke 3 to dynein g and the nexin link. PLoS Genet 2021; 17:e1009388. [PMID: 33661892 PMCID: PMC7987202 DOI: 10.1371/journal.pgen.1009388] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/23/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022] Open
Abstract
Ciliary beating requires the coordinated activity of numerous axonemal complexes. The protein composition and role of radial spokes (RS), nexin links (N-DRC) and dyneins (ODAs and IDAs) is well established. However, how information is transmitted from the central apparatus to the RS and across other ciliary structures remains unclear. Here, we identify a complex comprising the evolutionarily conserved proteins Ccdc96 and Ccdc113, positioned parallel to N-DRC and forming a connection between RS3, dynein g, and N-DRC. Although Ccdc96 and Ccdc113 can be transported to cilia independently, their stable docking and function requires the presence of both proteins. Deletion of either CCDC113 or CCDC96 alters cilia beating frequency, amplitude and waveform. We propose that the Ccdc113/Ccdc96 complex transmits signals from RS3 and N-DRC to dynein g and thus regulates its activity and the ciliary beat pattern.
Collapse
Affiliation(s)
- Rafał Bazan
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Adam Schröfel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Martyna Poprzeczko
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Human Technopole, Milan, Italy
- * E-mail: (GP); (DW)
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (GP); (DW)
| |
Collapse
|
204
|
Shi H, Sun L, Wang Y, Liu A, Zhan X, Li X, Tang M, Anderton P, Hildebrand S, Quan J, Ludwig S, Moresco EMY, Beutler B. N4BP1 negatively regulates NF-κB by binding and inhibiting NEMO oligomerization. Nat Commun 2021; 12:1379. [PMID: 33654074 PMCID: PMC7925594 DOI: 10.1038/s41467-021-21711-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Many immune responses depend upon activation of NF-κB, an important transcription factor in the elicitation of a cytokine response. Here we show that N4BP1 inhibits TLR-dependent activation of NF-κB by interacting with the NF-κB signaling essential modulator (NEMO, also known as IκB kinase γ) to attenuate NEMO-NEMO dimerization or oligomerization. The UBA-like (ubiquitin associated-like) and CUE-like (ubiquitin conjugation to ER degradation-like) domains in N4BP1 mediate interaction with the NEMO COZI domain. Both in vitro and in mice, N4bp1 deficiency specifically enhances TRIF-independent (TLR2, TLR7, or TLR9-mediated) but not TRIF-dependent (TLR3 or TLR4-mediated) NF-κB activation, leading to increased production of proinflammatory cytokines. In response to TLR4 or TLR3 activation, TRIF causes activation of caspase-8, which cleaves N4BP1 distal to residues D424 and D490 and abolishes its inhibitory effect. N4bp1-/- mice also have diminished numbers of T cells in the peripheral blood. Our work identifies N4BP1 as an inhibitory checkpoint protein that must be overcome to activate NF-κB, and a TRIF-initiated caspase-8-dependent mechanism by which this is accomplished.
Collapse
Affiliation(s)
- Hexin Shi
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Sun
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ying Wang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Aijie Liu
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaoming Zhan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscilla Anderton
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Hildebrand
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jiexia Quan
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eva Marie Y Moresco
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
205
|
Prostak SM, Robinson KA, Titus MA, Fritz-Laylin LK. The actin networks of chytrid fungi reveal evolutionary loss of cytoskeletal complexity in the fungal kingdom. Curr Biol 2021; 31:1192-1205.e6. [DOI: 10.1016/j.cub.2021.01.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/05/2020] [Accepted: 01/04/2021] [Indexed: 12/16/2022]
|
206
|
Zhao C, Tombola F. Voltage-gated proton channels from fungi highlight role of peripheral regions in channel activation. Commun Biol 2021; 4:261. [PMID: 33637875 PMCID: PMC7910559 DOI: 10.1038/s42003-021-01792-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Here, we report the identification and characterization of the first proton channels from fungi. The fungal proteins are related to animal voltage-gated Hv channels and are conserved in both higher and lower fungi. Channels from Basidiomycota and Ascomycota appear to be evolutionally and functionally distinct. Representatives from the two phyla share several features with their animal counterparts, including structural organization and strong proton selectivity, but they differ from each other and from animal Hvs in terms of voltage range of activation, pharmacology, and pH sensitivity. The activation gate of Hv channels is believed to be contained within the transmembrane core of the protein and little is known about contributions of peripheral regions to the activation mechanism. Using a chimeragenesis approach, we find that intra- and extracellular peripheral regions are main determinants of the voltage range of activation in fungal channels, highlighting the role of these overlooked components in channel gating.
Collapse
Affiliation(s)
- Chang Zhao
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA
| | - Francesco Tombola
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA, USA.
| |
Collapse
|
207
|
Szefczyk M, Szulc N, Gąsior-Głogowska M, Modrak-Wójcik A, Bzowska A, Majstrzyk W, Taube M, Kozak M, Gotszalk T, Rudzińska-Szostak E, Berlicki Ł. Hierarchical approach for the rational construction of helix-containing nanofibrils using α,β-peptides. NANOSCALE 2021; 13:4000-4015. [PMID: 33471005 DOI: 10.1039/d0nr04313c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rational design of novel self-assembled nanomaterials based on peptides remains a great challenge in modern chemistry. A hierarchical approach for the construction of nanofibrils based on α,β-peptide foldamers is proposed. The incorporation of a helix-promoting trans-(1S,2S)-2-aminocyclopentanecarboxylic acid residue in the outer positions of the model coiled-coil peptide led to its increased conformational stability, which was established consistently by the results of CD, NMR and FT-IR spectroscopy. The designed oligomerization state in the solution of the studied peptides was confirmed using analytical ultracentrifugation. Moreover, the cyclopentane side chain allowed additional interactions between coiled-coil-like structures to direct the self-assembly process towards the formation of well-defined nanofibrils, as observed using AFM and TEM techniques.
Collapse
Affiliation(s)
- Monika Szefczyk
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Natalia Szulc
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Marlena Gąsior-Głogowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna Modrak-Wójcik
- Division of Biophysics, Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| | - Agnieszka Bzowska
- Division of Biophysics, Faculty of Physics, Institute of Experimental Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| | - Wojciech Majstrzyk
- Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Michał Taube
- Department of Macromolecular Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Maciej Kozak
- Department of Macromolecular Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, Czerwone Maki 98, 30-392 Kraków, Poland
| | - Teodor Gotszalk
- Faculty of Microsystem Electronics and Photonics, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ewa Rudzińska-Szostak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.
| |
Collapse
|
208
|
Orientational Ambiguity in Septin Coiled Coils and its Structural Basis. J Mol Biol 2021; 433:166889. [PMID: 33639214 DOI: 10.1016/j.jmb.2021.166889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/25/2021] [Accepted: 02/17/2021] [Indexed: 12/21/2022]
Abstract
Septins are an example of subtle molecular recognition whereby different paralogues must correctly assemble into functional filaments important for essential cellular events such as cytokinesis. Most possess C-terminal domains capable of forming coiled coils which are believed to be involved in filament formation and bundling. Here, we report an integrated structural approach which aims to unravel their architectural diversity and in so doing provide direct structural information for the coiled-coil regions of five human septins. Unexpectedly, we encounter dimeric structures presenting both parallel and antiparallel arrangements which are in consonance with molecular modelling suggesting that both are energetically accessible. These sequences therefore code for two metastable states of different orientations which employ different but overlapping interfaces. The antiparallel structures present a mixed coiled-coil interface, one side of which is dominated by a continuous chain of core hydrophilic residues. This unusual type of coiled coil could be used to expand the toolkit currently available to the protein engineer for the design of previously unforeseen coiled-coil based assemblies. Within a physiological context, our data provide the first atomic details related to the assumption that the parallel orientation is likely formed between septin monomers from the same filament whilst antiparallelism may participate in the widely described interfilament cross bridges necessary for higher order structures and thereby septin function.
Collapse
|
209
|
Zhang Z, Xie S, Wang R, Guo S, Zhao Q, Nie H, Liu Y, Zhang F, Chen M, Liu L, Meng X, Liu M, Zhao L, Colaiácovo MP, Zhou J, Gao J. Multivalent weak interactions between assembly units drive synaptonemal complex formation. J Cell Biol 2021; 219:151585. [PMID: 32211900 PMCID: PMC7199860 DOI: 10.1083/jcb.201910086] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/22/2020] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
The synaptonemal complex (SC) is an ordered but highly dynamic structure assembled between homologous chromosomes to control interhomologous crossover formation, ensuring accurate meiotic chromosome segregation. However, the mechanisms regulating SC assembly and dynamics remain unclear. Here, we identified two new SC components, SYP-5 and SYP-6, in Caenorhabditis elegans that have distinct expression patterns and form distinct SC assembly units with other SYPs through stable interactions. SYP-5 and SYP-6 exhibit diverse in vivo SC regulatory functions and distinct phase separation properties in cells. Charge-interacting elements (CIEs) are enriched in SC intrinsically disordered regions (IDRs), and IDR deletion or CIE removal confirmed a requirement for these elements in SC regulation. Our data support the theory that multivalent weak interactions between the SC units drive SC formation and that CIEs confer multivalency to the assembly units.
Collapse
Affiliation(s)
- Zhenguo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Songbo Xie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Ruoxi Wang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Shuqun Guo
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Qiuchen Zhao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Hui Nie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Yuanyuan Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Fengguo Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Miao Chen
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Libo Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Xiaoqian Meng
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Min Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| | - Li Zhao
- Department of Pathology, Harvard Medical School, Dana-Farber/Harvard Cancer Center, Boston, MA.,Department of Laboratory Medicine, Children's Hospital Boston, Boston, MA
| | | | - Jun Zhou
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China.,State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
210
|
Identification and Molecular Dissection of IMC32, a Conserved Toxoplasma Inner Membrane Complex Protein That Is Essential for Parasite Replication. mBio 2021; 12:mBio.03622-20. [PMID: 33593973 PMCID: PMC8545131 DOI: 10.1128/mbio.03622-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inner membrane complex (IMC) is a unique organelle of apicomplexan parasites that plays critical roles in parasite motility, host cell invasion, and replication. Despite the common functions of the organelle, relatively few IMC proteins are conserved across the phylum and the precise roles of many IMC components remain to be characterized. Here, we identify a novel component of the Toxoplasma gondii IMC (IMC32) that localizes to the body portion of the IMC and is recruited to developing daughter buds early during endodyogeny. IMC32 is essential for parasite survival, as its conditional depletion results in a complete collapse of the IMC that is lethal to the parasite. We demonstrate that localization of IMC32 is dependent on both an N-terminal palmitoylation site and a series of C-terminal coiled-coil domains. Using deletion analyses and functional complementation, we show that two conserved regions within the C-terminal coiled-coil domains play critical roles in protein function during replication. Together, this work reveals an essential component of parasite replication that provides a novel target for therapeutic intervention of T. gondii and related apicomplexan parasites.IMPORTANCE The IMC is an important organelle that apicomplexan parasites use to maintain their intracellular lifestyle. While many IMC proteins have been identified, only a few central players that are essential for internal budding have been described and even fewer are conserved across the phylum. Here, we identify IMC32, a novel component of the Toxoplasma gondii IMC that localizes to very early daughter buds, indicating a role in the early stages of parasite replication. We then demonstrate that IMC32 is essential for parasite survival and pinpoint conserved regions within the protein that are important for membrane association and daughter cell formation. As IMC32 is unique to these parasites and not present in their mammalian hosts, it serves as a new target for the development of drugs that exclusively affect these important intracellular pathogens.
Collapse
|
211
|
Synergistic role of nucleotides and lipids for the self-assembly of Shs1 septin oligomers. Biochem J 2021; 477:2697-2714. [PMID: 32726433 DOI: 10.1042/bcj20200199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/25/2022]
Abstract
Budding yeast septins are essential for cell division and polarity. Septins assemble as palindromic linear octameric complexes. The function and ultra-structural organization of septins are finely governed by their molecular polymorphism. In particular, in budding yeast, the end subunit can stand either as Shs1 or Cdc11. We have dissected, here, for the first time, the behavior of the Shs1 protomer bound to membranes at nanometer resolution, in complex with the other septins. Using electron microscopy, we have shown that on membranes, Shs1 protomers self-assemble into rings, bundles, filaments or two-dimensional gauzes. Using a set of specific mutants we have demonstrated a synergistic role of both nucleotides and lipids for the organization and oligomerization of budding yeast septins. Besides, cryo-electron tomography assays show that vesicles are deformed by the interaction between Shs1 oligomers and lipids. The Shs1-Shs1 interface is stabilized by the presence of phosphoinositides, allowing the visualization of micrometric long filaments formed by Shs1 protomers. In addition, molecular modeling experiments have revealed a potential molecular mechanism regarding the selectivity of septin subunits for phosphoinositide lipids.
Collapse
|
212
|
Liu SX, Lü G, Zhang H, Geng YZ, Ji Q. Origin of the Surprising Mechanical Stability of Kinesin's Neck Coiled Coil. J Chem Theory Comput 2021; 17:1017-1029. [PMID: 33512152 DOI: 10.1021/acs.jctc.0c00566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Kinesin-1 is a motor protein moving along a microtubule with its two identical motor heads dimerized by two neck linkers and a coiled-coil stalk. When both motor heads bind the microtubule, an internal strain is built up between the two heads, which is indispensable to ensure proper coordination of the two motor heads during kinesin-1's mechanochemical cycle. The internal strain forms a tensile force along the neck linker that tends to unwind the neck coiled coil (NCC). Experiments showed that the kinesin-1's NCC has a high antiunwinding ability compared with conventional coiled coils, which was mainly attributed to the enhanced hydrophobic pressure arising from the unconventional sequence of kinesin-1's NCC. However, hydrophobic pressure cannot provide the shearing force which is needed to balance the tensile force on the interface between two helices. To find out the true origin of the mechanical stability of kinesin-1's NCC, we perform a novel and detailed mechanical analysis for the system based on molecular dynamics simulation at an atomic level. We find that the needed shearing force is provided by a buckle structure formed by two tyrosines which form effective steric hindrance in the presence of tensile forces. The tensile force is balanced by the tensile direction component of the contact force between the two tyrosines which forms the shearing force. The hydrophobic pressure balances the other component of the contact force perpendicular to the tensile direction. The antiunwinding strength of NCC is defined by the maximum shearing force, which is finally determined by the hydrophobic pressure. Kinesin-1 uses residues with plane side chains, tryptophans and tyrosines, to form the hydrophobic center and to shorten the interhelix distance so that a high antiunwinding strength is obtained. The special design of NCC ensures exquisite cooperation of steric hindrance and hydrophobic pressure that results in the surprising mechanical stability of NCC.
Collapse
Affiliation(s)
- Shu-Xia Liu
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China
| | - Gang Lü
- Mathematical and Physical Science School, North China Electric Power University, Baoding 071003, China
| | - Hui Zhang
- School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Yi-Zhao Geng
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China.,School of Science, Hebei University of Technology, Tianjin 300401, China
| | - Qing Ji
- Institute of Biophysics, Hebei University of Technology, Tianjin 300401, China.,School of Science, Hebei University of Technology, Tianjin 300401, China.,State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
213
|
Satapathy S, Wilson MR. The Dual Roles of Clusterin in Extracellular and Intracellular Proteostasis. Trends Biochem Sci 2021; 46:652-660. [PMID: 33573881 DOI: 10.1016/j.tibs.2021.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/04/2021] [Accepted: 01/19/2021] [Indexed: 02/06/2023]
Abstract
Clusterin (CLU) was the first reported secreted mammalian chaperone and impacts on serious diseases associated with inappropriate extracellular protein aggregation. Many studies have described intracellular CLU in locations outside the secretory system and recent work has shown that CLU can be released into the cytosol during cell stress. In this article, we critically evaluate evidence relevant to the proposed origins of cellular CLU found outside the secretory system, and advance the hypothesis that the cytosolic release of CLU induced by stress serves to facilitate the trafficking of misfolded proteins to the proteasome and autophagy for degradation. We also propose future research directions that could help establish CLU as a unique chaperone performing critical and synergic roles in both intracellular and extracellular proteostasis.
Collapse
Affiliation(s)
- Sandeep Satapathy
- School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Mark R Wilson
- School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia; Illawarra Health and Medical Research Institute, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.
| |
Collapse
|
214
|
Wang Y, Wang P, Guo Y, Huang S, Chen Y, Xu L. prPred: A Predictor to Identify Plant Resistance Proteins by Incorporating k-Spaced Amino Acid (Group) Pairs. Front Bioeng Biotechnol 2021; 8:645520. [PMID: 33553134 PMCID: PMC7859348 DOI: 10.3389/fbioe.2020.645520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/31/2020] [Indexed: 11/13/2022] Open
Abstract
To infect plants successfully, pathogens adopt various strategies to overcome their physical and chemical barriers and interfere with the plant immune system. Plants deploy a large number of resistance (R) proteins to detect invading pathogens. The R proteins are encoded by resistance genes that contain cell surface-localized receptors and intracellular receptors. In this study, a new plant R protein predictor called prPred was developed based on a support vector machine (SVM), which can accurately distinguish plant R proteins from other proteins. Experimental results showed that the accuracy, precision, sensitivity, specificity, F1-score, MCC, and AUC of prPred were 0.935, 1.000, 0.806, 1.000, 0.893, 0.857, and 0.948, respectively, on an independent test set. Moreover, the predictor integrated the HMMscan search tool and Phobius to identify protein domain families and transmembrane protein regions to differentiate subclasses of R proteins. prPred is available at https://github.com/Wangys-prog/prPred. The tool requires a valid Python installation and is run from the command line.
Collapse
Affiliation(s)
- Yansu Wang
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yingjie Guo
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| | - Shan Huang
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yu Chen
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, China
| | - Lei Xu
- School of Electronic and Communication Engineering, Shenzhen Polytechnic, Shenzhen, China
| |
Collapse
|
215
|
Rathner P, Fahrner M, Cerofolini L, Grabmayr H, Horvath F, Krobath H, Gupta A, Ravera E, Fragai M, Bechmann M, Renger T, Luchinat C, Romanin C, Müller N. Interhelical interactions within the STIM1 CC1 domain modulate CRAC channel activation. Nat Chem Biol 2021; 17:196-204. [PMID: 33106661 PMCID: PMC7610458 DOI: 10.1038/s41589-020-00672-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 01/28/2023]
Abstract
The calcium release activated calcium channel is activated by the endoplasmic reticulum-resident calcium sensor protein STIM1. On activation, STIM1 C terminus changes from an inactive, tight to an active, extended conformation. A coiled-coil clamp involving the CC1 and CC3 domains is essential in controlling STIM1 activation, with CC1 as the key entity. The nuclear magnetic resonance-derived solution structure of the CC1 domain represents a three-helix bundle stabilized by interhelical contacts, which are absent in the Stormorken disease-related STIM1 R304W mutant. Two interhelical sites between the CC1α1 and CC1α2 helices are key in controlling STIM1 activation, affecting the balance between tight and extended conformations. Nuclear magnetic resonance-directed mutations within these interhelical interactions restore the physiological, store-dependent activation behavior of the gain-of-function STIM1 R304W mutant. This study reveals the functional impact of interhelical interactions within the CC1 domain for modifying the CC1-CC3 clamp strength to control the activation of STIM1.
Collapse
Affiliation(s)
- Petr Rathner
- Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria
- Institute of Inorganic Chemistry, Johannes Kepler University Linz, Linz, Austria
| | - Marc Fahrner
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
| | - Herwig Grabmayr
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria
| | - Ferdinand Horvath
- Institute for Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Heinrich Krobath
- Institute for Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Agrim Gupta
- Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Matthias Bechmann
- Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria
| | - Thomas Renger
- Institute for Theoretical Physics, Johannes Kepler University Linz, Linz, Austria
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP), Sesto Fiorentino, Italy
- Department of Chemistry, University of Florence, Sesto Fiorentino, Italy
| | - Christoph Romanin
- Institute of Biophysics, Johannes Kepler University Linz, Linz, Austria.
| | - Norbert Müller
- Institute of Organic Chemistry, Johannes Kepler University Linz, Linz, Austria.
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| |
Collapse
|
216
|
Bhagwat NR, Owens SN, Ito M, Boinapalli JV, Poa P, Ditzel A, Kopparapu S, Mahalawat M, Davies OR, Collins SR, Johnson JR, Krogan NJ, Hunter N. SUMO is a pervasive regulator of meiosis. eLife 2021; 10:57720. [PMID: 33502312 PMCID: PMC7924959 DOI: 10.7554/elife.57720] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Protein modification by SUMO helps orchestrate the elaborate events of meiosis to faithfully produce haploid gametes. To date, only a handful of meiotic SUMO targets have been identified. Here, we delineate a multidimensional SUMO-modified meiotic proteome in budding yeast, identifying 2747 conjugation sites in 775 targets, and defining their relative levels and dynamics. Modified sites cluster in disordered regions and only a minority match consensus motifs. Target identities and modification dynamics imply that SUMOylation regulates all levels of chromosome organization and each step of meiotic prophase I. Execution-point analysis confirms these inferences, revealing functions for SUMO in S-phase, the initiation of recombination, chromosome synapsis and crossing over. K15-linked SUMO chains become prominent as chromosomes synapse and recombine, consistent with roles in these processes. SUMO also modifies ubiquitin, forming hybrid oligomers with potential to modulate ubiquitin signaling. We conclude that SUMO plays diverse and unanticipated roles in regulating meiotic chromosome metabolism. Most mammalian, yeast and other eukaryote cells have two sets of chromosomes, one from each parent, which contain all the cell’s DNA. Sex cells – like the sperm and egg – however, have half the number of chromosomes and are formed by a specialized type of cell division known as meiosis. At the start of meiosis, each cell replicates its chromosomes so that it has twice the amount of DNA. The cell then undergoes two rounds of division to form sex cells which each contain only one set of chromosomes. Before the cell divides, the two duplicated sets of chromosomes pair up and swap sections of their DNA. This exchange allows each new sex cell to have a unique combination of DNA, resulting in offspring that are genetically distinct from their parents. This complex series of events is tightly regulated, in part, by a protein called the 'small ubiquitin-like modifier' (or SUMO for short), which attaches itself to other proteins and modifies their behavior. This process, known as SUMOylation, can affect a protein’s stability, where it is located in the cell and how it interacts with other proteins. However, despite SUMO being known as a key regulator of meiosis, only a handful of its protein targets have been identified. To gain a better understanding of what SUMO does during meiosis, Bhagwat et al. set out to find which proteins are targeted by SUMO in budding yeast and to map the specific sites of modification. The experiments identified 2,747 different sites on 775 different proteins, suggesting that SUMO regulates all aspects of meiosis. Consistently, inactivating SUMOylation at different times revealed SUMO plays a role at every stage of meiosis, including the replication of DNA and the exchanges between chromosomes. In depth analysis of the targeted proteins also revealed that SUMOylation targets different groups of proteins at different stages of meiosis and interacts with other protein modifications, including the ubiquitin system which tags proteins for destruction. The data gathered by Bhagwat et al. provide a starting point for future research into precisely how SUMO proteins control meiosis in yeast and other organisms. In humans, errors in meiosis are the leading cause of pregnancy loss and congenital diseases. Most of the proteins identified as SUMO targets in budding yeast are also present in humans. So, this research could provide a platform for medical advances in the future. The next step is to study mammalian models, such as mice, to confirm that the regulation of meiosis by SUMO is the same in mammals as in yeast.
Collapse
Affiliation(s)
- Nikhil R Bhagwat
- Howard Hughes Medical Institute, University of California Davis, Davis, United States.,Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Shannon N Owens
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Masaru Ito
- Howard Hughes Medical Institute, University of California Davis, Davis, United States.,Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Jay V Boinapalli
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Philip Poa
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Alexander Ditzel
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Srujan Kopparapu
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Meghan Mahalawat
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Owen Richard Davies
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Sean R Collins
- Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States
| | - Jeffrey R Johnson
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, United States
| | - Nevan J Krogan
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, United States
| | - Neil Hunter
- Howard Hughes Medical Institute, University of California Davis, Davis, United States.,Department of Microbiology & Molecular Genetics, University of California Davis, Davis, United States.,Department of Molecular & Cellular Biology, University of California Davis, Davis, United States
| |
Collapse
|
217
|
Hodeify R, Dib M, Alcantara-Adap E, Courjaret R, Nader N, Reyes CZ, Hammad AS, Hubrack S, Yu F, Machaca K. The carboxy terminal coiled-coil modulates Orai1 internalization during meiosis. Sci Rep 2021; 11:2290. [PMID: 33504898 PMCID: PMC7840751 DOI: 10.1038/s41598-021-82048-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Regulation of Ca2+ signaling is critical for the progression of cell division, especially during meiosis to prepare the egg for fertilization. The primary Ca2+ influx pathway in oocytes is Store-Operated Ca2+ Entry (SOCE). SOCE is tightly regulated during meiosis, including internalization of the SOCE channel, Orai1. Orai1 is a four-pass membrane protein with cytosolic N- and C-termini. Orai1 internalization requires a caveolin binding motif (CBM) in the N-terminus as well as the C-terminal cytosolic domain. However, the molecular determinant for Orai1 endocytosis in the C-terminus are not known. Here we show that the Orai1 C-terminus modulates Orai1 endocytosis during meiosis through a structural motif that is based on the strength of the C-terminal intersubunit coiled coil (CC) domains. Deletion mutants show that a minimal C-terminal sequence after transmembrane domain 4 (residues 260–275) supports Orai1 internalization. We refer to this region as the C-terminus Internalization Handle (CIH). Access to CIH however is dependent on the strength of the intersubunit CC. Mutants that increase the stability of the coiled coil prevent internalization independent of specific mutation. We further used human and Xenopus Orai isoforms with different propensity to form C-terminal CC and show a strong correlation between the strength of the CC and Orai internalization. Furthermore, Orai1 internalization does not depend on clathrin, flotillin or PIP2. Collectively these results argue that Orai1 internalization requires both the N-terminal CBM and C-terminal CIH where access to CIH is controlled by the strength of intersubunit C-terminal CC.
Collapse
Affiliation(s)
- Rawad Hodeify
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.,Department of Biotechnology, American University of Ras Al Khaimah, Ras al Khaimah, UAE
| | - Maya Dib
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ethel Alcantara-Adap
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Nancy Nader
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Cleo Z Reyes
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.,Lehigh Valley Health Network, Allentown, PA, USA
| | - Ayat S Hammad
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Satanay Hubrack
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.,Sidra Medicine, Doha, Qatar
| | - Fang Yu
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Ca2+ signaling Group, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar.
| |
Collapse
|
218
|
Blum M, Chang HY, Chuguransky S, Grego T, Kandasaamy S, Mitchell A, Nuka G, Paysan-Lafosse T, Qureshi M, Raj S, Richardson L, Salazar GA, Williams L, Bork P, Bridge A, Gough J, Haft DH, Letunic I, Marchler-Bauer A, Mi H, Natale DA, Necci M, Orengo CA, Pandurangan AP, Rivoire C, Sigrist CJA, Sillitoe I, Thanki N, Thomas PD, Tosatto SCE, Wu CH, Bateman A, Finn RD. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 2021; 49:D344-D354. [PMID: 33156333 PMCID: PMC7778928 DOI: 10.1093/nar/gkaa977] [Citation(s) in RCA: 1350] [Impact Index Per Article: 337.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/08/2020] [Accepted: 10/23/2020] [Indexed: 01/22/2023] Open
Abstract
The InterPro database (https://www.ebi.ac.uk/interpro/) provides an integrative classification of protein sequences into families, and identifies functionally important domains and conserved sites. InterProScan is the underlying software that allows protein and nucleic acid sequences to be searched against InterPro's signatures. Signatures are predictive models which describe protein families, domains or sites, and are provided by multiple databases. InterPro combines signatures representing equivalent families, domains or sites, and provides additional information such as descriptions, literature references and Gene Ontology (GO) terms, to produce a comprehensive resource for protein classification. Founded in 1999, InterPro has become one of the most widely used resources for protein family annotation. Here, we report the status of InterPro (version 81.0) in its 20th year of operation, and its associated software, including updates to database content, the release of a new website and REST API, and performance improvements in InterProScan.
Collapse
Affiliation(s)
- Matthias Blum
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Hsin-Yu Chang
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Sara Chuguransky
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Tiago Grego
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Swaathi Kandasaamy
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Alex Mitchell
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Gift Nuka
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Typhaine Paysan-Lafosse
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Matloob Qureshi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Shriya Raj
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Lorna Richardson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Gustavo A Salazar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Lowri Williams
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Peer Bork
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Alan Bridge
- Swiss-Prot Group, Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Julian Gough
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave, Trumpington, Cambridge CB2 0QH, UK
| | - Daniel H Haft
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda MD 20894 USA
| | - Ivica Letunic
- Biobyte Solutions GmbH, Bothestr 142, 69126 Heidelberg, Germany
| | - Aron Marchler-Bauer
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda MD 20894 USA
| | - Huaiyu Mi
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Darren A Natale
- Protein Information Resource, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Marco Necci
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/b, 35131 Padua, Italy
| | - Christine A Orengo
- Department of Structural and Molecular Biology, University College London, Gower St, Bloomsbury, London WC1E 6BT, UK
| | - Arun P Pandurangan
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave, Trumpington, Cambridge CB2 0QH, UK
| | - Catherine Rivoire
- Swiss-Prot Group, Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Christian J A Sigrist
- Swiss-Prot Group, Swiss Institute of Bioinformatics, CMU, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Ian Sillitoe
- Department of Structural and Molecular Biology, University College London, Gower St, Bloomsbury, London WC1E 6BT, UK
| | - Narmada Thanki
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda MD 20894 USA
| | - Paul D Thomas
- Division of Bioinformatics, Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padua, via U. Bassi 58/b, 35131 Padua, Italy
| | - Cathy H Wu
- Protein Information Resource, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK
| |
Collapse
|
219
|
Mistry J, Chuguransky S, Williams L, Qureshi M, Salazar GA, Sonnhammer ELL, Tosatto SCE, Paladin L, Raj S, Richardson LJ, Finn RD, Bateman A. Pfam: The protein families database in 2021. Nucleic Acids Res 2021; 49:D412-D419. [PMID: 33125078 PMCID: PMC7779014 DOI: 10.1093/nar/gkaa913] [Citation(s) in RCA: 3422] [Impact Index Per Article: 855.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/19/2022] Open
Abstract
The Pfam database is a widely used resource for classifying protein sequences into families and domains. Since Pfam was last described in this journal, over 350 new families have been added in Pfam 33.1 and numerous improvements have been made to existing entries. To facilitate research on COVID-19, we have revised the Pfam entries that cover the SARS-CoV-2 proteome, and built new entries for regions that were not covered by Pfam. We have reintroduced Pfam-B which provides an automatically generated supplement to Pfam and contains 136 730 novel clusters of sequences that are not yet matched by a Pfam family. The new Pfam-B is based on a clustering by the MMseqs2 software. We have compared all of the regions in the RepeatsDB to those in Pfam and have started to use the results to build and refine Pfam repeat families. Pfam is freely available for browsing and download at http://pfam.xfam.org/.
Collapse
Affiliation(s)
- Jaina Mistry
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Sara Chuguransky
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Lowri Williams
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Matloob Qureshi
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Gustavo A Salazar
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Erik L L Sonnhammer
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Box 1031, 17121 Solna, Sweden
| | - Silvio C E Tosatto
- Department of Biomedical Sciences, University of Padua, 35131 Padova, Italy
| | - Lisanna Paladin
- Department of Biomedical Sciences, University of Padua, 35131 Padova, Italy
| | - Shriya Raj
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Lorna J Richardson
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton CB10 1SD, UK
| |
Collapse
|
220
|
Sala V, Cnudde SJ, Murabito A, Massarotti A, Hirsch E, Ghigo A. Therapeutic peptides for the treatment of cystic fibrosis: Challenges and perspectives. Eur J Med Chem 2021; 213:113191. [PMID: 33493828 DOI: 10.1016/j.ejmech.2021.113191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/21/2020] [Accepted: 01/08/2021] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis (CF) is the most common amongst rare genetic diseases, affecting more than 70.000 people worldwide. CF is characterized by a dysfunctional chloride channel, termed cystic fibrosis conductance regulator (CFTR), which leads to the production of a thick and viscous mucus layer that clogs the lungs of CF patients and traps pathogens, leading to chronic infections and inflammation and, ultimately, lung damage. In recent years, the use of peptides for the treatment of respiratory diseases, including CF, has gained growing interest. Therapeutic peptides for CF include antimicrobial peptides, inhibitors of proteases, and modulators of ion channels, among others. Peptides display unique features that make them appealing candidates for clinical translation, like specificity of action, high efficacy, and low toxicity. Nevertheless, the intrinsic properties of peptides, together with the need of delivering these compounds locally, e.g. by inhalation, raise a number of concerns in the development of peptide therapeutics for CF lung disease. In this review, we discuss the challenges related to the use of peptides for the treatment of CF lung disease through inhalation, which include retention within mucus, proteolysis, immunogenicity and aggregation. Strategies for overcoming major shortcomings of peptide therapeutics will be presented, together with recent developments in peptide design and optimization, including computational analysis and high-throughput screening.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Sophie Julie Cnudde
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alberto Massarotti
- Department of Pharmaceutical Science, University of Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100, Novara, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy; Kither Biotech S.r.l., Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126, Torino, Italy; Kither Biotech S.r.l., Via Nizza 52, 10126, Torino, Italy.
| |
Collapse
|
221
|
De-la-Cruz IM, Hallab A, Olivares-Pinto U, Tapia-López R, Velázquez-Márquez S, Piñero D, Oyama K, Usadel B, Núñez-Farfán J. Genomic signatures of the evolution of defence against its natural enemies in the poisonous and medicinal plant Datura stramonium (Solanaceae). Sci Rep 2021; 11:882. [PMID: 33441607 PMCID: PMC7806989 DOI: 10.1038/s41598-020-79194-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/03/2020] [Indexed: 01/22/2023] Open
Abstract
Tropane alkaloids and terpenoids are widely used in the medicine and pharmaceutic industry and evolved as chemical defenses against herbivores and pathogens in the annual herb Datura stramonium (Solanaceae). Here, we present the first draft genomes of two plants from contrasting environments of D. stramonium. Using these de novo assemblies, along with other previously published genomes from 11 Solanaceae species, we carried out comparative genomic analyses to provide insights on the genome evolution of D. stramonium within the Solanaceae family, and to elucidate adaptive genomic signatures to biotic and abiotic stresses in this plant. We also studied, in detail, the evolution of four genes of D. stramonium-Putrescine N-methyltransferase, Tropinone reductase I, Tropinone reductase II and Hyoscyamine-6S-dioxygenase-involved in the tropane alkaloid biosynthesis. Our analyses revealed that the genomes of D. stramonium show signatures of expansion, physicochemical divergence and/or positive selection on proteins related to the production of tropane alkaloids, terpenoids, and glycoalkaloids as well as on R defensive genes and other important proteins related with biotic and abiotic pressures such as defense against natural enemies and drought.
Collapse
Affiliation(s)
- I M De-la-Cruz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - A Hallab
- IBG-4 Bioinformatics, CEPLAS, Forschungszentrum Jülich, Julich, Germany
| | - U Olivares-Pinto
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro, Mexico
| | - R Tapia-López
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - S Velázquez-Márquez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - D Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - K Oyama
- Escuela Nacional de Estudios Superiores and Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Universidad Nacional Autónoma de México (UNAM), Campus Morelia, Morelia, Michoacán, Mexico
| | - B Usadel
- IBG-4 Bioinformatics, CEPLAS, Forschungszentrum Jülich, Julich, Germany
- Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - J Núñez-Farfán
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| |
Collapse
|
222
|
Singh P, Pesenti ME, Maffini S, Carmignani S, Hedtfeld M, Petrovic A, Srinivasamani A, Bange T, Musacchio A. BUB1 and CENP-U, Primed by CDK1, Are the Main PLK1 Kinetochore Receptors in Mitosis. Mol Cell 2021; 81:67-87.e9. [PMID: 33248027 PMCID: PMC7837267 DOI: 10.1016/j.molcel.2020.10.040] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/08/2020] [Accepted: 10/28/2020] [Indexed: 02/02/2023]
Abstract
Reflecting its pleiotropic functions, Polo-like kinase 1 (PLK1) localizes to various sub-cellular structures during mitosis. At kinetochores, PLK1 contributes to microtubule attachments and mitotic checkpoint signaling. Previous studies identified a wealth of potential PLK1 receptors at kinetochores, as well as requirements for various mitotic kinases, including BUB1, Aurora B, and PLK1 itself. Here, we combine ectopic localization, in vitro reconstitution, and kinetochore localization studies to demonstrate that most and likely all of the PLK1 is recruited through BUB1 in the outer kinetochore and centromeric protein U (CENP-U) in the inner kinetochore. BUB1 and CENP-U share a constellation of sequence motifs consisting of a putative PP2A-docking motif and two neighboring PLK1-docking sites, which, contingent on priming phosphorylation by cyclin-dependent kinase 1 and PLK1 itself, bind PLK1 and promote its dimerization. Our results rationalize previous observations and describe a unifying mechanism for recruitment of PLK1 to human kinetochores.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Marion E Pesenti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Stefano Maffini
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Sara Carmignani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Marius Hedtfeld
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Arsen Petrovic
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Anupallavi Srinivasamani
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Tanja Bange
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Universitätsstrasse, 45141 Essen, Germany.
| |
Collapse
|
223
|
Shalini V, Bhaduri U, Ravikkumar AC, Rengarajan A, Satyanarayana RMR. Genome-wide occupancy reveals the localization of H1T2 (H1fnt) to repeat regions and a subset of transcriptionally active chromatin domains in rat spermatids. Epigenetics Chromatin 2021; 14:3. [PMID: 33407810 PMCID: PMC7788777 DOI: 10.1186/s13072-020-00376-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
Background H1T2/H1FNT is a germ cell-specific linker histone variant expressed during spermiogenesis specifically in round and elongating spermatids. Infertile phenotype of homozygous H1T2 mutant male mice revealed the essential function of H1T2 for the DNA condensation and histone-to-protamine replacement in spermiogenesis. However, the mechanism by which H1T2 imparts the inherent polarity within spermatid nucleus including the additional protein partners and the genomic domains occupied by this linker histone are unknown. Results Sequence analysis revealed the presence of Walker motif, SR domains and putative coiled-coil domains in the C-terminal domain of rat H1T2 protein. Genome-wide occupancy analysis using highly specific antibody against the CTD of H1T2 demonstrated the binding of H1T2 to the LINE L1 repeat elements and to a significant percentage of the genic regions (promoter-TSS, exons and introns) of the rat spermatid genome. Immunoprecipitation followed by mass spectrometry analysis revealed the open chromatin architecture of H1T2 occupied chromatin encompassing the H4 acetylation and other histone PTMs characteristic of transcriptionally active chromatin. In addition, the present study has identified the interacting protein partners of H1T2-associated chromatin mainly as nucleo-skeleton components, RNA-binding proteins and chaperones. Conclusions Linker histone H1T2 possesses unique domain architecture which can account for the specific functions associated with chromatin remodeling events facilitating the initiation of histone to transition proteins/protamine transition in the polar apical spermatid genome. Our results directly establish the unique function of H1T2 in nuclear shaping associated with spermiogenesis by mediating the interaction between chromatin and nucleo-skeleton, positioning the epigenetically specialized chromatin domains involved in transcription coupled histone replacement initiation towards the apical pole of round/elongating spermatids.
Collapse
Affiliation(s)
- Vasantha Shalini
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Utsa Bhaduri
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.,Department of Life Sciences, University of Trieste, Trieste, Italy.,European Union's H2020 TRIM-NET ITN, Marie Sklodowska-Curie Actions (MSCA), Leiden, The Netherlands
| | - Anjhana C Ravikkumar
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Anusha Rengarajan
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India
| | - Rao M R Satyanarayana
- From the Chromatin Biology Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore, 560064, India.
| |
Collapse
|
224
|
Li T, Zhang Q, Jiang X, Li R, Dhar N. Cotton CC-NBS-LRR Gene GbCNL130 Confers Resistance to Verticillium Wilt Across Different Species. FRONTIERS IN PLANT SCIENCE 2021; 12:695691. [PMID: 34567025 PMCID: PMC8456104 DOI: 10.3389/fpls.2021.695691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/11/2021] [Indexed: 05/16/2023]
Abstract
Verticillium wilt (VW) is a destructive disease in cotton caused by Verticillium dahliae and has a significant impact on yield and quality. In the absence of safe and effective chemical control, VW is difficult to manage. Thus, at present, developing resistant varieties is the most economical and effective method of controlling Verticillium wilt of cotton. The CC-NBS-LRR (CNL) gene family is an important class of plant genes involved in disease resistance. This study identified 141 GbCNLs in Gossypium barbadense genome, with 37.5% (53 genes) GbCNLs enriched in 12 gene clusters (GC01-GC12) based on gene distribution in the chromosomes. Especially, seven GbCNLs from two largest clusters (GC11 and GC12) were significantly upregulated in the resistant cultivar (Hai No. 7124) and the susceptible (Giza No. 57). Virus-induced gene silencing of GbCNL130 in G. barbadense, one typical gene in the gene cluster 12 (GC12), significantly altered the response to VW, compromising plant resistance to V. dahliae. In contrast, GbCNL130 overexpression significantly increased the resistance to VW in the wild-type Arabidopsis thaliana. Based on our research findings presented here, we conclude that GbCNL130 promotes resistance to VW by activating the salicylic acid (SA)-dependent defense response pathway resulting in strong accumulation of reactive oxygen species and upregulation of pathogenesis-related (PR) genes. In conclusion, our study resulted in the discovery of a new CNL resistance gene in cotton, GbCNL130, that confers resistance to VW across different hosts.
Collapse
Affiliation(s)
- Tinggang Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
- *Correspondence: Tinggang Li,
| | - Qianqian Zhang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xilong Jiang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ran Li
- Institute of Plant Protection, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nikhilesh Dhar
- Department of Plant Pathology, University of California, Davis, Salinas, CA, United States
| |
Collapse
|
225
|
Karami Y, Saighi P, Vanderhaegen R, Gerlier D, Longhi S, Laine E, Carbone A. Predicting substitutions to modulate disorder and stability in coiled-coils. BMC Bioinformatics 2020; 21:573. [PMID: 33349244 PMCID: PMC7751101 DOI: 10.1186/s12859-020-03867-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 11/09/2020] [Indexed: 11/20/2022] Open
Abstract
Background Coiled-coils are described as stable structural motifs, where two or more helices wind around each other. However, coiled-coils are associated with local mobility and intrinsic disorder. Intrinsically disordered regions in proteins are characterized by lack of stable secondary and tertiary structure under physiological conditions in vitro. They are increasingly recognized as important for protein function. However, characterizing their behaviour in solution and determining precisely the extent of disorder of a protein region remains challenging, both experimentally and computationally. Results In this work, we propose a computational framework to quantify the extent of disorder within a coiled-coil in solution and to help design substitutions modulating such disorder. Our method relies on the analysis of conformational ensembles generated by relatively short all-atom Molecular Dynamics (MD) simulations. We apply it to the phosphoprotein multimerisation domains (PMD) of Measles virus (MeV) and Nipah virus (NiV), both forming tetrameric left-handed coiled-coils. We show that our method can help quantify the extent of disorder of the C-terminus region of MeV and NiV PMDs from MD simulations of a few tens of nanoseconds, and without requiring an extensive exploration of the conformational space. Moreover, this study provided a conceptual framework for the rational design of substitutions aimed at modulating the stability of the coiled-coils. By assessing the impact of four substitutions known to destabilize coiled-coils, we derive a set of rules to control MeV PMD structural stability and cohesiveness. We therefore design two contrasting substitutions, one increasing the stability of the tetramer and the other increasing its flexibility. Conclusions Our method can be considered as a platform to reason about how to design substitutions aimed at regulating flexibility and stability.
Collapse
Affiliation(s)
- Yasaman Karami
- CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, 75005, Paris, France. .,Institute of Computing and Data Sciences (ISCD), Sorbonne Université, 75005, Paris, France.
| | - Paul Saighi
- CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, 75005, Paris, France
| | - Rémy Vanderhaegen
- CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, 75005, Paris, France
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, INSERM, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, Ecole Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Sonia Longhi
- CNRS, Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257, Aix-Marseille University, Marseille, France
| | - Elodie Laine
- CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, 75005, Paris, France.
| | - Alessandra Carbone
- CNRS, IBPS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative (LCQB), Sorbonne Université, 75005, Paris, France. .,Institut Universitaire de France, 75005, Paris, France.
| |
Collapse
|
226
|
Springstein BL, Nürnberg DJ, Weiss GL, Pilhofer M, Stucken K. Structural Determinants and Their Role in Cyanobacterial Morphogenesis. Life (Basel) 2020; 10:E355. [PMID: 33348886 PMCID: PMC7766704 DOI: 10.3390/life10120355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/04/2020] [Accepted: 12/09/2020] [Indexed: 12/16/2022] Open
Abstract
Cells have to erect and sustain an organized and dynamically adaptable structure for an efficient mode of operation that allows drastic morphological changes during cell growth and cell division. These manifold tasks are complied by the so-called cytoskeleton and its associated proteins. In bacteria, FtsZ and MreB, the bacterial homologs to tubulin and actin, respectively, as well as coiled-coil-rich proteins of intermediate filament (IF)-like function to fulfil these tasks. Despite generally being characterized as Gram-negative, cyanobacteria have a remarkably thick peptidoglycan layer and possess Gram-positive-specific cell division proteins such as SepF and DivIVA-like proteins, besides Gram-negative and cyanobacterial-specific cell division proteins like MinE, SepI, ZipN (Ftn2) and ZipS (Ftn6). The diversity of cellular morphologies and cell growth strategies in cyanobacteria could therefore be the result of additional unidentified structural determinants such as cytoskeletal proteins. In this article, we review the current advances in the understanding of the cyanobacterial cell shape, cell division and cell growth.
Collapse
Affiliation(s)
- Benjamin L. Springstein
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Dennis J. Nürnberg
- Department of Physics, Biophysics and Biochemistry of Photosynthetic Organisms, Freie Universität Berlin, 14195 Berlin, Germany;
| | - Gregor L. Weiss
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Martin Pilhofer
- Department of Biology, Institute of Molecular Biology & Biophysics, ETH Zürich, 8092 Zürich, Switzerland; (G.L.W.); (M.P.)
| | - Karina Stucken
- Department of Food Engineering, Universidad de La Serena, La Serena 1720010, Chile;
| |
Collapse
|
227
|
Springstein BL, Nürnberg DJ, Woehle C, Weissenbach J, Theune ML, Helbig AO, Maldener I, Dagan T, Stucken K. Two novel heteropolymer-forming proteins maintain the multicellular shape of the cyanobacterium Anabaena sp. PCC 7120. FEBS J 2020; 288:3197-3216. [PMID: 33205554 DOI: 10.1111/febs.15630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/29/2020] [Accepted: 11/13/2020] [Indexed: 12/14/2022]
Abstract
Polymerizing and filament-forming proteins are instrumental for numerous cellular processes such as cell division and growth. Their function in stabilization and localization of protein complexes and replicons is achieved by a filamentous structure. Known filamentous proteins assemble into homopolymers consisting of single subunits - for example, MreB and FtsZ in bacteria - or heteropolymers that are composed of two subunits, for example, keratin and α/β tubulin in eukaryotes. Here, we describe two novel coiled-coil-rich proteins (CCRPs) in the filament-forming cyanobacterium Anabaena sp. PCC 7120 (hereafter Anabaena) that assemble into a heteropolymer and function in the maintenance of the Anabaena multicellular shape (termed trichome). The two CCRPs - Alr4504 and Alr4505 (named ZicK and ZacK) - are strictly interdependent for the assembly of protein filaments in vivo and polymerize nucleotide independently in vitro, similar to known intermediate filament (IF) proteins. A ΔzicKΔzacK double mutant is characterized by a zigzagged cell arrangement and hence a loss of the typical linear Anabaena trichome shape. ZicK and ZacK interact with themselves, with each other, with the elongasome protein MreB, the septal junction protein SepJ and the divisome associate septal protein SepI. Our results suggest that ZicK and ZacK function in cooperation with SepJ and MreB to stabilize the Anabaena trichome and are likely essential for the manifestation of the multicellular shape in Anabaena. Our study reveals the presence of filament-forming IF-like proteins whose function is achieved through the formation of heteropolymers in cyanobacteria.
Collapse
Affiliation(s)
| | | | | | | | - Marius L Theune
- Institute of General Microbiology, University of Kiel, Germany
| | - Andreas O Helbig
- AG Proteomics & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Germany
| | - Iris Maldener
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen/Organismic Interactions, University of Tübingen, Germany
| | - Tal Dagan
- Institute of General Microbiology, University of Kiel, Germany
| | - Karina Stucken
- Department of Food Engineering, University of La Serena, Chile
| |
Collapse
|
228
|
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with a low survival rate. The identification of mechanisms underlying the development of HCC helps uncover cellular and molecular targets for the diagnosis, prevention, and treatment of HCC. Golgi protein 73 (GP73) level is upregulated in HCC patients and potentially can be a therapeutic target. Despite many studies devoted to GP73 as a marker for HCC early diagnosis, there is little discussion about the function of GP73 in HCC tumorigenesis. Given the poor response to currently available HCC therapies, a better understanding of the role of GP73 in HCC may provide a new therapeutic target for HCC. The current paper summarizes the role of GP73 as a diagnostic marker as well as its roles in liver carcinogenesis. Its roles in other types of cancer are also discussed.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, USA
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA, USA
| |
Collapse
|
229
|
Li A, Liu A, Du X, Chen JY, Yin M, Hu HY, Shrestha N, Wu SD, Wang HQ, Dou QW, Liu ZP, Liu JQ, Yang YZ, Ren GP. A chromosome-scale genome assembly of a diploid alfalfa, the progenitor of autotetraploid alfalfa. HORTICULTURE RESEARCH 2020; 7:194. [PMID: 33328470 PMCID: PMC7705661 DOI: 10.1038/s41438-020-00417-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/28/2020] [Accepted: 09/04/2020] [Indexed: 05/07/2023]
Abstract
Alfalfa (Medicago sativa L.) is one of the most important and widely cultivated forage crops. It is commonly used as a vegetable and medicinal herb because of its excellent nutritional quality and significant economic value. Based on Illumina, Nanopore and Hi-C data, we assembled a chromosome-scale assembly of Medicago sativa spp. caerulea (voucher PI464715), the direct diploid progenitor of autotetraploid alfalfa. The assembled genome comprises 793.2 Mb of genomic sequence and 47,202 annotated protein-coding genes. The contig N50 length is 3.86 Mb. This genome is almost twofold larger and contains more annotated protein-coding genes than that of its close relative, Medicago truncatula (420 Mb and 44,623 genes). The more expanded gene families compared with those in M. truncatula and the expansion of repetitive elements rather than whole-genome duplication (i.e., the two species share the ancestral Papilionoideae whole-genome duplication event) may have contributed to the large genome size of M. sativa spp. caerulea. Comparative and evolutionary analyses revealed that M. sativa spp. caerulea diverged from M. truncatula ~5.2 million years ago, and the chromosomal fissions and fusions detected between the two genomes occurred during the divergence of the two species. In addition, we identified 489 resistance (R) genes and 82 and 85 candidate genes involved in the lignin and cellulose biosynthesis pathways, respectively. The near-complete and accurate diploid alfalfa reference genome obtained herein serves as an important complement to the recently assembled autotetraploid alfalfa genome and will provide valuable genomic resources for investigating the genomic architecture of autotetraploid alfalfa as well as for improving breeding strategies in alfalfa.
Collapse
Affiliation(s)
- Ao Li
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Ai Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Xin Du
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jin-Yuan Chen
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Mou Yin
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hong-Yin Hu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Nawal Shrestha
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Sheng-Dan Wu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Hai-Qing Wang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Quan-Wen Dou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, China
| | - Zhi-Peng Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jian-Quan Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Bio-Resources and Eco-Environment of the Ministry of Education & State Key Lab of Hydraulics & Mountain River Engineering, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yong-Zhi Yang
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China.
| | - Guang-Peng Ren
- State Key Laboratory of Grassland Agro-Ecosystems, Institute of Innovation Ecology & School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
230
|
Lopez Arias DC, Chastellier A, Thouroude T, Bradeen J, Van Eck L, De Oliveira Y, Paillard S, Foucher F, Hibrand-Saint Oyant L, Soufflet-Freslon V. Characterization of black spot resistance in diploid roses with QTL detection, meta-analysis and candidate-gene identification. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3299-3321. [PMID: 32844252 DOI: 10.1007/s00122-020-03670-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/11/2020] [Indexed: 05/10/2023]
Abstract
Two environmentally stable QTLs linked to black spot disease resistance in the Rosa wichurana genetic background were detected, in different connected populations, on linkage groups 3 and 5. Co-localization between R-genes and defense response genes was revealed via meta-analysis. The widespread rose black spot disease (BSD) caused by the hemibiotrophic fungus Diplocarpon rosae Wolf. is efficiently controlled with fungicides. However, in the actual context of reducing agrochemical use, the demand for rose bushes with higher levels of resistance has increased. Qualitative resistance conferred by major genes (Rdr genes) has been widely studied but quantitative resistance to BSD requires further investigation. In this study, segregating populations connected through the BSD resistant Rosa wichurana male parent were phenotyped for disease resistance over several years and locations. A pseudo-testcross approach was used, resulting in six parental maps across three populations. A total of 45 individual QTLs with significant effect on BSD resistance were mapped on the male maps (on linkage groups (LG) B3, B4, B5 and B6), and 12 on the female maps (on LG A1, A2, A3, A4 and A5). Two major regions linked to BSD resistance were identified on LG B3 and B5 of the male maps and were integrated into a consensus map built from all three of the male maps. A meta-analysis was used to narrow down the confidence intervals of individual QTLs from three populations by generating meta-QTLs. Two 'hot spots' or meta-QTLs were found per LG, enabling reduction of the confidence interval to 10.42 cM for B3 and 11.47 cM for B5. An expert annotation of NBS-LRR encoding genes of the genome assembly of Hibrand et al. was performed and used to explore potential co-localization with R-genes. Co-localization with defense response genes was also investigated.
Collapse
Affiliation(s)
- D C Lopez Arias
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France.
| | - A Chastellier
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - T Thouroude
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - J Bradeen
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - L Van Eck
- Department of Plant Pathology and The Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul, MN, USA
| | - Yannick De Oliveira
- Génétique Quantitative Et Évolution - Le Moulon, INRAE - Université Paris-Sud - CNRS - AgroParisTech, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - S Paillard
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - F Foucher
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - L Hibrand-Saint Oyant
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - V Soufflet-Freslon
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
231
|
Izumi H, Nafie LA, Dukor RK. SSSCPreds: Deep Neural Network-Based Software for the Prediction of Conformational Variability and Application to SARS-CoV-2. ACS OMEGA 2020; 5:30556-30567. [PMID: 33283104 PMCID: PMC7687297 DOI: 10.1021/acsomega.0c04472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/05/2020] [Indexed: 05/05/2023]
Abstract
Amino acid mutations that improve protein stability and rigidity can accompany increases in binding affinity. Therefore, conserved amino acids located on a protein surface may be successfully targeted by antibodies. The quantitative deep mutational scanning approach is an excellent technique to understand viral evolution, and the obtained data can be utilized to develop a vaccine. However, the application of the approach to all of the proteins in general is difficult in terms of cost. To address this need, we report the construction of a deep neural network-based program for sequence-based prediction of supersecondary structure codes (SSSCs), called SSSCPrediction (SSSCPred). Further, to predict conformational flexibility or rigidity in proteins, a comparison program called SSSCPreds that consists of three deep neural network-based prediction systems (SSSCPred, SSSCPred100, and SSSCPred200) has also been developed. Using our algorithms we calculated here shows the degree of flexibility for the receptor-binding motif of SARS-CoV-2 spike protein and the rigidity of the unique motif (SSSC: SSSHSSHHHH) at the S2 subunit and has a value independent of the X-ray and Cryo-EM structures. The fact that the sequence flexibility/rigidity map of SARS-CoV-2 RBD resembles the sequence-to-phenotype maps of ACE2-binding affinity and expression, which were experimentally obtained by deep mutational scanning, suggests that the identical SSSC sequences among the ones predicted by three deep neural network-based systems correlate well with the sequences with both lower ACE2-binding affinity and lower expression. The combined analysis of predicted and observed SSSCs with keyword-tagged datasets would be helpful in understanding the structural correlation to the examined system.
Collapse
Affiliation(s)
- Hiroshi Izumi
- National
Institute of Advanced Industrial Science and Technology (AIST), AIST
Tsukuba West, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan
| | - Laurence A. Nafie
- Department
of Chemistry, Syracuse University, Syracuse, New York 13244-4100, United States
- BioTools
Inc., 17546 SR 710 (Bee
Line Hwy), Jupiter, Florida 33458, United States
| | - Rina K. Dukor
- BioTools
Inc., 17546 SR 710 (Bee
Line Hwy), Jupiter, Florida 33458, United States
| |
Collapse
|
232
|
Miller-Vedam LE, Bräuning B, Popova KD, Schirle Oakdale NT, Bonnar JL, Prabu JR, Boydston EA, Sevillano N, Shurtleff MJ, Stroud RM, Craik CS, Schulman BA, Frost A, Weissman JS. Structural and mechanistic basis of the EMC-dependent biogenesis of distinct transmembrane clients. eLife 2020; 9:e62611. [PMID: 33236988 PMCID: PMC7785296 DOI: 10.7554/elife.62611] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
Membrane protein biogenesis in the endoplasmic reticulum (ER) is complex and failure-prone. The ER membrane protein complex (EMC), comprising eight conserved subunits, has emerged as a central player in this process. Yet, we have limited understanding of how EMC enables insertion and integrity of diverse clients, from tail-anchored to polytopic transmembrane proteins. Here, yeast and human EMC cryo-EM structures reveal conserved intricate assemblies and human-specific features associated with pathologies. Structure-based functional studies distinguish between two separable EMC activities, as an insertase regulating tail-anchored protein levels and a broader role in polytopic membrane protein biogenesis. These depend on mechanistically coupled yet spatially distinct regions including two lipid-accessible membrane cavities which confer client-specific regulation, and a non-insertase EMC function mediated by the EMC lumenal domain. Our studies illuminate the structural and mechanistic basis of EMC's multifunctionality and point to its role in differentially regulating the biogenesis of distinct client protein classes.
Collapse
Affiliation(s)
- Lakshmi E Miller-Vedam
- Molecular, Cellular, and Computational Biophysics Graduate Program, University of California, San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
- Department of Biology, Whitehead Institute, MITCambridgeUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Bastian Bräuning
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Katerina D Popova
- Department of Biology, Whitehead Institute, MITCambridgeUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Biomedical Sciences Graduate Program, University of California, San FranciscoSan FranciscoUnited States
| | - Nicole T Schirle Oakdale
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Jessica L Bonnar
- Department of Biology, Whitehead Institute, MITCambridgeUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Jesuraj R Prabu
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Elizabeth A Boydston
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Natalia Sevillano
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Matthew J Shurtleff
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San FranciscoSan FranciscoUnited States
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of BiochemistryMartinsriedGermany
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San FranciscoSan FranciscoUnited States
| | - Jonathan S Weissman
- Department of Biology, Whitehead Institute, MITCambridgeUnited States
- Department of Cellular and Molecular Pharmacology, University of California, San FranciscoSan FranciscoUnited States
- Howard Hughes Medical InstituteChevy ChaseUnited States
| |
Collapse
|
233
|
Ford LK, Fioriti L. Coiled-Coil Motifs of RNA-Binding Proteins: Dynamicity in RNA Regulation. Front Cell Dev Biol 2020; 8:607947. [PMID: 33330512 PMCID: PMC7710910 DOI: 10.3389/fcell.2020.607947] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/30/2020] [Indexed: 01/29/2023] Open
Abstract
Neuronal granules are biomolecular condensates that concentrate high quantities of RNAs and RNA-related proteins within neurons. These dense packets of information are trafficked from the soma to distal sites rich in polysomes, where local protein synthesis can occur. Movement of neuronal granules to distal sites, and local protein synthesis, play a critical role in synaptic plasticity. The formation of neuronal granules is intriguing; these granules lack a membrane and instead phase separate due to protein and RNA interactions. Low complexity motifs and RNA binding domains are highly prevalent in these proteins. Here, we introduce the role that coiled-coil motifs play in neuronal granule proteins, and investigate the structure-function relationship of coiled-coil proteins in RNA regulation. Interestingly, low complexity domains and coiled-coil motifs are highly dynamic, allowing for increased functional response to environmental influences. Finally, biomolecular condensates have been suggested to drive the formation of toxic, neurodegenerative proteins such as TDP-43 and tau. Here, we review the conversion of coiled-coil motifs to amyloid structures, and speculate a role that neuronal granules play in coiled-coil to amyloid conversions of neurodegenerative proteins.
Collapse
Affiliation(s)
- Lenzie K Ford
- Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY, United States
| | - Luana Fioriti
- Laboratory of Molecular Mechanisms of Polyglutamine Disorders, Department of Neuroscience, Dulbecco Telethon Institute, Istituto di Ricerche Farmacologiche Mario Negri (IRCCS), Milan, Italy
| |
Collapse
|
234
|
Ueda Y, Nosaki S, Sakuraba Y, Miyakawa T, Kiba T, Tanokura M, Yanagisawa S. NIGT1 family proteins exhibit dual mode DNA recognition to regulate nutrient response-associated genes in Arabidopsis. PLoS Genet 2020; 16:e1009197. [PMID: 33137118 PMCID: PMC7660924 DOI: 10.1371/journal.pgen.1009197] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/12/2020] [Accepted: 10/15/2020] [Indexed: 11/19/2022] Open
Abstract
Fine-tuning of nutrient uptake and response is indispensable for maintenance of nutrient homeostasis in plants, but the details of underlying mechanisms remain to be elucidated. NITRATE-INDUCIBLE GARP-TYPE TRANSCRIPTIONAL REPRESSOR 1 (NIGT1) family proteins are plant-specific transcriptional repressors that function as an important hub in the nutrient signaling network associated with the acquisition and use of nitrogen and phosphorus. Here, by yeast two-hybrid assays, bimolecular fluorescence complementation assays, and biochemical analysis with recombinant proteins, we show that Arabidopsis NIGT1 family proteins form a dimer via the interaction mediated by a coiled-coil domain (CCD) in their N-terminal regions. Electrophoretic mobility shift assays defined that the NIGT1 dimer binds to two different motifs, 5'-GAATATTC-3' and 5'-GATTC-N38-GAATC-3', in target gene promoters. Unlike the dimer of wild-type NIGT1 family proteins, a mutant variant that could not dimerize due to amino acid substitutions within the CCD had lower specificity and affinity to DNA, thereby losing the ability to precisely regulate the expression of target genes. Thus, expressing the wild-type and mutant NIGT1 proteins in the nigt1 quadruple mutant differently modified NIGT1-regulated gene expression and responses towards nitrate and phosphate. These results suggest that the CCD-mediated dimerization confers dual mode DNA recognition to NIGT1 family proteins, which is necessary to make proper controls of their target genes and nutrient responses. Intriguingly, two 5'-GATTC-3' sequences are present in face-to-face orientation within the 5'-GATTC-N38-GAATC-3' sequence or its complementary one, while two 5'-ATTC-3' sequences are present in back-to-back orientation within the 5'-GAATATTC-3' or its complementary one. This finding suggests a unique mode of DNA binding by NIGT1 family proteins and may provide a hint as to why target sequences for some transcription factors cannot be clearly determined.
Collapse
Affiliation(s)
- Yoshiaki Ueda
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences, Tsukuba, Ibaraki, Japan
| | - Shohei Nosaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yasuhito Sakuraba
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takuya Miyakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takatoshi Kiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
- Center for Sustainable Resource Science, RIKEN, Tsurumi, Yokohama, Japan
| | - Masaru Tanokura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shuichi Yanagisawa
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
235
|
Bailey GF, Coelho JC, Poole AZ. Differential expression of Exaiptasia pallida GIMAP genes upon induction of apoptosis and autophagy suggests a potential role in cnidarian symbiosis and disease. J Exp Biol 2020; 223:jeb229906. [PMID: 32978315 DOI: 10.1242/jeb.229906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/15/2020] [Indexed: 01/11/2023]
Abstract
Coral reefs, one of the world's most productive and diverse ecosystems, are currently threatened by a variety of stressors that result in increased prevalence of both bleaching and disease. Therefore, understanding the molecular mechanisms involved in these responses is critical to mitigate future damage to the reefs. One group of genes that is potentially involved in cnidarian immunity and symbiosis is GTPases of immunity associated proteins (GIMAP). In vertebrates, this family of proteins is involved in regulating the fate of developing lymphocytes and interacts with proteins involved in apoptosis and autophagy. As apoptosis, autophagy and immunity have previously been shown to be involved in cnidarian symbiosis and disease, the goal of this research was to determine the role of cnidarian GIMAPs in these processes using the anemone Exaiptasia pallida To do so, GIMAP genes were characterized in the E. pallida genome and changes in gene expression were measured using qPCR in response to chemical induction of apoptosis, autophagy and treatment with the immune stimulant lipopolysaccharide (LPS) in both aposymbiotic and symbiotic anemones. The results revealed four GIMAP-like genes in E. pallida, referred to as Ep_GIMAPs Induction of apoptosis and autophagy resulted in a general downregulation of Ep_GIMAPs, but no significant changes were observed in response to LPS treatment. This indicates that Ep_GIMAPs may be involved in the regulation of apoptosis and autophagy, and therefore could play a role in cnidarian-dinoflagellate symbiosis. Overall, these results increase our knowledge on the function of GIMAPs in a basal metazoan.
Collapse
Affiliation(s)
- Grace F Bailey
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| | - Jenny C Coelho
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| | - Angela Z Poole
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| |
Collapse
|
236
|
Fatalska A, Dzhindzhev NS, Dadlez M, Glover DM. Interaction interface in the C-terminal parts of centriole proteins Sas6 and Ana2. Open Biol 2020; 10:200221. [PMID: 33171067 PMCID: PMC7729032 DOI: 10.1098/rsob.200221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/20/2020] [Indexed: 12/14/2022] Open
Abstract
The centriole is a ninefold symmetrical structure found at the core of centrosomes and, as a basal body, at the base of cilia, whose conserved duplication is regulated by Plk4 kinase. Plk4 phosphorylates a single serine residue at the N-terminus of Ana2 to promote Ana2's loading to the site of procentriole formation. Four conserved serines in Ana2's STAN motif are then phosphorylated by Plk4, enabling Sas6 recruitment. Crystallographic data indicate that the coiled-coil domain of Ana2 forms a tetramer but the structure of full-length Ana2 has not been solved. Here, we have employed hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) to uncover the conformational dynamics of Ana2, revealing the high flexibility of this protein with one rigid region. To determine the elusive nature of the interaction surfaces between Ana2 and Sas6, we have confirmed complex formation between the phosphomimetic form of Ana2 (Ana2-4D) and Sas6 in vitro and in vivo. Analysis of this complex by HDX-MS identifies short critical regions required for this interaction, which lie in the C-terminal parts of both proteins. Mutational studies confirmed the relevance of these regions for the Ana2-Sas6 interaction. The Sas6 site required for Ana2 binding is distinct from the site required for Sas6 to bind Gorab and Sas6 is able to bind both these protein partners simultaneously.
Collapse
Affiliation(s)
- Agnieszka Fatalska
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | - Michal Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - David M. Glover
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
237
|
Nuckolls NL, Mok AC, Lange JJ, Yi K, Kandola TS, Hunn AM, McCroskey S, Snyder JL, Bravo Núñez MA, McClain M, McKinney SA, Wood C, Halfmann R, Zanders SE. The wtf4 meiotic driver utilizes controlled protein aggregation to generate selective cell death. eLife 2020; 9:e55694. [PMID: 33108274 PMCID: PMC7591262 DOI: 10.7554/elife.55694] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/16/2020] [Indexed: 12/19/2022] Open
Abstract
Meiotic drivers are parasitic loci that force their own transmission into greater than half of the offspring of a heterozygote. Many drivers have been identified, but their molecular mechanisms are largely unknown. The wtf4 gene is a meiotic driver in Schizosaccharomyces pombe that uses a poison-antidote mechanism to selectively kill meiotic products (spores) that do not inherit wtf4. Here, we show that the Wtf4 proteins can function outside of gametogenesis and in a distantly related species, Saccharomyces cerevisiae. The Wtf4poison protein forms dispersed, toxic aggregates. The Wtf4antidote can co-assemble with the Wtf4poison and promote its trafficking to vacuoles. We show that neutralization of the Wtf4poison requires both co-assembly with the Wtf4antidote and aggregate trafficking, as mutations that disrupt either of these processes result in cell death in the presence of the Wtf4 proteins. This work reveals that wtf parasites can exploit protein aggregate management pathways to selectively destroy spores.
Collapse
Affiliation(s)
| | - Anthony C Mok
- Stowers Institute for Medical ResearchKansas CityUnited States
- University of Missouri-Kansas CityKansas CityUnited States
| | - Jeffrey J Lange
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Kexi Yi
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Tejbir S Kandola
- Stowers Institute for Medical ResearchKansas CityUnited States
- Open UniversityMilton KeynesUnited Kingdom
| | - Andrew M Hunn
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Scott McCroskey
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Julia L Snyder
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | | | - Sean A McKinney
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | - Randal Halfmann
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Molecular and Integrative Physiology, University of Kansas Medical CenterKansas CityUnited States
| | - Sarah E Zanders
- Stowers Institute for Medical ResearchKansas CityUnited States
- Department of Molecular and Integrative Physiology, University of Kansas Medical CenterKansas CityUnited States
| |
Collapse
|
238
|
David-Palma M, Libkind D, Brito PH, Silva M, Bellora N, Coelho MA, Heitman J, Gonçalves P, Sampaio JP. The Untapped Australasian Diversity of Astaxanthin-Producing Yeasts with Biotechnological Potential- Phaffia australis sp. nov. and Phaffia tasmanica sp. nov. Microorganisms 2020; 8:E1651. [PMID: 33114402 PMCID: PMC7692969 DOI: 10.3390/microorganisms8111651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/18/2020] [Accepted: 10/21/2020] [Indexed: 01/28/2023] Open
Abstract
Phaffia is an orange-colored basidiomycetous yeast genus of the order Cystofilobasidiales that contains a single species, P. rhodozyma. This species is the only fungus known to produce the economically relevant carotenoid astaxanthin. Although Phaffia was originally found in the Northern hemisphere, its diversity in the southern part of the globe has been shown to be much greater. Here we analyze the genomes of two Australasian lineages that are markedly distinct from P. rhodozyma. The two divergent lineages were investigated within a comprehensive phylogenomic study of representatives of the Cystofilobasidiales that supported the recognition of two novel Phaffia species, for which we propose the names of P. australis sp. nov. and P. tasmanica sp. nov. Comparative genomics and other analyses confirmed that the two new species have the typical Phaffia hallmark-the six genes necessary for the biosynthesis of astaxanthin could be retrieved from the draft genome sequences, and this carotenoid was detected in culture extracts. In addition, the organization of the mating-type (MAT) loci is similar to that of P. rhodozyma, with synteny throughout most regions. Moreover, cases of trans-specific polymorphism involving pheromone receptor genes and pheromone precursor proteins in the three Phaffia species, together with their shared homothallism, provide additional support for their classification in a single genus.
Collapse
Affiliation(s)
- Márcia David-Palma
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (M.D.-P.); (P.H.B.); (M.S.); (M.A.C.); (P.G.)
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Diego Libkind
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC)—CONICET/Universidad Nacional del Comahue, Bariloche, Rio Negro 8400, Argentina; (D.L.); (N.B.)
| | - Patrícia H. Brito
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (M.D.-P.); (P.H.B.); (M.S.); (M.A.C.); (P.G.)
| | - Margarida Silva
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (M.D.-P.); (P.H.B.); (M.S.); (M.A.C.); (P.G.)
| | - Nicolás Bellora
- Centro de Referencia en Levaduras y Tecnología Cervecera (CRELTEC), Instituto Andino Patagónico de Tecnologías Biológicas y Geoambientales (IPATEC)—CONICET/Universidad Nacional del Comahue, Bariloche, Rio Negro 8400, Argentina; (D.L.); (N.B.)
| | - Marco A. Coelho
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (M.D.-P.); (P.H.B.); (M.S.); (M.A.C.); (P.G.)
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA;
| | - Paula Gonçalves
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (M.D.-P.); (P.H.B.); (M.S.); (M.A.C.); (P.G.)
| | - José Paulo Sampaio
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; (M.D.-P.); (P.H.B.); (M.S.); (M.A.C.); (P.G.)
| |
Collapse
|
239
|
Kalman ZE, Mészáros B, Gáspári Z, Dobson L. Distribution of disease-causing germline mutations in coiled-coils implies an important role of their N-terminal region. Sci Rep 2020; 10:17333. [PMID: 33060664 PMCID: PMC7562717 DOI: 10.1038/s41598-020-74354-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/21/2020] [Indexed: 11/08/2022] Open
Abstract
Next-generation sequencing resulted in the identification of a huge number of naturally occurring variations in human proteins. The correct interpretation of the functional effects of these variations necessitates the understanding of how they modulate protein structure. Coiled-coils are α-helical structures responsible for a diverse range of functions, but most importantly, they facilitate the structural organization of macromolecular scaffolds via oligomerization. In this study, we analyzed a comprehensive set of disease-associated germline mutations in coiled-coil structures. Our results suggest an important role of residues near the N-terminal part of coiled-coil regions, possibly critical for superhelix assembly and folding in some cases. We also show that coiled-coils of different oligomerization states exhibit characteristically distinct patterns of disease-causing mutations. Our study provides structural and functional explanations on how disease emerges through the mutation of these structural motifs.
Collapse
Affiliation(s)
- Zsofia E Kalman
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083, Budapest, Hungary
- 3in-PPCU Research Group, 2500, Esztergom, Hungary
| | - Bálint Mészáros
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Zoltán Gáspári
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083, Budapest, Hungary.
| | - Laszlo Dobson
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Práter u. 50/A, 1083, Budapest, Hungary.
- Research Centre for Natural Sciences, Magyar Tudósok Körútja 2, 1117, Budapest, Hungary.
| |
Collapse
|
240
|
Zhang X, Pavlicev M, Jones HN, Muglia LJ. Eutherian-Specific Gene TRIML2 Attenuates Inflammation in the Evolution of Placentation. Mol Biol Evol 2020; 37:507-523. [PMID: 31633784 PMCID: PMC6993854 DOI: 10.1093/molbev/msz238] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Evolution of highly invasive placentation in the stem lineage of eutherians and subsequent extension of pregnancy set eutherians apart from other mammals, that is, marsupials with short-lived placentas, and oviparous monotremes. Recent studies suggest that eutherian implantation evolved from marsupial attachment reaction, an inflammatory process induced by the direct contact of fetal placenta with maternal endometrium after the breakdown of the shell coat, and shortly before the onset of parturition. Unique to eutherians, a dramatic downregulation of inflammation after implantation prevents the onset of premature parturition, and is critical for the maintenance of gestation. This downregulation likely involved evolutionary changes on maternal as well as fetal/placental side. Tripartite-motif family-like2 (TRIML2) only exists in eutherian genomes and shows preferential expression in preimplantation embryos, and trophoblast-derived structures, such as chorion and placental disc. Comparative genomic evidence supports that TRIML2 originated from a gene duplication event in the stem lineage of Eutheria that also gave rise to eutherian TRIML1. Compared with TRIML1, TRIML2 lost the catalytic RING domain of E3 ligase. However, only TRIML2 is induced in human choriocarcinoma cell line JEG3 with poly(I:C) treatment to simulate inflammation during viral infection. Its knockdown increases the production of proinflammatory cytokines and reduces trophoblast survival during poly(I:C) stimulation, while its overexpression reduces proinflammatory cytokine production, supporting TRIML2’s role as a regulatory inhibitor of the inflammatory pathways in trophoblasts. TRIML2’s potential virus-interacting PRY/SPRY domain shows significant signature of selection, suggesting its contribution to the evolution of eutherian-specific inflammation regulation during placentation.
Collapse
Affiliation(s)
- Xuzhe Zhang
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH
| | - Mihaela Pavlicev
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH
| | - Helen N Jones
- Division of Pediatric Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,March of Dimes Prematurity Research Center Ohio Collaborative, Cincinnati, OH
| |
Collapse
|
241
|
Autotransporters Drive Biofilm Formation and Autoaggregation in the Diderm Firmicute Veillonella parvula. J Bacteriol 2020; 202:JB.00461-20. [PMID: 32817093 PMCID: PMC7549365 DOI: 10.1128/jb.00461-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Veillonella parvula is an anaerobic commensal and opportunistic pathogen whose ability to adhere to surfaces or other bacteria and form biofilms is critical for it to inhabit complex human microbial communities such as the gut and oral microbiota. Although the adhesive capacity of V. parvula has been previously described, very little is known about the underlying molecular mechanisms due to a lack of genetically amenable Veillonella strains. In this study, we took advantage of a naturally transformable V. parvula isolate and newly adapted genetic tools to identify surface-exposed adhesins called autotransporters as the main molecular determinants of adhesion in this bacterium. This work therefore provides new insights on an important aspect of the V. parvula lifestyle, opening new possibilities for mechanistic studies of the contribution of biofilm formation to the biology of this major commensal of the oral-digestive tract. The Negativicutes are a clade of the Firmicutes that have retained the ancestral diderm character and possess an outer membrane. One of the best studied Negativicutes, Veillonella parvula, is an anaerobic commensal and opportunistic pathogen inhabiting complex human microbial communities, including the gut and the dental plaque microbiota. Whereas the adhesion and biofilm capacities of V. parvula are expected to be crucial for its maintenance and development in these environments, studies of V. parvula adhesion have been hindered by the lack of efficient genetic tools to perform functional analyses in this bacterium. Here, we took advantage of a recently described naturally transformable V. parvula isolate, SKV38, and adapted tools developed for the closely related Clostridia spp. to perform random transposon and targeted mutagenesis to identify V. parvula genes involved in biofilm formation. We show that type V secreted autotransporters, typically found in diderm bacteria, are the main determinants of V. parvula autoaggregation and biofilm formation and compete with each other for binding either to cells or to surfaces, with strong consequences for V. parvula biofilm formation capacity. The identified trimeric autotransporters have an original structure compared to classical autotransporters identified in Proteobacteria, with an additional C-terminal domain. We also show that inactivation of the gene coding for a poorly characterized metal-dependent phosphohydrolase HD domain protein conserved in the Firmicutes and their closely related diderm phyla inhibits autotransporter-mediated biofilm formation. This study paves the way for further molecular characterization of V. parvula interactions with other bacteria and the host within complex microbiota environments. IMPORTANCEVeillonella parvula is an anaerobic commensal and opportunistic pathogen whose ability to adhere to surfaces or other bacteria and form biofilms is critical for it to inhabit complex human microbial communities such as the gut and oral microbiota. Although the adhesive capacity of V. parvula has been previously described, very little is known about the underlying molecular mechanisms due to a lack of genetically amenable Veillonella strains. In this study, we took advantage of a naturally transformable V. parvula isolate and newly adapted genetic tools to identify surface-exposed adhesins called autotransporters as the main molecular determinants of adhesion in this bacterium. This work therefore provides new insights on an important aspect of the V. parvula lifestyle, opening new possibilities for mechanistic studies of the contribution of biofilm formation to the biology of this major commensal of the oral-digestive tract.
Collapse
|
242
|
Leiendecker L, Jung PS, Krecioch I, Neumann T, Schleiffer A, Mechtler K, Wiesner T, Obenauf AC. LSD1 inhibition induces differentiation and cell death in Merkel cell carcinoma. EMBO Mol Med 2020; 12:e12525. [PMID: 33026191 PMCID: PMC7645387 DOI: 10.15252/emmm.202012525] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 01/05/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a highly aggressive, neuroendocrine skin cancer that lacks actionable mutations, which could be utilized for targeted therapies. Epigenetic regulators governing cell identity may represent unexplored therapeutic entry points. Here, we targeted epigenetic regulators in a pharmacological screen and discovered that the lysine‐specific histone demethylase 1A (LSD1/KDM1A) is required for MCC growth in vitro and in vivo. We show that LSD1 inhibition in MCC disrupts the LSD1‐CoREST complex leading to displacement and degradation of HMG20B (BRAF35), a poorly characterized complex member that is essential for MCC proliferation. Inhibition of LSD1 causes derepression of transcriptional master regulators of the neuronal lineage, activates a gene expression signature resembling normal Merkel cells, and induces cell cycle arrest and cell death. Our study unveils the importance of LSD1 for maintaining cellular plasticity and proliferation in MCC. There is also growing evidence that cancer cells exploit cellular plasticity and dedifferentiation programs to evade destruction by the immune system. The combination of LSD1 inhibitors with checkpoint inhibitors may thus represent a promising treatment strategy for MCC patients.
Collapse
Affiliation(s)
- Lukas Leiendecker
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Pauline S Jung
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria.,Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Izabela Krecioch
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Tobias Neumann
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Alexander Schleiffer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Karl Mechtler
- Institute of Molecular Biotechnology (IMBA), Vienna BioCenter (VBC), Vienna, Austria
| | - Thomas Wiesner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Anna C Obenauf
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
243
|
"Mind the Gap": Hi-C Technology Boosts Contiguity of the Globe Artichoke Genome in Low-Recombination Regions. G3-GENES GENOMES GENETICS 2020; 10:3557-3564. [PMID: 32817122 PMCID: PMC7534446 DOI: 10.1534/g3.120.401446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Globe artichoke (Cynara cardunculus var. scolymus; 2n2x=34) is cropped largely in the Mediterranean region, being Italy the leading world producer; however, over time, its cultivation has spread to the Americas and China. In 2016, we released the first (v1.0) globe artichoke genome sequence (http://www.artichokegenome.unito.it/). Its assembly was generated using ∼133-fold Illumina sequencing data, covering 725 of the 1,084 Mb genome, of which 526 Mb (73%) were anchored to 17 chromosomal pseudomolecules. Based on v1.0 sequencing data, we generated a new genome assembly (v2.0), obtained from a Hi-C (Dovetail) genomic library, and which improves the scaffold N50 from 126 kb to 44.8 Mb (∼356-fold increase) and N90 from 29 kb to 17.8 Mb (∼685-fold increase). While the L90 of the v1.0 sequence included 6,123 scaffolds, the new v2.0 just 15 super-scaffolds, a number close to the haploid chromosome number of the species. The newly generated super-scaffolds were assigned to pseudomolecules using reciprocal blast procedures. The cumulative size of unplaced scaffolds in v2.0 was reduced of 165 Mb, increasing to 94% the anchored genome sequence. The marked improvement is mainly attributable to the ability of the proximity ligation-based approach to deal with both heterochromatic (e.g.: peri-centromeric) and euchromatic regions during the assembly procedure, which allowed to physically locate low recombination regions. The new high-quality reference genome enhances the taxonomic breadth of the data available for comparative plant genomics and led to a new accurate gene prediction (28,632 genes), thus promoting the map-based cloning of economically important genes.
Collapse
|
244
|
Shakya AK, Pratap JV. The coiled-coil domain of glycosomal membrane-associated Leishmania donovani PEX14: cloning, overexpression, purification and preliminary crystallographic analysis. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2020; 76:464-468. [PMID: 33006573 DOI: 10.1107/s2053230x20011127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022]
Abstract
The glycosomal membrane-associated Leishmania donovani protein PEX14, which plays a crucial role in protein import from the cytosol to the glycosomal matrix, consists of three domains: an N-terminal domain where the signalling molecule binds, a transmembrane domain and an 84-residue coiled-coil domain (CC) that is responsible for oligomerization. CCs are versatile domains that participate in a variety of functions including supramolecular assembly, cellular signalling and transport. Recombinant PEX14 CC was cloned, overexpressed, affinity-purified with in-column thrombin cleavage and further purified by size-exclusion chromatography. Crystals that diffracted to 1.98 Å resolution were obtained from a condition consisting of 1.4 M sodium citrate tribasic dihydrate, 0.1 M HEPES buffer pH 7.5. The crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 143.98, b = 32.62, c = 95.62 Å, β = 94.68°. Structure determination and characterization are in progress.
Collapse
Affiliation(s)
- Anil Kumar Shakya
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| | - J Venkatesh Pratap
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, BS-10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow, Uttar Pradesh 226031, India
| |
Collapse
|
245
|
Risser F, Collin S, Dos Santos-Morais R, Gruez A, Chagot B, Weissman KJ. Towards improved understanding of intersubunit interactions in modular polyketide biosynthesis: Docking in the enacyloxin IIa polyketide synthase. J Struct Biol 2020; 212:107581. [DOI: 10.1016/j.jsb.2020.107581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/26/2022]
|
246
|
Ferdous N, Reza MN, Emon MTH, Islam MS, Mohiuddin AKM, Hossain MU. Molecular characterization and functional annotation of a hypothetical protein (SCO0618) of Streptomyces coelicolor A3(2). Genomics Inform 2020; 18:e28. [PMID: 33017872 PMCID: PMC7560446 DOI: 10.5808/gi.2020.18.3.e28] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Streptomyces coelicolor is a gram-positive soil bacterium which is well known for the production of several antibiotics used in various biotechnological applications. But numerous proteins from its genome are considered hypothetical proteins. Therefore, the present study aimed to reveal the functions of a hypothetical protein from the genome of S. coelicolor. Several bioinformatics tools were employed to predict the structure and function of this protein. Sequence similarity was searched through the available bioinformatics databases to find out the homologous protein. The secondary and tertiary structure were predicted and further validated with quality assessment tools. Furthermore, the active site and the interacting proteins were also explored with the utilization of CASTp and STRING server. The hypothetical protein showed the important biological activity having with two functional domain including POD-like_MBL-fold and rhodanese homology domain. The functional annotation exposed that the selected hypothetical protein could show the hydrolase activity. Furthermore, protein-protein interactions of selected hypothetical protein revealed several functional partners those have the significant role for the bacterial survival. At last, the current study depicts that the annotated hypothetical protein is linked with hydrolase activity which might be of great interest to the further research in bacterial genetics.
Collapse
Affiliation(s)
- Nadim Ferdous
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Mahjerin Nasrin Reza
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Tabassum Hossain Emon
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Shariful Islam
- Laboratory of Reproductive and Developmental Biology, Hokkaido University, Sapporo 060-0808, Japan
| | - A K M Mohiuddin
- Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Savar, Dhaka 1349, Bangladesh
| |
Collapse
|
247
|
Then A, Mácha K, Ibrahim B, Schuster S. A novel method for achieving an optimal classification of the proteinogenic amino acids. Sci Rep 2020; 10:15321. [PMID: 32948819 PMCID: PMC7501307 DOI: 10.1038/s41598-020-72174-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 08/26/2020] [Indexed: 11/09/2022] Open
Abstract
The classification of proteinogenic amino acids is crucial for understanding their commonalities as well as their differences to provide a hint for why life settled on the usage of precisely those amino acids. It is also crucial for predicting electrostatic, hydrophobic, stacking and other interactions, for assessing conservation in multiple alignments and many other applications. While several methods have been proposed to find "the" optimal classification, they have several shortcomings, such as the lack of efficiency and interpretability or an unnecessarily high number of discriminating features. In this study, we propose a novel method involving a repeated binary separation via a minimum amount of five features (such as hydrophobicity or volume) expressed by numerical values for amino acid characteristics. The features are extracted from the AAindex database. By simple separation at the medians, we successfully derive the five properties volume, electron-ion-interaction potential, hydrophobicity, α-helix propensity, and π-helix propensity. We extend our analysis to separations other than by the median. We further score our combinations based on how natural the separations are.
Collapse
Affiliation(s)
- Andre Then
- Chair of Bioinformatics, Matthias Schleiden Institute, University of Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany
| | - Karel Mácha
- Chair of Bioinformatics, Matthias Schleiden Institute, University of Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany.,Westernacher Solutions, Columbiadamm 37, 10965, Berlin, Germany
| | - Bashar Ibrahim
- Chair of Bioinformatics, Matthias Schleiden Institute, University of Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany. .,Department of Mathematics and Natural Sciences, Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, 32093, Hawally, Kuwait.
| | - Stefan Schuster
- Chair of Bioinformatics, Matthias Schleiden Institute, University of Jena, Ernst-Abbe-Platz 2, 07743, Jena, Germany.
| |
Collapse
|
248
|
Ozturk TN, Culham DE, Tempelhagen L, Wood JM, Lamoureux G. Salt-Dependent Interactions between the C-Terminal Domain of Osmoregulatory Transporter ProP of Escherichia coli and the Lipid Membrane. J Phys Chem B 2020; 124:8209-8220. [PMID: 32838524 DOI: 10.1021/acs.jpcb.0c03935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Osmosensing transporter ProP detects the increase in cytoplasmic cation concentration associated with osmotically induced cell dehydration and mediates osmolyte uptake into bacteria. ProP is a 12-transmembrane helix protein with an α-helical, cytoplasmic C-terminal domain (CTD) linked to transmembrane helix XII (TM XII). It has been proposed that the CTD helix associates with the anionic membrane surface to lock ProP in an inactive conformation and that the release of the CTD may activate ProP. To investigate this possible activation mechanism, we have built and simulated a structural model in which the CTD was anchored to the membrane by TM XII and the CTD helix was associated with the membrane surface. Molecular dynamics simulations showed specific intrapeptide salt bridges forming when the CTD associated with the membrane. Experiments supported the presence of the salt bridge Lys447-Asp455 and suggested a role for these residues in osmosensing. Simulations performed at different salt concentrations showed weakened CTD-lipid interactions at 0.25 M KCl and gradual stiffening of the membrane with increasing salinity. These results suggest that salt cations may affect CTD release and activate ProP by increasing the order of membrane phospholipids.
Collapse
Affiliation(s)
- Tugba N Ozturk
- Department of Physics, Concordia University, Montreal QC H4B 1R6, Canada.,Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Doreen E Culham
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Laura Tempelhagen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Janet M Wood
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Guillaume Lamoureux
- Centre for Research in Molecular Modeling, Concordia University, Montreal, Quebec H4B 1R6, Canada.,Department of Chemistry and Center for Computational and Integrative Biology, Rutgers University, Camden, New Jersey 08102, United States
| |
Collapse
|
249
|
Aurin MB, Haupt M, Görlach M, Rümpler F, Theißen G. Structural Requirements of the Phytoplasma Effector Protein SAP54 for Causing Homeotic Transformation of Floral Organs. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1129-1141. [PMID: 32689871 DOI: 10.1094/mpmi-02-20-0028-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phytoplasmas are intracellular bacterial plant pathogens that cause devastating diseases in crops and ornamental plants by the secretion of effector proteins. One of these effector proteins, termed SECRETED ASTER YELLOWS WITCHES' BROOM PROTEIN 54 (SAP54), leads to the degradation of a specific subset of floral homeotic proteins of the MIKC-type MADS-domain family via the ubiquitin-proteasome pathway. In consequence, the developing flowers show the homeotic transformation of floral organs into vegetative leaf-like structures. The molecular mechanism of SAP54 action involves binding to the keratin-like domain of MIKC-type proteins and to some RAD23 proteins, which translocate ubiquitylated substrates to the proteasome. The structural requirements and specificity of SAP54 function are poorly understood, however. Here, we report, based on biophysical and molecular biological analyses, that SAP54 folds into an α-helical structure. Insertion of helix-breaking mutations disrupts correct folding of SAP54 and compromises SAP54 binding to its target proteins and, concomitantly, its ability to evoke disease phenotypes in vivo. Interestingly, dynamic light scattering data together with electrophoretic mobility shift assays suggest that SAP54 preferentially binds to multimeric complexes of MIKC-type proteins rather than to dimers or monomers of these proteins. Together with data from literature, this finding suggests that MIKC-type proteins and SAP54 constitute multimeric α-helical coiled coils. Our investigations clarify the structure-function relationship of an important phytoplasma effector protein and may thus ultimately help to develop treatments against some devastating plant diseases.
Collapse
Affiliation(s)
- Marc-Benjamin Aurin
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Michael Haupt
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Matthias Görlach
- Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, 07745 Jena, Germany
| | - Florian Rümpler
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| | - Günter Theißen
- Matthias Schleiden Institute / Genetics, Friedrich Schiller University Jena, Philosophenweg 12, 07743 Jena, Germany
| |
Collapse
|
250
|
Natarajan N, Thiruvenkatam V. An Insight of Scientific Developments in TSC for Better Therapeutic Strategy. Curr Top Med Chem 2020; 20:2080-2093. [PMID: 32842942 DOI: 10.2174/1568026620666200825170355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/15/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disease, which is characterized by noncancerous tumors in multi-organ systems in the body. Mutations in the TSC1 or TSC2 genes are known to cause the disease. The resultant mutant proteins TSC1 (hamartin) and TSC2 (tuberin) complex evade its normal tumor suppressor function, which leads to abnormal cell growth and proliferation. Both TSC1 and TSC2 are involved in several protein-protein interactions, which play a significant role in maintaining cellular homeostasis. The recent biochemical, genetic, structural biology, clinical and drug discovery advancements on TSC give a useful insight into the disease as well as the molecular aspects of TSC1 and TSC2. The complex nature of TSC disease, a wide range of manifestations, mosaicism and several other factors limits the treatment choices. This review is a compilation of the course of TSC, starting from its discovery to the current findings that would take us a step ahead in finding a cure for TSC.
Collapse
Affiliation(s)
- Nalini Natarajan
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382355, India
| | - Vijay Thiruvenkatam
- Discipline of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat-382355, India
| |
Collapse
|