201
|
Okada H, Masujin K, Miyazawa K, Yokoyama T. Acquired transmissibility of sheep-passaged L-type bovine spongiform encephalopathy prion to wild-type mice. Vet Res 2015; 46:81. [PMID: 26169916 PMCID: PMC4499898 DOI: 10.1186/s13567-015-0211-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
L-type bovine spongiform encephalopathy (L-BSE) is an atypical form of BSE that is transmissible to cattle and several lines of prion protein (PrP) transgenic mice, but not to wild-type mice. In this study, we examined the transmissibility of sheep-passaged L-BSE prions to wild-type mice. Disease-associated prion protein (PrPSc) was detected in the brain and/or lymphoid tissues during the lifespan of mice that were asymptomatic subclinical carriers, indicating that wild-type mice were susceptible to sheep-passaged L-BSE. The morphological characteristics of the PrPSc of sheep-passaged L-BSE included florid plaques that were distributed mainly in the cerebral cortex and hippocampus of subsequent passaged mice. The PrPSc glycoform profiles of wild-type mice infected with sheep-passaged L-BSE were similar to those of the original isolate. The data indicate that sheep-passaged L-BSE has an altered host range and acquired transmissibility to wild-type mice.
Collapse
Affiliation(s)
- Hiroyuki Okada
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Kentaro Masujin
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Kohtaro Miyazawa
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| | - Takashi Yokoyama
- National Institute of Animal Health, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan.
| |
Collapse
|
202
|
Longitudinal Detection of Prion Shedding in Saliva and Urine by Chronic Wasting Disease-Infected Deer by Real-Time Quaking-Induced Conversion. J Virol 2015; 89:9338-47. [PMID: 26136567 DOI: 10.1128/jvi.01118-15] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Chronic wasting disease (CWD) is an emergent, rapidly spreading prion disease of cervids. Shedding of infectious prions in saliva and urine is thought to be an important factor in CWD transmission. To help to elucidate this issue, we applied an in vitro amplification assay to determine the onset, duration, and magnitude of prion shedding in longitudinally collected saliva and urine samples from CWD-exposed white-tailed deer. We detected prion shedding as early as 3 months after CWD exposure and sustained shedding throughout the disease course. We estimated that the 50% lethal dose (LD50) for cervidized transgenic mice would be contained in 1 ml of infected deer saliva or 10 ml of urine. Given the average course of infection and daily production of these body fluids, an infected deer would shed thousands of prion infectious doses over the course of CWD infection. The direct and indirect environmental impacts of this magnitude of prion shedding on cervid and noncervid species are surely significant. IMPORTANCE Chronic wasting disease (CWD) is an emerging and uniformly fatal prion disease affecting free-ranging deer and elk and is now recognized in 22 U.S. states and 2 Canadian provinces. It is unique among prion diseases in that it is transmitted naturally through wild populations. A major hypothesis to explain CWD's florid spread is that prions are shed in excreta and transmitted via direct or indirect environmental contact. Here we use a rapid in vitro assay to show that infectious doses of CWD prions are in fact shed throughout the multiyear disease course in deer. This finding is an important advance in assessing the risks posed by shed CWD prions to animals as well as humans.
Collapse
|
203
|
Orrú CD, Groveman BR, Raymond LD, Hughson AG, Nonno R, Zou W, Ghetti B, Gambetti P, Caughey B. Bank Vole Prion Protein As an Apparently Universal Substrate for RT-QuIC-Based Detection and Discrimination of Prion Strains. PLoS Pathog 2015; 11:e1004983. [PMID: 26086786 PMCID: PMC4472236 DOI: 10.1371/journal.ppat.1004983] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/26/2015] [Indexed: 01/20/2023] Open
Abstract
Prions propagate as multiple strains in a wide variety of mammalian species. The detection of all such strains by a single ultrasensitive assay such as Real Time Quaking-induced Conversion (RT-QuIC) would facilitate prion disease diagnosis, surveillance and research. Previous studies have shown that bank voles, and transgenic mice expressing bank vole prion protein, are susceptible to most, if not all, types of prions. Here we show that bacterially expressed recombinant bank vole prion protein (residues 23-230) is an effective substrate for the sensitive RT-QuIC detection of all of the different prion types that we have tested so far – a total of 28 from humans, cattle, sheep, cervids and rodents, including several that have previously been undetectable by RT-QuIC or Protein Misfolding Cyclic Amplification. Furthermore, comparison of the relative abilities of different prions to seed positive RT-QuIC reactions with bank vole and not other recombinant prion proteins allowed discrimination of prion strains such as classical and atypical L-type bovine spongiform encephalopathy, classical and atypical Nor98 scrapie in sheep, and sporadic and variant Creutzfeldt-Jakob disease in humans. Comparison of protease-resistant RT-QuIC conversion products also aided strain discrimination and suggested the existence of several distinct classes of prion templates among the many strains tested. Prion diseases are neurodegenerative disorders that propagate as multiple strains in a variety of mammalian species. The detection of all such prion types by a single ultrasensitive assay, such as the Real Time Quaking-induced Conversion (RT-QuIC) assay, would facilitate prion disease diagnosis, surveillance, and research. Here we show detection of minute amounts of 28 different prion types from humans, cattle, sheep, cervids and rodents, some of which were previously undetectable, using a single recombinant bank vole prion protein substrate. We also demonstrate the generation of prion type-dependent RT-QuIC conversion products which may help with prion strain discrimination and the characterization of distinct classes of prion templates. Finally, we describe a practical strategy for prion strain discrimination, e.g. classical and atypical L-type bovine spongiform encephalopathy; classical and atypical Nor98 sheep scrapie; and human sporadic and variant Creutzfeldt-Jakob disease. Thus, our study provides a basis for wide-ranging prion detection and strain discrimination.
Collapse
Affiliation(s)
- Christina D. Orrú
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Bradley R. Groveman
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Lynne D. Raymond
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Andrew G. Hughson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
| | - Romolo Nonno
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Wenquan Zou
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Bernardino Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Pierluigi Gambetti
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
204
|
Wenborn A, Terry C, Gros N, Joiner S, D'Castro L, Panico S, Sells J, Cronier S, Linehan JM, Brandner S, Saibil HR, Collinge J, Wadsworth JDF. A novel and rapid method for obtaining high titre intact prion strains from mammalian brain. Sci Rep 2015; 5:10062. [PMID: 25950908 PMCID: PMC4423448 DOI: 10.1038/srep10062] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/26/2015] [Indexed: 02/02/2023] Open
Abstract
Mammalian prions exist as multiple strains which produce characteristic and highly reproducible phenotypes in defined hosts. How this strain diversity is encoded by a protein-only agent remains one of the most interesting and challenging questions in biology with wide relevance to understanding other diseases involving the aggregation or polymerisation of misfolded host proteins. Progress in understanding mammalian prion strains has however been severely limited by the complexity and variability of the methods used for their isolation from infected tissue and no high resolution structures have yet been reported. Using high-throughput cell-based prion bioassay to re-examine prion purification from first principles we now report the isolation of prion strains to exceptional levels of purity from small quantities of infected brain and demonstrate faithful retention of biological and biochemical strain properties. The method's effectiveness and simplicity should facilitate its wide application and expedite structural studies of prions.
Collapse
Affiliation(s)
- Adam Wenborn
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Cassandra Terry
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Nathalie Gros
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Susan Joiner
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Laura D'Castro
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Silvia Panico
- Department of Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Jessica Sells
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Sabrina Cronier
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Jacqueline M Linehan
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Sebastian Brandner
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Helen R Saibil
- Department of Crystallography and Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - John Collinge
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Jonathan D F Wadsworth
- MRC Prion Unit and Department of Neurodegenerative Disease, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
205
|
Bouybayoune I, Mantovani S, Del Gallo F, Bertani I, Restelli E, Comerio L, Tapella L, Baracchi F, Fernández-Borges N, Mangieri M, Bisighini C, Beznoussenko GV, Paladini A, Balducci C, Micotti E, Forloni G, Castilla J, Fiordaliso F, Tagliavini F, Imeri L, Chiesa R. Transgenic fatal familial insomnia mice indicate prion infectivity-independent mechanisms of pathogenesis and phenotypic expression of disease. PLoS Pathog 2015; 11:e1004796. [PMID: 25880443 PMCID: PMC4400166 DOI: 10.1371/journal.ppat.1004796] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/09/2015] [Indexed: 11/18/2022] Open
Abstract
Fatal familial insomnia (FFI) and a genetic form of Creutzfeldt-Jakob disease (CJD178) are clinically different prion disorders linked to the D178N prion protein (PrP) mutation. The disease phenotype is determined by the 129 M/V polymorphism on the mutant allele, which is thought to influence D178N PrP misfolding, leading to the formation of distinctive prion strains with specific neurotoxic properties. However, the mechanism by which misfolded variants of mutant PrP cause different diseases is not known. We generated transgenic (Tg) mice expressing the mouse PrP homolog of the FFI mutation. These mice synthesize a misfolded form of mutant PrP in their brains and develop a neurological illness with severe sleep disruption, highly reminiscent of FFI and different from that of analogously generated Tg(CJD) mice modeling CJD178. No prion infectivity was detectable in Tg(FFI) and Tg(CJD) brains by bioassay or protein misfolding cyclic amplification, indicating that mutant PrP has disease-encoding properties that do not depend on its ability to propagate its misfolded conformation. Tg(FFI) and Tg(CJD) neurons have different patterns of intracellular PrP accumulation associated with distinct morphological abnormalities of the endoplasmic reticulum and Golgi, suggesting that mutation-specific alterations of secretory transport may contribute to the disease phenotype. Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD) and fatal familial insomnia (FFI). The reason for this variability is not known, but assembly of the mutant PrPs into distinct aggregates that spread in the brain by promoting PrP aggregation may contribute to the disease phenotype. We previously generated transgenic mice modeling genetic CJD, clinically identified by dementia and motor abnormalities. We have now generated transgenic mice carrying the PrP mutation associated with FFI, and found that they develop severe sleep abnormalities and other key features of the human disorder. Thus, transgenic mice recapitulate the phenotypic differences seen in humans. The mutant PrPs in FFI and CJD mice are aggregated but unable to promote PrP aggregation. They accumulate in different intracellular compartments and cause distinct morphological abnormalities of transport organelles. These results indicate that mutant PrP has disease-encoding properties that are independent of its ability to self-propagate, and suggest that the phenotypic heterogeneity may be due to different effects of aggregated PrP on intracellular transport. Our study provides new insights into the mechanisms of selective neuronal dysfunction due to protein aggregation.
Collapse
Affiliation(s)
- Ihssane Bouybayoune
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Susanna Mantovani
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Federico Del Gallo
- Department of Health Sciences, University of Milan Medical School, Milan, Italy
| | - Ilaria Bertani
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Elena Restelli
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Liliana Comerio
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Laura Tapella
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Francesca Baracchi
- Department of Health Sciences, University of Milan Medical School, Milan, Italy
| | | | - Michela Mangieri
- Division of Neuropathology and Neurology, IRCCS Foundation “Carlo Besta” National Neurological Institute, Milan, Italy
| | - Cinzia Bisighini
- Bio-Imaging Unit, Department of Cardiovascular Research, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | | | - Alessandra Paladini
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Claudia Balducci
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Edoardo Micotti
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Fabio Fiordaliso
- Bio-Imaging Unit, Department of Cardiovascular Research, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
| | - Fabrizio Tagliavini
- Division of Neuropathology and Neurology, IRCCS Foundation “Carlo Besta” National Neurological Institute, Milan, Italy
| | - Luca Imeri
- Department of Health Sciences, University of Milan Medical School, Milan, Italy
| | - Roberto Chiesa
- Department of Neuroscience, IRCCS—“Mario Negri” Institute for Pharmacological Research, Milan, Italy
- * E-mail:
| |
Collapse
|
206
|
Kabir ME, Safar JG. Implications of prion adaptation and evolution paradigm for human neurodegenerative diseases. Prion 2015; 8:111-6. [PMID: 24401672 PMCID: PMC7030914 DOI: 10.4161/pri.27661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is a growing body of evidence indicating that number of human neurodegenerative diseases, including Alzheimer disease, Parkinson disease, fronto-temporal dementias, and amyotrophic lateral sclerosis, propagate in the brain via prion-like intercellular induction of protein misfolding. Prions cause lethal neurodegenerative diseases in humans, the most prevalent being sporadic Creutzfeldt-Jakob disease (sCJD); they self-replicate and spread by converting the cellular form of prion protein (PrPC) to a misfolded pathogenic conformer (PrPSc). The extensive phenotypic heterogeneity of human prion diseases is determined by polymorphisms in the prion protein gene, and by prion strain-specific conformation of PrPSc. Remarkably, even though informative nucleic acid is absent, prions may undergo rapid adaptation and evolution in cloned cells and upon crossing the species barrier. In the course of our investigation of this process, we isolated distinct populations of PrPSc particles that frequently co-exist in sCJD. The human prion particles replicate independently and undergo competitive selection of those with lower initial conformational stability. Exposed to mutant substrate, the winning PrPSc conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to the lowest stability. Thus, the evolution and adaptation of human prions is enabled by a dynamic collection of distinct populations of particles, whose evolution is governed by the selection of progressively less stable, faster replicating PrPSc conformers. This fundamental biological mechanism may explain the drug resistance that some prions gained after exposure to compounds targeting PrPSc. Whether the phenotypic heterogeneity of other neurodegenerative diseases caused by protein misfolding is determined by the spectrum of misfolded conformers (strains) remains to be established. However, the prospect that these conformers may evolve and adapt by a prion-like mechanism calls for the reevaluation of therapeutic strategies that target aggregates of misfolded proteins, and argues for new therapeutic approaches that will focus on prior pathogenetic steps.
Collapse
|
207
|
Rangel LP, Costa DCF, Vieira TCRG, Silva JL. The aggregation of mutant p53 produces prion-like properties in cancer. Prion 2015; 8:75-84. [PMID: 24509441 PMCID: PMC7030899 DOI: 10.4161/pri.27776] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor protein p53 loses its function in more than 50% of human malignant tumors. Recent studies have suggested that mutant p53 can form aggregates that are related to loss-of-function effects, negative dominance and gain-of-function effects and cancers with a worsened prognosis. In recent years, several degenerative diseases have been shown to have prion-like properties similar to mammalian prion proteins (PrPs). However, whereas prion diseases are rare, the incidence of these neurodegenerative pathologies is high. Malignant tumors involving mutated forms of the tumor suppressor p53 protein seem to have similar substrata. The aggregation of the entire p53 protein and three functional domains of p53 into amyloid oligomers and fibrils has been demonstrated. Amyloid aggregates of mutant p53 have been detected in breast cancer and malignant skin tumors. Most p53 mutations related to cancer development are found in the DNA-binding domain (p53C), which has been experimentally shown to form amyloid oligomers and fibrils. Several computation programs have corroborated the predicted propensity of p53C to form aggregates, and some of these programs suggest that p53C is more likely to form aggregates than the globular domain of PrP. Overall, studies imply that mutant p53 exerts a dominant-negative regulatory effect on wild-type (WT) p53 and exerts gain-of-function effects when co-aggregating with other proteins such as p63, p73 and acetyltransferase p300. We review here the prion-like behavior of oncogenic p53 mutants that provides an explanation for their dominant-negative and gain-of-function properties and for the high metastatic potential of cancers bearing p53 mutations. The inhibition of the aggregation of p53 into oligomeric and fibrillar amyloids appears to be a promising target for therapeutic intervention in malignant tumor diseases.
Collapse
|
208
|
Noble GP, Walsh DJ, Miller MB, Jackson WS, Supattapone S. Requirements for mutant and wild-type prion protein misfolding in vitro. Biochemistry 2015; 54:1180-7. [PMID: 25584902 DOI: 10.1021/bi501495j] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Misfolding of the prion protein (PrP) plays a central role in the pathogenesis of infectious, sporadic, and inherited prion diseases. Here we use a chemically defined prion propagation system to study misfolding of the pathogenic PrP mutant D177N in vitro. This mutation causes PrP to misfold spontaneously in the absence of cofactor molecules in a process dependent on time, temperature, pH, and intermittent sonication. Spontaneously misfolded mutant PrP is able to template its unique conformation onto wild-type PrP substrate in a process that requires a phospholipid activity distinct from that required for the propagation of infectious prions. Similar results were obtained with a second pathogenic PrP mutant, E199K, but not with the polymorphic substitution M128V. Moreover, wild-type PrP inhibits mutant PrP misfolding in a dose-dependent manner, and cofactor molecules can antagonize this effect. These studies suggest that interactions between mutant PrP, wild-type PrP, and other cellular factors may control the rate of PrP misfolding in inherited prion diseases.
Collapse
Affiliation(s)
- Geoffrey P Noble
- Department of Biochemistry, The Geisel School of Medicine at Dartmouth , Vail Building Room 311, Hanover, New Hampshire 03755, United States
| | | | | | | | | |
Collapse
|
209
|
Groveman BR, Kraus A, Raymond LD, Dolan MA, Anson KJ, Dorward DW, Caughey B. Charge neutralization of the central lysine cluster in prion protein (PrP) promotes PrP(Sc)-like folding of recombinant PrP amyloids. J Biol Chem 2015; 290:1119-28. [PMID: 25416779 PMCID: PMC4294479 DOI: 10.1074/jbc.m114.619627] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/20/2014] [Indexed: 11/06/2022] Open
Abstract
The structure of the infectious form of prion protein, PrP(Sc), remains unclear. Most pure recombinant prion protein (PrP) amyloids generated in vitro are not infectious and lack the extent of the protease-resistant core and solvent exclusion of infectious PrP(Sc), especially within residues ∼90-160. Polyanionic cofactors can enhance infectivity and PrP(Sc)-like characteristics of such fibrils, but the mechanism of this enhancement is unknown. In considering structural models of PrP(Sc) multimers, we identified an obstacle to tight packing that might be overcome with polyanionic cofactors, namely, electrostatic repulsion between four closely spaced cationic lysines within a central lysine cluster of residues 101-110. For example, in our parallel in-register intermolecular β-sheet model of PrP(Sc), not only would these lysines be clustered within the 101-110 region of the primary sequence, but they would have intermolecular spacings of only ∼4.8 Å between stacked β-strands. We have now performed molecular dynamics simulations predicting that neutralization of the charges on these lysine residues would allow more stable parallel in-register packing in this region. We also show empirically that substitution of these clustered lysine residues with alanines or asparagines results in recombinant PrP amyloid fibrils with extended proteinase-K resistant β-sheet cores and infrared spectra that are more reminiscent of bona fide PrP(Sc). These findings indicate that charge neutralization at the central lysine cluster is critical for the folding and tight packing of N-proximal residues within PrP amyloid fibrils. This charge neutralization may be a key aspect of the mechanism by which anionic cofactors promote PrP(Sc) formation.
Collapse
Affiliation(s)
| | - Allison Kraus
- From the Laboratory of Persistent Viral Diseases and
| | | | - Michael A Dolan
- the Computational Biology Section, Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | | | - David W Dorward
- the Research Technologies Branch, Microscopy Unit, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840 and
| | - Byron Caughey
- From the Laboratory of Persistent Viral Diseases and
| |
Collapse
|
210
|
Saá P, Cervenakova L. Protein misfolding cyclic amplification (PMCA): Current status and future directions. Virus Res 2014; 207:47-61. [PMID: 25445341 DOI: 10.1016/j.virusres.2014.11.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/05/2014] [Accepted: 11/06/2014] [Indexed: 12/26/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) most commonly known as prion diseases are invariably fatal neurological disorders that affect humans and animals. These disorders differ from other neurodegenerative conformational diseases caused by the accumulation in the brain of misfolded proteins, sometimes with amyloid properties, in their ability to infect susceptible species by various routes. While the infectious properties of amyloidogenic proteins, other than misfolded prion protein (PrP(TSE)), are currently under scrutiny, their potential to transmit from cell to cell, one of the intrinsic properties of the prion, has been recently shown in vitro and in vivo. Over the decades, various cell culture and laboratory animal models have been developed to study TSEs. These assays have been widely used in a variety of applications but showed to be time consuming and entailed elevated costs. Novel economic and fast alternatives became available with the development of in vitro assays that are based on the property of conformationally abnormal PrP(TSE) to recruit normal cellular PrP(C) to misfold. These include the cell-free conversion assay, protein misfolding cyclic amplification (PMCA) and quaking induced conversion assay (QuIC), of which the PMCA has been the only technology shown to generate infectious prions. Moreover, it allows indefinite amplification of PrP(TSE) with strain-specific biochemical and biological properties of the original molecules and under certain conditions may give rise to new spontaneously generated prions. The method also allows addressing the species barrier phenomena and assessing possible risks of animal-to-animal and animal-to-human transmission. Additionally, its unprecedented sensitivity has made possible the detection of as little as one infectious dose of PrP(TSE) and the biochemical identification of this protein in different tissues and biological fluids, including blood, cerebral spinal fluid (CSF), semen, milk, urine and saliva during the pre-clinical and clinical phases of the disease. The mechanistic similarities between TSEs and other conformational disorders have resulted in the adaptation of the PMCA to the amplification and detection of various amyloidogenic proteins. Here we provide a compelling discussion of the different applications of this technology to the study of TSEs and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Paula Saá
- Transmissible Diseases Department, American National Red Cross, Biomedical Services, Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855, United States.
| | - Larisa Cervenakova
- Transmissible Diseases Department, American National Red Cross, Biomedical Services, Holland Laboratory, 15601 Crabbs Branch Way, Rockville, MD 20855, United States
| |
Collapse
|
211
|
Song Z, Zhao D, Yang L. Metabolism of minor isoforms of prion proteins: Cytosolic prion protein and transmembrane prion protein. Neural Regen Res 2014; 8:2868-78. [PMID: 25206608 PMCID: PMC4146015 DOI: 10.3969/j.issn.1673-5374.2013.30.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/09/2013] [Indexed: 12/24/2022] Open
Abstract
Transmissible spongiform encephalopathy or prion disease is triggered by the conversion from cellular prion protein to pathogenic prion protein. Growing evidence has concentrated on prion protein configuration changes and their correlation with prion disease transmissibility and pathogenicity. In vivo and in vitro studies have shown that several cytosolic forms of prion protein with specific topological structure can destroy intracellular stability and contribute to prion protein pathogenicity. In this study, the latest molecular chaperone system associated with endoplasmic reticulum-associated protein degradation, the endoplasmic reticulum resident protein quality-control system and the ubiquitination proteasome system, is outlined. The molecular chaperone system directly correlates with the prion protein degradation pathway. Understanding the molecular mechanisms will help provide a fascinating avenue for further investigations on prion disease treatment and prion protein-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhiqi Song
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Deming Zhao
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lifeng Yang
- State Key Laboratory for Agrobiotechnology, National Animal Transmissible Spongiform Encephalopathy Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
212
|
Structural effects of PrP polymorphisms on intra- and interspecies prion transmission. Proc Natl Acad Sci U S A 2014; 111:11169-74. [PMID: 25034251 DOI: 10.1073/pnas.1404739111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Understanding the molecular parameters governing prion propagation is crucial for controlling these lethal, proteinaceous, and infectious neurodegenerative diseases. To explore the effects of prion protein (PrP) sequence and structural variations on intra- and interspecies transmission, we integrated studies in deer, a species naturally susceptible to chronic wasting disease (CWD), a burgeoning, contagious epidemic of uncertain origin and zoonotic potential, with structural and transgenic (Tg) mouse modeling and cell-free prion amplification. CWD properties were faithfully maintained in deer following passage through Tg mice expressing cognate PrP, and the influences of naturally occurring PrP polymorphisms on CWD susceptibility were accurately reproduced in Tg mice or cell-free systems. Although Tg mice also recapitulated susceptibility of deer to sheep prions, polymorphisms that provided protection against CWD had distinct and varied influences. Whereas substitutions at residues 95 and 96 in the unstructured region affected CWD propagation, their protective effects were overridden during replication of sheep prions in Tg mice and, in the case of residue 96, deer. The inhibitory effects on sheep prions of glutamate at residue 226 in elk PrP, compared with glutamine in deer PrP, and the protective effects of the phenylalanine for serine substitution at the adjacent residue 225, coincided with structural rearrangements in the globular domain affecting interaction between α-helix 3 and the loop between β2 and α-helix 2. These structure-function analyses are consistent with previous structural investigations and confirm a role for plasticity of this tertiary structural epitope in the control of PrP conversion and strain propagation.
Collapse
|
213
|
Serial propagation of distinct strains of Aβ prions from Alzheimer's disease patients. Proc Natl Acad Sci U S A 2014; 111:10323-8. [PMID: 24982139 DOI: 10.1073/pnas.1408900111] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
An increasing number of studies argues that self-propagating protein conformations (i.e., prions) feature in the pathogenesis of several common neurodegenerative diseases. Mounting evidence contends that aggregates of the amyloid-β (Aβ) peptide become self-propagating in Alzheimer's disease (AD) patients. An important characteristic of prions is their ability to replicate distinct strains, the biological information for which is enciphered within different conformations of protein aggregates. To investigate whether distinct strains of Aβ prions can be discerned in AD patients, we performed transmission studies in susceptible transgenic mice using brain homogenates from sporadic or heritable (Arctic and Swedish) AD cases. Mice inoculated with the Arctic AD sample exhibited a pathology that could be distinguished from mice inoculated with the Swedish or sporadic AD samples, which was judged by differential accumulation of Aβ isoforms and the morphology of cerebrovascular Aβ deposition. Unlike Swedish AD- or sporadic AD-inoculated animals, Arctic AD-inoculated mice, like Arctic AD patients, displayed a prominent Aβ38-containing cerebral amyloid angiopathy. The divergent transmission behavior of the Arctic AD sample compared with the Swedish and sporadic AD samples was maintained during second passage in mice, showing that Aβ strains are serially transmissible. We conclude that at least two distinct strains of Aβ prions can be discerned in the brains of AD patients and that strain fidelity was preserved on serial passage in mice. Our results provide a potential explanation for the clinical and pathological heterogeneity observed in AD patients.
Collapse
|
214
|
Distinct synthetic Aβ prion strains producing different amyloid deposits in bigenic mice. Proc Natl Acad Sci U S A 2014; 111:10329-34. [PMID: 24982137 DOI: 10.1073/pnas.1408968111] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
An increasing number of studies continue to show that the amyloid β (Aβ) peptide adopts an alternative conformation and acquires transmissibility; hence, it becomes a prion. Here, we report on the attributes of two strains of Aβ prions formed from synthetic Aβ peptides composed of either 40 or 42 residues. Modifying the conditions for Aβ polymerization increased both the protease resistance and prion infectivity compared with an earlier study. Approximately 150 d after intracerebral inoculation, both synthetic Aβ40 and Aβ42 prions produced a sustained rise in the bioluminescence imaging signal in the brains of bigenic Tg(APP23:Gfap-luc) mice, indicative of astrocytic gliosis. Pathological investigations showed that synthetic Aβ40 prions produced amyloid plaques containing both Aβ40 and Aβ42 in the brains of inoculated bigenic mice, whereas synthetic Aβ42 prions stimulated the formation of smaller, more numerous plaques composed predominantly of Aβ42. Synthetic Aβ40 preparations consisted of long straight fibrils; in contrast, the Aβ42 fibrils were much shorter. Addition of 3.47 mM (0.1%) SDS to the polymerization reaction produced Aβ42 fibrils that were indistinguishable from Aβ40 fibrils produced in the absence or presence of SDS. Moreover, the Aβ amyloid plaques in the brains of bigenic mice inoculated with Aβ42 prions prepared in the presence of SDS were similar to those found in mice that received Aβ40 prions. From these results, we conclude that the composition of Aβ plaques depends on the conformation of the inoculated Aβ polymers, and thus, these inocula represent distinct synthetic Aβ prion strains.
Collapse
|
215
|
Haïk S, Brandel JP. Infectious prion diseases in humans: cannibalism, iatrogenicity and zoonoses. INFECTION GENETICS AND EVOLUTION 2014; 26:303-12. [PMID: 24956437 DOI: 10.1016/j.meegid.2014.06.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/24/2022]
Abstract
In contrast with other neurodegenerative disorders associated to protein misfolding, human prion diseases include infectious forms (also called transmitted forms) such as kuru, iatrogenic Creutzfeldt-Jakob disease and variant Creutzfeldt-Jakob disease. The transmissible agent is thought to be solely composed of the abnormal isoform (PrP(Sc)) of the host-encoded prion protein that accumulated in the central nervous system of affected individuals. Compared to its normal counterpart, PrP(Sc) is β-sheet enriched and aggregated and its propagation is based on an autocatalytic conversion process. Increasing evidence supports the view that conformational variations of PrP(Sc) encoded the biological properties of the various prion strains that have been isolated by transmission studies in experimental models. Infectious forms of human prion diseases played a pivotal role in the emergence of the prion concept and in the characterization of the very unconventional properties of prions. They provide a unique model to understand how prion strains are selected and propagate in humans. Here, we review and discuss how genetic factors interplay with strain properties and route of transmission to influence disease susceptibility, incubation period and phenotypic expression in the light of the kuru epidemics due to ritual endocannibalism, the various series iatrogenic diseases secondary to extractive growth hormone treatment or dura mater graft and the epidemics of variant Creutzfeldt-Jakob disease linked to dietary exposure to the agent of bovine spongiform encephalopathy.
Collapse
Affiliation(s)
- Stéphane Haïk
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm, U 1127, CNRS UMR 7225, ICM, F-75013 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, F-75013 Paris, France; Centre National de Référence des Agents Transmissibles Non Conventionnels, F-75013 Paris, France.
| | - Jean-Philippe Brandel
- Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Inserm, U 1127, CNRS UMR 7225, ICM, F-75013 Paris, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Cellule Nationale de Référence des Maladies de Creutzfeldt-Jakob, F-75013 Paris, France; Centre National de Référence des Agents Transmissibles Non Conventionnels, F-75013 Paris, France
| |
Collapse
|
216
|
Krasnianski A, Sanchez Juan P, Ponto C, Bartl M, Heinemann U, Varges D, Schulz-Schaeffer WJ, Kretzschmar HA, Zerr I. A proposal of new diagnostic pathway for fatal familial insomnia. J Neurol Neurosurg Psychiatry 2014; 85:654-9. [PMID: 24249784 PMCID: PMC4033028 DOI: 10.1136/jnnp-2013-305978] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/08/2013] [Accepted: 10/18/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND In absence of a positive family history, the diagnosis of fatal familial insomnia (FFI) might be difficult because of atypical clinical features and low sensitivity of diagnostic tests. FFI patients usually do not fulfil the established classification criteria for Creutzfeldt-Jakob disease (CJD); therefore, a prion disease is not always suspected. OBJECTIVE To propose an update of diagnostic pathway for the identification of patients for the analysis of D178-M129 mutation. DESIGN AND METHODS Data on 41 German FFI patients were analysed. Clinical symptoms and signs, MRI, PET, SPECT, polysomnography, EEG and cerebrospinal fluid biomarkers were studied. RESULTS An algorithm was developed which correctly identified at least 81% of patients with the FFI diagnosis during early disease stages. It is based on the detection of organic sleep disturbances, either verified clinically or by a polysomnography, and a combination of vegetative and focal neurological signs and symptoms. Specificity of the approach was tested on three cohorts of patients (MM1 sporadic CJD patients, non-selected sporadic CJD and other neurodegenerative diseases). CONCLUSIONS The proposed scheme may help to improve the clinical diagnosis of FFI. As the sensitivity of all diagnostic tests investigated but polysomnography is low in FFI, detailed clinical investigation is of special importance.
Collapse
Affiliation(s)
- A Krasnianski
- Clinical Dementia Center and National Reference Center for TSE at Department of Neurology Georg-August University, , Göttingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
217
|
Watts JC, Prusiner SB. Mouse models for studying the formation and propagation of prions. J Biol Chem 2014; 289:19841-9. [PMID: 24860095 DOI: 10.1074/jbc.r114.550707] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Prions are self-propagating protein conformers that cause a variety of neurodegenerative disorders in humans and animals. Mouse models have played key roles in deciphering the biology of prions and in assessing candidate therapeutics. The development of transgenic mice that form prions spontaneously in the brain has advanced our understanding of sporadic and genetic prion diseases. Furthermore, the realization that many proteins can become prions has necessitated the development of mouse models for assessing the potential transmissibility of common neurodegenerative diseases. As the universe of prion diseases continues to expand, mouse models will remain crucial for interrogating these devastating illnesses.
Collapse
Affiliation(s)
- Joel C Watts
- From the Institute for Neurodegenerative Diseases and the Department of Neurology, University of California, San Francisco, California 94143
| | - Stanley B Prusiner
- From the Institute for Neurodegenerative Diseases and the Department of Neurology, University of California, San Francisco, California 94143
| |
Collapse
|
218
|
Holmes BB, Diamond MI. Prion-like properties of Tau protein: the importance of extracellular Tau as a therapeutic target. J Biol Chem 2014; 289:19855-61. [PMID: 24860099 DOI: 10.1074/jbc.r114.549295] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Work over the past 4 years indicates that multiple proteins associated with neurodegenerative diseases, especially Tau and α-synuclein, can propagate aggregates between cells in a prion-like manner. This means that once an aggregate is formed it can escape the cell of origin, contact a connected cell, enter the cell, and induce further aggregation via templated conformational change. The prion model predicts a key role for extracellular protein aggregates in mediating progression of disease. This suggests new therapeutic approaches based on blocking neuronal uptake of protein aggregates and promoting their clearance. This will likely include therapeutic antibodies or small molecules, both of which can be developed and optimized in vitro prior to preclinical studies.
Collapse
Affiliation(s)
- Brandon B Holmes
- From the Department of Neurology, Washington University in St. Louis, St. Louis, Missouri 63110
| | - Marc I Diamond
- From the Department of Neurology, Washington University in St. Louis, St. Louis, Missouri 63110
| |
Collapse
|
219
|
Quinacrine promotes replication and conformational mutation of chronic wasting disease prions. Proc Natl Acad Sci U S A 2014; 111:6028-33. [PMID: 24711410 DOI: 10.1073/pnas.1322377111] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quinacrine's ability to reduce levels of pathogenic prion protein (PrP(Sc)) in mouse cells infected with experimentally adapted prions led to several unsuccessful clinical studies in patients with prion diseases, a 10-y investment to understand its mechanism of action, and the production of related compounds with expectations of greater efficacy. We show here, in stark contrast to this reported inhibitory effect, that quinacrine enhances deer and elk PrP(Sc) accumulation and promotes propagation of prions causing chronic wasting disease (CWD), a fatal, transmissible, neurodegenerative disorder of cervids of uncertain zoonotic potential. Surprisingly, despite increased prion titers in quinacrine-treated cells, transmission of the resulting prions produced prolonged incubation times and altered PrP(Sc) deposition patterns in the brains of diseased transgenic mice. This unexpected outcome is consistent with quinacrine affecting the intrinsic properties of the CWD prion. Accordingly, quinacrine-treated CWD prions were comprised of an altered PrP(Sc) conformation. Our findings provide convincing evidence for drug-induced conformational mutation of prions without the prerequisite of generating drug-resistant variants of the original strain. More specifically, they show that a drug capable of restraining prions in one species/strain setting, and consequently used to treat human prion diseases, improves replicative ability in another and therefore force reconsideration of current strategies to screen antiprion compounds.
Collapse
|
220
|
Watts JC, Giles K, Patel S, Oehler A, DeArmond SJ, Prusiner SB. Evidence that bank vole PrP is a universal acceptor for prions. PLoS Pathog 2014; 10:e1003990. [PMID: 24699458 PMCID: PMC3974871 DOI: 10.1371/journal.ppat.1003990] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/28/2014] [Indexed: 12/29/2022] Open
Abstract
Bank voles are uniquely susceptible to a wide range of prion strains isolated from many different species. To determine if this enhanced susceptibility to interspecies prion transmission is encoded within the sequence of the bank vole prion protein (BVPrP), we inoculated Tg(M109) and Tg(I109) mice, which express BVPrP containing either methionine or isoleucine at polymorphic codon 109, with 16 prion isolates from 8 different species: humans, cattle, elk, sheep, guinea pigs, hamsters, mice, and meadow voles. Efficient disease transmission was observed in both Tg(M109) and Tg(I109) mice. For instance, inoculation of the most common human prion strain, sporadic Creutzfeldt-Jakob disease (sCJD) subtype MM1, into Tg(M109) mice gave incubation periods of ∼200 days that were shortened slightly on second passage. Chronic wasting disease prions exhibited an incubation time of ∼250 days, which shortened to ∼150 days upon second passage in Tg(M109) mice. Unexpectedly, bovine spongiform encephalopathy and variant CJD prions caused rapid neurological dysfunction in Tg(M109) mice upon second passage, with incubation periods of 64 and 40 days, respectively. Despite the rapid incubation periods, other strain-specified properties of many prion isolates—including the size of proteinase K–resistant PrPSc, the pattern of cerebral PrPSc deposition, and the conformational stability—were remarkably conserved upon serial passage in Tg(M109) mice. Our results demonstrate that expression of BVPrP is sufficient to engender enhanced susceptibility to a diverse range of prion isolates, suggesting that BVPrP may be a universal acceptor for prions. Prions are infectious proteins that cause devastating neurodegenerative diseases in both humans and animals. Unlike other rodents, bank voles are highly susceptible to prions from many different species, suggesting that bank voles do not impose a “species barrier,” which normally restricts the transmission of prions from one species to another. We were curious as to whether the unprecedented promiscuity of bank voles for prions is due to the specific prion protein sequence expressed, or to some other factor inherent to bank vole physiology. To answer this question, we inoculated transgenic mice that express bank vole prion protein [Tg(BVPrP) mice] with a diverse set of prions deriving from eight different species. Like bank voles, Tg(BVPrP) mice were highly susceptible to prions from all species tested, demonstrating that the BVPrP sequence mediates the enhanced susceptibility of bank voles to prions. Because the amino acid sequences of mouse and BVPrP differ at only eight positions, our results demonstrate that alterations to a small subset of residues within PrP can have a profound effect on the susceptibility of an organism to prions from another species.
Collapse
Affiliation(s)
- Joel C Watts
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America; Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Kurt Giles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America; Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Smita Patel
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
| | - Abby Oehler
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Stephen J DeArmond
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America; Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Stanley B Prusiner
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America; Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
221
|
Abstract
Zoonotic prion transmission was reported after the bovine spongiform encephalopathy (BSE) epidemic, when >200 cases of prion disease in humans were diagnosed as variant Creutzfeldt-Jakob disease. Assessing the risk of cross-species prion transmission remains challenging. We and others have studied how specific amino acid residue differences between species impact prion conversion and have found that the β2-α2 loop region of the mouse prion protein (residues 165-175) markedly influences infection by sheep scrapie, BSE, mouse-adapted scrapie, deer chronic wasting disease, and hamster-adapted scrapie prions. The tyrosine residue at position 169 is strictly conserved among mammals and an aromatic side chain in this position is essential to maintain a 310-helical turn in the β2-α2 loop. Here we examined the impact of the Y169G substitution together with the previously described S170N, N174T "rigid loop" substitutions on cross-species prion transmission in vivo and in vitro. We found that transgenic mice expressing mouse PrP containing the triple-amino acid substitution completely resisted infection with two strains of mouse prions and with deer chronic wasting disease prions. These studies indicate that Y169 is important for prion formation, and they provide a strong indication that variation of the β2-α2 loop structure can modulate interspecies prion transmission.
Collapse
|
222
|
Vanni I, Di Bari MA, Pirisinu L, D'Agostino C, Agrimi U, Nonno R. In vitro replication highlights the mutability of prions. Prion 2014; 8:154-60. [PMID: 24618479 PMCID: PMC7030905 DOI: 10.4161/pri.28468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prions exist as strains, which are thought to reflect PrPSc conformational variants. Prion strains can mutate and it has been proposed that prion mutability depends on an intrinsic heterogeneity of prion populations that would behave as quasispecies. We investigated in vitro prion mutability of 2 strains, by following PrPSc variations of populations serially propagated in PMCA under constant environmental pressure. Each strain was propagated either at low dilution of the seed, i.e., by large population passages, or at limiting dilution, mimicking bottleneck events. In both strains, PrPSc conformational variants were identified only after large population passages, while repeated bottleneck events caused a rapid decline in amplification rates. These findings support the view that mutability is an intrinsic property of prions.
Collapse
Affiliation(s)
- Ilaria Vanni
- Department of Veterinary Public Health and Food Safety; Istituto Superiore di Sanità; Rome, Italy
| | - Michele Angelo Di Bari
- Department of Veterinary Public Health and Food Safety; Istituto Superiore di Sanità; Rome, Italy
| | - Laura Pirisinu
- Department of Veterinary Public Health and Food Safety; Istituto Superiore di Sanità; Rome, Italy
| | - Claudia D'Agostino
- Department of Veterinary Public Health and Food Safety; Istituto Superiore di Sanità; Rome, Italy
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety; Istituto Superiore di Sanità; Rome, Italy
| | - Romolo Nonno
- Department of Veterinary Public Health and Food Safety; Istituto Superiore di Sanità; Rome, Italy
| |
Collapse
|
223
|
Van Everbroeck B, Boons J, De Leenheir E, Lübke U, Cras P. Molecular diagnostic tools in Creutzfeldt-Jakob disease and other prion disorders. Expert Rev Mol Diagn 2014; 4:351-9. [PMID: 15137902 DOI: 10.1586/14737159.4.3.351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Clinical criteria and cerebrospinal fluid biomarkers for the diagnosis of human prion diseases (sporadic, iatrogenic or variant Creutzfeldt-Jakob disease and genetic inherited transmissible spongiform encephalopathies) are now widely available and show a sensitivity and specificity of approximately 98%. Final diagnosis of prion diseases is obtained by post-mortem examination upon identification of the pathological conformer of the prion protein (PrPSc) in the brain. Several diagnostic kits are now available that facilitate the immunochemical measurement of PrPSc. Several new molecular diagnostic techniques, aimed at increasing the sensitivity and specificity of PrPSc detection and at identifying markers of disease other than PrPSc, are the subject of ongoing studies. The aim of these studies is to develop preclinical screening tests for the identification of infected but still healthy individuals. These tests are also essential to investigate the safety of blood or blood-derived products and to ensure meat safety in European countries.
Collapse
Affiliation(s)
- Bart Van Everbroeck
- Laboratory of Neurobiology, Borne Bunge Foundation, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
224
|
Highly infectious prions generated by a single round of microplate-based protein misfolding cyclic amplification. mBio 2013; 5:e00829-13. [PMID: 24381300 PMCID: PMC3884057 DOI: 10.1128/mbio.00829-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Measurements of the presence of prions in biological tissues or fluids rely more and more on cell-free assays. Although protein misfolding cyclic amplification (PMCA) has emerged as a valuable, sensitive tool, it is currently hampered by its lack of robustness and rapidity for high-throughput purposes. Here, we made a number of improvements making it possible to amplify the maximum levels of scrapie prions in a single 48-h round and in a microplate format. The amplification rates and the infectious titer of the PMCA-formed prions appeared similar to those derived from the in vivo laboratory bioassays. This enhanced technique also amplified efficiently prions from different species, including those responsible for human variant Creutzfeldt-Jakob disease. This new format should help in developing ultrasensitive, high-throughput prion assays for cognitive, diagnostic, and therapeutic applications. IMPORTANCE The method developed here allows large-scale, fast, and reliable cell-free amplification of subinfectious levels of prions from different species. The sensitivity and rapidity achieved approach or equal those of other recently developed prion-seeded conversion assays. Our simplified assay may be amenable to high-throughput, automated purposes and serve in a complementary manner with other recently developed assays for urgently needed antemortem diagnostic tests, by using bodily fluids containing small amounts of prion infectivity. Such a combination of assays is of paramount importance to reduce the transfusion risk in the human population and to identify asymptomatic carriers of variant Creutzfeldt-Jakob disease.
Collapse
|
225
|
Prion protein misfolding, strains, and neurotoxicity: an update from studies on Mammalian prions. Int J Cell Biol 2013; 2013:910314. [PMID: 24454379 PMCID: PMC3884631 DOI: 10.1155/2013/910314] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 11/10/2013] [Accepted: 11/11/2013] [Indexed: 11/17/2022] Open
Abstract
Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a group of fatal neurodegenerative disorders affecting humans and other mammalian species. The central event in TSE pathogenesis is the conformational conversion of the cellular prion protein, PrPC, into the aggregate, β-sheet rich, amyloidogenic form, PrPSc. Increasing evidence indicates that distinct PrPSc conformers, forming distinct ordered aggregates, can encipher the phenotypic TSE variants related to prion strains. Prion strains are TSE isolates that, after inoculation into syngenic hosts, cause disease with distinct characteristics, such as incubation period, pattern of PrPSc distribution, and regional severity of histopathological changes in the brain. In analogy with other amyloid forming proteins, PrPSc toxicity is thought to derive from the existence of various intermediate structures prior to the amyloid fiber formation and/or their specific interaction with membranes. The latter appears particularly relevant for the pathogenesis of TSEs associated with GPI-anchored PrPSc, which involves major cellular membrane distortions in neurons. In this review, we update the current knowledge on the molecular mechanisms underlying three fundamental aspects of the basic biology of prions such as the putative mechanism of prion protein conversion to the pathogenic form PrPSc and its propagation, the molecular basis of prion strains, and the mechanism of induced neurotoxicity by PrPSc aggregates.
Collapse
|
226
|
Taguchi Y, Schätzl HM. Identifying critical sites of PrP(c)-PrP(Sc) interaction in prion-infected cells by dominant-negative inhibition. Prion 2013; 7:452-6. [PMID: 24401595 PMCID: PMC4201612 DOI: 10.4161/pri.27500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
A direct physical interaction of the prion protein isoforms is a key element in prion conversion. Which sites interact first and which parts of PrPc are converted subsequently is presently not known in detail. We hypothesized that structural changes induced by PrPSc interaction occur in more than one interface and subsequently propagate within the PrPC substrate, like epicenters of structural changes. To identify potential interfaces we created a series of systematically-designed mutant PrPs and tested them in prion-infected cells for dominant-negative inhibition (DNI) effects. This showed that mutant PrPs with deletions in the region between first and second α-helix are involved in PrP-PrP interaction and conversion of PrPC into PrPSc. Although some PrPs did not reach the plasma membrane, they had access to the locales of prion conversion and PrPSc recycling using autophagy pathways. Using other series of mutant PrPs we already have identified additional sites which constitute potential interaction interfaces. Our approach has the potential to characterize PrP-PrP interaction sites in the context of prion-infected cells. Besides providing further insights into the molecular mechanisms of prion conversion, this data may help to further elucidate how prion strain diversity is maintained.
Collapse
Affiliation(s)
- Yuzuru Taguchi
- Department of Comparative Biology & Experimental Medicine; Faculty of Veterinary Medicine; University of Calgary; Calgary, AB Canada
| | - Hermann M Schätzl
- Department of Comparative Biology & Experimental Medicine; Faculty of Veterinary Medicine; University of Calgary; Calgary, AB Canada; Departments of Molecular Biology and of Veterinary Sciences; University of Wyoming; Laramie, Wyoming, USA
| |
Collapse
|
227
|
Abstract
Prions are proteins that adopt alternative conformations, which become self-propagating. Increasing evidence argues that prions feature in the synucleinopathies that include Parkinson's disease, Lewy body dementia, and multiple system atrophy (MSA). Although TgM83(+/+) mice homozygous for a mutant A53T α-synuclein transgene begin developing CNS dysfunction spontaneously at ∼10 mo of age, uninoculated TgM83(+/-) mice (hemizygous for the transgene) remain healthy. To determine whether MSA brains contain α-synuclein prions, we inoculated the TgM83(+/-) mice with brain homogenates from two pathologically confirmed MSA cases. Inoculated TgM83(+/-) mice developed progressive signs of neurologic disease with an incubation period of ∼100 d, whereas the same mice inoculated with brain homogenates from spontaneously ill TgM83(+/+) mice developed neurologic dysfunction in ∼210 d. Brains of MSA-inoculated mice exhibited prominent astrocytic gliosis and microglial activation as well as widespread deposits of phosphorylated α-synuclein that were proteinase K sensitive, detergent insoluble, and formic acid extractable. Our results provide compelling evidence that α-synuclein aggregates formed in the brains of MSA patients are transmissible and, as such, are prions. The MSA prion represents a unique human pathogen that is lethal upon transmission to Tg mice and as such, is reminiscent of the prion causing kuru, which was transmitted to chimpanzees nearly 5 decades ago.
Collapse
|
228
|
Abstract
Although they share certain biological properties with nucleic acid based infectious agents, prions, the causative agents of invariably fatal, transmissible neurodegenerative disorders such as bovine spongiform encephalopathy, sheep scrapie, and human Creutzfeldt Jakob disease, propagate by conformational templating of host encoded proteins. Once thought to be unique to these diseases, this mechanism is now recognized as a ubiquitous means of information transfer in biological systems, including other protein misfolding disorders such as those causing Alzheimer's and Parkinson's diseases. To address the poorly understood mechanism by which host prion protein (PrP) primary structures interact with distinct prion conformations to influence pathogenesis, we produced transgenic (Tg) mice expressing different sheep scrapie susceptibility alleles, varying only at a single amino acid at PrP residue 136. Tg mice expressing ovine PrP with alanine (A) at (OvPrP-A136) infected with SSBP/1 scrapie prions propagated a relatively stable (S) prion conformation, which accumulated as punctate aggregates in the brain, and produced prolonged incubation times. In contrast, Tg mice expressing OvPrP with valine (V) at 136 (OvPrP-V136) infected with the same prions developed disease rapidly, and the converted prion was comprised of an unstable (U), diffusely distributed conformer. Infected Tg mice co-expressing both alleles manifested properties consistent with the U conformer, suggesting a dominant effect resulting from exclusive conversion of OvPrP-V136 but not OvPrP-A136. Surprisingly, however, studies with monoclonal antibody (mAb) PRC5, which discriminates OvPrP-A136 from OvPrP-V136, revealed substantial conversion of OvPrP-A136. Moreover, the resulting OvPrP-A136 prion acquired the characteristics of the U conformer. These results, substantiated by in vitro analyses, indicated that co-expression of OvPrP-V136 altered the conversion potential of OvPrP-A136 from the S to the otherwise unfavorable U conformer. This epigenetic mechanism thus expands the range of selectable conformations that can be adopted by PrP, and therefore the variety of options for strain propagation. Prions are infectious proteins, originally discovered as the cause of a group of transmissible, fatal mammalian neurodegenerative diseases. Propagation results from conversion of the host-encoded cellular form of the prion protein to a self-propagating disease-associated conformation. It is believed that the self-propagating pathogenic form exists in a variety of subtly different conformations that encipher prion strain information. Here we explored the mechanism by which prion protein primary structural variants, differing at only a single amino acid residue, interact with prion strain conformations to control disease phenotype. We show that under conditions of co-expression, a susceptible prion protein variant influences the ability of an otherwise resistant variant to propagate an otherwise unfavorable prion strain. While this phenomenon is analogous to the expression of genetically-determined phenotypes, our results support a mechanism whereby dominant and recessive prion traits are epigenetically controlled by means of protein-mediated conformational templating.
Collapse
|
229
|
Prions Ex Vivo: What Cell Culture Models Tell Us about Infectious Proteins. Int J Cell Biol 2013; 2013:704546. [PMID: 24282413 PMCID: PMC3825132 DOI: 10.1155/2013/704546] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/03/2013] [Indexed: 11/25/2022] Open
Abstract
Prions are unconventional infectious agents that are composed of misfolded aggregated prion protein. Prions replicate their conformation by template-assisted conversion of the endogenous prion protein PrP. Templated conversion of soluble proteins into protein aggregates is also a hallmark of other neurodegenerative diseases. Alzheimer's disease or Parkinson's disease are not considered infectious diseases, although aggregate pathology appears to progress in a stereotypical fashion reminiscent of the spreading behavior ofmammalian prions. While basic principles of prion formation have been studied extensively, it is still unclear what exactly drives PrP molecules into an infectious, self-templating conformation. In this review, we discuss crucial steps in the life cycle of prions that have been revealed in ex vivo models. Importantly, the persistent propagation of prions in mitotically active cells argues that cellular processes are in place that not only allow recruitment of cellular PrP into growing prion aggregates but also enable the multiplication of infectious seeds that are transmitted to daughter cells. Comparison of prions with other protein aggregates demonstrates that not all the characteristics of prions are equally shared by prion-like aggregates. Future experiments may reveal to which extent aggregation-prone proteins associated with other neurodegenerative diseases can copy the replication strategies of prions.
Collapse
|
230
|
Ushiki-Kaku Y, Shimizu Y, Tabeta N, Iwamaru Y, Ogawa-Goto K, Hattori S, Yokoyama T. Heterogeneity of abnormal prion protein (PrP(Sc)) in murine scrapie prions determined by PrP(Sc)-specific monoclonal antibodies. J Vet Med Sci 2013; 76:285-8. [PMID: 24132297 PMCID: PMC3982826 DOI: 10.1292/jvms.13-0409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In prion diseases, abnormal prion protein (PrP(Sc)) is considered as the main component of the infectious agent. Delineation of PrP(Sc) conformation is expected to be a critical factor in understanding properties of prions. However, practical methods to differentiate between conformers of PrP(Sc) are inadequate. Here, we used two PrP(Sc)-specific monoclonal antibodies (mAbs), 3B7 and 3H6, and found that mAb 3H6 detected a limited portion of PrP(Sc) in five mice-adapted prion strains. The quantity of mAb 3H6-precipitated PrP(Sc) was significantly lesser in 22L compared to other strains. This result provides a direct evidence of the conformational heterogeneity of PrP(Sc) within the prion strains. Conformation-specific probes, like these mAbs, have the potential to be powerful tools for investigating conformational variations in PrP(Sc).
Collapse
Affiliation(s)
- Yuko Ushiki-Kaku
- Nippi Research Institute of Biomatrix, 520-11 Kuwabara, Toride, Ibaraki 302-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
231
|
Abstract
There is not a single pharmaceutical that halts or even slows any neurodegenerative disease. Mounting evidence shows that prions cause many neurodegenerative diseases, and arguably, scrapie and Creutzfeldt-Jakob disease prions represent the best therapeutic targets. We report here that the previously identified 2-aminothiazoles IND24 and IND81 doubled the survival times of scrapie-infected, wild-type mice. However, mice infected with Rocky Mountain Laboratory (RML) prions, a scrapie-derived strain, and treated with IND24 eventually exhibited neurological dysfunction and died. We serially passaged their brain homogenates in mice and cultured cells. We found that the prion strain isolated from IND24-treated mice, designated RML[IND24], emerged during a single passage in treated mice. Although RML prions infect both the N2a and CAD5 cell lines, RML[IND24] prions could only infect CAD5 cells. When passaged in CAD5 cells, the prions remained resistant to high concentrations of IND24. However, one passage of RML[IND24] prions in untreated mice restored susceptibility to IND24 in CAD5 cells. Although IND24 treatment extended the lives of mice propagating different prion strains, including RML, another scrapie-derived prion strain ME7, and chronic wasting disease, it was ineffective in slowing propagation of Creutzfeldt-Jakob disease prions in transgenic mice. Our studies demonstrate that prion strains can acquire resistance upon exposure to IND24 that is lost upon passage in mice in the absence of IND24. These data suggest that monotherapy can select for resistance, thus intermittent therapy with mixtures of antiprion compounds may be required to slow or stop neurodegeneration.
Collapse
|
232
|
Laferrière F, Tixador P, Moudjou M, Chapuis J, Sibille P, Herzog L, Reine F, Jaumain E, Laude H, Rezaei H, Béringue V. Quaternary structure of pathological prion protein as a determining factor of strain-specific prion replication dynamics. PLoS Pathog 2013; 9:e1003702. [PMID: 24130496 PMCID: PMC3795044 DOI: 10.1371/journal.ppat.1003702] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 08/27/2013] [Indexed: 11/18/2022] Open
Abstract
Prions are proteinaceous infectious agents responsible for fatal neurodegenerative diseases in animals and humans. They are essentially composed of PrP(Sc), an aggregated, misfolded conformer of the ubiquitously expressed host-encoded prion protein (PrP(C)). Stable variations in PrP(Sc) conformation are assumed to encode the phenotypically tangible prion strains diversity. However the direct contribution of PrP(Sc) quaternary structure to the strain biological information remains mostly unknown. Applying a sedimentation velocity fractionation technique to a panel of ovine prion strains, classified as fast and slow according to their incubation time in ovine PrP transgenic mice, has previously led to the observation that the relationship between prion infectivity and PrP(Sc) quaternary structure was not univocal. For the fast strains specifically, infectivity sedimented slowly and segregated from the bulk of proteinase-K resistant PrP(Sc). To carefully separate the respective contributions of size and density to this hydrodynamic behavior, we performed sedimentation at the equilibrium and varied the solubilization conditions. The density profile of prion infectivity and proteinase-K resistant PrP(Sc) tended to overlap whatever the strain, fast or slow, leaving only size as the main responsible factor for the specific velocity properties of the fast strain most infectious component. We further show that this velocity-isolable population of discrete assemblies perfectly resists limited proteolysis and that its templating activity, as assessed by protein misfolding cyclic amplification outcompetes by several orders of magnitude that of the bulk of larger size PrP(Sc) aggregates. Together, the tight correlation between small size, conversion efficiency and duration of disease establishes PrP(Sc) quaternary structure as a determining factor of prion replication dynamics. For certain strains, a subset of PrP assemblies appears to be the best template for prion replication. This has important implications for fundamental studies on prions.
Collapse
Affiliation(s)
- Florent Laferrière
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Philippe Tixador
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Mohammed Moudjou
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jérôme Chapuis
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Pierre Sibille
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Laetitia Herzog
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Fabienne Reine
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Emilie Jaumain
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Hubert Laude
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Human Rezaei
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Vincent Béringue
- INRA (Institut National de la Recherche Agronomique), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
- * E-mail:
| |
Collapse
|
233
|
Morozova OA, March ZM, Robinson AS, Colby DW. Conformational features of tau fibrils from Alzheimer's disease brain are faithfully propagated by unmodified recombinant protein. Biochemistry 2013; 52:6960-7. [PMID: 24033133 PMCID: PMC4142060 DOI: 10.1021/bi400866w] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Fibrils composed of tau protein are a pathological hallmark of several neurodegenerative disorders including Alzheimer's disease (AD). Here we show that when recombinant tau protein is seeded with paired helical filaments (PHFs) isolated from AD brain, the amyloid formed shares many of the structural features of AD PHFs. In contrast, tau amyloids formed with heparin as an inducing agent-a common biochemical model of tau misfolding-are structurally distinct from brain-derived PHFs. Using ultrastructural analysis by electron microscopy, circular dichroism, and chemical denaturation, we found that AD seeded recombinant tau fibrils were not significantly different than tau fibrils isolated from AD brain tissue. Tau fibrils produced by incubating recombinant tau with heparin had significantly narrower fibrils with a longer periodicity, higher chemical stability, and distinct secondary structure compared to AD PHFs. The addition of heparin to the reaction of recombinant tau and AD PHFs also corrupted the templating process, resulting in a mixture of fibril conformations. Our results suggest that AD-isolated PHFs act as a conformational template for the formation of recombinant tau fibrils. Therefore, the use of AD PHFs as seeds to stimulate recombinant tau amyloid formation produces synthetic tau fibers that closely resemble those associated with AD pathology and provides a biochemical model of tau misfolding that may be of improved utility for structural studies and drug screening. These results also demonstrate that post-translational modifications such as phosphorylation are not a prerequisite for the propagation of the tau fibril conformation found in AD.
Collapse
Affiliation(s)
- Olga A. Morozova
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Zachary M. March
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | - David W. Colby
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
234
|
Henderson DM, Manca M, Haley NJ, Denkers ND, Nalls AV, Mathiason CK, Caughey B, Hoover EA. Rapid antemortem detection of CWD prions in deer saliva. PLoS One 2013; 8:e74377. [PMID: 24040235 PMCID: PMC3770611 DOI: 10.1371/journal.pone.0074377] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 07/31/2013] [Indexed: 11/29/2022] Open
Abstract
Chronic wasting disease (CWD) is an efficiently transmitted prion disease of cervids, now identified in 22 United States, 2 Canadian provinces and Korea. One hallmark of CWD is the shedding of infectious prions in saliva, as demonstrated by bioassay in deer. It is also clear that the concentration of prions in saliva, blood, urine and feces is much lower than in the nervous system or lymphoid tissues. Rapid in vitro detection of CWD (and other) prions in body fluids and excreta has been problematic due to the sensitivity limits of direct assays (western blotting, ELISA) and the presence of inhibitors in these complex biological materials that hamper detection. Here we use real-time quaking induced conversion (RT-QuIC) to demonstrate CWD prions in both diluted and prion-enriched saliva samples from asymptomatic and symptomatic white-tailed deer. CWD prions were detected in 14 of 24 (58.3%) diluted saliva samples from CWD-exposed white-tailed deer, including 9 of 14 asymptomatic animals (64.2%). In addition, a phosphotungstic acid enrichment enhanced the RT-QuIC assay sensitivity, enabling detection in 19 of 24 (79.1%) of the above saliva samples. Bioassay in Tg[CerPrP] mice confirmed the presence of infectious prions in 2 of 2 RT-QuIC-positive saliva samples so examined. The modified RT-QuIC analysis described represents a non-invasive, rapid ante-mortem detection of prions in complex biologic fluids, excreta, or environmental samples as well as a tool for exploring prion trafficking, peripheralization, and dissemination.
Collapse
Affiliation(s)
- Davin M. Henderson
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University (CSU), Fort Collins, Colorado, United States of America
| | - Matteo Manca
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Disease, Hamilton, Montana, United States of America
- Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Nicholas J. Haley
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University (CSU), Fort Collins, Colorado, United States of America
| | - Nathaniel D. Denkers
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University (CSU), Fort Collins, Colorado, United States of America
| | - Amy V. Nalls
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University (CSU), Fort Collins, Colorado, United States of America
| | - Candace K. Mathiason
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University (CSU), Fort Collins, Colorado, United States of America
| | - Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories (RML), National Institute of Allergy and Infectious Disease, Hamilton, Montana, United States of America
| | - Edward A. Hoover
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University (CSU), Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
235
|
Haldiman T, Kim C, Cohen Y, Chen W, Blevins J, Qing L, Cohen ML, Langeveld J, Telling GC, Kong Q, Safar JG. Co-existence of distinct prion types enables conformational evolution of human PrPSc by competitive selection. J Biol Chem 2013; 288:29846-61. [PMID: 23974118 DOI: 10.1074/jbc.m113.500108] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The unique phenotypic characteristics of mammalian prions are thought to be encoded in the conformation of pathogenic prion proteins (PrP(Sc)). The molecular mechanism responsible for the adaptation, mutation, and evolution of prions observed in cloned cells and upon crossing the species barrier remains unsolved. Using biophysical techniques and conformation-dependent immunoassays in tandem, we isolated two distinct populations of PrP(Sc) particles with different conformational stabilities and aggregate sizes, which frequently co-exist in the most common human prion disease, sporadic Creutzfeldt-Jakob disease. The protein misfolding cyclic amplification replicates each of the PrP(Sc) particle types independently and leads to the competitive selection of those with lower initial conformational stability. In serial propagation with a nonglycosylated mutant PrP(C) substrate, the dominant PrP(Sc) conformers are subject to further evolution by natural selection of the subpopulation with the highest replication rate due to its lowest stability. Cumulatively, the data show that sporadic Creutzfeldt-Jakob disease PrP(Sc) is not a single conformational entity but a dynamic collection of two distinct populations of particles. This implies the co-existence of different prions, whose adaptation and evolution are governed by the selection of progressively less stable, faster replicating PrP(Sc) conformers.
Collapse
|
236
|
Li Y, Yan J, Zhang X, Huang K. Disulfide bonds in amyloidogenesis diseases related proteins. Proteins 2013; 81:1862-73. [DOI: 10.1002/prot.24338] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/16/2013] [Accepted: 05/23/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Yang Li
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China 430030
| | - Juan Yan
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China 430030
| | - Xin Zhang
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China 430030
| | - Kun Huang
- Tongji School of Pharmacy; Huazhong University of Science and Technology; Wuhan Hubei People's Republic of China 430030
- Centre for Biomedicine Research; Wuhan Institute of Biotechnology; Wuhan Hubei People's Republic of China 430074
| |
Collapse
|
237
|
Vrentas CE, Greenlee JJ, Baron T, Caramelli M, Czub S, Nicholson EM. Stability properties of PrP(Sc) from cattle with experimental transmissible spongiform encephalopathies: use of a rapid whole homogenate, protease-free assay. BMC Vet Res 2013; 9:167. [PMID: 23945217 PMCID: PMC3751458 DOI: 10.1186/1746-6148-9-167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/12/2013] [Indexed: 12/01/2022] Open
Abstract
Background Transmissible Spongiform Encephalopathies (TSEs), including scrapie in sheep, chronic wasting disease (CWD) in cervids, transmissible mink encephalopathy (TME), and bovine spongiform encephalopathy (BSE), are fatal diseases of the nervous system associated with accumulation of misfolded prion protein (PrPSc). Different strains of TSEs exist, associated with different PrPSc conformations that can be probed by the stability assay, in which PrPSc is treated with increasing concentrations of the denaturant guanidine hydrochloride (GdnHCl). Results Here, we provide the first comprehensive application of a rapid, protease-free version of the GdnHCl stability assay to brain tissue from cattle experimentally infected with various TSE isolates. Consistent with previous findings from a single Japanese isolate, the L-type isolates of BSE are not distinguishable from classical BSE in this assay. In contrast, H-type isolates of BSE, including our unique isolate of E211K BSE, exhibit higher stability than classical BSE, suggesting that its increased protection against protease digestion at the BSE N-terminus is associated with a higher stability in GdnHCl. While the difference in stability in our version of the assay is likely not large enough for effective use in a diagnostic laboratory setting, the use of alternative experimental conditions may enhance this effect. TSEs from other natural host species that have been passaged in cattle, including CWD and TME, were not distinguishable from classical BSE, while isolates of cattle passaged scrapie exhibited a slight increase in stability as compared to classical BSE. Conclusions These results suggest that the core of PrPSc, as probed in this assay, has similar stability properties among cattle-passaged TSE isolates and that the conformational differences that lead to changes in the proteinase K cleavage site do not cause large changes in the stability of PrPSc from TSE-affected cattle. However, the stability differences observed here will provide a basis of comparison for new isolates of atypical BSE observed in the future and in other geographic locations, especially in the case of H-type BSE.
Collapse
Affiliation(s)
- Catherine E Vrentas
- Virus and Prion Disease Research Unit, National Animal Disease Center, USDA, Agricultural Research Service, Ames, IA 50010, USA
| | | | | | | | | | | |
Collapse
|
238
|
Biochemical characterization of prion strains in bank voles. Pathogens 2013; 2:446-56. [PMID: 25437201 PMCID: PMC4235696 DOI: 10.3390/pathogens2030446] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 11/17/2022] Open
Abstract
Prions exist as different strains exhibiting distinct disease phenotypes. Currently, the identification of prion strains is still based on biological strain typing in rodents. However, it has been shown that prion strains may be associated with distinct PrPSc biochemical types. Taking advantage of the availability of several prion strains adapted to a novel rodent model, the bank vole, we investigated if any prion strain was actually associated with distinctive PrPSc biochemical characteristics and if it was possible to univocally identify strains through PrPSc biochemical phenotypes. We selected six different vole-adapted strains (three human-derived and three animal-derived) and analyzed PrPSc from individual voles by epitope mapping of protease resistant core of PrPSc (PrPres) and by conformational stability and solubility assay. Overall, we discriminated five out of six prion strains, while two different scrapie strains showed identical PrPSc types. Our results suggest that the biochemical strain typing approach here proposed was highly discriminative, although by itself it did not allow us to identify all prion strains analyzed.
Collapse
|
239
|
Kaufman SK, Diamond MI. Prion-like propagation of protein aggregation and related therapeutic strategies. Neurotherapeutics 2013; 10:371-82. [PMID: 23801258 PMCID: PMC3701767 DOI: 10.1007/s13311-013-0196-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many neurodegenerative diseases are characterized by the progressive accumulation of aggregated protein. Recent evidence suggests the prion-like propagation of protein misfolding underlies the spread of pathology observed in these diseases. This review traces our understanding of the mechanisms that underlie this phenomenon and discusses related therapeutic strategies that derive from it.
Collapse
Affiliation(s)
- Sarah K. Kaufman
- Department of Neurology, Washington University in St Louis, 660 South Euclid Avenue, St Louis, MO 63110 USA
| | - Marc I. Diamond
- Department of Neurology, Washington University in St Louis, 660 South Euclid Avenue, St Louis, MO 63110 USA
| |
Collapse
|
240
|
Kraus A, Groveman BR, Caughey B. Prions and the potential transmissibility of protein misfolding diseases. Annu Rev Microbiol 2013; 67:543-64. [PMID: 23808331 DOI: 10.1146/annurev-micro-092412-155735] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Prions, or infectious proteins, represent a major frontier in the study of infectious agents. The prions responsible for mammalian transmissible spongiform encephalopathies (TSEs) are due primarily to infectious self-propagation of misfolded prion proteins. TSE prion structures remain ill-defined, other than being highly structured, self-propagating, and often fibrillar protein multimers with the capacity to seed, or template, the conversion of their normal monomeric precursors into a pathogenic form. Purified TSE prions usually take the form of amyloid fibrils, which are self-seeding ultrastructures common to many serious protein misfolding diseases such as Alzheimer's, Parkinson's, Huntington's and Lou Gehrig's (amytrophic lateral sclerosis). Indeed, recent reports have now provided evidence of prion-like propagation of several misfolded proteins from cell to cell, if not from tissue to tissue or individual to individual. These findings raise concerns that various protein misfolding diseases might have spreading, prion-like etiologies that contribute to pathogenesis or prevalence.
Collapse
Affiliation(s)
- Allison Kraus
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840;
| | | | | |
Collapse
|
241
|
Taguchi Y, Mistica AMA, Kitamoto T, Schätzl HM. Critical significance of the region between Helix 1 and 2 for efficient dominant-negative inhibition by conversion-incompetent prion protein. PLoS Pathog 2013; 9:e1003466. [PMID: 23825952 PMCID: PMC3694865 DOI: 10.1371/journal.ppat.1003466] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 05/13/2013] [Indexed: 01/01/2023] Open
Abstract
Prion diseases are fatal infectious neurodegenerative disorders in man and animals associated with the accumulation of the pathogenic isoform PrPSc of the host-encoded prion protein (PrPc). A profound conformational change of PrPc underlies formation of PrPSc and prion propagation involves conversion of PrPc substrate by direct interaction with PrPSc template. Identifying the interfaces and modalities of inter-molecular interactions of PrPs will highly advance our understanding of prion propagation in particular and of prion-like mechanisms in general. To identify the region critical for inter-molecular interactions of PrP, we exploited here dominant-negative inhibition (DNI) effects of conversion-incompetent, internally-deleted PrP (ΔPrP) on co-expressed conversion-competent PrP. We created a series of ΔPrPs with different lengths of deletions in the region between first and second α-helix (H1∼H2) which was recently postulated to be of importance in prion species barrier and PrP fibril formation. As previously reported, ΔPrPs uniformly exhibited aberrant properties including detergent insolubility, limited protease digestion resistance, high-mannose type N-linked glycans, and intracellular localization. Although formerly controversial, we demonstrate here that ΔPrPs have a GPI anchor attached. Surprisingly, despite very similar biochemical and cell-biological properties, DNI efficiencies of ΔPrPs varied significantly, dependant on location and inversely correlated with the size of deletion. This data demonstrates that H1∼H2 and the region C-terminal to it are critically important for efficient DNI. It also suggests that this region is involved in PrP-PrP interaction and conversion of PrPC into PrPSc. To reconcile the paradox of how an intracellular PrP can exert DNI, we demonstrate that ΔPrPs are subject to both proteasomal and lysosomal/autophagic degradation pathways. Using autophagy pathways ΔPrPs obtain access to the locale of prion conversion and PrPSc recycling and can exert DNI there. This shows that the intracellular trafficking of PrPs is more complex than previously anticipated. Prion diseases are deadly infectious diseases of the brain characterized by accumulation of a pathologic protein (PrPSc) which is derived from the normal prion protein (PrPc). Prions replicate by direct contact in a template-directed refolding process which involves conversion of PrPC into PrPSc. Identifying the modalities of this interaction can advance our molecular understanding of prion diseases. Like substrates and competitive inhibitors of enzymes, a conversion-incompetent PrP can inhibit conversion of normal PrPC, a phenomenon known as dominant-negative inhibition (DNI). Interestingly, some conversion-incompetent PrPs efficiently cause DNI but others do not, presumably depending on affinity for PrPSc and integrity of interaction interface. We utilized DNI to characterize the PrP-PrP interaction interface in cultured cells. We created a series of PrPs with internal deletions in the region between helix 1 and 2 and evaluated their DNI. We found an inverse correlation between deletion size and DNI which suggests that this region plays an important role in PrP-PrP interaction. We also found that such PrPs are subject to various cellular degradation pathways and that a fraction of them reaches the intracellular locale of prion conversion. Further investigation of such prion proteins might help elucidating the cellular mechanisms of the PrPC-PrPSc interaction.
Collapse
Affiliation(s)
- Yuzuru Taguchi
- Departments of Veterinary Sciences and of Molecular Biology, University of Wyoming, Laramie, Wyoming, United States of America.
| | | | | | | |
Collapse
|
242
|
Pirisinu L, Nonno R, Esposito E, Benestad SL, Gambetti P, Agrimi U, Zou WQ. Small ruminant nor98 prions share biochemical features with human gerstmann-sträussler-scheinker disease and variably protease-sensitive prionopathy. PLoS One 2013; 8:e66405. [PMID: 23826096 PMCID: PMC3691246 DOI: 10.1371/journal.pone.0066405] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 05/06/2013] [Indexed: 01/08/2023] Open
Abstract
Prion diseases are classically characterized by the accumulation of pathological prion protein (PrPSc) with the protease resistant C-terminal fragment (PrPres) of 27–30 kDa. However, in both humans and animals, prion diseases with atypical biochemical features, characterized by PK-resistant PrP internal fragments (PrPres) cleaved at both the N and C termini, have been described. In this study we performed a detailed comparison of the biochemical features of PrPSc from atypical prion diseases including human Gerstmann-Sträussler-Scheinker disease (GSS) and variably protease-sensitive prionopathy (VPSPr) and in small ruminant Nor98 or atypical scrapie. The kinetics of PrPres production and its cleavage sites after PK digestion were analyzed, along with the PrPSc conformational stability, using a new method able to characterize both protease-resistant and protease-sensitive PrPSc components. All these PrPSc types shared common and distinctive biochemical features compared to PrPSc from classical prion diseases such as sporadic Creutzfeldt-Jakob disease and scrapie. Notwithstanding, distinct biochemical signatures based on PrPres cleavage sites and PrPSc conformational stability were identified in GSS A117V, GSS F198S, GSS P102L and VPSPr, which allowed their specific identification. Importantly, the biochemical properties of PrPSc from Nor98 and GSS P102L largely overlapped, but were distinct from the other human prions investigated. Finally, our study paves the way towards more refined comparative approaches to the characterization of prions at the animal–human interface.
Collapse
Affiliation(s)
- Laura Pirisinu
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
- * E-mail: (LP); (WQZ)
| | - Romolo Nonno
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Esposito
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | | | - Pierluigi Gambetti
- Department of Pathology, National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| | - Umberto Agrimi
- Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome, Italy
| | - Wen-Quan Zou
- Department of Pathology, National Prion Disease Pathology Surveillance Center, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
- * E-mail: (LP); (WQZ)
| |
Collapse
|
243
|
Tian C, Dong X. The structure of prion: is it enough for interpreting the diverse phenotypes of prion diseases? Acta Biochim Biophys Sin (Shanghai) 2013; 45:429-34. [PMID: 23459557 DOI: 10.1093/abbs/gmt021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Prion diseases, or transmissible spongiform encephalopathies, are neurodegenerative diseases, which affect human and many species of animals with 100% fatality rate. The most accepted etiology for prion disease is 'prion', which arises from the conversion from cellular PrP(C) to the pathological PrP(Sc). This review discussed the characteristic structure of PrP, including PRNP gene, PrP(C), PrP(Sc), PrP amyloid, and prion strains.
Collapse
Affiliation(s)
- Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | | |
Collapse
|
244
|
Abstract
The infectious agent of the transmissible spongiform encephalopathies, or prion diseases, has been the center of intense debate for decades. Years of studies have provided overwhelming evidence to support the prion hypothesis that posits a protein conformal infectious agent is responsible for the transmissibility of the disease. The recent studies that generate prion infectivity with purified bacterially expressed recombinant prion protein not only provides convincing evidence supporting the core of the prion hypothesis, that a pathogenic conformer of host prion protein is able to seed the conversion of its normal counterpart to the likeness of itself resulting in the replication of the pathogenic conformer and occurrence of disease, they also indicate the importance of cofactors, particularly lipid or lipid-like molecules, in forming the protein conformation-based infectious agent. This article reviews the literature regarding the chemical nature of the infectious agent and the potential contribution from lipid molecules to prion infectivity, and discusses the important remaining questions in this research area.
Collapse
Affiliation(s)
- Fei Wang
- Department of Molecular and Cellular Biochemistry, Ohio State University, 1645 Neil Ave., Columbus, OH 43210, USA.
| | | |
Collapse
|
245
|
Abstract
PURPOSE OF REVIEW New research on the mechanisms of neurodegeneration highlights parallels between prion disease pathogenesis and other, more common disorders not typically thought to be infectious. This involves propagation of protein misfolding from cell to cell by templated conformational change. This review focuses on the cell biology that underlies propagation of protein aggregation between cells, including a discussion of protein biochemistry and relevant mouse models. RECENT FINDINGS Like the prion protein, several other proteins exhibit self-propagating fibrillar conformations in vitro. Multiple cellular studies have now implicated endocytic mechanisms in the uptake of aggregates into cells. Aggregates that enter cells somehow escape endocytic vesicles to contact cytosolic protein. The mechanism of release of protein monomers and aggregates from cells is not well understood. Animal models have confirmed that brain lysates and purified protein can accelerate brain pathology in a manner similar to prions. SUMMARY Aggregate flux in and out of cells likely contributes to the progression of neuropathology in neurodegenerative diseases. A better understanding of these mechanisms is emerging and can help explain local spread of protein aggregation and the role of neural networks in disease. This will also inform new therapeutic strategies aimed at blocking this process.
Collapse
|
246
|
Kretzschmar H, Tatzelt J. Prion disease: a tale of folds and strains. Brain Pathol 2013; 23:321-32. [PMID: 23587138 PMCID: PMC8029118 DOI: 10.1111/bpa.12045] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 12/31/2022] Open
Abstract
Research on prions, the infectious agents of devastating neurological diseases in humans and animals, has been in the forefront of developing the concept of protein aggregation diseases. Prion diseases are distinguished from other neurodegenerative diseases by three peculiarities. First, prion diseases, in addition to being sporadic or genetic like all other neurodegenerative diseases, are infectious diseases. Animal models were developed early on (a long time before the advent of transgenic technology), and this has made possible the discovery of the prion protein as the infectious agent. Second, human prion diseases have true equivalents in animals, such as scrapie, which has been the subject of experimental research for many years. Variant Creutzfeldt-Jakob disease (vCJD) is a zoonosis caused by bovine spongiform encephalopathy (BSE) prions. Third, they show a wide variety of phenotypes in humans and animals, much wider than the variants of any other sporadic or genetic neurodegenerative disease. It has now become firmly established that particular PrP(Sc) isoforms are closely related to specific human prion strains. The variety of human prion diseases, still an enigma in its own right, is a focus of this article. Recently, a series of experiments has shown that the concept of aberrant protein folding and templating, first developed for prions, may apply to a variety of neurodegenerative diseases. In the wake of these discoveries, the term prion has come to be used for Aβ, α-synuclein, tau and possibly others. The self-propagation of alternative conformations seems to be the common denominator of these "prions," which in future, in order to avoid confusion, may have to be specified either as "neurodegenerative prions" or "infectious prions."
Collapse
Affiliation(s)
| | - Jörg Tatzelt
- NeurobiochemistryAdolf‐Butenandt‐InstituteLudwig‐Maximilians‐University MunichMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
| |
Collapse
|
247
|
Bett C, Kurt TD, Lucero M, Trejo M, Rozemuller AJ, Kong Q, Nilsson KPR, Masliah E, Oldstone MB, Sigurdson CJ. Defining the conformational features of anchorless, poorly neuroinvasive prions. PLoS Pathog 2013; 9:e1003280. [PMID: 23637596 PMCID: PMC3630170 DOI: 10.1371/journal.ppat.1003280] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022] Open
Abstract
Infectious prions cause diverse clinical signs and form an extraordinary range of structures, from amorphous aggregates to fibrils. How the conformation of a prion dictates the disease phenotype remains unclear. Mice expressing GPI-anchorless or GPI-anchored prion protein exposed to the same infectious prion develop fibrillar or nonfibrillar aggregates, respectively, and show a striking divergence in the disease pathogenesis. To better understand how a prion's physical properties govern the pathogenesis, infectious anchorless prions were passaged in mice expressing anchorless prion protein and the resulting prions were biochemically characterized. Serial passage of anchorless prions led to a significant decrease in the incubation period to terminal disease and altered the biochemical properties, consistent with a transmission barrier effect. After an intraperitoneal exposure, anchorless prions were only weakly neuroinvasive, as prion plaques rarely occurred in the brain yet were abundant in extracerebral sites such as heart and adipose tissue. Anchorless prions consistently showed very high stability in chaotropes or when heated in SDS, and were highly resistant to enzyme digestion. Consistent with the results in mice, anchorless prions from a human patient were also highly stable in chaotropes. These findings reveal that anchorless prions consist of fibrillar and highly stable conformers. The additional finding from our group and others that both anchorless and anchored prion fibrils are poorly neuroinvasive strengthens the hypothesis that a fibrillar prion structure impedes efficient CNS invasion. Prions cause fatal neurodegenerative disease in humans and animals and there is currently no treatment available. The cellular prion protein is normally tethered to the outer leaflet of the plasma membrane by a glycophosphatidyl inositol (GPI) anchor. A rare stop codon mutation in the PRNP gene leads to the production of GPI-anchorless prion protein and the development of familial prion disease, which has been reproduced in mouse models. GPI-anchorless prions in humans or mice form large, dense plaques containing fibrils in the brain that vary from the more common non-fibrillar prion aggregates. Here we investigated the biochemical differences between GPI-anchored and GPI-anchorless prions. We also assessed the capacity of GPI-anchorless prions to spread from entry sites into the central nervous system. We found that infectious GPI-anchorless prions were extraordinarily stable when exposed to protein denaturing conditions. Additionally, we show that GPI-anchorless prions rarely invade the central nervous system and then only after long incubation periods, despite their presence in extraneural tissues including adipose tissue and heart. Our study shows that GPI-anchored prions converted into GPI-anchorless prions become extraordinarily stable, more resistant to enzyme digestion, and are poorly able to invade the nervous system.
Collapse
Affiliation(s)
- Cyrus Bett
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
| | - Tim D. Kurt
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
| | - Melanie Lucero
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
| | - Margarita Trejo
- Department of Neuroscience, University of California, San Diego, La Jolla, California, United States of America
| | - Annemieke J. Rozemuller
- Dutch Surveillance Centre for Prion Diseases, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - K. Peter R. Nilsson
- Department of Chemistry, Biology, and Physics, Linkoping University, Linkoping, Sweden
| | - Eliezer Masliah
- Department of Neuroscience, University of California, San Diego, La Jolla, California, United States of America
| | - Michael B. Oldstone
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Christina J. Sigurdson
- Department of Pathology, University of California, San Diego, La Jolla, California, United States of America
- Department of Pathology, Immunology, and Microbiology, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
248
|
Solforosi L, Milani M, Mancini N, Clementi M, Burioni R. A closer look at prion strains: characterization and important implications. Prion 2013; 7:99-108. [PMID: 23357828 PMCID: PMC3609129 DOI: 10.4161/pri.23490] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Prions are infectious proteins that are responsible for transmissible spongiform encephalopathies (TSEs) and consist primarily of scrapie prion protein (PrPSc), a pathogenic isoform of the host-encoded cellular prion protein (PrPC). The absence of nucleic acids as essential components of the infectious prions is the most striking feature associated to these diseases. Additionally, different prion strains have been isolated from animal diseases despite the lack of DNA or RNA molecules. Mounting evidence suggests that prion-strain-specific features segregate with different PrPSc conformational and aggregation states.
Strains are of practical relevance in prion diseases as they can drastically differ in many aspects, such as incubation period, PrPSc biochemical profile (e.g., electrophoretic mobility and glycoform ratio) and distribution of brain lesions. Importantly, such different features are maintained after inoculation of a prion strain into genetically identical hosts and are relatively stable across serial passages.
This review focuses on the characterization of prion strains and on the wide range of important implications that the study of prion strains involves.
Collapse
Affiliation(s)
- Laura Solforosi
- Laboratory of Microbiology and Virology; University Vita-Salute San Raffaele; Milan, Italy.
| | | | | | | | | |
Collapse
|
249
|
Head MW. Human prion diseases: Molecular, cellular and population biology. Neuropathology 2013; 33:221-36. [DOI: 10.1111/neup.12016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 12/17/2012] [Indexed: 12/17/2022]
Affiliation(s)
- Mark W. Head
- National CJD Research & Surveillance Unit; Centre for Clinical Brain Sciences; School of Clinical Sciences; The University of Edinburgh; Edinburgh; UK
| |
Collapse
|
250
|
McCarthy JM, Rasines Moreno B, Filippini D, Komber H, Maly M, Cernescu M, Brutschy B, Appelhans D, Rogers MS. Influence of surface groups on poly(propylene imine) dendrimers antiprion activity. Biomacromolecules 2012; 14:27-37. [PMID: 23234313 DOI: 10.1021/bm301165u] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Prion diseases are characterized by the accumulation of PrP(Sc), an aberrantly folded isoform of the host protein PrP(C). Specific forms of synthetic molecules known as dendrimers are able to eliminate protease-resistant PrP(Sc) in both an intracellular and in vitro setting. The properties of a dendrimer which govern this ability are unknown. We addressed the issue by comparing the in vitro antiprion ability of numerous modified poly(propylene-imine) dendrimers, which varied in size, structure, charge, and surface group composition. Several of the modified dendrimers, including an anionic glycodendrimer, reduced the level of protease resistant PrP(Sc) in a prion strain-dependent manner. This led to the formulation of a new working model for dendrimer/prion interactions which proposes dendrimers eliminate PrP(Sc) by destabilizing the protein and rendering it susceptible to proteolysis. This ability is not dependent on any particular charge of dendrimer, but does require a high density of reactive surface groups.
Collapse
Affiliation(s)
- James M McCarthy
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | | | | | | | | | | | |
Collapse
|