201
|
Thompson SM, Phan QM, Winuthayanon S, Driskell IM, Driskell RR. Parallel single cell multi-omics analysis of neonatal skin reveals transitional fibroblast states that restricts differentiation into distinct fates. J Invest Dermatol 2021; 142:1812-1823.e3. [PMID: 34922949 DOI: 10.1016/j.jid.2021.11.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022]
Abstract
One of the keys to achieving skin regeneration lies within understanding the heterogeneity of neonatal fibroblasts, which support skin regeneration. However, the molecular underpinnings regulating the cellular states and fates of these cells are not fully understood. To investigate this, we performed a parallel multi-omics analysis by processing neonatal murine skin for single-cell ATAC-sequencing (scATAC-seq) and single-cell RNA-sequencing (scRNA-seq) separately. Our approach revealed that fibroblast clusters could be sorted into papillary and reticular lineages based on transcriptome profiling, as previously published. However, scATAC-seq analysis of neonatal fibroblast lineage markers, such as, Dpp4/CD26, Corin, and Dlk1 along with markers of myofibroblasts, revealed accessible chromatin in all fibroblast populations despite their lineage-specific transcriptome profiles. These results suggests that accessible chromatin does not always translate to gene expression and that many fibroblast lineage markers reflect a fibroblast state, which includes neonatal papillary, reticular, and myofibroblasts. This analysis also provides a possible explanation as to why these marker genes can be promiscuously expressed in different fibroblast populations under different conditions. Our scATAC-seq analysis also revealed that the functional lineage restriction between dermal papilla and adipocyte fates are regulated by distinct chromatin landscapes. Finally, we have developed a webtool for our multi-omics analysis: https://skinregeneration.org/scatacseq-and-scrnaseq-data-from-thompson-et-al-2021-2/.
Collapse
Affiliation(s)
- Sean M Thompson
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Quan M Phan
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Sarayut Winuthayanon
- School of Molecular Biosciences, Washington State University, Pullman, WA; Center for Reproductive Biology, Washington State University, Pullman, WA
| | - Iwona M Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA; Center for Reproductive Biology, Washington State University, Pullman, WA. https://twitter.com/Driskellab
| |
Collapse
|
202
|
Frech S, Forsthuber A, Korosec A, Lipp K, Kozumov V, Lichtenberger BM. Hedgehog-signalling in papillary fibroblasts is essential for hair follicle regeneration during wound healing. J Invest Dermatol 2021; 142:1737-1748.e5. [PMID: 34922948 DOI: 10.1016/j.jid.2021.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/09/2021] [Accepted: 11/17/2021] [Indexed: 12/18/2022]
Abstract
Patients suffering from large scars such as burn victims not only encounter aesthetical challenges but also ongoing itching or pain that substantially deteriorates their quality of life. Skin appendages such as hair follicles (HFs) rarely regenerate within the healing wound. As they are crucial for skin homeostasis and the lack thereof constitutes one of the main limitations to scarless wound healing, their regeneration represents a major objective for regenerative medicine. Fibroblasts, the main resident cell type of the skin dermis, mediate embryonic HF morphogenesis and are particularly involved in wound healing as they orchestrate extracellular matrix (ECM) remodeling and collagen deposition in the wound bed. Importantly, dermal fibroblasts originate from two distinct developmental lineages with unique functions that differently mediate the response to epidermal signals such as Hedgehog (Hh)-signalling. In the present study, we show that Hh-signalling in the reticular fibroblast lineage promotes the initial phase of wound repair, possibly by modulating angiogenesis and fibroblast proliferation, while Hh-signalling in papillary fibroblasts is essential to induce de novo HF formation within the healing wound.
Collapse
Affiliation(s)
- Sophie Frech
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Agnes Forsthuber
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Ana Korosec
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Katharina Lipp
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Viktor Kozumov
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria
| | - Beate M Lichtenberger
- Skin & Endothelium Research Division, Department of Dermatology, Medical University of Vienna, Lazarettgasse 14a, 1090 Vienna, Austria.
| |
Collapse
|
203
|
Ankawa R, Fuchs Y. May the best wound WIHN: the hallmarks of wound-induced hair neogenesis. Curr Opin Genet Dev 2021; 72:53-60. [PMID: 34861514 DOI: 10.1016/j.gde.2021.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/05/2021] [Accepted: 10/21/2021] [Indexed: 01/06/2023]
Abstract
The hair follicle is a unique mini organ that undergoes continuous cycles of replenishment. While hair follicle formation was long thought to occur strictly during embryogenesis, it is now becoming increasingly clear that hair follicles can regenerate from the wound bed. Here, we provide an overview of the recent advancements in the field of Wound Induced Hair Neogenesis (WIHN) in mice. We briefly outline the hair follicle morphogenic process and discuss the major features of adult hair follicle regeneration. We examine the role of distinct cell types and review the contribution of specific signaling pathways to the WIHN phenotype. The phenomenon of neogenic hair regeneration provides an important platform, which may offer new insights into mammalian regeneration in the adult setting.
Collapse
Affiliation(s)
- Roi Ankawa
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Israel; Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Israel; Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa 3200, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Israel; Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Israel; Technion Integrated Cancer Center, Technion Israel Institute of Technology, Haifa 3200, Israel.
| |
Collapse
|
204
|
Recovery of Altered Diabetic Myofibroblast Heterogeneity and Gene Expression Are Associated with CD301b+ Macrophages. Biomedicines 2021; 9:biomedicines9121752. [PMID: 34944568 PMCID: PMC8698992 DOI: 10.3390/biomedicines9121752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 01/13/2023] Open
Abstract
Diabetic wound healing is associated with impaired function and reduced numbers of myofibroblasts, a heterogeneous cell population with varying capacities to promote repair. To determine how diabetes alters myofibroblast composition, we performed flow cytometry and spatial tissue analysis of myofibroblast subsets throughout the healing process in diabetic (db/db) and control (db/+) mouse skin. We observed reduced numbers of profibrotic SCA1+; CD34+; CD26+ myofibroblasts in diabetic wounds five days after injury, with decreased expression of fibrosis-associated genes compared to myofibroblasts from db/+ mouse wounds. While the abundance of myofibroblasts remained reduced in db/db mouse wounds compared to controls, the altered myofibroblast heterogeneity and gene expression in diabetic mice was improved seven days after injury. The natural correction of myofibroblast composition and gene expression in db/db wound beds temporally corresponds with a macrophage phenotypic switch. Correlation analysis from individual wound beds revealed that wound healing in control mice is associated with CD206+ macrophages, while the rescued myofibroblast phenotypes in diabetic wounds are correlated with increased CD301b+ macrophage numbers. These data demonstrate how diabetes impacts specific subsets of myofibroblasts and indicate that signaling capable of rescuing impaired diabetic wound healing could be different from signals that regulate wound healing under nonpathological conditions.
Collapse
|
205
|
Michopoulou A, Koliakou E, Terzopoulou Z, Rousselle P, Palamidi A, Anestakis D, Konstantinidou P, Roig-Rosello E, Demiri E, Bikiaris D. Benefit of coupling heparin to crosslinked collagen I/III scaffolds for human dermal fibroblast subpopulations' tissue growth. J Biomed Mater Res A 2021; 110:797-811. [PMID: 34793629 DOI: 10.1002/jbm.a.37329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 02/02/2023]
Abstract
Currently, there is a lack of models representing the skin dermal heterogeneity for relevant research and skin engineering applications. This is the first study reporting production of dermal equivalents reproducing features of papillary and reticular dermal compartments. Inspired from our current knowledge on the architecture and composition differences between the papillary and reticular dermis, we evaluated different collagen-based porous materials to serve as scaffolds for the three-dimensional expansion of freshly isolated papillary and/or reticular fibroblasts. The scaffolds, composed of either collagen I or collagen I and III mixtures, were prepared by lyophilization. Pore size and hydrolytic stability were controlled by crosslinking with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) or EDC/NHS with covalently bound heparin. The evaluation of the resultant "papillary" and "reticular" dermal equivalents was based on the analysis of characteristic features of each dermal compartment, such as cell density and deposition of newly synthetized extracellular matrix components in histological sections. Crosslinking supported cell growth during dermal tissue formation independent on the fibroblast subpopulation. The presence of collagen III seemed to have some positive but non-specific effect only on the maintenance of the mechanical strength of the scaffolds during dermal formation. Histological analyses demonstrated a significant and specific effect of heparin on generating dermal equivalents reproducing the respective higher papillary than reticular cell densities and supporting distinct extracellular matrix components deposition (three to five times more carbohydrate material deposited by papillary fibroblasts in all scaffolds containing heparin, while higher collagen production was observed only in the presence of heparin).
Collapse
Affiliation(s)
| | - Eleni Koliakou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Univ. Lyon 1, SFR BioSciences, Lyon, France
| | - Artemis Palamidi
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Eva Roig-Rosello
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Univ. Lyon 1, SFR BioSciences, Lyon, France
| | - Euterpi Demiri
- Department of Plastic Surgery, Medical School, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitris Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
206
|
Hamilton DW, Walker JT, Tinney D, Grynyshyn M, El-Warrak A, Truscott E, Flynn LE. The pig as a model system for investigating the recruitment and contribution of myofibroblasts in skin healing. Wound Repair Regen 2021; 30:45-63. [PMID: 34708478 DOI: 10.1111/wrr.12981] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022]
Abstract
In the skin-healing field, porcine models are regarded as a useful analogue for human skin due to their numerous anatomical and physiological similarities. Despite the widespread use of porcine models in skin healing studies, the initial origin, recruitment and transition of fibroblasts to matrix-secreting contractile myofibroblasts are not well defined for this model. In this review, we discuss the merit of the pig as an animal for studying myofibroblast origin, as well as the challenges associated with assessing their contributions to skin healing. Although a variety of wound types (incisional, partial thickness, full thickness, burns) have been investigated in pigs in attempts to mimic diverse injuries in humans, direct comparison of human healing profiles with regards to myofibroblasts shows evident differences. Following injury in porcine models, which often employ juvenile animals, myofibroblasts are described in the developing granulation tissue at 4 days, peaking at Days 7-14, and persisting at 60 days post-wounding, although variations are evident depending on the specific pig breed. In human wounds, the presence of myofibroblasts is variable and does not correlate with the age of the wound or clinical contraction. Our comparison of porcine myofibroblast-mediated healing processes with those in humans suggests that further validation of the pig model is essential. Moreover, we identify several limitations evident in experimental design that need to be better controlled, and standardisation of methodologies would be beneficial for the comparison and interpretation of results. In particular, we discuss anatomical location of the wounds, their size and depth, as well as the healing microenvironment (wet vs. moist vs. dry) in pigs and how this could influence myofibroblast recruitment. In summary, although a widespread model used in the skin healing field, further research is required to validate pigs as a useful analogue for human healing with regards to myofibroblasts.
Collapse
Affiliation(s)
- Douglas W Hamilton
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - John T Walker
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Dylan Tinney
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Michael Grynyshyn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Alexander El-Warrak
- Animal Care and Veterinary Services, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Emily Truscott
- Animal Care and Veterinary Services, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Lauren E Flynn
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada.,Department of Chemical and Biochemical Engineering, Thompson Engineering Building, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
207
|
Fibroblast Memory in Development, Homeostasis and Disease. Cells 2021; 10:cells10112840. [PMID: 34831065 PMCID: PMC8616330 DOI: 10.3390/cells10112840] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
Fibroblasts are the major cell population in the connective tissue of most organs, where they are essential for their structural integrity. They are best known for their role in remodelling the extracellular matrix, however more recently they have been recognised as a functionally highly diverse cell population that constantly responds and adapts to their environment. Biological memory is the process of a sustained altered cellular state and functions in response to a transient or persistent environmental stimulus. While it is well established that fibroblasts retain a memory of their anatomical location, how other environmental stimuli influence fibroblast behaviour and function is less clear. The ability of fibroblasts to respond and memorise different environmental stimuli is essential for tissue development and homeostasis and may become dysregulated in chronic disease conditions such as fibrosis and cancer. Here we summarise the four emerging key areas of fibroblast adaptation: positional, mechanical, inflammatory, and metabolic memory and highlight the underlying mechanisms and their implications in tissue homeostasis and disease.
Collapse
|
208
|
Molekularne mechanizmy działania czynnika transkrypcyjnego FOXN1 w skórze. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstrakt
Artykuł jest przeglądem wyników badań dotyczących funkcji i mechanizmu działania czynnika transkrypcyjnego FOXN1. Lokalizacja FOXN1 u przedstawicieli wszystkich ssaków ogranicza się do nabłonka tylko dwóch organów: skóry i grasicy. W skórze FOXN1 stymuluje różnicowanie się keratynocytów, reguluje proces pigmentacji i bierze udział w rozwoju włosów. W skórze objętej urazem FOXN1 jest zaangażowany w bliznowy proces gojenia poprzez udział w reepitelializacji oraz w procesie przejścia epitelialno-mezenchymalnego (epithelial-mesenchymal transition; EMT). Pozbawione aktywnego czynnika transkrypcyjnego FOXN1 dorosłe myszy (Foxn1-/-) goją urazy skórne w unikalnym, charakterystycznym jedynie dla płodów ssaków, procesie bezbliznowej (scar-free) regeneracji. Analiza porównawcza transkryptomów skóry: dorosłych myszy Foxn1-/- oraz skóry płodów myszy (14. dzień rozwoju płodowego) wykazała istotne podobieństwa w ekspresji genów związanych przede wszystkim z przebudową tkanek, budową cytoszkieletu, gojeniem urazów, odpowiedzią immunologiczną oraz różnicowaniem. Wyniki te wskazują, iż FOXN1 może być głównym elementem szlaku sygnałowego na drodze tzw. punktu tranzycyjnego czyli przejścia z etapu gojenia bezbliznowego (płodowego) do bliznowego (dorosłego) w trakcie rozwoju płodowego.
Collapse
|
209
|
Liang J, Shao W, Liu Q, Lu Q, Gu A, Jiang Z. Single Cell RNA-Sequencing Reveals a Murine Gallbladder Cell Transcriptome Atlas During the Process of Cholesterol Gallstone Formation. Front Cell Dev Biol 2021; 9:714271. [PMID: 34650971 PMCID: PMC8505819 DOI: 10.3389/fcell.2021.714271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Gallstone disease is a worldwide common disease. However, the knowledge concerning the gallbladder in the pathogenesis of cholesterol gallstone formation remains limited. In this study, using single-cell RNA sequencing (scRNA-seq) to obtain the transcriptome of gallbladder cells, we showed cellular heterogeneity and transcriptomic dynamics in murine gallbladder cells during the process of lithogenesis. Our results indicated gallbladder walls were subjected to remodeling during the process of lithogenesis. The major molecular events that happened included proliferation of epithelial cells, infiltration of immune-cells, activation of angiogenesis, and extracellular matrix modulation. Furthermore, we observed partial reversal of gallbladder cell transcriptomes by ursodeoxycholic acid treatment. This work thus provides novel and integral knowledges on the cellular changes during lithogenesis, which is of great significance to the understanding of pathogenesis and treatment of cholesterol gallstone.
Collapse
Affiliation(s)
- Jingjia Liang
- Center of Gallbladder Disease, Shanghai East Hospital, Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Modern Toxicology of Ministry of Education, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wentao Shao
- Center of Gallbladder Disease, Shanghai East Hospital, Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Modern Toxicology of Ministry of Education, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Qian Liu
- Key Laboratory of Modern Toxicology of Ministry of Education, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qifan Lu
- Center of Gallbladder Disease, Shanghai East Hospital, Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| | - Aihua Gu
- Key Laboratory of Modern Toxicology of Ministry of Education, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhaoyan Jiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
210
|
A Beginner's Introduction to Skin Stem Cells and Wound Healing. Int J Mol Sci 2021; 22:ijms222011030. [PMID: 34681688 PMCID: PMC8538579 DOI: 10.3390/ijms222011030] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
The primary function of the skin is that of a physical barrier against the environment and diverse pathogens; therefore, its integrity is essential for survival. Skin regeneration depends on multiple stem cell compartments within the epidermis, which, despite their different transcriptional and proliferative capacity, as well as different anatomical location, fall under the general term of skin stem cells (SSCs). Skin wounds can normally heal without problem; however, some diseases or extensive damage may delay or prevent healing. Non-healing wounds represent a serious and life-threatening scenario that may require advanced therapeutic strategies. In this regard, increased focus has been directed at SSCs and their role in wound healing, although emerging therapeutical approaches are considering the use of other stem cells instead, such as mesenchymal stem cells (MSCs). Given its extensive and broad nature, this review supplies newcomers with an introduction to SSCs, wound healing, and therapeutic strategies for skin regeneration, thus familiarizing the reader with the subject in preparation for future in depth reading.
Collapse
|
211
|
Foster DS, Januszyk M, Yost KE, Chinta MS, Gulati GS, Nguyen AT, Burcham AR, Salhotra A, Ransom RC, Henn D, Chen K, Mascharak S, Tolentino K, Titan AL, Jones RE, da Silva O, Leavitt WT, Marshall CD, des Jardins-Park HE, Hu MS, Wan DC, Wernig G, Wagh D, Coller J, Norton JA, Gurtner GC, Newman AM, Chang HY, Longaker MT. Integrated spatial multiomics reveals fibroblast fate during tissue repair. Proc Natl Acad Sci U S A 2021; 118:e2110025118. [PMID: 34620713 PMCID: PMC8521719 DOI: 10.1073/pnas.2110025118] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
In the skin, tissue injury results in fibrosis in the form of scars composed of dense extracellular matrix deposited by fibroblasts. The therapeutic goal of regenerative wound healing has remained elusive, in part because principles of fibroblast programming and adaptive response to injury remain incompletely understood. Here, we present a multimodal -omics platform for the comprehensive study of cell populations in complex tissue, which has allowed us to characterize the cells involved in wound healing across both time and space. We employ a stented wound model that recapitulates human tissue repair kinetics and multiple Rainbow transgenic lines to precisely track fibroblast fate during the physiologic response to skin injury. Through integrated analysis of single cell chromatin landscapes and gene expression states, coupled with spatial transcriptomic profiling, we are able to impute fibroblast epigenomes with temporospatial resolution. This has allowed us to reveal potential mechanisms controlling fibroblast fate during migration, proliferation, and differentiation following skin injury, and thereby reexamine the canonical phases of wound healing. These findings have broad implications for the study of tissue repair in complex organ systems.
Collapse
Affiliation(s)
- Deshka S Foster
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
- Department of Surgery, Stanford University School of Medicine, Stanford CA 94305
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
- Department of Surgery, Stanford University School of Medicine, Stanford CA 94305
| | - Kathryn E Yost
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305
| | - Malini S Chinta
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Gunsagar S Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Alan T Nguyen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Austin R Burcham
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Ankit Salhotra
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - R Chase Ransom
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Dominic Henn
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Kellen Chen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Shamik Mascharak
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Karen Tolentino
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305
| | - Ashley L Titan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
- Department of Surgery, Stanford University School of Medicine, Stanford CA 94305
| | - R Ellen Jones
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Oscar da Silva
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - W Tripp Leavitt
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Clement D Marshall
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
- Department of Surgery, Stanford University School of Medicine, Stanford CA 94305
| | - Heather E des Jardins-Park
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Michael S Hu
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Derrick C Wan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
- Department of Surgery, Stanford University School of Medicine, Stanford CA 94305
| | - Gerlinde Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| | - Dhananjay Wagh
- Stanford Functional Genomics Facility, Stanford University, Stanford, CA 94305
| | - John Coller
- Stanford Functional Genomics Facility, Stanford University, Stanford, CA 94305
| | - Jeffrey A Norton
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
- Department of Surgery, Stanford University School of Medicine, Stanford CA 94305
| | - Geoffrey C Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305
- Department of Surgery, Stanford University School of Medicine, Stanford CA 94305
| | - Aaron M Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305;
- HHMI, Stanford University, Stanford, CA 94305
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305;
- Department of Surgery, Stanford University School of Medicine, Stanford CA 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
212
|
Brewer CM, Nelson BR, Wakenight P, Collins SJ, Okamura DM, Dong XR, Mahoney WM, McKenna A, Shendure J, Timms A, Millen KJ, Majesky MW. Adaptations in Hippo-Yap signaling and myofibroblast fate underlie scar-free ear appendage wound healing in spiny mice. Dev Cell 2021; 56:2722-2740.e6. [PMID: 34610329 DOI: 10.1016/j.devcel.2021.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 06/10/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022]
Abstract
Spiny mice (Acomys cahirinus) are terrestrial mammals that evolved unique scar-free regenerative wound-healing properties. Myofibroblasts (MFs) are the major scar-forming cell type in skin. We found that following traumatic injury to ear pinnae, MFs appeared rapidly in both Acomys and mouse yet persisted only in mouse. The timing of MF loss in Acomys correlated with wound closure, blastema differentiation, and nuclear localization of the Hippo pathway target protein Yap. Experiments in vitro revealed an accelerated PP2A-dependent dephosphorylation activity that maintained nuclear Yap in Acomys dermal fibroblasts (DFs) and was not detected in mouse or human DFs. Treatment of Acomys in vivo with the nuclear Yap-TEAD inhibitor verteporfin prolonged MF persistence and converted tissue regeneration to fibrosis. Forced Yap activity prevented and rescued TGF-β1-induced human MF formation in vitro. These results suggest that Acomys evolved modifications of Yap activity and MF fate important for scar-free regenerative wound healing in vivo.
Collapse
Affiliation(s)
- Chris M Brewer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Branden R Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | - Paul Wakenight
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Sarah J Collins
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Daryl M Okamura
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Xiu Rong Dong
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - William M Mahoney
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Aaron McKenna
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Andrew Timms
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kathleen J Millen
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | - Mark W Majesky
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
213
|
Van Hove L, Hoste E. Activation of Fibroblasts in Skin Cancer. J Invest Dermatol 2021; 142:1026-1031. [PMID: 34600919 DOI: 10.1016/j.jid.2021.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Fibroblasts have emerged as a dominant component of the tumor microenvironment, but despite the surging interest in the activation of fibroblasts and their role in cancer, they remain an elusive and complex cell type. In this perspective, we discuss the phenotypic plasticity of cancer-associated fibroblasts (CAFs) in melanoma and nonmelanoma skin cancer identified by genome-wide transcriptomic studies and focus on the molecular pathways underlying their activation. These studies reveal distinct fibroblast activation profiles depending on tumor type and stage. A better understanding of skin CAF heterogeneity in origin and function will guide novel therapeutic approaches targeting this cell type in clinical cancer care.
Collapse
Affiliation(s)
- Lisette Van Hove
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Esther Hoste
- VIB Center for Inflammation Research, Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
214
|
Deleon NMD, Adem S, Lavin CV, Abbas DB, Griffin M, King ME, Borrelli MR, Patel RA, Fahy EJ, Lee D, Shen AH, Momeni A, Longaker MT, Wan DC. Angiogenic CD34+CD146+ adipose-derived stromal cells augment recovery of soft tissue after radiotherapy. J Tissue Eng Regen Med 2021; 15:1105-1117. [PMID: 34582109 DOI: 10.1002/term.3253] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/12/2022]
Abstract
Radiation therapy is effective for cancer treatment but may also result in collateral soft tissue contracture, contour deformities, and non-healing wounds. Autologous fat transfer has been described to improve tissue architecture and function of radiation-induced fibrosis and these effects may be augmented by enrichment with specific adipose-derived stromal cells (ASCs) with enhanced angiogenic potential. CD34+CD146+, CD34+CD146-, or CD34+ unfractionated human ASCs were isolated by flow cytometry and used to supplement human lipoaspirate placed beneath the scalp of irradiated mice. Volume retention was followed radiographically and fat grafts as well as overlying soft tissue were harvested after eight weeks for histologic and biomechanical analyses. Radiographic evaluation revealed the highest volume retention in fat grafts supplemented with CD34+CD146+ ASCs, and these grafts were also found to have greater histologic integrity than other groups. Irradiated skin overlying CD34+CD146+ ASC-enriched grafts was significantly more vascularized than other treatment groups, had significantly less dermal thickness and collagen deposition, and the greatest improvement in fibrillin staining and return of elasticity. Radiation therapy obliterates vascularity and contributes to scarring and loss of tissue function. ASC-enrichment of fat grafts with CD34+CD146+ ASCs not only enhances fat graft vascularization and retention, but also significantly promotes improvement in overlying radiation-injured soft tissue. This regenerative effect on skin is highly promising for patients with impaired wound healing and deformities following radiotherapy.
Collapse
Affiliation(s)
- Nestor M Diaz Deleon
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Sandeep Adem
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Christopher V Lavin
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Darren B Abbas
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michelle Griffin
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Megan E King
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Mimi R Borrelli
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Ronak A Patel
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Evan J Fahy
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Daniel Lee
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Abra H Shen
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Arash Momeni
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michael T Longaker
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Derrick C Wan
- Department of Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
215
|
Otsuka T, Kan HM, Laurencin CT. Regenerative Engineering Approaches to Scar-Free Skin Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00229-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
216
|
Griffin MF, Borrelli MR, Garcia JT, Januszyk M, King M, Lerbs T, Cui L, Moore AL, Shen AH, Mascharak S, Diaz Deleon NM, Adem S, Taylor WL, desJardins-Park HE, Gastou M, Patel RA, Duoto BA, Sokol J, Wei Y, Foster D, Chen K, Wan DC, Gurtner GC, Lorenz HP, Chang HY, Wernig G, Longaker MT. JUN promotes hypertrophic skin scarring via CD36 in preclinical in vitro and in vivo models. Sci Transl Med 2021; 13:eabb3312. [PMID: 34516825 DOI: 10.1126/scitranslmed.abb3312] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Michelle F Griffin
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mimi R Borrelli
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Julia T Garcia
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Michael Januszyk
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Megan King
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,CIRM Scholars Program, Humboldt State University, Arcata, CA 95521, USA
| | - Tristan Lerbs
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Lu Cui
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Alessandra L Moore
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Abra H Shen
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shamik Mascharak
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Nestor M Diaz Deleon
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sandeep Adem
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Walter L Taylor
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heather E desJardins-Park
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Marc Gastou
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Ronak A Patel
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Bryan A Duoto
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jan Sokol
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yuning Wei
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Deshka Foster
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Kellen Chen
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Derrick C Wan
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Geoffrey C Gurtner
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hermann P Lorenz
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y Chang
- Center for Personal Dynamics Regulomes, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Genetics, Stanford School of Medicine, Stanford, CA 94305, USA.,Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Gerlinde Wernig
- Department of Pathology, Stanford School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Michael T Longaker
- Hagey Laboratory of Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
217
|
Hutton C, Heider F, Blanco-Gomez A, Banyard A, Kononov A, Zhang X, Karim S, Paulus-Hock V, Watt D, Steele N, Kemp S, Hogg EKJ, Kelly J, Jackstadt RF, Lopes F, Menotti M, Chisholm L, Lamarca A, Valle J, Sansom OJ, Springer C, Malliri A, Marais R, Pasca di Magliano M, Zelenay S, Morton JP, Jørgensen C. Single-cell analysis defines a pancreatic fibroblast lineage that supports anti-tumor immunity. Cancer Cell 2021; 39:1227-1244.e20. [PMID: 34297917 PMCID: PMC8443274 DOI: 10.1016/j.ccell.2021.06.017] [Citation(s) in RCA: 213] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/19/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022]
Abstract
Fibroblasts display extensive transcriptional heterogeneity, yet functional annotation and characterization of their heterocellular relationships remains incomplete. Using mass cytometry, we chart the stromal composition of 18 murine tissues and 5 spontaneous tumor models, with an emphasis on mesenchymal phenotypes. This analysis reveals extensive stromal heterogeneity across tissues and tumors, and identifies coordinated relationships between mesenchymal and immune cell subsets in pancreatic ductal adenocarcinoma. Expression of CD105 demarks two stable and functionally distinct pancreatic fibroblast lineages, which are also identified in murine and human healthy tissues and tumors. Whereas CD105-positive pancreatic fibroblasts are permissive for tumor growth in vivo, CD105-negative fibroblasts are highly tumor suppressive. This restrictive effect is entirely dependent on functional adaptive immunity. Collectively, these results reveal two functionally distinct pancreatic fibroblast lineages and highlight the importance of mesenchymal and immune cell interactions in restricting tumor growth.
Collapse
Affiliation(s)
- Colin Hutton
- Systems Oncology, Cancer Research UK Manchester Institute, Alderley Park, Manchester SK10 4TG, UK
| | - Felix Heider
- Systems Oncology, Cancer Research UK Manchester Institute, Alderley Park, Manchester SK10 4TG, UK
| | - Adrian Blanco-Gomez
- Systems Oncology, Cancer Research UK Manchester Institute, Alderley Park, Manchester SK10 4TG, UK
| | - Antonia Banyard
- Flow Cytometry Core, Cancer Research UK Manchester Institute, Alderley Park, Manchester SK10 4TG, UK
| | - Alexander Kononov
- Systems Oncology, Cancer Research UK Manchester Institute, Alderley Park, Manchester SK10 4TG, UK
| | - Xiaohong Zhang
- Systems Oncology, Cancer Research UK Manchester Institute, Alderley Park, Manchester SK10 4TG, UK
| | - Saadia Karim
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK
| | - Viola Paulus-Hock
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK
| | - Dale Watt
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK
| | - Nina Steele
- University of Michigan, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell and Developmental Biology, Ann Arbor, MI 48109, USA
| | - Samantha Kemp
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; Molecular and Cellular Pathology Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth K J Hogg
- Systems Oncology, Cancer Research UK Manchester Institute, Alderley Park, Manchester SK10 4TG, UK
| | - Joanna Kelly
- Systems Oncology, Cancer Research UK Manchester Institute, Alderley Park, Manchester SK10 4TG, UK
| | - Rene-Filip Jackstadt
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK
| | - Filipa Lopes
- Drug Discovery Unit, Cancer Research UK Manchester Institute, Alderley Park, Manchester SK10 4TG, UK
| | - Matteo Menotti
- Cell Signalling, Cancer Research UK Manchester Institute, Alderley Park, Manchester SK10 4TG, UK
| | - Luke Chisholm
- Molecular Oncology, Cancer Research UK Manchester Institute, Alderley Park, Manchester SK10 4TG, UK
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK
| | - Juan Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Wilmslow Road, Manchester M20 4BX, UK; Institute of Cancer Sciences, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Garscube Estate, Glasgow G61 1QH, UK
| | - Caroline Springer
- Drug Discovery Unit, Cancer Research UK Manchester Institute, Alderley Park, Manchester SK10 4TG, UK
| | - Angeliki Malliri
- Cell Signalling, Cancer Research UK Manchester Institute, Alderley Park, Manchester SK10 4TG, UK
| | - Richard Marais
- Molecular Oncology, Cancer Research UK Manchester Institute, Alderley Park, Manchester SK10 4TG, UK
| | - Marina Pasca di Magliano
- University of Michigan, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA; Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Santiago Zelenay
- Cancer Immunity and Inflammation, Cancer Research UK Manchester Institute, Alderley Park, Manchester SK10 4TG, UK
| | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Garscube Estate, Bearsden, Glasgow G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Switchback Road, Garscube Estate, Glasgow G61 1QH, UK
| | - Claus Jørgensen
- Systems Oncology, Cancer Research UK Manchester Institute, Alderley Park, Manchester SK10 4TG, UK.
| |
Collapse
|
218
|
Abstract
Scar is a common way of healing after tissue injury. The poor scar healing will not only cause dysfunction of tissues and organs but also affect the appearance of the patients’ body surface, which causes the pressure of life and spirit to the patients. However, the formation of scar tissue is an extremely complex process and its mechanism is not fully understood. At present, there is no treatment method to eliminate scars completely. Fibroblasts are the most abundant cells in the dermis, which have the ability to synthesize and remodel extracellular matrix (ECM). Myofibroblasts actively participate in the wound healing process and influence the outcome. Therefore, both of them play important roles in wound healing and scar formation. Adipose tissue-derived stem cells (ADSCs) are pluripotent stem cells that can act on target cells by paracrine. Adipose tissue stem cell-derived exosomes (ADSC-Exos) are important secretory substances of ADSCs. They are nanomembrane vesicles that can transport a variety of cellular components and fuse with target cells. In this review, we will discuss the effects of ADSCs and ADSC-Exos on the behavior of fibroblasts and myofibroblasts during wound healing and scarring stage in combination with recent studies.
Collapse
|
219
|
Allanki S, Strilic B, Scheinberger L, Onderwater YL, Marks A, Günther S, Preussner J, Kikhi K, Looso M, Stainier DYR, Reischauer S. Interleukin-11 signaling promotes cellular reprogramming and limits fibrotic scarring during tissue regeneration. SCIENCE ADVANCES 2021; 7:eabg6497. [PMID: 34516874 PMCID: PMC8442930 DOI: 10.1126/sciadv.abg6497] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 07/16/2021] [Indexed: 05/02/2023]
Abstract
Damage-induced fibrotic scarring limits tissue regeneration in mammals and is a leading cause of morbidity. In contrast, species like zebrafish can regenerate damaged tissues without excessive fibrosis. However, whether specific signaling pathways can both limit fibrosis and promote regeneration is unclear. Here, we show that interleukin-11 (Il-11)/Stat3 signaling has such a dual function. Zebrafish lacking Il-11 receptor function display severely compromised heart, fin, and scale regeneration. Deep phenotyping and transcriptional analysis of adult hearts and fins show that Il-11 signaling drives cellular reprogramming to orchestrate global and tissue-specific regenerative programs and broadly antagonizes hallmarks of adult mammalian scarring. Mechanistically, our data indicate that IL-11 signaling in endothelial cells antagonizes profibrotic transforming growth factor–β signaling and endothelial-to-mesenchymal transition, limiting scarring and promoting cardiomyocyte repopulation, after injury. Overall, our findings position damage-induced Il-11/Stat3 signaling in a key role limiting fibrosis and promoting regeneration, revealing novel targets for regenerative therapies.
Collapse
Affiliation(s)
- Srinivas Allanki
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60596 Frankfurt am Main, Germany
- Medical Clinic I (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | - Boris Strilic
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Lilly Scheinberger
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Yeszamin L. Onderwater
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Alora Marks
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Stefan Günther
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jens Preussner
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60596 Frankfurt am Main, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Mario Looso
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60596 Frankfurt am Main, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y. R. Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 60596 Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| | - Sven Reischauer
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
- Medical Clinic I (Cardiology/Angiology) and Campus Kerckhoff, Justus-Liebig-University Giessen, 35392 Giessen, Germany
- Cardio-Pulmonary Institute, Frankfurt, Germany
| |
Collapse
|
220
|
Chen Z, Gao Z, Xia L, Wang X, Lu L, Wu X. Dysregulation of DPP4-CXCL12 Balance by TGF-β1/SMAD Pathway Promotes CXCR4 + Inflammatory Cell Infiltration in Keloid Scars. J Inflamm Res 2021; 14:4169-4180. [PMID: 34483675 PMCID: PMC8408422 DOI: 10.2147/jir.s326385] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023] Open
Abstract
Purpose Recent studies have confirmed the important role of chronic inflammation in keloid; however, mechanism of chronic inflammation in keloid tissue remains largely unclear, especially the dynamic of infiltrated inflammatory cells. Patients and Methods Tissue and blood samples collected from keloid patients and healthy subjects were studied by immunohistochemistry and flow cytometry. Fibroblasts from keloid scars and normal skin were isolated by enzymic digestion. Results We found that CXCL12 expression was elevated which was correlated with decreased dipeptidyl peptidase-4 (DPP4) expression in keloid scars relative to mature scars. In vitro studies suggested that autocrine transforming growth factor β1 (TGF-β1) in keloid-derived fibroblasts negatively regulated DPP4 expression which inhibited the reduction of extracellular CXCL12 levels by DPP4. Furthermore, immunofluorescence showed that most fibroblasts in keloid scars were DPP4lowTGFβ1high compared with DPP4highTGFβ1low fibroblasts in normal skin tissue, which facilitated extracellular CXCL12 accumulation in fibroblasts in keloid scars. Furthermore, we found that most circulating leukocytes in peripheral blood and tissue-infiltrated inflammatory cells in keloid scars expressed the C-X-C motif chemokine receptor 4 (CXCR4) instead of CXCR7, indicating that the chemotaxis driven by CXCL12 is likely to be mediated mainly by CXCR4. Conclusion Our study indicated that the TGF-β/DPP4/CXCL12 axis may contribute to chronic inflammation in keloid scars by recruiting inflammatory cells through the CXCR4 receptor.
Collapse
Affiliation(s)
- ZongAn Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - Zhen Gao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - LingLing Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - XiaoQing Wang
- Department of Orthopedics, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| | - LiMing Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - XiaoLi Wu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
221
|
Györfi AH, Matei AE, Fuchs M, Liang C, Rigau AR, Hong X, Zhu H, Luber M, Bergmann C, Dees C, Ludolph I, Horch RE, Distler O, Wang J, Bengsch B, Schett G, Kunz M, Distler JH. Engrailed 1 coordinates cytoskeletal reorganization to induce myofibroblast differentiation. J Exp Med 2021; 218:e20201916. [PMID: 34259830 PMCID: PMC8288503 DOI: 10.1084/jem.20201916] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 04/05/2021] [Accepted: 05/24/2021] [Indexed: 12/18/2022] Open
Abstract
Transforming growth factor-β (TGFβ) is a key mediator of fibroblast activation in fibrotic diseases, including systemic sclerosis. Here we show that Engrailed 1 (EN1) is reexpressed in multiple fibroblast subpopulations in the skin of SSc patients. We characterize EN1 as a molecular amplifier of TGFβ signaling in myofibroblast differentiation: TGFβ induces EN1 expression in a SMAD3-dependent manner, and in turn, EN1 mediates the profibrotic effects of TGFβ. RNA sequencing demonstrates that EN1 induces a profibrotic gene expression profile functionally related to cytoskeleton organization and ROCK activation. EN1 regulates gene expression by modulating the activity of SP1 and other SP transcription factors, as confirmed by ChIP-seq experiments for EN1 and SP1. Functional experiments confirm the coordinating role of EN1 on ROCK activity and the reorganization of cytoskeleton during myofibroblast differentiation, in both standard fibroblast culture systems and in vitro skin models. Consistently, mice with fibroblast-specific knockout of En1 demonstrate impaired fibroblast-to-myofibroblast transition and are partially protected from experimental skin fibrosis.
Collapse
Affiliation(s)
- Andrea-Hermina Györfi
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Alexandru-Emil Matei
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Maximilian Fuchs
- Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Chunguang Liang
- Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Aleix Rius Rigau
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Xuezhi Hong
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Honglin Zhu
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Markus Luber
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Ingo Ludolph
- Department of Plastic and Hand Surgery, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Raymund E. Horch
- Department of Plastic and Hand Surgery, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Oliver Distler
- Department of Rheumatology, Center of Experimental Rheumatology, University Hospital of Zurich, Zurich, Switzerland
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, P.R. China
- Human Phenome Institute, Fudan University, Shanghai, P.R. China
- Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, P.R. China
| | - Bertram Bengsch
- Department of Medicine II: Gastroenterology, Hepatology, Endocrinology, and Infectious Disease, University Medical Center Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, Freiburg, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| | - Meik Kunz
- Medical Informatics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jörg H.W. Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
222
|
Disrupting biological sensors of force promotes tissue regeneration in large organisms. Nat Commun 2021; 12:5256. [PMID: 34489407 PMCID: PMC8421385 DOI: 10.1038/s41467-021-25410-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 08/06/2021] [Indexed: 12/31/2022] Open
Abstract
Tissue repair and healing remain among the most complicated processes that occur during postnatal life. Humans and other large organisms heal by forming fibrotic scar tissue with diminished function, while smaller organisms respond with scarless tissue regeneration and functional restoration. Well-established scaling principles reveal that organism size exponentially correlates with peak tissue forces during movement, and evolutionary responses have compensated by strengthening organ-level mechanical properties. How these adaptations may affect tissue injury has not been previously examined in large animals and humans. Here, we show that blocking mechanotransduction signaling through the focal adhesion kinase pathway in large animals significantly accelerates wound healing and enhances regeneration of skin with secondary structures such as hair follicles. In human cells, we demonstrate that mechanical forces shift fibroblasts toward pro-fibrotic phenotypes driven by ERK-YAP activation, leading to myofibroblast differentiation and excessive collagen production. Disruption of mechanical signaling specifically abrogates these responses and instead promotes regenerative fibroblast clusters characterized by AKT-EGR1. Humans and other large mammals heal wounds by forming fibrotic scar tissue with diminished function. Here, the authors show that disrupting mechanotransduction through the focal adhesion kinase pathway in large animals accelerates healing, prevents fibrosis, and enhances skin regeneration.
Collapse
|
223
|
Converting fibroblastic fates leads to wound healing without scar. Signal Transduct Target Ther 2021; 6:332. [PMID: 34471094 PMCID: PMC8410910 DOI: 10.1038/s41392-021-00738-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/22/2021] [Accepted: 08/08/2021] [Indexed: 12/02/2022] Open
|
224
|
Furnishing Wound Repair by the Subcutaneous Fascia. Int J Mol Sci 2021; 22:ijms22169006. [PMID: 34445709 PMCID: PMC8396603 DOI: 10.3390/ijms22169006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/28/2022] Open
Abstract
Mammals rapidly heal wounds through fibrous connective tissue build up and tissue contraction. Recent findings from mouse attribute wound healing to physical mobilization of a fibroelastic connective tissue layer that resides beneath the skin, termed subcutaneous fascia or superficial fascia, into sites of injury. Fascial mobilization assembles diverse cell types and matrix components needed for rapid wound repair. These observations suggest that the factors directly affecting fascial mobility are responsible for chronic skin wounds and excessive skin scarring. In this review, we discuss the link between the fascia's unique tissue anatomy, composition, biomechanical, and rheologic properties to its ability to mobilize its tissue assemblage. Fascia is thus at the forefront of tissue pathology and a better understanding of how it is mobilized may crystallize our view of wound healing alterations during aging, diabetes, and fibrous disease and create novel therapeutic strategies for wound repair.
Collapse
|
225
|
Lagares D, Hinz B. Animal and Human Models of Tissue Repair and Fibrosis: An Introduction. Methods Mol Biol 2021; 2299:277-290. [PMID: 34028750 DOI: 10.1007/978-1-0716-1382-5_20] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Reductionist cell culture systems are not only convenient but essential to understand molecular mechanisms of myofibroblast activation and action in carefully controlled conditions. However, tissue myofibroblasts do not act in isolation and the complexity of tissue repair and fibrosis in humans cannot be captured even by the most elaborate culture models. Over the past five decades, numerous animal models have been developed to study different aspects of myofibroblast biology and interactions with other cells and extracellular matrix. The underlying principles can be broadly classified into: (1) organ injury by trauma such as prototypical full thickness skin wounds or burns; (2) mechanical challenges, such as pressure overload of the heart by ligature of the aorta or the pulmonary vein; (3) toxic injury, such as administration of bleomycin to lungs and carbon tetrachloride to the liver; (4) organ infection with viruses, bacteria, and parasites, such as nematode infections of liver; (5) cytokine and inflammatory models, including local delivery or viral overexpression of active transforming growth factor beta; (6) "lifestyle" and metabolic models such as high-fat diet; and (7) various genetic models. We will briefly summarize the most widely used mouse models used to study myofibroblasts in tissue repair and fibrosis as well as genetic tools for manipulating myofibroblast repair functions in vivo.
Collapse
Affiliation(s)
- David Lagares
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Department of Medicine, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Fibrosis Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
226
|
Durant F, Whited JL. Finding Solutions for Fibrosis: Understanding the Innate Mechanisms Used by Super-Regenerator Vertebrates to Combat Scarring. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100407. [PMID: 34032013 PMCID: PMC8336523 DOI: 10.1002/advs.202100407] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/12/2021] [Indexed: 05/08/2023]
Abstract
Soft tissue fibrosis and cutaneous scarring represent massive clinical burdens to millions of patients per year and the therapeutic options available are currently quite limited. Despite what is known about the process of fibrosis in mammals, novel approaches for combating fibrosis and scarring are necessary. It is hypothesized that scarring has evolved as a solution to maximize healing speed to reduce fluid loss and infection. This hypothesis, however, is complicated by regenerative animals, which have arguably the most remarkable healing abilities and are capable of scar-free healing. This review explores the differences observed between adult mammalian healing that typically results in fibrosis versus healing in regenerative animals that heal scarlessly. Each stage of wound healing is surveyed in depth from the perspective of many regenerative and fibrotic healers so as to identify the most important molecular and physiological variances along the way to disparate injury repair outcomes. Understanding how these powerful model systems accomplish the feat of scar-free healing may provide critical therapeutic approaches to the treatment or prevention of fibrosis.
Collapse
Affiliation(s)
- Fallon Durant
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMA02138USA
| | - Jessica L. Whited
- Department of Stem Cell and Regenerative BiologyHarvard UniversityCambridgeMA02138USA
- The Harvard Stem Cell InstituteCambridgeMA02138USA
| |
Collapse
|
227
|
Affiliation(s)
- Richard A F Clark
- From the Departments of Dermatology and Biomedical Engineering, State University of New York at Stony Brook Health Sciences Center, Stony Brook, NY
| |
Collapse
|
228
|
Pereira D, Sequeira I. A Scarless Healing Tale: Comparing Homeostasis and Wound Healing of Oral Mucosa With Skin and Oesophagus. Front Cell Dev Biol 2021; 9:682143. [PMID: 34381771 PMCID: PMC8350526 DOI: 10.3389/fcell.2021.682143] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Epithelial tissues are the most rapidly dividing tissues in the body, holding a natural ability for renewal and regeneration. This ability is crucial for survival as epithelia are essential to provide the ultimate barrier against the external environment, protecting the underlying tissues. Tissue stem and progenitor cells are responsible for self-renewal and repair during homeostasis and following injury. Upon wounding, epithelial tissues undergo different phases of haemostasis, inflammation, proliferation and remodelling, often resulting in fibrosis and scarring. In this review, we explore the phenotypic differences between the skin, the oesophagus and the oral mucosa. We discuss the plasticity of these epithelial stem cells and contribution of different fibroblast subpopulations for tissue regeneration and wound healing. While these epithelial tissues share global mechanisms of stem cell behaviour for tissue renewal and regeneration, the oral mucosa is known for its outstanding healing potential with minimal scarring. We aim to provide an updated review of recent studies that combined cell therapy with bioengineering exporting the unique scarless properties of the oral mucosa to improve skin and oesophageal wound healing and to reduce fibrotic tissue formation. These advances open new avenues toward the ultimate goal of achieving scarless wound healing.
Collapse
Affiliation(s)
| | - Inês Sequeira
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
229
|
Fatehi Hassanabad A, Zarzycki AN, Jeon K, Deniset JF, Fedak PWM. Post-Operative Adhesions: A Comprehensive Review of Mechanisms. Biomedicines 2021; 9:biomedicines9080867. [PMID: 34440071 PMCID: PMC8389678 DOI: 10.3390/biomedicines9080867] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/27/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Post-surgical adhesions are common in almost all surgical areas and are associated with significant rates of morbidity, mortality, and increased healthcare costs, especially when a patient requires repeat operative interventions. Many groups have studied the mechanisms driving post-surgical adhesion formation. Despite continued advancements, we are yet to identify a prevailing mechanism. It is highly likely that post-operative adhesions have a multifactorial etiology. This complex pathophysiology, coupled with our incomplete understanding of the underlying pathways, has resulted in therapeutic options that have failed to demonstrate safety and efficacy on a consistent basis. The translation of findings from basic and preclinical research into robust clinical trials has also remained elusive. Herein, we present and contextualize the latest findings surrounding mechanisms that have been implicated in post-surgical adhesion formation.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.F.D.)
| | - Anna N. Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.F.D.)
| | - Kristina Jeon
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
| | - Justin F. Deniset
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.F.D.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Paul W. M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.F.D.)
- Correspondence:
| |
Collapse
|
230
|
Plikus MV, Wang X, Sinha S, Forte E, Thompson SM, Herzog EL, Driskell RR, Rosenthal N, Biernaskie J, Horsley V. Fibroblasts: Origins, definitions, and functions in health and disease. Cell 2021; 184:3852-3872. [PMID: 34297930 PMCID: PMC8566693 DOI: 10.1016/j.cell.2021.06.024] [Citation(s) in RCA: 538] [Impact Index Per Article: 134.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/28/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts are diverse mesenchymal cells that participate in tissue homeostasis and disease by producing complex extracellular matrix and creating signaling niches through biophysical and biochemical cues. Transcriptionally and functionally heterogeneous across and within organs, fibroblasts encode regional positional information and maintain distinct cellular progeny. We summarize their development, lineages, functions, and contributions to fibrosis in four fibroblast-rich organs: skin, lung, skeletal muscle, and heart. We propose that fibroblasts are uniquely poised for tissue repair by easily reentering the cell cycle and exhibiting a reversible plasticity in phenotype and cell fate. These properties, when activated aberrantly, drive fibrotic disorders in humans.
Collapse
Affiliation(s)
- Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA.
| | - Xiaojie Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, CA 92697, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA 92697, USA
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Elvira Forte
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
| | - Sean M Thompson
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Erica L Herzog
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520, USA.
| | - Ryan R Driskell
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA; Center for Reproductive Biology, Washington State University, Pullman, WA 99164, USA.
| | - Nadia Rosenthal
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK.
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Valerie Horsley
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA; Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
231
|
Zou ML, Teng YY, Wu JJ, Liu SY, Tang XY, Jia Y, Chen ZH, Zhang KW, Sun ZL, Li X, Ye JX, Xu RS, Yuan FL. Fibroblasts: Heterogeneous Cells With Potential in Regenerative Therapy for Scarless Wound Healing. Front Cell Dev Biol 2021; 9:713605. [PMID: 34354997 PMCID: PMC8329665 DOI: 10.3389/fcell.2021.713605] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 06/28/2021] [Indexed: 12/04/2022] Open
Abstract
In recent years, research on wound healing has become increasingly in-depth, but therapeutic effects are still not satisfactory. Occasionally, pathological tissue repair occurs. Influencing factors have been proposed, but finding the turning point between normal and pathological tissue repair is difficult. Therefore, we focused our attention on the most basic level of tissue repair: fibroblasts. Fibroblasts were once considered terminally differentiated cells that represent a single cell type, and their heterogeneity was not studied until recently. We believe that subpopulations of fibroblasts play different roles in tissue repair, resulting in different repair results, such as the formation of normal scars in physiological tissue repair and fibrosis or ulcers in pathological tissue repair. It is also proposed that scarless healing can be achieved by regulating fibroblast subpopulations.
Collapse
Affiliation(s)
- Ming-Li Zou
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Ying-Ying Teng
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jun-Jie Wu
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Si-Yu Liu
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Xiao-Yu Tang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Yuan Jia
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Zhong-Hua Chen
- Institute of Integrated Traditional Chinese and Western Medicine, The Third Hospital Affiliated to Nantong University, Wuxi, China
| | - Kai-Wen Zhang
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Zi-Li Sun
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China
| | - Xia Li
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jun-Xing Ye
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Rui-Sheng Xu
- Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Feng-Lai Yuan
- Wuxi Clinical Medicine School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Wuxi, China.,Institute of Integrated Traditional Chinese and Western Medicine, The Affiliated Hospital of Jiangnan University, Wuxi, China
| |
Collapse
|
232
|
Tabib T, Huang M, Morse N, Papazoglou A, Behera R, Jia M, Bulik M, Monier DE, Benos PV, Chen W, Domsic R, Lafyatis R. Myofibroblast transcriptome indicates SFRP2 hi fibroblast progenitors in systemic sclerosis skin. Nat Commun 2021; 12:4384. [PMID: 34282151 PMCID: PMC8289865 DOI: 10.1038/s41467-021-24607-6] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Skin and lung fibrosis in systemic sclerosis (SSc) is driven by myofibroblasts, alpha-smooth muscle actin expressing cells. The number of myofibroblasts in SSc skin correlates with the modified Rodnan skin score, the most widely used clinical measure of skin disease severity. Murine fibrosis models indicate that myofibroblasts can arise from a variety of different cell types, but their origin in SSc skin has remained uncertain. Utilizing single cell RNA-sequencing, we define different dermal fibroblast populations and transcriptome changes, comparing SSc to healthy dermal fibroblasts. Here, we show that SSc dermal myofibroblasts arise in two steps from an SFRP2hi/DPP4-expressing progenitor fibroblast population. In the first step, SSc fibroblasts show globally upregulated expression of transcriptome markers, such as PRSS23 and THBS1. A subset of these cells shows markers indicating that they are proliferating. Only a fraction of SFRP2hi SSc fibroblasts differentiate into myofibroblasts, as shown by expression of additional markers, SFRP4 and FNDC1. Bioinformatics analysis of the SSc fibroblast transcriptomes implicated upstream transcription factors, including FOSL2, RUNX1, STAT1, FOXP1, IRF7 and CREB3L1, as well as SMAD3, driving SSc myofibroblast differentiation. Myofibroblasts drive fibrosis in systemic sclerosis (SSc), but the cellular progenitors are unknown. Utilizing single cell RNA-sequencing, the authors show that SSc dermal myofibroblasts arise in a two-step process from SFRP2/DPP4-expressing progenitors and implicate upstream transcription factors.
Collapse
Affiliation(s)
- Tracy Tabib
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Mengqi Huang
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Nina Morse
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Anna Papazoglou
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Rithika Behera
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Minxue Jia
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA
| | - Melissa Bulik
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Daisy E Monier
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robyn Domsic
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
233
|
Huang X, Khoong Y, Han C, Su D, Ma H, Gu S, Li Q, Zan T. Targeting Dermal Fibroblast Subtypes in Antifibrotic Therapy: Surface Marker as a Cellular Identity or a Functional Entity? Front Physiol 2021; 12:694605. [PMID: 34335301 PMCID: PMC8319956 DOI: 10.3389/fphys.2021.694605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/16/2021] [Indexed: 02/01/2023] Open
Abstract
Fibroblasts are the chief effector cells in fibrotic diseases and have been discovered to be highly heterogeneous. Recently, fibroblast heterogeneity in human skin has been studied extensively and several surface markers for dermal fibroblast subtypes have been identified, holding promise for future antifibrotic therapies. However, it has yet to be confirmed whether surface markers should be looked upon as merely lineage landmarks or as functional entities of fibroblast subtypes, which may further complicate the interpretation of cellular function of these fibroblast subtypes. This review aims to provide an update on current evidence on fibroblast surface markers in fibrotic disorders of skin as well as of other organ systems. Specifically, studies where surface markers were treated as lineage markers and manipulated as functional membrane proteins are both evaluated in parallel, hoping to reveal the underlying mechanism behind the pathogenesis of tissue fibrosis contributed by various fibroblast subtypes from multiple angles, shedding lights on future translational researches.
Collapse
Affiliation(s)
- Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chengyao Han
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Dai Su
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuchen Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
234
|
Li FJ, Surolia R, Li H, Wang Z, Liu G, Kulkarni T, Massicano AVF, Mobley JA, Mondal S, de Andrade JA, Coonrod SA, Thompson PR, Wille K, Lapi SE, Athar M, Thannickal VJ, Carter AB, Antony VB. Citrullinated vimentin mediates development and progression of lung fibrosis. Sci Transl Med 2021; 13:13/585/eaba2927. [PMID: 33731433 DOI: 10.1126/scitranslmed.aba2927] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/06/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022]
Abstract
The mechanisms by which environmental exposures contribute to the pathogenesis of lung fibrosis are unclear. Here, we demonstrate an increase in cadmium (Cd) and carbon black (CB), common components of cigarette smoke (CS) and environmental particulate matter (PM), in lung tissue from subjects with idiopathic pulmonary fibrosis (IPF). Cd concentrations were directly proportional to citrullinated vimentin (Cit-Vim) amounts in lung tissue of subjects with IPF. Cit-Vim amounts were higher in subjects with IPF, especially smokers, which correlated with lung function and were associated with disease manifestations. Cd/CB induced the secretion of Cit-Vim in an Akt1- and peptidylarginine deiminase 2 (PAD2)-dependent manner. Cit-Vim mediated fibroblast invasion in a 3D ex vivo model of human pulmospheres that resulted in higher expression of CD26, collagen, and α-SMA. Cit-Vim activated NF-κB in a TLR4-dependent fashion and induced the production of active TGF-β1, CTGF, and IL-8 along with higher surface expression of TLR4 in lung fibroblasts. To corroborate ex vivo findings, mice treated with Cit-Vim, but not Vim, independently developed a similar pattern of fibrotic tissue remodeling, which was TLR4 dependent. Moreover, wild-type mice, but not PAD2-/- and TLR4 mutant (MUT) mice, exposed to Cd/CB generated high amounts of Cit-Vim, in both plasma and bronchoalveolar lavage fluid, and developed lung fibrosis in a stereotypic manner. Together, these studies support a role for Cit-Vim as a damage-associated molecular pattern molecule (DAMP) that is generated by lung macrophages in response to environmental Cd/CB exposure. Furthermore, PAD2 might represent a promising target to attenuate Cd/CB-induced fibrosis.
Collapse
Affiliation(s)
- Fu Jun Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ranu Surolia
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Huashi Li
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zheng Wang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Gang Liu
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tejaswini Kulkarni
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Adriana V F Massicano
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - James A Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Santanu Mondal
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Joao A de Andrade
- Vanderbilt Lung Institute, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Scott A Coonrod
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Paul R Thompson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Keith Wille
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Suzanne E Lapi
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Birmingham VA Medical Center, Birmingham, AL 35294, USA
| | - A Brent Carter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.,Birmingham VA Medical Center, Birmingham, AL 35294, USA
| | - Veena B Antony
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
235
|
Walker JT, Flynn LE, Hamilton DW. Lineage tracing of Foxd1-expressing embryonic progenitors to assess the role of divergent embryonic lineages on adult dermal fibroblast function. FASEB Bioadv 2021; 3:541-557. [PMID: 34258523 PMCID: PMC8255845 DOI: 10.1096/fba.2020-00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 01/10/2023] Open
Abstract
Recent studies have highlighted the functional diversity of dermal fibroblast populations in health and disease, with part of this diversity linked to fibroblast lineage and embryonic origin. Fibroblasts derived from foxd1-expressing progenitors contribute to the myofibroblast populations present in lung and kidney fibrosis in mice but have not been investigated in the context of dermal wound repair. Using a Cre/Lox system to genetically track populations derived from foxd1-expressing progenitors, lineage-positive fibroblasts were identified as a subset of the dermal fibroblast population. During development, lineage-positive cells were most abundant within the dorsal embryonic tissues, contributing to the developing dermal fibroblast population, and remaining in this niche into adulthood. In adult mice, assessment of fibrosis-related gene expression in lineage-positive and lineage-negative populations isolated from wounded and unwounded dorsal skin was performed, identifying an enrichment of transcripts associated with matrix synthesis and remodeling in the lineage-positive populations. Using a novel excisional wound model, ventral skin healed with a greatly reduced frequency of foxd1 lineage-positive cells. This work supports that the embryonic origin of fibroblasts is an important predictor of fibroblast function, but also highlights that within disparate regions, fibroblasts of different lineages likely undergo convergent differentiation contributing to phenotypic similarities.
Collapse
Affiliation(s)
- John T. Walker
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
| | - Lauren E. Flynn
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
- Department of Chemical and Biochemical EngineeringThompson Engineering BuildingThe University of Western OntarioLondonONCanada
| | - Douglas W. Hamilton
- Department of Anatomy and Cell BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonOntarioCanada
- Division of Oral BiologySchulich School of Medicine and DentistryThe University of Western OntarioLondonONCanada
| |
Collapse
|
236
|
The Three Rs of Single-Cell RNA Sequencing: Reuse, Refine, and Resource. J Invest Dermatol 2021; 141:1627-1629. [PMID: 34167721 DOI: 10.1016/j.jid.2021.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 11/21/2022]
Abstract
Single-cell RNA sequencing (scRNA-seq) provides an unprecedented ability to investigate cellular heterogeneity in entire organs and tissues, including human skin. Ascensión et al. (2020) combined and reanalyzed human skin scRNA-seq datasets to uncover new insights into fibroblast heterogeneity. This work demonstrates that new discoveries can be made from published data on the basis of principles of these three Rs: Reuse, Refine, and Resource.
Collapse
|
237
|
Lina I, Tsai HW, Ding D, Davis R, Motz KM, Hillel AT. Characterization of Fibroblasts in Iatrogenic Laryngotracheal Stenosis and Type II Diabetes Mellitus. Laryngoscope 2021; 131:1570-1577. [PMID: 32857885 PMCID: PMC7914267 DOI: 10.1002/lary.29026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/29/2020] [Accepted: 07/27/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Iatrogenic laryngotracheal stenosis (iLTS) is the pathological narrowing of the glottis, subglottis, and/or trachea due to scar tissue. Patients with type 2 diabetes mellitus (T2DM) are over 8 times more likely to develop iLTS and represent 26% to 53% of all iLTS patients. In this investigation, we compared iLTS scar-derived fibroblasts in patients with and without T2DM. STUDY DESIGN Controlled ex vivo study. METHODS iLTS scar fibroblasts were isolated and cultured from subglottic scar biopsies in iLTS patients diagnosed with or without type 2 diabetes (non-T2DM). Fibroblast proliferation, fibrosis-related gene expression, and metabolic utilization of oxidative phosphorylation (OXPHOS) and glycolysis were assessed. Contractility was measured using a collagen-based assay. Metabolically targeted drugs (metformin, phenformin, amobarbital) were tested, and changes in fibrosis-related gene expression, collagen protein, and contractility were evaluated. RESULTS Compared to non-T2DM, T2DM iLTS scar fibroblasts had increased α-smooth muscle actin (αSMA) expression (8.2× increased, P = .020), increased contractility (mean 71.4 ± 4.3% vs. 51.7 ± 16% Δ area × 90 minute-1 , P = .016), and reduced proliferation (1.9× reduction at 5 days, P < .01). Collagen 1 (COL1) protein was significantly higher in the T2DM group (mean 2.06 ± 0.19 vs. 0.74 ±.44 COL1/total protein [pg/μg], P = .036). T2DM iLTS scar fibroblasts had increased measures of OXPHOS, including basal respiration (mean 86.7 vs. 31.5 pmol/minute/10 μg protein, P = .016) and adenosine triphosphate (ATP) generation (mean 97.5 vs. 25.7 pmol/minute/10 μg protein, P = .047) compared to non-T2DM fibroblasts. Amobarbital reduced cellular contractility; decreased collagen protein; and decreased expression of αSMA, COL1, and fibronectin. Metformin and phenformin did not significantly affect fibrosis-related gene expression. CONCLUSION T2DM iLTS scar fibroblasts demonstrate a myofibroblast phenotype and greater contractility compared to non-T2DM. Their bioenergetic preference for OXPHOS drives their increased contractility, which is selectively targeted by amobarbital. LEVEL OF EVIDENCE NA Laryngoscope, 131:1570-1577, 2021.
Collapse
Affiliation(s)
- Ioan Lina
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, U.S.A
| | - Hsiu-Wen Tsai
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, U.S.A
| | - Dacheng Ding
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, U.S.A
| | - Ruth Davis
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, U.S.A
| | - Kevin M Motz
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, U.S.A
| | - Alexander T Hillel
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins Medical Institutions, Baltimore, Maryland, U.S.A
| |
Collapse
|
238
|
Chen HY, Lin TC, Chiang CY, Wey SL, Lin FH, Yang KC, Chang CH, Hu MH. Antifibrotic Effect of Bletilla striata Polysaccharide-Resveratrol-Impregnated Dual-Layer Carboxymethyl Cellulose-Based Sponge for The Prevention of Epidural Fibrosis after Laminectomy. Polymers (Basel) 2021; 13:polym13132129. [PMID: 34209540 PMCID: PMC8271895 DOI: 10.3390/polym13132129] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
The application of antifibrotic materials can alleviate epidural fibrosis by restricting excessive fibroblast proliferation and mitigating scar tissue formation. Here, a biodegradable carboxymethyl cellulose (CMC)-Bletilla striata polysaccharide (BSP)-resveratrol (RES) sponge was fabricated to inhibit scar tissue formation post laminectomy surgery. Fibroblasts NIH/3T3, myoblasts C2C12, neural cells PC-12, and Schwann cells RSC96 were used to evaluate the in vitro cytocompatibility. Laminectomies on 10 Sprague–Dawley rats with/without the application of the CMC-BSP-RES sponge were performed. The severity of adhesion between the dura mater and formed scar tissue was qualitatively scored. All cell lines exhibited good viability with no significant difference in cytotoxicity when cultured with variable extractions of the CMC-BSP-RES sponge. S100a4 and P4hb expressions were downregulated in NIH/3T3 cultured in the CMC-BSP-RES sponge, implying that this sponge potentially inhibits fibroblast activity. No post-operative shrinkage or dura mater expansion along the surgical site was detected. The peel-off tests revealed that the tenacity of adhesion de-creased. Histopathological examinations verified that the average number of fibroblasts in the CMC-BSP-RES group considerably decreased. The CMC-BSP-RES sponge is a biocompatible and effective material for alleviating post-operative epidural fibrosis and mitigating fibroblast expression following laminectomy.
Collapse
Affiliation(s)
- Hsuan-Yu Chen
- Department of Biomedical Engineering, National Taiwan University, Taipei 106216, Taiwan; (H.-Y.C.); (T.-C.L.); (C.-Y.C.); (F.-H.L.)
- Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Orthopedics, National Taiwan University HsinChu Hospital, HsinChu 300016, Taiwan
| | - Tzu-Chieh Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei 106216, Taiwan; (H.-Y.C.); (T.-C.L.); (C.-Y.C.); (F.-H.L.)
| | - Chih-Yung Chiang
- Department of Biomedical Engineering, National Taiwan University, Taipei 106216, Taiwan; (H.-Y.C.); (T.-C.L.); (C.-Y.C.); (F.-H.L.)
- Department of Orthopedics, En Chu Kong Hospital, San-Shia, New Taipei City 23742, Taiwan
| | - Shiuan-Li Wey
- Department of Pathology, Hsinchu Mackay Memorial Hospital, HsinChu City 30071, Taiwan;
| | - Feng-Huei Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei 106216, Taiwan; (H.-Y.C.); (T.-C.L.); (C.-Y.C.); (F.-H.L.)
| | - Kai-Chiang Yang
- Department of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chih-Hao Chang
- Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 100225, Taiwan
- Department of Orthopedics, National Taiwan University Hospital, Jin-Shan Branch, New Taipei City 20844, Taiwan
- Correspondence: (C.-H.C.); (M.-H.H.); Tel.: +886-2-2312-3456 (C.-H.C.); +886-2-2312-3456 (M.-H.H.)
| | - Ming-Hsiao Hu
- Department of Orthopedics, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei 100225, Taiwan
- Correspondence: (C.-H.C.); (M.-H.H.); Tel.: +886-2-2312-3456 (C.-H.C.); +886-2-2312-3456 (M.-H.H.)
| |
Collapse
|
239
|
Pradhan RN, Krishnamurty AT, Fletcher AL, Turley SJ, Müller S. A bird's eye view of fibroblast heterogeneity: A pan-disease, pan-cancer perspective. Immunol Rev 2021; 302:299-320. [PMID: 34164824 DOI: 10.1111/imr.12990] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Fibroblasts, custodians of tissue architecture and function, are no longer considered a monolithic entity across tissues and disease indications. Recent advances in single-cell technologies provide an unrestricted, high-resolution view of fibroblast heterogeneity that exists within and across tissues. In this review, we summarize a compendium of single-cell transcriptomic studies and provide a comprehensive accounting of fibroblast subsets, many of which have been described to occupy specific niches in tissues at homeostatic and pathologic states. Understanding this heterogeneity is particularly important in the context of cancer, as the diverse cancer-associated fibroblast (CAF) phenotypes in the tumor microenvironment (TME) are directly impacted by the expression phenotypes of their predecessors. Relationships between these heterogeneous populations often accompany and influence response to therapy in cancer and fibrosis. We further highlight the importance of integrating single-cell studies to deduce common fibroblast phenotypes across disease states, which will facilitate the identification of common signaling pathways, gene regulatory programs, and cell surface markers that are going to advance drug discovery and targeting.
Collapse
|
240
|
Merkt W, Zhou Y, Han H, Lagares D. Myofibroblast fate plasticity in tissue repair and fibrosis: Deactivation, apoptosis, senescence and reprogramming. Wound Repair Regen 2021; 29:678-691. [PMID: 34117675 DOI: 10.1111/wrr.12952] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/10/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
In response to tissue injury, fibroblasts differentiate into professional repair cells called myofibroblasts, which orchestrate many aspects of the normal tissue repair programme including synthesis, deposition and contraction of extracellular matrix proteins, leading to wound closure. Successful tissue repair responses involve termination of myofibroblast activities in order to prevent pathologic fibrotic scarring. Here, we discuss the cellular and molecular mechanisms limiting myofibroblast activities during physiological tissue repair, including myofibroblast deactivation, apoptosis, reprogramming and immune clearance of senescent myofibroblasts. In addition, we summarize pathological mechanisms leading to myofibroblast persistence and survival, a hallmark of fibrotic diseases. Finally, we discuss emerging anti-fibrotic therapies aimed at targeting myofibroblast fate such as senolytics, gene therapy, cellular immunotherapy and CAR-T cells.
Collapse
Affiliation(s)
- Wolfgang Merkt
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Hematology, Oncology and Rheumatology, Internal Medicine V, University Hospital of Heidelberg, Heidelberg, Germany
| | - Yan Zhou
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Physiology, Xiangya Medical School, Central South University, Changsha, China
| | - Hongwei Han
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David Lagares
- Fibrosis Research Center, Center for Immunology and Inflammatory Diseases, Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
241
|
Correa-Gallegos D, Rinkevich Y. Cutting into wound repair. FEBS J 2021; 289:5034-5048. [PMID: 34137168 DOI: 10.1111/febs.16078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/02/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022]
Abstract
The skin is home to an assortment of fibroblastic lineages that shape the wound repair response toward scars or regeneration. In this review, we discuss the distinct embryonic origins, anatomic locations, and functions of fibroblastic lineages, and how these distinct lineages of fibroblasts dictate the skin's wound response across injury depths, anatomic locations, and embryonic development to promote either scarring or regeneration. We highlight the supportive role of the fascia in dictating scarring outcomes; we then discuss recent findings that indicate fascia mobilization by its resident fibroblasts supersede the classical de novo deposition program of wound matrix formation. These recent findings reconfigure our traditional view of wound repair and present exciting new therapeutic avenues to treat scarring and fibrosis across a range of medical settings.
Collapse
Affiliation(s)
- Donovan Correa-Gallegos
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
242
|
Deng CC, Hu YF, Zhu DH, Cheng Q, Gu JJ, Feng QL, Zhang LX, Xu YP, Wang D, Rong Z, Yang B. Single-cell RNA-seq reveals fibroblast heterogeneity and increased mesenchymal fibroblasts in human fibrotic skin diseases. Nat Commun 2021; 12:3709. [PMID: 34140509 PMCID: PMC8211847 DOI: 10.1038/s41467-021-24110-y] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrotic skin disease represents a major global healthcare burden, characterized by fibroblast hyperproliferation and excessive accumulation of extracellular matrix. Fibroblasts are found to be heterogeneous in multiple fibrotic diseases, but fibroblast heterogeneity in fibrotic skin diseases is not well characterized. In this study, we explore fibroblast heterogeneity in keloid, a paradigm of fibrotic skin diseases, by using single-cell RNA-seq. Our results indicate that keloid fibroblasts can be divided into 4 subpopulations: secretory-papillary, secretory-reticular, mesenchymal and pro-inflammatory. Interestingly, the percentage of mesenchymal fibroblast subpopulation is significantly increased in keloid compared to normal scar. Functional studies indicate that mesenchymal fibroblasts are crucial for collagen overexpression in keloid. Increased mesenchymal fibroblast subpopulation is also found in another fibrotic skin disease, scleroderma, suggesting this is a broad mechanism for skin fibrosis. These findings will help us better understand skin fibrotic pathogenesis, and provide potential targets for fibrotic disease therapies.
Collapse
Affiliation(s)
- Cheng-Cheng Deng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yong-Fei Hu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ding-Heng Zhu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qing Cheng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jing-Jing Gu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qing-Lan Feng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Li-Xue Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ying-Ping Xu
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Dong Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhili Rong
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Key Laboratory of Organ Failure Research (Ministry of Education), Guangzhou, China.
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
243
|
Sawant M, Hinz B, Schönborn K, Zeinert I, Eckes B, Krieg T, Schuster R. A story of fibers and stress: Matrix-embedded signals for fibroblast activation in the skin. Wound Repair Regen 2021; 29:515-530. [PMID: 34081361 DOI: 10.1111/wrr.12950] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/13/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
Our skin is continuously exposed to mechanical challenge, including shear, stretch, and compression. The extracellular matrix of the dermis is perfectly suited to resist these challenges and maintain integrity of normal skin even upon large strains. Fibroblasts are the key cells that interpret mechanical and chemical cues in their environment to turnover matrix and maintain homeostasis in the skin of healthy adults. Upon tissue injury, fibroblasts and an exclusive selection of other cells become activated into myofibroblasts with the task to restore skin integrity by forming structurally imperfect but mechanically stable scar tissue. Failure of myofibroblasts to terminate their actions after successful repair or upon chronic inflammation results in dysregulated myofibroblast activities which can lead to hypertrophic scarring and/or skin fibrosis. After providing an overview on the major fibrillar matrix components in normal skin, we will interrogate the various origins of fibroblasts and myofibroblasts in the skin. We then examine the role of the matrix as signaling hub and how fibroblasts respond to mechanical matrix cues to restore order in the confusing environment of a healing wound.
Collapse
Affiliation(s)
- Mugdha Sawant
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Katrin Schönborn
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Isabel Zeinert
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Canada.,PhenomicAI, MaRS Centre, 661 University Avenue, Toronto, Canada
| |
Collapse
|
244
|
Goss G, Rognoni E, Salameti V, Watt FM. Distinct Fibroblast Lineages Give Rise to NG2+ Pericyte Populations in Mouse Skin Development and Repair. Front Cell Dev Biol 2021; 9:675080. [PMID: 34124060 PMCID: PMC8194079 DOI: 10.3389/fcell.2021.675080] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
We have examined the developmental origins of Ng2+ perivascular cell populations that adhere to the basement membrane of blood vessels, and their contribution to wound healing. Neural/glial antigen 2 (Ng2) labeled most perivascular cells (70-80%) in developing and adult mouse back skin, a higher proportion than expressed by other pericyte markers Tbx18, Nestin and Pdgfrβ. In adult mouse back skin Ng2+ perivascular cells could be categorized into 4 populations based on whether they expressed Pdgfrα and Pdgfrβ individually or in combination or were Pdgfr-negative. Lineage tracing demonstrated that although Ng2+ cells in embryonic and neonatal back skin contributed to multiple cell types they did not give rise to interfollicular fibroblasts within the dermis. Lineage tracing of distinct fibroblast populations during skin development showed that papillary fibroblasts (Lrig1+) gave rise to Ng2+ perivascular cells in the upper dermis, whilst Ng2+ perivascular cells in the lower dermis were primarily derived from reticular Dlk1+ fibroblasts. Following wounding of adult skin, Ng2+ dermal cells only give rise to Ng2+ blood vessel associated cells and did not contribute to other fibroblast lineages. The relative abundance of Ng2+ Pdgfrβ+ perivascular populations was comparable in wounded and non-wounded skin, indicating that perivascular heterogeneity was maintained during full thickness skin repair. In the wound bed Ng2+ perivascular populations were primarily derived from Lrig1+ papillary or Dlk1+ reticular fibroblast lineages, according to the location of the regenerating blood vessels. We conclude that Ng2+ perivascular cells represent a heterogeneous lineage restricted population that is primarily recruited from the papillary or reticular fibroblast lineages during tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Fiona M. Watt
- Centre for Stem Cells and Regenerative Medicine, King’s College London, Guy’s Hospital, London, United Kingdom
| |
Collapse
|
245
|
Correa-Gallegos D, Jiang D, Rinkevich Y. Fibroblasts as confederates of the immune system. Immunol Rev 2021; 302:147-162. [PMID: 34036608 DOI: 10.1111/imr.12972] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 12/18/2022]
Abstract
Fibroblastic stromal cells are as diverse, in origin and function, as the niches they fashion in the mammalian body. This cellular variety impacts the spectrum of responses elicited by the immune system. Fibroblast influence on the immune system keeps evolving our perspective on fibroblast roles and functions beyond just a passive structural part of organs. This review discusses the foundations of fibroblastic stromal-immune crosstalk, under the scope of stromal heterogeneity as a basis for tissue-specific tutoring of the immune system. Focusing on the skin as a relevant immunological organ, we detail the complex interactions between distinct fibroblast populations and immune cells that occur during homeostasis, injury repair, scarring, and disease. We further review the relevance of fibroblastic stromal cell heterogeneity and how this heterogeneity is central to regulate the immune system from its inception during embryonic development into adulthood.
Collapse
Affiliation(s)
- Donovan Correa-Gallegos
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Dongsheng Jiang
- Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum München, Munich, Germany
| | - Yuval Rinkevich
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
246
|
Venning FA, Zornhagen KW, Wullkopf L, Sjölund J, Rodriguez-Cupello C, Kjellman P, Morsing M, Hajkarim MC, Won KJ, Erler JT, Madsen CD. Deciphering the temporal heterogeneity of cancer-associated fibroblast subpopulations in breast cancer. J Exp Clin Cancer Res 2021; 40:175. [PMID: 34016130 PMCID: PMC8138934 DOI: 10.1186/s13046-021-01944-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/11/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) comprise a heterogeneous population of stromal cells within the tumour microenvironment. CAFs exhibit both tumour-promoting and tumour-suppressing functions, making them exciting targets for improving cancer treatments. Careful isolation, identification, and characterisation of CAF heterogeneity is thus necessary for ex vivo validation and future implementation of CAF-targeted strategies in cancer. METHODS Murine 4T1 (metastatic) and 4T07 (poorly/non-metastatic) orthotopic triple negative breast cancer tumours were collected after 7, 14, or 21 days. The tumours were analysed via flow cytometry for the simultaneous expression of six CAF markers: alpha smooth muscle actin (αSMA), fibroblast activation protein alpha (FAPα), platelet derived growth factor receptor alpha and beta (PDGFRα and PDGFRβ), CD26/DPP4 and podoplanin (PDPN). All non-CAFs were excluded from the analysis using a lineage marker cocktail (CD24, CD31, CD45, CD49f, EpCAM, LYVE-1, and TER-119). In total 128 murine tumours and 12 healthy mammary fat pads were analysed. RESULTS We have developed a multicolour flow cytometry strategy based on exclusion of non-CAFs and successfully employed this to explore the temporal heterogeneity of freshly isolated CAFs in the 4T1 and 4T07 mouse models of triple-negative breast cancer. Analysing 128 murine tumours, we identified 5-6 main CAF populations and numerous minor ones based on the analysis of αSMA, FAPα, PDGFRα, PDGFRβ, CD26, and PDPN. All markers showed temporal changes with a distinct switch from primarily PDGFRα+ fibroblasts in healthy mammary tissue to predominantly PDGFRβ+ CAFs in tumours. CD26+ CAFs emerged as a large novel subpopulation, only matched by FAPα+ CAFs in abundance. CONCLUSION We demonstrate that multiple subpopulations of CAFs co-exist in murine triple negative breast cancer, and that the abundance and dynamics for each marker differ depending on tumour type and time. Our results form the foundation needed to isolate and characterise specific CAF populations, and ultimately provide an opportunity to therapeutically target specific CAF subpopulations.
Collapse
Affiliation(s)
- Freja Albjerg Venning
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Kamilla Westarp Zornhagen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Lena Wullkopf
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Jonas Sjölund
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Scheelevägen 2, 22381, Lund, Sweden
| | - Carmen Rodriguez-Cupello
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Scheelevägen 2, 22381, Lund, Sweden
| | - Pontus Kjellman
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Scheelevägen 2, 22381, Lund, Sweden
| | - Mikkel Morsing
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Scheelevägen 2, 22381, Lund, Sweden
| | - Morteza Chalabi Hajkarim
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Kyoung Jae Won
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
| | - Janine Terra Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| | - Chris Denis Madsen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Scheelevägen 2, 22381, Lund, Sweden.
| |
Collapse
|
247
|
Distinct fibroblasts in scars and regeneration. Curr Opin Genet Dev 2021; 70:7-14. [PMID: 34022662 DOI: 10.1016/j.gde.2021.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/12/2021] [Accepted: 04/23/2021] [Indexed: 12/13/2022]
Abstract
The skin is home to a collection of fibroblastic cell types from varying embryonic origins. These varying fibroblastic lineages display unique genetic programs and in vivo functions. Studying the diversity of fibroblastic cells is emerging as an important area for cutaneous biology, wound repair and regenerative medicine. In this mini-review we discuss the distinct embryonic origins, microenvironments, and transcriptomic profiles of fibroblastic lineages, and how these varying lineages shape the skin's wound response across injury depths, anatomic locations, and developmental time to promote either scarring or regeneration. We outline how the development of single cell sequencing has led to our improved understanding of fibroblastic lineages at the molecular level and discuss existing challenges and future outlook on developing regenerative therapies that are based on this emerging field of eclectic fibroblasts.
Collapse
|
248
|
Julien A, Kanagalingam A, Martínez-Sarrà E, Megret J, Luka M, Ménager M, Relaix F, Colnot C. Direct contribution of skeletal muscle mesenchymal progenitors to bone repair. Nat Commun 2021; 12:2860. [PMID: 34001878 PMCID: PMC8128920 DOI: 10.1038/s41467-021-22842-5] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/29/2021] [Indexed: 12/13/2022] Open
Abstract
Bone regenerates by activation of tissue resident stem/progenitor cells, formation of a fibrous callus followed by deposition of cartilage and bone matrices. Here, we show that mesenchymal progenitors residing in skeletal muscle adjacent to bone mediate the initial fibrotic response to bone injury and also participate in cartilage and bone formation. Combined lineage and single-cell RNA sequencing analyses reveal that skeletal muscle mesenchymal progenitors adopt a fibrogenic fate before they engage in chondrogenesis after fracture. In polytrauma, where bone and skeletal muscle are injured, skeletal muscle mesenchymal progenitors exhibit altered fibrogenesis and chondrogenesis. This leads to impaired bone healing, which is due to accumulation of fibrotic tissue originating from skeletal muscle and can be corrected by the anti-fibrotic agent Imatinib. These results elucidate the central role of skeletal muscle in bone regeneration and provide evidence that skeletal muscle can be targeted to prevent persistent callus fibrosis and improve bone healing after musculoskeletal trauma.
Collapse
Affiliation(s)
- Anais Julien
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | | | | | - Jérome Megret
- Cytometry core facility, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Marine Luka
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Mickaël Ménager
- Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Université de Paris, Imagine Institute, INSERM UMR 1163, Paris, France
| | | | - Céline Colnot
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France.
| |
Collapse
|
249
|
Schuster R, Rockel JS, Kapoor M, Hinz B. The inflammatory speech of fibroblasts. Immunol Rev 2021; 302:126-146. [PMID: 33987902 DOI: 10.1111/imr.12971] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/18/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023]
Abstract
Activation of fibroblasts is a key event during normal tissue repair after injury and the dysregulated repair processes that result in organ fibrosis. To most researchers, fibroblasts are rather unremarkable spindle-shaped cells embedded in the fibrous collagen matrix of connective tissues and/or deemed useful to perform mechanistic studies with adherent cells in culture. For more than a century, fibroblasts escaped thorough classification due to the lack of specific markers and were treated as the leftovers after all other cells have been identified from a tissue sample. With novel cell lineage tracing and single cell transcriptomics tools, bona fide fibroblasts emerge as only one heterogeneous sub-population of a much larger group of partly overlapping cell types, including mesenchymal stromal cells, fibro-adipogenic progenitor cells, pericytes, and/or perivascular cells. All these cells are activated to contribute to tissue repair after injury and/or chronic inflammation. "Activation" can entail various functions, such as enhanced proliferation, migration, instruction of inflammatory cells, secretion of extracellular matrix proteins and organizing enzymes, and acquisition of a contractile myofibroblast phenotype. We provide our view on the fibroblastic cell types and activation states playing a role during physiological and pathological repair and their crosstalk with inflammatory macrophages. Inflammation and fibrosis of the articular synovium during rheumatoid arthritis and osteoarthritis are used as specific examples to discuss inflammatory fibroblast phenotypes. Ultimately, delineating the precursors and functional roles of activated fibroblastic cells will contribute to better and more specific intervention strategies to treat fibroproliferative and fibrocontractive disorders.
Collapse
Affiliation(s)
- Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada.,PhenomicAI, MaRS Centre, Toronto, ON, Canada
| | - Jason S Rockel
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Mohit Kapoor
- Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.,Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Surgery, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
250
|
desJardins-Park HE, Mascharak S, Longaker MT, Wan DC. Endogenous Mechanisms of Craniomaxillofacial Repair: Toward Novel Regenerative Therapies. FRONTIERS IN ORAL HEALTH 2021; 2:676258. [PMID: 35048022 PMCID: PMC8757793 DOI: 10.3389/froh.2021.676258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
In the fields of oral and craniomaxillofacial surgery, regeneration of multiple tissue types-including bone, skin, teeth, and mucosal soft tissue-is often a desired outcome. However, limited endogenous capacity for regeneration, as well as predisposition of many tissues to fibrotic healing, may prevent recovery of normal form and function for patients. Recent basic science research has advanced our understanding of molecular and cellular pathways of repair in the oral/craniofacial region and how these are influenced by local microenvironment and embryonic origin. Here, we review the current state of knowledge in oral and craniomaxillofacial tissue repair/regeneration in four key areas: bone (in the context of calvarial defects and mandibular regeneration during distraction osteogenesis); skin (in the context of cleft lip/palate surgery); oral mucosa (in the context of minimally scarring repair of mucosal injuries); and teeth (in the context of dental disease/decay). These represent four distinct healing processes and outcomes. We will discuss both divergent and conserved pathways of repair in these contexts, with an eye toward fundamental mechanisms of regeneration vs. fibrosis as well as translational research directions. Ultimately, this knowledge can be leveraged to develop new cell-based and molecular treatment strategies to encourage bone and soft tissue regeneration in oral and craniomaxillofacial surgery.
Collapse
Affiliation(s)
- Heather E. desJardins-Park
- Division of Plastic and Reconstructive Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford School of Medicine, Department of Surgery, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, United States
| | - Shamik Mascharak
- Division of Plastic and Reconstructive Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford School of Medicine, Department of Surgery, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, United States
| | - Michael T. Longaker
- Division of Plastic and Reconstructive Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford School of Medicine, Department of Surgery, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, United States
| | - Derrick C. Wan
- Division of Plastic and Reconstructive Surgery, Hagey Laboratory for Pediatric Regenerative Medicine, Stanford School of Medicine, Department of Surgery, Stanford, CA, United States
| |
Collapse
|