201
|
Brown EP, Dowell KG, Boesch AW, Normandin E, Mahan AE, Chu T, Barouch DH, Bailey-Kellogg C, Alter G, Ackerman ME. Multiplexed Fc array for evaluation of antigen-specific antibody effector profiles. J Immunol Methods 2017; 443:33-44. [PMID: 28163018 PMCID: PMC5333794 DOI: 10.1016/j.jim.2017.01.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/27/2017] [Accepted: 01/31/2017] [Indexed: 01/09/2023]
Abstract
Antibodies are widely considered to be a frequent primary and often mechanistic correlate of protection of approved vaccines; thus evaluating the antibody response is of critical importance in attempting to understand and predict the efficacy of novel vaccine candidates. Historically, antibody responses have been analyzed by determining the titer of the humoral response using measurements such as an ELISA, neutralization, or agglutination assays. In the simplest case, sufficiently high titers of antibody against vaccine antigen(s) are sufficient to predict protection. However, antibody titer provides only a partial measure of antibody function, which is dependent on both the variable region (Fv) to bind the antigen target, and the constant region (Fc) to elicit an effector response from the innate arm of the immune system. In the case of some diseases, such as HIV, for which an effective vaccine has proven elusive, antibody effector function has been shown to be an important driver of monoclonal antibody therapy outcomes, of viral control in infected patients, and of vaccine-mediated protection in preclinical and clinical studies. We sought to establish a platform for the evaluation of the Fc domain characteristics of antigen-specific antibodies present in polyclonal samples in order to better develop insights into Fc receptor-mediated antibody effector activity, more fully understand how antibody responses may differ in association with disease progression and between subject groups, and differentiate protective from non-protective responses. To this end we have developed a high throughput biophysical platform capable of simultaneously evaluating many dimensions of the antibody effector response. High-throughput array-based characterization platform for polyclonal antibodies. Development of a biophysical proxy for antibody effector function. Antigen and Fc receptor recognition characteristics are captured. Enables systematic serologic studies of NHP and human antibody samples.
Collapse
Affiliation(s)
- Eric P Brown
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Karen G Dowell
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | - Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Erica Normandin
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Alison E Mahan
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Thach Chu
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Dan H Barouch
- Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
202
|
Adjuvanting a Simian Immunodeficiency Virus Vaccine with Toll-Like Receptor Ligands Encapsulated in Nanoparticles Induces Persistent Antibody Responses and Enhanced Protection in TRIM5α Restrictive Macaques. J Virol 2017; 91:JVI.01844-16. [PMID: 27928002 DOI: 10.1128/jvi.01844-16] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/23/2016] [Indexed: 12/16/2022] Open
Abstract
Our previous work has shown that antigens adjuvanted with ligands specific for Toll-like receptor 4 (TLR4) and TLR7/8 encapsulated in poly(lactic-co-glycolic) acid (PLGA)-based nanoparticles (NPs) induce robust and durable immune responses in mice and macaques. We investigated the efficacy of these NP adjuvants in inducing protective immunity against simian immunodeficiency virus (SIV). Rhesus macaques (RMs) were immunized with NPs containing TLR4 and TLR7/8 agonists mixed with soluble recombinant SIVmac239-derived envelope (Env) gp140 and Gag p55 (protein) or with virus-like particles (VLPs) containing SIVmac239 Env and Gag. NP-adjuvanted vaccines induced robust innate responses, antigen-specific antibody responses of a greater magnitude and persistence, and enhanced plasmablast responses compared to those achieved with alum-adjuvanted vaccines. NP-adjuvanted vaccines induced antigen-specific, long-lived plasma cells (LLPCs), which persisted in the bone marrow for several months after vaccination. NP-adjuvanted vaccines induced immune responses that were associated with enhanced protection against repeated low-dose, intravaginal challenges with heterologous SIVsmE660 in animals that carried TRIM5α restrictive alleles. The protection induced by immunization with protein-NP correlated with the prechallenge titers of Env-specific IgG antibodies in serum and vaginal secretions. However, no such correlate was apparent for immunization with VLP-NP or alum as the adjuvant. Transcriptional profiling of peripheral blood mononuclear cells isolated within the first few hours to days after primary vaccination revealed that NP-adjuvanted vaccines induced a molecular signature similar to that induced by the live attenuated yellow fever viral vaccine. This systems approach identified early blood transcriptional signatures that correlate with Env-specific antibody responses in vaginal secretions and protection against infection. These results demonstrate the adjuvanticity of the NP adjuvant in inducing persistent and protective antibody responses against SIV in RMs with implications for the design of vaccines against human immunodeficiency virus (HIV). IMPORTANCE The results of the RV144 HIV vaccine trial, which demonstrated a rapid waning of protective immunity with time, have underscored the need to develop strategies to enhance the durability of protective immune responses. Our recent work in mice has highlighted the capacity of nanoparticle-encapsulated TLR ligands (NP) to induce potent and durable antibody responses that last a lifetime in mice. In the present study, we evaluated the ability of these NP adjuvants to promote robust and durable protective immune responses against SIV in nonhuman primates. Our results demonstrate that immunization of rhesus macaques with NP adjuvants mixed with soluble SIV Env or a virus-like particle form of Env (VLP) induces potent and durable Env-specific antibody responses in the serum and in vaginal secretions. These responses were superior to those induced by alum adjuvant, and they resulted in enhanced protection against a low-dose intravaginal challenge with a heterologous strain of SIV in animals with TRIM5a restrictive alleles. These results highlight the potential for such NP TLR L adjuvants in promoting robust and durable antibody responses against HIV in the next generation of HIV immunogens currently being developed.
Collapse
|
203
|
Janowski AB, Krishnamurthy SR, Lim ES, Zhao G, Brenchley JM, Barouch DH, Thakwalakwa C, Manary MJ, Holtz LR, Wang D. Statoviruses, A novel taxon of RNA viruses present in the gastrointestinal tracts of diverse mammals. Virology 2017; 504:36-44. [PMID: 28152382 PMCID: PMC5515247 DOI: 10.1016/j.virol.2017.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/13/2017] [Accepted: 01/17/2017] [Indexed: 01/21/2023]
Abstract
Next-generation sequencing has expanded our understanding of the viral populations that constitute the mammalian virome. We describe a novel taxon of viruses named Statoviruses, for Stool associated Tombus-like viruses, present in multiple metagenomic datasets. These viruses define a novel clade that is phylogenetically related to the RNA virus families Tombusviridae and Flaviviridae. Five distinct statovirus types were identified in human, macaque, mouse, and cow gastrointestinal tract samples. The prototype genome, statovirus A, was frequently identified in macaque stool samples from multiple geographically distinct cohorts. Another genome, statovirus C1, was discovered in a stool sample from a human child with fever, cough, and rash. Further experimental data will clarify whether these viruses are infectious to mammals or if they originate from another source present in the mammalian gastrointestinal tract.
Collapse
Affiliation(s)
- Andrew B Janowski
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Siddharth R Krishnamurthy
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Efrem S Lim
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Guoyan Zhao
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Jason M Brenchley
- Lab of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research Beth Israel Deaconess Medical Center, Boston, MA, USA; Ragon Institute of MGH, MIT, and Harvard, Boston, MA, USA
| | - Chrissie Thakwalakwa
- Department of Community Health, College of Medicine, University of Malawi, Blantyre 3, Malawi
| | - Mark J Manary
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - Lori R Holtz
- Department of Pediatrics, Washington University School of Medicine, St Louis, MO, USA
| | - David Wang
- Department of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
204
|
Abstract
INTRODUCTION Despite many recent advances in the HIV prevention landscape, an effective vaccine remains the most promising tool to end the HIV-1 pandemic. Areas covered: This review summarizes past HIV vaccine efficacy trials and current vaccine strategies as well as new approaches about to move into first-in-human trials. Expert opinion: Despite many setbacks in early HIV vaccine efficacy trials, the success of RV144 has provided the glimmer of hope necessary to invigorate the vaccine field, and has led to the development of a large number of vaccine strategies aiming at inducing an array of different immune responses. The follow-up pox-protein trials, developed to replicate and enhance the polyfunctional antibody responses induced by the RV144 regimen, are already reaching efficacy trials, while a large body of work providing a more complete understanding of the development of broadly neutralizing antibodies is now being translated into immunogen design using several different strategies. T-cell based vaccines, fallen out of favor after Ad5-based trials showed increased infection rates in Ad5 seropositive vaccine recipients, are experiencing a comeback based in part on the promising results from non-human primate challenge studies using rhCMV-based immunogens. This diverse array of vaccine candidates may finally allow us to identify a broadly effective HIV vaccine able to contain the epidemic.
Collapse
Affiliation(s)
- Kristen W Cohen
- a Vaccine and Infectious Disease Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Nicole Frahm
- a Vaccine and Infectious Disease Division , Fred Hutchinson Cancer Research Center , Seattle , WA , USA.,b Department of Global Health , University of Washington , Seattle , WA , USA
| |
Collapse
|
205
|
VirusSeeker, a computational pipeline for virus discovery and virome composition analysis. Virology 2017; 503:21-30. [PMID: 28110145 DOI: 10.1016/j.virol.2017.01.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/07/2017] [Accepted: 01/10/2017] [Indexed: 01/21/2023]
Abstract
The advent of Next Generation Sequencing (NGS) has vastly increased our ability to discover novel viruses and to systematically define the spectrum of viruses present in a given specimen. Such studies have led to the discovery of novel viral pathogens as well as broader associations of the virome with diverse diseases including inflammatory bowel disease, severe acute malnutrition and HIV/AIDS. Critical to the success of these efforts are robust bioinformatic pipelines for rapid classification of microbial sequences. Existing computational tools are typically focused on either eukaryotic virus discovery or virome composition analysis but not both. Here we present VirusSeeker, a BLAST-based NGS data analysis pipeline designed for both purposes. VirusSeeker has been successfully applied in several previously published virome studies. Here we demonstrate the functionality of VirusSeeker in both novel virus discovery and virome composition analysis.
Collapse
|
206
|
Abstract
It is clear that antibodies can play a pivotal role in preventing the transmission of HIV-1 and large efforts to identify an effective antibody-based vaccine to quell the epidemic. Shortly after HIV-1 was discovered as the cause of AIDS, the search for epitopes recognized by neutralizing antibodies became the driving strategy for an antibody-based vaccine. Neutralization escape variants were discovered shortly thereafter, and, after almost three decades of investigation, it is now known that autologous neutralizing antibody responses and their selection of neutralization resistant HIV-1 variants can lead to broadly neutralizing antibodies in some infected individuals. This observation drives an intensive effort to identify a vaccine to elicit broadly neutralizing antibodies. In contrast, there has been less systematic study of antibody specificities that must rely mainly or exclusively on other protective mechanisms, although non-human primate (NHP) studies as well as the RV144 vaccine trial indicate that non-neutralizing antibodies can contribute to protection. Here we propose a novel strategy to identify new epitope targets recognized by these antibodies for which viral escape is unlikely or impossible.
Collapse
Affiliation(s)
- George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marzena Pazgier
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Anthony L DeVico
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
207
|
Lawrence D, Kuo L, Church E, Poon B, Smiley S, Sanders-Beer B, Dawson L, Salzwedel K. Highlights from the Third Biennial Strategies for an HIV Cure Meeting: 14-16 November 2016, Bethesda, MD, USA. J Virus Erad 2017; 3:69-76. [PMID: 28275462 PMCID: PMC5337425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Since the first Strategies for an HIV Cure Meeting organised by the National Institute of Allergy and Infectious Diseases (NIAID) in 2012, one of the primary purposes of the meeting has been to facilitate communication and foster collaboration across the NIAID-funded Martin Delaney Collaboratories for HIV cure research (MDC), the broader HIV cure-related research field, and industry and community stakeholders. This year's meeting agenda reflected NIAID's increasing investment over the last 5 years in research to identify strategies for eradicating or achieving long-term remission of HIV infection. Overviews and research highlights were presented from each of the Martin Delaney Collaboratories, as well as projects funded through the Beyond HAART programme, the Consortia for Innovative AIDS Research in Nonhuman Primates (CIAR) programme, the ACTG and IMPAACT clinical trial networks, and the NIAID Vaccine Research Center in hopes of stimulating cross-talk and synergy among these and other programmes focused on HIV cure research. Aside from the oral presentations described here, the meeting also included 75 poster presentations. Finally, community engagement activities and community participation in the MDC was highlighted throughout the first day and in a special session on Day 2. This reflects NIAID's commitment to engage community partners in the earliest stages of research towards curative interventions through the MDC programme. The entire meeting is available for viewing via the NIH VideoCast website at: https://videocast.nih.gov/PastEvents.asp.
Collapse
Affiliation(s)
- Diane Lawrence
- />Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Lillian Kuo
- />Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Elizabeth Church
- />Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Betty Poon
- />Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Stephen Smiley
- />Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Brigitte Sanders-Beer
- />Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Liza Dawson
- />Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| | - Karl Salzwedel
- />Division of AIDS,
National Institute of Allergy and Infectious Diseases,
Bethesda,
MD,
USA
| |
Collapse
|
208
|
Abstract
The scale and scope of the global epidemic, coupled to challenges with traditional vaccine development approaches, point toward a need for novel methodologies for HIV vaccine research. While the development of vaccines able to induce broadly neutralizing antibodies remains the ultimate goal, to date, vaccines continue to fail to induce these rare humoral immune responses. Conversely, growing evidence across vaccine platforms in both non-human primates and humans points to a role for polyclonal vaccine-induced antibody responses in protection from infection. These candidate vaccines, despite employing disparate viral vectors and immunization strategies, consistently identify a role for functional or non-traditional antibody activities as correlates of immunity. However, the precise mechanism(s) of action of these "binding" antibodies, their specific characteristics, and their ability to be selectively induced and/or potentiated to result in complete protection merits parallel investigation to neutralizing antibody-based vaccine design approaches. Ultimately, while neutralizing and functional antibody-based vaccine strategies need not be mutually exclusive, defining the specific characteristics of "protective" functional antibodies may provide a target immune profile to potentially induce more robust immunity against HIV. Specifically, one approach to guide the development of functional antibody-based vaccine strategies, termed "systems serology", offers an unbiased and comprehensive approach to systematically survey humoral immune responses, capturing the array of functions and humoral response characteristics that may be induced following vaccination with high resolution. Coupled to machine learning tools, large datasets that explore the "antibody-ome" offer a means to step back from anticipated correlates and mechanisms of protection and toward a more fundamental understanding of coordinated aspects of humoral immune responses, to more globally differentiate among vaccine candidates, and most critically, to identify the features of humoral immunity that distinguish protective from non-protective responses. Overall, the systematic serological approach described here aimed at broadly capturing the enormous biodiversity in antibody profiles that may emerge following vaccination, complements the existing cutting edge tools in the cellular immunology space that survey vaccine-induced polyfunctional cellular activity by flow cytometry, transcriptional profiling, epigenetic, and metabolomic analysis to offer a means to develop both a more nuanced and a more complete understanding of correlates of protection to support the design of functional vaccine strategies.
Collapse
Affiliation(s)
| | - Dan H Barouch
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Beth Israel Deaconness Medical Center, Boston, MA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
209
|
|
210
|
Huang Y, Ferrari G, Alter G, Forthal DN, Kappes JC, Lewis GK, Love JC, Borate B, Harris L, Greene K, Gao H, Phan TB, Landucci G, Goods BA, Dowell KG, Cheng HD, Bailey-Kellogg C, Montefiori DC, Ackerman ME. Diversity of Antiviral IgG Effector Activities Observed in HIV-Infected and Vaccinated Subjects. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 197:4603-4612. [PMID: 27913647 PMCID: PMC5137799 DOI: 10.4049/jimmunol.1601197] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/18/2016] [Indexed: 01/14/2023]
Abstract
Diverse Ab effector functions mediated by the Fc domain have been commonly associated with reduced risk of infection in a growing number of nonhuman primate and human clinical studies. This study evaluated the anti-HIV Ab effector activities in polyclonal serum samples from HIV-infected donors, VAX004 vaccine recipients, and healthy HIV-negative subjects using a variety of primary and cell line-based assays, including Ab-dependent cellular cytotoxicity (ADCC), Ab-dependent cell-mediated viral inhibition, and Ab-dependent cellular phagocytosis. Additional assay characterization was performed with a panel of Fc-engineered variants of mAb b12. The goal of this study was to characterize different effector functions in the study samples and identify assays that might most comprehensively and dependably capture Fc-mediated Ab functions mediated by different effector cell types and against different viral targets. Deployment of such assays may facilitate assessment of functionally unique humoral responses and contribute to identification of correlates of protection with potential mechanistic significance in future HIV vaccine studies. Multivariate and correlative comparisons identified a set of Ab-dependent cell-mediated viral inhibition and phagocytosis assays that captured different Ab activities and were distinct from a group of ADCC assays that showed a more similar response profile across polyclonal serum samples. The activities of a panel of b12 monoclonal Fc variants further identified distinctions among the ADCC assays. These results reveal the natural diversity of Fc-mediated Ab effector responses among vaccine recipients in the VAX004 trial and in HIV-infected subjects, and they point to the potential importance of polyfunctional Ab responses.
Collapse
Affiliation(s)
- Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Donald N Forthal
- Division of Infectious Diseases, University of California School of Medicine, Irvine, CA 92697
| | - John C Kappes
- Division of Infectious Diseases, University of California School of Medicine, Irvine, CA 92697
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - George K Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - J Christopher Love
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Bhavesh Borate
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Linda Harris
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Kelli Greene
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Hongmei Gao
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | - Tran B Phan
- Division of Infectious Diseases, University of California School of Medicine, Irvine, CA 92697
| | - Gary Landucci
- Division of Infectious Diseases, University of California School of Medicine, Irvine, CA 92697
| | - Brittany A Goods
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Karen G Dowell
- Department of Computer Science, Dartmouth College, Hanover, NH 03755; and
| | - Hao D Cheng
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | | | - David C Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710
| | | |
Collapse
|
211
|
Boesch AW, Osei-Owusu NY, Crowley AR, Chu TH, Chan YN, Weiner JA, Bharadwaj P, Hards R, Adamo ME, Gerber SA, Cocklin SL, Schmitz JE, Miles AR, Eckman JW, Belli AJ, Reimann KA, Ackerman ME. Biophysical and Functional Characterization of Rhesus Macaque IgG Subclasses. Front Immunol 2016; 7:589. [PMID: 28018355 PMCID: PMC5153528 DOI: 10.3389/fimmu.2016.00589] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/29/2016] [Indexed: 12/21/2022] Open
Abstract
Antibodies raised in Indian rhesus macaques [Macaca mulatta (MM)] in many preclinical vaccine studies are often evaluated in vitro for titer, antigen-recognition breadth, neutralization potency, and/or effector function, and in vivo for potential associations with protection. However, despite reliance on this key animal model in translation of promising candidate vaccines for evaluation in first in man studies, little is known about the properties of MM immunoglobulin G (IgG) subclasses and how they may compare to human IgG subclasses. Here, we evaluate the binding of MM IgG1, IgG2, IgG3, and IgG4 to human Fc gamma receptors (FcγR) and their ability to elicit the effector functions of human FcγR-bearing cells, and unlike in humans, find a notable absence of subclasses with dramatically silent Fc regions. Biophysical, in vitro, and in vivo characterization revealed MM IgG1 exhibited the greatest effector function activity followed by IgG2 and then IgG3/4. These findings in rhesus are in contrast with the canonical understanding that IgG1 and IgG3 dominate effector function in humans, indicating that subclass-switching profiles observed in rhesus studies may not strictly recapitulate those observed in human vaccine studies.
Collapse
Affiliation(s)
- Austin W Boesch
- Thayer School of Engineering, Dartmouth College , Hanover, NH , USA
| | - Nana Yaw Osei-Owusu
- Molecular and Cellular Biology Program, Dartmouth College , Hanover, NH , USA
| | - Andrew R Crowley
- Molecular and Cellular Biology Program, Dartmouth College , Hanover, NH , USA
| | - Thach H Chu
- Thayer School of Engineering, Dartmouth College , Hanover, NH , USA
| | - Ying N Chan
- Thayer School of Engineering, Dartmouth College , Hanover, NH , USA
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College , Hanover, NH , USA
| | - Pranay Bharadwaj
- Molecular and Cellular Biology Program, Dartmouth College , Hanover, NH , USA
| | - Rufus Hards
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA; Department of Genetics and Biochemistry, Geisel School of Medicine, Hanover, NH, USA
| | - Mark E Adamo
- Norris Cotton Cancer Center, Geisel School of Medicine , Lebanon, NH , USA
| | - Scott A Gerber
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA; Department of Genetics and Biochemistry, Geisel School of Medicine, Hanover, NH, USA; Norris Cotton Cancer Center, Geisel School of Medicine, Lebanon, NH, USA
| | - Sarah L Cocklin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Joern E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Adam R Miles
- Wasatch Microfluidics , Salt Lake City, UT , USA
| | | | - Aaron J Belli
- Non-Human Primate Reagent Resource, MassBiologics of the University of Massachusetts Medical School , Boston, MA , USA
| | - Keith A Reimann
- Non-Human Primate Reagent Resource, MassBiologics of the University of Massachusetts Medical School , Boston, MA , USA
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA; Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
212
|
Handley SA, Desai C, Zhao G, Droit L, Monaco CL, Schroeder AC, Nkolola JP, Norman ME, Miller AD, Wang D, Barouch DH, Virgin HW. SIV Infection-Mediated Changes in Gastrointestinal Bacterial Microbiome and Virome Are Associated with Immunodeficiency and Prevented by Vaccination. Cell Host Microbe 2016; 19:323-35. [PMID: 26962943 DOI: 10.1016/j.chom.2016.02.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/21/2015] [Accepted: 02/21/2016] [Indexed: 01/01/2023]
Abstract
AIDS caused by simian immunodeficiency virus (SIV) infection is associated with gastrointestinal disease, systemic immune activation, and, in cross-sectional studies, changes in the enteric virome. Here we performed a longitudinal study of a vaccine cohort to define the natural history of changes in the fecal metagenome in SIV-infected monkeys. Matched rhesus macaques were either uninfected or intrarectally challenged with SIV, with a subset receiving the Ad26 vaccine, an adenovirus vector expressing the viral Env/Gag/Pol antigens. Progression of SIV infection to AIDS was associated with increased detection of potentially pathogenic viruses and bacterial enteropathogens. Specifically, adenoviruses were associated with an increased incidence of gastrointestinal disease and AIDS-related mortality. Viral and bacterial enteropathogens were largely absent from animals protected by the vaccine. These data suggest that the SIV-associated gastrointestinal disease is associated with the presence of both viral and bacterial enteropathogens and that protection against SIV infection by vaccination prevents enteropathogen emergence.
Collapse
Affiliation(s)
- Scott A Handley
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Chandni Desai
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Guoyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lindsay Droit
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Cynthia L Monaco
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Andrew C Schroeder
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Joseph P Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Ragon Institute of MGH, MIT, and Harvard, Boston, MA 02114, USA
| | - Megan E Norman
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Andrew D Miller
- Section of Anatomic Pathology, Department of Biomedical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA
| | - David Wang
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA; Ragon Institute of MGH, MIT, and Harvard, Boston, MA 02114, USA
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
213
|
Astronomo RD, Santra S, Ballweber-Fleming L, Westerberg KG, Mach L, Hensley-McBain T, Sutherland L, Mildenberg B, Morton G, Yates NL, Mize GJ, Pollara J, Hladik F, Ochsenbauer C, Denny TN, Warrier R, Rerks-Ngarm S, Pitisuttithum P, Nitayapan S, Kaewkungwal J, Ferrari G, Shaw GM, Xia SM, Liao HX, Montefiori DC, Tomaras GD, Haynes BF, McElrath JM. Neutralization Takes Precedence Over IgG or IgA Isotype-related Functions in Mucosal HIV-1 Antibody-mediated Protection. EBioMedicine 2016; 14:97-111. [PMID: 27919754 PMCID: PMC5161443 DOI: 10.1016/j.ebiom.2016.11.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/10/2016] [Accepted: 11/18/2016] [Indexed: 12/28/2022] Open
Abstract
HIV-1 infection occurs primarily through mucosal transmission. Application of biologically relevant mucosal models can advance understanding of the functional properties of antibodies that mediate HIV protection, thereby guiding antibody-based vaccine development. Here, we employed a human ex vivo vaginal HIV-1 infection model and a rhesus macaque in vivo intrarectal SHIV challenge model to probe the protective capacity of monoclonal broadly-neutralizing (bnAb) and non-neutralizing Abs (nnAbs) that were functionally modified by isotype switching. For human vaginal explants, we developed a replication-competent, secreted NanoLuc reporter virus system and showed that CD4 binding site bnAbs b12 IgG1 and CH31 IgG1 and IgA2 isoforms potently blocked HIV-1JR-CSF and HIV-1Bal26 infection. However, IgG1 and IgA nnAbs, either alone or together, did not inhibit infection despite the presence of FcR-expressing effector cells in the tissue. In macaques, the CH31 IgG1 and IgA2 isoforms infused before high-dose SHIV challenge were completely to partially protective, respectively, while nnAbs (CH54 IgG1 and CH38 mIgA2) were non-protective. Importantly, in both mucosal models IgG1 isotype bnAbs were more protective than the IgA2 isotypes, attributable in part to greater neutralization activity of the IgG1 variants. These findings underscore the importance of potent bnAb induction as a primary goal of HIV-1 vaccine development.
Collapse
Affiliation(s)
- Rena D Astronomo
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sampa Santra
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Lamar Ballweber-Fleming
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Katharine G Westerberg
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Linh Mach
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Tiffany Hensley-McBain
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Laura Sutherland
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Benjamin Mildenberg
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Georgeanna Morton
- Center of Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nicole L Yates
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Gregory J Mize
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Justin Pollara
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Florian Hladik
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Thomas N Denny
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Ranjit Warrier
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Sorachai Nitayapan
- Royal Thai Army Component, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | | | - Guido Ferrari
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - George M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Shi-Mao Xia
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Hua-Xin Liao
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | | | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke School of Medicine, Durham, NC, USA
| | - Juliana M McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Department of Laboratory Medicine, University of Washington, Seattle, WA, USA; Department of Global Health, University of Washington, Seattle, WA, USA.
| |
Collapse
|
214
|
Rationally Designed Vaccines Targeting the V2 Region of HIV-1 gp120 Induce a Focused, Cross-Clade-Reactive, Biologically Functional Antibody Response. J Virol 2016; 90:10993-11006. [PMID: 27630234 DOI: 10.1128/jvi.01403-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/04/2016] [Indexed: 01/27/2023] Open
Abstract
Strong antibody (Ab) responses against V1V2 epitopes of the human immunodeficiency virus type 1 (HIV-1) gp120 envelope (Env) correlated with reduced infection rates in studies of HIV, simian-human immunodeficiency virus (SHIV), and simian immunodeficiency virus (SIV). In order to focus the Ab response on V1V2, we used six V1V2 sequences and nine scaffold proteins to construct immunogens which were tested using various immunization regimens for their ability to induce cross-reactive and biologically active V2 Abs in rabbits. A prime/boost immunization strategy was employed using gp120 DNA and various V1V2-scaffold proteins. The rabbit polyclonal Ab responses (i) were successfully focused on the V1V2 region, with weak or only transient responses to other Env epitopes, (ii) displayed broad cross-reactive binding activity with gp120s and the V1V2 regions of diverse strains from clades B, C, and E, (iii) included V2 Abs with specificities similar to those found in HIV-infected individuals, and (iv) remained detectable ≥1 year after the last boosting dose. Importantly, sera from rabbits receiving V1V2-scaffold immunogens displayed Ab-dependent cellular phagocytosis whereas sera from rabbits receiving only gp120 did not. The results represent the first fully successful example of reverse vaccinology in the HIV vaccine field with rationally designed epitope scaffold immunogens inducing Abs that recapitulate the epitope specificity and biologic activity of the human monoclonal Abs from which the immunogens were designed. Moreover, this is the first immunogenicity study using epitope-targeting, rationally designed vaccine constructs that induced an Fc-mediated activity associated with protection from infection with HIV, SIV, and SHIV. IMPORTANCE Novel immunogens were designed to focus the antibody response of rabbits on the V1V2 epitopes of HIV-1 gp120 since such antibodies were associated with reduced infection rates of HIV, SIV, and SHIV. The vaccine-induced antibodies were broadly cross-reactive with the V1V2 regions of HIV subtypes B, C and E and, importantly, facilitated Fc-mediated phagocytosis, an activity not induced upon immunization of rabbits with gp120. This is the first immunogenicity study of vaccine constructs that focuses the antibody response on V1V2 and induces V2-specific antibodies with the ability to mediate phagocytosis, an activity that has been associated with protection from infection with HIV, SIV, and SHIV.
Collapse
|
215
|
TRIM5α Resistance Escape Mutations in the Capsid Are Transferable between Simian Immunodeficiency Virus Strains. J Virol 2016; 90:11087-11095. [PMID: 27681142 DOI: 10.1128/jvi.01620-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/25/2016] [Indexed: 11/20/2022] Open
Abstract
TRIM5α polymorphism limits and complicates the use of simian immunodeficiency virus (SIV) for evaluation of human immunodeficiency virus (HIV) vaccine strategies in rhesus macaques. We previously reported that the TRIM5α-sensitive SIV from sooty mangabeys (SIVsm) clone SIVsmE543-3 acquired amino acid substitutions in the capsid that overcame TRIM5α restriction when it was passaged in rhesus macaques expressing restrictive TRIM5α alleles. Here we generated TRIM5α-resistant clones of the related SIVsmE660 strain without animal passage by introducing the same amino acid capsid substitutions. We evaluated one of the variants in rhesus macaques expressing permissive and restrictive TRIM5α alleles. The SIVsmE660 variant infected and replicated in macaques with restrictive TRIM5α genotypes as efficiently as in macaques with permissive TRIM5α genotypes. These results demonstrated that mutations in the SIV capsid can confer SIV resistance to TRIM5α restriction without animal passage, suggesting an applicable method to generate more diverse SIV strains for HIV vaccine studies. IMPORTANCE Many strains of SIV from sooty mangabey monkeys are susceptible to resistance by common rhesus macaque TRIM5α alleles and result in reduced virus acquisition and replication in macaques that express these restrictive alleles. We previously observed that spontaneous variations in the capsid gene were associated with improved replication in macaques, and the introduction of two amino acid changes in the capsid transfers this improved replication to the parent clone. In the present study, we introduced these mutations into a related but distinct strain of SIV that is commonly used for challenge studies for vaccine trials. These mutations also improved the replication of this strain in macaques with the restrictive TRIM5α genotype and thus will eliminate the confounding effects of TRIM5α in vaccine studies.
Collapse
|
216
|
Kesavardhana S, Das R, Citron M, Datta R, Ecto L, Srilatha NS, DiStefano D, Swoyer R, Joyce JG, Dutta S, LaBranche CC, Montefiori DC, Flynn JA, Varadarajan R. Structure-based Design of Cyclically Permuted HIV-1 gp120 Trimers That Elicit Neutralizing Antibodies. J Biol Chem 2016; 292:278-291. [PMID: 27879316 DOI: 10.1074/jbc.m116.725614] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 11/18/2016] [Indexed: 11/06/2022] Open
Abstract
A major goal for HIV-1 vaccine development is an ability to elicit strong and durable broadly neutralizing antibody (bNAb) responses. The trimeric envelope glycoprotein (Env) spikes on HIV-1 are known to contain multiple epitopes that are susceptible to bNAbs isolated from infected individuals. Nonetheless, all trimeric and monomeric Env immunogens designed to date have failed to elicit such antibodies. We report the structure-guided design of HIV-1 cyclically permuted gp120 that forms homogeneous, stable trimers, and displays enhanced binding to multiple bNAbs, including VRC01, VRC03, VRC-PG04, PGT128, and the quaternary epitope-specific bNAbs PGT145 and PGDM1400. Constructs that were cyclically permuted in the V1 loop region and contained an N-terminal trimerization domain to stabilize V1V2-mediated quaternary interactions, showed the highest homogeneity and the best antigenic characteristics. In guinea pigs, a DNA prime-protein boost regimen with these new gp120 trimer immunogens elicited potent neutralizing antibody responses against highly sensitive Tier 1A isolates and weaker neutralizing antibody responses with an average titer of about 115 against a panel of heterologous Tier 2 isolates. A modest fraction of the Tier 2 virus neutralizing activity appeared to target the CD4 binding site on gp120. These results suggest that cyclically permuted HIV-1 gp120 trimers represent a viable platform in which further modifications may be made to eventually achieve protective bNAb responses.
Collapse
Affiliation(s)
- Sannula Kesavardhana
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Raksha Das
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Michael Citron
- Merck & Company, Inc., West Point, Pennsylvania 19486, and
| | - Rohini Datta
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Linda Ecto
- Merck & Company, Inc., West Point, Pennsylvania 19486, and
| | | | | | - Ryan Swoyer
- Merck & Company, Inc., West Point, Pennsylvania 19486, and
| | - Joseph G Joyce
- Merck & Company, Inc., West Point, Pennsylvania 19486, and
| | - Somnath Dutta
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | - Celia C LaBranche
- the Department of Surgery, Duke University, Durham, North Carolina 27705
| | - David C Montefiori
- the Department of Surgery, Duke University, Durham, North Carolina 27705
| | | | - Raghavan Varadarajan
- From the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India,
| |
Collapse
|
217
|
Fuchs SP, Desrosiers RC. Promise and problems associated with the use of recombinant AAV for the delivery of anti-HIV antibodies. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16068. [PMID: 28197421 PMCID: PMC5289440 DOI: 10.1038/mtm.2016.68] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/11/2016] [Indexed: 02/07/2023]
Abstract
Attempts to elicit antibodies with potent neutralizing activity against a broad range of human immunodeficiency virus (HIV) isolates have so far proven unsuccessful. Long-term delivery of monoclonal antibodies (mAbs) with such activity is a creative alternative that circumvents the need for an immune response and has the potential for creating a long-lasting sterilizing barrier against HIV. This approach is made possible by an incredible array of potent broadly neutralizing antibodies (bnAbs) that have been identified over the last several years. Recombinant adeno-associated virus (rAAV) vectors are ideally suited for long-term delivery for a variety of reasons. The only products made from rAAV are derived from the transgenes that are put into it; as long as those products are not viewed as foreign, expression from muscle tissue may continue for decades. Thus, use of rAAV to achieve long-term delivery of anti-HIV mAbs with potent neutralizing activity against a broad range of HIV-1 isolates is emerging as a promising concept for the prevention or treatment of HIV-1 infection in humans. Experiments in mice and monkeys that have demonstrated protective efficacy against AIDS virus infection have raised hopes for the promise of this approach. However, all published experiments in monkeys have encountered unwanted immune responses to the AAV-delivered antibody, and these immune responses appear to limit the levels of delivered antibody that can be achieved. In this review, we highlight the promise of rAAV-mediated antibody delivery for the prevention or treatment of HIV infection in humans, but we also discuss the obstacles that will need to be understood and solved in order for the promise of this approach to be realized.
Collapse
Affiliation(s)
- Sebastian P Fuchs
- Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida, USA; Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ronald C Desrosiers
- Department of Pathology, Miller School of Medicine, University of Miami , Miami, Florida, USA
| |
Collapse
|
218
|
Costa MR, Pollara J, Edwards RW, Seaman MS, Gorny MK, Montefiori DC, Liao HX, Ferrari G, Lu S, Wang S. Fc Receptor-Mediated Activities of Env-Specific Human Monoclonal Antibodies Generated from Volunteers Receiving the DNA Prime-Protein Boost HIV Vaccine DP6-001. J Virol 2016; 90:10362-10378. [PMID: 27630232 PMCID: PMC5105670 DOI: 10.1128/jvi.01458-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/31/2016] [Indexed: 11/20/2022] Open
Abstract
HIV-1 is able to elicit broadly potent neutralizing antibodies in a very small subset of individuals only after several years of infection, and therefore, vaccines that elicit these types of antibodies have been difficult to design. The RV144 trial showed that moderate protection is possible and that this protection may correlate with antibody-dependent cellular cytotoxicity (ADCC) activity. Our previous studies demonstrated that in an HIV vaccine phase I trial, the DP6-001 trial, a polyvalent Env DNA prime-protein boost formulation could elicit potent and broadly reactive, gp120-specific antibodies with positive neutralization activities. Here we report on the production and analysis of HIV-1 Env-specific human monoclonal antibodies (hMAbs) isolated from vaccinees in the DP6-001 trial. For this initial report, 13 hMAbs from four vaccinees in the DP6-001 trial showed broad binding to gp120 proteins of diverse subtypes both autologous and heterologous to vaccine immunogens. Equally cross-reactive Fc receptor-mediated functional activities, including ADCC and antibody-dependent cellular phagocytosis (ADCP) activities, were present with both immune sera and isolated MAbs, confirming the induction of nonneutralizing functional hMAbs by the DNA prime-protein boost vaccination. Elicitation of broadly reactive hMAbs by vaccination in healthy human volunteers confirms the value of the polyvalent formulation in this HIV vaccine design. IMPORTANCE The roles of Fc receptor-mediated protective antibody responses are gaining more attention due to their potential contribution to the low-level protection against HIV-1 infection that they provided in the RV144 trial. At the same time, information about hMabs from other human HIV vaccine studies is very limited. In the current study, both immune sera and monoclonal antibodies from vaccinated humans showed not only high-level ADCC and ADCP activities but also cross-subtype ADCC and ADCP activities when a polyvalent DNA prime-protein boost vaccine formulation was used.
Collapse
Affiliation(s)
- Matthew R Costa
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Miroslaw K Gorny
- Department of Pathology, NYU School of Medicine, New York, New York, USA
| | | | | | | | - Shan Lu
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Shixia Wang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
219
|
Girard MP, Le-Grand R, Picot V, Longuet C, Nabel GJ. Report of the Cent Gardes HIV Vaccines Conference, Part 2: The cellular immune response. Fondation Mérieux Conference Center, Veyrier-du-Lac, France, 25–27 October 2015. Vaccine 2016; 34:5470-5473. [DOI: 10.1016/j.vaccine.2016.09.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/29/2016] [Accepted: 09/15/2016] [Indexed: 11/28/2022]
|
220
|
The first 24 h: targeting the window of opportunity for antibody-mediated protection against HIV-1 transmission. Curr Opin HIV AIDS 2016; 11:561-568. [PMID: 27559708 DOI: 10.1097/coh.0000000000000319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE OF REVIEW I will review evidence that antibodies protect against HIV-1 transmission in a short window of opportunity, involving neutralization, Fc-mediated effector function, or both. RECENT FINDINGS The last decade witnessed a dramatic progress in the understanding of antibody-mediated protection against HIV-1, including active and passive immunization studies in nonhuman primates; association between reduced infection risk and the specificities and function of antibodies in the RV144 clinical trial; identification of potent, broadly neutralizing antibodies; high-resolution structural studies of the HIV-1 envelope trimer; and an increasing appreciation that Fc-mediated effector function is critical to protection against transmission for neutralizing and nonneutralizing antibodies. Less information is known about how antibodies protect in situ, except that they must do in the first 24 h after exposure. New evidence suggests that antibodies protect in an acute innate immune environment involving the NXLRX1 inflammasome and transforming growth factor beta (TGF-β) that favors infection and rapid dissemination of CCR6RORγ Th17 cells. SUMMARY These recent findings set the stage for understanding how antibodies can prevent the transmission of HIV-1. In this context, antibodies must prevent infection in an innate immune environment that strongly favors transmission. This information is key for the development of a vaccine against HIV-1.
Collapse
|
221
|
Del Prete GQ, Lifson JD, Keele BF. Nonhuman primate models for the evaluation of HIV-1 preventive vaccine strategies: model parameter considerations and consequences. Curr Opin HIV AIDS 2016; 11:546-554. [PMID: 27559710 PMCID: PMC5100008 DOI: 10.1097/coh.0000000000000311] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Nonhuman primate (NHP) models of AIDS are powerful systems for evaluating HIV vaccine approaches in vivo. Authentic features of HIV-1 transmission, dissemination, target cell tropism, and pathogenesis, and aspects of anti-HIV-1 immune responses, can be recapitulated in NHPs provided the appropriate, specific model parameters are considered. Here, we discuss key model parameter options and their implications for HIV-1 vaccine evaluation. RECENT FINDINGS With the availability of several different NHP host species/subspecies, different challenge viruses and challenge stock production methods, and various challenge routes and schemata, multiple NHP models of AIDS exist for HIV vaccine evaluation. The recent development of multiple new challenge viruses, including chimeric simian-human immunodeficiency viruses and simian immunodeficiency virus clones, improved characterization of challenge stocks and production methods, and increased insight into specific challenge parameters have resulted in an increase in the number of available models and a better understanding of the implications of specific study design choices. SUMMARY Recent progress and technical developments promise new insights into basic disease mechanisms and improved models for better preclinical evaluation of interventions to prevent HIV transmission.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
222
|
|
223
|
Antibody responses to prime-boost vaccination with an HIV-1 gp145 envelope protein and chimpanzee adenovirus vectors expressing HIV-1 gp140. AIDS 2016; 30:2405-2414. [PMID: 27525550 DOI: 10.1097/qad.0000000000001224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Over 2 million individuals are infected with HIV type 1 (HIV-1) each year, yet an effective vaccine remains elusive. The most successful HIV-1 vaccine to date demonstrated 31% efficacy. Immune correlate analyses associated HIV-1 envelope (Env)-specific antibodies with protection, thus providing a path toward a more effective vaccine. We sought to test the antibody response from novel prime-boost vaccination with a chimpanzee-derived adenovirus (AdC) vector expressing a subtype C Env glycoprotein (gp)140 combined with either a serologically distinct AdC vector expressing gp140 of a different subtype C isolate or an alum-adjuvanted, partially trimeric gp145 from yet another subtype C isolate. DESIGN Three different prime-boost regimens were tested in mice: AdC prime-protein boost, protein prime-AdC boost, and AdC prime-AdC boost. Each regimen was tested at two different doses of AdC vector in a total of six experimental groups. METHODS Sera were collected at various time points and evaluated by ELISA for Env-specific antibody binding, isotype, and avidity. Antibody functionality was assessed by pseudovirus neutralization assay. RESULTS Priming with AdC followed by a protein boost or sequential immunizations with two AdC vectors induced HIV-1 Env-specific binding antibodies, including those to the variable region 2, whereas priming with protein followed by an AdC boost was relatively ineffective. Antibodies that cross-neutralized tier 1 HIV-1 from different subtypes were elicited with vaccine regimens that included immunizations with protein. CONCLUSION Our study warrants further investigation of AdC vector and gp145 protein prime-boost vaccines and their ability to protect against acquisition in animal challenge studies.
Collapse
|
224
|
Modulating Antibody Functionality in Infectious Disease and Vaccination. Trends Mol Med 2016; 22:969-982. [PMID: 27756530 DOI: 10.1016/j.molmed.2016.09.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/06/2016] [Accepted: 09/11/2016] [Indexed: 12/23/2022]
Abstract
Induction of pathogen-specific binding antibodies has long been considered a signature of protective immunity following vaccination and infection. The humoral immune response is a complex network of antibodies that target different specificities and drive different functions, collectively acting to limit and clear infection either directly, via pathogen neutralization, or indirectly, via pathogen clearance by the innate immune system. Emerging data suggest that not all antibody responses are equal, and qualitative features of antibodies may be key to defining protective immune profiles. Here, we review the most recent advances in our understanding of protective functional antibody responses in natural infection, vaccination, and monoclonal antibody therapeutics. Moreover, we highlight opportunities to augment or modulate antibody-mediated protection through enhancement of antibody functionality.
Collapse
|
225
|
van Haaren MM, van den Kerkhof TLGM, van Gils MJ. Natural infection as a blueprint for rational HIV vaccine design. Hum Vaccin Immunother 2016; 13:229-236. [PMID: 27649455 PMCID: PMC5287307 DOI: 10.1080/21645515.2016.1232785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
So far, the development of a human immunodeficiency virus (HIV) vaccine has been unsuccessful. However, recent progress in the field of broadly neutralizing antibodies (bNAbs) has reinvigorated the search for an HIV vaccine. bNAbs develop in a minority of HIV infected individuals and passive transfer of these bNAbs to non-human primates provides protection from HIV infection. Studies in a number of HIV infected individuals on bNAb maturation alongside viral evolution and escape have shed light on the features important for bNAb elicitation. Here we review the observations from these studies, and how they influence the rational design of HIV vaccines.
Collapse
Affiliation(s)
- Marlies M van Haaren
- a Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Tom L G M van den Kerkhof
- a Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| | - Marit J van Gils
- a Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam , Amsterdam , The Netherlands
| |
Collapse
|
226
|
Isitman G, Lisovsky I, Tremblay-McLean A, Kovacs C, Harris M, Routy JP, Bruneau J, Wainberg MA, Tremblay C, Bernard NF. Antibody-Dependent Cellular Cytotoxicity Activity of Effector Cells from HIV-Infected Elite and Viral Controllers. AIDS Res Hum Retroviruses 2016; 32:1079-1088. [PMID: 27499379 DOI: 10.1089/aid.2016.0157] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Carriage of alleles encoding certain inhibitory natural killer (NK) cell receptor/HLA ligand KIR3DL1/HLA-B combinations is associated with protection from HIV infection and slow time to AIDS, implicating NK cells in HIV control. NK cells also mediate antibody-dependent cellular cytotoxicity (ADCC). ADCC has been identified as a correlate of protection in secondary analyses of the modestly protective RV144 Thai HIV vaccine trial. In ADCC, HIV envelope (Env)-specific antibodies (Abs) bridge HIV-infected or gp120-coated target cells and NK cells expressing CD16 receptors for Ab Fc domains. CD16 engagement activates NK cells to secrete cytokines/chemokines, degranulate, deliver granzyme B (GrB) to target cells, and cytolysis. A subset of HIV+ subjects, known as slow progressors (SPs), maintains low-level viremia without treatment. HIV+ SPs versus progressors have higher titers and/or a greater breadth of ADCC-competent Abs. Investigations of the functional capacity of NK effector cells following CD16 engagement in HIV+ subjects are lacking. We used the ADCC-GranToxiLux (ADCC-GTL) assay to assess the frequency of GrB+ (%GrB+) cells generated by effector cells from 37 HIV+ SPs and 15 progressors to gp120-coated CEM.NKr.CCR5 target cells in the presence of anti-Env Abs. Subject groups were stratified according to whether or not they carried educating KIR3DL1/HLA-B combinations able to confer NK cells with functional potential. No differences were observed in %GrB+ target cells generated by effector cells from carriers of educating versus noneducating KIR3DL1/HLA-B pairs. The absence of an effect of NK cell education on this readout may be due to loss of the ability of educated NK cells from SPs to respond to Ab-dependent stimulation and/or the lower frequency of KIR3DL1+ than KIR3DL1- NK cells that coexpress CD16. That KIR/HLA genotypes have minimal impact on interindividual differences in ADCC potency has relevance for therapeutic interventions that target ADCC for HIV control.
Collapse
Affiliation(s)
- Gamze Isitman
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Irene Lisovsky
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Alexandra Tremblay-McLean
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Colin Kovacs
- Maple Leaf Medical Clinic, University of Toronto, Toronto, Canada
| | - Marianne Harris
- Department of Family Practice, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Division of AIDS, Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Jean-Pierre Routy
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Chronic Viral Illness Service, MUHC, Montreal, Canada
- Division of Hematology, MUHC, Montreal, Canada
| | - Julie Bruneau
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
- Department of Family Medicine, Université de Montréal, Montreal, Canada
| | - Mark A. Wainberg
- McGill AIDS Center, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, Canada
- Department of Microbiology, Infectiology and Immunology, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Nicole F. Bernard
- Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Chronic Viral Illness Service, MUHC, Montreal, Canada
- Division of Clinical Immunology, MUHC, Montreal, Canada
| |
Collapse
|
227
|
Haut LH, Gill AL, Kurupati RK, Bian A, Li Y, Giles-Davis W, Xiang Z, Zhou XY, Ertl HCJ. A Partial E3 Deletion in Replication-Defective Adenoviral Vectors Allows for Stable Expression of Potentially Toxic Transgene Products. Hum Gene Ther Methods 2016; 27:187-196. [PMID: 27604324 DOI: 10.1089/hgtb.2016.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adenovirus (Ad) is used extensively for construction of viral vectors, most commonly with deletion in its E1 and/or E3 genomic regions. Previously, our attempts to insert envelope proteins (Env) of HIV-1 into such vectors based on chimpanzee-derived Ad (AdC) viruses were thwarted. Here, we describe that genetic instability of an E1- and E3-deleted AdC vector of serotype C6 expressing Env of HIV-1 can be overcome by reinsertion of E3 sequences with anti-apoptotic activities. This partial E3 deletion presumably delays premature death of HEK-293 packaging cell lines due to Env-induced cell apoptosis. The same partial E3 deletion also allows for the generation of stable glycoprotein 140 (gp140)- and gp160-expressing Ad vectors based on AdC7, a distinct AdC serotype. Env-expressing AdC vectors containing the partial E3 deletion are genetically stable upon serial cell culture passaging, produce yields comparable to those of other AdC vectors, and induce transgene product-specific antibody responses in mice. A partial E3 deletion thereby allows expansion of the repertoire of transgenes that can be expressed by Ad vectors.
Collapse
Affiliation(s)
| | - Amanda L Gill
- 1 The Wistar Institute , Philadelphia, Pennsylvania
- 2 Current address: Clinical Molecular Regulation Section/Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland
| | | | - Ang Bian
- 1 The Wistar Institute , Philadelphia, Pennsylvania
| | - Yan Li
- 1 The Wistar Institute , Philadelphia, Pennsylvania
| | | | | | | | | |
Collapse
|
228
|
Liu J, Ghneim K, Sok D, Bosche WJ, Li Y, Chipriano E, Berkemeier B, Oswald K, Borducchi E, Cabral C, Peter L, Brinkman A, Shetty M, Jimenez J, Mondesir J, Lee B, Giglio P, Chandrashekar A, Abbink P, Colantonio A, Gittens C, Baker C, Wagner W, Lewis MG, Li W, Sekaly RP, Lifson JD, Burton DR, Barouch DH. Antibody-mediated protection against SHIV challenge includes systemic clearance of distal virus. Science 2016; 353:1045-1049. [PMID: 27540005 PMCID: PMC5237379 DOI: 10.1126/science.aag0491] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/10/2016] [Indexed: 12/13/2022]
Abstract
HIV-1-specific broadly neutralizing antibodies (bNAbs) can protect rhesus monkeys against simian-human immunodeficiency virus (SHIV) challenge. However, the site of antibody interception of virus and the mechanism of antibody-mediated protection remain unclear. We administered a fully protective dose of the bNAb PGT121 to rhesus monkeys and challenged them intravaginally with SHIV-SF162P3. In PGT121-treated animals, we detected low levels of viral RNA and viral DNA in distal tissues for seven days following challenge. Viral RNA-positive tissues showed transcriptomic changes indicative of innate immune activation, and cells from these tissues initiated infection after adoptive transfer into naïve hosts. These data demonstrate that bNAb-mediated protection against a mucosal virus challenge can involve clearance of infectious virus in distal tissues.
Collapse
Affiliation(s)
- Jinyan Liu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Khader Ghneim
- Case Western Reserve University, Cleveland, OH 44106, USA
| | - Devin Sok
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - William J Bosche
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Yuan Li
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Elizabeth Chipriano
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Brian Berkemeier
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Kelli Oswald
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Erica Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Crystal Cabral
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Lauren Peter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Amanda Brinkman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Mayuri Shetty
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jessica Jimenez
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jade Mondesir
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Benjamin Lee
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Patricia Giglio
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Abishek Chandrashekar
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | - Wenjun Li
- University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory, Frederick, MD 21702, USA
| | - Dennis R Burton
- The Scripps Research Institute, La Jolla, CA 92037, USA. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02139, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA. Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA 02139, USA.
| |
Collapse
|
229
|
Antibody-Mediated Internalization of Infectious HIV-1 Virions Differs among Antibody Isotypes and Subclasses. PLoS Pathog 2016; 12:e1005817. [PMID: 27579713 PMCID: PMC5007037 DOI: 10.1371/journal.ppat.1005817] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/19/2016] [Indexed: 12/28/2022] Open
Abstract
Emerging data support a role for antibody Fc-mediated antiviral activity in vaccine efficacy and in the control of HIV-1 replication by broadly neutralizing antibodies. Antibody-mediated virus internalization is an Fc-mediated function that may act at the portal of entry whereby effector cells may be triggered by pre-existing antibodies to prevent HIV-1 acquisition. Understanding the capacity of HIV-1 antibodies in mediating internalization of HIV-1 virions by primary monocytes is critical to understanding their full antiviral potency. Antibody isotypes/subclasses differ in functional profile, with consequences for their antiviral activity. For instance, in the RV144 vaccine trial that achieved partial efficacy, Env IgA correlated with increased risk of HIV-1 infection (i.e. decreased vaccine efficacy), whereas V1-V2 IgG3 correlated with decreased risk of HIV-1 infection (i.e. increased vaccine efficacy). Thus, understanding the different functional attributes of HIV-1 specific IgG1, IgG3 and IgA antibodies will help define the mechanisms of immune protection. Here, we utilized an in vitro flow cytometric method utilizing primary monocytes as phagocytes and infectious HIV-1 virions as targets to determine the capacity of Env IgA (IgA1, IgA2), IgG1 and IgG3 antibodies to mediate HIV-1 infectious virion internalization. Importantly, both broadly neutralizing antibodies (i.e. PG9, 2G12, CH31, VRC01 IgG) and non-broadly neutralizing antibodies (i.e. 7B2 mAb, mucosal HIV-1+ IgG) mediated internalization of HIV-1 virions. Furthermore, we found that Env IgG3 of multiple specificities (i.e. CD4bs, V1-V2 and gp41) mediated increased infectious virion internalization over Env IgG1 of the same specificity, while Env IgA mediated decreased infectious virion internalization compared to IgG1. These data demonstrate that antibody-mediated internalization of HIV-1 virions depends on antibody specificity and isotype. Evaluation of the phagocytic potency of vaccine-induced antibodies and therapeutic antibodies will enable a better understanding of their capacity to prevent and/or control HIV-1 infection in vivo.
Collapse
|
230
|
Inhibitory receptor expression on memory CD8 T cells following Ad vector immunization. Vaccine 2016; 34:4955-4963. [PMID: 27566899 PMCID: PMC5038157 DOI: 10.1016/j.vaccine.2016.08.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/30/2016] [Accepted: 08/14/2016] [Indexed: 01/02/2023]
Abstract
T cells are an important component of immune responses, and their function is influenced by their expression of inhibitory receptors. Immunization with alternative serotype adenovirus (Ad) vectors induces highly functional T cell responses with lower programmed cell death 1 (PD-1) expression and increased boostability relative to Ad5 vectors. However, a detailed phenotypic characterization of other inhibitory receptors is lacking, and it is unknown whether Ad5-induced CD8 T cells eventually recover function with time. In this report, we measure the expression of various inhibitory receptors and memory markers during early and late time points following vaccination with Ad5 and alternative serotype Ad vectors. CD8 T cells induced by Ad5 exhibited increased expression of the inhibitory receptor Tim-3 and showed decreased central memory differentiation as compared with alternative serotype Ad vectors, even a year following immunization. Moreover, relative to Ad5-primed mice, Ad26-primed mice exhibited substantially improved recall of SIV Gag-specific CD8 T cell responses following heterologous boosting with MVA or Ad35 vectors. We also demonstrate that low doses of Ad5 priming resulted in more boostable immune responses with lower PD-1 expression as compared to high Ad5 doses, suggesting a role for vector dose in influencing immune dysfunction following Ad5 vaccination. These data suggest that Ad5 vectors induce a long-term pattern of immune exhaustion that can be partly overcome by lowering vector dose and modulating inhibitory signals.
Collapse
|
231
|
Chan YN, Boesch AW, Osei-Owusu NY, Emileh A, Crowley AR, Cocklin SL, Finstad SL, Linde CH, Howell RA, Zentner I, Cocklin S, Miles AR, Eckman JW, Alter G, Schmitz JE, Ackerman ME. IgG Binding Characteristics of Rhesus Macaque FcγR. THE JOURNAL OF IMMUNOLOGY 2016; 197:2936-47. [PMID: 27559046 DOI: 10.4049/jimmunol.1502252] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 07/26/2016] [Indexed: 11/19/2022]
Abstract
Indian rhesus macaques (Macaca mulatta) are routinely used in preclinical studies to evaluate therapeutic Abs and candidate vaccines. The efficacy of these interventions in many cases is known to rely heavily on the ability of Abs to interact with a set of Ab FcγR expressed on innate immune cells. Yet, despite their presumed functional importance, M. mulatta Ab receptors are largely uncharacterized, posing a fundamental limit to ensuring accurate interpretation and translation of results from studies in this model. In this article, we describe the binding characteristics of the most prevalent allotypic variants of M. mulatta FcγR for binding to both human and M. mulatta IgG of varying subclasses. The resulting determination of the affinity, specificity, and glycan sensitivity of these receptors promises to be useful in designing and evaluating studies of candidate vaccines and therapeutic Abs in this key animal model and exposes significant evolutionary divergence between humans and macaques.
Collapse
Affiliation(s)
- Ying N Chan
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Austin W Boesch
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Nana Y Osei-Owusu
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH 03755
| | - Ali Emileh
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755
| | - Andrew R Crowley
- Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH 03755
| | - Sarah L Cocklin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Samantha L Finstad
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Caitlyn H Linde
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Rebecca A Howell
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Isaac Zentner
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Simon Cocklin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Adam R Miles
- Wasatch Microfluidics, Salt Lake City, UT 84103; and
| | | | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139
| | - Joern E Schmitz
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755; Molecular and Cellular Biology Program, Dartmouth College, Hanover, NH 03755;
| |
Collapse
|
232
|
Epitope Mapping of a Monoclonal Antibody Directed against Neisserial Heparin Binding Antigen Using Next Generation Sequencing of Antigen-Specific Libraries. PLoS One 2016; 11:e0160702. [PMID: 27508302 PMCID: PMC4980009 DOI: 10.1371/journal.pone.0160702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 07/22/2016] [Indexed: 01/07/2023] Open
Abstract
We explore here the potential of a newly described technology, which is named PROFILER and is based on next generation sequencing of gene-specific lambda phage-displayed libraries, to rapidly and accurately map monoclonal antibody (mAb) epitopes. For this purpose, we used a novel mAb (designated 31E10/E7) directed against Neisserial Heparin-Binding Antigen (NHBA), a component of the anti-group B meningococcus Bexsero® vaccine. An NHBA phage-displayed library was affinity-selected with mAb 31E10/E7, followed by massive sequencing of the inserts present in antibody-selected phage pools. Insert analysis identified an amino acid stretch (D91-A128) in the N-terminal domain, which was shared by all of the mAb-enriched fragments. Moreover, a recombinant fragment encompassing this sequence could recapitulate the immunoreactivity of the entire NHBA molecule against mAb 31E10/E7. These results were confirmed using a panel of overlapping recombinant fragments derived from the NHBA vaccine variant and a set of chemically synthetized peptides covering the 10 most frequent antigenic variants. Furthermore, hydrogen-deuterium exchange mass-spectrometry analysis of the NHBA-mAb 31E10/E7 complex was also compatible with mapping of the epitope to the D91-A128 region. Collectively, these results indicate that the PROFILER technology can reliably identify epitope-containing antigenic fragments and requires considerably less work, time and reagents than other epitope mapping methods.
Collapse
|
233
|
Hua CK, Ackerman ME. Engineering broadly neutralizing antibodies for HIV prevention and therapy. Adv Drug Deliv Rev 2016; 103:157-173. [PMID: 26827912 DOI: 10.1016/j.addr.2016.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/19/2016] [Accepted: 01/20/2016] [Indexed: 01/15/2023]
Abstract
A combination of advances spanning from isolation to delivery of potent HIV-specific antibodies has begun to revolutionize understandings of antibody-mediated antiviral activity. As a result, the set of broadly neutralizing and highly protective antibodies has grown in number, diversity, potency, and breadth of viral recognition and neutralization. These antibodies are now being further enhanced by rational engineering of their anti-HIV activities and coupled to cutting edge gene delivery and strategies to optimize their pharmacokinetics and biodistribution. As a result, the prospects for clinical use of HIV-specific antibodies to treat, clear, and prevent HIV infection are gaining momentum. Here we discuss the diverse methods whereby antibodies are being optimized for neutralization potency and breadth, biodistribution, pharmacokinetics, and effector function with the aim of revolutionizing HIV treatment and prevention options.
Collapse
|
234
|
Ewer KJ, Lambe T, Rollier CS, Spencer AJ, Hill AVS, Dorrell L. Viral vectors as vaccine platforms: from immunogenicity to impact. Curr Opin Immunol 2016; 41:47-54. [DOI: 10.1016/j.coi.2016.05.014] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 05/20/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022]
|
235
|
Garcia-Tellez T, Huot N, Ploquin MJ, Rascle P, Jacquelin B, Müller-Trutwin M. Non-human primates in HIV research: Achievements, limits and alternatives. INFECTION GENETICS AND EVOLUTION 2016; 46:324-332. [PMID: 27469027 DOI: 10.1016/j.meegid.2016.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/20/2022]
Abstract
An ideal model for HIV-1 research is still unavailable. However, infection of non-human primates (NHP), such as macaques, with Simian Immunodeficiency Virus (SIV) recapitulates most virological, immunological and clinical hallmarks of HIV infection in humans. It has become the most suitable model to study the mechanisms of transmission and physiopathology of HIV/AIDS. On the other hand, natural hosts of SIV, such as African green monkeys and sooty mangabeys that when infected do not progress to AIDS, represent an excellent model to elucidate the mechanisms involved in the capacity of controlling inflammation and disease progression. The use of NHP-SIV models has indeed enriched our knowledge in the fields of: i) viral transmission and viral reservoirs, ii) early immune responses, iii) host cell-virus interactions in tissues, iv) AIDS pathogenesis, v) virulence factors, vi) prevention and vii) drug development. The possibility to control many variables during experimental SIV infection, together with the resemblance between SIV and HIV infections, make the NHP model the most appropriate, so far, for HIV/AIDS research. Nonetheless, some limitations in using these models have to be considered. Alternative models for HIV/AIDS research, such as humanized mice and recombinant forms of HIV-SIV viruses (SHIV) for NHP infection, have been developed. The improvement of SHIV viruses that mimic even better the natural history of HIV infection and of humanized mice that develop a greater variety of human immune cell lineages, is ongoing. None of these models is perfect, but they allow contributing to the progress in managing or preventing HIV infection.
Collapse
Affiliation(s)
- Thalía Garcia-Tellez
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Nicolas Huot
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| | - Mickaël J Ploquin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Philippe Rascle
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Beatrice Jacquelin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France.
| | - Michaela Müller-Trutwin
- Institut Pasteur, Unité HIV, Inflammation and Persistence. 25-28 Rue du Doctor Roux,75015 Paris, France; Vaccine Research Institute, Créteil, France.
| |
Collapse
|
236
|
Wines BD, Vanderven HA, Esparon SE, Kristensen AB, Kent SJ, Hogarth PM. Dimeric FcγR Ectodomains as Probes of the Fc Receptor Function of Anti-Influenza Virus IgG. THE JOURNAL OF IMMUNOLOGY 2016; 197:1507-16. [PMID: 27385782 DOI: 10.4049/jimmunol.1502551] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 06/03/2016] [Indexed: 02/04/2023]
Abstract
Ab-dependent cellular cytotoxicity, phagocytosis, and Ag presentation are key mechanisms of action of Abs arising in vaccine or naturally acquired immunity, as well of therapeutic mAbs. Cells expressing the low-affinity FcγRs (FcγRII or CD32 and FcγRIII or CD16) are activated for these functions when receptors are aggregated following the binding of IgG-opsonized targets. Despite the diversity of the Fc receptor proteins, IgG ligands, and potential responding cell types, the induction of all FcγR-mediated responses by opsonized targets requires the presentation of multiple Fc regions in close proximity to each other. We demonstrated that such "near-neighbor" Fc regions can be detected using defined recombinant soluble (rs) dimeric low-affinity ectodomains (rsFcγR) that have an absolute binding requirement for the simultaneous engagement of two IgG Fc regions. Like cell surface-expressed FcγRs, the binding of dimeric rsFcγR ectodomains to Ab immune complexes was affected by Ab subclass, presentation, opsonization density, Fc fucosylation, or mutation. The activation of an NK cell line and primary NK cells by human IgG-opsonized influenza A hemagglutinin correlated with dimeric rsFcγRIIIa binding activity but not with Ab titer. Furthermore, the dimeric rsFcγR binding assay sensitively detected greater Fc receptor activity to pandemic H1N1 hemagglutinin after the swine influenza pandemic of 2009 in pooled human polyclonal IgG. Thus these dimeric rsFcγR ectodomains are validated, defined probes that should prove valuable in measuring the immune-activating capacity of IgG Abs elicited by infection or vaccination or experimentally derived IgG and its variants.
Collapse
Affiliation(s)
- Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia; Department of Pathology, The University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Hillary A Vanderven
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Sandra E Esparon
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia
| | - Anne B Kristensen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Parkville, Victoria 3052, Australia; Australian Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, The University of Melbourne, Parkville, Victoria 3052, Australia; and Melbourne Sexual Health Centre, Infectious Diseases Department, Alfred Health, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Immunology, Monash University Central Clinical School, Melbourne, Victoria 3004, Australia; Department of Pathology, The University of Melbourne, Melbourne, Victoria 3052, Australia;
| |
Collapse
|
237
|
An HIV gp120-CD4 Immunogen Does Not Elicit Autoimmune Antibody Responses in Cynomolgus Macaques. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:618-27. [PMID: 27193040 PMCID: PMC4933776 DOI: 10.1128/cvi.00115-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/11/2016] [Indexed: 01/14/2023]
Abstract
A promising concept for human immunodeficiency virus (HIV) vaccines focuses immunity on the highly conserved transition state structures and epitopes that appear when the HIV glycoprotein gp120 binds to its receptor, CD4. We are developing chimeric antigens (full-length single chain, or FLSC) in which gp120 and CD4 sequences are flexibly linked to allow stable intrachain complex formation between the two moieties (A. DeVico et al., Proc Natl Acad Sci U S A 104:17477-17482, 2007, doi:10.1073/pnas.0707399104; T. R. Fouts et al., J Virol 74:11427-11436, 2000, doi:10.1128/JVI.74.24.11427-11436.2000). Proof of concept studies with nonhuman primates show that FLSC elicited heterologous protection against simian-human immunodeficiency virus (SHIV)/simian immunodeficiency virus (SIV) (T. R. Fouts et al., Proc Natl Acad Sci U S A 112:E992-E999, 2016, doi:10.1073/pnas.1423669112), which correlated with antibodies against transition state gp120 epitopes. Nevertheless, advancement of any vaccine that comprises gp120-CD4 complexes must consider whether the CD4 component breaks tolerance and becomes immunogenic in the autologous host. To address this, we performed an immunotoxicology study with cynomolgus macaques vaccinated with either FLSC or a rhesus variant of FLSC containing macaque CD4 sequences (rhFLSC). Enzyme-linked immunosorbent assay (ELISA) binding titers, primary CD3(+) T cell staining, and temporal trends in T cell subset frequencies served to assess whether anti-CD4 autoantibody responses were elicited by vaccination. We find that immunization with multiple high doses of rhFLSC did not elicit detectable antibody titers despite robust responses to rhFLSC. In accordance with these findings, immunized animals had no changes in circulating CD4(+) T cell counts or evidence of autoantibody reactivity with cell surface CD4 on primary naive macaque T cells. Collectively, these studies show that antigens using CD4 sequences to stabilize transition state gp120 structures are unlikely to elicit autoimmune antibody responses, supporting the advancement of gp120-CD4 complex-based antigens, such as FLSC, into clinical testing.
Collapse
|
238
|
New concepts in HIV-1 vaccine development. Curr Opin Immunol 2016; 41:39-46. [PMID: 27268856 DOI: 10.1016/j.coi.2016.05.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/15/2016] [Accepted: 05/20/2016] [Indexed: 01/13/2023]
Abstract
With 2 million people newly infected with HIV-1 in 2014, an effective HIV-1 vaccine remains a major public health priority. HIV-1 vaccine efficacy trials in humans, complemented by active and passive immunization studies in non-human primates, have identified several key vaccine-induced immunological responses that may correlate with protection against HIV-1 infection. Potential correlates of protection in these studies include V2-specific, polyfunctional, and broadly neutralizing antibody responses, as well as effector memory T cell responses. Here we review how these correlates of protection are guiding current approaches to HIV-1 vaccine development. These approaches include improvements on the ALVAC-HIV/AIDSVAX B/E vaccine regimen used in the RV144 clinical trial in Thailand, adenovirus serotype 26 vectors with gp140 boosting, intravenous infusions of bNAbs, and replicating viral vectors.
Collapse
|
239
|
Transient CD4+ T Cell Depletion Results in Delayed Development of Functional Vaccine-Elicited Antibody Responses. J Virol 2016; 90:4278-4288. [PMID: 26865713 PMCID: PMC4836333 DOI: 10.1128/jvi.00039-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/05/2016] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED We have recently demonstrated that CD4(+)T cell help is required at the time of adenovirus (Ad) vector immunization for the development of functional CD8(+)T cell responses, but the temporal requirement for CD4(+)T cell help for the induction of antibody responses remains unclear. Here we demonstrate that induction of antibody responses in C57BL/6 mice can occur at a time displaced from the time of Ad vector immunization by depletion of CD4(+)T cells. Transient depletion of CD4(+)T cells at the time of immunization delays the development of antigen-specific antibody responses but does not permanently impair their development or induce tolerance against the transgene. Upon CD4(+)T cell recovery, transgene-specific serum IgG antibody titers develop and reach a concentration equivalent to that in undepleted control animals. These delayed antibody responses exhibit no functional defects with regard to isotype, functional avidity, expansion after boosting immunization, or the capacity to neutralize a simian immunodeficiency virus (SIV) Env-expressing pseudovirus. The development of this delayed transgene-specific antibody response is temporally linked to the expansion of de novo antigen-specific CD4(+)T cell responses, which develop after transient depletion of CD4(+)T cells. These data demonstrate that functional vaccine-elicited antibody responses can be induced even if CD4(+)T cell help is provided at a time markedly separated from the time of vaccination. IMPORTANCE CD4(+)T cells have a critical role in providing positive help signals to B cells, which promote robust antibody responses. The paradigm is that helper signals must be provided immediately upon antigen exposure, and their absence results in tolerance against the antigen. Here we demonstrate that, in contrast to the current model that the absence of CD4(+)T cell help at priming results in long-term antibody nonresponsiveness, antibody responses can be induced by adenovirus vector immunization or alum-adjuvanted protein immunization even if CD4(+)T cell help is not provided until >1 month after immunization. These data demonstrate that the time when CD4(+)T cell help signals must be provided is more dynamic and flexible than previously appreciated. These data suggest that augmentation of CD4(+)T cell helper function even after the time of vaccination can enhance vaccine-elicited antibody responses and thereby potentially enhance the immunogenicity of vaccines in immunocompromised individuals.
Collapse
|
240
|
Mason RD, Welles HC, Adams C, Chakrabarti BK, Gorman J, Zhou T, Nguyen R, O’Dell S, Lusvarghi S, Bewley CA, Li H, Shaw GM, Sheng Z, Shapiro L, Wyatt R, Kwong PD, Mascola JR, Roederer M. Targeted Isolation of Antibodies Directed against Major Sites of SIV Env Vulnerability. PLoS Pathog 2016; 12:e1005537. [PMID: 27064278 PMCID: PMC4827850 DOI: 10.1371/journal.ppat.1005537] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/09/2016] [Indexed: 11/26/2022] Open
Abstract
The simian immunodeficiency virus (SIV) challenge model of lentiviral infection is often used as a model to human immunodeficiency virus type 1 (HIV-1) for studying vaccine mediated and immune correlates of protection. However, knowledge of the structure of the SIV envelope (Env) glycoprotein is limited, as is knowledge of binding specificity, function and potential efficacy of SIV antibody responses. In this study we describe the use of a competitive probe binding sort strategy as well as scaffolded probes for targeted isolation of SIV Env-specific monoclonal antibodies (mAbs). We isolated nearly 70 SIV-specific mAbs directed against major sites of SIV Env vulnerability analogous to broadly neutralizing antibody (bnAb) targets of HIV-1, namely, the CD4 binding site (CD4bs), CD4-induced (CD4i)-site, peptide epitopes in variable loops 1, 2 and 3 (V1, V2, V3) and potentially glycan targets of SIV Env. The range of SIV mAbs isolated includes those exhibiting varying degrees of neutralization breadth and potency as well as others that demonstrated binding but not neutralization. Several SIV mAbs displayed broad and potent neutralization of a diverse panel of 20 SIV viral isolates with some also neutralizing HIV-27312A. This extensive panel of SIV mAbs will facilitate more effective use of the SIV non-human primate (NHP) model for understanding the variables in development of a HIV vaccine or immunotherapy. An antibody-based approach targeting human immunodeficiency virus (HIV) envelope (Env) protein may eventually prove to be effective in treating or preventing HIV infection. However, before any candidate HIV treatment or vaccine can be tested in humans, it must first be evaluated in nonhuman primates (NHPs)–the closest living relatives to humans. Simian immunodeficiency virus (SIV) is the closest available non-chimeric virus—NHP model for studying and testing HIV vaccines or therapies. The SIV model complements the simian-human immunodeficiency virus (SHIV) model in distinctive ways, although less is known about SIV Env-specific antibody responses in NHPs. There are several sites on HIV Env that are vulnerable to antibody-mediated protection, and here we isolated and analyzed monoclonal antibodies (mAbs) from NHPs targeting analogous sites on SIV Env. In particular, we studied mAbs for their ability to bind the viral Env protein and to block infection of cells by widely divergent strains of SIV. These well-characterized SIV Env-specific antibodies will allow for more thorough NHP pre-clinical testing of various antibody-based SIV/HIV vaccine and immunotherapeutic strategies before proceeding to human clinical trials and may yield unanticipated findings relating to molecular mechanisms underlying the unusual breadth of neutralization observed in HIV-2 infection.
Collapse
Affiliation(s)
- Rosemarie D. Mason
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail: (RDM); (MR)
| | - Hugh C. Welles
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Cameron Adams
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Bimal K. Chakrabarti
- International AIDS Vaccine Initiative (IAVI) HIV Vaccine Design Program, Translational Health Science and Technology Institute, Haryana, India
| | - Jason Gorman
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Richard Nguyen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Sijy O’Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Sabrina Lusvarghi
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Carole A. Bewley
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Hui Li
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - George M. Shaw
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - Richard Wyatt
- IAVI Neutralizing Antibody Center, Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
- * E-mail: (RDM); (MR)
| |
Collapse
|
241
|
Krishnamurthy SR, Janowski AB, Zhao G, Barouch D, Wang D. Hyperexpansion of RNA Bacteriophage Diversity. PLoS Biol 2016; 14:e1002409. [PMID: 27010970 PMCID: PMC4807089 DOI: 10.1371/journal.pbio.1002409] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent. This study uses computational metagenomics and molecular experimentation to massively expand the known genomic and ecological diversity of RNA bacteriophages, identifying novel tropisms and genes. Bacteriophages (viruses that infect bacteria) can alter biological processes in numerous ecosystems. While there are numerous studies describing the role of bacteriophages with DNA genomes in these processes, the role of bacteriophages with RNA genomes (RNA bacteriophages) is poorly understood. This gap in knowledge is in part because of the limited diversity of known RNA bacteriophages. Here, we begin to address the question by identifying 122 novel RNA bacteriophage partial genome sequences present in metagenomic datasets that are highly divergent from each other and previously described RNA bacteriophages. Additionally, many of these sequences contained novel properties, including novel genes, segmentation, and host range, expanding the frontiers of RNA bacteriophage genomics, evolution, and tropism. These novel RNA bacteriophage sequences were globally distributed from numerous ecological niches, including animal-associated and environmental habitats. These findings will facilitate our understanding of the role of the RNA bacteriophage in microbial communities. Furthermore, there are likely many more unrecognized RNA bacteriophages that remain to be discovered.
Collapse
Affiliation(s)
- Siddharth R. Krishnamurthy
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew B. Janowski
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Guoyan Zhao
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Dan Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America, and Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, United States of America
| | - David Wang
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
242
|
Musich T, Robert-Guroff M. New developments in an old strategy: heterologous vector primes and envelope protein boosts in HIV vaccine design. Expert Rev Vaccines 2016; 15:1015-27. [PMID: 26910195 DOI: 10.1586/14760584.2016.1158108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prime/boost vaccination strategies for HIV/SIV vaccine development have been used since the early 1990s and have become an established method for eliciting cell and antibody mediated immunity. Here we focus on induction of protective antibodies, both broadly neutralizing and non-neutralizing, with the viral envelope being the key target antigen. Prime/boost approaches are complicated by the diversity of autologous and heterologous priming vectors, and by various forms of envelope booster immunogens, many still in development as structural studies aim to design stable constructs with exposure of critical epitopes for protective antibody elicitation. This review discusses individual vaccine components, reviews recent prime/boost strategies and their outcomes, and highlights complicating factors arising as greater knowledge concerning induction of adaptive, protective immunity is acquired.
Collapse
Affiliation(s)
- Thomas Musich
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| | - Marjorie Robert-Guroff
- a Vaccine Branch, Center for Cancer Research, National Cancer Institute , National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
243
|
Storcksdieck genannt Bonsmann M, Niezold T, Hannaman D, Überla K, Tenbusch M. The improved antibody response against HIV-1 after a vaccination based on intrastructural help is complemented by functional CD8+ T cell responses. Vaccine 2016; 34:1744-51. [PMID: 26945099 DOI: 10.1016/j.vaccine.2016.02.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/03/2016] [Accepted: 02/24/2016] [Indexed: 12/23/2022]
Abstract
Despite more than three decades of intense research, a prophylactic HIV-1 vaccine remains elusive. Four vaccine modalities have been evaluated in clinical efficacy studies, but only one demonstrated at least modest efficacy, which correlated with polyfunctional antibody responses to the HIV surface protein Env. To be most effective, a HIV-1 vaccine probably has to induce both, functional antibody and CD8(+) T cell responses. We therefore analyzed DNA/DNA and DNA/virus-like particle (VLP) regimens for their ability to induce humoral and cellular immune responses. Here, DNA vaccination of mice induced strong CD8(+) responses against Env and Gag. However, the humoral response to Env was dominated by IgG1, a subclass known for its low functionality. In contrast, priming only with the Gag-encoding plasmid followed by a boost with VLPs consisting of Gag and Env improved the quality of the anti-Env antibody response via intrastructural help (ISH) provided by Gag-specific T cells to Env-specific B cells. Furthermore, the Gag-specific CD8(+) T cells induced by the DNA prime immunization could still protect from a lethal infection with recombinant vaccinia virus encoding HIV Gag. Therefore, this immunization regimen represents a promising approach to combine functional antibody responses toward HIV Env with strong CD8(+) responses controlling early viral replication.
Collapse
Affiliation(s)
| | - Thomas Niezold
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | | | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany; Universitätsklinikum Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany.
| |
Collapse
|
244
|
Elimination of HIV-1-infected cells by broadly neutralizing antibodies. Nat Commun 2016; 7:10844. [PMID: 26936020 PMCID: PMC4782064 DOI: 10.1038/ncomms10844] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 01/26/2016] [Indexed: 12/30/2022] Open
Abstract
The Fc region of HIV-1 Env-specific broadly neutralizing antibodies (bNAbs) is required for suppressing viraemia, through mechanisms which remain poorly understood. Here, we identify bNAbs that exert antibody-dependent cellular cytotoxicity (ADCC) in cell culture and kill HIV-1-infected lymphocytes through natural killer (NK) engagement. These antibodies target the CD4-binding site, the glycans/V3 and V1/V2 loops on gp120, or the gp41 moiety. The landscape of Env epitope exposure at the surface and the sensitivity of infected cells to ADCC vary considerably between viral strains. Efficient ADCC requires sustained cell surface binding of bNAbs to Env, and combining bNAbs allows a potent killing activity. Furthermore, reactivated infected cells from HIV-positive individuals expose heterogeneous Env epitope patterns, with levels that are often but not always sufficient to trigger killing by bNAbs. Our study delineates the parameters controlling ADCC activity of bNAbs, and supports the use of the most potent antibodies to clear the viral reservoir.
Collapse
|
245
|
Glass JJ, Kent SJ, De Rose R. Enhancing dendritic cell activation and HIV vaccine effectiveness through nanoparticle vaccination. Expert Rev Vaccines 2016; 15:719-29. [PMID: 26783186 DOI: 10.1586/14760584.2016.1141054] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Novel vaccination approaches are needed to prevent and control human immunodeficiency virus (HIV) infection. A growing body of literature demonstrates the potential of nanotechnology to modulate the human immune system and generate targeted, controlled immune responses. In this Review, we summarize important advances in how 'nanovaccinology' can be used to develop safe and effective vaccines for HIV. We highlight the central role of dendritic cells in the immune response to vaccination and describe how nanotechnology can be used to enhance delivery to and activation of these important antigen-presenting cells. Strategies employed to improve biodistribution are discussed, including improved lymph node delivery and mucosal penetration concepts, before detailing methods to enhance the humoral and/or cellular immune response to vaccines. We conclude with a commentary on the current state of nanovaccinology.
Collapse
Affiliation(s)
- Joshua J Glass
- a ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Melbourne , Melbourne , Australia.,b Department of Microbiology and Immunology , Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne , Australia
| | - Stephen J Kent
- a ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Melbourne , Melbourne , Australia.,b Department of Microbiology and Immunology , Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne , Australia.,c Melbourne Sexual Health Centre and Department of Infectious Diseases , Alfred Health, Central Clinical School, Monash University , Melbourne , Australia
| | - Robert De Rose
- a ARC Centre of Excellence in Convergent Bio-Nano Science and Technology , The University of Melbourne , Melbourne , Australia.,b Department of Microbiology and Immunology , Peter Doherty Institute for Infection and Immunity, The University of Melbourne , Melbourne , Australia
| |
Collapse
|
246
|
Dissecting Polyclonal Vaccine-Induced Humoral Immunity against HIV Using Systems Serology. Cell 2016; 163:988-98. [PMID: 26544943 DOI: 10.1016/j.cell.2015.10.027] [Citation(s) in RCA: 291] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/24/2015] [Accepted: 10/02/2015] [Indexed: 11/20/2022]
Abstract
While antibody titers and neutralization are considered the gold standard for the selection of successful vaccines, these parameters are often inadequate predictors of protective immunity. As antibodies mediate an array of extra-neutralizing Fc functions, when neutralization fails to predict protection, investigating Fc-mediated activity may help identify immunological correlates and mechanism(s) of humoral protection. Here, we used an integrative approach termed Systems Serology to analyze relationships among humoral responses elicited in four HIV vaccine trials. Each vaccine regimen induced a unique humoral "Fc fingerprint." Moreover, analysis of case:control data from the first moderately protective HIV vaccine trial, RV144, pointed to mechanistic insights into immune complex composition that may underlie protective immunity to HIV. Thus, multi-dimensional relational comparisons of vaccine humoral fingerprints offer a unique approach for the evaluation and design of novel vaccines against pathogens for which correlates of protection remain elusive.
Collapse
|
247
|
Haynes BF, Shaw GM, Korber B, Kelsoe G, Sodroski J, Hahn BH, Borrow P, McMichael AJ. HIV-Host Interactions: Implications for Vaccine Design. Cell Host Microbe 2016; 19:292-303. [PMID: 26922989 DOI: 10.1016/j.chom.2016.02.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Development of an effective AIDS vaccine is a global priority. However, the extreme diversity of HIV type 1 (HIV-1), which is a consequence of its propensity to mutate to escape immune responses, along with host factors that prevent the elicitation of protective immune responses, continue to hinder vaccine development. Breakthroughs in understanding of the biology of the transmitted virus, the structure and nature of its envelope trimer, vaccine-induced CD8 T cell control in primates, and host control of broadly neutralizing antibody elicitation have given rise to new vaccine strategies. Despite this promise, emerging data from preclinical trials reinforce the need for additional insight into virus-host biology in order to facilitate the development of a successful vaccine.
Collapse
Affiliation(s)
- Barton F Haynes
- Department of Medicine, Duke University, Durham, NC 27710, USA; Department of Immunology, Duke University, Durham, NC 27710, USA; Duke University Human Vaccine Institute, Duke University, Durham, NC 27710, USA.
| | - George M Shaw
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bette Korber
- Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, NC 27710, USA; Duke University Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Joseph Sodroski
- Dana Farber-Cancer Institute, Harvard Medical School, Harvard University, Boston, MA 02215, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| |
Collapse
|
248
|
Ackerman ME, Mikhailova A, Brown EP, Dowell KG, Walker BD, Bailey-Kellogg C, Suscovich TJ, Alter G. Polyfunctional HIV-Specific Antibody Responses Are Associated with Spontaneous HIV Control. PLoS Pathog 2016; 12:e1005315. [PMID: 26745376 PMCID: PMC4706315 DOI: 10.1371/journal.ppat.1005315] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022] Open
Abstract
Elite controllers (ECs) represent a unique model of a functional cure for HIV-1 infection as these individuals develop HIV-specific immunity able to persistently suppress viremia. Because accumulating evidence suggests that HIV controllers generate antibodies with enhanced capacity to drive antibody-dependent cellular cytotoxicity (ADCC) that may contribute to viral containment, we profiled an array of extra-neutralizing antibody effector functions across HIV-infected populations with varying degrees of viral control to define the characteristics of antibodies associated with spontaneous control. While neither the overall magnitude of antibody titer nor individual effector functions were increased in ECs, a more functionally coordinated innate immune-recruiting response was observed. Specifically, ECs demonstrated polyfunctional humoral immune responses able to coordinately recruit ADCC, other NK functions, monocyte and neutrophil phagocytosis, and complement. This functionally coordinated response was associated with qualitatively superior IgG3/IgG1 responses, whereas HIV-specific IgG2/IgG4 responses, prevalent among viremic subjects, were associated with poorer overall antibody activity. Rather than linking viral control to any single activity, this study highlights the critical nature of functionally coordinated antibodies in HIV control and associates this polyfunctionality with preferential induction of potent antibody subclasses, supporting coordinated antibody activity as a goal in strategies directed at an HIV-1 functional cure.
Collapse
Affiliation(s)
- Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
- * E-mail: (MEA); (GA)
| | - Anastassia Mikhailova
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Eric P. Brown
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Karen G. Dowell
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Chris Bailey-Kellogg
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Todd J. Suscovich
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (MEA); (GA)
| |
Collapse
|
249
|
Prime-boost vaccine strategy against viral infections: Mechanisms and benefits. Vaccine 2016; 34:413-423. [DOI: 10.1016/j.vaccine.2015.11.062] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 11/21/2015] [Accepted: 11/23/2015] [Indexed: 01/01/2023]
|
250
|
Chamcha V, Kannanganat S, Gangadhara S, Nabi R, Kozlowski PA, Montefiori DC, LaBranche CC, Wrammert J, Keele BF, Balachandran H, Sahu S, Lifton M, Santra S, Basu R, Moss B, Robinson HL, Amara RR. Strong, but Age-Dependent, Protection Elicited by a Deoxyribonucleic Acid/Modified Vaccinia Ankara Simian Immunodeficiency Virus Vaccine. Open Forum Infect Dis 2016; 3:ofw034. [PMID: 27006959 PMCID: PMC4800464 DOI: 10.1093/ofid/ofw034] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 02/09/2016] [Indexed: 11/12/2022] Open
Abstract
Background. In this study, we analyzed the protective efficacy of a simian immunodeficiency virus (SIV) macaque 239 (SIVmac239) analogue of the clinically tested GOVX-B11 deoxyribonucleic acid (DNA)/modified vaccinia Ankara (MVA) human immunodeficiency virus vaccine. Methods. The tested vaccine used a DNA immunogen mutated to mimic the human vaccine and a regimen with DNA deliveries at weeks 0 and 8 and MVA deliveries at weeks 16 and 32. Twelve weekly rectal challenges with 0.3 animal infectious doses of SIV sootey mangabey E660 (SIVsmE660) were administered starting at 6 months after the last immunization. Results. Over the first 6 rectal exposures to SIVsmE660, <10-year-old tripartite motif-containing protein 5 (TRIM5)α-permissive rhesus macaques showed an 80% reduction in per-exposure risk of infection as opposed to a 46% reduction in animals over 10 years old; and, over the 12 challenges, they showed a 72% as opposed to a 10% reduction. Analyses of elicited immune responses suggested that higher antibody responses in the younger animals had played a role in protection. Conclusions. The simian analogue of the GOVX-B11 HIV provided strong protection against repeated rectal challenges in young adult macaques.
Collapse
Affiliation(s)
| | - Sunil Kannanganat
- Yerkes National Primate Research Center, Emory University , Atlanta, Georgia
| | - Sailaja Gangadhara
- Yerkes National Primate Research Center, Emory University , Atlanta, Georgia
| | - Rafiq Nabi
- Department of Microbiology , Immunology and Parasitology, Louisiana State University Health Sciences Center , New Orleans
| | - Pamela A Kozlowski
- Department of Microbiology , Immunology and Parasitology, Louisiana State University Health Sciences Center , New Orleans
| | | | | | - Jens Wrammert
- Department of Pediatrics , Emory University School of Medicine , Atlanta, Georgia
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc. , Frederick National Laboratory for Cancer Research , Maryland
| | | | - Sujata Sahu
- Harvard Medical School, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Michelle Lifton
- Harvard Medical School, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | - Sampa Santra
- Harvard Medical School, Beth Israel Deaconess Medical Center , Boston, Massachusetts
| | | | - Bernard Moss
- Laboratory of Viral Diseases , National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, Maryland
| | | | - Rama Rao Amara
- Yerkes National Primate Research Center, Emory University , Atlanta, Georgia
| |
Collapse
|