201
|
DiMaio D. Small size, big impact: how studies of small DNA tumour viruses revolutionized biology. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180300. [PMID: 30955494 PMCID: PMC6501907 DOI: 10.1098/rstb.2018.0300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2018] [Indexed: 01/19/2023] Open
Abstract
Intense study of three families of small tumour viruses with double-stranded DNA genomes, carried out over 50 years, has had a profound impact on biology. The polyomaviruses and papillomaviruses have circular DNA genomes of approximately 5000 and approximately 8000 base-pairs, respectively, and thus encode only a handful of proteins. Adenoviruses have a 32 000-base-pair linear DNA genome, still far smaller than the three billion-base-pair human genome. Members of all three virus families can transform cultured cells to tumorigenicity and cause tumours in experimental animals. Several human papillomaviruses (HPV) and at least one polyomavirus are oncogenic in humans. Early analysis of these viruses, particularly the polyomavirus SV40, led to the development of many powerful experimental tools, including restriction mapping, site-directed mutagenesis, gene transfer, genome-wide sequencing and recombinant DNA. These tools have since been refined and used to study cellular genes, revolutionizing our understanding of biology. These tools were also applied to the viruses themselves. Analysis of the virus life cycle and the effect of these viruses on cells yielded important new insights into many aspects of gene expression, DNA replication, cell biology and carcinogenesis. These studies have also led to vaccination strategies to prevent infection and cancer in humans. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Daniel DiMaio
- Department of Genetics, Yale School of Medicine, PO Box 208005, New Haven, CT 06520-8005, USA
- Yale Cancer Center, PO Box 208028, New Haven, CT 06520-8028, USA
| |
Collapse
|
202
|
Willemsen A, Bravo IG. Origin and evolution of papillomavirus (onco)genes and genomes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180303. [PMID: 30955499 PMCID: PMC6501903 DOI: 10.1098/rstb.2018.0303] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Papillomaviruses (PVs) are ancient viruses infecting vertebrates, from fishes to mammals. Although the genomes of PVs are small and show conserved synteny, PVs display large genotypic diversity and ample variation in the phenotypic presentation of the infection. Most PV genomes contain two small early genes E6 and E7. In a bunch of closely related human papillomaviruses (HPVs), the E6 and E7 proteins provide the viruses with oncogenic potential. The recent discoveries of PVs without E6 and E7 in different fish species place a new root on the PV tree, and suggest that ancestral PVs consisted of the minimal PV backbone E1-E2-L2-L1. Bayesian phylogenetic analyses date the most recent common ancestor of the PV backbone to 424 million years ago (Ma). Common ancestry tests on extant E6 and E7 genes indicate that they share a common ancestor dating back to at least 184 Ma. In AlphaPVs infecting Old World monkeys and apes, the appearance of the E5 oncogene 53-58 Ma concurred with (i) a significant increase in substitution rate, (ii) a basal radiation and (iii) key gain of functions in E6 and E7. This series of events was instrumental to construct the extant phenotype of oncogenic HPVs. Our results assemble the current knowledge on PV diversity and present an ancient evolutionary timeline punctuated by evolutionary innovations in the history of this successful viral family. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Anouk Willemsen
- Centre National de la Recherche Scientifique (CNRS), Laboratory MIVEGEC (CNRS IRD Uni Montpellier), 34090 Montpellier, France
| | | |
Collapse
|
203
|
White EA. Manipulation of Epithelial Differentiation by HPV Oncoproteins. Viruses 2019; 11:v11040369. [PMID: 31013597 PMCID: PMC6549445 DOI: 10.3390/v11040369] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 02/06/2023] Open
Abstract
Papillomaviruses replicate and cause disease in stratified squamous epithelia. Epithelial differentiation is essential for the progression of papillomavirus replication, but differentiation is also impaired by papillomavirus-encoded proteins. The papillomavirus E6 and E7 oncoproteins partially inhibit and/or delay epithelial differentiation and some of the mechanisms by which they do so are beginning to be defined. This review will outline the key features of the relationship between HPV infection and differentiation and will summarize the data indicating that papillomaviruses alter epithelial differentiation. It will describe what is known so far and will highlight open questions about the differentiation-inhibitory mechanisms employed by the papillomaviruses.
Collapse
Affiliation(s)
- Elizabeth A White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
204
|
Rajasekaran S, Nagarajha Selvan LD, Dotts K, Kumar R, Rishi P, Khetan V, Bisht M, Sivaraman K, Krishnakumar S, Sahoo D, Campbell MJ, Elchuri SV, Miles WO. Non-coding and Coding Transcriptional Profiles Are Significantly Altered in Pediatric Retinoblastoma Tumors. Front Oncol 2019; 9:221. [PMID: 31058073 PMCID: PMC6477087 DOI: 10.3389/fonc.2019.00221] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Retinoblastoma is a rare pediatric tumor of the retina, caused by the homozygous loss of the Retinoblastoma 1 (RB1) tumor suppressor gene. Previous microarray studies have identified changes in the expression profiles of coding genes; however, our understanding of how non-coding genes change in this tumor is absent. This is an important area of research, as in many adult malignancies, non-coding genes including LNC-RNAs are used as biomarkers to predict outcome and/or relapse. To establish a complete and in-depth RNA profile, of both coding and non-coding genes, in Retinoblastoma tumors, we conducted RNA-seq from a cohort of tumors and normal retina controls. This analysis identified widespread transcriptional changes in the levels of both coding and non-coding genes. Unexpectedly, we also found rare RNA fusion products resulting from genomic alterations, specific to Retinoblastoma tumor samples. We then determined whether these gene expression changes, of both coding and non-coding genes, were also found in a completely independent Retinoblastoma cohort. Using our dataset, we then profiled the potential effects of deregulated LNC-RNAs on the expression of neighboring genes, the entire genome, and on mRNAs that contain a putative area of homology. This analysis showed that most deregulated LNC-RNAs do not act locally to change the transcriptional environment, but potentially function to modulate genes at distant sites. From this analysis, we selected a strongly down-regulated LNC-RNA in Retinoblastoma, DRAIC, and found that restoring DRAIC RNA levels significantly slowed the growth of the Y79 Retinoblastoma cell line. Collectively, our work has generated the first non-coding RNA profile of Retinoblastoma tumors and has found that these tumors show widespread transcriptional deregulation.
Collapse
Affiliation(s)
- Swetha Rajasekaran
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States.,The Ohio State University Comprehensive Cancer Center, Columbus, OH,, United States.,Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | | | - Kathleen Dotts
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States.,The Ohio State University Comprehensive Cancer Center, Columbus, OH,, United States.,Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Ranjith Kumar
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Pukhraj Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Vikas Khetan
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Madhoolika Bisht
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States.,The Ohio State University Comprehensive Cancer Center, Columbus, OH,, United States.,Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | | | | | - Debashis Sahoo
- Department of Pediatrics and Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States
| | - Moray J Campbell
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, United States
| | - Sailaja V Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Wayne O Miles
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States.,The Ohio State University Comprehensive Cancer Center, Columbus, OH,, United States.,Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
205
|
Zhou Z, Yang H, Yang L, Yao Y, Dai S, Shi L, Li C, Yang L, Yan Z, Yao Y. Human papillomavirus type 16 E6 and E7 gene variations associated with cervical cancer in a Han Chinese population. INFECTION GENETICS AND EVOLUTION 2019; 73:13-20. [PMID: 30981880 DOI: 10.1016/j.meegid.2019.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUD Human papillomavirus type 16 (HPV16) is a high-risk HPV subtype and a potent carcinogen. The HPV16 E6 and E7 genes are considered oncogenes that play a core role in the development of cervical cancer. METHODS In the current study, we enrolled 97 HPV16-positive cervical cancer patients (case group) and 136 HPV16-positive asymptomatic individuals (control group) in a study to analyse the association between HPV16 E6 and E7 gene variations and cervical cancer. RESULTS Our results showed that three HPV16 sub-lineages (A1-A3, A4 and D3) were present; the distribution of these variants between the case and control group was not significantly different (P = 0.178). When the distribution of the HPV16 E6 and E7 gene variations was compared, the distribution of only A131C (R10R) in the E6 gene showed a different trend between the case and control groups and C749T (S63F) in the E7 gene was significantly different between the case and control groups (P = 0.071 and P = 4.861 × 10-10, respectively). Regarding the sub-lineages, no variations in the E6 gene were significantly different between the case and control group for the A4 (As) and A1-A3 (EUR) sub-lineages. However, the distribution of C749T (S63F) in the E7 gene was significantly different between the case and control groups for the A4 (As) and A1-A3 (EUR) sub-lineages (P = 1.815 × 10-8 and P = 0.008). In the current study, we found that the C749T (S63F) variation in the HPV16 E7 gene was associated with cervical cancer not only in the A4 (As) sub-lineage but also in the A1-A3 (EUR) sub-lineage. CONCLUSION Our study will provide a good reference for further functional studies of the relationship between cervical cancer carcinogenesis and the HPV16 E6 and E7 genes.
Collapse
Affiliation(s)
- Ziyun Zhou
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Hongying Yang
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Lijuan Yang
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming 650118, China
| | - Yueting Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Shuying Dai
- School of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Longyu Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China
| | - Zhiling Yan
- Department of Gynaecologic Oncology, The 3rd Affiliated Hospital of Kunming Medical University, Kunming 650118, China.
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, Yunnan, China.
| |
Collapse
|
206
|
Gao G, Wang J, Kasperbauer JL, Tombers NM, Teng F, Gou H, Zhao Y, Bao Z, Smith DI. Whole genome sequencing reveals complexity in both HPV sequences present and HPV integrations in HPV-positive oropharyngeal squamous cell carcinomas. BMC Cancer 2019; 19:352. [PMID: 30975103 PMCID: PMC6460540 DOI: 10.1186/s12885-019-5536-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/27/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND High risk human papillomaviruses (HPV) plays important roles in the development of cervical cancer, a number of other anogenital cancer and they are increasingly found in oropharyngeal squamous cell carcinoma (OPSCC), however there has not been comprehensive analysis about the role how these viruses play in the development of OPSCC. METHODS To characterize the physical status of HPV within OPSCC and to determine the effect this has throughout the host genome, we have performed 30-40X whole genome sequencing (WGS) on the BGI sequencing platform on 34 OPSCCs: 28 of which were HPV positive. We then examined the sequencing data to characterize the HPV copy number and HPV physical status to determine what effect they have on both HPV and human genome structural changes. RESULTS WGS determined the HPV copy number across the viral genome. HPV copy number ranged from 1 copy to as high as 150 copies in each individual OPSCC. Independent of HPV copy number, most tumors had either a small or a very large deletion in the viral genome. We discovered that these deletions were the result of either HPV integration into the human genome or HPV-HPV sequence junctions. WGS revealed that ~ 70% of these tumors had HPV integrations within the human genome and HPV integration occurred independent of HPV copy number. Individual HPV integrations were found to be highly disruptive resulting in structural variations and copy number changes at or around the integration sites. CONCLUSIONS WGS reveals that there is a great complexity in both HPV sequences present and the HPV integrations events in HPV positive OPSCCs tumors. Thus HPV may be playing different roles in the development of different OPSCCs and this further challenge the HPV-driven carcinogenesis model first proposed for cervical cancer.
Collapse
Affiliation(s)
- Ge Gao
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | | | | | | | | | | | | | - David I Smith
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
207
|
Paget-Bailly P, Meznad K, Bruyère D, Perrard J, Herfs M, Jung AC, Mougin C, Prétet JL, Baguet A. Comparative RNA sequencing reveals that HPV16 E6 abrogates the effect of E6*I on ROS metabolism. Sci Rep 2019; 9:5938. [PMID: 30976051 PMCID: PMC6459911 DOI: 10.1038/s41598-019-42393-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/27/2019] [Indexed: 01/16/2023] Open
Abstract
High-risk Human Papillomavirus infections are responsible for anogenital and oropharyngeal cancers. Alternative splicing is an important mechanism controlling HPV16 gene expression. Modulation in the splice pattern leads to polycistronic HPV16 early transcripts encoding a full length E6 oncoprotein or truncated E6 proteins, commonly named E6*. Spliced E6*I transcripts are the most abundant RNAs produced in HPV-related cancers. To date, the biological function of the E6*I isoform remains controversial. In this study, we identified, by RNA sequencing, cellular targets deregulated by E6*I, among which genes related to ROS metabolism. Concomitantly, E6*I-overexpressing cells display high levels of ROS. However, co-overexpression of both E6 and E6*I has no effect on ROS production. In HPV16-infected cells expressing different E6/E6*I levels, we show that the newly identified targets CCL2 and RAC2 are increased by E6*I but decreased by E6 expression, suggesting that E6 abrogates the effect of E6*I. Taken together, these data support the idea that E6*I acts independently of E6 to increase ROS production and that E6 has the ability to counteract the effects of E6*I. This asks the question of how E6*I can be considered separately of E6 in the natural history of HPV16 infection.
Collapse
Affiliation(s)
- Philippe Paget-Bailly
- EA3181, LabEx LipSTIC ANR-11-LABX-0021, UFR Santé, 19 rue Ambroise Paré, Besançon, France.,Université Bourgogne Franche Comté, Besançon, France
| | - Koceila Meznad
- EA3181, LabEx LipSTIC ANR-11-LABX-0021, UFR Santé, 19 rue Ambroise Paré, Besançon, France.,Université Bourgogne Franche Comté, Besançon, France
| | - Diane Bruyère
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Jérôme Perrard
- EA3181, LabEx LipSTIC ANR-11-LABX-0021, UFR Santé, 19 rue Ambroise Paré, Besançon, France.,Université Bourgogne Franche Comté, Besançon, France
| | - Michael Herfs
- Laboratory of Experimental Pathology, GIGA-Cancer, University of Liege, Liege, Belgium
| | - Alain C Jung
- Université de Strasbourg, Inserm, UMR_S1113, Centre de lutte contre le cancer Paul STRAUSS, Strasbourg, France
| | - Christiane Mougin
- EA3181, LabEx LipSTIC ANR-11-LABX-0021, UFR Santé, 19 rue Ambroise Paré, Besançon, France.,Université Bourgogne Franche Comté, Besançon, France.,Centre Hospitalier Régional Universitaire, CNR HPV, 3 Bvd Alexandre Fleming, Besançon, France
| | - Jean-Luc Prétet
- EA3181, LabEx LipSTIC ANR-11-LABX-0021, UFR Santé, 19 rue Ambroise Paré, Besançon, France.,Université Bourgogne Franche Comté, Besançon, France.,Centre Hospitalier Régional Universitaire, CNR HPV, 3 Bvd Alexandre Fleming, Besançon, France
| | - Aurélie Baguet
- EA3181, LabEx LipSTIC ANR-11-LABX-0021, UFR Santé, 19 rue Ambroise Paré, Besançon, France. .,Université Bourgogne Franche Comté, Besançon, France.
| |
Collapse
|
208
|
Aoki R, Clanner‐Engelshofen B, Charnowski S, Ruzicka T, Reinholz M. Distribution of high‐risk α‐genus human papillomavirus genotypes impacts cutaneous neoplasms. J Eur Acad Dermatol Venereol 2019; 33:1304-1311. [DOI: 10.1111/jdv.15547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 02/25/2019] [Indexed: 01/05/2023]
Affiliation(s)
- R. Aoki
- Department of Dermatology and Allergology University Hospital of Munich LMU Munich Germany
| | | | - S. Charnowski
- Department of Dermatology and Allergology University Hospital of Munich LMU Munich Germany
| | - T. Ruzicka
- Department of Dermatology and Allergology University Hospital of Munich LMU Munich Germany
| | - M. Reinholz
- Department of Dermatology and Allergology University Hospital of Munich LMU Munich Germany
| |
Collapse
|
209
|
The free energy landscape of the oncogene protein E7 of human papillomavirus type 16 reveals a complex interplay between ordered and disordered regions. Sci Rep 2019; 9:5822. [PMID: 30967564 PMCID: PMC6456579 DOI: 10.1038/s41598-019-41925-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 03/19/2019] [Indexed: 11/20/2022] Open
Abstract
When present, structural disorder makes it very challenging to characterise the conformational properties of proteins. This is particularly the case of proteins, such as the oncogene protein E7 of human papillomavirus type 16, which contain both ordered and disordered domains, and that can populate monomeric and oligomeric states under physiological conditions. Nuclear magnetic resonance (NMR) spectroscopy is emerging as a powerful method to study these complex systems, most notably in combination with molecular dynamics simulations. Here we use NMR chemical shifts and residual dipolar couplings as structural restraints in replica-averaged molecular dynamics simulations to determine the free energy landscape of E7. This landscape reveals a complex interplay between a folded but highly dynamical C-terminal domain and a disordered N-terminal domain that forms transient secondary and tertiary structures, as well as an equilibrium between a high-populated (98%) dimeric state and a low-populated (2%) monomeric state. These results provide compelling evidence of the complex conformational heterogeneity associated with the behaviour and interactions of this disordered protein associated with disease.
Collapse
|
210
|
PTPN14 degradation by high-risk human papillomavirus E7 limits keratinocyte differentiation and contributes to HPV-mediated oncogenesis. Proc Natl Acad Sci U S A 2019; 116:7033-7042. [PMID: 30894485 DOI: 10.1073/pnas.1819534116] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
High-risk human papillomavirus (HPV) E7 proteins enable oncogenic transformation of HPV-infected cells by inactivating host cellular proteins. High-risk but not low-risk HPV E7 target PTPN14 for proteolytic degradation, suggesting that PTPN14 degradation may be related to their oncogenic activity. HPV infects human keratinocytes but the role of PTPN14 in keratinocytes and the consequences of PTPN14 degradation are unknown. Using an HPV16 E7 variant that can inactivate retinoblastoma tumor suppressor (RB1) but cannot degrade PTPN14, we found that high-risk HPV E7-mediated PTPN14 degradation impairs keratinocyte differentiation. Deletion of PTPN14 from primary human keratinocytes decreased keratinocyte differentiation gene expression. Related to oncogenic transformation, both HPV16 E7-mediated PTPN14 degradation and PTPN14 deletion promoted keratinocyte survival following detachment from a substrate. PTPN14 degradation contributed to high-risk HPV E6/E7-mediated immortalization of primary keratinocytes and HPV+ but not HPV- cancers exhibit a gene-expression signature consistent with PTPN14 inactivation. We find that PTPN14 degradation impairs keratinocyte differentiation and propose that this contributes to high-risk HPV E7-mediated oncogenic activity independent of RB1 inactivation.
Collapse
|
211
|
Chaudhary S, Ganguly K, Muniyan S, Pothuraju R, Sayed Z, Jones DT, Batra SK, Macha MA. Immunometabolic Alterations by HPV Infection: New Dimensions to Head and Neck Cancer Disparity. J Natl Cancer Inst 2019; 111:233-244. [PMID: 30615137 PMCID: PMC6410958 DOI: 10.1093/jnci/djy207] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/29/2018] [Accepted: 11/05/2018] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer, with high morbidity and mortality. Racial disparity in HNSCC is observed between African Americans (AAs) and whites, effecting both overall and 5-year survival, with worse prognosis for AAs. In addition to socio-economic status and demographic factors, many epidemiological studies have also identified factors including coexisting human papillomavirus (HPV) infection, primary tumor location, and a variety of somatic mutations that contribute to the prognostic incongruities in HNSCC patients among AAs and whites. Recent research also suggests HPV-induced dysregulation of tumor metabolism and immune microenvironment as the major regulators of HNSCC patient prognosis. Outcomes of several preclinical and clinical studies on targeted therapeutics warrant the need to elucidate the inherent mechanistic and population-based disparities underlying patient responses. This review systematically reports the underlying reasons for inconsistency in disease prognosis and therapy responses among HNSCC patients from different racial populations. The focus of this review is twofold: aside from discussing the causes of racial disparity, we also seek to identify the consequences of such disparity in terms of HPV infection and its associated mutational, metabolic, and immune landscapes. Considering the clinical impact of differential patient outcomes among AA and white populations, understanding the underlying cause of this disparity may pave the way for novel precision therapy for HNSCC.
Collapse
Affiliation(s)
- Sanjib Chaudhary
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Koelina Ganguly
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Sakthivel Muniyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
| | - Zafar Sayed
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE
| | - Dwight T Jones
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
- Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE
| | - Muzafar A Macha
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
- Department of Otolaryngology/Head and Neck Surgery, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
212
|
Njoroge RN, Vatapalli RJ, Abdulkadir SA. Organoids Increase the Predictive Value of in vitro Cancer Chemoprevention Studies for in vivo Outcome. Front Oncol 2019; 9:77. [PMID: 30842936 PMCID: PMC6391333 DOI: 10.3389/fonc.2019.00077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Epidemiological and preclinical data suggest that antioxidants are protective against prostate cancer whose pathogenesis has been linked to oxidative stress. However, the selenium and vitamin E Cancer Prevention Trial (SELECT), found no efficacy for selenium in reducing prostate cancer incidence while vitamin E was associated with an increased risk of the disease. These results have called in to question the models used in preclinical chemoprevention efficacy studies and their ability to predict in vivo outcomes. Chemoprevention agents have traditionally been tested on two dimensional monolayer cultures of cell lines derived from advanced prostate cancers. But as SELECT demonstrates, results from advanced disease models were not predictive of the outcome of a primary chemoprevention trial. Additionally, lack of cell-matrix interactions in two dimensional cultures results in loss of biochemical and mechanical cues relevant for native tissue architecture. We use recent findings in three dimensional organoid cultures that recapitulated the SELECT trial results to argue that the organoid model could increase the predictive value of in vitro studies for in vivo outcomes.
Collapse
Affiliation(s)
- Rose N Njoroge
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Rajita J Vatapalli
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sarki A Abdulkadir
- Department of Urology, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
213
|
Virus-associated carcinomas of the head & neck: Update from the 2017 WHO classification. Ann Diagn Pathol 2019; 38:29-42. [DOI: 10.1016/j.anndiagpath.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022]
|
214
|
Córdova-Rivas S, Fraire-Soto I, Mercado-Casas Torres A, Servín-González LS, Granados-López AJ, López-Hernández Y, Reyes-Estrada CA, Gutiérrez-Hernández R, Castañeda-Delgado JE, Ramírez-Hernández L, Varela-Silva JA, López JA. 5p and 3p Strands of miR-34 Family Members Have Differential Effects in Cell Proliferation, Migration, and Invasion in Cervical Cancer Cells. Int J Mol Sci 2019; 20:E545. [PMID: 30696040 PMCID: PMC6387060 DOI: 10.3390/ijms20030545] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 12/24/2022] Open
Abstract
The micro RNA (miR)-34 family is composed of 5p and 3p strands of miR-34a, miR-34b, and miR-34c. The 5p strand's expression and function is studied in cervical cancer. The 3p strand's function and regulation remain to be elucidated. To study the function of the passenger strands of miR-34 family members, we overexpressed 5p and 3p strands using a synthetic miRNA in cervical cell lines. Cell proliferation was evaluated using crystal violet. Migration and invasion were tested using transwell assays, Western blot, and zymography. Possible specific targets and cell signaling were investigated for each strand. We found that miR-34a-5p inhibited proliferation, migration, and cell invasion accompanied by matrix metalloproteinase 9 (MMP9) activity and microtubule-associated protein 2 (MAP2) protein reduction. We also found that miR-34b-5p and miR-34c-5p inhibit proliferation and migration, but not invasion. In contrast, miR-34c-5p inhibits MMP9 activity and MAP2 protein, while miR-34b-5p has no effect on these genes. Furthermore, miR-34a-3p and miR-34b-3p inhibit proliferation and migration, but not invasion, despite the later reducing MMP2 activity, while miR-34c-3p inhibit proliferation, migration, and cell invasion accompanied by MMP9 activity and MAP2 protein inhibition. The difference in cellular processes, MMP2 and MMP9 activity, and MAP2 protein inhibition by miR-34 family members suggests the participation of other regulated genes. This study provides insights into the roles of passenger strands (strand*) of the miR-34 family in cervical cancer.
Collapse
Affiliation(s)
- Sergio Córdova-Rivas
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Ixamail Fraire-Soto
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Andrea Mercado-Casas Torres
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | | | - Angelica Judith Granados-López
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Yamilé López-Hernández
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
- Laboratorio de Metabolómica de la Unidad Académica de Ciencias Biológicas, CONACyT, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Claudia Araceli Reyes-Estrada
- Laboratorio de Patología e Inmunohistoquímica de la Unidad Académica de Medicina Humana de la Universidad Autónoma de Zacatecas, Campus Siglo XXI, Kilómetro 6, Ejido la Escondida, Zacatecas CP 98160, Mexico.
| | - Rosalinda Gutiérrez-Hernández
- Laboratorio de Etnofarmacología Nutrición de la Unidad Académica de Enfermería de la Universidad Autónoma de Zacatecas, Campus Siglo XXI, Kilómetro 6, Ejido la Escondida, Zacatecas CP 98160, Mexico.
| | - Julio Enrique Castañeda-Delgado
- Catedrático-CONACYT, Unidad de Investigación Biomédica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas CP 98000, Mexico.
| | - Leticia Ramírez-Hernández
- Unidad Académica de Matemáticas de la Universidad Autónoma de Zacatecas Av. Preparatoria S/N, Zacatecas 98066, México.
| | - José Antonio Varela-Silva
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| | - Jesús Adrián López
- Laboratorio de microRNAs y Cáncer, Unidad Académica de Ciencias Biológicas, Universidad Autónoma de Zacatecas, Av. Preparatoria S/N, Zacatecas 98066, México.
| |
Collapse
|
215
|
Lai TO, Boon SS, Law PT, Chen Z, Thomas M, Banks L, Chan PK. Oncogenicitiy Comparison of Human Papillomavirus Type 52 E6 Variants. J Gen Virol 2019; 100:484-496. [PMID: 30676312 DOI: 10.1099/jgv.0.001222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human papillomavirus (HPV) infection contributes to virtually all cases of cervical cancer, the fourth most common cancer affecting women worldwide. The oncogenicity of HPV is mainly attributable to the E6 and E7 oncoproteins. HPV-52 is the seventh most common HPV type globally, but it has a remarkably high prevalence in East Asia. In previous studies it has been speculated that the oncogenicity might vary among different HPV-52 variants. In the present study, we compared the oncogenicity of E6 derived from the HPV-52 prototype and three commonly found variants, V1 (K93R), V2 (E14D/V92L) and V3 (K93R/N122K), through molecular and phenotypic approaches. We demonstrated that cells containing V1 achieved higher colony formation and showed greater cell migration ability when compared to other variants, but no difference in cell immortalization ability was observed. At the molecular level, the three variants formed complexes with E6-associated protein (E6AP) and p53 as efficiently as the prototype. They degraded p53 and PSD95/Dlg/ZO-1(PDZ) proteins, including MAGI-1c and Dlg, to a similar extent. They also exhibited a similar subcellular localization, and shared a half-life of approximately 45 min. Our findings provide a clearer picture of HPV-52 E6 variant oncogenicity, which is important for further studies aiming to understand the unusually high prevalence of HPV-52 among cervical cancers in East Asia.
Collapse
Affiliation(s)
- Tsz On Lai
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Siaw Shi Boon
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Priscilla Ty Law
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Zigui Chen
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| | - Miranda Thomas
- 2International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Lawrence Banks
- 2International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Paul Ks Chan
- 1Department of Microbiology, Faulty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
216
|
Prati B, da Silva Abjaude W, Termini L, Morale M, Herbster S, Longatto-Filho A, Nunes RAL, Córdoba Camacho LC, Rabelo-Santos SH, Zeferino LC, Aguayo F, Boccardo E. Three Prime Repair Exonuclease 1 (TREX1) expression correlates with cervical cancer cells growth in vitro and disease progression in vivo. Sci Rep 2019; 9:351. [PMID: 30674977 PMCID: PMC6344518 DOI: 10.1038/s41598-018-37064-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Alterations in specific DNA damage repair mechanisms in the presence of human papillomavirus (HPV) infection have been described in different experimental models. However, the global effect of HPV on the expression of genes involved in these pathways has not been analyzed in detail. In the present study, we compared the expression profile of 135 genes involved in DNA damage repair among primary human keratinocytes (PHK), HPV-positive (SiHa and HeLa) and HPV-negative (C33A) cervical cancer derived cell lines. We identified 9 genes which expression pattern distinguishes HPV-positive tumor cell lines from C33A. Moreover, we observed that Three Prime Repair Exonuclease 1 (TREX1) expression is upregulated exclusively in HPV-transformed cell lines and PHK expressing HPV16 E6 and E7 oncogenes. We demonstrated that TREX1 silencing greatly affects tumor cells clonogenic and anchorage independent growth potential. We showed that this effect is associated with p53 upregulation, accumulation of subG1 cells, and requires the expression of E7 from high-risk HPV types. Finally, we observed an increase in TREX1 levels in precancerous lesions, squamous carcinomas and adenocarcinomas clinical samples. Altogether, our results indicate that TREX1 upregulation is important for cervical tumor cells growth and may contribute with tumor establishment and progression.
Collapse
Affiliation(s)
- Bruna Prati
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes 1374, 05508-900, São Paulo, SP, Brazil
| | - Walason da Silva Abjaude
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes 1374, 05508-900, São Paulo, SP, Brazil
| | - Lara Termini
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
| | - Mirian Morale
- Department of Biochemistry, Institute of Chemistry, USP, São Paulo, Brazil
| | - Suellen Herbster
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes 1374, 05508-900, São Paulo, SP, Brazil
| | - Adhemar Longatto-Filho
- Laboratory of Medical Investigation (LIM 14), Department of Pathology, School of Medicine, USP, Av. Dr. Arnaldo 455, São Paulo, 01246-903, Brazil.,Life and Health Sciences Research Institute, School of Health Sciences, ICVS/3B's - PT Government Associate Laboratory, University of Minho, Braga, Guimarães, Portugal.,Molecular Oncology Research Center, Barretos Cancer Hospital, Pio XII Foundation, Barretos, Rua Antenor Duarte Villela, 1331, Barretos, 14784-400, Brazil
| | - Rafaella Almeida Lima Nunes
- Centro de Investigação Translacional em Oncologia (LIM24), Instituto do Câncer do Estado de São Paulo (ICESP), São Paulo, Brazil
| | - Lizeth Carolina Córdoba Camacho
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes 1374, 05508-900, São Paulo, SP, Brazil.,Laboratório de Oncologia Experimental, Departamento de Radiologia, Faculdade de Medicina, USP, São Paulo, SP, Brazil.,Centro de Investigação Translacional em Oncologia, ICESP, São Paulo, SP, Brazil
| | | | - Luiz Carlos Zeferino
- School of Medical Sciences, State University of Campinas (UNICAMP), Rua Alexander Fleming 101, 13083-881, Campinas, SP, Brazil
| | - Francisco Aguayo
- Basic and Clinical Oncology Department, Faculty of Medicine, University of Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enrique Boccardo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), Av. Prof. Lineu Prestes 1374, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
217
|
Sichero L, Rollison DE, Amorrortu RP, Tommasino M. Beta Human Papillomavirus and Associated Diseases. Acta Cytol 2019; 63:100-108. [PMID: 30673666 DOI: 10.1159/000492659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 12/12/2022]
Abstract
The cutaneous human papillomavirus (HPV), mostly from β- and γ-HPV genus, is ubiquitously distributed throughout the human body and may be part of the commensal flora. The association of β-HPVs and cutaneous squamous cell carcinoma (cSCC) development was initially reported in patients with the rare genetic disorder Epidermodysplasia verruciformis. Likewise, immunosuppressed organ transplant recipients have an increased susceptibility to β-HPV infections in the skin as well as to cSCC development. Although ultraviolet radiation (UVR) is the main risk factor of cSCC, experimental data points toward β-HPVs as co-carcinogens, which appear to be required solely at early stages of skin carcinogenesis by facilitating the accumulation of UVR-induced DNA mutations. Several epidemiological studies relying on different biomarkers of β-HPV infections have also been conducted in immunocompetent individuals to access their association with cSCC development. Additionally, in vivo and in vitro studies are presenting cumulative evidence that E6 and E7 proteins from specific β-HPVs exhibit transforming activities and may collaborate with different environmental factors in promoting carcinogenesis. Nevertheless, further research is crucial to better understand the pathological implications of the broad distribution of these HPVs.
Collapse
Affiliation(s)
- Laura Sichero
- Center for Translational Research in Oncology, Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, São Paulo, Brazil,
| | - Dana E Rollison
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| |
Collapse
|
218
|
Wang Y, Chen S, Yan Z, Pei M. A prospect of cell immortalization combined with matrix microenvironmental optimization strategy for tissue engineering and regeneration. Cell Biosci 2019; 9:7. [PMID: 30627420 PMCID: PMC6321683 DOI: 10.1186/s13578-018-0264-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/21/2018] [Indexed: 12/20/2022] Open
Abstract
Cellular senescence is a major hurdle for primary cell-based tissue engineering and regenerative medicine. Telomere erosion, oxidative stress, the expression of oncogenes and the loss of tumor suppressor genes all may account for the cellular senescence process with the involvement of various signaling pathways. To establish immortalized cell lines for research and clinical use, strategies have been applied including internal genomic or external matrix microenvironment modification. Considering the potential risks of malignant transformation and tumorigenesis of genetic manipulation, environmental modification methods, especially the decellularized cell-deposited extracellular matrix (dECM)-based preconditioning strategy, appear to be promising for tissue engineering-aimed cell immortalization. Due to few review articles focusing on this topic, this review provides a summary of cell senescence and immortalization and discusses advantages and limitations of tissue engineering and regeneration with the use of immortalized cells as well as a potential rejuvenation strategy through combination with the dECM approach.
Collapse
Affiliation(s)
- Yiming Wang
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Song Chen
- Department of Orthopaedics, Chengdu Military General Hospital, Chengdu, 610083 Sichuan China
| | - Zuoqin Yan
- Department of Orthopaedics, Zhongshan Hospital of Fudan University, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, PO Box 9196, 64 Medical Center Drive, Morgantown, WV 26506-9196 USA
- WVU Cancer Institute, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506 USA
| |
Collapse
|
219
|
Inhibition of Epstein-Barr Virus Replication in Human Papillomavirus-Immortalized Keratinocytes. J Virol 2019; 93:JVI.01216-18. [PMID: 30381489 DOI: 10.1128/jvi.01216-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
Epstein-Barr virus (EBV) is implicated in the pathogenesis of human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OSCC). EBV-associated cancers harbor a latent EBV infection characterized by a lack of viral replication and the expression of viral oncogenes. Cellular changes promoted by HPV are comparable to those shown to facilitate EBV latency, though whether HPV-positive cells support a latent EBV infection has not been demonstrated. Using a model of direct EBV infection into HPV16-immortalized tonsillar cells grown in organotypic raft culture, we showed robust EBV replication in HPV-negative rafts but little to no replication in HPV-immortalized rafts. The reduced EBV replication was independent of immortalization, as human telomerase-immortalized normal oral keratinocytes supported robust EBV replication. Furthermore, we observed reduced EBV lytic gene expression and increased expression of EBER1, a noncoding RNA highly expressed in latently infected cells, in the presence of HPV. The use of human foreskin keratinocyte rafts expressing the HPV16 E6 and/or E7 oncogene(s) (HPV E6 and E7 rafts) showed that E7 was sufficient to reduce EBV replication. EBV replication is dependent upon epithelial differentiation and the differentiation-dependent expression of the transcription factors KLF4 and PRDM1. While KLF4 and PRDM1 levels were unaltered, the expression levels of KLF4 transcriptional targets, including late differentiation markers, were reduced in HPV E6 and E7 rafts compared to their levels in parental rafts. However, the HPV E7-mediated block in EBV replication correlated with delayed expression of early differentiation markers. Overall, this study reveals an HPV16-mediated block in EBV replication, through E7, that may facilitate EBV latency and long-term persistence in the tumor context.IMPORTANCE Using a model examining the establishment of EBV infection in HPV-immortalized tissues, we showed an HPV-induced interruption of the normal EBV life cycle reminiscent of a latent EBV infection. Our data support the notion that a persistent EBV epithelial infection depends upon preexisting cellular alterations and suggest the ability of HPV to promote such changes. More importantly, these findings introduce a model for how EBV coinfection may influence HPV-positive (HPV-pos) OSCC pathogenesis. Latently EBV-infected epithelial cells, as well as other EBV-associated head-and-neck carcinomas, exhibit oncogenic phenotypes commonly seen in HPV-pos OSCC. Therefore, an HPV-induced shift in the EBV life cycle toward latency would not only facilitate EBV persistence but also provide additional viral oncogene expression, which can contribute to the rapid progression of HPV-pos OSCC. These findings provide a step toward defining a role for EBV as a cofactor in HPV-positive oropharyngeal tumors.
Collapse
|
220
|
Shrestha T, Choi W, Kim GE, Yang JM, Yoon KC. Human papilloma virus identification in ocular surface squamous neoplasia by p16 immunohistochemistry and DNA chip test: A strobe-compliant article. Medicine (Baltimore) 2019; 98:e13944. [PMID: 30633172 PMCID: PMC6336645 DOI: 10.1097/md.0000000000013944] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The aim of this study was to identify the association between human papilloma virus (HPV) infection and ocular surface squamous neoplasia (OSSN) using p16 immunohistochemistry (IHC) and deoxyribonucleic acid (DNA) chip test.Thirty-eight patients who underwent surgical excision of OSSN were retrospectively studied using tissue samples. The IHC was performed to assess the expression of p16 and DNA chip test was used to detect 24 HPV serotypes.Among the 38 OSSN samples, 32 cases (84.2%) were histopathologically categorized as pre-invasive type and 6 cases (15.8%) as invasive type. The IHC for p16 showed strong positivity in 12 cases (31.6%), whereas it was negative in 26 cases (68.4%). On the other hand, only one case (2.6%) of invasive OSSN was positive for the HPV16 serotype, as assessed by DNA chip test.In OSSN, p16 expression was positive in approximately 1/3rd of the cases, whereas the majority of the 24 HPV serotypes were negative for p16. Our findings suggest that only a weak association exists between HPV infection and OSSN.
Collapse
Affiliation(s)
- Tina Shrestha
- Department of Ophthalmology and Research Institute of Medical Sciences
- Department of ophthalmology, Dhulikhel hospital, Kathmandu university school of medical science, Nepal
| | - Won Choi
- Department of Ophthalmology and Research Institute of Medical Sciences
| | - Ga Eon Kim
- Department of Pathology and Research Institute of Medical Sciences, Chonnam National University Medical School and Hospital, Gwangju
| | - Jee Myung Yang
- Department of Ophthalmology and Research Institute of Medical Sciences
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Kyung Chul Yoon
- Department of Ophthalmology and Research Institute of Medical Sciences
| |
Collapse
|
221
|
McMullen C, Chung CH, Hernandez-Prera JC. Evolving role of human papillomavirus as a clinically significant biomarker in head and neck squamous cell carcinoma. Expert Rev Mol Diagn 2018; 19:63-70. [DOI: 10.1080/14737159.2019.1559056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Caitlin McMullen
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Christine H. Chung
- Department of Head and Neck-Endocrine Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | | |
Collapse
|
222
|
Stoehr R, Weisser R, Wendler O, Giedl J, Daifalla K, Gaisa NT, Richter G, Campean V, Burger M, Wullich B, Hartmann A. P53 Codon 72 Polymorphism and Risk for Squamous Cell Carcinoma of the Penis: A Caucasian Case-Control Study. J Cancer 2018; 9:4234-4241. [PMID: 30519324 PMCID: PMC6277628 DOI: 10.7150/jca.26050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/21/2018] [Indexed: 12/16/2022] Open
Abstract
Squamous cell carcinoma of the penis is a rare but often aggressive disease. A large proportion of penile cancers are associated with HPV infection, mainly with HPV high-risk subtypes 16 and 18. From other HPV-related malignancies a link between a functional SNP in the p53 gene (rs1042522, p.Arg72Pro) and a higher disease risk in the presence of HPV is documented. The p53 p.Arg72 variant was described as a risk factor for developing a malignancy in combination with the presence of HPV as the p.72Arg variant is more prone to HPV E6 protein-mediated degradation than the p.72Pro variant. For penile carcinoma there are only sparse data available on this topic. We therefore analyzed the distribution of this p53 codon 72 SNP in a cohort of 107 penile cancer patients and a healthy control group (n=194) using Restriction Fragment Length Polymorphism (RFLP) analysis. After DNA isolation a PCR amplicon including the variant nucleotide was generated. Based on the variant nucleotide this amplicon can be cleaved into two parts or remain unaffected by a restriction enzyme. Subsequent electrophoresis allowed the discrimination of SNP alleles in the investigated sample. Comparison of the allelic variants revealed no significant differences in the distribution of this SNP between cases and controls (p=0,622). There was also no difference in SNP distribution between cases with/without HPV infection (p=0,558) or histologic variants (p=0.339). In order to strengthen the impact of our data we performed a combined analysis of all published data on this topic with our results. This ended up in SNP distribution data from 177 cases and 1149 controls. Overall, there were also no significant differences in the allelic distribution of the p53 codon 72 SNP between either cases and controls (p=0,914) or HPV-positive and HPV-negative cases (p=0,486). From this most comprehensive data available to date we conclude that there is no influence of the p53 codon 72 SNP on the risk of development of penile carcinoma in Caucasians even in the presence of HPV.
Collapse
Affiliation(s)
- Robert Stoehr
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Rebecca Weisser
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Olaf Wendler
- Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Giedl
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Khalid Daifalla
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Nadine T Gaisa
- Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | | | - Valentina Campean
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany.,Institute of Pathology, Ansbach, Germany
| | - Maximilian Burger
- Department of Urology, Caritas St. Josef Medical Center, University of Regensburg, Regensburg, Germany
| | - Bernd Wullich
- Department of Urology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
223
|
Cervical cancer cell lines are sensitive to sub-erythemal UV exposure. Gene 2018; 688:44-53. [PMID: 30517878 DOI: 10.1016/j.gene.2018.11.079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/24/2018] [Indexed: 11/22/2022]
Abstract
High risk human papillomavirus (HPV) infections are the causative agent in virtually every cervical cancer as well as a host of other anogenital and oropharyngeal malignancies. These viruses must activate DNA repair pathways to facilitate their replication, while avoiding the cell cycle arrest and apoptosis that can accompany DNA damage. HPV oncoproteins facilitate each of these goals, but also reduce genome stability. Our data dissect the cytotoxic and cytoprotective characteristics of HPV oncogenes in cervical cancer cells. These data show that while the transformation of keratinocytes by HPV oncogene leaves these cells more sensitive to UV, the oncogenes also protect against UV-induced apoptosis. Cisplatin and UV resistant cervical cancer cell lines were generated and probed for their sensitivity to genotoxic agents. Cervical cancer cells can acquire resistance to one DNA crosslinking agent (UV or cisplatin) without gaining broad tolerance of crosslinked DNA. Further, cisplatin resistance may or may not result in sensitivity to PARP1 inhibition.
Collapse
|
224
|
Wilks JA. Cancer Biology: a Primer for Perioperative
Clinicians. CURRENT ANESTHESIOLOGY REPORTS 2018. [DOI: 10.1007/s40140-018-0302-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
225
|
Fan Y, Sanyal S, Bruzzone R. Breaking Bad: How Viruses Subvert the Cell Cycle. Front Cell Infect Microbiol 2018; 8:396. [PMID: 30510918 PMCID: PMC6252338 DOI: 10.3389/fcimb.2018.00396] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023] Open
Abstract
Interactions between the host and viruses during the course of their co-evolution have not only shaped cellular function and the immune system, but also the counter measures employed by viruses. Relatively small genomes and high replication rates allow viruses to accumulate mutations and continuously present the host with new challenges. It is therefore, no surprise that they either escape detection or modulate host physiology, often by redirecting normal cellular pathways to their own advantage. Viruses utilize a diverse array of strategies and molecular targets to subvert host cellular processes, while evading detection. These include cell-cycle regulation, major histocompatibility complex-restricted antigen presentation, intracellular protein transport, apoptosis, cytokine-mediated signaling, and humoral immune responses. Moreover, viruses routinely manipulate the host cell cycle to create a favorable environment for replication, largely by deregulating cell cycle checkpoints. This review focuses on our current understanding of the molecular aspects of cell cycle regulation that are often targeted by viruses. Further study of their interactions should provide fundamental insights into cell cycle regulation and improve our ability to exploit these viruses.
Collapse
Affiliation(s)
- Ying Fan
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Sumana Sanyal
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,LKS Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Roberto Bruzzone
- HKU-Pasteur Research Pole, LKS Faculty of Medicine, School of Public Health, The University of Hong Kong, Hong Kong, Hong Kong.,Department of Cell Biology and Infection, Institut Pasteur, Paris, France
| |
Collapse
|
226
|
Abstract
This chapter is the first one to introduce the detection of viral RNA splicing as a new tool for clinical diagnosis of virus infections. These include various infections caused by influenza viruses, human immunodeficiency viruses (HIV), human T-cell leukemia viruses (HTLV), Torque teno viruses (TTV), parvoviruses, adenoviruses, hepatitis B virus, polyomaviruses, herpesviruses, and papillomaviruses. Detection of viral RNA splicing for active viral gene expression in a clinical sample is a nucleic acid-based detection. The interpretation of the detected viral RNA splicing results is straightforward without concern for carry-over DNA contamination, because the spliced RNA is smaller than its corresponding DNA template. Although many methods can be used, a simple method to detect viral RNA splicing is reverse transcription-polymerase chain reaction (RT-PCR). In principle, the detection of spliced RNA transcripts by RT-PCR depends on amplicon selection and primer design. The most common approach is the amplification over the intron regions by a set of primers in flanking exons. A larger product than the predicted size of smaller, spliced RNA is in general an unspliced RNA or contaminating viral genomic DNA. A spliced mRNA always gives a smaller RT-PCR product than its unspliced RNA due to removal of intron sequences by RNA splicing. The contaminating viral DNA can be determined by a minus RT amplification (PCR). Alternatively, specific amplification of a spliced RNA can be obtained by using an exon-exon junction primer because the sequence at exon-exon junction is not present in the unspliced RNA nor in viral genomic DNA.
Collapse
|
227
|
Li S, Shen H, Li J, Hou X, Zhang K, Li J. Prevalence of the integration status for human papillomavirus 16 in esophageal carcinoma samples. TURKISH JOURNAL OF GASTROENTEROLOGY 2018; 29:157-163. [PMID: 29749321 DOI: 10.5152/tjg.2018.17568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND/AIMS To investigate the etiology of esophageal cancer (EC) related with human papillomavirus (HPV) infection. MATERIALS AND METHODS Fresh surgically resected tissue samples and clinical information were obtained from 189 patients. Genomic DNA was extracted, and HPV was detected using polymerase chain reaction (PCR) with HPV L1 gene primers of MY09/11; HPV16 was detected using HPV16 E6 type-specific primer sets. Copies of HPV16 E2, E6, and the human housekeeping gene β-actin were tested using quantitative PCR to analyze the relationship between HPV16 integration and esophageal squamous cell carcinoma and the relationship between the HPV16 integration status and clinical information of patients. RESULTS Of the 189 samples, 168 HPV-positive samples were detected, of which 76 were HPV16 positive. Among the HPV16 positive samples, 2 cases (E2/E6 ratio>1) were 2.6% (2/76) purely episomal, 65 (E2/E6 ratio between 0 and 1) were 85.6% (65/76) mixture of integrated and episomal, and 9 (E2/E6 ratio=0) were 11.8% (9/76) purely integrated. The results indicate that integration of HPV16 was more common in the host genome than in the episome genome. The prevalence rate of HPV16 integration is increasing with the pathological stage progression of esophageal carcinoma (EC). CONCLUSION A high prevalence of HPV16 suggested that HPV16 has an etiological effect on the progress of EC. Integration of HPV16 is more common than episome genome in the host cells, indicating that continuous HPV infection is the key to esophageal epithelial cell malignant conversion and canceration.
Collapse
Affiliation(s)
- Shuying Li
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, North China University of Science and Technology, Tangshan, China
| | - Haie Shen
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, North China University of Science and Technology, Tangshan, China
| | - Ji Li
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, North China University of Science and Technology, Tangshan, China
| | - Xiaoli Hou
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, North China University of Science and Technology, Tangshan, China
| | - Ke Zhang
- Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, North China University of Science and Technology, Tangshan, China
| | - Jintao Li
- College of Life Science and Bio-engineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
228
|
Eckhardt M, Zhang W, Gross AM, Von Dollen J, Johnson JR, Franks-Skiba KE, Swaney DL, Johnson TL, Jang GM, Shah PS, Brand TM, Archambault J, Kreisberg JF, Grandis JR, Ideker T, Krogan NJ. Multiple Routes to Oncogenesis Are Promoted by the Human Papillomavirus-Host Protein Network. Cancer Discov 2018; 8:1474-1489. [PMID: 30209081 PMCID: PMC6375299 DOI: 10.1158/2159-8290.cd-17-1018] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 03/22/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
We have mapped a global network of virus-host protein interactions by purification of the complete set of human papillomavirus (HPV) proteins in multiple cell lines followed by mass spectrometry analysis. Integration of this map with tumor genome atlases shows that the virus targets human proteins frequently mutated in HPV- but not HPV+ cancers, providing a unique opportunity to identify novel oncogenic events phenocopied by HPV infection. For example, we find that the NRF2 transcriptional pathway, which protects against oxidative stress, is activated by interaction of the NRF2 regulator KEAP1 with the viral protein E1. We also demonstrate that the L2 HPV protein physically interacts with the RNF20/40 histone ubiquitination complex and promotes tumor cell invasion in an RNF20/40-dependent manner. This combined proteomic and genetic approach provides a systematic means to study the cellular mechanisms hijacked by virally induced cancers.Significance: In this study, we created a protein-protein interaction network between HPV and human proteins. An integrative analysis of this network and 800 tumor mutation profiles identifies multiple oncogenesis pathways promoted by HPV interactions that phenocopy recurrent mutations in cancer, yielding an expanded definition of HPV oncogenic roles. Cancer Discov; 8(11); 1474-89. ©2018 AACR. This article is highlighted in the In This Issue feature, p. 1333.
Collapse
Affiliation(s)
- Manon Eckhardt
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, California
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California
| | - Wei Zhang
- Department of Medicine, UCSD, La Jolla, California
| | | | - John Von Dollen
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, California
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California
| | - Jeffrey R Johnson
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, California
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California
| | - Kathleen E Franks-Skiba
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, California
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, California
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California
- The Cancer Cell Map Initiative (CCMI), UCSF and UCSD, San Francisco and La Jolla, California
| | - Tasha L Johnson
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California
| | - Gwendolyn M Jang
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, California
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California
| | - Priya S Shah
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, California
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California
| | - Toni M Brand
- Department of Otolaryngology-Head and Neck Surgery, UCSF, San Francisco, California
| | - Jacques Archambault
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Jason F Kreisberg
- Department of Medicine, UCSD, La Jolla, California
- The Cancer Cell Map Initiative (CCMI), UCSF and UCSD, San Francisco and La Jolla, California
| | - Jennifer R Grandis
- The Cancer Cell Map Initiative (CCMI), UCSF and UCSD, San Francisco and La Jolla, California
- Department of Otolaryngology-Head and Neck Surgery, UCSF, San Francisco, California
| | - Trey Ideker
- Department of Medicine, UCSD, La Jolla, California.
- The Cancer Cell Map Initiative (CCMI), UCSF and UCSD, San Francisco and La Jolla, California
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), UCSF, San Francisco, California.
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California
- Department of Cellular and Molecular Pharmacology, UCSF, San Francisco, California
- The Cancer Cell Map Initiative (CCMI), UCSF and UCSD, San Francisco and La Jolla, California
| |
Collapse
|
229
|
Liu H, Wang J, Liu Y, Hu L, Zhang C, Xing B, Du X. Human U3 protein14a is a novel type ubiquitin ligase that binds RB and promotes RB degradation depending on a leucine-rich region. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1611-1620. [DOI: 10.1016/j.bbamcr.2018.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 11/16/2022]
|
230
|
Abstract
OBJECTIVES The aim of this study was to determine whether biomarker P16 predicts progression risk for anal low-grade squamous intraepithelial lesions (LSILs). DESIGN A retrospective study. METHODS One hundred and nine HIV-infected and 18 HIV-uninfected patients with biopsy-proven anal LSIL at initial screening underwent surveillance high-resolution anoscopy and biopsy within 2 years of diagnosis. P16 immunohistochemistry was performed on index lesions and evaluated using a semi-quantitative scoring system. The association of predictors and lesional outcomes (progression, persistence or regression) was analysed using ordinal logistic regression models. A subset of p16-positive LSILs was tested for high-risk human papillomavirus (HR-HPV) DNA using real-time PCR. RESULTS Upon follow-up, 46 (36%) LSILs progressed to high-grade squamous intraepithelial lesion (HSIL), 50 (40%) persisted as LSIL and 31 (24%) regressed to benign mucosa (median 16 months, range 5-24 months). Age, sex, race, history of condylomata, CD4 T-cell count and HIV plasma viral load were similar regardless of clinical outcome. P16 immunoreactivity of index lesion was classified as block-positive (n = 36), focal-positive (n = 49) or negative (n = 42). Sixty-four percent of block-positive lesions progressed, as opposed to 35% of focal-positive and 14% of negative lesions (P < 0.001). HR-HPV DNA was detected in 90% of p16 block-positive lesions vs. 55% of focal-positive lesions. In unadjusted analyses, positive p16, HIV and former smoker status were significantly associated with lesional persistence and progression. P16 remained the only significant predictor in an adjusted model. CONCLUSION Biomarker p16 is the strongest predictor for anal LSIL-to-HSIL progression, outperforming other risk factors. To enhance the overall effectiveness of surveillance, we propose using p16 immunohistochemistry to help stratify patients at high vs. low risk of progression.
Collapse
|
231
|
Kang SD, Chatterjee S, Alam S, Salzberg AC, Milici J, van der Burg SH, Meyers C. Effect of Productive Human Papillomavirus 16 Infection on Global Gene Expression in Cervical Epithelium. J Virol 2018; 92:e01261-18. [PMID: 30045992 PMCID: PMC6158420 DOI: 10.1128/jvi.01261-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 07/20/2018] [Indexed: 12/29/2022] Open
Abstract
Human papillomavirus (HPV) infection is the world's most common sexually transmitted infection and is responsible for most cases of cervical cancer. Previous studies of global gene expression changes induced by HPV infection have focused on the cancerous stages of infection, and therefore, not much is known about global gene expression changes at early preneoplastic stages of infection. We show for the first time the global gene expression changes during early-stage HPV16 infection in cervical tissue using 3-dimensional organotypic raft cultures, which produce high levels of progeny virions. cDNA microarray analysis showed that a total of 594 genes were upregulated and 651 genes were downregulated at least 1.5-fold with HPV16 infection. Gene ontology analysis showed that biological processes including cell cycle progression and DNA metabolism were upregulated, while skin development, immune response, and cell death were downregulated with HPV16 infection in cervical keratinocytes. Individual genes were selected for validation at the transcriptional and translational levels, including UBC, which was central to the protein association network of immune response genes, and top downregulated genes RPTN, SERPINB4, KRT23, and KLK8 In particular, KLK8 and SERPINB4 were shown to be upregulated in cancer, which contrasts with the gene regulation during the productive replication stage. Organotypic raft cultures, which allow full progression of the HPV life cycle, allowed us to identify novel gene modulations and potential therapeutic targets of early-stage HPV infection in cervical tissue. Additionally, our results suggest that early-stage productive infection and cancerous stages of infection are distinct disease states expressing different host transcriptomes.IMPORTANCE Persistent HPV infection is responsible for most cases of cervical cancer. The transition from precancerous to cancerous stages of HPV infection is marked by a significant reduction in virus production. Most global gene expression studies of HPV infection have focused on the cancerous stages. Therefore, little is known about global gene expression changes at precancerous stages. For the first time, we measured global gene expression changes at the precancerous stages of HPV16 infection in human cervical tissue producing high levels of virus. We identified a group of genes that are typically overexpressed in cancerous stages to be significantly downregulated at the precancerous stage. Moreover, we identified significantly modulated genes that have not yet been studied in the context of HPV infection. Studying the role of these genes in HPV infection will help us understand what drives the transition from precancerous to cancerous stages and may lead to the development of new therapeutic targets.
Collapse
Affiliation(s)
- Sa Do Kang
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Sreejata Chatterjee
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Samina Alam
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Anna C Salzberg
- Bioinformatics Core, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Janice Milici
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Leiden University Medical Center, Leiden, The Netherlands
| | - Craig Meyers
- Department of Microbiology and Immunology, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
232
|
Gautam D, Johnson BA, Mac M, Moody CA. SETD2-dependent H3K36me3 plays a critical role in epigenetic regulation of the HPV31 life cycle. PLoS Pathog 2018; 14:e1007367. [PMID: 30312361 PMCID: PMC6200281 DOI: 10.1371/journal.ppat.1007367] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/24/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022] Open
Abstract
The life cycle of HPV is tied to the differentiation status of its host cell, with productive replication, late gene expression and virion production restricted to the uppermost layers of the stratified epithelium. HPV DNA is histone-associated, exhibiting a chromatin structure similar to that of the host chromosome. Although HPV chromatin is subject to histone post-translational modifications, how the viral life cycle is epigenetically regulated is not well understood. SETD2 is a histone methyltransferase that places the trimethyl mark on H3K36 (H3K36me3), a mark of active transcription. Here, we define a role for SETD2 and H3K36me3 in the viral life cycle. We have found that HPV positive cells exhibit increased levels of SETD2, with SETD2 depletion leading to defects in productive viral replication and splicing of late viral RNAs. Reducing H3K36me3 by overexpression of KDM4A, an H3K36me3 demethylase, or an H3.3K36M transgene also blocks productive viral replication, indicating a significant role for this histone modification in facilitating viral processes. H3K36me3 is enriched on the 3' end of the early region of the high-risk HPV31 genome in a SETD2-dependent manner, suggesting that SETD2 may regulate the viral life cycle through the recruitment of H3K36me3 readers to viral DNA. Intriguingly, we have found that activation of the ATM DNA damage kinase, which is required for productive viral replication, is necessary for the maintenance of H3K36me3 on viral chromatin and for processing of late viral RNAs. Additionally, we have found that the HPV31 E7 protein maintains the increased SETD2 levels in infected cells through an extension of protein half-life. Collectively, our findings highlight the importance of epigenetic modifications in driving the viral life cycle and identify a novel role for E7 as well as the DNA damage response in the regulation of viral processes through epigenetic modifications.
Collapse
Affiliation(s)
- Dipendra Gautam
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bryan A. Johnson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michelle Mac
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Cary A. Moody
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
233
|
Zhen S, Lu J, Hua L, Liu YH, Chen W, Li X. WITHDRAWN: CRISPR/Cas9 mediated HPV and PD1 inhibition produces a synergistic anti-tumor effect on cervical cancer. Arch Biochem Biophys 2018:S0003-9861(18)30611-8. [PMID: 30315769 DOI: 10.1016/j.abb.2018.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/08/2018] [Accepted: 10/10/2018] [Indexed: 10/28/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Shuai Zhen
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiaojiao Lu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ling Hua
- Rongchang Campus Southwest University, Chongqing, China
| | - Yun-Hui Liu
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei Chen
- Center of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
234
|
Virzì A, Roca Suarez AA, Baumert TF, Lupberger J. Oncogenic Signaling Induced by HCV Infection. Viruses 2018; 10:v10100538. [PMID: 30279347 PMCID: PMC6212953 DOI: 10.3390/v10100538] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 09/29/2018] [Accepted: 09/30/2018] [Indexed: 02/07/2023] Open
Abstract
The liver is frequently exposed to toxins, metabolites, and oxidative stress, which can challenge organ function and genomic stability. Liver regeneration is therefore a highly regulated process involving several sequential signaling events. It is thus not surprising that individual oncogenic mutations in hepatocytes do not necessarily lead to cancer and that the genetic profiles of hepatocellular carcinomas (HCCs) are highly heterogeneous. Long-term infection with hepatitis C virus (HCV) creates an oncogenic environment by a combination of viral protein expression, persistent liver inflammation, oxidative stress, and chronically deregulated signaling events that cumulate as a tipping point for genetic stability. Although novel direct-acting antivirals (DAA)-based treatments efficiently eradicate HCV, the associated HCC risk cannot be fully eliminated by viral cure in patients with advanced liver disease. This suggests that HCV may persistently deregulate signaling pathways beyond viral cure and thereby continue to perturb cancer-relevant gene function. In this review, we summarize the current knowledge about oncogenic signaling pathways derailed by chronic HCV infection. This will not only help to understand the mechanisms of hepatocarcinogenesis but will also highlight potential chemopreventive strategies to help patients with a high-risk profile of developing HCC.
Collapse
Affiliation(s)
- Alessia Virzì
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| | - Armando Andres Roca Suarez
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
- Pôle Hépato-digestif, Institut Hospitalo-universitaire, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France.
| | - Joachim Lupberger
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France.
- Université de Strasbourg, 67000 Strasbourg, France.
| |
Collapse
|
235
|
Chargari C, Gouy S, Pautier P, Haie-Meder C. Cancers du col utérin : nouveautés dans la prise en charge en oncologie radiothérapie. Cancer Radiother 2018; 22:502-508. [DOI: 10.1016/j.canrad.2018.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 06/26/2018] [Indexed: 11/30/2022]
|
236
|
Hu Z, Ma D. The precision prevention and therapy of HPV-related cervical cancer: new concepts and clinical implications. Cancer Med 2018; 7:5217-5236. [PMID: 30589505 PMCID: PMC6198240 DOI: 10.1002/cam4.1501] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 02/14/2018] [Accepted: 03/21/2018] [Indexed: 12/14/2022] Open
Abstract
Cervical cancer is the third most common cancer in women worldwide, with concepts and knowledge about its prevention and treatment evolving rapidly. Human papillomavirus (HPV) has been identified as a major factor that leads to cervical cancer, although HPV infection alone cannot cause the disease. In fact, HPV-driven cancer is a small probability event because most infections are transient and could be cleared spontaneously by host immune system. With persistent HPV infection, decades are required for progression to cervical cancer. Therefore, this long time window provides golden opportunity for clinical intervention, and the fundament here is to elucidate the carcinogenic pattern and applicable targets during HPV-host interaction. In this review, we discuss the key factors that contribute to the persistence of HPV and cervical carcinogenesis, emerging new concepts and technologies for cancer interventions, and more urgently, how these concepts and technologies might lead to clinical precision medicine which could provide prediction, prevention, and early treatment for patients.
Collapse
Affiliation(s)
- Zheng Hu
- Department of Gynecological oncologyThe First Affiliated Hospital of Sun Yat‐sen UniversityZhongshan 2nd RoadYuexiu, GuangzhouGuangdongChina
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan, Hubei430030China
| | - Ding Ma
- Department of Obstetrics and GynecologyTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan, Hubei430030China
| |
Collapse
|
237
|
Prati B, Marangoni B, Boccardo E. Human papillomavirus and genome instability: from productive infection to cancer. Clinics (Sao Paulo) 2018; 73:e539s. [PMID: 30208168 PMCID: PMC6113919 DOI: 10.6061/clinics/2018/e539s] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/16/2018] [Indexed: 12/29/2022] Open
Abstract
Infection with high oncogenic risk human papillomavirus types is the etiological factor of cervical cancer and a major cause of other epithelial malignancies, including vulvar, vaginal, anal, penile and head and neck carcinomas. These agents affect epithelial homeostasis through the expression of specific proteins that deregulate important cellular signaling pathways to achieve efficient viral replication. Among the major targets of viral proteins are components of the DNA damage detection and repair machinery. The activation of many of these cellular factors is critical to process viral genome replication intermediates and, consequently, to sustain faithful viral progeny production. In addition to the important role of cellular DNA repair machinery in the infective human papillomavirus cycle, alterations in the expression and activity of many of its components are observed in human papillomavirus-related tumors. Several studies from different laboratories have reported the impact of the expression of human papillomavirus oncogenes, mainly E6 and E7, on proteins in almost all the main cellular DNA repair mechanisms. This has direct consequences on cellular transformation since it causes the accumulation of point mutations, insertions and deletions of short nucleotide stretches, as well as numerical and structural chromosomal alterations characteristic of tumor cells. On the other hand, it is clear that human papillomavirus-transformed cells depend on the preservation of a basal cellular DNA repair activity level to maintain tumor cell viability. In this review, we summarize the data concerning the effect of human papillomavirus infection on DNA repair mechanisms. In addition, we discuss the potential of exploiting human papillomavirus-transformed cell dependency on DNA repair pathways as effective antitumoral therapies.
Collapse
Affiliation(s)
- Bruna Prati
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Bruna Marangoni
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Enrique Boccardo
- Departamento de Microbiologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
238
|
Herbster S, Paladino A, de Freitas S, Boccardo E. Alterations in the expression and activity of extracellular matrix components in HPV-associated infections and diseases. Clinics (Sao Paulo) 2018; 73:e551s. [PMID: 30208169 PMCID: PMC6113921 DOI: 10.6061/clinics/2018/e551s] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 03/07/2018] [Indexed: 12/23/2022] Open
Abstract
Infection with human papillomaviruses is associated with a series of benign and malignant hyperproliferative diseases that impose a heavy burden on human populations. A subgroup of mucosal human papillomavirus types are associated with the majority of cervical cancers and a relevant fraction of vulvar, vaginal, anal, penile and head and neck carcinomas. Human papillomaviruses mediate cell transformation by the expression of two pleiotropic oncoproteins that alter major cellular regulatory pathways. However, these viruses are not complete carcinogens, and further alterations within the infected cells and in their microenvironment are necessary for tumor establishment and progression. Alterations in components of the extracellular matrix for instance, matrix metalloproteinases and some of their regulators such as tissue inhibitors of metalloproteinases, have been consistently reported in human papillomaviruses-associated diseases. Matrix metalloproteinases function by remodeling the extracellular matrix and alterations in their expression levels and/or activity are associated with pathological processes and clinical variables including local tumor invasion, metastasis, tumor relapse and overall patient prognosis and survival. In this review we present a summarized discussion on the current data concerning the impact of human papillomavirus infection on the activity and expression of extracellular matrix components. We further comment on the possibility of targeting extracellular matrix molecules in experimental treatment protocols.
Collapse
Affiliation(s)
- Suellen Herbster
- Laboratory of Oncovirology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andressa Paladino
- Laboratory of Oncovirology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sumara de Freitas
- Laboratory of Oncovirology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Enrique Boccardo
- Laboratory of Oncovirology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
239
|
Sirohi D, Vaske C, Sanborn Z, Smith SC, Don MD, Lindsey KG, Federman S, Vankalakunti M, Koo J, Bose S, Peralta-Venturina MD, Ziffle JV, Grenert JP, Miller S, Chiu C, Amin MB, Simko JP, Stohr BA, Luthringer DJ. Polyoma virus-associated carcinomas of the urologic tract: a clinicopathologic and molecular study. Mod Pathol 2018; 31:1429-1441. [PMID: 29765141 DOI: 10.1038/s41379-018-0065-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/11/2022]
Abstract
In recent years, there has been increased interest in carcinomas of the urologic tract, that demonstrate association with the polyoma virus BK arising in immunosuppressed individuals, though the nature of this association is uncertain. To begin to understand this phenomenon, we reviewed the clinical, morphological, and immunohistochemical features of 11 carcinomas of the urologic tract, mainly urothelial (N = 9) and collecting duct carcinomas (N = 2), occurring during immunosuppression, and expressing polyoma virus T-antigen by immunohistochemistry. These were compared to a control group of carcinomas (N = 8), also arising during immunosuppression, but without T-antigen expression. A subset of both groups were also studied by hybrid capture-based DNA sequencing, probing not only for 479 cancer-related human genes, but also for polyoma and other viral sequences. Polyoma T-antigen-expressing tumors arose in 7 males and 4 females, at a median age of 66, and were aggressive, high-grade tumors with more than 1 variant morphologic pattern identified in 81% of cases, and a majority (73%) presenting at high stage category (>pT3). Diffuse polyoma T-antigen staining was seen in 91% of cases, with co-localization of aberrant p53 staining in 89%. Sequencing detected a lower number of deleterious mutations among T-antigen-expressing cases (average 1.62; 1/8 with TP53 mutation) compared to control cases (average 3.5, 2/4 with TP53 mutation). Only BK virus was detected with clonal integration and breakpoints randomly distributed across the human and viral genomes in 5/5 of the polyoma T-antigen-expressing carcinomas, and in none of the controls (0/4). In summary, these findings identify aggressive clinicopathologic features of polyoma T-antigen-expressing carcinomas, document BK as the strain involved, and associate BK viral integration with T-antigen expression and p53 aberrancy. While the apparent randomness of viral insertion sites is functionally unclear, the differing rates of mutations between T-antigen-expressing and control cases is intriguing.
Collapse
Affiliation(s)
- Deepika Sirohi
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA.
| | | | | | - Steven C Smith
- Departments of Pathology and Urology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Michelle D Don
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Scot Federman
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Mahesha Vankalakunti
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jamie Koo
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shikha Bose
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | - Jessica van Ziffle
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - James P Grenert
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Steve Miller
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Charles Chiu
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Mahul B Amin
- Department of Pathology and Laboratory Medicine and Urology, University of Tennessee Health Science, Memphis, TN, USA
| | - Jeffry P Simko
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Bradley A Stohr
- Department of Pathology and Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Daniel J Luthringer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
240
|
Nunes EM, Talpe-Nunes V, Sichero L. Epidemiology and biology of cutaneous human papillomavirus. Clinics (Sao Paulo) 2018; 73:e489s. [PMID: 30133564 PMCID: PMC6097087 DOI: 10.6061/clinics/2018/e489s] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/06/2018] [Indexed: 01/16/2023] Open
Abstract
Cutaneous human papillomaviruses (HPVs) include β- and γ-HPVs, in addition to a small fraction of α-HPVs. β-HPVs were first isolated from patients with the rare genetic disorder Epidermodysplasia verruciformis, and they are associated with the development of nonmelanoma skin cancer at sun-exposed skin sites in these individuals. Organ transplant recipients also have greater susceptibility to β-HPV infection of the skin and an increased risk of developing nonmelanoma skin cancer. In both immunosuppressed and immunocompromised individuals, cutaneous HPVs are ubiquitously disseminated throughout healthy skin and may be an intrinsic part of the commensal flora. Functional analysis of E6 and E7 proteins of specific cutaneous HPVs has provided a mechanistic comprehension of how these viruses may induce carcinogenesis. Nevertheless, additional research is crucial to better understand the pathological implications of the broad distribution of these HPVs.
Collapse
Affiliation(s)
- Emily M Nunes
- Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | - Valéria Talpe-Nunes
- Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Laura Sichero
- Centro de Investigação Translacional em Oncologia, Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
241
|
Qiao L, Zhang Q, Zhang W, Chen JJ. The lysine acetyltransferase GCN5 contributes to human papillomavirus oncoprotein E7-induced cell proliferation via up-regulating E2F1. J Cell Mol Med 2018; 22:5333-5345. [PMID: 30079588 PMCID: PMC6201343 DOI: 10.1111/jcmm.13806] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/25/2018] [Accepted: 06/29/2018] [Indexed: 02/06/2023] Open
Abstract
General control nondepressible 5 (GCN5), the first identified transcription-related lysine acetyltransferase (KAT), is an important catalytic component of a transcriptional regulatory SAGA (Spt-Ada-GCN5-Acetyltransferase) and ATAC (ADA2A-containing) complex. While GCN5 has been implicated in cancer development, its role in cervical cancer is not known. The human papillomavirus (HPV) oncoprotein E7 abrogates the G1 cell cycle checkpoint and induces genomic instability, which plays a central role in cervical carcinogenesis. In this study, we observed that GCN5 was up-regulated in HPV E7-expressing cells, knockdown of GCN5 inhibited cell cycle progression and DNA synthesis in HPV E7-expressing cells. Notably, GCN5 knockdown reduced the steady-state levels of transcription factor E2F1. Depletion of E2F1 caused G1 arrest while overexpression of E2F1 rescued the inhibitory effects of GCN5 knockdown on G1/S progression in HPV E7-expressing cells. Results from chromatin immunoprecipitation (ChIP) assays demonstrated that GCN5 bound to the E2F1 promoter and increased the extent of histone acetylation within these regions. GCN5 also acetylated c-Myc and increased its ability to bind to the E2F1 promoter. Knockdown of c-Myc reduced the steady-state levels of E2F1 and caused G1 arrest. These results revealed a novel mechanism of E7 function whereby elevated GCN5 acetylates histones and c-Myc to regulate E2F1 expression and cell cycle progression.
Collapse
Affiliation(s)
- Lijun Qiao
- The Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Qishu Zhang
- The Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Weifang Zhang
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jason J Chen
- The Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
242
|
The Human Papillomavirus E6 PDZ Binding Motif Links DNA Damage Response Signaling to E6 Inhibition of p53 Transcriptional Activity. J Virol 2018; 92:JVI.00465-18. [PMID: 29848585 DOI: 10.1128/jvi.00465-18] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/21/2018] [Indexed: 02/07/2023] Open
Abstract
The presence of a PDZ binding motif (PBM) in the human papillomavirus (HPV) E6 oncoprotein appears to be a characteristic marker of high oncogenic potential and confers interaction with a number of different cellular PDZ domain-containing substrates. The E6 PBM is also subject to phosphorylation, resulting in inhibition of E6 PDZ binding activity and instead allowing E6 to associate with 14-3-3 proteins. In this study, we analyzed the conditions under which the E6 PBM is phosphorylated. We demonstrate that in normal cycling cells, the levels of E6 phosphorylation are very low. However, following exposure of cells to oxidative stress or the induction of DNA damage, there is a striking increase in the levels of E6 phosphorylation. Depending on the specific stimulus, this phosphorylation of E6 can involve the ATM/ATR pathway and is performed primarily through Chk1, although the Chk2 pathway is also involved indirectly through activation of protein kinase A (PKA). To understand the biological relevance of these phospho-modifications of E6, we analyzed their effects upon the ability of E6 to inhibit p53 transcriptional activity. We show that an intact E6 phospho-acceptor site plays an essential role in the ability of E6 to inhibit p53 transcriptional activity on a subset of p53-responsive promoters in a manner that is independent of E6's ability to direct p53 degradation. These results are, to our knowledge, the first example of a DNA damage response controlling PBM-PDZ recognition. This study also provides links between the DNA damage response, the regulation of E6 PBM function, and the inhibition of p53 activity and begins to explain how HPV-infected cells remain within the cell cycle, despite activation of DNA damage response pathways during productive virus infections.IMPORTANCE The cancer-causing HPV E6 oncoproteins all possess a PDZ binding motif at their extreme carboxy termini. Depending upon whether this motif is phosphorylated, E6 can recognize PDZ domain-containing proteins or members of the 14-3-3 family of proteins. We show here that DNA damage response pathways directly signal to the E6 PBM, resulting in Chk1- and Chk2-driven phosphorylation. This phosphorylation is particularly pronounced following treatment of cells with a variety of different chemotherapeutic drugs. A direct functional consequence of this signaling is to confer an enhanced ability upon E6 to inhibit p53 transcriptional activity in a proteasome-independent but phosphorylation-dependent manner. These results are the first example of DNA damage signaling pathways regulating PBM-PDZ interactions and provide the mechanistic link between E6 PBM function and perturbation of p53 activity.
Collapse
|
243
|
Human papillomavirus 16 E6 modulates the expression of miR-496 in oropharyngeal cancer. Virology 2018; 521:149-157. [PMID: 29935424 DOI: 10.1016/j.virol.2018.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 11/24/2022]
Abstract
Human papillomavirus (HPV), notably type 16, is a risk factor for up to 75% of oropharyngeal squamous cell carcinomas (SCC). It has been demonstrated that small non-coding RNAs known as microRNAs play a vital role in the cellular transformation process. In this study, we used an LNA array to further investigate the impact of HPV16 on the expression of microRNAs in oropharyngeal (tonsillar) cancer. A number of miRNAs were found to be deregulated, with miR-496 showing a four-fold decrease. Over-expression of the high risk E6 oncoprotein down-regulated miR-496, impacting upon the post-transcriptional control of the transcription factor E2F2. These HPV specific miRNAs were integrated with the HPV16 interactome to identify possible mechanistic pathways. These analyses provide insights into novel molecular interactions between HPV16 and miRNAs in oropharyngeal cancers.
Collapse
|
244
|
Tian Y, Chen H, Qiao L, Zhang W, Zheng J, Zhao W, Chen JJ, Zhang W. CIP2A facilitates the G1/S cell cycle transition via B-Myb in human papillomavirus 16 oncoprotein E6-expressing cells. J Cell Mol Med 2018; 22:4150-4160. [PMID: 29893470 PMCID: PMC6111863 DOI: 10.1111/jcmm.13693] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 04/20/2018] [Indexed: 01/17/2023] Open
Abstract
Infection with high‐risk human papillomaviruses (HR‐HPVs, including HPV‐16, HPV‐18, HPV‐31) plays a central aetiologic role in the development of cervical carcinoma. The transforming properties of HR‐HPVs mainly reside in viral oncoproteins E6 and E7. E6 protein degrades the tumour suppressor p53 and abrogates cell cycle checkpoints. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein that is involved in the carcinogenesis of many human malignancies. Our previous data showed that CIP2A was overexpressed in cervical cancer. However, the regulation of CIP2A by HPV‐16E6 remains to be elucidated. In this study, we demonstrated that HPV‐16E6 significantly up‐regulated CIP2A mRNA and protein expression in a p53‐degradation‐dependent manner. Knockdown of CIP2A by siRNA inhibited viability and DNA synthesis and caused G1 cell cycle arrest of 16E6‐expressing cells. Knockdown of CIP2A resulted in a significant reduction in the expression of cyclin‐dependent kinase 1 (Cdk1) and Cdk2. Although CIP2A has been reported to stabilize c‐Myc by inhibiting PP2A‐mediated dephosphorylation of c‐Myc, we have presented evidence that the regulation of Cdk1 and Cdk2 by CIP2A is dependent on transcription factor B‐Myb rather than c‐Myc. Taken together, our study reveals the role of CIP2A in abrogating the G1 checkpoint in HPV‐16E6‐expressing cells and helps in understanding the molecular basis of HPV‐induced oncogenesis.
Collapse
Affiliation(s)
- Yonghao Tian
- Department of Orthopedic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Hanxiang Chen
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Lijun Qiao
- Cancer Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Wenhao Zhang
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jingyi Zheng
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Weiming Zhao
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jason J Chen
- Cancer Research Center, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Weifang Zhang
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| |
Collapse
|
245
|
Javadi H, Lotfi AS, Hosseinkhani S, Mehrani H, Amani J, Soheili ZS, Hojati Z, Kamali M. The combinational effect of E6/E7 siRNA and anti-miR-182 on apoptosis induction in HPV16-positive cervical cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:727-736. [PMID: 29873516 DOI: 10.1080/21691401.2018.1468770] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In the present research, we assumed that reducing the amounts of E6 and E7 oncoproteins by a specific siRNA sequence and recovering p53 and RB proteins, along with the recovery of the FOXO1 protein by applying anti-miR-182, would increase apoptosis and reduce proliferation rate in cancer cells. The HPV16-positive CaSki cervical cancer cell line was used. 48 hours after transfection of siRNA for targeting E6 and E7 oncoproteins and anti-miR-182, expression of its cellular targets p53, p21 and FOXO1 was assessed by real-time PCR, western blot analysis and immunocytofluorescence staining. In all treatments, apoptosis rate and viability were evaluated using Annexin-V-FITC apoptosis detection kits and MTT assays, respectively. Among the designed siRNAs, E6-1 and E7-2 proved the most effective in reducing E6 and E7 expressions by increasing the apoptotic rates to 12.4% and 16%, respectively, after 48 hours. Also, using anti-miR-182 increased apoptotic rate to 12.7% 48 hours after transfection of cervical cancer cells. The combinational use of either E6-1 or E7-2 siRNAs with anti-miR-182 resulted in a rise in apoptosis to 19.3% and 26%, respectively, higher than those obtained from the individual application of either without anti-miR-182. The simultaneous use of siRNA E6-1 and siRNA E7-2 with cisplatin increased sensitivity to cisplatin and reduced the viability of the cancer cells as compared to the use of cisplatin alone. The simultaneous use of cisplatin and anti-miR-182 had no considerable effect on viability or apoptosis rate compared to cisplatin alone.
Collapse
Affiliation(s)
- Hamidreza Javadi
- a Nanobiotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran.,b Department of Molecular Medicine , Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | - Abbas Sahebghadam Lotfi
- c Department of Clinical Biochemistry, Faculty of Medicine , Tarbiat Modares University , Tehran , Iran
| | - Saman Hosseinkhani
- d Department of Biochemistry, Faculty of Basic Sciences , Tarbiat Modares University , Tehran , Iran
| | - Hossein Mehrani
- e Department of Biochemistry, Faculty of Science , Islamic Azad University Branch of Neyshabur , Neyshabur , Iran
| | - Jafar Amani
- f Applied Microbiology Research Center, System Biology and Poisonings Institute , Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Zahra Soheila Soheili
- b Department of Molecular Medicine , Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | - Zahra Hojati
- b Department of Molecular Medicine , Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | - Mehdi Kamali
- a Nanobiotechnology Research Center , Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
246
|
Taberna M, Mena M, Pavón MA, Alemany L, Gillison ML, Mesía R. Human papillomavirus-related oropharyngeal cancer. Ann Oncol 2018. [PMID: 28633362 DOI: 10.1093/annonc/mdx304] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
High-risk human papillomavirus (HPV) is now recognised as the principal cause of the increasing incidence rates of oropharyngeal squamous cell carcinoma (OPSCC) in some parts of the world. The primary risk factor for developing HPV-related OPSCC is oral HPV-infection and the majority of oral HPV-infections are acquired by oral sex. Progression into an OPSCC includes persistent infection with evasion of immune response in the microenvironment, the activation of viral early genes (E6, E7) in basal epithelial cells, the deregulation of cell cycle and the accumulation of chromosomal instability. Patients affected by HPV-related OPSCC tend to be younger and have better outcomes. This observation has lead current research to evaluate treatment de-escalation options to reduce long-term associated morbidity. Moreover, a different molecular profile for HPV-related OPSCC has been described, opening new options for targeted therapy and immunotherapy approaches. This paper comprehensively reviews our accumulated knowledge regarding the role of HPV in OPSCC spanning from infection to cancer development, including its clinical diagnosis, management and preventive strategies.
Collapse
Affiliation(s)
- M Taberna
- Department of Medical Oncology;; Cancer Epidemiology Research Program, IDIBELL, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona;; Department of Medicine, University of Barcelona, Barcelona;.
| | - M Mena
- Cancer Epidemiology Research Program, IDIBELL, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona;; CIBER in primary and secondary prevention of viral induced cancers (CIBERONC), Madrid, Spain
| | - M A Pavón
- Cancer Epidemiology Research Program, IDIBELL, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona
| | - L Alemany
- Cancer Epidemiology Research Program, IDIBELL, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona;; Epidemiology and Public Health, Centro de Investigación Biomédica en Red: Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain
| | - M L Gillison
- Department of Medicine, The Ohio State University, Columbus, USA
| | - R Mesía
- Department of Medical Oncology;; Department of Medicine, University of Barcelona, Barcelona
| |
Collapse
|
247
|
Qiao L, Zheng J, Tian Y, Zhang Q, Wang X, Chen JJ, Zhang W. Regulator of chromatin condensation 1 abrogates the G1 cell cycle checkpoint via Cdk1 in human papillomavirus E7-expressing epithelium and cervical cancer cells. Cell Death Dis 2018; 9:583. [PMID: 29789527 PMCID: PMC5964113 DOI: 10.1038/s41419-018-0584-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/31/2018] [Accepted: 04/06/2018] [Indexed: 01/01/2023]
Abstract
Regulator of chromatin condensation 1 (RCC1) is a major guanine-nucleotide exchange factor for Ran GTPase and plays key roles in nucleo-cytoplasmic transport, mitosis, and nuclear envelope assembly. RCC1 is known to be a critical cell cycle regulator whose loss causes G1 phase arrest, but the molecular basis for this regulation is poorly understood. Furthermore, little is known about the relationship between RCC1 and carcinomas. Human papillomavirus (HPV) infection is highly associated with the development of cervical cancer. The expression and function of RCC1 in HPV-related cervical cancer and cell cycle regulation have not yet been explored. In this study, we first observed that RCC1 immunostaining was mildly increased in cervical cancer tissues and significantly upregulated in HPV E7-expressing cells; this localization was primarily nuclear. We showed that the transcription factor c-Jun transcriptionally upregulates RCC1 via a direct interaction with the RCC1 promoter. Moreover, siRNA-mediated knockdown of RCC1 inhibited G1/S cell cycle progression and DNA synthesis, while overexpression of RCC1 abrogated the G1 checkpoint. RCC1 knockdown downregulated the protein levels of the transcription factor E2F1, especially nuclear E2F1, by promoting its degradation in HPV E7-expressing cells. Overexpression of E2F1 rescued RCC1 knockdown-mediated inhibition of G1/S progression. Additionally, we showed that cyclin-dependent kinase 1 (Cdk1), a known target of E2F1, is involved in G1 checkpoint regulation, as Cdk1 knockdown hindered G1/S progression, while Cdk1 overexpression rescued RCC1 knockdown-mediated effect on G1 cell cycle progression. Furthermore, RCC1 knockdown reduced HPV E7 protein levels, which may in turn downregulate E2F1. Our study explores the function of RCC1 in G1/S cell cycle progression and suggests that RCC1 may be involved in HPV E7-mediated genomic instability.
Collapse
Affiliation(s)
- Lijun Qiao
- Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jingyi Zheng
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yonghao Tian
- Department of Orthopedic Surgery, Qilu Hospital Affiliated Shandong University, Jinan, Shandong, China
| | - Qishu Zhang
- Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Xiao Wang
- Institute of Pathobiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Jason J Chen
- Cancer Research Center and Department of Microbiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Weifang Zhang
- Department of Microbiology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
248
|
Elchuri SV, Rajasekaran S, Miles WO. RNA-Sequencing of Primary Retinoblastoma Tumors Provides New Insights and Challenges Into Tumor Development. Front Genet 2018; 9:170. [PMID: 29868118 PMCID: PMC5966869 DOI: 10.3389/fgene.2018.00170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
Abstract
Retinoblastoma is rare tumor of the retina caused by the homozygous loss of the Retinoblastoma 1 tumor suppressor gene (RB1). Loss of the RB1 protein, pRB, results in de-regulated activity of the E2F transcription factors, chromatin changes and developmental defects leading to tumor development. Extensive microarray profiles of these tumors have enabled the identification of genes sensitive to pRB disruption, however, this technology has a number of limitations in the RNA profiles that they generate. The advent of RNA-sequencing has enabled the global profiling of all of the RNA within the cell including both coding and non-coding features and the detection of aberrant RNA processing events. In this perspective, we focus on discussing how RNA-sequencing of rare Retinoblastoma tumors will build on existing data and open up new area's to improve our understanding of the biology of these tumors. In particular, we discuss how the RB-research field may be to use this data to determine how RB1 loss results in the expression of; non-coding RNAs, causes aberrant RNA processing events and how a deeper analysis of metabolic RNA changes can be utilized to model tumor specific shifts in metabolism. Each section discusses new opportunities and challenges associated with these types of analyses and aims to provide an honest assessment of how understanding these different processes may contribute to the treatment of Retinoblastoma.
Collapse
Affiliation(s)
- Sailaja V. Elchuri
- Department of Nanotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Swetha Rajasekaran
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Wayne O. Miles
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
249
|
Brand TM, Hartmann S, Bhola NE, Li H, Zeng Y, O'Keefe RA, Ranall MV, Bandyopadhyay S, Soucheray M, Krogan NJ, Kemp C, Duvvuri U, LaVallee T, Johnson DE, Ozbun MA, Bauman JE, Grandis JR. Cross-talk Signaling between HER3 and HPV16 E6 and E7 Mediates Resistance to PI3K Inhibitors in Head and Neck Cancer. Cancer Res 2018; 78:2383-2395. [PMID: 29440171 PMCID: PMC6537867 DOI: 10.1158/0008-5472.can-17-1672] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/01/2017] [Accepted: 02/06/2018] [Indexed: 11/16/2022]
Abstract
Human papillomavirus (HPV) type 16 is implicated in approximately 75% of head and neck squamous cell carcinomas (HNSCC) that arise in the oropharynx, where viral expression of the E6 and E7 oncoproteins promote cellular transformation, tumor growth, and maintenance. An important oncogenic signaling pathway activated by E6 and E7 is the PI3K pathway, a key driver of carcinogenesis. The PI3K pathway is also activated by mutation or amplification of PIK3CA in over half of HPV(+) HNSCC. In this study, we investigated the efficacy of PI3K-targeted therapies in HPV(+) HNSCC preclinical models and report that HPV(+) cell line- and patient-derived xenografts are resistant to PI3K inhibitors due to feedback signaling emanating from E6 and E7. Receptor tyrosine kinase profiling indicated that PI3K inhibition led to elevated expression of the HER3 receptor, which in turn increased the abundance of E6 and E7 to promote PI3K inhibitor resistance. Targeting HER3 with siRNA or the mAb CDX-3379 reduced E6 and E7 abundance and enhanced the efficacy of PI3K-targeted therapies. Together, these findings suggest that cross-talk between HER3 and HPV oncoproteins promotes resistance to PI3K inhibitors and that cotargeting HER3 and PI3K may be an effective therapeutic strategy in HPV(+) tumors.Significance: These findings suggest a new therapeutic combination that may improve outcomes in HPV(+) head and neck cancer patients. Cancer Res; 78(9); 2383-95. ©2018 AACR.
Collapse
Affiliation(s)
- Toni M Brand
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Stefan Hartmann
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
- Department of Oral and Maxillofacial Plastic Surgery, University Hospital Würzburg, Würzburg, Germany
| | - Neil E Bhola
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Hua Li
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Yan Zeng
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Rachel A O'Keefe
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Max V Ranall
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Sourav Bandyopadhyay
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California
| | - Margaret Soucheray
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California
| | - Carolyn Kemp
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Umamaheswar Duvvuri
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Daniel E Johnson
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California
| | - Michelle A Ozbun
- Department of Molecular Genetics & Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Julie E Bauman
- Division of Hematology/Oncology, University of Arizona Cancer Center, Tucson, Arizona
| | - Jennifer R Grandis
- Department of Otolaryngology - Head and Neck Surgery, University of California San Francisco, San Francisco, California.
| |
Collapse
|
250
|
Morgan EL, Wasson CW, Hanson L, Kealy D, Pentland I, McGuire V, Scarpini C, Coleman N, Arthur JSC, Parish JL, Roberts S, Macdonald A. STAT3 activation by E6 is essential for the differentiation-dependent HPV18 life cycle. PLoS Pathog 2018; 14:e1006975. [PMID: 29630659 PMCID: PMC5908086 DOI: 10.1371/journal.ppat.1006975] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/19/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Human papillomaviruses (HPV) activate a number of host factors to control their differentiation-dependent life cycles. The transcription factor signal transducer and activator of transcription (STAT)-3 is important for cell cycle progression and cell survival in response to cytokines and growth factors. STAT3 requires phosphorylation on Ser727, in addition to phosphorylation on Tyr705 to be transcriptionally active. In this study, we show that STAT3 is essential for the HPV life cycle in undifferentiated and differentiated keratinocytes. Primary human keratinocytes containing high-risk HPV18 genomes display enhanced STAT3 phosphorylation compared to normal keratinocytes. Expression of the E6 oncoprotein is sufficient to induce the dual phosphorylation of STAT3 at Ser727 and Tyr705 by a mechanism requiring Janus kinases and members of the MAPK family. E6-mediated activation of STAT3 induces the transcription of STAT3 responsive genes including cyclin D1 and Bcl-xL. Silencing of STAT3 protein expression by siRNA or inhibition of STAT3 activation by small molecule inhibitors, or by expression of dominant negative STAT3 phosphorylation site mutants, results in blockade of cell cycle progression. Loss of active STAT3 impairs HPV gene expression and prevents episome maintenance in undifferentiated keratinocytes and upon differentiation, lack of active STAT3 abolishes virus genome amplification and late gene expression. Organotypic raft cultures of HPV18 containing keratinocytes expressing a phosphorylation site STAT3 mutant display a profound reduction in suprabasal hyperplasia, which correlates with a loss of cyclin B1 expression and increased differentiation. Finally, increased STAT3 expression and phosphorylation is observed in HPV positive cervical disease biopsies compared to control samples, highlighting a role for STAT3 activation in cervical carcinogenesis. In summary, our data provides evidence of a critical role for STAT3 in the HPV18 life cycle.
Collapse
Affiliation(s)
- Ethan L. Morgan
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Christopher W. Wasson
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Lucy Hanson
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - David Kealy
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Ieisha Pentland
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Victoria McGuire
- Division of Cell Signalling and Immunology, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Cinzia Scarpini
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Coleman
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - J. Simon C. Arthur
- Division of Cell Signalling and Immunology, College of Life Sciences, Sir James Black Centre, University of Dundee, Dundee, United Kingdom
| | - Joanna L. Parish
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Sally Roberts
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
- * E-mail:
| |
Collapse
|