201
|
Diamond MS, Ledgerwood JE, Pierson TC. Zika Virus Vaccine Development: Progress in the Face of New Challenges. Annu Rev Med 2018; 70:121-135. [PMID: 30388054 DOI: 10.1146/annurev-med-040717-051127] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Zika virus (ZIKV) emerged at a global level when it spread to the Americas and began causing congenital malformations and microcephaly in 2015. A rapid response by academia, government, public health infrastructure, and industry has enabled the expedited development and testing of a suite of vaccine platforms aiming to control and eliminate ZIKV-induced disease. Analysis of key immunization and pathogenesis studies in multiple animal models, including during pregnancy, has begun to define immune correlates of protection. Nonetheless, the deployment of ZIKV vaccines, along with the confirmation of their safety and efficacy, still has major challenges, one of which is related to the waning of the epidemic. In this review, we discuss the measures that enabled rapid progress and highlight the path forward for successful deployment of ZIKV vaccines.
Collapse
Affiliation(s)
- Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology & Immunology, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
| | - Julie E Ledgerwood
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Theodore C Pierson
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
202
|
Alves MP, Vielle NJ, Thiel V, Pfaender S. Research Models and Tools for the Identification of Antivirals and Therapeutics against Zika Virus Infection. Viruses 2018; 10:v10110593. [PMID: 30380760 PMCID: PMC6265910 DOI: 10.3390/v10110593] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/24/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Zika virus recently re-emerged and caused global outbreaks mainly in Central Africa, Southeast Asia, the Pacific Islands and in Central and South America. Even though there is a declining trend, the virus continues to spread throughout different geographical regions of the world. Since its re-emergence in 2015, massive advances have been made regarding our understanding of clinical manifestations, epidemiology, genetic diversity, genomic structure and potential therapeutic intervention strategies. Nevertheless, treatment remains a challenge as there is no licensed effective therapy available. This review focuses on the recent advances regarding research models, as well as available experimental tools that can be used for the identification and characterization of potential antiviral targets and therapeutic intervention strategies.
Collapse
Affiliation(s)
- Marco P Alves
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Nathalie J Vielle
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Volker Thiel
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| | - Stephanie Pfaender
- Institute of Virology and Immunology, 3012 Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
203
|
Hraber P, Bradfute S, Clarke E, Ye C, Pitard B. Amphiphilic block copolymer delivery of a DNA vaccine against Zika virus. Vaccine 2018; 36:6911-6917. [PMID: 30337177 DOI: 10.1016/j.vaccine.2018.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/18/2018] [Accepted: 10/06/2018] [Indexed: 12/30/2022]
Abstract
Zika virus (ZIKV) is a mosquito-borne flavivirus that was first discovered in 1947. Since then, outbreaks have been reported in tropical Africa, Southeast Asia, the Pacific Islands, and, in 2015, in the Americas. Since 2013, many countries have reported cases of microcephaly and other central nervous system malformation associated with ZIKV. Because the initial target population for a ZIKV vaccine is expected to be women of child-bearing age, including those who may be pregnant, it is necessary to develop safe, easily administered, and non-viral vaccines. Here, we show that a single tetrafunctional Amphiphilic Block Copolymer (ABC) delivers DNA that encodes the full natural sequence of prM-E, among other antigen designs tested, induces the highest antibody titer and neutralization activity against three divergent ZIKV isolates. Vaccination with a single tetrafunctional block copolymer delivering low dose (10 µg) DNA plasmid rapidly induces protection from detectable viremia during acute infection in mice challenged by ZIKV more than 7 months after their first vaccination and boosted 2 weeks before challenge. This use of tetrafunctional ABCs is a new approach to deliver DNA antigens against flaviviruses. The data demonstrate that DNA formulated by a tetrafunctional block copolymer rapidly elicits protective responses against multiple diverse ZIKV isolates. This represents potential for an easy-to-administer and simple to manufacture vaccine candidate against ZIKV and possibly other emerging threats to global health.
Collapse
Affiliation(s)
- Peter Hraber
- Theoretical Biology and Biophysics, MS K710, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
| | - Steven Bradfute
- Center for Global Health, MSC10 5550, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Elizabeth Clarke
- Center for Global Health, MSC10 5550, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Chunyan Ye
- Center for Global Health, MSC10 5550, Division of Infectious Diseases, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Bruno Pitard
- In-Cell-Art, 21 rue La Noue Bras de Fer, Nantes F-44200, France
| |
Collapse
|
204
|
Xie X, Kum DB, Xia H, Luo H, Shan C, Zou J, Muruato AE, Medeiros DBA, Nunes BTD, Dallmeier K, Rossi SL, Weaver SC, Neyts J, Wang T, Vasconcelos PFC, Shi PY. A Single-Dose Live-Attenuated Zika Virus Vaccine with Controlled Infection Rounds that Protects against Vertical Transmission. Cell Host Microbe 2018; 24:487-499.e5. [PMID: 30308155 PMCID: PMC6188708 DOI: 10.1016/j.chom.2018.09.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/23/2018] [Accepted: 08/27/2018] [Indexed: 01/07/2023]
Abstract
Zika virus (ZIKV) infection of the mother during pregnancy causes devastating Zika congenital syndrome in the offspring. A ZIKV vaccine with optimal safety and immunogenicity for use in pregnant women is critically needed. Toward this goal, we have developed a single-dose live-attenuated vaccine candidate that infects cells with controlled, limited infection rounds. The vaccine contains a 9-amino-acid deletion in the viral capsid protein and replicates to titers of > 106 focus-forming units (FFU)/mL in cells expressing the full-length capsid protein. Immunization of A129 mice with one dose (105 FFU) did not produce viremia, but elicited protective immunity that completely prevented viremia, morbidity, and mortality after challenge with an epidemic ZIKV strain (106 PFU). A single-dose vaccination also fully prevented infection of pregnant mice and maternal-to-fetal transmission. Intracranial injection of the vaccine (104 FFU) to 1-day-old mice did not cause any disease or death, underscoring the safety of this vaccine candidate.
Collapse
Affiliation(s)
- Xuping Xie
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Dieudonné B Kum
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemoth, University of Leuven, Leuven, Belgium
| | - Hongjie Xia
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jing Zou
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonio E Muruato
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Daniele B A Medeiros
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | - Bruno T D Nunes
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil
| | - Kai Dallmeier
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemoth, University of Leuven, Leuven, Belgium
| | - Shannan L Rossi
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology and Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA; Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA; Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology and Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Johan Neyts
- KU Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Laboratory of Virology and Chemoth, University of Leuven, Leuven, Belgium
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Department of Pathology and Center for Biodefense & Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Pedro F C Vasconcelos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Pará State, Brazil; Department of Pathology, Pará State University, Belém, Brazil
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA; Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
205
|
Britto C, Dold C, Reyes-Sandoval A, Rollier CS. Rapid travel to a Zika vaccine: are we heading towards success or more questions? Expert Opin Biol Ther 2018; 18:1171-1179. [PMID: 30235422 DOI: 10.1080/14712598.2018.1526277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The emergence of the Zika virus (ZIKV) in Latin America in 2015-2016 led to an expeditious search for vaccine candidates, with a DNA-based candidate having progressed to Phase II. However, several features of ZIKV infection and epidemiology are not understood, which may be key to maximizing efficacy and ensuring safety of ZIKV vaccines. AREAS COVERED Conceivable problems related to vaccine development and policy include: (1) paucity of diagnostics to satisfactorily discriminate between past ZIKV and dengue virus (DENV) exposure; (2) insufficient knowledge of the mechanisms of ZIKV neurovirulence, amongst other unknowns in the biology of this infection, is particularly relevant from a vaccine safety perspective; and (3) the potential for disease enhancement, as observed with DENV infection and vaccine. EXPERT OPINION Vaccine candidates that entered phase I/II trials have demonstrated protection in naïve animal models, while ZIKV epidemics occurred in populations that had encountered DENV before. The resulting cross-reactive antibodies pose problems for reliable serologic diagnostic assays, and for the potential of disease enhancement. The alleged neurological complications also warrant further exploration in order to reassure regulators of the safety profile of these vaccines in target populations. These research aspects should be an integral part of the efforts to develop a vaccine.
Collapse
Affiliation(s)
- Carl Britto
- a Oxford Vaccine Group, Department of Paediatrics , University of Oxford and the NIHR Oxford Biomedical Research Centre, The Center for Clinical Vaccinology and Tropical Medicine , Oxford , UK
| | - Christina Dold
- a Oxford Vaccine Group, Department of Paediatrics , University of Oxford and the NIHR Oxford Biomedical Research Centre, The Center for Clinical Vaccinology and Tropical Medicine , Oxford , UK
| | - Arturo Reyes-Sandoval
- b The Jenner Institute, Nuffield Department of Medicine , University of Oxford , Oxford , UK
| | - Christine S Rollier
- a Oxford Vaccine Group, Department of Paediatrics , University of Oxford and the NIHR Oxford Biomedical Research Centre, The Center for Clinical Vaccinology and Tropical Medicine , Oxford , UK
| |
Collapse
|
206
|
Abstract
The recent epidemic of Zika virus (ZIKV) in the Americas has revealed the devastating consequences of ZIKV infection, particularly in pregnant women. Congenital Zika syndrome, characterized by malformations and microcephaly in neonates as well as developmental challenges in children, highlights the need for the development of a safe and effective vaccine. Multiple vaccine candidates have been developed and have shown promising results in both animal models and phase I clinical trials. However, important challenges remain for the clinical development of these vaccines. In this Progress article, we discuss recent preclinical studies and lessons learned from first-in-human clinical trials with ZIKV vaccines.
Collapse
|
207
|
das Neves Almeida R, Racine T, Magalhães KG, Kobinger GP. Zika Virus Vaccines: Challenges and Perspectives. Vaccines (Basel) 2018; 6:vaccines6030062. [PMID: 30217027 PMCID: PMC6161012 DOI: 10.3390/vaccines6030062] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/08/2018] [Accepted: 09/11/2018] [Indexed: 01/07/2023] Open
Abstract
Zika virus is an arbovirus that has rapidly spread within the Americas since 2014, presenting a variety of clinical manifestations and neurological complications resulting in congenital malformation, microcephaly, and possibly, in male infertility. These significant clinical manifestations have led investigators to develop several candidate vaccines specific to Zika virus. In this review we describe relevant targets for the development of vaccines specific for Zika virus, the development status of various vaccine candidates and their different platforms, as well as their clinical progression.
Collapse
Affiliation(s)
| | - Trina Racine
- Centre de Recherche en Infectiologie du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada.
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Kelly G Magalhães
- Laboratory of Immunology and Inflammation, University of Brasilia, Brasilia 70910-900, Brazil.
| | - Gary P Kobinger
- Centre de Recherche en Infectiologie du CHU de Québec-Université Laval, Québec, QC G1V 4G2, Canada.
- Department of Medical Microbiology, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Department of Immunology, University of Manitoba, Winnipeg, MB R3E 0T5, Canada.
- Départment de Microbiologie-Infectiologie et D'immunologie, Université Laval, Québc, QC G1V 0A6, Canada.
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-4238, USA.
| |
Collapse
|
208
|
Zou J, Xie X, Luo H, Shan C, Muruato AE, Weaver SC, Wang T, Shi PY. A single-dose plasmid-launched live-attenuated Zika vaccine induces protective immunity. EBioMedicine 2018; 36:92-102. [PMID: 30201444 PMCID: PMC6197676 DOI: 10.1016/j.ebiom.2018.08.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Vaccines are the most effective means to fight and eradicate infectious diseases. Live-attenuated vaccines (LAV) usually have the advantages of single dose, rapid onset of immunity, and durable protection. DNA vaccines have the advantages of chemical stability, ease of production, and no cold chain requirement. The ability to combine the strengths of LAV and DNA vaccines may transform future vaccine development by eliminating cold chain and cell culture with the potential for adventitious agents. METHODS A DNA-launched LAV was developed for ZIKV virus (ZIKV), a pathogen that recently caused a global public health emergency. The cDNA copy of a ZIKV LAV genome was engineered into a DNA plasmid. The DNA-LAV plasmid was delivered into mice using a clinically proven device TriGrid™ to launch the replication of LAV. FINDINGS A single-dose immunization as low as 0.5 μg of DNA-LAV plasmid conferred 100% seroconversion in A129 mice. All seroconverted mice developed sterilizing immunity, as indicated by no detectable infectious viruses and no increase of neutralizing antibody titers after ZIKV challenge. The immunization also elicited robust T cell responses. In pregnant mice, the DNA-LAV vaccination fully protected against ZIKV-induced disease and maternal-to-fetal transmission. High levels of neutralizing activities were detected in fetal serum, indicating maternal-to-fetal humoral transfer. In male mice, a single-dose vaccination completely prevented testis infection, injury, and oligospermia. INTERPRETATION The remarkable simplicity and potency of ZIKV DNA-LAV warrant further development of this vaccine candidate. The DNA-LAV approach may serve as a universal vaccine platform for other plus-sense RNA viruses. FUND: National Institute of Health, Kleberg Foundation, Centers for Disease Control and Prevention, University of Texas Medical Branch.
Collapse
Affiliation(s)
- Jing Zou
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuping Xie
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Huanle Luo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Antonio E. Muruato
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C. Weaver
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA,Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA,Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA,Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA,Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, USA,Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA,Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA,Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA,Corresponding author at: Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
209
|
Giel-Moloney M, Goncalvez AP, Catalan J, Lecouturier V, Girerd-Chambaz Y, Diaz F, Maldonado-Arocho F, Gomila RC, Bernard MC, Oomen R, Delagrave S, Burdin N, Kleanthous H, Jackson N, Heinrichs J, Pugachev KV. Chimeric yellow fever 17D-Zika virus (ChimeriVax-Zika) as a live-attenuated Zika virus vaccine. Sci Rep 2018; 8:13206. [PMID: 30181550 PMCID: PMC6123396 DOI: 10.1038/s41598-018-31375-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/17/2018] [Indexed: 11/15/2022] Open
Abstract
Zika virus (ZIKV) is an emerging mosquito-borne pathogen representing a global health concern. It has been linked to fetal microcephaly and other birth defects and neurological disorders in adults. Sanofi Pasteur has engaged in the development of an inactivated ZIKV vaccine, as well as a live chimeric vaccine candidate ChimeriVax-Zika (CYZ) that could become a preferred vaccine depending on future ZIKV epidemiology. This report focuses on the CYZ candidate that was constructed by replacing the pre-membrane and envelope (prM-E) genes in the genome of live attenuated yellow fever 17D vaccine virus (YF 17D) with those from ZIKV yielding a viable CYZ chimeric virus. The replication rate of CYZ in the Vero cell substrate was increased by using a hybrid YF 17D-ZIKV signal sequence for the prM protein. CYZ was highly attenuated both in mice and in human in vitro models (human neuroblastoma and neuronal progenitor cells), without the need for additional attenuating modifications. It exhibited significantly reduced viral loads in organs compared to a wild-type ZIKV and a complete lack of neuroinvasion following inoculation of immunodeficient A129 mice. A single dose of CYZ elicited high titers of ZIKV-specific neutralizing antibodies in both immunocompetent and A129 mice and protected animals from ZIKV challenge. The data indicate that CYZ is a promising vaccine candidate against ZIKV.
Collapse
Affiliation(s)
| | | | - John Catalan
- Sanofi Pasteur Research & Development, Cambridge, MA, USA
| | | | | | - Fernando Diaz
- Sanofi Pasteur Research & Development, Cambridge, MA, USA.,VL46 Inc., Cambridge, MA, USA
| | | | - Raul C Gomila
- Sanofi Pasteur Research & Development, Cambridge, MA, USA
| | | | - Ray Oomen
- Sanofi Pasteur Research & Development, Cambridge, MA, USA
| | | | - Nicolas Burdin
- Sanofi Pasteur Research & Development, Marcy-l'Étoile, France
| | | | - Nicolas Jackson
- Sanofi Pasteur Research & Development, Marcy-l'Étoile, France
| | - Jon Heinrichs
- Sanofi Pasteur Research & Development, Swiftwater, PA, USA
| | | |
Collapse
|
210
|
Quintana-Domeque C, Carvalho JR, de Oliveira VH. Zika virus incidence, preventive and reproductive behaviors: Correlates from new survey data. ECONOMICS AND HUMAN BIOLOGY 2018; 30:14-23. [PMID: 29772278 DOI: 10.1016/j.ehb.2018.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/28/2018] [Indexed: 05/27/2023]
Abstract
During the outbreak of the Zika virus, Brazilian health authorities recommended that pregnant women take meticulous precaution to avoid mosquito bites and that women in general use contraceptive methods to postpone/delay pregnancies. In this article, we present new estimates on the Zika virus incidence, its correlates and preventive behaviors in the Northeast of Brazil, where the outbreak initiated, using survey data collected between March 30th and June 3rd of 2016. The target population were women aged 15-49 in the capital cities of the nine states of the Northeast region of Brazil. We find that more educated women were less likely to report suffering from Zika (or its symptoms) and more likely to report having taken precaution against Zika, such as having used long and light-colored clothes, having used mosquito repellent or insecticides, having used mosquito protective screens or kept windows closed, and having dumped standing water where mosquitoes can breed. In addition, more educated women were more likely to report being informed about the association between Zika and microcephaly and to avoid pregnancy in the last 12 months. Finally, we also find that women who reported experiencing sexual domestic violence in the last 12 months were more likely to report suffering from Zika.
Collapse
|
211
|
The emergence of Zika virus and its new clinical syndromes. Nature 2018; 560:573-581. [PMID: 30158602 DOI: 10.1038/s41586-018-0446-y] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 07/19/2018] [Indexed: 11/08/2022]
Abstract
Zika virus (ZIKV) is a mosquito-transmitted flavivirus that has emerged as a global health threat because of its potential to generate explosive epidemics and ability to cause congenital disease in the context of infection during pregnancy. Whereas much is known about the biology of related flaviviruses, the unique features of ZIKV pathogenesis, including infection of the fetus, persistence in immune-privileged sites and sexual transmission, have presented new challenges. The rapid development of cell culture and animal models has facilitated a new appreciation of ZIKV biology. This knowledge has created opportunities for the development of countermeasures, including multiple ZIKV vaccine candidates, which are advancing through clinical trials. Here we describe the recent advances that have led to a new understanding of the causes and consequences of the ZIKV epidemic.
Collapse
|
212
|
Zanotto PMDA, Leite LCDC. The Challenges Imposed by Dengue, Zika, and Chikungunya to Brazil. Front Immunol 2018; 9:1964. [PMID: 30210503 PMCID: PMC6121005 DOI: 10.3389/fimmu.2018.01964] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022] Open
Abstract
Brazil has a well-established immunization program in which vaccines are provided through the Public Health System free of charge to the whole population, obtaining high coverage and reducing the incidence of important infectious diseases in children and adults. However, the environmental changes and high mobility rates of the population occurring in the last decades have triggered the sequential introduction of a series of vector-borne emerging infectious diseases, such as Dengue, Zika, and Chikungunya, that have imposed a considerable burden on the population, with yet unmet solutions. The first to be introduced in Brazil was the Dengue virus, reaching epidemic levels in 2010, with over 1 million cases annually, maintaining high infection rates until 2016. Brazil has invested in vaccine development. The Zika virus infection, initially assumed to have appeared during the World Cup in 2014, was later shown to have arrived earlier in 2013. Its emergence mobilized the Brazilian scientific community to define priorities and strategies, that rapidly investigated mechanisms of pathogenesis, differential diagnostics, and determined that Zika virus infection per se causes relatively mild symptoms, however, in pregnant women can cause microcephaly in the newborns. The diagnostics of Zika infection is confusing given its similar symptoms and cross-reactivity with Dengue, which also hindered the appraisal of the extent of the epidemics, which peaked in 2015 and finished in 2016. Another complicating factor was the overlap with Chikungunya virus infection, which arrived in Brazil in 2014, being prevalent in the same regions, with similar symptoms to both Dengue and Zika. Although Dengue infection can be fatal and Zika infection in pregnant woman can lead to newborns with microcephaly or an array of neurodegenerative manifestations, the Chikungunya infection is a debilitating disease leaving chronic sequelae, which unfortunately has received less attention. Precise differential diagnostics of Dengue, Zika, and Chikungunya will be necessary to evaluate the actual extent of each of these diseases during this overlapping period. Here we review the impact of these emerging infections on public health and how the scientific community was mobilized to deal with them in Brazil.
Collapse
|
213
|
Adenoviral vector type 26 encoding Zika virus (ZIKV) M-Env antigen induces humoral and cellular immune responses and protects mice and nonhuman primates against ZIKV challenge. PLoS One 2018; 13:e0202820. [PMID: 30142207 PMCID: PMC6108497 DOI: 10.1371/journal.pone.0202820] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/08/2018] [Indexed: 02/06/2023] Open
Abstract
In 2015, there was a large outbreak of Zika virus (ZIKV) in Brazil. Despite its relatively mild impact on healthy adults, ZIKV infection during pregnancy has been associated with severe birth defects. Currently, there is no ZIKV vaccine available, but several vaccine candidates based on the ZIKV membrane (M) and envelope (Env) structural proteins showed promising results in preclinical and clinical studies. Here, the immunogenicity and protective efficacy of a non-replicating adenoviral vector type 26 (Ad26) that encodes the ZIKV M-Env antigens (Ad26.ZIKV.M-Env) was evaluated in mice and non-human primates (NHP). Ad26.ZIKV.M-Env induced strong and durable cellular and humoral immune responses in preclinical models. Humoral responses were characterized by Env-binding and ZIKV neutralizing antibody responses while cellular responses were characterized by ZIKV reactive CD4+ and CD8+ T cells. Importantly, a single immunization with a very low dose of 4x107 vp of Ad26.ZIKV.M-Env protected mice from ZIKV challenge. In NHP, a single immunization with a typical human dose of 1x1011 vp of Ad26.ZIKV.M-Env also induced Env-binding and ZIKV neutralizing antibodies and Env and M specific cellular immune responses that associated with complete protection against viremia from ZIKV challenge as measured in plasma and other body fluids. Together these data provide the rationale to progress the Ad26.ZIKV.M-Env candidate vaccine to clinical testing.
Collapse
|
214
|
O'Connor MA, Tisoncik-Go J, Lewis TB, Miller CJ, Bratt D, Moats CR, Edlefsen PT, Smedley J, Klatt NR, Gale M, Fuller DH. Early cellular innate immune responses drive Zika viral persistence and tissue tropism in pigtail macaques. Nat Commun 2018; 9:3371. [PMID: 30135445 PMCID: PMC6105614 DOI: 10.1038/s41467-018-05826-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
The immunological and virological events that contribute to the establishment of Zika virus (ZIKV) infection in humans are unclear. Here, we show that robust cellular innate immune responses arising early in the blood and tissues in response to ZIKV infection are significantly stronger in males and correlate with increased viral persistence. In particular, early peripheral blood recruitment of plasmacytoid dendritic cells and higher production of monocyte chemoattractant protein (MCP-1) correspond with greater viral persistence and tissue dissemination. We also identify non-classical monocytes as primary in vivo targets of ZIKV infection in the blood and peripheral lymph node. These results demonstrate the potential differences in ZIKV pathogenesis between males and females and a key role for early cellular innate immune responses in the blood in viral dissemination and ZIKV pathogenesis.
Collapse
Affiliation(s)
- Megan A O'Connor
- Department of Microbiology, University of Washington, Seattle, 98195, WA, USA
- Washington National Primate Research Center, Seattle, 98121, WA, USA
| | - Jennifer Tisoncik-Go
- Department of Immunology, University of Washington, Seattle, 98109, WA, USA
- Center for Innate Immunity and Immune Disease (CIIID), University of Washington, Seattle, 98109, WA, USA
| | - Thomas B Lewis
- Department of Microbiology, University of Washington, Seattle, 98195, WA, USA
- Washington National Primate Research Center, Seattle, 98121, WA, USA
| | - Charlene J Miller
- Department of Pharmaceutics, University of Washington, Seattle, 98195, WA, USA
- Department of Pediatrics, University of Miami, Miami, 33136, FL, USA
| | - Debra Bratt
- Washington National Primate Research Center, Seattle, 98121, WA, USA
| | - Cassie R Moats
- Washington National Primate Research Center, Seattle, 98121, WA, USA
- Oregon National Primate Research Center, Hillsboro, 97006, OR, USA
| | - Paul T Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, 98109, WA, USA
| | - Jeremy Smedley
- Washington National Primate Research Center, Seattle, 98121, WA, USA
- Oregon National Primate Research Center, Hillsboro, 97006, OR, USA
| | - Nichole R Klatt
- Washington National Primate Research Center, Seattle, 98121, WA, USA
- Department of Pharmaceutics, University of Washington, Seattle, 98195, WA, USA
- Department of Pediatrics, University of Miami, Miami, 33136, FL, USA
| | - Michael Gale
- Department of Immunology, University of Washington, Seattle, 98109, WA, USA
- Center for Innate Immunity and Immune Disease (CIIID), University of Washington, Seattle, 98109, WA, USA
| | - Deborah Heydenburg Fuller
- Department of Microbiology, University of Washington, Seattle, 98195, WA, USA.
- Washington National Primate Research Center, Seattle, 98121, WA, USA.
| |
Collapse
|
215
|
Zika virus infection of first-trimester human placentas: utility of an explant model of replication to evaluate correlates of immune protection ex vivo. Curr Opin Virol 2018; 27:48-56. [PMID: 29172071 DOI: 10.1016/j.coviro.2017.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/09/2017] [Indexed: 01/08/2023]
Abstract
The emergence of congenital Zika virus (ZIKV) disease, with its devastating effects on the fetus, has prompted development of vaccines and examination of how ZIKV breaches the maternal-fetal barrier. Infection of placental and decidual tissue explants has demonstrated cell types at the uterine-placental interface susceptible to infection and suggests routes for transmission across the placenta and amniochorionic membrane. ZIKV replicates in proliferating Hofbauer cells within chorionic villi in placentas from severe congenital infection. Explants of anchoring villi recapitulate placental architecture and early-stage development and suggest infected Hofbauer cells disseminate virus to fetal blood vessels. ZIKV infection of explants represents a surrogate human model for evaluating protection against transmission by antibodies in vaccine recipients and passive immune formulations and novel therapeutics.
Collapse
|
216
|
Zika Virus Attenuation by Codon Pair Deoptimization Induces Sterilizing Immunity in Mouse Models. J Virol 2018; 92:JVI.00701-18. [PMID: 29925661 DOI: 10.1128/jvi.00701-18] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) infection during the large epidemics in the Americas is related to congenital abnormities or fetal demise. To date, there is no vaccine, antiviral drug, or other modality available to prevent or treat Zika virus infection. Here we designed novel live attenuated ZIKV vaccine candidates using a codon pair deoptimization strategy. Three codon pair-deoptimized ZIKVs (Min E, Min NS1, and Min E+NS1) were de novo synthesized and recovered by reverse genetics and contained large amounts of underrepresented codon pairs in the E gene and/or NS1 gene. The amino acid sequence was 100% unchanged. The codon pair-deoptimized variants had decreased replication fitness in Vero cells (Min NS1 ≫ Min E > Min E+NS1), replicated more efficiently in insect cells than in mammalian cells, and demonstrated diminished virulence in a mouse model. In particular, Min E+NS1, the most restrictive variant, induced sterilizing immunity with a robust neutralizing antibody titer, and a single immunization achieved complete protection against lethal challenge and vertical ZIKV transmission during pregnancy. More importantly, due to the numerous synonymous substitutions in the codon pair-deoptimized strains, reversion to wild-type virulence through gradual nucleotide sequence mutations is unlikely. Our results collectively demonstrate that ZIKV can be effectively attenuated by codon pair deoptimization, highlighting the potential of Min E+NS1 as a safe vaccine candidate to prevent ZIKV infections.IMPORTANCE Due to unprecedented epidemics of Zika virus (ZIKV) across the Americas and the unexpected clinical symptoms, including Guillain-Barré syndrome, microcephaly, and other birth defects in humans, there is an urgent need for ZIKV vaccine development. Here we provided the first attenuated versions of ZIKV with two important genes (E and/or NS1) that were subjected to codon pair deoptimization. Compared to parental ZIKV, the codon pair-deoptimized ZIKVs were mammal attenuated and preferred insect to mammalian cells. Min E+NS1, the most restrictive variant, induced sterilizing immunity with a robust neutralizing antibody titer and achieved complete protection against lethal challenge and vertical virus transmission during pregnancy. More importantly, the massive synonymous mutational approach made it impossible for the variant to revert to wild-type virulence. Our results have proven the feasibility of codon pair deoptimization as a strategy to develop live attenuated vaccine candidates against flaviviruses such as ZIKV, Japanese encephalitis virus, and West Nile virus.
Collapse
|
217
|
Zhu X, Li C, Afridi SK, Zu S, Xu JW, Quanquin N, Yang H, Cheng G, Xu Z. E90 subunit vaccine protects mice from Zika virus infection and microcephaly. Acta Neuropathol Commun 2018; 6:77. [PMID: 30097059 PMCID: PMC6086021 DOI: 10.1186/s40478-018-0572-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 07/17/2018] [Indexed: 11/10/2022] Open
Abstract
Zika virus (ZIKV) became a global threat due to its unprecedented outbreak and its association with congenital malformations such as microcephaly in developing fetuses and neonates. There are currently no effective vaccines or drugs available for the prevention or treatment of ZIKV infection. Although multiple vaccine platforms have been established, their effectiveness in preventing congenital microcephaly has not been addressed. Herein, we tested a subunit vaccine containing the 450 amino acids at the N-terminus of the ZIKV envelope protein (E90) in mouse models for either in utero or neonatal ZIKV infection. In one model, embryos of vaccinated dams were challenged with a contemporary ZIKV strain at embryonic day 13.5. The other model infects neonatal mice from vaccinated dams by direct injection of ZIKV into the developing brains. The vaccine led to a substantial reduction of ZIKV-infected cells measured in the brains of fetal or suckling mice, and successfully prevented the onset of microcephaly compared to unvaccinated controls. Furthermore, E90 could protect mice from ZIKV infection even at 140 days post-immunization. This work directly demonstrates that immunization of pregnant mice protects the developing brains of offspring both in utero and in the neonatal period from subsequent ZIKV infection and microcephaly. It also supports the further development of the E90 subunit vaccine towards clinical trials.
Collapse
Affiliation(s)
- Xingliang Zhu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunfeng Li
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Shabbir Khan Afridi
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shulong Zu
- University of Chinese Academy of Sciences, Beijing, 100101, China
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jesse W Xu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Natalie Quanquin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA
| | - Heng Yang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China
| | - Genhong Cheng
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China.
- Suzhou Institute of Systems Medicine, Suzhou, 215123, Jiangsu, China.
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA, 90095, USA.
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, 100101, China.
- Parkinson's Disease Center, Beijing Institute for Brain Disorders, Beijing, 100101, China.
| |
Collapse
|
218
|
Li A, Yu J, Lu M, Ma Y, Attia Z, Shan C, Xue M, Liang X, Craig K, Makadiya N, He JJ, Jennings R, Shi PY, Peeples ME, Liu SL, Boyaka PN, Li J. A Zika virus vaccine expressing premembrane-envelope-NS1 polyprotein. Nat Commun 2018; 9:3067. [PMID: 30076287 PMCID: PMC6076265 DOI: 10.1038/s41467-018-05276-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 06/19/2018] [Indexed: 02/08/2023] Open
Abstract
Current efforts to develop Zika virus (ZIKV) subunit vaccines have been focused on pre-membrane (prM) and envelope (E) proteins, but the role of NS1 in ZIKV-specific immune response and protection is poorly understood. Here, we develop an attenuated recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing ZIKV prM-E-NS1 as a polyprotein. This vectored vaccine candidate is attenuated in mice, where a single immunization induces ZIKV-specific antibody and T cell immune responses that provide protection against ZIKV challenge. Co-expression of prM, E, and NS1 induces significantly higher levels of Th2 and Th17 cytokine responses than prM-E. In addition, NS1 alone is capable of conferring partial protection against ZIKV infection in mice even though it does not induce neutralizing antibodies. These results demonstrate that attenuated rVSV co-expressing prM, E, and NS1 is a promising vaccine candidate for protection against ZIKV infection and highlights an important role for NS1 in ZIKV-specific cellular immune responses.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Genetic Vectors/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Polyproteins/genetics
- Polyproteins/immunology
- Th17 Cells/metabolism
- Th2 Cells/metabolism
- Vaccination
- Vaccines, Attenuated
- Vaccines, DNA/immunology
- Vaccines, Synthetic
- Vesiculovirus/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viral Nonstructural Proteins/genetics
- Viral Nonstructural Proteins/immunology
- Viral Nonstructural Proteins/metabolism
- Viral Vaccines/genetics
- Viral Vaccines/immunology
- Zika Virus/genetics
- Zika Virus/immunology
- Zika Virus/metabolism
- Zika Virus Infection/immunology
- Zika Virus Infection/prevention & control
Collapse
Affiliation(s)
- Anzhong Li
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Jingyou Yu
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
- Center for Retrovirus Research, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Mijia Lu
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Yuanmei Ma
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Zayed Attia
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Chao Shan
- Department of Biochemistry & Molecular Biology, Department of Pharmacology & Toxicology, and Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Miaoge Xue
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Xueya Liang
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Kelsey Craig
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Nirajkumar Makadiya
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Jennifer J He
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Ryan Jennings
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Pei-Yong Shi
- Department of Biochemistry & Molecular Biology, Department of Pharmacology & Toxicology, and Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Mark E Peeples
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, 43205, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, 370W. 9th Ave., Columbus, OH, 43210, USA
| | - Shan-Lu Liu
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
- Center for Retrovirus Research, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
- Infectious Diseases Institute, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Prosper N Boyaka
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
- Infectious Diseases Institute, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Jianrong Li
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA.
- Infectious Diseases Institute, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA.
| |
Collapse
|
219
|
Andrade DV, Harris E. Recent advances in understanding the adaptive immune response to Zika virus and the effect of previous flavivirus exposure. Virus Res 2018; 254:27-33. [PMID: 28655548 PMCID: PMC5743770 DOI: 10.1016/j.virusres.2017.06.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 11/30/2022]
Abstract
Zika virus (ZIKV) caused explosive epidemics across the Americas, starting in Brazil in 2015, and has been associated with severe manifestations such as microcephaly in babies born to infected mothers and Guillain-Barré syndrome in adults. As the underlying mechanisms of pathogenesis remain largely unknown, diverse investigations have focused on a potential role for flavivirus cross-reactive antibodies in enhancing ZIKV infection. Antibody-dependent enhancement is especially concerning due to structural similarities between ZIKV and other flaviviruses, especially dengue virus (DENV), that co-circulate in areas affected by ZIKV. Conversely, investigating cross-neutralizing antibodies is important for understanding protection among flaviviruses, including ZIKV. In this review, we discuss the latest findings regarding ZIKV-induced adaptive immunity, such as monoclonal and polyclonal antibody responses, structural immunology, and T cell-mediated responses. Much progress has been made in a short amount of time, but many questions remain. Fully understanding the specificity, magnitude, and kinetics of B cell/antibody and T cell responses in ZIKV-infected individuals with or without prior exposure to flaviviruses is of great relevance for diagnostics and vaccine development.
Collapse
Affiliation(s)
- Daniela V Andrade
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, United States.
| |
Collapse
|
220
|
A Nanostructured Lipid Carrier for Delivery of a Replicating Viral RNA Provides Single, Low-Dose Protection against Zika. Mol Ther 2018; 26:2507-2522. [PMID: 30078765 DOI: 10.1016/j.ymthe.2018.07.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/02/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
Since the first demonstration of in vivo gene expression from an injected RNA molecule almost two decades ago,1 the field of RNA-based therapeutics is now taking significant strides, with many cancer and infectious disease targets entering clinical trials.2 Critical to this success has been advances in the knowledge and application of delivery formulations. Currently, various lipid nanoparticle (LNP) platforms are at the forefront,3 but the encapsulation approach underpinning LNP formulations offsets the synthetic and rapid-response nature of RNA vaccines.4 Second, limited stability of LNP formulated RNA precludes stockpiling for pandemic readiness.5 Here, we show the development of a two-vialed approach wherein the delivery formulation, a highly stable nanostructured lipid carrier (NLC), can be manufactured and stockpiled separate from the target RNA, which is admixed prior to administration. Furthermore, specific physicochemical modifications to the NLC modulate immune responses, either enhancing or diminishing neutralizing antibody responses. We have combined this approach with a replicating viral RNA (rvRNA) encoding Zika virus (ZIKV) antigens and demonstrated a single dose as low as 10 ng can completely protect mice against a lethal ZIKV challenge, representing what might be the most potent approach to date of any Zika vaccine.
Collapse
|
221
|
Zika virus vaccines: immune response, current status, and future challenges. Curr Opin Immunol 2018; 53:130-136. [PMID: 29753210 PMCID: PMC6141315 DOI: 10.1016/j.coi.2018.04.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/20/2018] [Accepted: 04/24/2018] [Indexed: 01/07/2023]
Abstract
Zika virus (ZIKV) is the most recent mosquito-transmitted virus to cause a global health crisis following its entrance into a naïve population in the Western Hemisphere. Once the ZIKV outbreak began investigators rapidly established small and large animal models of pathogenesis, developed a number candidate vaccines using different platforms, and defined mechanisms of protection. In this review, we characterize the adaptive immune response elicited by ZIKV infections and vaccines, the status of ongoing clinical trials in humans, and discuss future challenges within the field.
Collapse
|
222
|
Disruption of glial cell development by Zika virus contributes to severe microcephalic newborn mice. Cell Discov 2018; 4:43. [PMID: 30083387 PMCID: PMC6066496 DOI: 10.1038/s41421-018-0042-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/08/2018] [Accepted: 05/19/2018] [Indexed: 12/27/2022] Open
Abstract
The causal link between Zika virus (ZIKV) infection and microcephaly has raised alarm worldwide. Microglial hyperplasia, reactive gliosis, and myelination delay have been reported in ZIKV-infected microcephalic fetuses. However, whether and how ZIKV infection affects glial cell development remain unclear. Here we show that ZIKV infection of embryos at the later stage of development causes severe microcephaly after birth. ZIKV infects the glial progenitors during brain development. Specifically, ZIKV infection disturbs the proliferation and differentiation of the oligodendrocyte progenitor cells and leads to the abolishment of oligodendrocyte development. More importantly, a single intraperitoneal injection of pregnant mice with a human monoclonal neutralizing antibody provides full protection against ZIKV infection and its associated damages in the developing fetuses. Our results not only provide more insights into the pathogenesis of ZIKV infection, but also present a new model for the preclinical test of prophylactic and therapeutic agents against ZIKV infection.
Collapse
|
223
|
Incorporation of NS1 and prM/M are important to confer effective protection of adenovirus-vectored Zika virus vaccine carrying E protein. NPJ Vaccines 2018; 3:29. [PMID: 30062066 PMCID: PMC6057874 DOI: 10.1038/s41541-018-0072-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 01/07/2023] Open
Abstract
Current design of Zika virus (ZIKV) vaccine mainly considered envelope (E) as the major target antigen. Non-structural protein NS1 was seldom considered. Herein, we generated three adenovirus-vectored vaccines carrying E (Ad2-E), or premembrane/membrane (prM/M) with E (Ad2-prME), or NS1 in addition to prM/M with E (Ad2-prME-NS1). Ad2-prME induced higher neutralizing antibody response to ZIKV than Ad2-E, suggesting prM/M is important for the folding of immunogenic E. Most intriguingly, Ad2-prME-NS1 elicited the best viral inhibition when the immune sera were added to ZIKV-infected cells. In ZIKV-challenged neonatal mice born to maternally immunized dams, Ad2-prME-NS1 conferred the best protection in preventing weight loss, neurological disorders, and viral replication. Ad2-prME also conferred significant protection but was less effective than Ad2-prME-NS1, whereas Ad2-E only alleviated neurological symptoms but did not inhibit viral replication. Our study suggested that NS1 should be considered in the design of ZIKV vaccine in addition to prM/M and E.
Collapse
|
224
|
Emanuel J, Callison J, Dowd KA, Pierson TC, Feldmann H, Marzi A. A VSV-based Zika virus vaccine protects mice from lethal challenge. Sci Rep 2018; 8:11043. [PMID: 30038228 PMCID: PMC6056530 DOI: 10.1038/s41598-018-29401-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/05/2018] [Indexed: 01/25/2023] Open
Abstract
Infection with Zika virus (ZIKV) is commonly mild in humans but has been associated with alarming negative health outcomes including Guillain-Barré syndrome in adults and microcephaly in fetuses. As such, developing a vaccine for ZIKV is a global public health priority. Recombinant vesicular stomatitis virus (VSV) expressing the Ebola virus (EBOV) glycoprotein (GP) has been successfully used as a vaccine platform in the past. In this study, two novel VSV-ZIKV vaccines were generated utilizing the favorable immune targeting of the existing VSV-EBOV vector. In addition to the EBOV GP, these new vaccines express the full-length pre-membrane and envelope proteins or pre-membrane and truncated soluble envelope proteins as antigens. Efficacy testing of both of the VSV vectors against ZIKV was conducted in IFNAR−/− mice and resulted in uniform protection when a single dose was administered 28 days prior to lethal challenge. Furthermore, this vaccine is fast-acting and can uniformly protect mice from lethal disease when administered as late as 3 days prior to ZIKV challenge. Thus, VSV-ZIKV vectors are promising vaccine candidates and should move forward along the licensure pathway.
Collapse
Affiliation(s)
- Jackson Emanuel
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Julie Callison
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimberly A Dowd
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theodore C Pierson
- Laboratory of Viral Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
225
|
Márquez-Escobar VA, Bañuelos-Hernández B, Rosales-Mendoza S. Expression of a Zika virus antigen in microalgae: Towards mucosal vaccine development. J Biotechnol 2018; 282:86-91. [PMID: 30031093 DOI: 10.1016/j.jbiotec.2018.07.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 02/08/2023]
Abstract
Zika virus (ZIKV) infection has extended rapidly all over the world in the last decades affecting humans of all ages, inducing severe illness such as the autoimmune Guillain-Barré syndrome as well as fetal neurodevelopmental defects. Despite the epidemiological importance of ZIKV, today there are no commercially available drugs or vaccines to combat or prevent this infection. Microalgae are attractive hosts to produce and deliver vaccines, with some candidates under preclinical evaluation. Herein, algae-based expression was assessed for the production of a new vaccine candidate against ZIKV called ZK. The Algevir technology was applied to express an antigenic protein called ZK comprising the B subunit of the heat labile Escherichia coli enterotoxin along with 3 epitopes from the ZIKV envelope glycoprotein. Efficient expression of the ZK antigen was achieved in Schizochytrium sp. with yields of up to 365 μg g-1 microalgae fresh weight. Upon oral administration in mice, the microalgae-made ZK protein elicited significant humoral responses at a higher magnitude to those induced upon subcutaneous immunization. The algae-made ZK vaccine represents a promising candidate to formulate attractive vaccines against ZIKV.
Collapse
Affiliation(s)
- Verónica Araceli Márquez-Escobar
- Laboratorio de Biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Bernardo Bañuelos-Hernández
- Laboratorio de Biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
226
|
Beaver JT, Lelutiu N, Habib R, Skountzou I. Evolution of Two Major Zika Virus Lineages: Implications for Pathology, Immune Response, and Vaccine Development. Front Immunol 2018; 9:1640. [PMID: 30072993 PMCID: PMC6058022 DOI: 10.3389/fimmu.2018.01640] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Zika virus (ZIKV) became a public health emergency of global concern in 2015 due to its rapid expansion from French Polynesia to Brazil, spreading quickly throughout the Americas. Its unexpected correlation to neurological impairments and defects, now known as congenital Zika syndrome, brought on an urgency to characterize the pathology and develop safe, effective vaccines. ZIKV genetic analyses have identified two major lineages, Asian and African, which have undergone substantial changes during the past 50 years. Although ZIKV infections have been circulating throughout Africa and Asia for the later part of the 20th century, the symptoms were mild and not associated with serious pathology until now. ZIKV evolution also took the form of novel modes of transmission, including maternal-fetal transmission, sexual transmission, and transmission through the eye. The African and Asian lineages have demonstrated differential pathogenesis and molecular responses in vitro and in vivo. The limited number of human infections prior to the 21st century restricted ZIKV research to in vitro studies, but current animal studies utilize mice deficient in type I interferon (IFN) signaling in order to invoke enhanced viral pathogenesis. This review examines ZIKV strain differences from an evolutionary perspective, discussing how these differentially impact pathogenesis via host immune responses that modulate IFN signaling, and how these differential effects dictate the future of ZIKV vaccine candidates.
Collapse
Affiliation(s)
| | | | | | - Ioanna Skountzou
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
227
|
Abstract
The explosive emergence of Zika virus has inspired a global effort to develop vaccines. Zika virus, which is a flavivirus primarily transmitted by mosquitoes, can cause devastating congenital syndrome in fetuses of pregnant women, including microcephaly, craniofacial disproportion, spasticity, ocular abnormalities, and miscarriage. In adults, Zika infection has been linked to the autoimmune disorder Guillain-Barré syndrome. Thus, despite the current waning in newly reported Zika infections, an efficacious vaccine is urgently needed to help limit the emergence of another detrimental epidemic. Here we summarize the current status of the Zika vaccine pipeline and highlight the challenges for clinical efficacy trials.
Collapse
Affiliation(s)
- Chao Shan
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
228
|
Meng Z, O'Keeffe-Ahern J, Lyu J, Pierucci L, Zhou D, Wang W. A new developing class of gene delivery: messenger RNA-based therapeutics. Biomater Sci 2018; 5:2381-2392. [PMID: 29063914 DOI: 10.1039/c7bm00712d] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Gene therapy has long been held as having the potential to become a front line treatment for various genetic disorders. However, the direct delivery of nucleic acids to correct a genetic disorder has numerous limitations owing to the inability of naked nucleic acids (DNA and RNA) to traverse the cell membrane. Recently, messenger RNA (mRNA) based delivery has become a more attractive alternative to DNA due to the relatively easier transfection process, higher efficiency and safety profile. As with all gene therapies, the central challenge that remains is the efficient delivery of nucleic acids intracellularly. This review presents the recent progress in mRNA delivery, focusing on comparing the advantages and limitations of non-viral based delivery vectors.
Collapse
Affiliation(s)
- Zhao Meng
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | | | | | | | | | | |
Collapse
|
229
|
Shoukat A, Vilches T, Moghadas SM. Cost-effectiveness of a potential Zika vaccine candidate: a case study for Colombia. BMC Med 2018; 16:100. [PMID: 29966516 PMCID: PMC6029035 DOI: 10.1186/s12916-018-1091-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/04/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND A number of Zika vaccine platforms are currently being investigated, some of which have entered clinical trials. We sought to evaluate the cost-effectiveness of a potential Zika vaccine candidate under the WHO Vaccine Target Product Profile for outbreak response, prioritizing women of reproductive age to prevent microcephaly and other neurological disorders. METHODS Using an agent-based simulation model of ZIKV transmission dynamics in a Colombian population setting, we conducted cost-effectiveness analysis with and without pre-existing herd immunity. The model was parameterized with estimates associated with ZIKV infection, risks of microcephaly in different trimesters, direct medical costs, and vaccination costs. We assumed that a single dose of vaccine provides a protection efficacy in the range 60% to 90% against infection. Cost-effectiveness analysis was conducted from a government perspective. RESULTS Under a favorable scenario when the reproduction number is relatively low (R0 = 2.2) and the relative transmissibility of asymptomatic infection is 10% compared with symptomatic infection, a vaccine is cost-saving (with negative incremental cost-effective ratio; ICER) for vaccination costs up to US$6 per individual without herd immunity, and up to US$4 per individual with 8% herd immunity. For positive ICER values, vaccination is highly cost-effective for vaccination costs up to US$10 (US$7) in the respective scenarios with the willingness-to-pay of US$6610 per disability-adjusted life-year, corresponding to the average per capita GDP of Colombia between 2013 and 2017. Our results indicate that the effect of other control measures targeted to reduce ZIKV transmission decreases the range of vaccination costs for cost-effectiveness due to reduced returns of vaccine-induced herd immunity. In all scenarios investigated, the median reduction of microcephaly exceeded 64% with vaccination. CONCLUSIONS Our study suggests that a Zika vaccine with protection efficacy as low as 60% could significantly reduce the incidence of microcephaly. From a government perspective, Zika vaccination is highly cost-effective, and even cost-saving in Colombia if vaccination costs per individual is sufficiently low. Efficacy data from clinical trials and number of vaccine doses will be important requirements in future studies to refine our estimates, and conduct similar studies in other at-risk populations.
Collapse
Affiliation(s)
- Affan Shoukat
- Agent-Based Modelling Laboratory, York University, Toronto, ON, M3J 1P3, Canada
| | - Thomas Vilches
- Department of Biostatistics, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Seyed M Moghadas
- Agent-Based Modelling Laboratory, York University, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
230
|
Masmejan S, Baud D, Musso D, Panchaud A. Zika virus, vaccines, and antiviral strategies. Expert Rev Anti Infect Ther 2018; 16:471-483. [PMID: 29897831 DOI: 10.1080/14787210.2018.1483239] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Zika virus (ZIKV) recently emerged as a global public health emergency of international concern. ZIKV is responsible for severe neurological complications in adults and infection during pregnancy and can lead to congenital Zika syndrome. There is no licensed vaccine or drug to prevent or treat ZIKV infection. Areas covered: The aim of this article is to provide an overview and update of the progress of research on anti-ZIKV vaccine and medications until the end of 2017, with a special emphasis on drugs that can be used during pregnancy. Expert commentary: Development of new vaccines and drugs is challenging and several points particular to ZIKV infections augment this difficulty: (1) Cross-reactions between ZIKV and other flaviviruses, the impact of ZIKV vaccination on subsequent flavivirus infections, and vice-versa, is unknown, (2) Drugs against ZIKV should be safe in pregnant women, and (3) Evaluation of the efficacy of vaccine and drugs against ZIKV in clinical trials phase II-IV will be complicated due to the decline of ZIKV circulation.
Collapse
Affiliation(s)
- Sophie Masmejan
- a Obstetrics unit, mother-child department , Lausanne University Hospital , Lausanne , Switzerland
| | - David Baud
- a Obstetrics unit, mother-child department , Lausanne University Hospital , Lausanne , Switzerland
| | - Didier Musso
- b Director of the Unit of Emerging Infectious Diseases , Institut Louis Malardé , Tahiti , French Polynesia.,c Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, IHU-Méditerranée Infection , Marseille , France
| | - Alice Panchaud
- d School of Pharmaceutical Sciences , University of Geneva and Lausanne , Geneva , Switzerland.,e Swiss Teratogen Information Service (STIS) and Division of Clinical Pharmacology, Laboratory Department , University Hospital , Lausanne , Switzerland.,f Pharmacy Service, Laboratory Department , University Hospital Lausanne , Lausanne , Switzerland
| |
Collapse
|
231
|
López-Camacho C, Abbink P, Larocca RA, Dejnirattisai W, Boyd M, Badamchi-Zadeh A, Wallace ZR, Doig J, Velazquez RS, Neto RDL, Coelho DF, Kim YC, Donald CL, Owsianka A, De Lorenzo G, Kohl A, Gilbert SC, Dorrell L, Mongkolsapaya J, Patel AH, Screaton GR, Barouch DH, Hill AVS, Reyes-Sandoval A. Rational Zika vaccine design via the modulation of antigen membrane anchors in chimpanzee adenoviral vectors. Nat Commun 2018; 9:2441. [PMID: 29934593 PMCID: PMC6015009 DOI: 10.1038/s41467-018-04859-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/23/2018] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV) emerged on a global scale and no licensed vaccine ensures long-lasting anti-ZIKV immunity. Here we report the design and comparative evaluation of four replication-deficient chimpanzee adenoviral (ChAdOx1) ZIKV vaccine candidates comprising the addition or deletion of precursor membrane (prM) and envelope, with or without its transmembrane domain (TM). A single, non-adjuvanted vaccination of ChAdOx1 ZIKV vaccines elicits suitable levels of protective responses in mice challenged with ZIKV. ChAdOx1 prME ∆TM encoding prM and envelope without TM provides 100% protection, as well as long-lasting anti-envelope immune responses and no evidence of in vitro antibody-dependent enhancement to dengue virus. Deletion of prM and addition of TM reduces protective efficacy and yields lower anti-envelope responses. Our finding that immunity against ZIKV can be enhanced by modulating antigen membrane anchoring highlights important parameters in the design of viral vectored ZIKV vaccines to support further clinical assessments.
Collapse
Affiliation(s)
- César López-Camacho
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Rafael A Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Wanwisa Dejnirattisai
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith Campus, Imperial College London, London, W12 0NN, UK
| | - Michael Boyd
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Alex Badamchi-Zadeh
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Zoë R Wallace
- Nuffield Department of Medicine and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, OX3 7FZ, UK
| | - Jennifer Doig
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow,, G61 1QH, Scotland, UK
| | - Ricardo Sanchez Velazquez
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow,, G61 1QH, Scotland, UK
| | | | - Danilo F Coelho
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, 50670-465, Recife, Brazil
| | - Young Chan Kim
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Claire L Donald
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow,, G61 1QH, Scotland, UK
| | - Ania Owsianka
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow,, G61 1QH, Scotland, UK
| | - Giuditta De Lorenzo
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow,, G61 1QH, Scotland, UK
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow,, G61 1QH, Scotland, UK
| | - Sarah C Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Lucy Dorrell
- Nuffield Department of Medicine and Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford, OX3 7FZ, UK
| | - Juthathip Mongkolsapaya
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith Campus, Imperial College London, London, W12 0NN, UK
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow,, G61 1QH, Scotland, UK
| | - Gavin R Screaton
- Division of Medical Sciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Adrian V S Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford, OX3 7BN, UK.
| |
Collapse
|
232
|
Coffey LL, Keesler RI, Pesavento PA, Woolard K, Singapuri A, Watanabe J, Cruzen C, Christe KL, Usachenko J, Yee J, Heng VA, Bliss-Moreau E, Reader JR, von Morgenland W, Gibbons AM, Jackson K, Ardeshir A, Heimsath H, Permar S, Senthamaraikannan P, Presicce P, Kallapur SG, Linnen JM, Gao K, Orr R, MacGill T, McClure M, McFarland R, Morrison JH, Van Rompay KKA. Intraamniotic Zika virus inoculation of pregnant rhesus macaques produces fetal neurologic disease. Nat Commun 2018; 9:2414. [PMID: 29925843 PMCID: PMC6010452 DOI: 10.1038/s41467-018-04777-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/10/2018] [Indexed: 01/05/2023] Open
Abstract
Zika virus (ZIKV) infection of pregnant women can cause fetal microcephaly and other neurologic defects. We describe the development of a non-human primate model to better understand fetal pathogenesis. To reliably induce fetal infection at defined times, four pregnant rhesus macaques are inoculated intravenously and intraamniotically with ZIKV at gestational day (GD) 41, 50, 64, or 90, corresponding to first and second trimester of gestation. The GD41-inoculated animal, experiencing fetal death 7 days later, has high virus levels in fetal and placental tissues, implicating ZIKV as cause of death. The other three fetuses are carried to near term and euthanized; while none display gross microcephaly, all show ZIKV RNA in many tissues, especially in the brain, which exhibits calcifications and reduced neural precursor cells. Given that this model consistently recapitulates neurologic defects of human congenital Zika syndrome, it is highly relevant to unravel determinants of fetal neuropathogenesis and to explore interventions.
Collapse
Affiliation(s)
- Lark L Coffey
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.
| | - Rebekah I Keesler
- California National Primate Research Center, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Patricia A Pesavento
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Kevin Woolard
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Anil Singapuri
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Jennifer Watanabe
- California National Primate Research Center, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Christina Cruzen
- California National Primate Research Center, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Kari L Christe
- California National Primate Research Center, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Jodie Usachenko
- California National Primate Research Center, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - JoAnn Yee
- California National Primate Research Center, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Victoria A Heng
- California National Primate Research Center, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.,Donders Institute, Radboud University, Montessorilaan 3, 6525 HR, Nijmegen, The Netherlands
| | - Eliza Bliss-Moreau
- California National Primate Research Center, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.,Department of Psychology, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - J Rachel Reader
- California National Primate Research Center, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Wilhelm von Morgenland
- California National Primate Research Center, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Anne M Gibbons
- California National Primate Research Center, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Kenneth Jackson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Amir Ardeshir
- California National Primate Research Center, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Holly Heimsath
- Duke Human Vaccine Institute, Duke University Medical Center, 103020, 2 Genome Court MSRBII, Durham, NC, 27710, USA
| | - Sallie Permar
- Duke Human Vaccine Institute, Duke University Medical Center, 103020, 2 Genome Court MSRBII, Durham, NC, 27710, USA
| | - Paranthaman Senthamaraikannan
- Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Research Foundation, 3333 Burnet Avenue, Cincinnati, OH, 45229, USA
| | - Pietro Presicce
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA
| | - Suhas G Kallapur
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California, 10833 Le Conte Avenue, Los Angeles, CA, 90095, USA
| | - Jeffrey M Linnen
- Grifols Diagnostic Solutions, Inc., 10808 Willow Court, San Diego, CA, 92127, USA
| | - Kui Gao
- Grifols Diagnostic Solutions, Inc., 10808 Willow Court, San Diego, CA, 92127, USA
| | - Robert Orr
- Office of Counterterrorism and Emerging Threats, Office of the Chief Scientist, Food and Drug Administration, 25 New Hampshire Avenue, Silver Spring, MD, 20903, USA
| | - Tracy MacGill
- Office of Counterterrorism and Emerging Threats, Office of the Chief Scientist, Food and Drug Administration, 25 New Hampshire Avenue, Silver Spring, MD, 20903, USA
| | - Michelle McClure
- Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD, 20903, USA
| | - Richard McFarland
- The Advanced Regenerative Manufacturing Institute, 400 Commercial Street, Manchester, NH, 03101, USA
| | - John H Morrison
- California National Primate Research Center, University of California, 1 Shields Avenue, Davis, CA, 95616, USA
| | - Koen K A Van Rompay
- California National Primate Research Center, University of California, 1 Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
233
|
Species-specific disruption of STING-dependent antiviral cellular defenses by the Zika virus NS2B3 protease. Proc Natl Acad Sci U S A 2018; 115:E6310-E6318. [PMID: 29915078 DOI: 10.1073/pnas.1803406115] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The limited host tropism of numerous viruses causing disease in humans remains incompletely understood. One example is Zika virus (ZIKV), an RNA virus that has reemerged in recent years. Here, we demonstrate that ZIKV efficiently infects fibroblasts from humans, great apes, New and Old World monkeys, but not rodents. ZIKV infection in human-but not murine-cells impairs responses to agonists of the cGMP-AMP synthase/stimulator of IFN genes (cGAS/STING) signaling pathway, suggesting that viral mechanisms to evade antiviral defenses are less effective in rodent cells. Indeed, human, but not mouse, STING is subject to cleavage by proteases encoded by ZIKV, dengue virus, West Nile virus, and Japanese encephalitis virus, but not that of yellow fever virus. The protease cleavage site, located between positions 78/79 of human STING, is only partially conserved in nonhuman primates and rodents, rendering these orthologs resistant to degradation. Genetic disruption of STING increases the susceptibility of mouse-but not human-cells to ZIKV. Accordingly, expression of only mouse, not human, STING in murine STING knockout cells rescues the ZIKV suppression phenotype. STING-deficient mice, however, did not exhibit increased susceptibility, suggesting that other redundant antiviral pathways control ZIKV infection in vivo. Collectively, our data demonstrate that numerous RNA viruses evade cGAS/STING-dependent signaling and affirm the importance of this pathway in shaping the host range of ZIKV. Furthermore, our results explain-at least in part-the decreased permissivity of rodent cells to ZIKV, which could aid in the development of mice model with inheritable susceptibility to ZIKV and other flaviviruses.
Collapse
|
234
|
Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation. NPJ Vaccines 2018; 3:24. [PMID: 29900012 PMCID: PMC5995964 DOI: 10.1038/s41541-018-0061-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/24/2018] [Accepted: 05/04/2018] [Indexed: 01/07/2023] Open
Abstract
Zika virus (ZIKV), a mosquito-borne flavivirus, was first identified in the 1940s in Uganda in Africa and emerged in the Americas in Brazil in May 2015. In the 30 months since ZIKV emerged as a major public health problem, spectacular progress has been made with vaccine development cumulating with the publication of three reports of phase 1 clinical trials in the 4th quarter of 2017. Clinical trials involving candidate DNA and purified inactivated virus vaccines showed all were safe and well-tolerated in the small number of volunteers and all induced neutralizing antibodies, although these varied by vaccine candidate and dosing regimen. These results suggest that a Zika vaccine can be developed and that phase 2 clinical trials are warranted. However, it is difficult to compare the results from the different phase 1 studies or with neutralizing antibodies induced by licensed flavivirus vaccines (Japanese encephalitis, tick-borne encephalitis, and yellow fever) as neutralizing antibody assays vary and, unfortunately, there are no standards for Zika virus neutralizing antibodies. In addition to clinical studies, substantial progress continues to be made in nonclinical development, particularly in terms of the ability of candidate vaccines to protect reproductive tissues, and the potential use of monoclonal antibodies for passive prophylaxis.
Collapse
|
235
|
Kim DTH, Bao DT, Park H, Ngoc NM, Yeo SJ. Development of a novel peptide aptamer-based immunoassay to detect Zika virus in serum and urine. Am J Cancer Res 2018; 8:3629-3642. [PMID: 30026871 PMCID: PMC6037026 DOI: 10.7150/thno.25955] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
Zika virus (ZIKV) has been identified as a cause of adverse outcomes of pregnancy, including microcephaly and other congenital diseases. Most people infected with ZIKV do not show any symptoms. Development of a method to discriminate dengue virus (DENV) and ZIKV infections has been challenging, and efficient assays for patient management are limited, attributable to high levels of cross-reactivity among co-circulating Flaviviruses. Thus, there is an urgent need for a specific high-throughput diagnostic assay to discriminate ZIKV infections from other Flavivirus infections. Methods: A novel epitope peptide of the ZIKV envelope protein was predicted using three immune epitope database analysis tools and then further modified. A molecular docking study was conducted using three-dimensional structures of the ZIKV envelope and peptide. Experimentally, interactions between the selected peptides and virus were assessed via a fluorescence-linked sandwich immunosorbent assay (FLISA), and performance of peptide-linked sandwich FLISA was evaluated in virus-spiked human serum and urine. Results: The Z_10.8 peptide (KRAVVSCAEA) was predicted to be a suitable detector, with a higher binding affinity than other candidates based on four criteria (binding affinity, root mean square deviation, position of amine residue of lysine at the N-terminus, and interactive site) in a docking study. Z_10.8 was significantly more efficient at detecting ZIKV than the other two peptides, as shown in the direct FLISA (P < 0.001). Further, the equilibrium dissociation constant (Kd) for the Z_10.8 peptide was 706.0 ± 177.9 (mean ± SD, nM), with specificity to discriminate ZIKV from DENV. The limit of detection for the sandwich FLISA was calculated as 1×104 tissue culture infective dose (TCID)50/mL. The presence of serum or urine did not interfere with the performance of the Z_10.8-linked sandwich FLISA. Conclusion: Four criteria are suggested for the development of an in silico modeled peptide aptamer; this computerized peptide aptamer discriminated ZIKV from DENV via immunoassay.
Collapse
|
236
|
Wilder-Smith A, Vannice K, Durbin A, Hombach J, Thomas SJ, Thevarjan I, Simmons CP. Zika vaccines and therapeutics: landscape analysis and challenges ahead. BMC Med 2018; 16:84. [PMID: 29871628 PMCID: PMC5989336 DOI: 10.1186/s12916-018-1067-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 05/01/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Various Zika virus (ZIKV) vaccine candidates are currently in development. Nevertheless, unique challenges in clinical development and regulatory pathways may hinder the licensure of high-quality, safe, and effective ZIKV vaccines. DISCUSSION Implementing phase 3 efficacy trials will be difficult given the challenges of the spatio-temporal heterogeneity of ZIKV transmission, the unpredictability of ZIKV epidemics, the broad spectrum of clinical manifestations making a single definite endpoint difficult, a lack of sensitive and specific diagnostic assays, and the need for inclusion of vulnerable target populations. In addition to a vaccine, drugs for primary prophylaxis, post-exposure prophylaxis, or treatment should also be developed to prevent or mitigate the severity of congenital Zika syndrome. CONCLUSION Establishing the feasibility of immune correlates and/or surrogates are a priority. Given the challenges in conducting phase 3 trials at a time of waning incidence, human challenge trials should be considered to evaluate efficacy. Continued financial support and engagement of industry partners will be essential to the successful development, licensure, and accessibility of Zika vaccines or therapeutics.
Collapse
Affiliation(s)
- Annelies Wilder-Smith
- Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland. .,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. .,Department of Epidemiology and Global Health, Umea University, Umea, Sweden.
| | - Kirsten Vannice
- Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | - Anna Durbin
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joachim Hombach
- Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | - Stephen J Thomas
- State University of New York, Upstate Medical University, Syracuse, NY, USA
| | - Irani Thevarjan
- Doherty Institute for Infection and Immunity, Parkville, VIC, 3010, Australia.,The Royal Melbourne Hospital, Parkville, VIC, 3010, Australia
| | - Cameron P Simmons
- Oxford University Clinical Research Unit, 764 Vo Van Kiet street, District 5, Ho Chi Minh City, Vietnam.,Institute of Vector-borne Disease, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
237
|
Abbink P, Larocca RA, Dejnirattisai W, Peterson R, Nkolola JP, Borducchi EN, Supasa P, Mongkolsapaya J, Screaton GR, Barouch DH. Therapeutic and protective efficacy of a dengue antibody against Zika infection in rhesus monkeys. Nat Med 2018; 24:721-723. [PMID: 29867228 PMCID: PMC5992501 DOI: 10.1038/s41591-018-0056-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 03/29/2018] [Indexed: 11/08/2022]
Abstract
Strategies to treat Zika virus (ZIKV) infection in dengue virus (DENV)-endemic areas are urgently needed. Here we show that a DENV-specific antibody against the E-dimer epitope (EDE) potently cross-neutralizes ZIKV and provides robust therapeutic efficacy as well as prophylactic efficacy against ZIKV in rhesus monkeys. Viral escape was not detected, suggesting a relatively high bar to escape. These data demonstrate the potential for antibody-based therapy and prevention of ZIKV.
Collapse
Affiliation(s)
- Peter Abbink
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Rafael A Larocca
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Wanwisa Dejnirattisai
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith Campus, Imperial College, London, UK
| | - Rebecca Peterson
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Joseph P Nkolola
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Erica N Borducchi
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Piyada Supasa
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith Campus, Imperial College, London, UK
| | - Juthathip Mongkolsapaya
- Division of Immunology and Inflammation, Department of Medicine, Hammersmith Campus, Imperial College, London, UK
- Dengue Hemorrhagic Fever Research Unit, Office for Research and Development, Siriraj Hospital, Faculty of Medicine, Mahidol Univeristy, Bangkok, Thailand
| | - Gavin R Screaton
- Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA.
| |
Collapse
|
238
|
Abstract
Humans have a close phylogenetic relationship with nonhuman primates (NHPs) and share many physiological parallels, such as highly similar immune systems, with them. Importantly, NHPs can be infected with many human or related simian viruses. In many cases, viruses replicate in the same cell types as in humans, and infections are often associated with the same pathologies. In addition, many reagents that are used to study the human immune response cross-react with NHP molecules. As such, NHPs are often used as models to study viral vaccine efficacy and antiviral therapeutic safety and efficacy and to understand aspects of viral pathogenesis. With several emerging viral infections becoming epidemic, NHPs are proving to be a very beneficial benchmark for investigating human viral infections.
Collapse
Affiliation(s)
- Jacob D Estes
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, USA
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
| | - Scott W Wong
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, USA
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA.
| |
Collapse
|
239
|
Koppolu V, Shantha Raju T. Zika virus outbreak: a review of neurological complications, diagnosis, and treatment options. J Neurovirol 2018; 24:255-272. [PMID: 29441490 DOI: 10.1007/s13365-018-0614-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
Zika virus (ZIKV) is an arbovirus transmitted mainly by mosquitos of Aedes species. The virus has emerged in recent years and spread throughout North and South Americas. The recent outbreak of ZIKV started in Brazil (2015) has resulted in infections surpassing a million mark. Contrary to the previous beliefs that Zika causes mildly symptomatic infections fever, headache, rash, arthralgia, and conjunctivitis, the recent outbreak associated ZIKV to serious neurological complications such as microcephaly, Guillain-Barré syndrome, and eye infections. The recent outbreak has resulted in an astonishing number of microcephaly cases in fetus and infants. Consequently, numerous studies were conducted using in vitro cell and in vivo animal models. These studies showed clear links between ZIKV infections and neurological abnormalities. Diagnosis methods based on nucleic acid and serological detection facilitated rapid and accurate identification of ZIKV infections. New transmission modalities such as sexual and transplacental transmission were uncovered. Given the seriousness of ZIKV infections, WHO declared the development of safe and effective vaccines and new antiviral drugs as an urgent global health priority. Rapid work in this direction has led to the identification of several vaccine and antiviral drug candidates. Here, we review the remarkable progress made in understanding the molecular links between ZIKV infections and neurological irregularities, new diagnosis methods, potential targets for antiviral drugs, and the current state of vaccine development.
Collapse
Affiliation(s)
- Veerendra Koppolu
- Global Bioassay Development and Quality, Biopharmaceutical Development, MedImmune, Gaithersburg, MD, USA
| | - T Shantha Raju
- Global Bioassay Development and Quality, Biopharmaceutical Development, MedImmune, Gaithersburg, MD, USA.
| |
Collapse
|
240
|
Dai S, Zhang T, Zhang Y, Wang H, Deng F. Zika Virus Baculovirus-Expressed Virus-Like Particles Induce Neutralizing Antibodies in Mice. Virol Sin 2018; 33:213-226. [PMID: 29774519 PMCID: PMC6013542 DOI: 10.1007/s12250-018-0030-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 03/30/2018] [Indexed: 12/30/2022] Open
Abstract
The newly emerged mosquito-borne Zika virus (ZIKV) strains pose a global challenge owing to its ability to cause microcephaly and neurological disorders. Several ZIKV vaccine candidates have been proposed, including inactivated and live attenuated virus vaccines, vector-based vaccines, DNA and RNA vaccines. These have been shown to be efficacious in preclinical studies in mice and nonhuman primates, but their use will potentially be a threat to immunocompromised individuals and pregnant women. Virus-like particles (VLPs) are empty particles composed merely of viral proteins, which can serve as a safe and valuable tool for clinical prevention and treatment strategies. In this study, we used a new strategy to produce ZIKV VLPs based on the baculovirus expression system and demonstrated the feasibility of their use as a vaccine candidate. The pre-membrane (prM) and envelope (E) proteins were co-expressed in insect cells and self-assembled into particles similar to ZIKV. We found that the ZIKV VLPs could be quickly and easily prepared in large quantities using this system. The VLPs were shown to have good immunogenicity in immunized mice, as they stimulated high levels of virus neutralizing antibody titers, ZIKV-specific IgG titers and potent memory T cell responses. Thus, the baculovirus-based ZIKV VLP vaccine is a safe, effective and economical vaccine candidate for use against ZIKV.
Collapse
Affiliation(s)
- Shiyu Dai
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Tao Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanfang Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| |
Collapse
|
241
|
Depoux A, Philibert A, Rabier S, Philippe HJ, Fontanet A, Flahault A. A multi-faceted pandemic: a review of the state of knowledge on the Zika virus. Public Health Rev 2018; 39:10. [PMID: 29785319 PMCID: PMC5952415 DOI: 10.1186/s40985-018-0087-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 02/13/2018] [Indexed: 01/02/2023] Open
Abstract
While until recently the small and isolated Zika outbreaks in Eastern Asia and Pacific islands had been overlooked, the large-scale outbreak that started in Brazil in 2015 and the increase of microcephaly cases in the same place and time made media headlines. Considered as harmless until recently, Zika has given rise to an important global crisis that poses not only health challenges but also environmental, economical, social, and ethical challenges for states and people around the world. The main objective of this paper is to review the recent Zika outbreak by covering a broad range of disciplines and their interactions. This paper synthetises experts’ interviews and reactions conducted during a Massive Open Online Course (MOOC) entitled “In the footsteps of Zika…approaching the unknown.” It reviews knowledge and uncertainties around epidemiology, geographical dispersion of the virus and its vectors through globalization and climate change, and also its modes of transmission, diagnosis, symptoms, and treatment of the disease. The resulting societal and ethical issues in pregnancy and women of reproductive age were also addressed as well as the global outbreak alert and response network in international organizations and social media. This paper attempted to combine each piece of the jigsaw puzzle of the Zika phenomenon to complete the best realistic picture, while keeping in mind the balance between the interdisciplinary nature and international context of Zika and its unique characteristics.
Collapse
Affiliation(s)
- Anneliese Depoux
- 1Centre Virchow-Villermé, Université Sorbonne Paris Cité, Paris, France.,2GRIPIC, EA 1498, Université Paris Sorbonne - CELSA, Paris, France
| | - Aline Philibert
- 1Centre Virchow-Villermé, Université Sorbonne Paris Cité, Paris, France.,3Interdisciplinary Research Centre on Well-being, Health, Society and Environment (Cinbiose), Université du Québec à Montréal, Montreal, Québec Canada
| | - Serge Rabier
- 1Centre Virchow-Villermé, Université Sorbonne Paris Cité, Paris, France
| | - Henri-Jean Philippe
- 4Faculté de Médecine, Université Paris Descartes, Paris, France.,5Service de Chirurgie Générale, Plastique et Ambulatoire, AP-HP, HUPC, Hôpital Cochin, Paris, France
| | - Arnaud Fontanet
- 6Unité PACRI, Conservatoire National des Arts et Métiers, Paris, France.,7Institut Pasteur, Emerging Diseases Epidemiology Unit, Paris, France
| | - Antoine Flahault
- 1Centre Virchow-Villermé, Université Sorbonne Paris Cité, Paris, France.,8Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
242
|
Wang R, Liao X, Fan D, Wang L, Song J, Feng K, Li M, Wang P, Chen H, An J. Maternal immunization with a DNA vaccine candidate elicits specific passive protection against post-natal Zika virus infection in immunocompetent BALB/c mice. Vaccine 2018; 36:3522-3532. [PMID: 29753607 DOI: 10.1016/j.vaccine.2018.04.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022]
Abstract
Zika virus (ZIKV) infection is closely associated in the fetus with microcephaly and in the adults with Guillain-Barré syndrome and even male infertility. It is an urgent international priority to develop a safe and effective vaccine that offers protection to both women of childbearing age and their children. In this study, female immunocompetent BALB/c mice were immunized with a DNA-based vaccine candidate, pVAX1-ZME, expressing the prM/E protein of ZIKV, and the immunogenicity for maternal mice and the post-natal protection for suckling mice were evaluated. It was found that administration with three doses of 50 μg pVAX1-ZME via in vivo electroporation induced robust ZIKV-specific cellular and long-term humoral immune responses with high and sustained neutralizing activity in adult mice. Moreover, using a maternal immunization protocol, neutralizing antibodies provided specific passive protection against ZIKV infection in neonatal mice and effectively inhibited the growth delay. This vaccine candidate is expected to be further evaluated in higher animals, and maternal vaccination shows great promise for protecting both women of childbearing age and their offspring against post-natal ZIKV infection. The vaccinated mothers and ZIKV-challenged pups provide key insight into Zika vaccine evaluation in an available fully immunocompetent animal model.
Collapse
Affiliation(s)
- Ran Wang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing 100069, PR China
| | - Xianzheng Liao
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing 100069, PR China
| | - Dongying Fan
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing 100069, PR China
| | - Lei Wang
- Faculty of Pathogenic Biology and Immunology, Department of Basic Medical Sciences, Cangzhou Medical College, Cangzhou 061001, Hebei Province, PR China
| | - Ji Song
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing 100069, PR China
| | - Kaihao Feng
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing 100069, PR China
| | - Mingyuan Li
- HKU Pasteur Research Pole, School of Public Health, LKS Faculty of Medicine, University of Hong Kong, Hong Kong, PR China
| | - Peigang Wang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing 100069, PR China
| | - Hui Chen
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing 100069, PR China.
| | - Jing An
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Chinese Capital Medical University, Beijing 100069, PR China; Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100069, PR China.
| |
Collapse
|
243
|
Rayner JO, Kalkeri R, Goebel S, Cai Z, Green B, Lin S, Snyder B, Hagelin K, Walters KB, Koide F. Comparative Pathogenesis of Asian and African-Lineage Zika Virus in Indian Rhesus Macaque's and Development of a Non-Human Primate Model Suitable for the Evaluation of New Drugs and Vaccines. Viruses 2018; 10:E229. [PMID: 29723973 PMCID: PMC5977222 DOI: 10.3390/v10050229] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 11/24/2022] Open
Abstract
The establishment of a well characterized non-human primate model of Zika virus (ZIKV) infection is critical for the development of medical interventions. In this study, challenging Indian rhesus macaques (IRMs) with ZIKV strains of the Asian lineage resulted in dose-dependent peak viral loads between days 2 and 5 post infection and a robust immune response which protected the animals from homologous and heterologous re-challenge. In contrast, viremia in IRMs challenged with an African lineage strain was below the assay’s lower limit of quantitation, and the immune response was insufficient to protect from re-challenge. These results corroborate previous observations but are contrary to reports using other African strains, obviating the need for additional studies to elucidate the variables contributing to the disparities. Nonetheless, the utility of an Asian lineage ZIKV IRM model for countermeasure development was verified by vaccinating animals with a formalin inactivated reference vaccine and demonstrating sterilizing immunity against a subsequent subcutaneous challenge.
Collapse
Affiliation(s)
- Jonathan O Rayner
- Department of Infectious Disease Research, Southern Research Institute, Birmingham, AL 35205, USA.
- Department of Microbiology and Immunology, University of South Alabama, Mobile, AL 36688, USA.
| | - Raj Kalkeri
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701, USA.
| | - Scott Goebel
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701, USA.
| | - Zhaohui Cai
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701, USA.
| | - Brian Green
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701, USA.
| | - Shuling Lin
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701, USA.
| | - Beth Snyder
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701, USA.
| | - Kimberly Hagelin
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701, USA.
| | - Kevin B Walters
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701, USA.
| | - Fusataka Koide
- Department of Infectious Disease Research, Southern Research Institute, Frederick, MD 21701, USA.
| |
Collapse
|
244
|
Li G, Che MT, Zeng X, Qiu XC, Feng B, Lai BQ, Shen HY, Ling EA, Zeng YS. Neurotrophin-3 released from implant of tissue-engineered fibroin scaffolds inhibits inflammation, enhances nerve fiber regeneration, and improves motor function in canine spinal cord injury. J Biomed Mater Res A 2018; 106:2158-2170. [PMID: 29577604 PMCID: PMC6055812 DOI: 10.1002/jbm.a.36414] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/03/2018] [Accepted: 03/21/2018] [Indexed: 01/12/2023]
Abstract
Spinal cord injury (SCI) normally results in cell death, scarring, cavitation, inhibitory molecules release, etc., which are regarded as a huge obstacle to reconnect the injured neuronal circuits because of the lack of effective stimulus. In this study, a functional gelatin sponge scaffold was used to inhibit local inflammation, enhance nerve fiber regeneration, and improve neural conduction in the canine. This scaffold had good porosity and modified with neurotrophin‐3 (NT‐3)/fibroin complex, which showed sustained release in vitro. After the scaffold was transplanted into canine spinal cord hemisection model, hindlimb movement, and neural conduction were improved evidently. Migrating host cells, newly formed neurons with associated synaptic structures together with functional blood vessels with intact endothelium in the regenerating tissue were identified. Taken together, the results demonstrated that using bioactive scaffold could establish effective microenvironment stimuli for endogenous regeneration, providing a potential and practical strategy for treatment of spinal cord injury. © 2018 The Authors Journal of Biomedical Materials Research Part A Published by Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2158‐2170, 2018.
Collapse
Affiliation(s)
- Ge Li
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ming-Tian Che
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Xue-Cheng Qiu
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Bo Feng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Bi-Qin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China
| | - Hui-Yong Shen
- Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - Yuan-Shan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.,Institute of Spinal Cord Injury, Sun Yat-sen University, Guangzhou, 510120, China.,Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
245
|
Can Broadly Neutralizing Monoclonal Antibodies Lead to a Hepatitis C Virus Vaccine? Trends Microbiol 2018; 26:854-864. [PMID: 29703495 DOI: 10.1016/j.tim.2018.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/09/2018] [Accepted: 04/02/2018] [Indexed: 12/20/2022]
Abstract
While licensed vaccines elicit protective antibody responses against a variety of viral infections, an effective vaccine for hepatitis C virus (HCV) has remained elusive. The extraordinary genetic diversity of HCV and the ability of the virus to evade the immune response have hindered vaccine development efforts. However, recent studies have greatly expanded the number of well characterized broadly neutralizing human monoclonal antibodies (bNAbs) against HCV. These bNAbs target relatively conserved HCV epitopes, prevent HCV infection in animal models, and are associated with spontaneous clearance of human HCV infection. In this review, recent high-resolution bNAb epitope mapping and structural analysis of bNAb-epitope complexes that may serve as a guide for vaccine development are discussed along with major obstacles.
Collapse
|
246
|
Vielot NA, Stamm L, Herrington J, Squiers L, Kelly B, McCormack L, Becker-Dreps S. United States Travelers' Concern about Zika Infection and Willingness to Receive a Hypothetical Zika Vaccine. Am J Trop Med Hyg 2018; 98:1848-1856. [PMID: 29692314 PMCID: PMC6086173 DOI: 10.4269/ajtmh.17-0907] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ongoing Zika pandemic has affected many countries that are common travel destinations. We assessed the willingness to receive a prophylactic Zika virus (ZIKV) vaccine, currently under development, among travelers to areas with reported autochthonous ZIKV transmission. We surveyed United States (U.S.) residents aged 18–44 years who had ever heard of ZIKV and planned to travel to Florida and/or Texas (N = 420) or a U.S. territory or foreign country (N = 415) in 2017, using a nationally representative internet panel. Travelers to Florida and/or Texas reported less concern about ZIKV infection than travelers to other destinations (27% versus 36%, P = 0.01). Female sex, Hispanic ethnicity, discussing ZIKV with medical professionals, ZIKV risk perception, and self-efficacy for ZIKV prevention predicted concern about ZIKV infection in both groups. Travelers to Florida and/or Texas (43%) and other destinations (44%) were equally willing to receive a ZIKV vaccine. Hispanic ethnicity, discussing ZIKV with medical professionals, and concern about ZIKV infection predicted vaccine willingness in both groups. Likelihood of using existing ZIKV prevention methods, confidence in the U.S. government to prevent ZIKV spread, self-efficacy for ZIKV prevention, and knowledge about ZIKV symptoms further predicted vaccine willingness in travelers to other destinations. In multivariable analyses, only concern about ZIKV infection was associated with vaccine willingness in both groups (prevalence ratio [95% confidence interval]: Florida and/or Texas: 1.34 [1.06, 1.69]; other: 1.82 [1.44, 2.29]). Targeted communications can educate travelers, particularly travelers who are pregnant or may become pregnant, about ZIKV risk to generate ZIKV vaccine demand.
Collapse
Affiliation(s)
- Nadja A Vielot
- Department of Family Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Lola Stamm
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James Herrington
- Department of Health Behavior, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Linda Squiers
- RTI International, Research Triangle Park, North Carolina
| | - Bridget Kelly
- RTI International, Research Triangle Park, North Carolina
| | | | - Sylvia Becker-Dreps
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Department of Family Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
247
|
Stassen L, Armitage CW, van der Heide DJ, Beagley KW, Frentiu FD. Zika Virus in the Male Reproductive Tract. Viruses 2018; 10:v10040198. [PMID: 29659541 PMCID: PMC5923492 DOI: 10.3390/v10040198] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) are resurging across the globe. Zika virus (ZIKV) has caused significant concern in recent years because it can lead to congenital malformations in babies and Guillain-Barré syndrome in adults. Unlike other arboviruses, ZIKV can be sexually transmitted and may persist in the male reproductive tract. There is limited information regarding the impact of ZIKV on male reproductive health and fertility. Understanding the mechanisms that underlie persistent ZIKV infections in men is critical to developing effective vaccines and therapies. Mouse and macaque models have begun to unravel the pathogenesis of ZIKV infection in the male reproductive tract, with the testes and prostate gland implicated as potential reservoirs for persistent ZIKV infection. Here, we summarize current knowledge regarding the pathogenesis of ZIKV in the male reproductive tract, the development of animal models to study ZIKV infection at this site, and prospects for vaccines and therapeutics against persistent ZIKV infection.
Collapse
Affiliation(s)
- Liesel Stassen
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane 4006, Queensland, Australia.
| | - Charles W Armitage
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane 4006, Queensland, Australia.
| | - David J van der Heide
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane 4006, Queensland, Australia.
| | - Kenneth W Beagley
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane 4006, Queensland, Australia.
| | - Francesca D Frentiu
- Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Brisbane 4006, Queensland, Australia.
| |
Collapse
|
248
|
Qu P, Zhang W, Li D, Zhang C, Liu Q, Zhang X, Wang X, Dai W, Xu Y, Leng Q, Zhong J, Jin X, Huang Z. Insect cell-produced recombinant protein subunit vaccines protect against Zika virus infection. Antiviral Res 2018; 154:97-103. [PMID: 29665376 DOI: 10.1016/j.antiviral.2018.04.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/29/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
Infection with Zika virus (ZIKV) may lead to severe neurologic disorders. It is of significant importance and urgency to develop safe and effective vaccines to prevent ZIKV infection. Here we report the development of ZIKV subunit vaccines based on insect cell-produced recombinant proteins. The N-terminal approximately 80% region (designated as E80) and the domain III (designated as EDIII) of ZIKV envelope (E) protein were efficiently produced as secreted proteins in a Drosophila S2 cell expression system. Both E80 and EDIII could inhibit ZIKV infection in vitro, suggesting that they may have folded properly to display native conformations. Immunization studies demonstrated that both E80 and EDIII vaccines were able to trigger antigen-specific antibody and T-cell responses in mice. The resulting anti-E80 and anti-EDIII sera could potently neutralize ZIKV infection in vitro. More importantly, passive transfer of either anti-E80 or anti-EDIII sera protected recipient mice against lethal ZIKV challenge. It is worth noting that the anti-EDIII sera possessed higher neutralizing titers and conferred more complete protection than the anti-E80 sera, indicating that the S2 cell-produced EDIII is a superior ZIKV vaccine candidate compared with the E80. These data support further preclinical and clinical development of a ZIKV subunit vaccine based on S2 cell-produced EDIII.
Collapse
Affiliation(s)
- Panke Qu
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wei Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Dapeng Li
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chao Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qingwei Liu
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueyang Zhang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuesong Wang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenlong Dai
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yongfen Xu
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Qibin Leng
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xia Jin
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| | - Zhong Huang
- CAS Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
249
|
He M, Zhang H, Li Y, Wang G, Tang B, Zhao J, Huang Y, Zheng J. Cathelicidin-Derived Antimicrobial Peptides Inhibit Zika Virus Through Direct Inactivation and Interferon Pathway. Front Immunol 2018; 9:722. [PMID: 29706959 PMCID: PMC5906549 DOI: 10.3389/fimmu.2018.00722] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/23/2018] [Indexed: 01/16/2023] Open
Abstract
Zika virus (ZIKV) is a neurotrophic flavivirus that is able to infect pregnant women and cause fetal brain abnormalities. Although there is a significant effort in identifying anti-ZIKV strategies, currently no vaccines or specific therapies are available to treat ZIKV infection. Antimicrobial peptides, which are potent host defense molecules in nearly all forms of life, have been found to be effective against several types of viruses such as HIV-1 and influenza A. However, they have not been tested in ZIKV infection. To determine whether antimicrobial peptides have anti-ZIKV effects, we used nine peptides mostly derived from human and bovine cathelicidins. Two peptides, GF-17 and BMAP-18, were found to have strong anti-ZIKV activities and little toxicity at 10 µM in an African green monkey kidney cell line. We further tested GF-17 and BMAP-18 in human fetal astrocytes, a known susceptible cell type for ZIKV, and found that GF-17 and BMAP-18 effectively inhibited ZIKV regardless of whether peptides were added before or after ZIKV infection. Interestingly, inhibition of type-I interferon signaling resulted in higher levels of ZIKV infection as measured by viral RNA production and partially reversed GF-17-mediated viral inhibition. More importantly, pretreatment with GF-17 and BMAP-18 did not affect viral attachment but reduced viral RNA early in the infection course. Direct incubation with GF-17 for 1 to 4 h specifically reduced the number of infectious Zika virions in the inoculum. In conclusion, these findings suggest that cathelicidin-derived antimicrobial peptides inhibit ZIKV through direct inactivation of the virus and via the interferon pathway. Strategies that harness antimicrobial peptides might be useful in halting ZIKV infection.
Collapse
Affiliation(s)
- Miao He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hainan Zhang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yuju Li
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jeffrey Zhao
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yunlong Huang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Jialin Zheng
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
250
|
Martins MA, Watkins DI. What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans? Rigorous Simian Immunodeficiency Virus Vaccine Trials Can Be Instructive. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029504. [PMID: 28348034 DOI: 10.1101/cshperspect.a029504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Simian immunodeficiency virus (SIV) challenge of rhesus macaques provides an invaluable tool to evaluate the clinical prospects of HIV-1 vaccine concepts. However, as with any animal model of human disease, it is crucial to understand the advantages and limitations of this system to maximize the translational value of SIV vaccine studies. Here, we discuss the importance of assessing the efficacy of vaccine prototypes using stringent SIV challenge regimens that mimic HIV-1 transmission and pathogenesis. We also review some of the cautionary tales of HIV-1 vaccine research because they provide general lessons for the preclinical assessment of vaccine candidates.
Collapse
Affiliation(s)
| | - David I Watkins
- Department of Pathology, University of Miami, Miami, Florida 33136
| |
Collapse
|