201
|
Rodionov V, Yi J, Kashina A, Oladipo A, Gross SP. Switching between microtubule- and actin-based transport systems in melanophores is controlled by cAMP levels. Curr Biol 2004; 13:1837-47. [PMID: 14588239 DOI: 10.1016/j.cub.2003.10.027] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Intracellular transport involves the movement of organelles along microtubules (MTs) or actin filaments (AFs) by means of opposite-polarity MT motors or actin-dependent motors of the myosin family. The correct delivery of organelles to their different destinations involves a precise coordination of the two transport systems. Such coordination could occur through regulation of the densities of the two cytoskeletal systems or through regulation of the activities of the cytoskeletal motors by signaling mechanisms. RESULTS To investigate the mechanisms of switching between MT and AF-dependent transport, we examine the influence of the densities of the MT and AF network on pigment transport in fish melanophores. We also change signaling by using activators and inhibitors of Protein Kinase A (PKA). We find that the key parameters characterizing pigment granule transport along MTs do not depend on MT density and are not significantly altered by complete disruption of AFs. In contrast, the kinetics of changes in these parameters correlate with the kinetics of changes in the intracellular levels of cAMP and are affected by the inhibitors of PKA, suggesting the regulation of MT- and AF-dependent motors by cAMP-induced signaling. Furthermore, perturbation of cAMP levels prevents the transfer of pigment granules from MTs onto AFs. CONCLUSIONS We conclude that the switching of pigment granules between the two major cytoskeletal systems is independent of the densities of MT or AF but is tightly controlled by signaling events.
Collapse
Affiliation(s)
- Vladimir Rodionov
- University of Connecticut Health Center, Department of Physiology and Center for Biomedical Imaging Technology, Farmington 06032-1507, USA
| | | | | | | | | |
Collapse
|
202
|
Dvorin JD, Malim MH. Intracellular trafficking of HIV-1 cores: journey to the center of the cell. Curr Top Microbiol Immunol 2003; 281:179-208. [PMID: 12932078 DOI: 10.1007/978-3-642-19012-4_5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
After entry into the cytoplasm, many diverse viruses, including both RNA and DNA viruses, require import into the nucleus and access to the cellular nuclear machinery for productive replication to proceed. Because diffusion through the crowded cytoplasmic environment is greatly restricted, most (if not all) of these viruses must first be actively transported from the site of cytoplasmic entry to the nuclear periphery (Luby-Phelps 2000; Lukacs et al. 2000; Sodeik 2000). Having reached the nucleus, viruses have evolved assorted methods to overcome the formidable physical barrier that is presented by the nuclear envelope. This review examines how these issues relate to human immunodeficiency virus type-1 (HIV-1) infection. Specifically, HIV-1 uncoating, cytoplasmic transport, and nuclear entry are addressed.
Collapse
Affiliation(s)
- J D Dvorin
- Department of Microbiology and Cell and Molecular Biology Graduate Group, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
| | | |
Collapse
|
203
|
Abstract
Mitochondria cannot be created de novo but instead must arise from the fission (division) of a parental organelle. In addition to fission, mitochondria also fuse with one another and it is thought that a co-ordinated balance of these two processes controls mitochondrial shape, size and number. In the past 5-7 yr, molecular genetics coupled to state-of-the-art cell biology, in particular the use of mitochondrial-targeted green fluorescent protein (GFP), has enabled identification of proteins controlling mitochondrial shape, size and number in yeast and mammalian cells. Little is known about higher plant mitochondrial dynamics. Recently, however, several genes involved in the control of plant mitochondrial dynamics have been identified. The aim of this article is to bring together what is known about mitochondrial dynamics in any organisms and to relate this to our recent knowledge of the underlying processes in higher plants. Contents Summary 463 I. Introduction 464 II. Mitochondrial evolution 464 III. Mitochondria and the cytoskeleton 465 IV. Mitochondrial morphology, biogenesis, proliferation and inheritance 466 V. Mitochondrial fission and fusion 468 VI. Mitochondrial distribution 470 VII. Plant specific proteins playing a role in mitochondrial dynamics 470 VIII. Conclusions 471 Acknowledgements 475 References 475.
Collapse
Affiliation(s)
- David C Logan
- School of Biology, Sir Harold Mitchell Building, University of St Andrews, St Andrews, KY16 9TH, UK
| |
Collapse
|
204
|
Belyantseva IA, Boger ET, Friedman TB. Myosin XVa localizes to the tips of inner ear sensory cell stereocilia and is essential for staircase formation of the hair bundle. Proc Natl Acad Sci U S A 2003; 100:13958-63. [PMID: 14610277 PMCID: PMC283528 DOI: 10.1073/pnas.2334417100] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Indexed: 11/18/2022] Open
Abstract
Mutations of the gene encoding unconventional myosin XVa are associated with sensorineural deafness in humans (DFNB3) and shaker (Myo15sh2) mice. In deaf Myo15sh2/sh2 mice, stereocilia are short, nearly equal in length, and lack myosin XVa immunoreactivity. We previously reported that myosin XVa mRNA and protein are expressed in cochlear hair cells. We now show that in the mouse, rat, and guinea pig, endogenous myosin XVa localizes to the tips of the stereocilia of the cochlear and vestibular hair cells. Myosin XVa localization overlaps with the barbed ends of actin filaments and extends to the apical plasma membrane of the stereocilia. Gene gun-mediated transfection of mouse inner ear sensory epithelia explants shows selective accumulation of myosin XVa-GFP at the tips of stereocilia, confirming the localization of native myosin XVa. Expression in COS7 cells also reveals targeting of myosin XVa-GFP to the dynamic actin region at the tips of filopodia. In a wild-type mouse, during auditory and vestibular hair cell development, myosin XVa appears at the tips of stereocilia at the time when the hair bundle begins to develop its characteristic staircase pattern. We propose that myosin XVa is essential for the graded elongation of stereocilia during their functional maturation.
Collapse
Affiliation(s)
- Inna A Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 5 Research Court, Rockville, MD 20850, USA
| | | | | |
Collapse
|
205
|
da Costa SR, Okamoto CT, Hamm-Alvarez SF. Actin microfilaments et al.--the many components, effectors and regulators of epithelial cell endocytosis. Adv Drug Deliv Rev 2003; 55:1359-83. [PMID: 14597136 DOI: 10.1016/j.addr.2003.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this review is to introduce the advances made over the past several years regarding the participation of actin and actin-associated proteins in clathrin-mediated endocytosis in simple cell models, and then to consider the evidence for the involvement of these effectors in apical clathrin-mediated endocytosis in epithelial cells. Basic mechanisms of clathrin-mediated endocytosis are initially addressed, followed by a detailed description of the actin cytoskeleton: its organization, function and, most importantly, the essential role played by proteins and signaling pathways responsible for the regulation of actin filament dynamics. Our focus then shifts to the GTPase, dynamin and its pivotal role as a bridge between various components of the clathrin endocytic machinery and the actin cytoskeleton. Mechanisms and effectors of dynamin-dependent endocytosis are then described, with a particular emphasis on novel proteins, which link dynamin to actin filaments. We consider additional effectors proposed to interact with actin to facilitate clathrin-mediated endocytosis in a dynamin-independent manner. The multiple roles which actin filaments are thought to play in endocytosis are addressed followed by a more detailed characterization of actin filament participation specifically in apical endocytosis. We conclude by discussing how these concepts may be integrated to improve drug internalization at the apical plasma membrane of epithelial cells.
Collapse
Affiliation(s)
- Silvia R da Costa
- Department of Pharmaceutical Sciences, USC School of Pharmacy, 1985 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
206
|
Falk DL, Wessels D, Jenkins L, Pham T, Kuhl S, Titus MA, Soll DR. Shared, unique and redundant functions of three members of the class I myosins (MyoA, MyoB and MyoF) in motility and chemotaxis in Dictyostelium. J Cell Sci 2003; 116:3985-99. [PMID: 12953059 DOI: 10.1242/jcs.00696] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Most cell types express two distinct forms of myosin I, amoeboid and short, distinguished by differences in their tail domains. Both types of myosin I have been implicated in the regulation of pseudopod formation in Dictyostelium discoideum. We examined three members of the myosin I family, one amoeboid, MyoB, and two short, MyoA and MyoB, for shared, unique and redundant functions in motility and chemotaxis. We used computer-assisted methods for reconstructing and motion analyzing cells, and experimental protocols for assessing the basic motile behavior of mutant cells in buffer and the responses of these cells to the individual spatial, temporal and concentration components of the natural wave of the chemoattractant cAMP. Analysis of both single and double mutants revealed that all three myosins play independent roles in suppressing lateral pseudopod formation in buffer and during chemotaxis. One, MyoB, also plays a unique role in priming cells to respond to the increasing temporal cAMP gradient in the front of a wave, while MyoF plays a unique role in maintaining the elongate, polarized shape of a cell in buffer, during chemotaxis in a spatial gradient of cAMP and in the front of a cAMP wave. Finally, MyoA and MyoF play redundant roles in the velocity response to the increasing temporal cAMP gradient in the front of a wave. These results, therefore, reveal an unexpected variety of shared, unique and redundant functions of the three class I myosins in motility and chemotaxis. Interestingly, the combined defects of the myosin I mutants are similar to those of a single mutant with constitutive PKA activity, suggesting that PKA plays a role in the regulation of all three class I myosins.
Collapse
Affiliation(s)
- David L Falk
- W. M. Keck Dynamic Image Analysis Facility, Department of Biological Sciences, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | | | |
Collapse
|
207
|
Baluska F, Samaj J, Wojtaszek P, Volkmann D, Menzel D. Cytoskeleton-plasma membrane-cell wall continuum in plants. Emerging links revisited. PLANT PHYSIOLOGY 2003; 133:482-91. [PMID: 14555777 PMCID: PMC523875 DOI: 10.1104/pp.103.027250] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2003] [Revised: 06/23/2003] [Accepted: 06/30/2003] [Indexed: 05/18/2023]
Affiliation(s)
- Frantisek Baluska
- Institute of Botany, Department of Plant Cell Biology, Rheinische Friedrich-Wilhelms University of Bonn, 53115 Bonn, Germany.
| | | | | | | | | |
Collapse
|
208
|
Abstract
Given the unique biological requirements of sound transduction and the selective advantage conferred upon a species capable of sensitive sound detection, it is not surprising that up to 1% of the approximately 30,000 or more human genes are necessary for hearing. There are hundreds of monogenic disorders for which hearing loss is one manifestation of a syndrome or the only disorder and therefore is nonsyndromic. Herein we review the supporting evidence for identifying over 30 genes for dominantly and recessively inherited, nonsyndromic, sensorineural deafness. The state of knowledge concerning their biological roles is discussed in the context of the controversies within an evolving understanding of the intricate molecular machinery of the inner ear.
Collapse
Affiliation(s)
- Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
209
|
Kad NM, Rovner AS, Fagnant PM, Joel PB, Kennedy GG, Patlak JB, Warshaw DM, Trybus KM. A mutant heterodimeric myosin with one inactive head generates maximal displacement. J Cell Biol 2003; 162:481-8. [PMID: 12900396 PMCID: PMC2172693 DOI: 10.1083/jcb.200304023] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Each of the heads of the motor protein myosin II is capable of supporting motion. A previous report showed that double-headed myosin generates twice the displacement of single-headed myosin (Tyska, M.J., D.E. Dupuis, W.H. Guilford, J.B. Patlak, G.S. Waller, K.M. Trybus, D.M. Warshaw, and S. Lowey. 1999. Proc. Natl. Acad. Sci. USA. 96:4402-4407). To determine the role of the second head, we expressed a smooth muscle heterodimeric heavy meromyosin (HMM) with one wild-type head, and the other locked in a weak actin-binding state by introducing a point mutation in switch II (E470A). Homodimeric E470A HMM did not support in vitro motility, and only slowly hydrolyzed MgATP. Optical trap measurements revealed that the heterodimer generated unitary displacements of 10.4 nm, strikingly similar to wild-type HMM (10.2 nm) and approximately twice that of single-headed subfragment-1 (4.4 nm). These data show that a double-headed molecule can achieve a working stroke of approximately 10 nm with only one active head and an inactive weak-binding partner. We propose that the second head optimizes the orientation and/or stabilizes the structure of the motion-generating head, thereby resulting in maximum displacement.
Collapse
Affiliation(s)
- Neil M Kad
- Department of Molecular Physiology and Biophysics, University of Vermont, Health Science Research Facility, Burlington, VT 05405-0068, USA
| | | | | | | | | | | | | | | |
Collapse
|
210
|
Hudson AM, Cooley L. Understanding the function of actin-binding proteins through genetic analysis of Drosophila oogenesis. Annu Rev Genet 2003; 36:455-88. [PMID: 12429700 DOI: 10.1146/annurev.genet.36.052802.114101] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Much of our knowledge of the actin cytoskeleton has been derived from biochemical and cell biological approaches, through which actin-binding proteins have been identified and their in vitro interactions with actin have been characterized. The study of actin-binding proteins (ABPs) in genetic model systems has become increasingly important for validating and extending our understanding of how these proteins function. New ABPs have been identified through genetic screens, and genetic results have informed the interpretation of in vitro experiments. In this review, we describe the molecular and ultrastructural characteristics of the actin cytoskeleton in the Drosophila ovary, and discuss recent genetic analyses of actin-binding proteins that are required for oogenesis.
Collapse
Affiliation(s)
- Andrew M Hudson
- Departments of Genetics Yale University School of Medicine, P.O. Box 208005, New Haven, Connecticut 06520-8005, USA.
| | | |
Collapse
|
211
|
Komaba S, Inoue A, Maruta S, Hosoya H, Ikebe M. Determination of human myosin III as a motor protein having a protein kinase activity. J Biol Chem 2003; 278:21352-60. [PMID: 12672820 DOI: 10.1074/jbc.m300757200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The class III myosin is the most divergent member of the myosin superfamily, having a domain with homology to a protein kinase. However, the function of class III myosin at a molecular level is not known at all, and it has been questioned whether it is actually an actin-based motor molecule. Here, we showed that human myosin III has an ATPase activity that is significantly activated by actin (20-fold) with Kactin of 112 microm and Vmax of 0.34 s-1, indicating the mechanoenzymatic activity of myosin III. Furthermore, we found that human myosin III has actin translocating activity (0.11 +/- 0.05 microm/s) using an in vitro actin gliding assay, and it moves toward the plus end of actin filaments. Myosin III containing calmodulin as the light chain subunit showed a protein kinase activity and underwent autophosphorylation. The autophosphorylation was the intramolecular process, and the sites were at the C-terminal end of the motor domain. Autophosphorylation significantly activated the kinase activity, although it did not affect the ATPase activity. The present study is the first report that clearly demonstrates that the class III myosin is an actin-based motor protein having a protein kinase activity.
Collapse
Affiliation(s)
- Shigeru Komaba
- Department of Physiology, University of Massachusetts Medical School, Worcester, MA 01655-0127, USA
| | | | | | | | | |
Collapse
|
212
|
Abstract
Ever since the discovery of class I myosins, the first nonmuscle myosins, about 30 years ago, the history of unconventional myosins has been linked to the organization and working of actin filaments. It slowly emerged from studies of class I myosins in lower eukaryotes that they are involved in mechanisms of endocytosis. Most interestingly, a flurry of recent findings assign a more active role to class I myosins in regulating the spatial and temporal organization of actin filament nucleation and elongation. The results highlight the multiple links between class I myosins and the major actin nucleator, the Arp2/3 complex, and its newly described activators. Two additional types of unconventional myosins, myosinIX, and Dictyostelium discoideum MyoM, have recently been tied to the signaling pathways controlling actin cytoskeleton remodeling. The present review surveys the links between these three classes of molecular motors and the complex cellular processes of endocytosis and actin dynamics, and concentrates on a working model accounting for the function of class I myosins via recruitment of the machinery responsible for actin nucleation and elongation.
Collapse
Affiliation(s)
- Thierry Soldati
- Department of Biological Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| |
Collapse
|
213
|
Fujii T, Kunimatsu M. Interaction of protein-bound polysaccharide (PSK) with smooth muscle myosin regulatory light chain. Biol Pharm Bull 2003; 26:771-4. [PMID: 12808284 DOI: 10.1248/bpb.26.771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The interaction of a protein-bound polysaccharide (PSK) isolated from Basidiomycetes with smooth muscle myosin components was evaluated by limited digestion, urea/glycerol gel electrophoresis, affinity chromatography and overlay assay using a peptide array. PSK was bound to the regulatory light chain (RLC) of myosin, but not to the essential light chain. The binding to PSK was definitely observed for unphosphorylated RLC, compared to phosphorylated one. From the amino acid sequence of the RLC, 490 peptides were synthesized on a cellulose membrane. Overlay assays showed that the PSK-binding on the molecule of RLC were localized in the N- and C-terminal basic regions and these sites were conserved in RLC from the human smooth muscle and nonmuscle cells.
Collapse
Affiliation(s)
- Toshihiro Fujii
- Department of Kansei Engineering, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan.
| | | |
Collapse
|
214
|
Abstract
Association of sensorineural deafness and progressive retinitis pigmentosa with and without a vestibular abnormality is the hallmark of Usher syndrome and involves at least 12 loci among three different clinical subtypes. Genes identified for the more commonly inherited loci are USH2A (encoding usherin), MYO7A (encoding myosin VIIa), CDH23 (encoding cadherin 23), PCDH15 (encoding protocadherin 15), USH1C (encoding harmonin), USH3A (encoding clarin 1), and USH1G (encoding SANS). Transcripts from all these genes are found in many tissues/cell types other than the inner ear and retina, but all are uniquely critical for retinal and cochlear cell function. Many of these protein products have been demonstrated to have direct interactions with each other and perform an essential role in stereocilia homeostasis.
Collapse
Affiliation(s)
- Z M Ahmed
- National Center of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | | | | |
Collapse
|
215
|
Abstract
The actin cytoskeleton plays a major role in morphological development of neurons and in structural changes of adult neurons. This article reviews the myriad functions of actin and myosin in axon initiation, growth, guidance and branching, in morphogenesis of dendrites and dendritic spines, in synapse formation and stability, and in axon and dendrite retraction. Evidence is presented that signaling pathways involving the Rho family of small GTPases are key regulators of actin polymerization and myosin function in the context of different aspects of neuronal morphogenesis. These studies support an emerging theme: Different aspects of neuronal morphogenesis may involve regulation of common core signaling pathways, in particular the Rho GTPases.
Collapse
Affiliation(s)
- Liqun Luo
- Department of Biological Sciences, Neurosciences Program, Stanford University, California 94305, USA.
| |
Collapse
|
216
|
da Costa SR, Andersson S, Arber F, Okamoto C, Hamm-Alvarez S. Cytoskeletal participation in stimulated secretion and compensatory apical plasma membrane retrieval in lacrimal gland acinar cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 506:199-205. [PMID: 12613908 DOI: 10.1007/978-1-4615-0717-8_26] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Affiliation(s)
- Silvia R da Costa
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
217
|
Ahmed ZM, Morell RJ, Riazuddin S, Gropman A, Shaukat S, Ahmad MM, Mohiddin SA, Fananapazir L, Caruso RC, Husnain T, Khan SN, Riazuddin S, Griffith AJ, Friedman TB, Wilcox ER. Mutations of MYO6 are associated with recessive deafness, DFNB37. Am J Hum Genet 2003; 72:1315-22. [PMID: 12687499 PMCID: PMC1180285 DOI: 10.1086/375122] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2003] [Accepted: 02/25/2003] [Indexed: 11/03/2022] Open
Abstract
Cosegregation of profound, congenital deafness with markers on chromosome 6q13 in three Pakistani families defines a new recessive deafness locus, DFNB37. Haplotype analyses reveal a 6-cM linkage region, flanked by markers D6S1282 and D6S1031, that includes the gene encoding unconventional myosin VI. In families with recessively inherited deafness, DFNB37, our sequence analyses of MYO6 reveal a frameshift mutation (36-37insT), a nonsense mutation (R1166X), and a missense mutation (E216V). These mutations, along with a previously published missense allele linked to autosomal dominant progressive hearing loss (DFNA22), provide an allelic spectrum that probes the relationship between myosin VI dysfunction and the resulting phenotype.
Collapse
Affiliation(s)
- Zubair M. Ahmed
- Section on Human Genetics, Section on Gene Structure and Function, Laboratory of Molecular Genetics, and Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD; National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, and Department of Neurology, Children’s National Medical Center, Washington, D.C.; and Clinical Cardiology Section, National Heart, Lung and Blood Institute, and Section on Ophthalmic Molecular Genetics, National Eye Institute, National Institutes of Health, Bethesda
| | - Robert J. Morell
- Section on Human Genetics, Section on Gene Structure and Function, Laboratory of Molecular Genetics, and Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD; National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, and Department of Neurology, Children’s National Medical Center, Washington, D.C.; and Clinical Cardiology Section, National Heart, Lung and Blood Institute, and Section on Ophthalmic Molecular Genetics, National Eye Institute, National Institutes of Health, Bethesda
| | - Saima Riazuddin
- Section on Human Genetics, Section on Gene Structure and Function, Laboratory of Molecular Genetics, and Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD; National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, and Department of Neurology, Children’s National Medical Center, Washington, D.C.; and Clinical Cardiology Section, National Heart, Lung and Blood Institute, and Section on Ophthalmic Molecular Genetics, National Eye Institute, National Institutes of Health, Bethesda
| | - Andrea Gropman
- Section on Human Genetics, Section on Gene Structure and Function, Laboratory of Molecular Genetics, and Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD; National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, and Department of Neurology, Children’s National Medical Center, Washington, D.C.; and Clinical Cardiology Section, National Heart, Lung and Blood Institute, and Section on Ophthalmic Molecular Genetics, National Eye Institute, National Institutes of Health, Bethesda
| | - Shahzad Shaukat
- Section on Human Genetics, Section on Gene Structure and Function, Laboratory of Molecular Genetics, and Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD; National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, and Department of Neurology, Children’s National Medical Center, Washington, D.C.; and Clinical Cardiology Section, National Heart, Lung and Blood Institute, and Section on Ophthalmic Molecular Genetics, National Eye Institute, National Institutes of Health, Bethesda
| | - Mussaber M. Ahmad
- Section on Human Genetics, Section on Gene Structure and Function, Laboratory of Molecular Genetics, and Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD; National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, and Department of Neurology, Children’s National Medical Center, Washington, D.C.; and Clinical Cardiology Section, National Heart, Lung and Blood Institute, and Section on Ophthalmic Molecular Genetics, National Eye Institute, National Institutes of Health, Bethesda
| | - Saidi A. Mohiddin
- Section on Human Genetics, Section on Gene Structure and Function, Laboratory of Molecular Genetics, and Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD; National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, and Department of Neurology, Children’s National Medical Center, Washington, D.C.; and Clinical Cardiology Section, National Heart, Lung and Blood Institute, and Section on Ophthalmic Molecular Genetics, National Eye Institute, National Institutes of Health, Bethesda
| | - Lameh Fananapazir
- Section on Human Genetics, Section on Gene Structure and Function, Laboratory of Molecular Genetics, and Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD; National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, and Department of Neurology, Children’s National Medical Center, Washington, D.C.; and Clinical Cardiology Section, National Heart, Lung and Blood Institute, and Section on Ophthalmic Molecular Genetics, National Eye Institute, National Institutes of Health, Bethesda
| | - Rafael C. Caruso
- Section on Human Genetics, Section on Gene Structure and Function, Laboratory of Molecular Genetics, and Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD; National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, and Department of Neurology, Children’s National Medical Center, Washington, D.C.; and Clinical Cardiology Section, National Heart, Lung and Blood Institute, and Section on Ophthalmic Molecular Genetics, National Eye Institute, National Institutes of Health, Bethesda
| | - Tayyab Husnain
- Section on Human Genetics, Section on Gene Structure and Function, Laboratory of Molecular Genetics, and Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD; National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, and Department of Neurology, Children’s National Medical Center, Washington, D.C.; and Clinical Cardiology Section, National Heart, Lung and Blood Institute, and Section on Ophthalmic Molecular Genetics, National Eye Institute, National Institutes of Health, Bethesda
| | - Shaheen N. Khan
- Section on Human Genetics, Section on Gene Structure and Function, Laboratory of Molecular Genetics, and Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD; National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, and Department of Neurology, Children’s National Medical Center, Washington, D.C.; and Clinical Cardiology Section, National Heart, Lung and Blood Institute, and Section on Ophthalmic Molecular Genetics, National Eye Institute, National Institutes of Health, Bethesda
| | - Sheikh Riazuddin
- Section on Human Genetics, Section on Gene Structure and Function, Laboratory of Molecular Genetics, and Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD; National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, and Department of Neurology, Children’s National Medical Center, Washington, D.C.; and Clinical Cardiology Section, National Heart, Lung and Blood Institute, and Section on Ophthalmic Molecular Genetics, National Eye Institute, National Institutes of Health, Bethesda
| | - Andrew J. Griffith
- Section on Human Genetics, Section on Gene Structure and Function, Laboratory of Molecular Genetics, and Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD; National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, and Department of Neurology, Children’s National Medical Center, Washington, D.C.; and Clinical Cardiology Section, National Heart, Lung and Blood Institute, and Section on Ophthalmic Molecular Genetics, National Eye Institute, National Institutes of Health, Bethesda
| | - Thomas B. Friedman
- Section on Human Genetics, Section on Gene Structure and Function, Laboratory of Molecular Genetics, and Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD; National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, and Department of Neurology, Children’s National Medical Center, Washington, D.C.; and Clinical Cardiology Section, National Heart, Lung and Blood Institute, and Section on Ophthalmic Molecular Genetics, National Eye Institute, National Institutes of Health, Bethesda
| | - Edward R. Wilcox
- Section on Human Genetics, Section on Gene Structure and Function, Laboratory of Molecular Genetics, and Hearing Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD; National Center of Excellence in Molecular Biology, Punjab University, Lahore, Pakistan; Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, and Department of Neurology, Children’s National Medical Center, Washington, D.C.; and Clinical Cardiology Section, National Heart, Lung and Blood Institute, and Section on Ophthalmic Molecular Genetics, National Eye Institute, National Institutes of Health, Bethesda
| |
Collapse
|
218
|
Abstract
Myosins are actin-based motors that are generally believed to move by amplifying small structural changes in the core motor domain via a lever arm rotation of the light chain binding domain. However, the lack of a quantitative agreement between observed step sizes and the length of the proposed lever arms from different myosins challenges this view. We analyzed the step size of rat myosin 1d (Myo1d) and surprisingly found that this myosin takes unexpectedly large steps in comparison to other myosins. Engineering the length of the light chain binding domain of rat Myo1d resulted in a linear increase of step size in relation to the putative lever arm length, indicative of a lever arm rotation of the light chain binding domain. The extrapolated pivoting point resided in the same region of the rat Myo1d head domain as in conventional myosins. Therefore, rat Myo1d achieves its larger working stroke by a large calculated approximately 90 degrees rotation of the light chain binding domain. These results demonstrate that differences in myosin step sizes are not only controlled by lever arm length, but also by substantial differences in the degree of lever arm rotation.
Collapse
Affiliation(s)
- Danny Köhler
- Institute for General Zoology and Genetics, Westfälische Wilhelms-University, Schlossplatz 5, 48149 Münster, Germany
| | | | | | | |
Collapse
|
219
|
Rudolf R, Kögel T, Kuznetsov SA, Salm T, Schlicker O, Hellwig A, Hammer JA, Gerdes HH. Myosin Va facilitates the distribution of secretory granules in the F-actin rich cortex of PC12 cells. J Cell Sci 2003; 116:1339-48. [PMID: 12615975 DOI: 10.1242/jcs.00317] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuroendocrine secretory granules, the storage organelles for neuropeptides and hormones, are formed at the trans-Golgi network, stored inside the cell and exocytosed upon stimulation. Previously, we have reported that newly formed secretory granules of PC12 cells are transported in a microtubule-dependent manner from the trans-Golgi network to the F-actin-rich cell cortex, where they undergo short directed movements and exhibit a homogeneous distribution. Here we provide morphological and biochemical evidence that myosin Va is associated with secretory granules. Expression of a dominant-negative tail domain of myosin Va in PC12 cells led to an extensive clustering of secretory granules close to the cell periphery, a loss of their cortical restriction and a strong reduction in their motility in the actin cortex. Based on this data we propose a model that implies a dual transport system for secretory granules: after microtubule-dependent delivery to the cell periphery, secretory granules exhibit a myosin Va-dependent transport leading to their restriction and even dispersal in the F-actin-rich cortex of PC12 cells.
Collapse
Affiliation(s)
- Rüdiger Rudolf
- Department of Neurobiology, Interdisciplinary Center of Neuroscience, University of Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
220
|
Yonezawa S, Yoshizaki N, Sano M, Hanai A, Masaki S, Takizawa T, Kageyama T, Moriyama A. Possible involvement of myosin-X in intercellular adhesion: importance of serial pleckstrin homology regions for intracellular localization. Dev Growth Differ 2003; 45:175-85. [PMID: 12752505 DOI: 10.1034/j.1600-0854.2004.00688.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Subcellular fractionation experiments with mouse hepatocytes, combined with sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis (PAGE)-immunoblot analysis using antibodies against two different tail regions of mouse myosin-X demonstrated a 240 kDa molecular mass to be associated with the plasma membrane-rich P2 fraction. The basolateral plasma membrane fraction, but not the brush border fraction, isolated from renal cortices also contained the 240 kDa form of myosin-X. In an attempt to assess relative contributions of possible functional domains in the tail of myosin-X to localization and function, cDNA corresponding to all three pleckstrin homology (PH) domains and different regions (PH1, 2 and 3, and the two subdomains of PH1: PHS1 and PHS2), as well as the myosin tail homology 4 domain (MyTH4) and the band4.1/ezrin/radixin/moesin-like domain (FERM) were separately inserted into the pEGFP vector and expressed in cultured COS-1 cells. As a result, two distinct regions responsible for localization were identified with regard to PH: one covers all three forms that tends to localize to regions of dynamic actin, such as membrane ruffles, lamellipodia and thick cortical actin bundles at the sites of cell-cell adhesion in a Rac- and Cdc42-dependent manner. The other covers PHS1 and PH2 that localizes to filopodia, filopodial puncta and the sites of intercellular adhesion in a Cdc42-dependent manner. Expression of green fluorescent protein (GFP)-MyTH4 fusion protein resulted in formation of phalloidin-positive granules, while GFP-FERM affected the actin cytoskeletal system in a distinctly different way. Taken altogether, the results lend support to the view that myosin-X is involved in cell-cell adhesion-associated signaling-linked membrane and/or cytoskeleton reorganization.
Collapse
Affiliation(s)
- Satoshi Yonezawa
- Institute for Developmental Research, Aichi Human Service Center, Kamiya-cho, Kasugai 480-0392, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
221
|
Rosé SD, Lejen T, Casaletti L, Larson RE, Pene TD, Trifaró JM. Myosins II and V in chromaffin cells: myosin V is a chromaffin vesicle molecular motor involved in secretion. J Neurochem 2003; 85:287-98. [PMID: 12675905 DOI: 10.1046/j.1471-4159.2003.01649.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The presence of myosin II and V in chromaffin cells and their subcellular distribution is described. Myosin II and V distribution in sucrose density gradients showed only a strong correlation between the distribution of myosin V and secretory vesicle markers. Confocal microscopy images demonstrated colocalization of myosin V with dopamine beta-hydroxylase, a chromaffin vesicle marker, whereas myosin II was present mainly in the cell cortex. Cell depolarization induced, in a Ca2+ and time-dependent manner, the dissociation of myosin V from chromaffin vesicles suggesting that this association was not permanent but determined by secretory cycle requirements. Myosin II was also found in the crude granule fraction, however, its distribution was not affected by cell depolarization. Myosin V head antibodies were able to inhibit secretion whereas myosin II antibodies had no inhibitory effect. The pattern of inhibition indicated that these treatments interfered with the transport of vesicles from the reserve to the release-ready compartment, suggesting the involvement of myosin V and not myosin II in this transport process. The results described here suggest that myosin V is a molecular motor involved in chromaffin vesicle secretion. However, these results do not discard an indirect role for myosin II in secretion through its interaction with F-actin networks.
Collapse
Affiliation(s)
- Sergio D Rosé
- Secretory Process Research Program, Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
222
|
Pompili E, De Luca A, Nori SL, Maras B, De Renzis G, Ortolani F, Fumagalli L. Biochemical and immunohistochemical evidence for a non-muscle myosin at the neuromuscular junction in bovine skeletal muscle. J Histochem Cytochem 2003; 51:471-8. [PMID: 12642625 DOI: 10.1177/002215540305100408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We identified 220-kD protein in bovine skeletal muscle homogenate by affinity chromatography on an agarose column and subsequent SDS-PAGE. Peptide mass fingerprinting (MALDI mass spectrometry) and internal sequence analysis revealed that this protein has homology with several members of the myosin superfamily, particularly with human cardiac beta-myosin heavy chain (beta-MHC). A rabbit polyclonal antibody against the 220-kD protein specifically stained a 220-kD band in Western blots of skeletal muscle homogenate. Immunohistochemical experiments on cryostat sections demonstrated that in skeletal muscle this protein is exclusively localized at the neuromuscular junctions, no immunoreactivity being present at the myofibril level. Because of its relative homology with cardiac beta-MHC, we also investigated the distribution of the 220-kD protein in bovine heart. In cardiac fibers, 220-kD protein-related immunoreactivity was restricted to the intercalated disks, whereas myofibrils were completely devoid of specific immunoreactivity. This distribution pattern was completely different from that of cardiac beta-MHC, which involved myofibrils. Because of the above biochemical and immunohistochemical features, the 220-kD protein we have identified is suggested to be a novel member of the non-muscle (non-sarcomeric) myosin family.
Collapse
Affiliation(s)
- Elena Pompili
- Department of Cardiovascular Sciences, University La Sapienza, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
223
|
Salamon M, Millino C, Raffaello A, Mongillo M, Sandri C, Bean C, Negrisolo E, Pallavicini A, Valle G, Zaccolo M, Schiaffino S, Lanfranchi G. Human MYO18B, a novel unconventional myosin heavy chain expressed in striated muscles moves into the myonuclei upon differentiation. J Mol Biol 2003; 326:137-49. [PMID: 12547197 DOI: 10.1016/s0022-2836(02)01335-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have characterized a novel unconventional myosin heavy chain, named MYO18B, that appears to be expressed mainly in human cardiac and skeletal muscles and, at lower levels, in testis. MYO18B transcript is detected in all types of striated muscles but at much lower levels compared to class II sarcomeric myosins, and it is up regulated after in vitro differentiation of myoblasts into myotubes. Phylogenetic analysis shows that this myosin belongs to the recently identified class XVIII, however, unlike the other member of this class, it seems to be unique to Vertebrate since it contains two large amino acid domains of unknown function at the N and C-termini. Immunolocalization of MYO18B protein in skeletal muscle cells shows that this myosin heavy chain is located in the cytoplasm of undifferentiated myoblasts. After in vitro differentiation into myotubes, a fraction of this protein is accumulated in a subset of myonuclei. This nuclear localization was confirmed by immunofluorescence experiments on primary cardiomyocytes and adult muscle sections. In the cytoplasm MYO18B shows a punctate staining, both in cardiac and skeletal fibers. In some cases, cardiomyocytes show a partial sarcomeric pattern of MYO18B alternating that of alpha-actinin-2. In skeletal muscle the cytoplasmic MYO18B results much more evident in the fast type fibers.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytoplasm/metabolism
- Fluorescent Antibody Technique
- Gene Expression Profiling
- Humans
- In Vitro Techniques
- Muscle Cells/cytology
- Muscle Cells/metabolism
- Muscle Fibers, Skeletal/cytology
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Myocytes, Cardiac/cytology
- Myocytes, Cardiac/metabolism
- Myosin Heavy Chains/chemistry
- Myosin Heavy Chains/classification
- Myosin Heavy Chains/genetics
- Myosin Heavy Chains/metabolism
- Phylogeny
- Protein Transport
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
Collapse
Affiliation(s)
- Michela Salamon
- CRIBI Biotechnology Center, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Bahadoran P, Ballotti R, Ortonne JP. Hypomelanosis, immunity, central nervous system: no more "and", not the end. Am J Med Genet A 2003; 116A:334-7. [PMID: 12522786 DOI: 10.1002/ajmg.a.10066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Philippe Bahadoran
- Department of Clinical Dermatology and INSERM 385 Research Unit, University of Nice-Sophia Antipolis, Nice, France.
| | | | | |
Collapse
|
225
|
Abstract
Myosins are a superfamily of actin-dependent molecular motor proteins, among which the bipolar filament forming myosins II have been the most studied. The activity of smooth muscle/non-muscle myosin II is regulated by phosphorylation of the regulatory light chains, that in turn is modulated by the antagonistic activity of myosin light chain kinase and myosin light chain phosphatase. The phosphatase activity is mainly regulated through phosphorylation of its myosin binding subunit MYPT. To identify the function of these phosphorylation events, we have molecularly characterized the Drosophila homologue of MYPT, and analyzed its mutant phenotypes. We find that Drosophila MYPT is required for cell sheet movement during dorsal closure, morphogenesis of the eye, and ring canal growth during oogenesis. Our results indicate that the regulation of the phosphorylation of myosin regulatory light chains, or dynamic activation and inactivation of myosin II, is essential for its various functions during many developmental processes.
Collapse
Affiliation(s)
- Change Tan
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Beth Stronach
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
- Howard Hughes Medical Institute, 200 Longwood Avenue, Boston, MA 02115, USA
- Author for correspondence ()
| |
Collapse
|
226
|
Chaparro-Olaya J, Dluzewski AR, Margos G, Wasserman MM, Mitchell GH, Bannister LH, Pinder JC. The multiple myosins of malaria: The smallest malaria myosin, Plasmodium falciparum myosin-B (Pfmyo-B) is expressed in mature schizonts and merozoites. Eur J Protistol 2003. [DOI: 10.1078/0932-4739-00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
227
|
Wolfrum U. The cellular function of the usher gene product myosin VIIa is specified by its ligands. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 533:133-42. [PMID: 15180257 DOI: 10.1007/978-1-4615-0067-4_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Uwe Wolfrum
- Johannes Gutenberg-Universität, Institut für Zoologie, 55099 Mainz, Germany.
| |
Collapse
|
228
|
Wehrle-Haller B, Imhof BA. Actin, microtubules and focal adhesion dynamics during cell migration. Int J Biochem Cell Biol 2003; 35:39-50. [PMID: 12467646 DOI: 10.1016/s1357-2725(02)00071-7] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cell migration is a complex cellular behavior that results from the coordinated changes in the actin cytoskeleton and the controlled formation and dispersal of cell-substrate adhesion sites. While the actin cytoskeleton provides the driving force at the cell front, the microtubule network assumes a regulatory function in coordinating rear retraction. The polarity within migrating cells is further highlighted by the stationary behavior of focal adhesions in the front and their sliding in trailing ends. We discuss here the cross-talk of the actin cytoskeleton with the microtubule network and the potential mechanisms that control the differential behavior of focal adhesions sites during cell migration.
Collapse
Affiliation(s)
- Bernhard Wehrle-Haller
- Department of Pathology, Centre Médical Universitaire, 1 Rue Michel-Servet, 1211 4, Geneva, Switzerland.
| | | |
Collapse
|
229
|
Bergman LW, Kaiser K, Fujioka H, Coppens I, Daly TM, Fox S, Matuschewski K, Nussenzweig V, Kappe SHI. Myosin A tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites. J Cell Sci 2003; 116:39-49. [PMID: 12456714 DOI: 10.1242/jcs.00194] [Citation(s) in RCA: 160] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apicomplexan host cell invasion and gliding motility depend on the parasite's actomyosin system located beneath the plasma membrane of invasive stages. Myosin A (MyoA), a class XIV unconventional myosin, is the motor protein. A model has been proposed to explain how the actomyosin motor operates but little is known about the components, topology and connectivity of the motor complex. Using the MyoA neck and tail domain as bait in a yeast two-hybrid screen we identified MTIP, a novel 24 kDa protein that interacts with MyoA. Deletion analysis shows that the 15 amino-acid C-terminal tail domain of MyoA, rather than the neck domain, specifically interacts with MTIP. In Plasmodium sporozoites MTIP localizes to the inner membrane complex (IMC), where it is found clustered with MyoA. The data support a model for apicomplexan motility and invasion in which the MyoA motor protein is associated via its tail domain with MTIP, immobilizing it at the outer IMC membrane. The head domain of the immobilized MyoA moves actin filaments that, directly or via a bridging protein, connect to the cytoplasmic domain of a transmembrane protein of the TRAP family. The actin/TRAP complex is then redistributed by the stationary MyoA from the anterior to the posterior end of the zoite, leading to its forward movement on a substrate or to penetration of a host cell.
Collapse
Affiliation(s)
- Lawrence W Bergman
- Division of Molecular Parasitology, Department of Microbiology & Immunology, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Abstract
Molecular motors are protein-based machines that convert chemical potential energy into mechanical work. This paper aims to introduce the non-specialist reader to molecular motors, in particular, acto-myosin, the prototype system for motor protein studies. These motors produce their driving force from changes in chemical potential arising directly from chemical reactions and are responsible for muscle contraction and a variety of other cell motilities.
Collapse
Affiliation(s)
- M J A Tyreman
- MRC National Institute for Medical Research, Mill Hill, UK
| | | |
Collapse
|
231
|
Kruse C, Jaedicke A, Beaudouin J, Bohl F, Ferring D, Guttler T, Ellenberg J, Jansen RP. Ribonucleoprotein-dependent localization of the yeast class V myosin Myo4p. J Cell Biol 2002; 159:971-82. [PMID: 12499354 PMCID: PMC2173977 DOI: 10.1083/jcb.200207101] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Class V myosins are motor proteins with functions in vesicle transport, organelle segregation, and RNA localization. Although they have been extensively studied, only little is known about the regulation of their spatial distribution. Here we demonstrate that a GFP fusion protein of the budding yeast class V myosin Myo4p accumulates at the bud cortex and is a component of highly dynamic cortical particles. Bud-specific enrichment depends on Myo4p's association with its cargo, a ribonucleoprotein complex containing the RNA-binding protein She2p. Cortical accumulation of Myo4p at the bud tip can be explained by a transient retention mechanism that requires SHE2 and, apparently, localized mRNAs bound to She2p. A mutant She2 protein that is unable to recognize its cognate target mRNA, ASH1, fails to localize Myo4p. Mutant She2p accumulates inside the nucleus, indicating that She2p shuttles between the nucleus and cytoplasm and is exported in an RNA-dependent manner. Consistently, inhibition of nuclear mRNA export results in nuclear accumulation of She2p and cytoplasmic Myo4p mislocalization. Loss of She2p can be complemented by direct targeting of a heterologous lacZ mRNA to a complex of Myo4p and its associated adaptor She3p, suggesting that She2p's function in Myo4p targeting is to link an mRNA to the motor complex.
Collapse
Affiliation(s)
- Claudia Kruse
- Zentrum für Molekulare Biologie, Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
232
|
Kulyte A, Navakauskiene R, Treigyte G, Gineitis A, Bergman T, Magnusson KE. Characterization of human alpha-dystrobrevin isoforms in HL-60 human promyelocytic leukemia cells undergoing granulocytic differentiation. Mol Biol Cell 2002; 13:4195-205. [PMID: 12475945 PMCID: PMC138626 DOI: 10.1091/mbc.e02-03-0128] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2002] [Revised: 07/30/2002] [Accepted: 09/09/2002] [Indexed: 11/11/2022] Open
Abstract
The biochemical properties and spatial localization of the protein alpha-dystrobrevin and other isoforms were investigated in cells of the human promyelocytic leukemia line HL-60 granulocytic differentiation as induced by retinoic acid (RA). Alpha-dystrobrevin was detected both in the cytosol and the nuclei of these cells, and a short isoform (gamma-dystrobrevin) was modified by tyrosine phosphorylation soon after the onset of the RA-triggered differentiation. Varying patterns of distribution of alpha-dystrobrevin and its isoforms could be discerned in HL-60 promyelocytes, RA-differentiated mature granulocytes, and human neutrophils. Moreover, the gamma-dystrobrevin isoform was found in association with actin and myosin light chain. The results provide new information about potential involvement of alpha-dystrobrevin and its splice isoforms in signal transduction in myeloid cells during induction of granulocytic differentiation and/or at the commitment stage of differentiation or phagocytic cells.
Collapse
Affiliation(s)
- Agné Kulyte
- Division of Medical Microbiology, Linköpings Universitet, SE-581 85 Linköping, Sweden.
| | | | | | | | | | | |
Collapse
|
233
|
Abstract
Myosin-V is a versatile motor involved in short-range transport of vesicles in the actin-rich cortex of the cell. It binds to several different kinds of vesicles, and the mechanism by which it interacts with the vesicle surface is being unraveled, primarily in melanocytes. Members of the Rab family of G-proteins are required for the recruitment of myosin-V to vesicles. Rab27a and its rabphilin-like effector protein, Melanophilin, recruit myosin-Va to melanosomes and appear to serve as the membrane receptor. Myosin-V is also involved in fast axonal/dendritic transport and, interestingly, it forms a complex with kinesin, a microtubule-based motor. This kinesin/myosin-V heteromotor complex allows long-range movement of vesicles within axons and dendrites on microtubules and short-range movement in the dendritic spines and axon terminals on actin filaments. The direct interaction of motors from both filament systems may represent the mechanism by which the transition of vesicles from microtubules to actin filaments is regulated.
Collapse
Affiliation(s)
- George M Langford
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 USA.
| |
Collapse
|
234
|
Furness DN, Karkanevatos A, West B, Hackney CM. An immunogold investigation of the distribution of calmodulin in the apex of cochlear hair cells. Hear Res 2002; 173:10-20. [PMID: 12372631 DOI: 10.1016/s0378-5955(02)00584-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calmodulin is found in the mechanosensitive stereociliary bundle of hair cells where it plays a role in various calcium-sensitive events associated with mechanoelectrical transduction. In this study, we have investigated the ultrastructural distribution of calmodulin in the apex of guinea-pig cochlear hair cells, using post-embedding immunogold labelling, in order to determine in more detail where calmodulin-dependent processes may be occurring. Labelling was found in the cuticular plate as well as the hair bundle, the rootlets of the stereocilia being more densely labelled than the surrounding filamentous matrix. In the bundle, labelling was found almost exclusively at the periphery rather than over the centre of the actin core of the stereocilia, and was clearly associated with the attachments of the lateral links that connect them to their nearest neighbours. It was also found to be denser towards the tips of stereocilia compared to other stereociliary regions and occurred consistently at either end of the tip link that connects stereocilia of adjacent rows. The contact region between stereocilia that is found just below the tip link was also clearly labelled. These concentrations of labelling in the bundle are likely to indicate sites where calmodulin is associated with calcium/calmodulin-sensitive proteins such as the various myosin isoforms and the plasma membrane ATPase (PMCA2a) that are known to occur there, and possibly with the transduction channels themselves. At least one of the myosin isoforms, myosin 1c, is thought to be associated with slow adaptation, and PMCA2a with control of calcium levels in the bundle. The concentration of calmodulin in the contact region further supports the suggestion that this is a functionally distinct region rather than a simple geometrical association between adjacent stereocilia.
Collapse
Affiliation(s)
- D N Furness
- MacKay Institute of Communication and Neuroscience, School of Life Sciences, Keele University, Staffordshire ST5 5BG, UK
| | | | | | | |
Collapse
|
235
|
Thompson RF, Langford GM. Myosin superfamily evolutionary history. THE ANATOMICAL RECORD 2002; 268:276-89. [PMID: 12382324 DOI: 10.1002/ar.10160] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The superfamily of myosin proteins found in eukaryotic cells is known to contain at least 18 different classes. Members are classified based on the phylogenetic analysis of the head domains located at the amino terminus of the polypeptide. While phylogenetic relationships provide insights into the functional relatedness of myosins within and between families, the evolutionary history of the myosin superfamily is not revealed by such studies. In order to establish the evolutionary history of the superfamily, we analyzed the representation of myosin gene families in a range of organisms covering the taxonomic spectrum. The amino acid sequences of 232 myosin heavy chains, as well as 65 organisms representing the protist, plant, and animal kingdoms, were included in this study. A phylogenetic tree of organisms was constructed based on several complementary taxonomic classification schemes. The results of the analysis support an evolutionary hypothesis in which myosins II and I evolved the earliest of all the myosin groups. Myosins V and XI evolved from a common myosin II-like ancestor, but the two families diverged to either the plant (XI) or animal (V) lineage. Class VII myosin appeared fourth among the families, and classes VI and IX appeared later during the early period of metazoan radiation. Myosins III, XV, and XVIII appeared after this group, and X appeared during the formative phases of vertebrate evolution. The remaining members of the myosin superfamily (IV, VI, XII, XIII, XIV, XVI, and XVII) are limited in distribution to one or more groups of organisms. The evolutionary data permits one to predict the likelihood that myosin genes absent from a given species are either missing (not found yet because of insufficient data) or lost due to a mutation that removed the gene from an organism's lineage. In conclusion, an analysis of the evolutionary history of the myosin superfamily suggests that early-appearing myosin families function as generalists, carrying out a number of functions in a variety of cell types, while more recently evolved myosin families function as specialists and are limited to a few organisms or a few cell types within organisms.
Collapse
Affiliation(s)
- Reid F Thompson
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | | |
Collapse
|
236
|
Rosé SD, Lejen T, Casaletti L, Larson RE, Pene TD, Trifaró JM. Molecular motors involved in chromaffin cell secretion. Ann N Y Acad Sci 2002; 971:222-31. [PMID: 12438122 DOI: 10.1111/j.1749-6632.2002.tb04466.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neurosecretory cells, including chromaffin cells, possess a mesh of filamentous actin underneath the plasma membrane. It has been proposed that filamentous actin network separates the secretory vesicles into two compartments: the reserve pool and the release-ready vesicle pool. Disassembly of chromaffin cell cortical filamentous actin in response to stimulation allows the movement of vesicles from the reserve pool into the release-ready vesicle pool. Electron microscopy of cytoskeletons revealed the presence of polygonal areas almost devoid of actin filaments in stimulated cells. The percentage of stimulated cells showing disrupted cytoskeleton correlates well with the increase in secretion in these cells. Fine filaments also remain in these areas of disassembly, and these reacted with actin antibodies, as demonstrated by immunogold staining. In addition, the movement of vesicles between pools requires Ca(2+) and ATP, a condition for activation of a molecular motor. Confocal microscopy images demonstrated colocalization of myosin Va with dopamine-beta-hydroxylase. Cell depolarization induced the dissociation of myosin Va from chromaffin vesicles. 2,3-Butadione-2-monoxime (BDM), an inhibitor of myosin ATPase, inhibited secretion, suggesting a blockage for chromaffin vesicle transport between the reserve pool and the release-ready vesicle pool. On the other hand, myosin II subcellular distribution was not affected by cell depolarization. Confocal microscopy images show myosin II to be localized in the cell cortex and in some perinuclear structures. Chromaffin vesicles were not stained by myosin II antibody.
Collapse
Affiliation(s)
- Sergio D Rosé
- Secretory Process Research Program, Department of Cellular Molecular Medicine, University of Ottawa, Ottawa, Ontario, K1H 8M5, Canada
| | | | | | | | | | | |
Collapse
|
237
|
Tuma PL, Nyasae LK, Hubbard AL. Nonpolarized cells selectively sort apical proteins from cell surface to a novel compartment, but lack apical retention mechanisms. Mol Biol Cell 2002; 13:3400-15. [PMID: 12388745 PMCID: PMC129954 DOI: 10.1091/mbc.02-04-0054] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2002] [Revised: 06/18/2002] [Accepted: 07/22/2002] [Indexed: 01/21/2023] Open
Abstract
Membrane trafficking is central to establishing and maintaining epithelial cell polarity. One open question is to what extent the mechanisms regulating membrane trafficking are conserved between nonpolarized and polarized cells. To answer this question, we examined the dynamics of domain-specific plasma membrane (PM) proteins in three classes of hepatic cells: polarized and differentiated WIF-B cells, nonpolarized and differentiated Fao cells, and nonpolarized and nondifferentiated Clone 9 cells. In nonpolarized cells, mature apical proteins were uniformly distributed in the PM. Surprisingly, they were also in an intracellular compartment. Double labeling revealed that the compartment contained only apical proteins. By monitoring the dynamics of antibody-labeled molecules in nonpolarized cells, we further found that apical proteins rapidly recycled between the compartment and PM. In contrast, the apical PM residents in polarized cells showed neither internalization nor return to the basolateral PM from which they had originally come. Cytochalasin D treatment of these polarized cells revealed that the retention mechanisms are actin dependent. We conclude from these data that both polarized and nonpolarized cells selectively sort apical proteins from the PM and transport them to specific, but different cellular locations. We propose that the intracellular recycling compartment in nonpolarized cells is an intermediate in apical surface formation.
Collapse
Affiliation(s)
- Pamela L Tuma
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
238
|
Au JSY, Huang JD. A tissue-specific exon of myosin Va is responsible for selective cargo binding in melanocytes. CELL MOTILITY AND THE CYTOSKELETON 2002; 53:89-102. [PMID: 12211107 DOI: 10.1002/cm.10061] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Class V myosins are molecular motors used for intracellular transportation and organelle tethering. The mouse Myosin Va (MyoVa) is encoded by the dilute locus, which is alternatively spliced to generate several tissue specific isoforms. The tail of MyoVa is the putative cargo-binding domain. To determine the functions of different isoforms of MyoVa and the minimal cargo-binding region, we tagged various isoforms and different portions of the mouse MyoVa tail with a green fluorescent protein and examined their intracellular localizations in the mouse melan-a cells. We found that the amino acid sequence encoded by an alternatively spliced exon, exon F, is necessary for the selective binding of MyoVa to melanosome. The MyoVa isoforms lacking this amino acid sequence are not targeted to the melanosomes, but localized to the perinuclear region instead. These findings suggested that MyoVa is able to bind to more than one types of cargos, with the selectivities determined by alternative spliced sequences.
Collapse
Affiliation(s)
- Josephine Sui-Yan Au
- Department of Biochemistry, Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | | |
Collapse
|
239
|
Abstract
The three-dimensional structures of homologous proteins are usually conserved during evolution, as are critical residues in a few short sequence motifs that often constitute the active site in enzymes. The precise spatial organization of such sites depends on the lengths and positions of the secondary structural elements connecting the motifs. We show how members of protein superfamilies, such as kinesins, myosins, and G(alpha) subunits of trimeric G proteins, are identified and classed by simply counting the number of amino acid residues between important sequence motifs in their nucleotide triphosphate-hydrolyzing domains. Subfamily-specific landmark patterns (motif to motif scores) are principally due to inserts and gaps in surface loops. Unusual protein sequences and possible sequence prediction errors are detected.
Collapse
|
240
|
Sköld HN, Aspengren S, Wallin M. The cytoskeleton in fish melanophore melanosome positioning. Microsc Res Tech 2002; 58:464-9. [PMID: 12242703 DOI: 10.1002/jemt.10164] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Melanophore melanosomes organelles can be regulated to move and locate correspondingly to many other different organelle types. Comparing lessons from analysis of a specific melanosome distribution can, therefore, contribute to the understanding of distribution of other organelles, and vice versa. From such data, it is now generally accepted that microtubules provide directed long-distance movement, while cell peripheral movements include microfilaments. In fish melanophores, both actin and dynein exhibit counter-forces to the kinesin-like protein in maintaining the evenly dispersed state, while actin and kinesin exhibit counter-forces to dynein in many other systems. Lessons from elevating cAMP levels indicate the presence of a peripheral feedback regulatory system involved in maintaining the evenly dispersed state. Studies from dynein inhibition suggest that the kinesin-like protein involved in fish melanosome dispersal is regulated in contrast to many other systems. One would further expect melanosome transport to be regulated also on actin/myosin, in order to prevent actin-dependent capture of melanosomes during the microtubule-dependent aggregation and dispersion. General findings will be discussed in comparison with positioning and movement of other organelle types in cells. Finally, recent data on melanosome-dependent organising of microtubules show that dynein is involved in nucleating microtubules extending from melanosome aggregates in melanophore fragments.
Collapse
|
241
|
Kim YS, Fritz JL, Seneviratne AK, VanBerkum MFA. Constitutively active myosin light chain kinase alters axon guidance decisions in Drosophila embryos. Dev Biol 2002; 249:367-81. [PMID: 12221012 DOI: 10.1006/dbio.2002.0768] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Conventional myosin II activity provides the motile force for axon outgrowth, but to achieve directional movement during axon pathway formation, myosin activity should be regulated by the attractive and repulsive guidance cues that guide an axon to its target. Here, evidence for this regulation is obtained by using a constitutively active Myosin Light Chain Kinase (ctMLCK) to selectively elevate myosin II activity in Drosophila CNS neurons. Expression of ctMLCK pan-neurally or in primarily pCC/MP2 neurons causes these axons to cross the midline incorrectly. This occurs without altering cell fates and is sensitive to mutations in the regulatory light chains. These results confirm the importance of regulating myosin II activity during axon pathway formation. Mutations in the midline repulsive ligand Slit, or its receptor Roundabout, enhance the number of ctMLCK-induced crossovers, but ctMLCK expression also partially rescues commissure formation in commissureless mutants, where repulsive signals remain high. Overexpression of Frazzled, the receptor for midline attractive Netrins, enhances ctMLCK-dependent crossovers, but crossovers are suppressed when Frazzled activity is reduced by using loss-of-function mutations. These results confirm that proper pathway formation requires careful regulation of MLCK and/or myosin II activity and suggest that regulation occurs in direct response to attractive and repulsive cues.
Collapse
Affiliation(s)
- You-Seung Kim
- Department of Biological Sciences, Wayne State University, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
242
|
Abstract
Mouse models are one of the major tools used for discovery and characterization of genes for non-syndromic deafness in humans. The similarities between the mouse and human genomes, and between the physiology and morphology of their auditory systems, are striking. This article describes the latest mouse models, including spontaneous, 'knockout' and ENU (N-ethyl-N-nitrosourea)-induced mutants, and the recent discovery of modifier genes that are involved in mouse deafness; this discovery is leading the search for genetic modifiers for human disorders.
Collapse
Affiliation(s)
- Nadav Ahituv
- Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | |
Collapse
|
243
|
Wu H, Nash JE, Zamorano P, Garner CC. Interaction of SAP97 with minus-end-directed actin motor myosin VI. Implications for AMPA receptor trafficking. J Biol Chem 2002; 277:30928-34. [PMID: 12050163 DOI: 10.1074/jbc.m203735200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SAP97 is a modular protein composed of three PDZ domains, an SH3 domain, and a guanylate kinase-like domain. It has been implicated functionally in the assembly and structural stability of synaptic junctions as well as in the trafficking, recruitment, and localization of specific ion channels and neurotransmitter receptors. The N terminus of SAP97 (S97N) has been shown to play a key role in the selection of binding partners and the localization of SAP97 at adhesion sites, as well as the clustering of ion channels in heterologous cells. Using the S97N domain as bait in a yeast two-hybrid screen, we identified the minus-end-directed actin-based motor, myosin VI, as an S97N binding partner. Moreover, in light membrane fractions prepared from rat brain, we found that myosin VI and SAP97 form a trimeric complex with the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor subunit, GluR1. These data suggest that SAP97 may serve as a molecular link between GluR1 and the actin-dependent motor protein myosin VI during the dynamic translocation of AMPA receptors to and from the postsynaptic plasma membrane.
Collapse
Affiliation(s)
- Hongju Wu
- Department of Neurobiology, University of Alabama, Birmingham, AL 35294-0021, USA
| | | | | | | |
Collapse
|
244
|
Opitz C, Soldati D. 'The glideosome': a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Mol Microbiol 2002; 45:597-604. [PMID: 12139608 DOI: 10.1046/j.1365-2958.2002.03056.x] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Motion is an intrinsic property of all living organisms, and each cell displays a variety of shapes and modes of locomotion. How structural proteins support cellular movement and how cytoskeletal dynamics and motor proteins are harnessed to generate order and movement are among the fundamental and not fully resolved questions in biology today. Protozoan parasites belonging to the Apicomplexa are of enormous medical and veterinary significance, being responsible for a wide variety of diseases in human and animals, including malaria, toxoplasmosis, coccidiosis and cryptosporidiosis. These obligate intracellular parasites exhibit a unique form of actin-based gliding motility, which is essential for host cell invasion and spreading of parasites throughout the infected hosts. A motor complex composed of a small myosin of class XIV associated with a myosin light chain and a plasma membrane-docking protein is present beneath the parasite's plasma membrane. According to the capping model, this complex is connected directly or indirectly to transmembrane adhesin complexes, which are delivered to the parasite surface upon microneme secretion. Together with F-actin and as yet unknown bridging molecules and proteases, these complexes are among the structural and functional components of the 'glideosome'.
Collapse
|
245
|
Avraham KB. The genetics of deafness: a model for genomic and biological complexity. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2002:71-93. [PMID: 11859565 DOI: 10.1007/978-3-662-04667-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
246
|
de Lanerolle P, Cole AB. Cytoskeletal proteins and gene regulation: form, function, and signal transduction in the nucleus. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pe30. [PMID: 12096216 DOI: 10.1126/stke.2002.139.pe30] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The cytoskeleton is important for controlling cell shape and cell motility and for organizing signaling complexes. Additionally, connections are being found between cytoskeletal proteins and the regulation of gene expression in the nucleus. De Lanerolle and Cole discuss new insights from plants that show that a plant member of the COOH-terminal binding protein (CtBP) and the brefeldin A adenosine diphosphate (ADP)-ribosylated subtrates (BARS) proteins, ANGUSTIFOLIA, may be a regulator of both the microtubule-based cytoskeleton and a transcriptional regulator. Additionally, they describe how actin and myosins may play similar roles in regulating gene expression in the nucleus of mammalian cells.
Collapse
Affiliation(s)
- Primal de Lanerolle
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | |
Collapse
|
247
|
Tzolovsky G, Millo H, Pathirana S, Wood T, Bownes M. Identification and phylogenetic analysis of Drosophila melanogaster myosins. Mol Biol Evol 2002; 19:1041-52. [PMID: 12082124 DOI: 10.1093/oxfordjournals.molbev.a004163] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Myosins constitute a superfamily of motor proteins that convert energy from ATP hydrolysis into mechanical movement along the actin filaments. Phylogenetic analysis currently places myosins into 17 classes based on class-specific features of their conserved motor domain. Traditionally, the myosins have been divided into two classes depending on whether they form monomers or dimers. The conventional myosin of muscle and nonmuscle cells forms class II myosins. They are complex molecules of four light chains bound to two heavy chains that form bipolar filaments via interactions between their coiled-coil tails (type II). Class I myosins are smaller monomeric myosins referred to as unconventional myosins. Now, at least 15 other classes of unconventional myosins are known. How many myosins are needed to ensure the proper development and function of eukaryotic organisms? Thus far, three types of myosins were found in budding yeast, six in the nematode Caenorhabditis elegans, and at least 12 in human. Here, we report on the identification and classification of Drosophila melanogaster myosins. Analysis of the Drosophila genome sequence identified 13 myosin genes. Phylogenetic analysis based on the sequence comparison of the myosin motor domains, as well as the presence of the class-specific domains, suggests that Drosophila myosins can be divided into nine major classes. Myosins belonging to previously described classes I, II, III, V, VI, and VII are present. Molecular and phylogenetic analysis indicates that the fruitfly genome contains at least five new myosins. Three of them fall into previously described myosin classes I, VII, and XV. Another myosin is a homolog of the mouse and human PDZ-containing myosins, forming the recently defined class XVIII myosins. PDZ domains are named after the postsynaptic density, disc-large, ZO-1 proteins in which they were first described. The fifth myosin shows a unique domain composition and a low homology to any of the existing classes. We propose that this is classified when similar myosins are identified in other species.
Collapse
Affiliation(s)
- George Tzolovsky
- Institute of Cell and Molecular Biology, University of Edinburgh
| | | | | | | | | |
Collapse
|
248
|
Abstract
A novel human myosin gene located at 17q25 was identified through evaluation of genomic DNA sequence and designated myosin XVBP since it resembled human myosin XVA. In humans, myosin XVBP along with an adjacent gene, Lethal Giant Larvae 2 (LLGL2) appears to have arisen from a genomic duplication of a chromosomal interval that included LLGL and an ancestral myosin XV. Inspection of human myosin XVBP predicted amino acid sequence from genomic DNA revealed that 36 of the 131 conserved amino acid residues of the motor domain are substituted or deleted, including sequence changes within the regions involved in the binding of ATP and actin. Twelve myosin XVBP overlapping cDNAs from kidney and stomach mRNA samples were cloned and sequenced. Analyses of these myosin XVBP cDNAs revealed numerous additional disablements including translational reading frame shifts resulting in stop codons. From these data we conclude that myosin XVBP is a transcribed, unprocessed pseudogene.
Collapse
Affiliation(s)
- E T Boger
- Laboratory of Molecular Genetics, Section on Human Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland 20850, USA
| | | | | |
Collapse
|
249
|
Nagashima K, Torii S, Yi Z, Igarashi M, Okamoto K, Takeuchi T, Izumi T. Melanophilin directly links Rab27a and myosin Va through its distinct coiled-coil regions. FEBS Lett 2002; 517:233-8. [PMID: 12062444 DOI: 10.1016/s0014-5793(02)02634-0] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rab GTPases regulate the membrane transport pathways by recruiting their specific effector proteins. Melanophilin, a putative Rab effector, has recently been identified as a gene that is mutated in leaden mice, in which peripheral localization of melanosomes is impaired in melanocytes. Genetic studies suggest that three coat-color mutation genes, dilute (MyoVa(d)), ashen (Rab27a(ash)), and leaden (Mlph(ln)), act in the same or overlapping pathways. Here we have cloned and characterized a human melanophilin homolog, which belongs to the rabphilin3/granuphilin-like Rab effector family. Cosedimentation assays using recombinant proteins reveal that melanophilin directly binds to Rab27a and myosin Va through its N-terminal and its first C-terminal coiled-coil region, respectively. Moreover, we show that Rab27a, melanophilin, and myosin Va form a ternary complex in the human melanocyte cell line HMV-II. These findings suggest that melanophilin has a role in bridging Rab27a on melanosomes and myosin Va on actin filaments during melanosome transport. We also propose that the Rab-binding region conserved in a novel rabphilin3/granuphilin-like Rab effector family constitutes an alpha-helix-based coiled-coil structure.
Collapse
Affiliation(s)
- Kazuaki Nagashima
- Laboratory of Gene Engineering, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma, Japan
| | | | | | | | | | | | | |
Collapse
|
250
|
Abstract
Myosin-1c plays an essential role in adaptation of hair-cell mechanoelectrical transduction. To mediate adaptation, myosin-1c must interact directly or indirectly with other components of the transduction apparatus, including the mechanically gated transduction channel. As a first step toward identifying myosin-1c receptors, we used recombinant myosin-1c fragments to identify specific binding sites in hair cells and to biochemically characterize their interaction with myosin-1c. Myosin-1c fragments bound to tips of hair-cell stereocilia, the location of transduction and adaptation. Surprisingly, this interaction did not depend on the C-terminal tail of myosin-1c, proposed previously to be the receptor-binding site of the molecule. Instead, the interaction of myosin-1c with stereociliary receptors depended on its calmodulin-binding IQ domains. This interaction was blocked by calmodulin, which probably bound to a previously unoccupied IQ domain of myosin-1c. The calcium-sensitive binding of calmodulin to myosin-1c may therefore modulate the interaction of the adaptation motor with other components of the transduction apparatus.
Collapse
|