201
|
The expanding landscape of inflammatory cells affecting cancer therapy. Nat Biomed Eng 2020; 4:489-498. [PMID: 32203281 DOI: 10.1038/s41551-020-0524-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Tumour-infiltrating myeloid cells (TIMCs) are critical regulators of cancer growth. The different phenotypes, functions and therapeutic effects of these phagocytes have, however, been difficult to study. With the advent of single-cell-based technologies, a new 'worldview' is emerging: the classification of TIMCs into subtypes that are conserved across patients and across species. As the landscape of TIMCs is beginning to be understood, it opens up questions about the function of each TIMC subtype and its drugability. In this Perspective, we outline the current map of TIMC populations in cancer and their known and presumed functions, and discuss their therapeutic implications and the biological research questions that they give rise to. The answers should be particularly relevant for bioengineers, materials scientists and the chemical and pharmaceutical communities developing the next generation of cancer therapies.
Collapse
|
202
|
Yu YRA, Malakhau Y, Yu CHA, Phelan SLJ, Cumming RI, Kan MJ, Mao L, Rajagopal S, Piantadosi CA, Gunn MD. Nonclassical Monocytes Sense Hypoxia, Regulate Pulmonary Vascular Remodeling, and Promote Pulmonary Hypertension. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1474-1485. [PMID: 31996456 PMCID: PMC7065976 DOI: 10.4049/jimmunol.1900239] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 12/15/2019] [Indexed: 11/19/2022]
Abstract
An increasing body of evidence suggests that bone marrow-derived myeloid cells play a critical role in the pathophysiology of pulmonary hypertension (PH). However, the true requirement for myeloid cells in PH development has not been demonstrated, and a specific disease-promoting myeloid cell population has not been identified. Using bone marrow chimeras, lineage labeling, and proliferation studies, we determined that, in murine hypoxia-induced PH, Ly6Clo nonclassical monocytes are recruited to small pulmonary arteries and differentiate into pulmonary interstitial macrophages. Accumulation of these nonclassical monocyte-derived pulmonary interstitial macrophages around pulmonary vasculature is associated with increased muscularization of small pulmonary arteries and disease severity. To determine if the sensing of hypoxia by nonclassical monocytes contributes to the development of PH, mice lacking expression of hypoxia-inducible factor-1α in the Ly6Clo monocyte lineage were exposed to hypoxia. In these mice, vascular remodeling and PH severity were significantly reduced. Transcriptome analyses suggest that the Ly6Clo monocyte lineage regulates PH through complement, phagocytosis, Ag presentation, and chemokine/cytokine pathways. Consistent with these murine findings, relative to controls, lungs from pulmonary arterial hypertension patients displayed a significant increase in the frequency of nonclassical monocytes. Taken together, these findings show that, in response to hypoxia, nonclassical monocytes in the lung sense hypoxia, infiltrate small pulmonary arteries, and promote vascular remodeling and development of PH. Our results demonstrate that myeloid cells, specifically cells of the nonclassical monocyte lineage, play a direct role in the pathogenesis of PH.
Collapse
MESH Headings
- Animals
- Antigens, Ly/metabolism
- Bone Marrow Transplantation
- Cell Differentiation/immunology
- Disease Models, Animal
- Humans
- Hypertension, Pulmonary/immunology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/surgery
- Hypoxia/complications
- Hypoxia/immunology
- Hypoxia/pathology
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lung/blood supply
- Lung/immunology
- Lung/pathology
- Lung Transplantation
- Macrophages, Alveolar/immunology
- Macrophages, Alveolar/metabolism
- Male
- Mice
- Mice, Transgenic
- Monocytes/immunology
- Monocytes/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/immunology
- Pulmonary Artery/pathology
- Transplantation Chimera/immunology
- Vascular Remodeling/genetics
- Vascular Remodeling/immunology
Collapse
Affiliation(s)
- Yen-Rei A Yu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710;
| | - Yuryi Malakhau
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Chen-Hsin A Yu
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Stefan-Laural J Phelan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - R Ian Cumming
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Matthew J Kan
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94115; and
| | - Lan Mao
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Sudarshan Rajagopal
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Claude A Piantadosi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| | - Michael D Gunn
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC 27710
| |
Collapse
|
203
|
Roberts ME, Barvalia M, Silva JAFD, Cederberg RA, Chu W, Wong A, Tai DC, Chen S, Matos I, Priatel JJ, Cullis PR, Harder KW. Deep Phenotyping by Mass Cytometry and Single-Cell RNA-Sequencing Reveals LYN-Regulated Signaling Profiles Underlying Monocyte Subset Heterogeneity and Lifespan. Circ Res 2020; 126:e61-e79. [PMID: 32151196 DOI: 10.1161/circresaha.119.315708] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
RATIONALE Monocytes are key effectors of the mononuclear phagocyte system, playing critical roles in regulating tissue homeostasis and coordinating inflammatory reactions, including those involved in chronic inflammatory diseases such as atherosclerosis. Monocytes have traditionally been divided into 2 major subsets termed conventional monocytes and patrolling monocytes (pMo) but recent systems immunology approaches have identified marked heterogeneity within these cells, and much of what regulates monocyte population homeostasis remains unknown. We and others have previously identified LYN tyrosine kinase as a key negative regulator of myeloid cell biology; however, LYN's role in regulating specific monocyte subset homeostasis has not been investigated. OBJECTIVE We sought to comprehensively profile monocytes to elucidate the underlying heterogeneity within monocytes and dissect how Lyn deficiency affects monocyte subset composition, signaling, and gene expression. We further tested the biological significance of these findings in a model of atherosclerosis. METHODS AND RESULTS Mass cytometric analysis of monocyte subsets and signaling pathway activation patterns in conventional monocytes and pMos revealed distinct baseline signaling profiles and far greater heterogeneity than previously described. Lyn deficiency led to a selective expansion of pMos and alterations in specific signaling pathways within these cells, revealing a critical role for LYN in pMo physiology. LYN's role in regulating pMos was cell-intrinsic and correlated with an increased circulating half-life of Lyn-deficient pMos. Furthermore, single-cell RNA sequencing revealed marked perturbations in the gene expression profiles of Lyn-/- monocytes with upregulation of genes involved in pMo development, survival, and function. Lyn deficiency also led to a significant increase in aorta-associated pMos and protected Ldlr-/- mice from high-fat diet-induced atherosclerosis. CONCLUSIONS Together our data identify LYN as a key regulator of pMo development and a potential therapeutic target in inflammatory diseases regulated by pMos.
Collapse
Affiliation(s)
- Morgan E Roberts
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Maunish Barvalia
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Jessica A F D Silva
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Rachel A Cederberg
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - William Chu
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Amanda Wong
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - Daven C Tai
- Department of Pediatrics (D.C.T.), University of British Columbia, Vancouver, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, Canada (D.C.T., J.J.P.)
| | - Sam Chen
- Department of Biochemistry and Molecular Biology (S.C., P.R.C.), University of British Columbia, Vancouver, Canada
| | - Israel Matos
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| | - John J Priatel
- Department of Pathology and Laboratory Medicine (J.J.P.), University of British Columbia, Vancouver, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, Canada (D.C.T., J.J.P.)
| | - Pieter R Cullis
- Department of Biochemistry and Molecular Biology (S.C., P.R.C.), University of British Columbia, Vancouver, Canada
| | - Kenneth W Harder
- From the Department of Microbiology and Immunology (M.E.R., M.B., J.A.F.D.S., R.A.C., W.C., A.W., I.M., K.W.H.), University of British Columbia, Vancouver, Canada
| |
Collapse
|
204
|
Ji Q, Zhou L, Sui H, Yang L, Wu X, Song Q, Jia R, Li R, Sun J, Wang Z, Liu N, Feng Y, Sun X, Cai G, Feng Y, Cai J, Cao Y, Cai G, Wang Y, Li Q. Primary tumors release ITGBL1-rich extracellular vesicles to promote distal metastatic tumor growth through fibroblast-niche formation. Nat Commun 2020; 11:1211. [PMID: 32139701 PMCID: PMC7058049 DOI: 10.1038/s41467-020-14869-x] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Tumor metastasis is a hallmark of cancer. Metastatic cancer cells often reside in distal tissues and organs in their dormant state. Mechanisms underlying the pre-metastatic niche formation are poorly understood. Here we show that in a colorectal cancer (CRC) model, primary tumors release integrin beta-like 1 (ITGBL1)-rich extracellular vesicles (EVs) to the circulation to activate resident fibroblasts in remote organs. The activated fibroblasts induce the pre-metastatic niche formation and promote metastatic cancer growth by secreting pro-inflammatory cytokine, such as IL-6 and IL-8. Mechanistically, the primary CRC-derived ITGBL1-enriched EVs stimulate the TNFAIP3-mediated NF-κB signaling pathway to activate fibroblasts. Consequently, the activated fibroblasts produce high levels of pro-inflammatory cytokines to promote metastatic cancer growth. These findings uncover a tumor-stromal interaction in the metastatic tumor microenvironment and an intimate signaling communication between primary tumors and metastases through the ITGBL1-loaded EVs. Targeting the EVs-ITGBL1-CAFs-TNFAIP3-NF-κB signaling axis provides an attractive approach for treating metastatic diseases.
Collapse
Affiliation(s)
- Qing Ji
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Lihong Zhou
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Hua Sui
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Liu Yang
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Xinnan Wu
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Qing Song
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ru Jia
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ruixiao Li
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Jian Sun
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ziyuan Wang
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Ningning Liu
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Yuanyuan Feng
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Xiaoting Sun
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Gang Cai
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Yu Feng
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Yihai Cao
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, 171 77, Sweden
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.
| | - Yan Wang
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| | - Qi Li
- Department of Medical Oncology and cancer institute, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 201203, Shanghai, China.
| |
Collapse
|
205
|
Ueki H, Wang IH, Zhao D, Gunzer M, Kawaoka Y. Multicolor two-photon imaging of in vivo cellular pathophysiology upon influenza virus infection using the two-photon IMPRESS. Nat Protoc 2020; 15:1041-1065. [PMID: 31996843 PMCID: PMC7086515 DOI: 10.1038/s41596-019-0275-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
In vivo two-photon imaging is a valuable technique for studies of viral pathogenesis and host responses to infection in vivo. In this protocol, we describe a methodology for analyzing influenza virus-infected lung in vivo by two-photon imaging microscopy. We describe the surgical procedure, how to stabilize the lung, and an approach to analyzing the data. Further, we provide a database of fluorescent dyes, antibodies, and reporter mouse lines that can be used in combination with a reporter influenza virus (Color-flu) for multicolor analysis. Setup of this model typically takes ~30 min and enables the observation of influenza virus-infected lungs for >4 h during the acute phase of the inflammation and at least 1 h in the lethal phase. This imaging system, which we termed two-photon IMPRESS (imaging pathophysiology research system), is broadly applicable to analyses of other respiratory pathogens and reveals disease progression at the cellular level in vivo.
Collapse
Affiliation(s)
- Hiroshi Ueki
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - I-Hsuan Wang
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Dongming Zhao
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan.
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
206
|
Singhal S, Stadanlick J, Annunziata MJ, Rao AS, Bhojnagarwala PS, O'Brien S, Moon EK, Cantu E, Danet-Desnoyers G, Ra HJ, Litzky L, Akimova T, Beier UH, Hancock WW, Albelda SM, Eruslanov EB. Human tumor-associated monocytes/macrophages and their regulation of T cell responses in early-stage lung cancer. Sci Transl Med 2020; 11:11/479/eaat1500. [PMID: 30760579 DOI: 10.1126/scitranslmed.aat1500] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 10/11/2018] [Accepted: 01/09/2019] [Indexed: 12/26/2022]
Abstract
Data from mouse tumor models suggest that tumor-associated monocyte/macrophage lineage cells (MMLCs) dampen antitumor immune responses. However, given the fundamental differences between mice and humans in tumor evolution, genetic heterogeneity, and immunity, the function of MMLCs might be different in human tumors, especially during early stages of disease. Here, we studied MMLCs in early-stage human lung tumors and found that they consist of a mixture of classical tissue monocytes and tumor-associated macrophages (TAMs). The TAMs coexpressed M1/M2 markers, as well as T cell coinhibitory and costimulatory receptors. Functionally, TAMs did not primarily suppress tumor-specific effector T cell responses, whereas tumor monocytes tended to be more T cell inhibitory. TAMs expressing relevant MHC class I/tumor peptide complexes were able to activate cognate effector T cells. Mechanistically, programmed death-ligand 1 (PD-L1) expressed on bystander TAMs, as opposed to PD-L1 expressed on tumor cells, did not inhibit interactions between tumor-specific T cells and tumor targets. TAM-derived PD-L1 exerted a regulatory role only during the interaction of TAMs presenting relevant peptides with cognate effector T cells and thus may limit excessive activation of T cells and protect TAMs from killing by these T cells. These results suggest that the function of TAMs as primarily immunosuppressive cells might not fully apply to early-stage human lung cancer and might explain why some patients with strong PD-L1 positivity fail to respond to PD-L1 therapy.
Collapse
Affiliation(s)
- Sunil Singhal
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason Stadanlick
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Annunziata
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Abhishek S Rao
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pratik S Bhojnagarwala
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shaun O'Brien
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edmund K Moon
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Cantu
- Division of Cardiovascular Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Hyun-Jeong Ra
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leslie Litzky
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tatiana Akimova
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Division of Transplantation Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ulf H Beier
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Wayne W Hancock
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Division of Transplantation Immunology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Steven M Albelda
- Division of Pulmonary, Allergy, and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
207
|
Models for Monocytic Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32036607 DOI: 10.1007/978-3-030-35723-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Monocytes (Mos) are immune cells that critically regulate cancer, enabling tumor growth and modulating metastasis. Mos can give rise to tumor-associated macrophages (TAMs) and Mo-derived dendritic cells (moDCs), all of which shape the tumor microenvironment (TME). Thus, understanding their roles in the TME is key for improved immunotherapy. Concurrently, various biological and mechanical factors including changes in local cytokines, extracellular matrix production, and metabolic changes in the TME affect the roles of monocytic cells. As such, relevant TME models are critical to achieve meaningful insight on the precise functions, mechanisms, and effects of monocytic cells. Notably, murine models have yielded significant insight into human Mo biology. However, many of these results have yet to be confirmed in humans, reinforcing the need for improved in vitro human TME models for the development of cancer interventions. Thus, this chapter (1) summarizes current insight on the tumor biology of Mos, TAMs, and moDCs, (2) highlights key therapeutic applications relevant to these cells, and (3) discusses various TME models to study their TME-related activity. We conclude with a perspective on the future research trajectory of this topic.
Collapse
|
208
|
Garner H, de Visser KE. Immune crosstalk in cancer progression and metastatic spread: a complex conversation. Nat Rev Immunol 2020; 20:483-497. [PMID: 32024984 DOI: 10.1038/s41577-019-0271-z] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2019] [Indexed: 12/12/2022]
Abstract
Metastatic disease is responsible for approximately 90% of cancer deaths. For successful dissemination and metastasis, cancer cells must evade detection and destruction by the immune system. This process is enabled by factors secreted by the primary tumour that shape both the intratumoural microenvironment and the systemic immune landscape. Here, we review the evidence of aberrant immune cell crosstalk in metastasis formation and the role that primary tumours play in hijacking these interactions in order to enhance their metastatic potential. Moreover, we highlight the intriguing parallels between the inflammatory pathways underlying inflammatory disorders and cancer progression.
Collapse
Affiliation(s)
- Hannah Garner
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Karin E de Visser
- Division of Tumour Biology & Immunology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands. .,Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, Netherlands.
| |
Collapse
|
209
|
Zhao L, Gimple RC, Yang Z, Wei Y, Gustafsson JÅ, Zhou S. Immunoregulatory Functions of Nuclear Receptors: Mechanisms and Therapeutic Implications. Trends Endocrinol Metab 2020; 31:93-106. [PMID: 31706690 DOI: 10.1016/j.tem.2019.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 12/16/2022]
Abstract
Members of the nuclear receptor superfamily serve as master regulators in signaling by either positively or negatively regulating gene expression. Accumulating evidence has suggested that nuclear receptors are actively involved in immune responses, with specific roles in different immune cell compartments that contribute to both normal function and to disease development. The druggable properties of nuclear receptors have made them ideal modulatory therapeutic targets. Here, we revisit nuclear receptor biology, summarize recent advances in our understanding of the immunological functions of nuclear receptors, describe cell-type-specific roles and specific nuclear receptors in disease pathogenesis, and explore their potential as novel therapeutic targets. These nuclear receptor-dependent alterations in the immune system are amenable to pharmacological manipulation and suggest novel therapeutic strategies.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Zhengnan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yuquan Wei
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Center for Medical Innovation, Department of Biosciences and Nutrition at Novum, Karolinska Institute, Stockholm, Sweden.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China.
| |
Collapse
|
210
|
Zhao L, Hu H, Gustafsson JÅ, Zhou S. Nuclear Receptors in Cancer Inflammation and Immunity. Trends Immunol 2020; 41:172-185. [PMID: 31982345 DOI: 10.1016/j.it.2019.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 02/05/2023]
Abstract
Members of the nuclear receptor (NR) superfamily orchestrate cellular processes that can impact on numerous cancer hallmarks. NR activity plays important roles in the tumor microenvironment by controlling inflammation and immune responses. We summarize recent insights into the diverse mechanisms by which NR activity can control tumor inflammation, the roles of different NRs in modulating tumor immunity, and the biological features of immune cells that express specific NRs in the context of cancer. NR-dependent alterations in tumor inflammation and immunity may be amenable to pharmacological manipulation and offer new clues regarding the development of novel cancer therapeutic regimens.
Collapse
Affiliation(s)
- Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education (MOE), and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, PR China
| | - Hongbo Hu
- Department of Rheumatology and Immunology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, PR China
| | - Jan-Åke Gustafsson
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Center for Medical Innovation, Department of Biosciences and Nutrition at Novum, Karolinska Institute, Stockholm, Sweden.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education (MOE), and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, and Collaborative Innovation Center, Chengdu, PR China.
| |
Collapse
|
211
|
Narasimhan PB, Eggert T, Zhu YP, Marcovecchio P, Meyer MA, Wu R, Hedrick CC. Patrolling Monocytes Control NK Cell Expression of Activating and Stimulatory Receptors to Curtail Lung Metastases. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:192-198. [PMID: 31767784 PMCID: PMC7890694 DOI: 10.4049/jimmunol.1900998] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023]
Abstract
The role of nonclassical, patrolling monocytes in lung tumor metastasis and their functional relationships with other immune cells remain poorly defined. Contributing to these gaps in knowledge is a lack of cellular specificity in commonly used approaches for depleting nonclassical monocytes. To circumvent these limitations and study the role of patrolling monocytes in melanoma metastasis to lungs, we generated C57BL/6J mice in which the Nr4a1 superenhancer E2 subdomain is ablated (E2 -/- mice). E2 -/- mice lack nonclassical patrolling monocytes but preserve classical monocyte and macrophage numbers and functions. Interestingly, NK cell recruitment and activation were impaired, and metastatic burden was increased in E2 -/-mice. E2 -/- mice displayed unchanged "educated" (CD11b+CD27+) and "terminally differentiated" (CD11b+CD27-) NK cell frequencies. These perturbations were accompanied by reduced expression of stimulatory receptor Ly49D on educated NK cells and increased expression of inhibitory receptor NKG2A/CD94 on terminally differentiated NK cells. Thus, our work demonstrates that patrolling monocytes play a critical role in preventing lung tumor metastasis via NK cell recruitment and activation.
Collapse
Affiliation(s)
| | - Tobias Eggert
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Yanfang Peipei Zhu
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Paola Marcovecchio
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Melissa A Meyer
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Runpei Wu
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Catherine C Hedrick
- Division of Inflammation Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| |
Collapse
|
212
|
Menzyanova NG, Pyatina SA, Shabanov AV, Nemtsev IV, Stolyarov DP, Dryganov DB, Sakhnov EV, Shishatskaya EI. The Morphology and Phenotype of Monocyte-Macrophages When Cultured on Bionanofilms Substrates with Different Surface Relief Profiles. Biomolecules 2019; 10:biom10010065. [PMID: 31906038 PMCID: PMC7022488 DOI: 10.3390/biom10010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 11/16/2022] Open
Abstract
The effect of surface relief profiles of alkanoate-based bionanofilms to the monocyte-macrophages (MN-MPhs) from peripheral blood of patients with atherosclerosis was studied in vitro. Patients were subjected to coronary stenting. Cell morphology and phenotype (expression of CD antigens, levels of production of marker cytokines) in vitro were analyzed before and after the installation of stents. It was shown, that the mean square roughness (Rq) of the bionanofilms determined the variability of cell morphology, CD antigens spectraand activity of production interleukins-6 and -10. Also, it was revealed, that the “activity” of the surface topography of biopolymer substrates depends on the functional state of MNs, isolated in different time points: Before and after stenting the ratios of cell morphotypes and production of cytokines in MN-MPhs differed significantly.
Collapse
Affiliation(s)
- Natalia G. Menzyanova
- Siberian Federal University, 79, Svobodnyav, 660041 Krasnoyarsk, Russia; (S.A.P.); (E.I.S.)
- Correspondence: ; Tel.: +7-983-501-8880
| | - Svetlana A. Pyatina
- Siberian Federal University, 79, Svobodnyav, 660041 Krasnoyarsk, Russia; (S.A.P.); (E.I.S.)
| | - Alexander V. Shabanov
- L.V. Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, 50/38 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Ivan V. Nemtsev
- Federal Research Center Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, 50 Akademgorodok, 660036 Krasnoyarsk, Russia;
| | - Dmitry P. Stolyarov
- Federal Center for Cardiovascular Surgery, 45 Karaulnaya, 660020 Krasnoyarsk, Russia; (D.P.S.); (D.B.D.); (E.V.S.)
| | - Dmitry B. Dryganov
- Federal Center for Cardiovascular Surgery, 45 Karaulnaya, 660020 Krasnoyarsk, Russia; (D.P.S.); (D.B.D.); (E.V.S.)
| | - Eugene V. Sakhnov
- Federal Center for Cardiovascular Surgery, 45 Karaulnaya, 660020 Krasnoyarsk, Russia; (D.P.S.); (D.B.D.); (E.V.S.)
| | | |
Collapse
|
213
|
Antitumoral and Immunomodulatory Effect of Mahonia aquifolium Extracts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:6439021. [PMID: 31949880 PMCID: PMC6948282 DOI: 10.1155/2019/6439021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/31/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022]
Abstract
The prodrug potential of Mahonia aquifolium, a plant used for centuries in traditional medicine, recently gained visibility in the literature, and the activity of several active compounds isolated from its extracts was studied on biologic systems in vitro and in vivo. Whereas the antioxidative and antitumor activities of M. aquifolium-derived compounds were studied at some extent, there are very few data about their outcome on the immune system and tumor cells. To elucidate the M. aquifolium potential immunomodulatory and antiproliferative effects, the bark, leaf, flower, green fruit, and ripe fruit extracts from the plant were tested on peripheral blood mononuclear cells and tumor cells. The extracts exert fine-tuned control on the immune response, by modulating the CD25 lymphocyte activation pathway, the interleukin-10 signaling, and the tumor necrosis-alpha secretion in four distinct human peripheral blood mononuclear cell (PBMC) subpopulations. M. aquifolium extracts exhibit a moderate cytotoxicity and changes in the signaling pathways linked to cell adhesion, proliferation, migration, and apoptosis of the tumor cells. These results open perspectives to further investigation of the M. aquifolium extract prodrug potential.
Collapse
|
214
|
Triaca V, Carito V, Fico E, Rosso P, Fiore M, Ralli M, Lambiase A, Greco A, Tirassa P. Cancer stem cells-driven tumor growth and immune escape: the Janus face of neurotrophins. Aging (Albany NY) 2019; 11:11770-11792. [PMID: 31812953 PMCID: PMC6932930 DOI: 10.18632/aging.102499] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/17/2019] [Indexed: 05/12/2023]
Abstract
Cancer Stem Cells (CSCs) are self-renewing cancer cells responsible for expansion of the malignant mass in a dynamic process shaping the tumor microenvironment. CSCs may hijack the host immune surveillance resulting in typically aggressive tumors with poor prognosis.In this review, we focus on neurotrophic control of cellular substrates and molecular mechanisms involved in CSC-driven tumor growth as well as in host immune surveillance. Neurotrophins have been demonstrated to be key tumor promoting signaling platforms. Particularly, Nerve Growth Factor (NGF) and its specific receptor Tropomyosin related kinase A (TrkA) have been implicated in initiation and progression of many aggressive cancers. On the other hand, an active NGF pathway has been recently proven to be critical to oncogenic inflammation control and in promoting immune response against cancer, pinpointing possible pro-tumoral effects of NGF/TrkA-inhibitory therapy.A better understanding of the molecular mechanisms involved in the control of tumor growth/immunoediting is essential to identify new predictive and prognostic intervention and to design more effective therapies. Fine and timely modulation of CSCs-driven tumor growth and of peripheral lymph nodes activation by the immune system will possibly open the way to precision medicine in neurotrophic therapy and improve patient's prognosis in both TrkA- dependent and independent cancers.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, Rome, Italy
| | - Valentina Carito
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Elena Fico
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Pamela Rosso
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Massimo Ralli
- Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | | | - Antonio Greco
- Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), at Department of Sense Organs, University of Rome La Sapienza, Rome, Italy
| |
Collapse
|
215
|
Hamers AAJ, Dinh HQ, Thomas GD, Marcovecchio P, Blatchley A, Nakao CS, Kim C, McSkimming C, Taylor AM, Nguyen AT, McNamara CA, Hedrick CC. Human Monocyte Heterogeneity as Revealed by High-Dimensional Mass Cytometry. Arterioscler Thromb Vasc Biol 2019; 39:25-36. [PMID: 30580568 DOI: 10.1161/atvbaha.118.311022] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective- Three distinct human monocyte subsets have been identified based on the surface marker expression of CD14 and CD16. We hypothesized that monocytes were likely more heterogeneous in composition. Approach and Results- We used the high dimensionality of mass cytometry together with the FlowSOM clustering algorithm to accurately identify and define monocyte subsets in blood of healthy human subjects and those with coronary artery disease (CAD). To study the behavior and functionality of the newly defined monocyte subsets, we performed RNA sequencing, transwell migration, and efferocytosis assays. Here, we identify 8 human monocyte subsets based on their surface marker phenotype. We found that 3 of these subsets fall within the CD16+ nonclassical monocyte population and 4 subsets belong to the CD14+ classical monocytes, illustrating significant monocyte heterogeneity in humans. As nonclassical monocytes are important in modulating atherosclerosis in mice, we studied the functions of our 3 newly identified nonclassical monocytes in subjects with CAD. We found a marked expansion of a Slan+CXCR6+ nonclassical monocyte subset in CAD subjects, which was positively correlated with CAD severity. This nonclassical subset can migrate towards CXCL16 and shows an increased efferocytosis capacity, indicating it may play an atheroprotective role. Conclusions- Our data demonstrate that human nonclassical monocytes are a heterogeneous population, existing of several subsets with functional differences. These subsets have changed frequencies in the setting of severe CAD. Understanding how these newly identified subsets modulate CAD will be important for CAD-based therapies that target myeloid cells.
Collapse
Affiliation(s)
- Anouk A J Hamers
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Huy Q Dinh
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Graham D Thomas
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Paola Marcovecchio
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Amy Blatchley
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Catherine S Nakao
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| | - Cheryl Kim
- Flow Cytometry Core Facility, La Jolla Institute for Allergy and Immunology, CA (C.K.)
| | - Chantel McSkimming
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Angela M Taylor
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Anh T Nguyen
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Coleen A McNamara
- Robert M. Berne Cardiovascular Research Center and Division of Cardiology, University of Virginia, Charlottesville (C.M., A.M.T., A.T.N., C.A.M.)
| | - Catherine C Hedrick
- From the Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA (A.A.J.H., H.Q.D., G.D.T., P.M., A.B., C.S.N., C.C.H.)
| |
Collapse
|
216
|
Greco M, Mazzei A, Palumbo C, Verri T, Lobreglio G. Flow Cytometric Analysis of Monocytes Polarization and Reprogramming From Inflammatory to Immunosuppressive Phase During Sepsis. EJIFCC 2019; 30:371-384. [PMID: 31814812 PMCID: PMC6893894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Sepsis outcome is determined by a balance between inflammation and immune suppression. We aimed to evaluate monocytes polarization and reprogramming during these processes. We analyzed 93 patients with procalcitonin level >0.5 ng/mL (hPCT) and suspected/confirmed sepsis, and 84 controls by analysis of CD14, CD16 and HLA-DR expression on blood monocytes using fluorescent labeled monoclonal antibodies and BD FACS CANTO II. Complete blood cell count, procalcitonin and other biochemical markers were evaluated. Intermediate monocytes CD14++CD16+ increased in hPCT patients (including both positive and negative culture) compared to controls (13.6% ± 0.8 vs 6.2% ± 0.3, p<0.001), while classical monocytes CD14++CD16-were significantly reduced (72.5% ± 1.6 vs 82.6% ± 0.7, p<0.001). Among hPCT patients having positive microbial culture, the percentage of intermediate monocytes was significantly higher in septic compared with non-septic/localized-infection patients (17.4% vs 11.5%; p<0.05) whilst the percentage of classical monocytes was lower (68.0% vs 74.5%). Three-four days following the diagnosis of sepsis, HLA-DR expression on monocyte (mHLA-DR) was lower (94.3%) compared to controls (99.4%) (p<0.05). Septic patients with the worst clinical conditions showed higher incidence of secondary infections, longtime hospitalization and lower HLA-DR+ monocytes compared to septic patients with better clinical outcome (88.4% vs 98.6%, p=0.05). The dynamic nature of sepsis correlates with monocytes functional polarization and reprogramming from a pro-inflammatory CD14++CD16+ phenotype in non-septic hPCT patients to a decrease of HLA-DR surface expression in hPCT patients with confirmed sepsis, making HLA-DR reduction a marker of immune-paralysis and sepsis outcome. Analysis of monocytes plasticity opens to new mechanisms responsible for pro/anti-inflammatory responses during sepsis, and new immunotherapies.
Collapse
Affiliation(s)
- Marilena Greco
- Clinical Pathology and Microbiology Laboratory, Vito Fazzi General Hospital ASL-Lecce, Lecce, Italy,Corresponding author: Marilena Greco, PhD Clinical Pathology and Microbiology Laboratory Vito Fazzi General Hospital ASL-Lecce Piazza Muratore 73100 Lecce Italy E-mail:
| | - Aurora Mazzei
- Laboratory of Physiology, Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, Lecce, Italy
| | - Claudio Palumbo
- Clinical Pathology and Microbiology Laboratory, Vito Fazzi General Hospital ASL-Lecce, Lecce, Italy
| | - Tiziano Verri
- Laboratory of Physiology, Department of Biological and Environmental Sciences and Technologies (DeBEST), University of Salento, Lecce, Italy
| | - Giambattista Lobreglio
- Clinical Pathology and Microbiology Laboratory, Vito Fazzi General Hospital ASL-Lecce, Lecce, Italy
| |
Collapse
|
217
|
Milanese JS, Tibiche C, Zou J, Meng Z, Nantel A, Drouin S, Marcotte R, Wang E. Germline variants associated with leukocyte genes predict tumor recurrence in breast cancer patients. NPJ Precis Oncol 2019; 3:28. [PMID: 31701019 PMCID: PMC6825127 DOI: 10.1038/s41698-019-0100-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Germline variants such as BRCA1/2 play an important role in tumorigenesis and clinical outcomes of cancer patients. However, only a small fraction (i.e., 5-10%) of inherited variants has been associated with clinical outcomes (e.g., BRCA1/2, APC, TP53, PTEN and so on). The challenge remains in using these inherited germline variants to predict clinical outcomes of cancer patient population. In an attempt to solve this issue, we applied our recently developed algorithm, eTumorMetastasis, which constructs predictive models, on exome sequencing data to ER+ breast (n = 755) cancer patients. Gene signatures derived from the genes containing functionally germline variants significantly distinguished recurred and non-recurred patients in two ER+ breast cancer independent cohorts (n = 200 and 295, P = 1.4 × 10-3). Furthermore, we compared our results with the widely known Oncotype DX test (i.e., Oncotype DX breast cancer recurrence score) and outperformed prediction for both high- and low-risk groups. Finally, we found that recurred patients possessed a higher rate of germline variants. In addition, the inherited germline variants from these gene signatures were predominately enriched in T cell function, antigen presentation, and cytokine interactions, likely impairing the adaptive and innate immune response thus favoring a pro-tumorigenic environment. Hence, germline genomic information could be used for developing non-invasive genomic tests for predicting patients' outcomes in breast cancer.
Collapse
Affiliation(s)
| | - Chabane Tibiche
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
| | - Jinfeng Zou
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
| | - Zhigang Meng
- Department of Biochemistry & Molecular Biology, Medical Genetics, and Oncology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Chinese Academy of Agricultural Science, No. 12 Zhongguangcun South Street, Haidian District, Beijing, 100086 China
| | - Andre Nantel
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
| | - Simon Drouin
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
| | - Richard Marcotte
- National Research Council Canada, 6100 Royalmount Avenue, Montreal, QC H4P 2R2 Canada
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue W, Montreal, QC H3A 1A3 Canada
| | - Edwin Wang
- Department of Biochemistry & Molecular Biology, Medical Genetics, and Oncology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
- Alberta Children’s Hospital Research Institute and Arnie Charbonneau Cancer Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1 Canada
| |
Collapse
|
218
|
Jeong J, Suh Y, Jung K. Context Drives Diversification of Monocytes and Neutrophils in Orchestrating the Tumor Microenvironment. Front Immunol 2019; 10:1817. [PMID: 31474975 PMCID: PMC6706790 DOI: 10.3389/fimmu.2019.01817] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/18/2019] [Indexed: 12/24/2022] Open
Abstract
Recent preclinical/clinical studies have underscored the significant impact of tumor microenvironment (TME) on tumor progression in diverse scenarios. Highly heterogeneous and complex, the tumor microenvironment is composed of malignant cancer cells and non-malignant cells including endothelial cells, fibroblasts, and diverse immune cells. Since immune compartments play pivotal roles in regulating tumor progression via various mechanisms, understanding of their multifaceted functions is crucial to developing effective cancer therapies. While roles of lymphoid cells in tumors have been systematically studied for a long time, the complex functions of myeloid cells have been relatively underexplored. However, constant findings on tumor-associated myeloid cells are drawing attention, highlighting the primary effects of innate immune cells such as monocytes and neutrophils in disease progression. This review focuses on hitherto identified contextual developments and functions of monocytes and neutrophils with a special interest in solid tumors. Moreover, ongoing clinical applications are discussed at the end of the review.
Collapse
Affiliation(s)
- Juhee Jeong
- Lab of Cancer Immunology and In Vivo Imaging, Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoorock Suh
- Lab of Cancer Immunology and In Vivo Imaging, Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Keehoon Jung
- Lab of Cancer Immunology and In Vivo Imaging, Department of Biomedical Sciences, BK21 Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, South Korea
| |
Collapse
|
219
|
Schuldner M, Dörsam B, Shatnyeva O, Reiners KS, Kubarenko A, Hansen HP, Finkernagel F, Roth K, Theurich S, Nist A, Stiewe T, Paschen A, Knittel G, Reinhardt HC, Müller R, Hallek M, von Strandmann EP. Exosome-dependent immune surveillance at the metastatic niche requires BAG6 and CBP/p300-dependent acetylation of p53. Theranostics 2019; 9:6047-6062. [PMID: 31534536 PMCID: PMC6735508 DOI: 10.7150/thno.36378] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/15/2019] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles released by tumor cells contribute to the reprogramming of the tumor microenvironment and interfere with hallmarks of cancer including metastasis. Notably, melanoma cell-derived EVs are able to establish a pre-metastatic niche in distant organs, or on the contrary, exert anti-tumor activity. However, molecular insights into how vesicles are selectively packaged with cargo defining their specific functions remain elusive. Methods: Here, we investigated the role of the chaperone Bcl2-associated anthogene 6 (BAG6, synonym Bat3) for the formation of pro- and anti-tumor EVs. EVs collected from wildtype cells and BAG6-deficient cells were characterized by mass spectrometry and RNAseq. Their tumorigenic potential was analyzed using the B-16V transplantation mouse melanoma model. Results: We demonstrate that EVs from B-16V cells inhibit lung metastasis associated with the mobilization of Ly6Clow patrolling monocytes. The formation of these anti-tumor-EVs was dependent on acetylation of p53 by the BAG6/CBP/p300-acetylase complex, followed by recruitment of components of the endosomal sorting complexes required for transport (ESCRT) via a P(S/T)AP double motif of BAG6. Genetic ablation of BAG6 and disruption of this pathway led to the release of a distinct EV subtype, which failed to suppress metastasis but recruited tumor-promoting neutrophils to the pre-metastatic niche. Conclusion: We conclude that the BAG6/CBP/p300-p53 axis is a key pathway directing EV cargo loading and thus a potential novel microenvironmental therapeutic target.
Collapse
|
220
|
Kim K, Marquez-Palencia M, Malladi S. Metastatic Latency, a Veiled Threat. Front Immunol 2019; 10:1836. [PMID: 31447846 PMCID: PMC6691038 DOI: 10.3389/fimmu.2019.01836] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Metastatic relapse is observed in cancer patients with no clinical evidence of disease for months to decades after initial diagnosis and treatment. Disseminated cancer cells that are capable of entering reversible cell cycle arrest are believed to be responsible for these late metastatic relapses. Dynamic interactions between the latent disseminated tumor cells and their surrounding microenvironment aid cancer cell survival and facilitate escape from immune surveillance. Here, we highlight findings from preclinical models that provide a conceptual framework to define and target the latent metastatic phase of tumor progression. The hope is by identifying patients harboring latent metastatic cells and providing therapeutic options to eliminate metastatic seeds prior to their emergence will result in long lasting cures.
Collapse
Affiliation(s)
- Kangsan Kim
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
| | - Mauricio Marquez-Palencia
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
| | - Srinivas Malladi
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States.,Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
221
|
Olingy CE, Dinh HQ, Hedrick CC. Monocyte heterogeneity and functions in cancer. J Leukoc Biol 2019; 106:309-322. [PMID: 30776148 PMCID: PMC6658332 DOI: 10.1002/jlb.4ri0818-311r] [Citation(s) in RCA: 373] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/11/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Monocytes are innate immune cells of the mononuclear phagocyte system that have emerged as important regulators of cancer development and progression. Our understanding of monocytes has advanced from viewing these cells as a homogenous population to a heterogeneous system of cells that display diverse responses to different stimuli. During cancer, different monocyte subsets perform functions that contribute to both pro- and antitumoral immunity, including phagocytosis, secretion of tumoricidal mediators, promotion of angiogenesis, remodeling of the extracellular matrix, recruitment of lymphocytes, and differentiation into tumor-associated macrophages and dendritic cells. The ability of cancer to evade immune recognition and clearance requires protumoral signals to outweigh ongoing attempts by the host immune system to prevent tumor growth. This review discusses current understanding of monocyte heterogeneity during homeostasis, highlights monocyte functions in cancer progression, and describes monocyte-targeted therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Claire E. Olingy
- La Jolla Institute for Allergy and ImmunologyLa JollaCaliforniaUSA
| | - Huy Q. Dinh
- La Jolla Institute for Allergy and ImmunologyLa JollaCaliforniaUSA
| | | |
Collapse
|
222
|
Jahchan NS, Mujal AM, Pollack JL, Binnewies M, Sriram V, Reyno L, Krummel MF. Tuning the Tumor Myeloid Microenvironment to Fight Cancer. Front Immunol 2019; 10:1611. [PMID: 31402908 PMCID: PMC6673698 DOI: 10.3389/fimmu.2019.01611] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment (TME) of diverse cancer types is often characterized by high levels of infiltrating myeloid cells including monocytes, macrophages, dendritic cells, and granulocytes. These cells perform a variety of functions in the TME, varying from immune suppressive to immune stimulatory roles. In this review, we summarize the different myeloid cell populations in the TME and the intratumoral myeloid targeting approaches that are being clinically investigated, and discuss strategies that identify new myeloid subpopulations within the TME. The TME therapies include agents that modulate the functional activities of myeloid populations, that impact recruitment and survival of myeloid subpopulations, and that functionally reprogram or activate myeloid populations. We discuss the benefits, limitations and potential side effects of these therapeutic approaches.
Collapse
Affiliation(s)
| | - Adriana M. Mujal
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | | | | | | | - Leonard Reyno
- Pionyr Immunotherapeutics, South San Francisco, CA, United States
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
- ImmunoX Initiative, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
223
|
Zahran AM, Rayan A, Sayed HAR, Sobhy A, Solimn A, Darwish AM. Prognostic impact of circulating monocyte subsets in pediatric solid tumors. Cancer Biomark 2019; 25:371-379. [PMID: 31322540 DOI: 10.3233/cbm-182212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND AIM We aimed to quantify monocyte subsets in newly diagnosed pediatric patients with solid tumors at South Egypt Cancer Institute (SECI) and Assiut University Hospital (AUH), and investigate their roles in the treatment outcomes. PATIENTS AND METHODS This is a prospective case-controlled study included 100 patients with de novo solid tumors and forty age and sex matched healthy children to provide blood samples as control subjects to determine normal count of monocyte subsets, blood samples were collected from cancer patients before the first cycle of chemotherapy, these blood samples were subjected to routine laboratory tests and assessment of monocyte subsets using flow cytometry. RESULTS Significant accumulations of intermediate monocytes and non classical monocytes (P< 0.000) in pediatric cases compared to controls were detected, there was a significant impact of non classical and intermediate monocytes on the type of response (P< 0.008, P< 0.4 respectively), The median OS for 100 patients with pediatric solid tumors involved in our study was 27 ± 0.589 months with 95% CI = 25.846-28.154, while the median PFS was 26 ± 0.610 months with 95% CI = 24.805-27.195, significant positive correlation between non-classical monocytes and OS (r=+0.659, P< 0.041). CONCLUSION Solid conclusion regarding the impact of monocyte classes in pediatric tumors is premature, although, in this study, non-classical and intermediate monocytes were associated with better response to treatment in pediatric solid tumors and non-classical monocytes were correlated with higher overall survival; further studies are needed for better understanding and specification of monocyte functions in different pediatric tumors.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Amal Rayan
- Clinical Oncology Department, Assiut University Hospital, Assiut University, Assiut, Egypt
| | - Heba Abdel Razik Sayed
- Pediatric Oncology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Ali Sobhy
- Clinical Pathology Department, Al-Azhar University, Assiut, Egypt
| | - Ahmed Solimn
- General Surgery Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abeer M Darwish
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
224
|
Quaranta V, Schmid MC. Macrophage-Mediated Subversion of Anti-Tumour Immunity. Cells 2019; 8:E747. [PMID: 31331034 PMCID: PMC6678757 DOI: 10.3390/cells8070747] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/12/2022] Open
Abstract
Despite the incredible clinical benefits obtained by the use of immune checkpoint blockers (ICBs), resistance is still common for many types of cancer. Central for ICBs to work is activation and infiltration of cytotoxic CD8+ T cells following tumour-antigen recognition. However, it is now accepted that even in the case of immunogenic tumours, the effector functions of CD8+ T cells are highly compromised by the presence of an immunosuppressive tumour microenvironment (TME) at the tumour site. Tumour-associated macrophages (TAMs) are among the most abundant non-malignant stromal cell types within the TME and they are crucial drivers of tumour progression, metastasis and resistance to therapy. TAMs are able to regulate either directly or indirectly various aspects of tumour immunity, including T cell recruitment and functions. In this review we discuss the mechanisms by which TAMs subvert CD8+ T cell immune surveillance and how their targeting in combination with ICBs represents a very powerful therapeutic strategy.
Collapse
Affiliation(s)
- Valeria Quaranta
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | - Michael C Schmid
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK.
| |
Collapse
|
225
|
Wang Y, Huang D, Xu WY, Wang YW, Che GW. Prognostic Value of Pretreatment Lymphocyte-to-Monocyte Ratio in Non-Small Cell Lung Cancer: A Meta-Analysis. Oncol Res Treat 2019; 42:523-531. [PMID: 31319409 DOI: 10.1159/000501726] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/24/2019] [Indexed: 02/05/2023]
Abstract
Past evidence has shown that lymphocyte-to-monocyte ratio (LMR) could be considered as a potential prognostic factor in non-small cell lung cancer (NSCLC). We conducted the current meta-analysis based on published studies to elucidate the prognostic value of pretreatment LMR on survival outcomes in NSCLC. Comprehensive searches of available electronic databases were implemented to identify potentially related studies that focused on the role of pretreatment LMR in predicting the prognosis of NSCLC patients. The hazard ratios (HRs) with 95% confidence intervals (CIs) were combined to assess the association of pretreatment LMR with overall survival (OS) and progression-free survival (PFS). A total of 20 articles including 8,304 patients were analyzed. Compared with patients with higher LMR, patients with lower LMR had poorer OS (HR = 1.63, 95% CI: 1.44-1.85, p < 0.001) and PFS (HR = 1.49, 95% CI: 1.25-1.77, p < 0.001). The subgroup analysis outcomes were similar to the overall analysis. Pretreatment LMR may be a useful prognostic marker in patients with NSCLC. However, more well-designed studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Yan Wang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China.,West China School of Medicine, Sichuan University, Chengdu, China
| | - Dong Huang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Wen-Ying Xu
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Yan-Wen Wang
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Guo-Wei Che
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China,
| |
Collapse
|
226
|
Brown E, Brunker J, Bohndiek SE. Photoacoustic imaging as a tool to probe the tumour microenvironment. Dis Model Mech 2019; 12:dmm039636. [PMID: 31337635 PMCID: PMC6679374 DOI: 10.1242/dmm.039636] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The tumour microenvironment (TME) is a complex cellular ecosystem subjected to chemical and physical signals that play a role in shaping tumour heterogeneity, invasion and metastasis. Studying the roles of the TME in cancer progression would strongly benefit from non-invasive visualisation of the tumour as a whole organ in vivo, both preclinically in mouse models of the disease, as well as in patient tumours. Although imaging techniques exist that can probe different facets of the TME, they face several limitations, including limited spatial resolution, extended scan times and poor specificity from confounding signals. Photoacoustic imaging (PAI) is an emerging modality, currently in clinical trials, that has the potential to overcome these limitations. Here, we review the biological properties of the TME and potential of existing imaging methods that have been developed to analyse these properties non-invasively. We then introduce PAI and explore the preclinical and clinical evidence that support its use in probing multiple features of the TME simultaneously, including blood vessel architecture, blood oxygenation, acidity, extracellular matrix deposition, lipid concentration and immune cell infiltration. Finally, we highlight the future prospects and outstanding challenges in the application of PAI as a tool in cancer research and as part of a clinical oncologist's arsenal.
Collapse
Affiliation(s)
- Emma Brown
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Joanna Brunker
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| | - Sarah E Bohndiek
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK
| |
Collapse
|
227
|
The Detection and Morphological Analysis of Circulating Tumor and Host Cells in Breast Cancer Xenograft Models. Cells 2019; 8:cells8070683. [PMID: 31284534 PMCID: PMC6679018 DOI: 10.3390/cells8070683] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Hematogenous dissemination may occur early in breast cancer (BC). Experimental models could clarify mechanisms, but in their development, the heterogeneity of this neoplasia must be considered. Here, we describe circulating tumor cells (CTCs) and the metastatic behavior of several BC cell lines in xenografts. MDA-MB-231, BT-474, MDA-MB-453 and MDA-MB-468 cells were injected at the orthotopic level in immunocompromised mice. CTCs were isolated using a size-based method and identified by cytomorphological criteria. Metastases were detected by COX IV immunohistochemistry. CTCs were detected in 90% of animals in each model. In MDA-MB-231, CTCs were observed after 5 weeks from the injection and step wisely increased at later time points. In animals injected with less aggressive cell lines, the load of single CTCs (mean ± SD CTCs/mL: 1.8 ± 1.3 in BT-474, 122.2 ± 278.5 in MDA-MB-453, 3.4 ± 2.5 in MDA-MB468) and the frequency of CTC clusters (overall 38%) were lower compared to MDA-MB231 (946.9 ± 2882.1; 73%). All models had lung metastases, MDA-MB-453 and MDA-MB468 had ovarian foci too, whereas lymph nodal involvement was observed in MDA-MB231 and MDA-MB-468 only. Interestingly, CTCs showed morphological heterogeneity and were rarely associated to host cells. Orthotopic xenograft of BC cell lines offers valid models of hematogenous dissemination and a possible experimental setting to study CTC-blood microenvironment interactions.
Collapse
|
228
|
Colombo M, Giannandrea D, Lesma E, Basile A, Chiaramonte R. Extracellular Vesicles Enhance Multiple Myeloma Metastatic Dissemination. Int J Mol Sci 2019; 20:ijms20133236. [PMID: 31266187 PMCID: PMC6650870 DOI: 10.3390/ijms20133236] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) represent a heterogeneous group of membranous structures shed by all kinds of cell types, which are released into the surrounding microenvironment or spread to distant sites through the circulation. Therefore, EVs are key mediators of the communication between tumor cells and the surrounding microenvironment or the distant premetastatic niche due to their ability to transport lipids, transcription factors, mRNAs, non-coding regulatory RNAs, and proteins. Multiple myeloma (MM) is a hematological neoplasm that mostly relies on the bone marrow (BM). The BM represents a highly supportive niche for myeloma establishment and diffusion during the formation of distant bone lesions typical of this disease. This review represents a survey of the most recent evidence published on the role played by EVs in supporting MM cells during the multiple steps of metastasis, including travel and uptake at distant premetastatic niches, MM cell engraftment as micrometastasis, and expansion to macrometastasis thanks to EV-induced angiogenesis, release of angiocrine factors, activation of osteolytic activity, and mesenchymal cell support. Finally, we illustrate the first evidence concerning the dual effect of MM-EVs in promoting both anti-tumor immunity and MM immune escape, and the possible modulation operated by pharmacological treatments.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano, I-20142 Milano, Italy
| | - Domenica Giannandrea
- Department of Health Sciences, Università degli Studi di Milano, I-20142 Milano, Italy
| | - Elena Lesma
- Department of Health Sciences, Università degli Studi di Milano, I-20142 Milano, Italy
| | - Andrea Basile
- Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, I-20122 Milano, Italy
| | - Raffaella Chiaramonte
- Department of Health Sciences, Università degli Studi di Milano, I-20142 Milano, Italy.
| |
Collapse
|
229
|
Laviron M, Combadière C, Boissonnas A. Tracking Monocytes and Macrophages in Tumors With Live Imaging. Front Immunol 2019; 10:1201. [PMID: 31214174 PMCID: PMC6555099 DOI: 10.3389/fimmu.2019.01201] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/13/2019] [Indexed: 01/12/2023] Open
Abstract
In most cancers, myeloid cells represent the major component of the immune microenvironment. Deciphering the impact of these cells on tumor growth and in response to various anti-tumor therapies is a key issue. Many studies have elucidated the role of tumor-associated monocytes and tumor-associated macrophages (TAM) in tumor development, angiogenesis, and therapeutic failure. In contrast, tumor dendritic cells (DC) are associated with tumor antigen uptake and T-cell priming. Myeloid subpopulations display differences in ontogeny, state of differentiation and distribution within the neoplastic tissue, making them difficult to study. The development of high-dimensional genomic and cytometric analyses has unveiled the large functional diversity of myeloid cells. Important fundamental insights on the biology of myeloid cells have also been provided by a boom in functional fluorescent imaging techniques, in particular for TAM. These approaches allow the tracking of cell behavior in native physiological environments, incorporating spatio-temporal dimensions in the study of their functional activity. Nevertheless, tracking myeloid cells within the TME remains a challenging process as many markers overlap between monocytes, macrophages, DC, and neutrophils. Therefore, perfect discrimination between myeloid subsets remains impossible to date. Herein we review the specific functions of myeloid cells in tumor development unveiled by image-based tracking, the limits of fluorescent reporters commonly used to accurately track specific myeloid cells, and novel combinations of myeloid-associated fluorescent reporters that better discriminate the relative contributions of these cells to tumor biology according to their origin and tissue localization.
Collapse
Affiliation(s)
- Marie Laviron
- Centre d'Immunologie et des Maladies Infectieuses CIMI, CNRS, Sorbonne Université, Inserm, Paris, France
| | - Christophe Combadière
- Centre d'Immunologie et des Maladies Infectieuses CIMI, CNRS, Sorbonne Université, Inserm, Paris, France
| | - Alexandre Boissonnas
- Centre d'Immunologie et des Maladies Infectieuses CIMI, CNRS, Sorbonne Université, Inserm, Paris, France
| |
Collapse
|
230
|
Ahmad F, Döbel T, Schmitz M, Schäkel K. Current Concepts on 6-sulfo LacNAc Expressing Monocytes (slanMo). Front Immunol 2019; 10:948. [PMID: 31191513 PMCID: PMC6540605 DOI: 10.3389/fimmu.2019.00948] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
The human mononuclear phagocytes system consists of dendritic cells (DCs), monocytes, and macrophages having different functions in bridging innate and adaptive immunity. Among the heterogeneous population of monocytes the cell surface marker slan (6-sulfo LacNAc) identifies a specific subset of human CD14- CD16+ non-classical monocytes, called slan+ monocytes (slanMo). In this review we discuss the identity and functions of slanMo, their contributions to immune surveillance by pro-inflammatory cytokine production, and cross talk with T cells and NK cells. We also consider the role of slanMo in the regulation of chronic inflammatory diseases and cancer. Finally, we highlight unresolved questions that should be the focus of future research.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Döbel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany.,Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD, United States
| | - Marc Schmitz
- Institute of Immunology, Faculty of Medicine Carl Gustav Carus, Technische Universtät Dresden, Dresden, Germany.,Partner Site Dresden, National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Knut Schäkel
- Department of Dermatology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
231
|
Patrolling monocytes scavenge endothelial-adherent sickle RBCs: a novel mechanism of inhibition of vaso-occlusion in SCD. Blood 2019; 134:579-590. [PMID: 31076443 DOI: 10.1182/blood.2019000172] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/02/2019] [Indexed: 12/23/2022] Open
Abstract
Painful vaso-occlusive crisis (VOC) is the most common complication of sickle cell disease (SCD). Increasing evidence suggests that vaso-occlusion is initiated by increased adherence of sickle red blood cells (RBCs) to the vascular endothelium. Thus, the mechanisms that remove endothelial-attached sickle RBCs from the microvasculature are expected to be critical for optimal blood flow and prevention of VOC in SCD. We hypothesized that patrolling monocytes (PMos), which protect against vascular damage by scavenging cellular debris, could remove endothelial-adherent sickle RBCs and ameliorate VOC in SCD. We detected RBC (GPA+)-engulfed material in circulating PMos of patients with SCD, and their frequency was further increased during acute crisis. RBC uptake by PMos was specific to endothelial-attached sickle, but not control, RBCs and occurred mostly through ICAM-1, CD11a, and CD18. Heme oxygenase 1 induction, by counteracting the cytotoxic effects of engulfed RBC breakdown products, increased PMo viability. In addition, transfusions, by lowering sickle RBC uptake, improved PMo survival. Selective depletion of PMos in Townes sickle mice exacerbated vascular stasis and tissue damage, whereas treatment with muramyl dipeptide (NOD2 ligand), which increases PMo mass, reduced stasis and SCD associated organ damage. Altogether, these data demonstrate a novel mechanism for removal of endothelial attached sickle RBCs mediated by PMos that can protect against VOC pathogenesis, further supporting PMos as a promising therapeutic target in SCD VOC.
Collapse
|
232
|
Lozar T, Gersak K, Cemazar M, Kuhar CG, Jesenko T. The biology and clinical potential of circulating tumor cells. Radiol Oncol 2019; 53:131-147. [PMID: 31104002 PMCID: PMC6572494 DOI: 10.2478/raon-2019-0024] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background Tumor cells can shed from the tumor, enter the circulation and travel to distant organs, where they can seed metastases. These cells are called circulating tumor cells (CTCs). The ability of CTCs to populate distant tissues and organs has led us to believe they are the primary cause of cancer metastasis. The biological properties and interaction of CTCs with other cell types during intravasation, circulation in the bloodstream, extravasation and colonization are multifaceted and include changes of CTC phenotypes that are regulated by many signaling molecules, including cytokines and chemokines. Considering a sample is readily accessible by a simple blood draw, monitoring CTC levels in the blood has exceptional implications in oncology field. A method called the liquid biopsy allows the extraction of not only CTC, but also CTC products, such as cell free DNA (cfDNA), cell free RNA (cfRNA), microRNA (miRNA) and exosomes. Conclusions The clinical utility of CTCs and their products is increasing with advances in liquid biopsy technology. Clinical applications of liquid biopsy to detect CTCs and their products are numerous and could be used for screening of the presence of the cancer in the general population, as well as for prognostic and predictive biomarkers in cancer patients. With the development of better CTC isolation technologies and clinical testing in large prospective trials, increasing clinical utility of CTCs can be expected. The understanding of their biology and interactions with other cell types, particularly with those of the immune system and the rise of immunotherapy also hold great promise for novel therapeutic possibilities.
Collapse
Affiliation(s)
- Taja Lozar
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Klara Gersak
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- General Hospital Izola, Izola, Slovenia
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Izola, Slovenia
| | | | - Tanja Jesenko
- Institute of Oncology Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
233
|
Gao Y, Bado I, Wang H, Zhang W, Rosen JM, Zhang XHF. Metastasis Organotropism: Redefining the Congenial Soil. Dev Cell 2019; 49:375-391. [PMID: 31063756 PMCID: PMC6506189 DOI: 10.1016/j.devcel.2019.04.012] [Citation(s) in RCA: 240] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
Metastasis is the most devastating stage of cancer progression and causes the majority of cancer-related deaths. Clinical observations suggest that most cancers metastasize to specific organs, a process known as "organotropism." Elucidating the underlying mechanisms may help identify targets and treatment strategies to benefit patients. This review summarizes recent findings on tumor-intrinsic properties and their interaction with unique features of host organs, which together determine organ-specific metastatic behaviors. Emerging insights related to the roles of metabolic changes, the immune landscapes of target organs, and variation in epithelial-mesenchymal transitions open avenues for future studies of metastasis organotropism.
Collapse
Affiliation(s)
- Yang Gao
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Igor Bado
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Hai Wang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Weijie Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Jeffrey M Rosen
- Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Xiang H-F Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; McNair Medical Institute, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
234
|
Mueller KAL, Hanna DB, Ehinger E, Xue X, Baas L, Gawaz MP, Geisler T, Anastos K, Cohen MH, Gange SJ, Heath SL, Lazar JM, Liu C, Mack WJ, Ofotokun I, Tien PC, Hodis HN, Landay AL, Kaplan RC, Ley K. Loss of CXCR4 on non-classical monocytes in participants of the Women's Interagency HIV Study (WIHS) with subclinical atherosclerosis. Cardiovasc Res 2019; 115:1029-1040. [PMID: 30520941 PMCID: PMC6735712 DOI: 10.1093/cvr/cvy292] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 11/07/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
AIMS To test whether human immunodeficiency virus (HIV) infection and subclinical cardiovascular disease (sCVD) are associated with expression of CXCR4 and other surface markers on classical, intermediate, and non-classical monocytes in women. METHODS AND RESULTS sCVD was defined as presence of atherosclerotic lesions in the carotid artery in 92 participants of the Women's Interagency HIV Study (WIHS). Participants were stratified into four sets (n = 23 each) by HIV and sCVD status (HIV-/sCVD-, HIV-/sCVD+, HIV+/sCVD-, and HIV+/sCVD+) matched by age, race/ethnicity, and smoking status. Three subsets of monocytes were determined from archived peripheral blood mononuclear cells. Flow cytometry was used to count and phenotype surface markers. We tested for differences by HIV and sCVD status accounting for multiple comparisons. We found no differences in monocyte subset size among the four groups. Expression of seven surface markers differed significantly across the three monocyte subsets. CXCR4 expression [median fluorescence intensity (MFI)] in non-classical monocytes was highest among HIV-/CVD- [628, interquartile range (IQR) (295-1389)], followed by HIV+/CVD- [486, IQR (248-699)], HIV-/CVD+ (398, IQR (89-901)), and lowest in HIV+/CVD+ women [226, IQR (73-519)), P = 0.006 in ANOVA. After accounting for multiple comparison (Tukey) the difference between HIV-/CVD- vs. HIV+/CVD+ remained significant with P = 0.005 (HIV-/CVD- vs. HIV+/CVD- P = 0.04, HIV-/CVD- vs. HIV-/CVD+ P = 0.06, HIV+/CVD+ vs. HIV+/CVD- P = 0.88, HIV+/CVD+ vs. HIV-/CVD+ P = 0.81, HIV+/CVD- vs. HIV-/CVD+, P = 0.99). All pairwise comparisons with HIV-/CVD- were individually significant (P = 0.050 vs. HIV-/CVD+, P = 0.028 vs. HIV+/CVD-, P = 0.009 vs. HIV+/CVD+). CXCR4 expression on non-classical monocytes was significantly higher in CVD- (501.5, IQR (249.5-887.3)) vs. CVD+ (297, IQR (81.75-626.8) individuals (P = 0.028, n = 46 per group). CXCR4 expression on non-classical monocytes significantly correlated with cardiovascular and HIV-related risk factors including systolic blood pressure, platelet and T cell counts along with duration of antiretroviral therapy (P < 0.05). In regression analyses, adjusted for education level, study site, and injection drug use, presence of HIV infection and sCVD remained significantly associated with lower CXCR4 expression on non-classical monocytes (P = 0.003), but did not differ in classical or intermediate monocytes. CONCLUSION CXCR4 expression in non-classical monocytes was significantly lower among women with both HIV infection and sCVD, suggesting a potential atheroprotective role of CXCR4 in non-classical monocytes.
Collapse
Affiliation(s)
- Karin A L Mueller
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
| | - Erik Ehinger
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
| | - Livia Baas
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - Meinrad P Gawaz
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - Tobias Geisler
- Eberhard Karls University, Tuebingen University Hospital, Department of Cardiology, Otfried-Mueller-Strasse 10, Tuebingen, Germany
| | - Kathryn Anastos
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
| | - Mardge H Cohen
- John H. Stroger, Jr. Hospital of Cook County, 1969 Ogden Ave, Chicago, IL, USA
| | - Stephen J Gange
- Department of Epidemiology, Johns Hopkins University, 265 Garland Hall, 3400 North Charles Street, Baltimore, MD, USA
| | - Sonya L Heath
- Department of Medicine, University of Alabama at Birmingham, 908 20th Street South, Birmingham, AL, USA
| | - Jason M Lazar
- Department of Medicine, SUNY-Downstate Medical Center, 450 Clarkson Ave, Brooklyn, NY, USA
| | - Chenglong Liu
- Georgetown University Medical Center, Washington, DC, USA
| | - Wendy J Mack
- Department of Preventive Medicine, University of Southern California, 2001 N Soto St, Los Angeles, CA, USA
| | - Igho Ofotokun
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, 49 Jesse Hill Jr. Drive, Atlanta, GA, USA
| | - Phyllis C Tien
- Department of Medicine, VAMC, Infectious Disease Section, 111W 4150 Clement St., San Francisco, CA, USA
| | - Howard N Hodis
- Department of Preventive Medicine, University of Southern California, 2001 N Soto St, Los Angeles, CA, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, 1735 West Harrison St, Chicago, IL, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Belfer 13th floor, Bronx, NY, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Klaus Ley
- La Jolla Institute of Immunology, Athena Circle Drive La Jolla, CA, USA
| |
Collapse
|
235
|
Ovais M, Guo M, Chen C. Tailoring Nanomaterials for Targeting Tumor-Associated Macrophages. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808303. [PMID: 30883982 DOI: 10.1002/adma.201808303] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 02/07/2019] [Indexed: 05/17/2023]
Abstract
Advances in the field of nanotechnology together with an increase understanding of tumor immunology have paved the way for the development of more personalized cancer immuno-nanomedicines. Nanovehicles, due to their specific physicochemical properties, are emerging as key translational moieties in tackling tumor-promoting, M2-like tumor-associated macrophages (TAMs). Cancer immuno-nanomedicines target TAMs primarily by blocking M2-like TAM survival or affecting their signaling cascades, restricting macrophage recruitment to tumors and re-educating tumor-promoting M2-like TAMs to the tumoricidal, M1-like phenotype. Here, the TAM effector mechanisms and strategies for targeting TAMs are summarized, followed by a focus on the mechanistic considerations in the development of novel immuno-nanomedicines. Furthermore, imaging TAMs with nanoparticles so as to forecast a patient's clinical outcome, describing treatment options, and observing therapy responses is also discussed. At present, strategies that target TAMs are being investigated not only at the basic research level but also in early clinical trials. The significance of TAM-targeting biomaterials is highlighted, with the goal of facilitating future clinical translation.
Collapse
Affiliation(s)
- Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- School of Nanoscience and Technology, College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- School of Nanoscience and Technology, College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology (NCNST), Beijing, 100190, China
- School of Nanoscience and Technology, College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
236
|
Narasimhan PB, Marcovecchio P, Hamers AA, Hedrick CC. Nonclassical Monocytes in Health and Disease. Annu Rev Immunol 2019; 37:439-456. [DOI: 10.1146/annurev-immunol-042617-053119] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Monocytes are innate blood cells that maintain vascular homeostasis and are early responders to pathogens in acute infections. There are three well-characterized classes of monocytes: classical (CD14+CD16−in humans and Ly6Chiin mice), intermediate (CD14+CD16+in humans and Ly6C+Treml4+in mice), and nonclassical (CD14−CD16+in humans and Ly6Cloin mice). Classical monocytes are critical for the initial inflammatory response. Classical monocytes can differentiate into macrophages in tissue and can contribute to chronic disease. Nonclassical monocytes have been widely viewed as anti-inflammatory, as they maintain vascular homeostasis. They are a first line of defense in recognition and clearance of pathogens. However, their roles in chronic disease are less clear. They have been shown to be protective as well as positively associated with disease burden. This review focuses on the state of the monocyte biology field and the functions of monocytes, particularly nonclassical monocytes, in health and disease.
Collapse
Affiliation(s)
- Prakash Babu Narasimhan
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;, , ,
| | - Paola Marcovecchio
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;, , ,
| | - Anouk A.J. Hamers
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;, , ,
| | - Catherine C. Hedrick
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA;, , ,
| |
Collapse
|
237
|
Doglioni G, Parik S, Fendt SM. Interactions in the (Pre)metastatic Niche Support Metastasis Formation. Front Oncol 2019; 9:219. [PMID: 31069166 PMCID: PMC6491570 DOI: 10.3389/fonc.2019.00219] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/12/2019] [Indexed: 12/14/2022] Open
Abstract
Metastasis formation is the leading cause of death in cancer patients. Thus, understanding and targeting this process is an unmet need. Crucial steps during the establishment of metastases include the (pre)metastatic niche formation. This process relies on the interaction of the primary tumor with the environment of distant organs (premetastatic niche) and the interaction of cancer cells with their environment when arriving in a distant organ (metastatic niche). Here, we summarize the current knowledge on the interactions in the tumor environment that result in (pre)metastatic niche formation, specifically in the context of tumor secreted factors, extracellular matrix, immune as well as stromal cells, and nutrient availability. We further highlight strategies to disrupt these interactions as therapeutic interventions against metastases.
Collapse
Affiliation(s)
- Ginevra Doglioni
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| | - Sweta Parik
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
238
|
Teh YC, Ding JL, Ng LG, Chong SZ. Capturing the Fantastic Voyage of Monocytes Through Time and Space. Front Immunol 2019; 10:834. [PMID: 31040854 PMCID: PMC6476989 DOI: 10.3389/fimmu.2019.00834] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/29/2019] [Indexed: 02/02/2023] Open
Abstract
Monocytes are a subset of cells that are categorized together with dendritic cells (DCs) and macrophages in the mononuclear phagocyte system (MPS). Despite sharing several phenotypic and functional characteristics with MPS cells, monocytes are unique cells with the ability to function as both precursor and effector cells in their own right. Before the development of hematopoietic stem cells (HSCs) in utero, monocytes are derived from erythro-myeloid precursors (EMPs) in the fetal liver that are important for populating the majority of tissue resident macrophages. After birth, monocytes arise from bone marrow (BM)-derived HSCs and are released into the circulation upon their maturation, where they survey peripheral tissues and maintain endothelial integrity. Upon sensing of microbial breaches or inflammatory stimuli, monocytes migrate into tissues where their plasticity allows them to differentiate into cells that resemble macrophages or DCs according to the environmental niche. Alternatively, they may also migrate into tissues in the absence of inflammation and remain in an undifferentiated state where they perform homeostatic roles. As monocytes are typically on the move, the availability of intravital imaging approaches has provided further insights into their trafficking patterns in distinct tissue compartments. In this review, we outline the importance of understanding their functional behavior in the context of tissue compartments, and how these studies may contribute towards improved vaccine and future therapeutic strategies.
Collapse
Affiliation(s)
- Ye Chean Teh
- Functional Immune Imaging, Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore.,Department of Biological Sciences, National University of Singapore (NUS), Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore (NUS), Singapore, Singapore
| | - Lai Guan Ng
- Functional Immune Imaging, Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore.,Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Shu Zhen Chong
- Functional Immune Imaging, Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore
| |
Collapse
|
239
|
Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, Soong DYH, Cotechini T, Anur P, Lin EY, Fidanza A, Lopez-Yrigoyen M, Millar MR, Urman A, Ai Z, Spellman PT, Hwang ES, Dixon JM, Wiechmann L, Coussens LM, Smith HO, Pollard JW. Human Tumor-Associated Macrophage and Monocyte Transcriptional Landscapes Reveal Cancer-Specific Reprogramming, Biomarkers, and Therapeutic Targets. Cancer Cell 2019; 35:588-602.e10. [PMID: 30930117 PMCID: PMC6472943 DOI: 10.1016/j.ccell.2019.02.009] [Citation(s) in RCA: 652] [Impact Index Per Article: 108.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/16/2018] [Accepted: 02/25/2019] [Indexed: 11/30/2022]
Abstract
The roles of tumor-associated macrophages (TAMs) and circulating monocytes in human cancer are poorly understood. Here, we show that monocyte subpopulation distribution and transcriptomes are significantly altered by the presence of endometrial and breast cancer. Furthermore, TAMs from endometrial and breast cancers are transcriptionally distinct from monocytes and their respective tissue-resident macrophages. We identified a breast TAM signature that is highly enriched in aggressive breast cancer subtypes and associated with shorter disease-specific survival. We also identified an auto-regulatory loop between TAMs and cancer cells driven by tumor necrosis factor alpha involving SIGLEC1 and CCL8, which is self-reinforcing through the production of CSF1. Together these data provide direct evidence that monocyte and macrophage transcriptional landscapes are perturbed by cancer, reflecting patient outcomes.
Collapse
Affiliation(s)
- Luca Cassetta
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Stamatina Fragkogianni
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Andrew H Sims
- Applied Bioinformatics of Cancer, University of Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Edinburgh EH4 2XR, UK
| | - Agnieszka Swierczak
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Lesley M Forrester
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Hui Zhang
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York 10461, USA
| | - Daniel Y H Soong
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Tiziana Cotechini
- Department of Cell, Developmental & Cancer Biology, and Knight Cancer Institute, Oregon Health & Science University, Portland 97239, USA
| | - Pavana Anur
- Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health & Science University, Portland 97239, USA
| | - Elaine Y Lin
- Department of Cell, Developmental & Cancer Biology, and Knight Cancer Institute, Oregon Health & Science University, Portland 97239, USA
| | - Antonella Fidanza
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Martha Lopez-Yrigoyen
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Michael R Millar
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK; Aquila Biomedical, Edinburgh Bioquarter, Little France Road, Edinburgh EH16 4TJ, UK
| | - Alexandra Urman
- Department of Surgery, Montefiore Medical College, New York 10467, USA
| | - Zhichao Ai
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Paul T Spellman
- Department of Molecular and Medical Genetics and Knight Cancer Institute, Oregon Health & Science University, Portland 97239, USA
| | - E Shelley Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - J Michael Dixon
- Edinburgh Breast Unit and Breast Cancer Now Research Unit, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Lisa Wiechmann
- Department of Surgery, Montefiore Medical College, New York 10467, USA
| | - Lisa M Coussens
- Department of Cell, Developmental & Cancer Biology, and Knight Cancer Institute, Oregon Health & Science University, Portland 97239, USA
| | - Harriet O Smith
- Department of Obstetrics and Gynecology, Albert Einstein College of Medicine and Montefiore Medical Center, New York 10461, USA
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, New York 10461, USA.
| |
Collapse
|
240
|
Abstract
In this issue of Cancer Cell, Cassetta et al. present a detailed analysis of the transcriptional profile imprinted on monocytes and macrophages by human breast and endometrial cancers, proposing SIGLEC1 and CCL8 as novel biomarkers in tumor-associated macrophages for breast cancer patient stratification and prognosis.
Collapse
Affiliation(s)
- Vincenzo Bronte
- Department of Medicine, University of Verona, Policlinico GB Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy.
| |
Collapse
|
241
|
Lee JH, Dindorf J, Eberhardt M, Lai X, Ostalecki C, Koliha N, Gross S, Blume K, Bruns H, Wild S, Schuler G, Vera J, Baur AS. Innate extracellular vesicles from melanoma patients suppress β-catenin in tumor cells by miRNA-34a. Life Sci Alliance 2019; 2:2/2/e201800205. [PMID: 30846484 PMCID: PMC6406044 DOI: 10.26508/lsa.201800205] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/24/2019] [Accepted: 02/25/2019] [Indexed: 12/13/2022] Open
Abstract
Upon tumor development, new extracellular vesicles appear in circulation. Our knowledge of their relative abundance, function, and overall impact on cancer development is still preliminary. Here, we demonstrate that plasma extracellular vesicles (pEVs) of non-tumor origin are persistently increased in untreated and post-excision melanoma patients, exhibiting strong suppressive effects on the proliferation of tumor cells. Plasma vesicle numbers, miRNAs, and protein levels were elevated two- to tenfold and detected many years after tumor resection. The vesicles revealed individual and clinical stage-specific miRNA profiles as well as active ADAM10. However, whereas pEV from patients preventing tumor relapse down-regulated β-catenin and blocked tumor cell proliferation in an miR-34a-dependent manner, pEV from metastatic patients lost this ability and stimulated β-catenin-mediated transcription. Cancer-induced pEV may constitute an innate immune mechanism suppressing tumor cell activity including that of residual cancer cells present after primary surgery.
Collapse
Affiliation(s)
- Jung-Hyun Lee
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Jochen Dindorf
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Martin Eberhardt
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Xin Lai
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | | | - Nina Koliha
- Miltenyi Biotech GmbH, Bergisch Gladbach, Germany
| | - Stefani Gross
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Katja Blume
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Heiko Bruns
- Department of Internal Medicine V, Haematology and Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Stefan Wild
- Miltenyi Biotech GmbH, Bergisch Gladbach, Germany
| | - Gerold Schuler
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Julio Vera
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| | - Andreas S Baur
- Department of Dermatology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
242
|
Guilbaud E, Gautier EL, Yvan-Charvet L. Macrophage Origin, Metabolic Reprogramming and IL-1 Signaling: Promises and Pitfalls in Lung Cancer. Cancers (Basel) 2019; 11:E298. [PMID: 30832375 PMCID: PMC6468621 DOI: 10.3390/cancers11030298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/21/2019] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
Macrophages are tissue-resident cells that act as immune sentinels to maintain tissue integrity, preserve self-tolerance and protect against invading pathogens. Lung macrophages within the distal airways face around 8000⁻9000 L of air every day and for that reason are continuously exposed to a variety of inhaled particles, allergens or airborne microbes. Chronic exposure to irritant particles can prime macrophages to mediate a smoldering inflammatory response creating a mutagenic environment and favoring cancer initiation. Tumor-associated macrophages (TAMs) represent the majority of the tumor stroma and maintain intricate interactions with malignant cells within the tumor microenvironment (TME) largely influencing the outcome of cancer growth and metastasis. A number of macrophage-centered approaches have been investigated as potential cancer therapy and include strategies to limit their infiltration or exploit their antitumor effector functions. Recently, strategies aimed at targeting IL-1 signaling pathway using a blocking antibody have unexpectedly shown great promise on incident lung cancer. Here, we review the current understanding of the bridge between TAM metabolism, IL-1 signaling, and effector functions in lung adenocarcinoma and address the challenges to successfully incorporating these pathways into current anticancer regimens.
Collapse
Affiliation(s)
- Emma Guilbaud
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| | - Emmanuel L Gautier
- Institut National de la Santé et de la Recherche Médicale (Inserm) UMR_S 1166, Sorbonnes Universités, Hôpital de la Pitié Salpêtrière, 75013 Paris, France.
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, 06204 Nice, France.
| |
Collapse
|
243
|
Busada JT, Ramamoorthy S, Cain DW, Xu X, Cook DN, Cidlowski JA. Endogenous glucocorticoids prevent gastric metaplasia by suppressing spontaneous inflammation. J Clin Invest 2019; 129:1345-1358. [PMID: 30652972 DOI: 10.1172/jci123233] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
In the stomach, chronic inflammation causes metaplasia and creates a favorable environment for the evolution of gastric cancer. Glucocorticoids are steroid hormones that repress proinflammatory stimuli, but their role in the stomach is unknown. In this study, we show that endogenous glucocorticoids are required to maintain gastric homeostasis. Removal of circulating glucocorticoids in mice by adrenalectomy resulted in the rapid onset of spontaneous gastric inflammation, oxyntic atrophy, and spasmolytic polypeptide-expressing metaplasia (SPEM), a putative precursor of gastric cancer. SPEM and oxyntic atrophy occurred independently of lymphocytes. However, depletion of monocytes and macrophages by clodronate treatment or inhibition of gastric monocyte infiltration using the Cx3cr1 knockout mouse model prevented SPEM development. Our results highlight the requirement for endogenous glucocorticoid signaling within the stomach to prevent spontaneous gastric inflammation and metaplasia, and suggest that glucocorticoid deficiency may lead to gastric cancer development.
Collapse
Affiliation(s)
- Jonathan T Busada
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Sivapriya Ramamoorthy
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Derek W Cain
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Donald N Cook
- Immunogenetics Group, Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - John A Cidlowski
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
244
|
Studying the Fate of Tumor Extracellular Vesicles at High Spatiotemporal Resolution Using the Zebrafish Embryo. Dev Cell 2019; 48:554-572.e7. [PMID: 30745140 DOI: 10.1016/j.devcel.2019.01.014] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 10/19/2018] [Accepted: 01/10/2019] [Indexed: 01/08/2023]
Abstract
Tumor extracellular vesicles (EVs) mediate the communication between tumor and stromal cells mostly to the benefit of tumor progression. Notably, tumor EVs travel in the bloodstream, reach distant organs, and locally modify the microenvironment. However, visualizing these events in vivo still faces major hurdles. Here, we describe an approach for tracking circulating tumor EVs in a living organism: we combine chemical and genetically encoded probes with the zebrafish embryo as an animal model. We provide a first description of tumor EVs' hemodynamic behavior and document their intravascular arrest. We show that circulating tumor EVs are rapidly taken up by endothelial cells and blood patrolling macrophages and subsequently stored in degradative compartments. Finally, we demonstrate that tumor EVs activate macrophages and promote metastatic outgrowth. Overall, our study proves the usefulness and prospects of zebrafish embryo to track tumor EVs and dissect their role in metastatic niches formation in vivo.
Collapse
|
245
|
Ding C, Sun X, Wu C, Hu X, Zhang HG, Yan J. Tumor Microenvironment Modulates Immunological Outcomes of Myeloid Cells with mTORC1 Disruption. THE JOURNAL OF IMMUNOLOGY 2019; 202:1623-1634. [PMID: 30665937 DOI: 10.4049/jimmunol.1801112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/19/2018] [Indexed: 01/04/2023]
Abstract
The role of the mTOR signaling pathway in different myeloid cell subsets is poorly understood in the context of tumor development. In this study, myeloid cell-specific Raptor knockout (KO) mice were used to determine the roles of mechanistic target of rapamycin complex 1 (mTORC1) in regulating macrophage function from Lewis lung carcinoma (LLC) s.c. tumors and lung tumor metastasis. We found no difference in tumor growth between conditional Raptor KO and control mice in the s.c. tumor models, although depletion of mTORC1 decreased the immunosuppressive function of tumor-associated macrophages (TAM). Despite the decreased immunosuppressive activity of TAM, M1-like TAM differentiation was impaired in the s.c. tumor microenvironment of mTORC1 conditional Raptor KO mice due to downregulated CD115 expression on macrophages. In addition, TNF-α production by mTORC1-deficient myeloid cells was also decreased in the s.c. LLC tumors. On the contrary, disruption of mTORC1 in myeloid cells promoted lung cancer metastasis. Accordingly, immunosuppressive interstitial macrophages/metastasis-associated macrophages (CD11b+F4/80high) were accumulated in the lungs of Raptor KO mice in the LLC lung metastasis model, leading to decreased Th1 responses. Taken together, our results demonstrate that differential tumor microenvironment dictates the immunological outcomes of myeloid cells, with mTORC1 disruption leading to different tumor growth phenotypes.
Collapse
Affiliation(s)
- Chuanlin Ding
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Xiaomin Sun
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Caijun Wu
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Xiaoling Hu
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Huang-Ge Zhang
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Jun Yan
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202; and Department of Microbiology and Immunology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| |
Collapse
|
246
|
Abstract
Research during the last decade has generated numerous insights on the presence, phenotype, and function of myeloid cells in cardiovascular organs. Newer tools with improved detection sensitivities revealed sizable populations of tissue-resident macrophages in all major healthy tissues. The heart and blood vessels contain robust numbers of these cells; for instance, 8% of noncardiomyocytes in the heart are macrophages. This number and the cell's phenotype change dramatically in disease conditions. While steady-state macrophages are mostly monocyte independent, macrophages residing in the inflamed vascular wall and the diseased heart derive from hematopoietic organs. In this review, we will highlight signals that regulate macrophage supply and function, imaging applications that can detect changes in cell numbers and phenotype, and opportunities to modulate cardiovascular inflammation by targeting macrophage biology. We strive to provide a systems-wide picture, i.e., to focus not only on cardiovascular organs but also on tissues involved in regulating cell supply and phenotype, as well as comorbidities that promote cardiovascular disease. We will summarize current developments at the intersection of immunology, detection technology, and cardiovascular health.
Collapse
Affiliation(s)
- Vanessa Frodermann
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Matthias Nahrendorf
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School , Boston, Massachusetts ; and Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
247
|
Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, McGraw T, Mittal V. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer 2019; 19:9-31. [PMID: 30532012 PMCID: PMC6749995 DOI: 10.1038/s41568-018-0081-9] [Citation(s) in RCA: 751] [Impact Index Per Article: 125.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Lung cancer is a major global health problem, as it is the leading cause of cancer-related deaths worldwide. Major advances in the identification of key mutational alterations have led to the development of molecularly targeted therapies, whose efficacy has been limited by emergence of resistance mechanisms. US Food and Drug Administration (FDA)-approved therapies targeting angiogenesis and more recently immune checkpoints have reinvigorated enthusiasm in elucidating the prognostic and pathophysiological roles of the tumour microenvironment in lung cancer. In this Review, we highlight recent advances and emerging concepts for how the tumour-reprogrammed lung microenvironment promotes both primary lung tumours and lung metastasis from extrapulmonary neoplasms by contributing to inflammation, angiogenesis, immune modulation and response to therapies. We also discuss the potential of understanding tumour microenvironmental processes to identify biomarkers of clinical utility and to develop novel targeted therapies against lung cancer.
Collapse
Affiliation(s)
- Nasser K Altorki
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Geoffrey J Markowitz
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
| | - Dingcheng Gao
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA
| | - Jeffrey L Port
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Ashish Saxena
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Brendon Stiles
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Timothy McGraw
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, USA.
- Neuberger Berman Foundation Lung Cancer Research Center, Weill Cornell Medicine, New York, NY, USA.
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Cell and Developmental Biology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
248
|
Mukaida N, Nosaka T, Nakamoto Y, Baba T. Lung Macrophages: Multifunctional Regulator Cells for Metastatic Cells. Int J Mol Sci 2018; 20:116. [PMID: 30597969 PMCID: PMC6337639 DOI: 10.3390/ijms20010116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 12/21/2018] [Accepted: 12/24/2018] [Indexed: 12/29/2022] Open
Abstract
Metastasis is responsible for most of the cancer-associated deaths and proceeds through multiple steps. Several lines of evidence have established an indispensable involvement of macrophages present at the primary tumor sites in various steps of metastasis, from primary tumor growth to its intravasation into circulation. The lungs encompass a large, dense vascular area and, therefore, are vulnerable to metastasis, particularly, hematogenous ones arising from various types of neoplasms. Lung tissues constitutively contain several types of tissue-resident macrophages and circulating monocytes to counteract potentially harmful exogenous materials, which directly reach through the airway. Recent advances have provided an insight into the ontogenetic, phenotypic, and functional heterogeneity of these lung macrophage and monocyte populations, under resting and inflammatory conditions. In this review, we discuss the ontogeny, trafficking dynamics, and functions of these pulmonary macrophages and monocytes and their potential roles in lung metastasis and measures to combat lung metastasis by targeting these populations.
Collapse
Affiliation(s)
- Naofumi Mukaida
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Takuto Nosaka
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan.
| | - Yasunari Nakamoto
- Second Department of Internal Medicine, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan.
| | - Tomohisa Baba
- Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan.
| |
Collapse
|
249
|
SenGupta S, Subramanian BC, Parent CA. Getting TANned: How the tumor microenvironment drives neutrophil recruitment. J Leukoc Biol 2018; 105:449-462. [PMID: 30549315 DOI: 10.1002/jlb.3ri0718-282r] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/20/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
The directed migration of neutrophils to sites of injury or infection is mediated by complex networks of chemoattractant-receptor signaling cascades. The recent appreciation of neutrophils as active participants in tumor progression and metastasis has drawn attention to a number of chemokine-receptor systems that may drive their recruitment to tumors. However, the dynamic nature of the tumor microenvironment (TME) along with the phenotypic diversity among tumor-associated neutrophils (TANs) call for a more comprehensive approach to understand neutrophil trafficking to tumors. Here, we review recent advances in understanding how guidance cues underlie neutrophil migration to primary and secondary tumor sites. We also discuss how the presence of other myeloid cells, such as functionally diverse subsets of tumor-associated macrophages (TAMs), can further influence neutrophil accumulation in tumors. Finally, we highlight the importance of hypoxia sensing in localizing TAMs and TANs in the tumor niche and provide a cohesive view on how both myeloid cell types shape TME-associated extracellular matrix organization, which in turn contribute to tumor progression.
Collapse
Affiliation(s)
- Shuvasree SenGupta
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bhagawat C Subramanian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, Maryland, USA
| | - Carole A Parent
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
250
|
Metabolism Plays a Key Role during Macrophage Activation. Mediators Inflamm 2018; 2018:2426138. [PMID: 30647530 PMCID: PMC6311794 DOI: 10.1155/2018/2426138] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/16/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022] Open
Abstract
Monocyte and macrophage diversity is evidenced by the modulation of cell surface markers and differential production of soluble mediators. These immune cells play key roles in controlling tissue homeostasis, infections, and excessive inflammation. Macrophages remove dead cells in a process named efferocytosis, contributing to the healthy tissue maintenance. Recently, it became clear that the main macrophage functions are under metabolic control. Modulation of glucose, fatty acid, and amino acid metabolism is associated with various macrophage activations in response to external stimuli. Deciphering these metabolic pathways provided critical information about macrophage functions.
Collapse
|