201
|
Anand V, Pandey A. Unlocking the potential of SiO 2 and CeO 2 nanoparticles for arsenic mitigation in Vigna mungo L. Hepper (Blackgram). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:34473-34491. [PMID: 38704781 DOI: 10.1007/s11356-024-33531-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/27/2024] [Indexed: 05/07/2024]
Abstract
In this study, the interaction effects of NaAsO2 (1 and 5 μM), SiO2 NPs (10 and 100 mg/L) and CeO2 NPs (10 and 100 mg/L) were assessed in Vigna mungo (Blackgram). The treatment of NaAsO2, SiO2, CeO2-NPs and combinations of NPs & As were applied to blackgram plants under hydroponic conditions. After its application, the morpho-physiological, antioxidant activity, and phytochemical study were evaluated. At 10 and 100 mg/L of SiO2 and CeO2-NPs, there was an increase in antioxidative enzymatic activity (p < 0.05) and reactive oxygen species (ROS). However, substantial ROS accumulation was observed at 1 and 5 μM NaAsO2 and 100 mg/L SiO2 NPs (p < 0.05). Additionally, at such concentrations, there is a substantial reduction in photosynthetic pigments, nitrogen fixation, chlorosis, and plant development when compared to controls (p < 0.05). The combination of SiO2 and CeO2 NPs (10 and 100 mg/L) with NaAsO2 decreased superoxide radical and hydrogen peroxide and improved SOD, CAT, APX, GR, and chlorophyll pigments (p < 0.05). Further FTIR results were evaluated for documenting elemental and phytochemical analysis.
Collapse
Affiliation(s)
- Vandita Anand
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, India
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology (MNNIT) Allahabad, Prayagraj, 211004, India.
| |
Collapse
|
202
|
Liu Y, Zhu FM, Xu J, Deng YP, Sun J, He QY, Cheng ZY, Tang MM, Yang J, Fu L, Zhao H. Arsenic exposure and pulmonary function decline: Potential mediating role of TRAIL in chronic obstructive pulmonary disease patients. J Trace Elem Med Biol 2024; 83:127415. [PMID: 38377659 DOI: 10.1016/j.jtemb.2024.127415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Environmental arsenic (As) exposure is strongly related to the progression of chronic obstructive pulmonary disease (COPD). Pulmonary epithelial cells apoptosis is implicated in the pathophysiological mechanisms of COPD. However, the role of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), one biomarker of apoptosis, remains unclear in As-mediated pulmonary function alternations in COPD patients. METHODS This study included 239 COPD patients. The serum level of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) was measured by enzyme-linked immunosorbent assay (ELISA). The blood As level was determined through inductively coupled plasma mass spectrometry (ICP-MS). RESULTS Blood As levels exhibited a negative and dose-dependent correlation with pulmonary function. Per unit elevation of blood arsenic concentrations was related to reductions of 0.339 L in FEV1, 0.311 L in FVC, 1.171% in FEV1/FVC%, and 7.999% in FEV1% in COPD subjects. Additionally, a positive dose-response correlation of blood As with serum TRAIL was found in COPD subjects. Additionally, the level of serum TRAIL was negatively linked to lung function. Elevated TRAIL significantly mediated As-induced decreases of 11.05%, 13.35%, and 31.78% in FVC, FEV1, and FEV1%, respectively among the COPD patients. CONCLUSION Blood As level is positively correlated with pulmonary function decline and serum TRAIL increase in individuals with COPD. Our findings suggest that elevated TRAIL levels may serve as a mediating mechanism through which As contributes to declining lung function in COPD patients.
Collapse
Affiliation(s)
- Ying Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Center for Big Data and Population Health of IHM, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Feng-Min Zhu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Juan Xu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - You-Peng Deng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Jing Sun
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Qi-Yuan He
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Zhen-Yu Cheng
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Min-Min Tang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Jin Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Lin Fu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Hui Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China; Center for Big Data and Population Health of IHM, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China.
| |
Collapse
|
203
|
Li Y, Liu J, Yao D, Guo Z, Jiang X, Zhang C, Qu L, Liu Y, Hu Y, Gao L, Wang Y, Xu Y. Elevated aerobic glycolysis driven by p62-mTOR axis promotes arsenic-induced oncogenic phenotypes in human mammary epithelial cells. Arch Toxicol 2024; 98:1369-1381. [PMID: 38485781 DOI: 10.1007/s00204-024-03709-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/15/2024] [Indexed: 03/27/2024]
Abstract
Chronic arsenic exposure is considered to increase the risk of breast cancer. p62 is a multifunctional adaptor protein that controls myriad cellular processes and is overexpressed in breast cancer tissues. Although previous studies have indicated the involvement of p62 accumulation in arsenic tumorigenesis, the underlying mechanism remains obscure. Here, we found that 0.1 µM or 0.5 µM arsenite exposure for 24 weeks induced oncogenic phenotypes in human mammary epithelial cells. Elevated aerobic glycolysis, cell proliferation capacity, and activation of p62-mTOR pathway, as indicated by increased protein levels of p62, phosphorylated-mTOR (p-mTOR) and hypoxia-inducible factor 1α (HIF1α), were observed in chronically arsenite-exposed cells, and of note in advance of the onset of oncogenic phenotypes. Moreover, p62 silencing inhibited acquisition of oncogenic phenotypes in arsenite-exposed cells. The protein levels of p-mTOR and HIF1α, as well as aerobic glycolysis and cell proliferation, were suppressed by p62 knockdown. In addition, re-activation of p‑mTOR reversed the inhibitory effects of p62 knockdown. Collectively, our data suggest that p62 exerts an oncogenic role via mTORC1 activation and acts as a key player in glucose metabolism during arsenite-induced malignant transformation, which provides a new mechanistic clue for the arsenite carcinogenesis.
Collapse
Affiliation(s)
- Yongfang Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Jiao Liu
- School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Dianqi Yao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Zijun Guo
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Xuheng Jiang
- School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Chengwen Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Litong Qu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Yuyan Liu
- Department of Clinical Epidemiology, the Fourth Affiliated Hospital, China Medical University, Shenyang, People's Republic of China
| | - Yuxin Hu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Lanyue Gao
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Yi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China
- School of Public Health, China Medical University, Shenyang, People's Republic of China
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China
| | - Yuanyuan Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, Shenyang, People's Republic of China.
- School of Public Health, China Medical University, Shenyang, People's Republic of China.
- Key Laboratory of Toxic and Biological Effects of Arsenic (China Medical University), Liaoning Province, Shenyang, People's Republic of China.
| |
Collapse
|
204
|
Cao H, Mao K, Yang J, Wu Q, Hu J, Zhang H. High-Throughput μPAD with Cascade Signal Amplification through Dual Enzymes for arsM in Paddy Soil. Anal Chem 2024; 96:6337-6346. [PMID: 38613479 DOI: 10.1021/acs.analchem.3c05958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
The arsM gene is a critical biomarker for the potential risk of arsenic exposure in paddy soil. However, on-site screening of arsM is limited by the lack of high-throughput point-of-use (POU) methods. Here, a multiplex CRISPR/Cas12a microfluidic paper-based analytical device (μPAD) was constructed for the high-throughput POU analysis of arsM, with cascade amplification driven by coupling crRNA-enhanced Cas12a and horseradish peroxidase (HRP)-modified probes. First, seven crRNAs were designed to recognize arsM, and their LODs and background signal intensities were evaluated. Next, a step-by-step iterative approach was utilized to develop and optimize coupling systems, which improved the sensitivity 32 times and eliminated background signal interference. Then, ssDNA reporters modified with HRP were introduced to further lower the LOD to 16 fM, and the assay results were visible to the naked eye. A multiplex channel microfluidic paper-based chip was developed for the reaction integration and simultaneous detection of 32 samples and generated a recovery rate between 87.70 and 114.05%, simplifying the pretreatment procedures and achieving high-throughput POU analysis. Finally, arsM in Wanshan paddy soil was screened on site, and the arsM abundance ranged from 1.05 × 106 to 6.49 × 107 copies/g; this result was not affected by the environmental indicators detected in the study. Thus, a coupling crRNA-based cascade amplification method for analyzing arsM was constructed, and a microfluidic device was developed that contains many more channels than previous paper chips, greatly improving the analytical performance in paddy soil samples and providing a promising tool for the on-site screening of arsM at large scales.
Collapse
Affiliation(s)
- Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jiajia Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qingqing Wu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiming Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
205
|
Lv Y, Wang H, Zheng D, Shi M, Bi D, Hu Q, Zhi H, Lou D, Li J, Wei S, Hu Y. Environmental arsenic pollution induced liver oxidative stress injury by regulating miR-155 through inhibition of AUF1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171237. [PMID: 38423337 DOI: 10.1016/j.scitotenv.2024.171237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Arsenic (As), a common environmental pollutant, has become a hot topic in recent years due to its potentially harmful effects. Liver damage being a central clinical feature of chronic arsenic poisoning. However, the underlying mechanisms remain unclear. We demonstrated that arsenic can lead to oxidative stress in the liver and result in structural and functional liver damage, significantly correlated with the expression of AUF1, Dicer1, and miR-155 in the liver. Interestingly, knockdown AUF1 promoted the up-regulatory effects of arsenic on Dicer1 and miR-155 and the inhibitory effects on SOD1, which exacerbated oxidative damage in rat liver. However, overexpression of AUF1 reversed the up-regulatory effects of arsenic on Dicer1 and miR-155, restored arsenic-induced SOD1 depletion, and attenuated liver oxidative stress injury. Further, we verified the mechanism and targets of miR-155 in regulating SOD1 by knockdown/overexpression of miR-155 and nonsense mutant SOD1 3'UTR experiments. In conclusion, these results powerfully demonstrate that arsenic inhibits AUF1 protein expression, which in turn reduces the inhibitory effect on Dicer1 expression, which promotes miR-155 to act on the SOD1 3'UTR region after high expression, thus inhibiting SOD1 protein expression and enzyme activity, and inducing liver injury. This finding provides a new perspective for the mechanism research and targeted prevention of arsenic poisoning, as well as scientific evidence for formulating strategies to prevent and control environmental arsenic pollution.
Collapse
Affiliation(s)
- Ying Lv
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Hongling Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Dan Zheng
- Guiyang Maternity and Child Health Hospital, Guiyang 550003, Guizhou, China
| | - Mingyang Shi
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Dingnian Bi
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Qian Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Haiyan Zhi
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Didong Lou
- Department of Forensic Medicine, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, Guizhou, China; Key Laboratory of Traditional Chinese Medicine Toxicology in Forensic Medicine, Guizhou Education Department, Guiyang 550025, Guizhou, China
| | - Jun Li
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Shaofeng Wei
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, China
| | - Yong Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 561113, Guizhou, China.
| |
Collapse
|
206
|
Zbieralski K, Staszewski J, Konczak J, Lazarewicz N, Nowicka-Kazmierczak M, Wawrzycka D, Maciaszczyk-Dziubinska E. Multilevel Regulation of Membrane Proteins in Response to Metal and Metalloid Stress: A Lesson from Yeast. Int J Mol Sci 2024; 25:4450. [PMID: 38674035 PMCID: PMC11050377 DOI: 10.3390/ijms25084450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/06/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In the face of flourishing industrialization and global trade, heavy metal and metalloid contamination of the environment is a growing concern throughout the world. The widespread presence of highly toxic compounds of arsenic, antimony, and cadmium in nature poses a particular threat to human health. Prolonged exposure to these toxins has been associated with severe human diseases, including cancer, diabetes, and neurodegenerative disorders. These toxins are known to induce analogous cellular stresses, such as DNA damage, disturbance of redox homeostasis, and proteotoxicity. To overcome these threats and improve or devise treatment methods, it is crucial to understand the mechanisms of cellular detoxification in metal and metalloid stress. Membrane proteins are key cellular components involved in the uptake, vacuolar/lysosomal sequestration, and efflux of these compounds; thus, deciphering the multilevel regulation of these proteins is of the utmost importance. In this review, we summarize data on the mechanisms of arsenic, antimony, and cadmium detoxification in the context of membrane proteome. We used yeast Saccharomyces cerevisiae as a eukaryotic model to elucidate the complex mechanisms of the production, regulation, and degradation of selected membrane transporters under metal(loid)-induced stress conditions. Additionally, we present data on orthologues membrane proteins involved in metal(loid)-associated diseases in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ewa Maciaszczyk-Dziubinska
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland; (K.Z.); (J.S.); (J.K.); (N.L.); (M.N.-K.); (D.W.)
| |
Collapse
|
207
|
Hua W, Han X, Li F, Lu L, Sun Y, Hassanian-Moghaddam H, Tian M, Lu Y, Huang Q. Transgenerational Effects of Arsenic Exposure on Learning and Memory in Rats: Crosstalk between Arsenic Methylation, Hippocampal Metabolism, and Histone Modifications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6475-6486. [PMID: 38578163 DOI: 10.1021/acs.est.3c07989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Arsenic (As) is widely present in the natural environment, and exposure to it can lead to learning and memory impairment. However, the underlying epigenetic mechanisms are still largely unclear. This study aimed to reveal the role of histone modifications in environmental levels of arsenic (sodium arsenite) exposure-induced learning and memory dysfunction in male rats, and the inter/transgenerational effects of paternal arsenic exposure were also investigated. It was found that arsenic exposure impaired the learning and memory ability of F0 rats and down-regulated the expression of cognition-related genes Bdnf, c-Fos, mGlur1, Nmdar1, and Gria2 in the hippocampus. We also observed that inorganic arsenite was methylated to DMA and histone modification-related metabolites were altered, contributing to the dysregulation of H3K4me1/2/3, H3K9me1/2/3, and H3K4ac in rat hippocampus after exposure. Therefore, it is suggested that arsenic methylation and hippocampal metabolism changes attenuated H3K4me1/2/3 and H3K4ac while enhancing H3K9me1/2/3, which repressed the key gene expressions, leading to cognitive impairment in rats exposed to arsenic. In addition, paternal arsenic exposure induced transgenerational effects of learning and memory disorder in F2 male rats through the regulation of H3K4me2 and H3K9me1/2/3, which inhibited c-Fos, mGlur1, and Nmdar1 expression. These results provide novel insights into the molecular mechanism of arsenic-induced neurotoxicity and highlight the risk of neurological deficits in offspring with paternal exposure to arsenic.
Collapse
Affiliation(s)
- Weizhen Hua
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xuejingping Han
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Fuping Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lu Lu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yiqiong Sun
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hossein Hassanian-Moghaddam
- Department of Clinical Toxicology, Shohada-e Tajrish Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yanyang Lu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
208
|
Li T, Guo Z. Mechanisms of arsenic oxidation in the presence of pyrite: An experimental and theoretical study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171072. [PMID: 38382617 DOI: 10.1016/j.scitotenv.2024.171072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/11/2024] [Accepted: 02/16/2024] [Indexed: 02/23/2024]
Abstract
The mobility and toxicity of arsenic are significantly influenced by the natural minerals. A comprehensive understanding of the interaction between arsenic and minerals is crucial for elucidating the natural behavior of arsenic and advancing arsenic remediation strategies. In this study, the mechanism of As (III) oxidation in the presence of pyrite without light irritation was investigated by experimental and theoretical approaches. Quenching experiment and electron paramagnetic resonance analysis confirm •OH and •O2H is the predominant oxidant of As (III) under acidic and alkaline condition, respectively. Density Functional Theory (DFT) calculations indicate on the pyrite surface, the surface oxygen species is insignificant in As(III) oxidation but crucial for the generation of reactive oxygen species (ROS). In the solution, •OH, •O2H, Fe(IV), and 1O2 are the favored oxidants for As(III), while ROS, 3O2, and Fe(III) possess the capability to convert As(IV) to As(V). The major mechanism of As(III) oxidation in the presence of pyrite without light irritation primarily involves three elementary reactions: (1) •OH facilitating As(III) conversion to As(IV), (2) 3O2 oxidizing As(IV) to As(V) and •O2H, and (3) As(V) and •OH generating in •O2H reacting with As(III). As(IV) emerges as a critical intermediate capable of initiating chain reactions in arsenic oxidation. This study provides atomic-scale insight into the As(III) oxidation in pyrite suspension, which is important for understanding arsenic behavior in analogous oxidation systems.
Collapse
Affiliation(s)
- Tianshuang Li
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
209
|
Jin Y, Song Q, He R, Diao H, Gaoyang H, Wang L, Fan L, Wang D. Nod-like receptor protein 3 inflammasome-mediated pyroptosis contributes to chronic NaAsO 2 exposure-induced fibrotic changes and dysfunction in the liver of SD rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116282. [PMID: 38564859 DOI: 10.1016/j.ecoenv.2024.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
The metalloid arsenic, known for its toxic properties, is widespread presence in the environment. Our previous research has confirmed that prolonged exposure to arsenic can lead to liver fibrosis injury in rats, while the precise pathogenic mechanism still requires further investigation. In the past few years, the Nod-like receptor protein 3 (NLRP3) inflammasome has been found to play a pivotal role in the occurrence and development of liver injury. In this study, we administered varying doses of sodium arsenite (NaAsO2) and 10 mg/kg.bw MCC950 (a particular tiny molecular inhibitor targeting NLRP3) to Sprague-Dawley (SD) rats for 36 weeks to explore the involvement of NLRP3 inflammasome in NaAsO2-induced liver injury. The findings suggested that prolonged exposure to NaAsO2 resulted in pyroptosis in liver tissue of SD rats, accompanied by the fibrotic injury, extracellular matrix (ECM) deposition and liver dysfunction. Moreover, long-term NaAsO2 exposure activated NLRP3 inflammasome, leading to the release of pro-inflammatory cytokines in liver tissue. After treatment with MCC950, the induction of NLRP3-mediated pyroptosis and release of pro-inflammatory cytokines were significantly attenuated, leading to a decrease in the severity of liver fibrosis and an improvement in liver function. To summarize, those results clearly indicate that hepatic fibrosis and liver dysfunction induced by NaAsO2 occur through the activation of NLRP3 inflammasome-mediated pyroptosis, shedding new light on the potential mechanisms underlying arsenic-induced liver damage.
Collapse
Affiliation(s)
- Ying Jin
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Qian Song
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Rui He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Heng Diao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Huijie Gaoyang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Lei Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Lili Fan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| | - Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, School of Public Health, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, PR China; Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
210
|
Liu J, Zhao J, Du J, Peng S, Wu J, Zhang W, Yan X, Lin Z. Predicting the binding configuration and release potential of heavy metals on iron (oxyhydr)oxides: A machine learning study on EXAFS. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133797. [PMID: 38377906 DOI: 10.1016/j.jhazmat.2024.133797] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Heavy metals raise a global concern and can be easily retained by ubiquitous iron (oxyhydr)oxides in natural and engineered systems. The complex interaction between iron (oxyhydr)oxides and heavy metals results in various mineral-metal binding configurations, such as outer-sphere complexes and edge-sharing inner-sphere complexes, which determine the accumulation and release of heavy metals in the environment. However, traditional experimental approaches are time-consuming and inadequate to elucidate the complex binding relationships and configurations between iron (oxyhydr)oxides and heavy metals. Herein, a workflow that integrates the binding configuration data of 11 heavy metals on 7 iron (oxyhydr)oxides and then trains machine learning models to predict unknown binding configurations was proposed. The well-trained multi-grained cascade forest models exhibited high accuracy (> 90%) and predictive performance (R2 ∼ 0.75). The underlying effects of mineral properties, metal ion species, and environmental conditions on mineral-metal binding configurations were fully interpreted with data mining. Moreover, the metal release rate was further successfully predicted based on mineral-metal binding configurations. This work provides a method to accurately and quickly predict the binding configuration of heavy metals on iron (oxyhydr)oxides, which would provide guidance for estimating the potential release behavior of heavy metals and remediating heavy metal pollution in natural and engineered environments.
Collapse
Affiliation(s)
- Junqin Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Jiang Zhao
- School of Mathmatics and Statistics, Beijing Technology and Business University, Beijing 100048, China
| | - Jiapan Du
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Suyi Peng
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Jiahui Wu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Wenchao Zhang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
| | - Xu Yan
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China.
| | - Zhang Lin
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China; State Key Laboratory of Advanced Metallurgy for Non-ferrous Metals, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, Hunan 410083, China
| |
Collapse
|
211
|
Xiong W, Wei W, He M, Hu B, Men J, Tu J, Miao W. Construction of Tetrahymena strains with highly active arsenic methyltransferase genes for arsenic detoxification in aquatic environments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116258. [PMID: 38547732 DOI: 10.1016/j.ecoenv.2024.116258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024]
Abstract
Biomethylation is an effective means of arsenic detoxification by organisms living in aquatic environments. Ciliated protozoa (including Tetrahymena species) play an important role in the biochemical cycles of aquatic ecosystems and have a potential application in arsenic biotransformation. This study compared arsenic tolerance, accumulation, methylation, and efflux in 11 Tetrahymena species. Nineteen arsenite (As(III)) S-adenosylmethionine (SAM) methyltransferase (arsM) genes, of which 12 are new discoveries, were identified, and protein sequences were studied. We then constructed recombinant cell lines based on the Tetrahymena thermophila (T. thermophila) wild-type SB210 strain and expressed each of the 19 arsM genes under the control of the metal-responsive the MTT1 promoter. In the presence of Cd2+ and As(V), expression of the arsM genes in the recombinant cell lines was much higher than in the donor species. Evaluation of the recombinant cell line identified one with ultra-high arsenic methylation enzyme activity, significantly higher arsenic methylation capacity and much faster methylation rate than other reported arsenic methylated organisms, which methylated 89% of arsenic within 6.5 h. It also had an excellent capacity for the arsenic detoxification of lake water containing As(V), 56% of arsenic was methylated at 250 μg/L As(V) in 48 h. This study has made a significant contribution to our knowledge on arsenic metabolism in protozoa and demonstrates the great potential to use Tetrahymena species in the arsenic biotransformation of aquatic environments.
Collapse
Affiliation(s)
- Wenjun Xiong
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Man He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jun Men
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jiawei Tu
- School of Resource and Environmental Science, Wuhan University, Wuhan 430072, China.
| | - Wei Miao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
212
|
Liu X, Turner JR, Oxford CR, McNeill J, Walsh B, Le Roy E, Weagle CL, Stone E, Zhu H, Liu W, Wei Z, Hyslop NP, Giacomo J, Dillner AM, Salam A, Hossen AA, Islam Z, Abboud I, Akoshile C, Amador-Muñoz O, Anh NX, Asfaw A, Balasubramanian R, Chang RYW, Coburn C, Dey S, Diner DJ, Dong J, Farrah T, Gahungu P, Garland RM, Grutter de la Mora M, Hasheminassab S, John J, Kim J, Kim JS, Langerman K, Lee PC, Lestari P, Liu Y, Mamo T, Martins M, Mayol-Bracero OL, Naidoo M, Park SS, Schechner Y, Schofield R, Tripathi SN, Windwer E, Wu MT, Zhang Q, Brauer M, Rudich Y, Martin RV. Elemental Characterization of Ambient Particulate Matter for a Globally Distributed Monitoring Network: Methodology and Implications. ACS ES&T AIR 2024; 1:283-293. [PMID: 38633206 PMCID: PMC11020157 DOI: 10.1021/acsestair.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
Global ground-level measurements of elements in ambient particulate matter (PM) can provide valuable information to understand the distribution of dust and trace elements, assess health impacts, and investigate emission sources. We use X-ray fluorescence spectroscopy to characterize the elemental composition of PM samples collected from 27 globally distributed sites in the Surface PARTiculate mAtter Network (SPARTAN) over 2019-2023. Consistent protocols are applied to collect all samples and analyze them at one central laboratory, which facilitates comparison across different sites. Multiple quality assurance measures are performed, including applying reference materials that resemble typical PM samples, acceptance testing, and routine quality control. Method detection limits and uncertainties are estimated. Concentrations of dust and trace element oxides (TEO) are determined from the elemental dataset. In addition to sites in arid regions, a moderately high mean dust concentration (6 μg/m3) in PM2.5 is also found in Dhaka (Bangladesh) along with a high average TEO level (6 μg/m3). High carcinogenic risk (>1 cancer case per 100000 adults) from airborne arsenic is observed in Dhaka (Bangladesh), Kanpur (India), and Hanoi (Vietnam). Industries of informal lead-acid battery and e-waste recycling as well as coal-fired brick kilns likely contribute to the elevated trace element concentrations found in Dhaka.
Collapse
Affiliation(s)
- Xuan Liu
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jay R. Turner
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Christopher R. Oxford
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jacob McNeill
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Brenna Walsh
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Emmie Le Roy
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Crystal L. Weagle
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Emily Stone
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Haihui Zhu
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Wenyu Liu
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Zilin Wei
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Nicole P. Hyslop
- Air
Quality Research Center, University of California
Davis, Davis, California 95616, United States
| | - Jason Giacomo
- Air
Quality Research Center, University of California
Davis, Davis, California 95616, United States
| | - Ann M. Dillner
- Air
Quality Research Center, University of California
Davis, Davis, California 95616, United States
| | - Abdus Salam
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Al-amin Hossen
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Zubayer Islam
- Department
of Chemistry, University of Dhaka, Dhaka 1000, Bangladesh
| | - Ihab Abboud
- Air
Quality Research Division, Environment and
Climate Change Canada, Toronto, Ontario M3H 5T4, Canada
| | - Clement Akoshile
- Department
of Physics, University of Ilorin, Ilorin 240003, Nigeria
| | - Omar Amador-Muñoz
- Instituto
de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Nguyen Xuan Anh
- Institute
of Geophysics, Vietnam Academy of Science
and Technology, Hanoi 11307, Vietnam
| | - Araya Asfaw
- Institute
of Geophysics and Space Science, Addis Ababa
University, Addis
Ababa 1176, Ethiopia
| | - Rajasekhar Balasubramanian
- Department
of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Rachel Ying-Wen Chang
- Department
of Physics and Atmospheric Science, Dalhousie
University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Craig Coburn
- Department
of Geography and Environment, University
of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Sagnik Dey
- Centre
for Atmospheric Sciences, Indian Institute
of Technology Delhi, New Delhi 110016, India
| | - David J. Diner
- Jet
Propulsion Laboratory, California Institute
of Technology, Pasadena, California 91109, United States
| | - Jinlu Dong
- School
of Environment, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Tareq Farrah
- Research
Laboratories, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Paterne Gahungu
- Institute
of Applied Statistics, University of Burundi, Bujumbura BP1550, Burundi
| | - Rebecca M. Garland
- Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
- Unit
for Environmental Sciences and Management, North-West University, Potchefstroom 2531, South Africa
- Department
of Geography, Geo-Informatics and Meteorology, University of Pretoria, Pretoria 0002, South Africa
| | - Michel Grutter de la Mora
- Instituto
de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sina Hasheminassab
- Jet
Propulsion Laboratory, California Institute
of Technology, Pasadena, California 91109, United States
| | - Juanette John
- Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Jhoon Kim
- Department
of Atmospheric Sciences, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong Sung Kim
- Department
of Community Health and Epidemiology, Dalhousie
University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kristy Langerman
- Department
of Geography, Environmental Management and Energy Studies, University of Johannesburg, Johannesburg 2006, South Africa
| | - Pei-Chen Lee
- Department
of Public Health, National Cheng Kung University, Tainan 701, Taiwan
| | - Puji Lestari
- Faculty
of Civil and Environmental Engineering, Bandung Institute of Technology, Bandung 40132, Indonesia
| | - Yang Liu
- Gangarosa
Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, United States
| | - Tesfaye Mamo
- Physics
Department, Addis Ababa University, Addis Ababa 1176, Ethiopia
| | - Mathieu Martins
- Research
Laboratories, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Olga L. Mayol-Bracero
- Department
of Environmental Science, University of
Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Mogesh Naidoo
- Council for Scientific
and Industrial Research, Pretoria 0001, South Africa
| | - Sang Seo Park
- Department
of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yoav Schechner
- Department
of Electrical Engineering, Technion Israel
Institute of Technology, Haifa 3200003, Israel
| | - Robyn Schofield
- School
of Geography, Earth and Atmospheric Sciences, University of Melbourne, Melbourne 3010, Australia
| | - Sachchida N. Tripathi
- Department
of Civil Engineering, Indian Institute of
Technology Kanpur, Kanpur 208016, India
| | - Eli Windwer
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Ming-Tsang Wu
- PhD
Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department
of Family Medicine, Kaohsiung Medical University
Hospital, Kaohsiung 807, Taiwan
| | - Qiang Zhang
- Department
of Earth System Science, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Michael Brauer
- School
of Population and Public Health, University
of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Yinon Rudich
- Department
of Earth and Planetary Sciences, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Randall V. Martin
- Department
of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
213
|
Yan W, He X, Chen M, Qian B, Li M, Yan Y, Lin C, Mao Z. High arsenic pollution of the eutrophic Lake Taihu and its relationship with iron, manganese, and dissolved organic matter: High-resolution synchronous analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133644. [PMID: 38330646 DOI: 10.1016/j.jhazmat.2024.133644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Arsenic (As) is a metalloid that can accumulate in eutrophic lakes and cause adverse health effects to people worldwide. However, the seasonal process and dynamic mechanism for As mobilization in eutrophic lake remains effectively unknown. Here we innovatively used the planar optodes (PO), high-resolution dialysis (HR-Peeper) combined with fluorescence excitation-emission matrix coupled with parallel factor (EEM-PARAFAC) analysis technologies. We synchronously investigate monthly O2, As, iron (Fe), manganese (Mn), and naturally occurring dissolved organic matter (DOM) changes in sediments of Lake Taihu at high resolution in field conditions. We find high As contamination from sediments with 61.88-327.07 μg m-2 d-1 release As fluxes during the algal bloom seasons from May to October 2021. Our results show that an increase in DOM, mainly for humic-like components, resulting in high electron transfer capacity (ETC), promoted the reductive dissolution of Fe and Mn oxides to release As. Partial least square-path modeling (PLS-PM) and random forest modeling analysis identified that Mn oxide reductive dissolution directly accelerated sediments As contamination, which is the crucial factor. Understanding crucial factor controlling As release is especially essential in areas of eutrophic lakes developing effective strategies to manage As-rich eutrophic lake sediments worldwide.
Collapse
Affiliation(s)
- Wenming Yan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Xiangyu He
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Musong Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Bao Qian
- Bureau of Hydrology, Changjiang Water Resources Commission, Wuhan 430010, China
| | - Minjuan Li
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Yulin Yan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Chen Lin
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhigang Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
214
|
Vesković J, Deršek-Timotić I, Lučić M, Miletić A, Đolić M, Ražić S, Onjia A. Entropy-weighted water quality index, hydrogeochemistry, and Monte Carlo simulation of source-specific health risks of groundwater in the Morava River plain (Serbia). MARINE POLLUTION BULLETIN 2024; 201:116277. [PMID: 38537568 DOI: 10.1016/j.marpolbul.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/02/2024] [Accepted: 03/17/2024] [Indexed: 04/07/2024]
Abstract
Population growth, urbanization, industry, floods, and agriculture globally degrade groundwater in river plains, necessitating action for its quality assessment and management. Hence, a comprehensive methodology, including hydrogeochemical facies (Piper, Gibbs), irrigation indices (SAR, Wilcox), entropy-weighted water quality index (EWQI), positive matrix factorization (PMF), and Monte Carlo simulation of source-specific health risks was used in this study to analyze groundwater in the Morava river plain (Serbia). The results revealed a prevalent Ca-Mg-HCO3 groundwater type, influenced by water-rock interactions. Although groundwater was found suitable for irrigation, only 66.7 % of the samples were considered drinkable. Agricultural activities, natural processes, and municipal wastewater were identified as primary pollution sources. The incremental lifetime cancer risk (ILCR) and hazard index (HI) threshold exceedance for adults and children ranged from 8.5 % to 39 % of the samples, with arsenic identified as the most risk-contributing contaminant. These findings provide valuable insights for researchers studying groundwater vulnerability in river plains.
Collapse
Affiliation(s)
- Jelena Vesković
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia; University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Ivana Deršek-Timotić
- Serbian Environmental Protection Agency, Ruže Jovanovića 27a, 11160 Belgrade, Serbia
| | - Milica Lučić
- Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Andrijana Miletić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Maja Đolić
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia
| | - Slavica Ražić
- University of Belgrade, Faculty of Pharmacy, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Antonije Onjia
- University of Belgrade, Faculty of Technology and Metallurgy, Karnegijeva 4, 11120 Belgrade, Serbia.
| |
Collapse
|
215
|
O’Connor C, Keele GR, Martin W, Stodola T, Gatti D, Hoffman BR, Korstanje R, Churchill GA, Reinholdt LG. Unraveling the genetics of arsenic toxicity with cellular morphology QTL. PLoS Genet 2024; 20:e1011248. [PMID: 38662777 PMCID: PMC11075906 DOI: 10.1371/journal.pgen.1011248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/07/2024] [Accepted: 04/03/2024] [Indexed: 05/08/2024] Open
Abstract
The health risks that arise from environmental exposures vary widely within and across human populations, and these differences are largely determined by genetic variation and gene-by-environment (gene-environment) interactions. However, risk assessment in laboratory mice typically involves isogenic strains and therefore, does not account for these known genetic effects. In this context, genetically heterogenous cell lines from laboratory mice are promising tools for population-based screening because they provide a way to introduce genetic variation in risk assessment without increasing animal use. Cell lines from genetic reference populations of laboratory mice offer genetic diversity, power for genetic mapping, and potentially, predictive value for in vivo experimentation in genetically matched individuals. To explore this further, we derived a panel of fibroblast lines from a genetic reference population of laboratory mice (the Diversity Outbred, DO). We then used high-content imaging to capture hundreds of cell morphology traits in cells exposed to the oxidative stress-inducing arsenic metabolite monomethylarsonous acid (MMAIII). We employed dose-response modeling to capture latent parameters of response and we then used these parameters to identify several hundred cell morphology quantitative trait loci (cmQTL). Response cmQTL encompass genes with established associations with cellular responses to arsenic exposure, including Abcc4 and Txnrd1, as well as novel gene candidates like Xrcc2. Moreover, baseline trait cmQTL highlight the influence of natural variation on fundamental aspects of nuclear morphology. We show that the natural variants influencing response include both coding and non-coding variation, and that cmQTL haplotypes can be used to predict response in orthogonal cell lines. Our study sheds light on the major molecular initiating events of oxidative stress that are under genetic regulation, including the NRF2-mediated antioxidant response, cellular detoxification pathways, DNA damage repair response, and cell death trajectories.
Collapse
Affiliation(s)
- Callan O’Connor
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Gregory R. Keele
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- RTI International, Research Triangle Park, Durham, North Carolina, United States of America
| | - Whitney Martin
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Timothy Stodola
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Daniel Gatti
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Brian R. Hoffman
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Ron Korstanje
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Gary A. Churchill
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| | - Laura G. Reinholdt
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
216
|
Kraaijeveld E, Rijsdijk S, van der Poel S, van der Hoek JP, Rabaey K, van Halem D. Electrochemical arsenite oxidation for drinking water treatment: Mechanisms, by-product formation and energy consumption. WATER RESEARCH 2024; 253:121227. [PMID: 38377921 DOI: 10.1016/j.watres.2024.121227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/24/2023] [Accepted: 01/28/2024] [Indexed: 02/22/2024]
Abstract
The mechanisms and by-product formation of electrochemical oxidation (EO) for As(III) oxidation in drinking water treatment using groundwater was investigated. Experiments were carried out using a flowthrough system, with an RuO2/IrO2 MMO Ti anode electrode, fed with synthetic and natural groundwater containing As(III) concentrations in a range of around 75 and 2 µg/L, respectively. Oxidation was dependent on charge dosage (CD) [C/L] and current density [A/m2], with the latter showing plateau behaviour for increasing intensity. As(III) concentrations of <0.3 µg/L were obtained, indicating oxidation of 99.9 % of influent As(III). Achieving this required a higher charge dosage for the natural groundwater (>40 C/L) compared to the oxidation in the synthetic water matrix (20 C/L), indicating reaction with natural organic matter or other compounds. As(III) oxidation in groundwater required an energy consumption of 0.09 and 0.21 kWh/m3, for current densities of 20 and 60 A/m2, respectively. At EO settings relevant for As(III) oxidation, in the 30-100 C/L CD range, the formation of anodic by-products, as trihalomethanes (THMs) (0.11-0.75 µg/L) and bromate (<0.2 µg/L) was investigated. Interestingly, concentrations of the formed by-products did not exceed strictest regulatory standards of 1 µg/L, applicable to Dutch tap water. This study showed the promising perspective of EO as electrochemical advanced oxidation process (eAOP) in drinking water treatment as alternative for the conventional use of strong oxidizing chemicals.
Collapse
Affiliation(s)
- E Kraaijeveld
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands.
| | - S Rijsdijk
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
| | - S van der Poel
- Dunea, Utility for drinking water and nature conservancy, Plein van de Verenigde Naties 11-15, 2719 EG Zoetermeer, the Netherlands
| | - J P van der Hoek
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
| | - K Rabaey
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - D van Halem
- Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, the Netherlands
| |
Collapse
|
217
|
Liang Y, Zhang X, Gan L, Chen S, Zhao S, Ding J, Kang W, Yang H. Mapping specific groundwater nitrate concentrations from spatial data using machine learning: A case study of chongqing, China. Heliyon 2024; 10:e27867. [PMID: 38524545 PMCID: PMC10958364 DOI: 10.1016/j.heliyon.2024.e27867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/10/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024] Open
Abstract
Groundwater resources is not only important essential water resources but also imperative connectors within the intricate framework of the ecological environment. High nitrate concentrations in groundwater can exerting adverse impacts on human health. It is imperative to accurately delineate the distribution characteristics of groundwater nitrate concentrations. Four different machine learning models (Gradient Boosting Regression (GB), Random Forest Regression (RF), Extreme Gradient Boosting Regression (XG) and Adaptive Boosting Regression (AD)) which combine spatial environmental data and different radius contributing area was developed to predict the distribution of nitrate concentration in groundwater. The models use 595 groundwater samples and included topography, remote sensing, hydrogeological and hydrological, climate, nitrate input, and socio-economic predictor. Gradient Boosting Regression model outperforms the other models (R2 = 0.627, MAE = 0.529, RMSE = 0.705, PICP = 0.924 for test dataset) under 500 m radius contributing area. A high-resolution (1 km) groundwater nitrate concentration distribution map reveal in the majority of the study area, groundwater nitrate concentrations are below 1 mg/L and high nitrate concentration (>10 mg/L) proportion in southeast, northeast and central main urban area karst valley regions is 1.89%, 0.91%, and 0.38% respectively. In study area, hydrogeological conditions, soil parameters, nitrogen input factors, and percentage of arable land are among the most influential explanatory factors. This work, serving as the inaugural application of utilizing effective spatial methods for predicting groundwater nitrate concentrations in Chongqing city, furnish decision-making support for the prevention and control of groundwater pollution, particularly in areas primarily dependent on groundwater for water supply and holds profound significance as a milestone achievement.
Collapse
Affiliation(s)
- Yuanyi Liang
- Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources (Chongqing Institute of Geology and Mineral Resources) Chongqing, 401120, China
| | - Xingjun Zhang
- Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources (Chongqing Institute of Geology and Mineral Resources) Chongqing, 401120, China
| | - Lin Gan
- Chongqing Institute of Geological Environment Monitoring, Chongqing, 401122, China
| | - Si Chen
- Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources (Chongqing Institute of Geology and Mineral Resources) Chongqing, 401120, China
| | - Shandao Zhao
- Chongqing Institute of Geological Environment Monitoring, Chongqing, 401122, China
| | - Jihui Ding
- Chongqing Institute of Geological Environment Monitoring, Chongqing, 401122, China
| | - Wulue Kang
- Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources (Chongqing Institute of Geology and Mineral Resources) Chongqing, 401120, China
| | - Han Yang
- Observation and Research Station of Ecological Restoration for Chongqing Typical Mining Areas, Ministry of Natural Resources (Chongqing Institute of Geology and Mineral Resources) Chongqing, 401120, China
| |
Collapse
|
218
|
Ventrello SW, McMurry NR, Edwards NM, Bain LJ. Chronic arsenic exposure affects stromal cells and signaling in the small intestine in a sex-specific manner. Toxicol Sci 2024; 198:303-315. [PMID: 38310360 PMCID: PMC10964740 DOI: 10.1093/toxsci/kfae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Arsenic is a toxicant that is ingested through drinking water and food, exposing nearly 140 million people to levels above the 10 ppb guideline concentration. Studies have shown that arsenic affects intestinal stem cells (ISCs), but the mechanisms by which arsenic alters the formation of adult cells in the small intestine are not well understood. Signals derived from intestinal stromal cells initiate and maintain differentiation. The goal of this study is to evaluate arsenic's effect on intestinal stromal cells, including PdgfrαLo trophocytes, located proximal to the ISCs, and PdgfrαHi telocytes, located proximal to the transit-amplifying region and up the villi. Adult Sox9tm2Crm-EGFP mice were exposed to 0, 33, and 100 ppb sodium arsenite in their drinking water for 13 weeks, and sections of duodenum were examined. Flow cytometry indicated that arsenic exposure dose-responsively reduced Sox9+ epithelial cells and trended toward increased Pdgfrα+ cells. The trophocyte marker, CD81, was reduced by 10-fold and 9.0-fold in the 100 ppb exposure group in male and female mice, respectively. Additionally, a significant 2.2- to 3.1-fold increase in PdgfrαLo expression was found in male mice in trophocytes and Igfbp5+ cells. PdgfrαHi protein expression, a telocyte marker, was more prevalent along the villus/crypt structure in females, whereas Gli1 expression (telocytes) was reduced in male mice exposed to arsenic. Principle coordinate analysis confirmed the sex-dependent response to arsenic exposure, with an increase in trophocyte and decrease in telocyte marker expression observed in male mice. These results imply that arsenic alters intestinal mesenchymal cells in a sex-dependent manner.
Collapse
Affiliation(s)
- Scott W Ventrello
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA
| | - Nicholas R McMurry
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA
| | - Nicholas M Edwards
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA
| | - Lisa J Bain
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA
| |
Collapse
|
219
|
Younas M, Bacha AUR, Khan K, Nabi I, Ullah Z, Humayun M, Hou J. Application of manganese oxide-based materials for arsenic removal: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170269. [PMID: 38266733 DOI: 10.1016/j.scitotenv.2024.170269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024]
Abstract
In the context of growing arsenic (As) contamination in the world, there is an urgent need for an effective treatment approach to remove As from the environment. Industrial wastewater is one of the primary sources of As contamination, which poses significant risks to both microorganisms and human health, as the presence of As can disrupt the vital processes and synthesis of crucial macromolecules in living organisms. The global apprehension regarding As presence in aquatic environments persists as a key environmental issue. This review summarizes the recent advances and progress in the design, strategy, and synthesis method of various manganese-based adsorbent materials for As removal. Occurrence, removal, oxidation mechanism of As(III), As adsorption on manganese oxide (MnOx)-based materials, and influence of co-existing solutes are also discussed. Furthermore, the existing knowledge gaps of MnOx-based adsorbent materials and future research directions are proposed. This review provides a reference for the application of MnOx-based adsorbent materials to As removal.
Collapse
Affiliation(s)
- Muhammad Younas
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environmental and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Aziz Ur Rahim Bacha
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Kaleem Khan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan China
| | - Iqra Nabi
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Muhammad Humayun
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology Wuhan, 430074, China
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environmental and Pollution Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China..
| |
Collapse
|
220
|
Perez JPH, Tobler DJ, Benning LG. Synergistic inhibition of green rust crystallization by co-existing arsenic and silica. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:632-643. [PMID: 38362760 DOI: 10.1039/d3em00458a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Arsenic and silica are known inhibitors of the crystallization of iron minerals from poorly ordered precursor phases. However, little is known about the effects of co-existing As and Si on the crystallization and long-term stability of mixed-valence Fe minerals such as green rust (GR). GR usually forms in anoxic, Fe2+-rich, near-neutral pH environments, where they influence the speciation and mobility of trace elements, nutrients and contaminants. In this work, the Fe2+-induced transformation of As- and/or Si-bearing ferrihydrite (FHY) was monitored at pH 8 ([As]initial = 100 μM, Si/As = 10) over 720 h. Our results showed that in the presence of As(III) + Si or As(V) + Si, GR sulfate (GRSO4) formation from FHY was up to four times slower compared to single species system containing only As(III), As(V) or Si. Co-existing As(III) + Si and As(V) + Si also inhibited GRSO4 transformation to magnetite, contrary to systems with only Si or As(V). Overall, our findings demonstrate the synergistic inhibitory effect of co-existing Si on the crystallization and solid-phase stability of As-bearing GRSO4, establishing an inhibitory effect ladder: As(III) + Si > As(V) + Si > As(III) > Si > As(V). This further highlights the importance of GR in potentially controlling the fate and mobility of As in ferruginous, Si-rich groundwater and sediments such as those in South and Southeast Asia.
Collapse
Affiliation(s)
| | - Dominique J Tobler
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Liane G Benning
- GFZ German Research Center for Geosciences, Telegrafenberg, 14473 Potsdam, Germany.
- Department of Earth Sciences, Freie Universität Berlin, Malteserstrasse 74-100, 12249 Berlin, Germany
| |
Collapse
|
221
|
Fu Y, Cao W, Nan T, Ren Y, Li Z. Hazards and influence factors of arsenic in the upper pleistocene aquifer, Hetao region, using machine learning modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170247. [PMID: 38272097 DOI: 10.1016/j.scitotenv.2024.170247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
The Hetao region is one of the regions with the most serious problem of the greatest measured arsenic concentrations in China. The enrichment of arsenic in groundwater may poses a great risk to the health of local residents. A comprehensive understanding of the groundwater quality, spatial distribution characteristics and hazard of the high arsenic in groundwater is indispensable for the sustainable utilization of groundwater resources and resident health. This study selected six environmental factors, climate, human activity, sedimentary environment, hydrogeology, soil, and others, as the independent input variables to the model, compared three machine learning algorithms (support vector machine, extreme gradient boosting, and random forest), and mapped unsafe arsenic to estimate the population that may be exposed to unhealthy conditions in the Hetao region. The results show that nearly half the number of the 605 sampling wells for arsenic exceeded the WHO provisional guide value for drinking water, the water chemistry of groundwater are mainly Na-HCO3-Cl or Na-Mg-HCO3-Cl type water, and the groundwater with excessive arsenic concentration is mainly concentrated in the ancient stream channel influence zone and the Yellow River crevasse splay. The results of factor importance explanation revealed that the sedimentary environment was the key factor affecting the primary high arsenic groundwater concentration, followed by climate and human activities. The random forest algorithm produced the probability distribution of high arsenic groundwater that is consistent with the observed results. The estimated area of groundwater with excessive arsenic reached 38.81 %. An estimated 940,000 people could be exposed to high arsenic in groundwater.
Collapse
Affiliation(s)
- Yu Fu
- North China University of Water Resources and Electric Power, Zhengzhou 450011, China; The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science (CAGS), Shijiazhuang 050061, China
| | - Wengeng Cao
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science (CAGS), Shijiazhuang 050061, China; Key Laboratory of Groundwater Remediation of Hebei Province and China Geological Survey, Shijiazhuang 050061, China.
| | - Tian Nan
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science (CAGS), Shijiazhuang 050061, China
| | - Yu Ren
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science (CAGS), Shijiazhuang 050061, China
| | - Zeyan Li
- The Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Science (CAGS), Shijiazhuang 050061, China
| |
Collapse
|
222
|
Pop LA, Berindan-Neagoe I, Bloom MS, Neamtiu IA, Bica C, Gurzau ES. Arsenic Methyltransferase and Apolipoprotein E Polymorphism in Pregnant Women Exposed to Inorganic Arsenic in Drinking Water in Western Romania. Int J Mol Sci 2024; 25:3349. [PMID: 38542322 PMCID: PMC10969814 DOI: 10.3390/ijms25063349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 11/03/2024] Open
Abstract
Previous studies have shown that inorganic arsenic (iAs) exposure may be associated with genotoxic and cytotoxic effects. The aim of this study was to evaluate the relationship between several polymorphisms in AS3MT and APOE genes and urinary As and the relationship between these polymorphisms and pregnancy loss. We determined urinary As concentrations and performed genotyping analysis in 50 cases of spontaneous pregnancy loss and 50 controls, matched to cases on gestational age. The most frequently identified AS3MT polymorphisms in both cases and controls were in rs10748835 (80% cases and 68% controls), rs3740400 (78% cases and 64% controls), rs7085104 (74% cases and 48% controls), and rs1046778 (62% cases and 54% controls). We identified 30 different haplotypes in AS3MT SNPs, with four predominant haplotypes (>8%). Cases with Haplotype 1 had four-fold higher urinary DMA and two-fold higher MMA concentration than those without this haplotype, the MMA levels were lower in cases and controls with Haplotype 4 compared to Haplotype 1, and the DMA levels were significantly lower in cases with Haplotype 4 compared to Haplotype 3. Cases with Haplotype 1 had higher levels of all analyzed biomarkers, suggesting that Haplotype 1 may be associated with greater exposure to iAs and tobacco smoke. Our results suggest the importance of the AS3MT gene in iAs metabolism among pregnant women with low-level drinking water iAs exposure.
Collapse
Affiliation(s)
- Laura Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (L.A.P.); (E.S.G.)
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (L.A.P.); (E.S.G.)
| | - Michael S. Bloom
- Department of Global and Community Health, George Mason University, 4400 University Dr, Fairfax, VA 22030, USA;
| | - Iulia Adina Neamtiu
- Health Department, Environmental Health Center Part of ALS, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania
- Faculty of Environmental Science and Engineering, Babes-Bolyai University, 30 Fantanele Street, 400294 Cluj-Napoca, Romania
| | - Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (L.A.P.); (E.S.G.)
| | - Eugen S. Gurzau
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (L.A.P.); (E.S.G.)
| |
Collapse
|
223
|
Yuan Y, Wei X, Zhu M, Cai Y, Wang Y, Dang Z, Yin H. Unravelling the removal mechanisms of trivalent arsenic by sulfidated nanoscale zero-valent iron: The crucial role of reactive oxygen species and the multiple effects of citric acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170275. [PMID: 38262532 DOI: 10.1016/j.scitotenv.2024.170275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
The remediation of arsenic-contaminated groundwater by sulfidated nanoscale zero-valent iron (S-nZVI) has raised considerable attention. However, the role of trivalent arsenic (As(III)) oxidation by S-nZVI in oxic conditions (S-nZVI/O2) remains controversial, and the comprehensive effect of citric acid (CA) prevalent in groundwater on As(III) removal by S-nZVI remains unclear. Herein, the mechanisms of reactive oxygen species (ROS) generation and multiple effects of CA on As(III) removal by S-nZVI/O2 were systematically explored. Results indicated that the removal efficiency of As(III) by S-nZVI/O2 (97.81 %) was prominently higher than that by S-nZVI (66.71 %), resulting from the significant production of ROS (mainly H2O2 and OH) under oxic conditions, which played a crucial role in promoting the As(III) oxidation. Additionally, CA had multiple effects on As(III) removal by S-nZVI/O2 system: (i) CA impeded the diffusion of As(III) towards S-nZVI and increased the secondary risk of immobilized As(III) re-releasing into the environment due to the Fe dissolution from S-nZVI; (ii) CA could significantly enhance the yields of OH from 25.29 to 133.00 μM via accelerating the redox cycle of Fe(II)/Fe(III) and increasing the oriented conversion rate of H2O2 to OH; (iii) CA could also enrich the types of ROS (such as O2- and 1O2) in favor of further As(III) oxidation. This study contributed novel findings regarding the control of As(III) contaminated groundwater using S-nZVI technologies.
Collapse
Affiliation(s)
- Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Xipeng Wei
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Yuhao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Yuanzheng Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|
224
|
Zhi W, Appling AP, Golden HE, Podgorski J, Li L. Deep learning for water quality. NATURE WATER 2024; 2:228-241. [PMID: 38846520 PMCID: PMC11151732 DOI: 10.1038/s44221-024-00202-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/10/2024] [Indexed: 06/09/2024]
Abstract
Understanding and predicting the quality of inland waters are challenging, particularly in the context of intensifying climate extremes expected in the future. These challenges arise partly due to complex processes that regulate water quality, and arduous and expensive data collection that exacerbate the issue of data scarcity. Traditional process-based and statistical models often fall short in predicting water quality. In this Review, we posit that deep learning represents an underutilized yet promising approach that can unravel intricate structures and relationships in high-dimensional data. We demonstrate that deep learning methods can help address data scarcity by filling temporal and spatial gaps and aid in formulating and testing hypotheses via identifying influential drivers of water quality. This Review highlights the strengths and limitations of deep learning methods relative to traditional approaches, and underscores its potential as an emerging and indispensable approach in overcoming challenges and discovering new knowledge in water-quality sciences.
Collapse
Affiliation(s)
- Wei Zhi
- The National Key Laboratory of Water Disaster Prevention, Yangtze Institute for Conservation and Development, Key Laboratory of Hydrologic-Cycle and Hydrodynamic-System of Ministry of Water Resources, Hohai University, Nanjing, China
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA
| | | | - Heather E Golden
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, OH, USA
| | - Joel Podgorski
- Department of Water Resources and Drinking Water, Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Dübendorf, Switzerland
| | - Li Li
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
225
|
Yang Y, Zhang R, Deji Y, Li Y. Hotspot mapping and risk prediction of fluoride in natural waters across the Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133510. [PMID: 38219577 DOI: 10.1016/j.jhazmat.2024.133510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Intake of high fluoride concentrations through water affects up to 1 billion people worldwide, and the Tibetan Plateau (TP) is one of the most severely affected areas. Knowledge regarding the high fluoride risk areas, the driving factors, and at-risk populations on the TP remains fragmented. We collected 1581 natural water samples from the TP to model surface water and groundwater fluoride hazard maps using machine learning. The geomean concentrations of surface water and groundwater were 0.26 mg/L and 0.92 mg/L, respectively. Surface water fluoride hazard hotspots were concentrated in the north-central region; high fluoride risk areas of groundwater were mainly concentrated in the southern TP. Hazard maps showed a maximum estimate of 15% of the total population in the TP (approximately 1.47 million people) at risk, and 500,000 people considered the most reasonable estimate. Critical environment driving factors were identified, in which climate condition was taken for the vital one. Under the moderate climate change scenario (SSP2.45) for 2089-2099, the high fluoride risk change rate differed inside the TP (surface water -24%-55% and groundwater -56%-50%), and the overall risk increased in natural waters throughout the TP, particularly in the southeastern TP.
Collapse
Affiliation(s)
- Yi Yang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ru Zhang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yangzong Deji
- Tibet Autonomous Region Center for Disease Control and Prevention, Lhasa 850030, China
| | - Yonghua Li
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
226
|
Peng X, Li H, Wang D, Wu L, Hu J, Ye F, Syed BM, Liu D, Zhang J, Liu Q. Intrauterine arsenic exposure induces glucose metabolism disorders in adult offspring by targeting TET2-mediated DNA hydroxymethylation reprogramming of HNF4α in developing livers, an effect alleviated by ascorbic acid. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133405. [PMID: 38185084 DOI: 10.1016/j.jhazmat.2023.133405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
Exposure to arsenic during gestation has lasting health-related effects on the developing fetus, including an increase in the risk of metabolic disease later in life. Epigenetics is a potential mechanism involved in this process. Ten-eleven translocation 2 (TET2) has been widely considered as a transferase of 5-hydroxymethylcytosine (5hmC). Here, mice were exposed, via drinking water, to arsenic or arsenic combined with ascorbic acid (AA) during gestation. For adult offspring, intrauterine arsenic exposure exhibited disorders of glucose metabolism, which are associated with DNA hydroxymethylation reprogramming of hepatic nuclear factor 4 alpha (HNF4α). Further molecular structure analysis, by SEC-UV-DAD, SEC-ICP-MS, verified that arsenic binds to the cysteine domain of TET2. Mechanistically, arsenic reduces the stability of TET2 by binding to it, resulting in the decrease of 5hmC levels in Hnf4α and subsequently inhibiting its expression. This leads to the disorders of expression of its downstream key glucose metabolism genes. Supplementation with AA blocked the reduction of TET2 and normalized the 5hmC levels of Hnf4α, thus alleviating the glucose metabolism disorders. Our study provides targets and methods for the prevention of offspring glucose metabolism abnormalities caused by intrauterine arsenic exposure.
Collapse
Affiliation(s)
- Xiaoshan Peng
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Han Li
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Dapeng Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Lu Wu
- Suzhou Center for Disease Control and Prevention, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Suzhou 215004, Jiangsu, People's Republic of China
| | - Jiacai Hu
- Institute of Physical and Chemical Testing, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic of China
| | - Fuping Ye
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Binafsha Manzoor Syed
- Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro 76090, Sindh, Pakistan
| | - Deye Liu
- Institute of Physical and Chemical Testing, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic of China
| | - Jingshu Zhang
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, China International Cooperation Center for Environment and Human Health, Jiangsu Safety Assessment and Research Center for Drug, Pesticide, and Veterinary Drug, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; Suzhou Center for Disease Control and Prevention, Suzhou Institute of Public Health, Gusu School, Nanjing Medical University, Suzhou 215004, Jiangsu, People's Republic of China.
| |
Collapse
|
227
|
Liu Q, Liu Y, Zhang J, Guan Y, Zhou Q, Yan Y, Li W, An J, He M. Gut microbiota deficiency aggravates arsenic-induced toxicity by affecting bioaccumulation and biotransformation in C57BL/6J mice. Food Chem Toxicol 2024; 186:114564. [PMID: 38438009 DOI: 10.1016/j.fct.2024.114564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/06/2024]
Abstract
Gut microbiome can influence the arsenic metabolism in mammals. Confusingly, gut microbiome was found to both mitigate and exacerbate arsenic toxicity. In this study, the role of gut microbiota in arsenic bioaccumulation, biotransformation, and organ toxicity in C57BL/6J mice was investigated. Gut microbiota deficiency model was established by antibiotics (Ab) cocktail AVNM. Conventional and gut microbiota deficiency mice were exposed to NaAsO2 for 4 weeks. Comparing with Ab-treated mice, the total arsenic (tAs) in the tissues was significantly reduced in conventional mice, which was opposed to the results of those in feces. Interestingly, dimethyl arsenite (DMA) was the most abundant metabolite in the feces of Ab-treated mice, while arsenic acid (AsV) had the highest proportion in the feces of conventional mice with approximately 16-fold than that in Ab-treated mice, indicating the critical role of gut microbiota in metabolizing arsenious acid (AsIII) to AsV. Additionally, the liver and kidney in Ab-treated mice showed more severe pathological changes and apoptosis. The significant increased level of ionized calcium-binding adapter molecule 1 (IBA-1) was also found in the brains of Ab-treated mice. Our results indicated that gut microbiota protected the host from arsenic-induced toxicity in liver, kidney, and brain by reducing the arsenic accumulation.
Collapse
Affiliation(s)
- Qianying Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuenan Liu
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiazhen Zhang
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youbing Guan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qihang Zhou
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Yan
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiya Li
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun An
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meian He
- Department of Occupational and Environmental Health and State Key Laboratory of Environmental Health for Incubating, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
228
|
Ye Z, Xiong H, Huang L, Zhao Q, Xiong Z, Zhang H, Zhang W. Mechanisms underlying the combination effect of arsenite and high-fat diet on aggravating liver injury in mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:1323-1334. [PMID: 37955338 DOI: 10.1002/tox.24037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/23/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023]
Abstract
Arsenic (As) is a highly toxic metalloid that can be found in insufficiently purified drinking water and exerts adverse effects on the physiology of living organisms that can negatively affect human health after subchronic exposure, causing several diseases, such as liver damage. A high-fat diet, which is increasing in frequency worldwide, can aggravate hepatic pathology. However, the mechanisms behind liver injury caused by the combinatory effects of As exposure and a high-fat diet remain unclear. In this study, we investigated such underlying mechanisms by focusing on three different aspects: As biotransformation, pathological liver damage, and differential expression of signaling pathway components. We employed mice that were fed a regular diet or a high-fat diet and exposed them to a range of arsenite concentrations (As(III), 0.05-50 mg/L) for 12 weeks. Our results showed that a high-fat diet increased the absorption of As into the liver and enhanced liver toxicity, which became progressively more severe as the As concentration increased. Co-exposure to a high-fat diet and As(III) activated PI3K/AKT and PPAR signaling as well as fatty acid metabolism pathways. In addition, the expression of proteins related to lipid cell function, lipid metabolism, and the regulation of body weight was also affected. Our study provides insights into the mechanisms that contribute to liver injury from subchronic combinatory exposure to As and a high-fat diet and showcases the importance of a healthy lifestyle, which may be of particular benefit to people living in areas with high As(III) concentrations, as a means to reduce or prevent aggravated liver damage.
Collapse
Affiliation(s)
- Zijun Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Haiyan Xiong
- Key Laboratory of the Coastal and Wetland Ecosystems, Ministry of Education, College of Environment and Ecology, Xiamen University, Xiamen, China
| | - Liping Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Qianyu Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Zhu Xiong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Hongguo Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Wei Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| |
Collapse
|
229
|
Liu Y, Liu F, Lin Z, Zheng N, Chen Y. Identification of water pollution sources and analysis of pollution trigger conditions in Jiuqu River, Luxian County, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19815-19830. [PMID: 38367117 DOI: 10.1007/s11356-024-32427-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Against the backdrop of ecological conservation and high-quality development in the Yangtze River Basin, there is an increasing demand for enhanced water pollution prevention and control in small watersheds. To delve deeper into the intricate relationship between pollutants and environmental features, as well as explore the key factors triggering pollution and their corresponding warning thresholds, this study was conducted along the Jiuqu River, a strategically managed unit in the upstream region of the Yangtze River, between 2022 and 2023. A total of seven monitoring sites were established, from which 161 valid water samples were collected. The k-nearest neighbors mutual information (KNN-MI) technique indicated that water temperature (WT) and relative humidity (RH) were the main environmental factors. The principal component analysis (PCA) of ten water quality parameters and three environmental factors unveiled the distinguishing characteristics of the primary pollution sources. Consequently, the pollution sources were categorized as treated wastewater > groundwater runoff > phytoplankton growth > abstersion wastewater > agricultural drainage. Furthermore, the regression decision tree (RDT) algorithm was used to explore the combined effects between pollutants and environmental factors, and to provide visual decision-making process and quantitative results for understanding the triggering mechanism of organic pollution in Jiuqu River. It conclusively identifies total phosphorus (TP) as the predominant triggering parameter with the threshold of 0.138 mg/L. The study is helpful to deal with potential water pollution problems preventatively and shows the interpretability and predictive performance of the RDT algorithm in water pollution prevention.
Collapse
Affiliation(s)
- Ying Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Fangfei Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Zhengjiang Lin
- Nanjing Innowater Environmental Technology Co., Ltd, Nanjing, 210000, China
| | - Nairui Zheng
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yu Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| |
Collapse
|
230
|
Dhane AS, Sarode SC, Sarode GS, Sharma NK. Rise in arsenic pollution and oral cancer: A call for action. ORAL ONCOLOGY REPORTS 2024; 9:100238. [DOI: 10.1016/j.oor.2024.100238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
|
231
|
Boffetta P, Sambati L, Sassano M. Systematic review of studies on exposure to arsenic in drinking water and cognitive and neurobehavioral effects. Crit Rev Toxicol 2024; 54:174-193. [PMID: 38533692 DOI: 10.1080/10408444.2023.2297751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 03/28/2024]
Abstract
An association between exposure to arsenic (As) and neurologic and behavioral effects has been reported in some studies, but no systematic review is available of the evidence linking As in drinking water and neurobehavioral effects after consideration of study quality and potential confounding, with focus on low-level circumstances of exposure. We conducted a systematic review and reported it in compliance with the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines, through a search of the databases PubMed, Web of Science, Scopus, and Embase. We included in the review the studies reporting results based on exposure from drinking water in humans. Endpoints were heterogeneous across studies, so we classified them into eight broad domains and developed an ad-hoc system to evaluate their methodological quality, based on three tiers. It was not possible to conduct meta-analysis because of the heterogeneity in exposure assessment and in the definition and assessment of outcomes. The search identified 18,518 articles. After elimination of duplicates and irrelevant articles, we retained 106 articles which reported results on As exposure and neurobehavioral effects, of which 22 reported risk estimates from exposure in drinking water (six among adults and 16 among children). None of the studies was conducted blindly. Among the studies in adults, two, which were conducted in highly exposed populations, were classified as high quality. These two studies were broadly consistent in reporting an association between exposure to As and decline in cognitive function; however, they provide no evidence of an association for exposure below 75 μg/L. The four lower-quality studies were based on populations with low exposure; these studies reported associations with inconsistent outcomes, few of which remained statistically significant after adjustment for multiple comparisons. Among the five high-quality studies of children, one reported an association between As in drinking water and intellectual function, whereas none of the other studies reported an association with different neurobehavioral indicators, after adjusting for potential confounders and multiple comparisons. Out of seven intermediate-quality studies, three reported an association with cognitive function or other outcomes; but sources of bias were not adequately controlled. The remaining studies were negative. The four low-quality studies did not contribute to the overall evidence because of methodological limitations. Our assessment of the available literature showed a lack of evidence for a causal association between exposure to As in drinking water and neurobehavioral effects. To clarify whether such an association exists, further studies prospectively evaluating changes in both the concentration of As in drinking water during the life course, and neurobehavioral outcomes, as well as appropriately controlling for potential confounders, are needed.
Collapse
Affiliation(s)
- Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA
- Department of Family, Population and Preventive Medicine, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Luisa Sambati
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Michele Sassano
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
232
|
Xu G, Chen H, Cong Z, Wang R, Li X, Xie Y, Wang Y, Li B. Promotion of transcription factor EB-dependent autophagic process by curcumin alleviates arsenic-caused lung oxidative stress and inflammation in mice. J Nutr Biochem 2024; 125:109550. [PMID: 38141737 DOI: 10.1016/j.jnutbio.2023.109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/29/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Arsenic is a human carcinogen widely distributed in the environment, and arsenic exposure from drinking water has received widespread attention as a global public health problem. Curcumin is a natural bioactive substance with high efficiency and low toxicity extracted from turmeric, which has a variety of biological properties such as antioxidation, anti-inflammation, anticancer, and immuno-modulatory activities. Curcumin is widely used in daily life as a food additive and dietary supplement. However, its protective effects in lung injuries by chronic arsenic exposure orally remain unexplored. In this study, curcumin treatment not only significantly accelerated arsenic elimination and improved lung tissue morphology, but also decreased arsenic-generated ROS by activating Nrf2 and its down-stream antioxidants. Further, curcumin alleviated inflammatory changes in mice exposed to arsenic for 6 and 12 weeks, as manifested by lung MPO levels, total protein and cellular levels in bronchoalveolar lavage fluid (BALF), serum IL-4 levels, and MAPK/NF-κB expression in lung tissue. Notably, our study also confirmed that curcumin could promote the expression and nuclear translocation of the transcription factor EB (TFEB), as well as activate TFEB-regulated autophagy in lung tissue of arsenic-treated mice, accompanied by inhibition of the AKT-mTOR signaling pathway. Overall, our study here suggests that natural bioactive compound curcumin could alleviate arsenic-induced pulmonary oxidative stress and inflammation in vivo, which is closely related to enhanced TFEB activity and induction of the autophagic process.
Collapse
Affiliation(s)
- Guowei Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning, PR China; Environment and Noncommunicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Haiyang Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning, PR China; Environment and Noncommunicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Zheng Cong
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning, PR China; Environment and Noncommunicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Ruiqiang Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning, PR China; Environment and Noncommunicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Xiangping Li
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning, PR China; Environment and Noncommunicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Yuxuan Xie
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning, PR China; Environment and Noncommunicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, Liaoning, PR China
| | - Yi Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning, PR China; Environment and Noncommunicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| | - Bing Li
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education (China Medical University), Shenyang, Liaoning, PR China; Environment and Noncommunicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
233
|
Han Y, Gao T, Li X, Wāng Y. Didactical approaches and insights into environmental processes and cardiovascular hazards of arsenic contaminants. CHEMOSPHERE 2024; 352:141381. [PMID: 38360414 DOI: 10.1016/j.chemosphere.2024.141381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Arsenic, as a metalloid, has the ability to move and transform in different environmental media. Its widespread contamination has become a significant environmental problem and public concern. Arsenic can jeopardize multiple organs through various pathways, influenced by environmental bioprocesses. This article provides a comprehensive overview of current research on the cardiovascular hazards of arsenic. A bibliometric analysis revealed that there are 376 papers published in 145 journals, involving 40 countries, 631 institutions, and 2093 authors, all focused on arsenic-related concerns regarding cardiovascular health. China and the U.S. have emerged as the central hubs of collaborative relationships and have the highest number of publications. Hypertension and atherosclerosis are the most extensively studied topics, with redox imbalance, apoptosis, and methylation being the primary mechanistic clues. Cardiovascular damage caused by arsenic includes arrhythmia, cardiac remodeling, vascular leakage, and abnormal angiogenesis. However, the current understanding is still inadequate over cardiovascular impairments, underlying mechanisms, and precautionary methods of arsenic, thus calling an urgent need for further studies to bridge the gap between environmental processes and arsenic hazards.
Collapse
Affiliation(s)
- Yapeng Han
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Tiantian Gao
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Xiaozhi Li
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China
| | - Yán Wāng
- Department of Toxicology, School of Public Health & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
234
|
Jhuang JR, Lee CH, Chiang CJ, Chen CJ, Lee WC. Reduced burden of Arsenic-Related cancers after water mitigation in Taiwan. ENVIRONMENT INTERNATIONAL 2024; 185:108542. [PMID: 38461779 DOI: 10.1016/j.envint.2024.108542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Epidemiological evidence has demonstrated an association between arsenic in drinking water and increased cancer incidence. This population-based study investigates the impact of a tap water supply system installation in Blackfoot disease-endemic regions of Taiwan on cancer incidence. METHODS By using the Taiwan Cancer Registry dataset, we enrolled patients aged 40-84 diagnosed with arsenic-related cancers, including hepatocellular carcinoma, small and squamous cell lung cancer, Bowen's disease, basal and squamous cell skin cancer, urothelial bladder cancer, and upper tract urothelial carcinoma between 1995 and 2019. Random-effects age-period-cohort models were used to estimate the cancer incidence data, and a stabilized kriging method was employed to interpolate incidence rates to more precise spatiotemporal units. RESULTS The results showed that the age-standardized incidence rates of all six types of studied cancers were consistently higher in Blackfoot disease-endemic areas than those in other areas from 1995 to 2019. However, the gap in incidence rates between Blackfoot disease-endemic areas and the remaining regions began to narrow approximately after the 1960 birth cohort when the tap water supply system installation commenced. For small and squamous cell lung cancer, Bowen's disease, and urothelial bladder cancer, the excess incidence rates sharply declined to null for those born after the year of arsenic mitigation. For upper tract urothelial carcinoma, the excess incidence rates decreased more gradually for those born after the year of arsenic mitigation. For hepatocellular carcinoma and basal and squamous cell skin cancer, the excess incidence rates remained constant. Spatiotemporal clusters of high incidence rates were identified in the core townships of Blackfoot disease-endemic areas. These clusters began to dissipate mainly after the 1960 birth cohort. CONCLUSION Arsenic mitigation from drinking water in Taiwan is associated with a reduced burden of small and squamous cell lung cancers, Bowen's disease, urothelial bladder cancer, and upper tract urothelial carcinoma.
Collapse
Affiliation(s)
- Jing-Rong Jhuang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Taiwan Cancer Registry, Taipei, Taiwan
| | - Chih-Hung Lee
- Department of Dermatology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Ju Chiang
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Taiwan Cancer Registry, Taipei, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; College of Medicine, Fu-Jen Catholic University, New Taipei, Taiwan
| | - Wen-Chung Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan; Taiwan Cancer Registry, Taipei, Taiwan; Institute of Health Data Analytics and Statistics, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
235
|
Qian QH, Song YP, Zhang Y, Xue H, Zhang WW, Han Y, Wāng Y, Xu DX. Gestational α-ketoglutarate supplementation ameliorates arsenic-induced hepatic lipid deposition via epigenetic reprogramming of β-oxidation process in female offspring. ENVIRONMENT INTERNATIONAL 2024; 185:108488. [PMID: 38359550 DOI: 10.1016/j.envint.2024.108488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/11/2024] [Accepted: 02/05/2024] [Indexed: 02/17/2024]
Abstract
Inorganic trivalent arsenic (iAsⅢ) at environmentally relevant levels has been found to cause developmental toxicity. Maternal exposure to iAsⅢ leads to enduring hepatic lipid deposition in later adult life. However, the exact mechanism in iAsⅢ induced hepatic developmental hazards is still unclear. In this study, we initially found that gestational exposure to iAsⅢ at an environmentally relevant concentration disturbs lipid metabolism and reduces levels of alpha-ketoglutaric acid (α-KG), an important mitochondrial metabolite during the citric acid cycle, in fetal livers. Further, gestational supplementation of α-KG alleviated hepatic lipid deposition caused by early-life exposure to iAsⅢ. This beneficial effect was particularly pronounced in female offspring. α-KG partially restored the β-oxidation process in hepatic tissues by hydroxymethylation modifications of carnitine palmitoyltransferase 1a (Cpt1a) gene during fetal development. Insufficient β-oxidation capacities probably play a crucial role in hepatic lipid deposition in adulthood following in utero arsenite exposure, which can be efficiently counterbalanced by replenishing α-KG. These results suggest that gestational administration of α-KG can ameliorate hepatic lipid deposition caused by iAsⅢ in female adult offspring partially through epigenetic reprogramming of the β-oxidation pathway. Furthermore, α-KG shows potential as an interventive target to mitigate the harmful effects of arsenic-induced hepatic developmental toxicity.
Collapse
Affiliation(s)
- Qing-Hua Qian
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Ya-Ping Song
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yu Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Hao Xue
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Wei-Wei Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yapeng Han
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yán Wāng
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, China.
| | - De-Xiang Xu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
236
|
Geng A, Lian W, Wang Y, Liu M, Zhang Y, Wang X, Chen G. The Molecular Mechanism of the Response of Rice to Arsenic Stress and Effective Strategies to Reduce the Accumulation of Arsenic in Grain. Int J Mol Sci 2024; 25:2861. [PMID: 38474107 DOI: 10.3390/ijms25052861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Rice (Oryza sativa L.) is the staple food for more than 50% of the world's population. Owing to its growth characteristics, rice has more than 10-fold the ability to enrich the carcinogen arsenic (As) than other crops, which seriously affects world food security. The consumption of rice is one of the primary ways for humans to intake As, and it endangers human health. Effective measures to control As pollution need to be studied and promoted. Currently, there have been many studies on reducing the accumulation of As in rice. They are generally divided into agronomic practices and biotechnological approaches, but simultaneously, the problem of using the same measures to obtain the opposite results may be due to the different species of As or soil environments. There is a lack of systematic discussion on measures to reduce As in rice based on its mechanism of action. Therefore, an in-depth understanding of the molecular mechanism of the accumulation of As in rice could result in accurate measures to reduce the content of As based on local conditions. Different species of As have different toxicity and metabolic pathways. This review comprehensively summarizes and reviews the molecular mechanisms of toxicity, absorption, transport and redistribution of different species of As in rice in recent years, and the agronomic measures to effectively reduce the accumulation of As in rice and the genetic resources that can be used to breed for rice that only accumulates low levels of As. The goal of this review is to provide theoretical support for the prevention and control of As pollution in rice, facilitate the creation of new types of germplasm aiming to develop without arsenic accumulation or within an acceptable limit to prevent the health consequences associated with heavy metal As as described here.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yihan Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Minghao Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Yue Zhang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
237
|
Askari M, Soleimani H, Babakrpur Nalosi K, Saeedi R, Abolli S, Ghani M, Abtahi M, Alimohammadi M. Bottled water safety evaluation: A comprehensive health risk assessment of oral exposure to heavy metals through deterministic and probabilistic approaches by Monte Carlo simulation. Food Chem Toxicol 2024; 185:114492. [PMID: 38325637 DOI: 10.1016/j.fct.2024.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024]
Abstract
The consumption of bottled water has witnessed substantial global expansion in recent times. This study aimed to quantitatively evaluate the concentrations of eight heavy metals (As, Ba, Cd, Cr, Mn, Mo, Ni, and Zn) in 71 high-consumption bottled water brands in Iran. Non-carcinogenic and carcinogenic risk assessments were conducted using both deterministic and probabilistic approaches. Point estimation utilizing the Hazard Quotient (HQ) formula and sensitivity analysis employing the Monte Carlo Simulation (MCS) method through 10,000 repetitions in Oracle Crystal Ball® was used to ascertain the health risks associated with heavy metal exposure. Heavy metal concentrations were quantified through Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). HQ point estimation results indicated that Cr exhibited the highest mean HQ value, whereas Cd demonstrated the lowest. In the probabilistic approach, the highest 95 percentile values were observed for Cr and Mo at 3.9E-01, while the lowest values were recorded for Cr and Mn at 1.10E-02. Heavy metal concentrations emerged as critical factors influencing non-carcinogenic and carcinogenic risks across all groups in the sensitivity analysis. The findings highlight the need for ongoing monitoring, research, and targeted regulations to address health risks from heavy metal exposure in bottled water and ensure public well-being.
Collapse
Affiliation(s)
- Masoomeh Askari
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Soleimani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamal Babakrpur Nalosi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Abolli
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Student's Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Ghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnoosh Abtahi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Alimohammadi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Water Quality Research (CWQR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Health Equity Research Centre (HERC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
238
|
Chen P, Liu Y, Sun GX. Evaluation of water management on arsenic methylation and volatilization in arsenic-contaminated soils strengthened by bioaugmentation and biostimulation. J Environ Sci (China) 2024; 137:515-526. [PMID: 37980035 DOI: 10.1016/j.jes.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 11/20/2023]
Abstract
Arsenic (As) fate in paddy fields has been one of the most significant current issues due to the strong As accumulation potential of rice plants under flooded conditions. However, no attempt was done to explore As methylation and volatilization under non-flooded conditions. Herein, we investigated the effects of water management on As methylation and volatilization in three arsenic-contaminated soils enhanced by biostimulation with straw-derived organic matter and bioaugmentation with genetic engineered Pseudomonas putida KT2440 (GE P. putida). Under flooded conditions, the application of biochar (BC), rice straw (RS) and their combination (BC+RS) increased total As in porewater. However, these effects were greatly attenuated under non-flooded conditions. Compared with RS amendment alone, the combination of GE P. putida and RS further promoted the As methylation and volatilization, and the promotion percentage under non-flooded conditions were significantly higher than that under flooded conditions. The combined GE P. putida and RS showed the highest efficiency in As methylation (88 µg/L) and volatilization (415.4 µg/(kg·year)) in the non-flooded soil with moderate As contamination. Finally, stepwise multiple linear regression analysis presented that methylated As, DOC and pH in porewater were the most important factors contributing to As volatilization. Overall, our findings suggest that combination of bioaugmentation with GE P. putida and biostimulation with RS/BC+RS is a potential strategy for bioremediation of arsenic-contaminated soils by enhancing As methylation and volatilization under non-flooded conditions.
Collapse
Affiliation(s)
- Peng Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yi Liu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Guo-Xin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
239
|
Xie X, Yan L, Sun S, Pi K, Shi J, Wang Y. Arsenic biogeochemical cycling association with basin-scale dynamics of microbial functionality and organic matter molecular composition. WATER RESEARCH 2024; 251:121117. [PMID: 38219691 DOI: 10.1016/j.watres.2024.121117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/05/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Geogenic arsenic (As)-contaminated groundwater is a sustaining global health concern that is tightly constrained by multiple interrelated biogeochemical processes. However, a complete spectrum of the biogeochemical network of high-As groundwater remains to be established, concurrently neglecting systematic zonation of groundwater biogeochemistry on the regional scale. We uncovered the geomicrobial interaction network governing As biogeochemical pathways by merging in-field hydrogeochemical monitoring, metagenomic analyses, and ultrahigh resolution mass spectrometry (FT-ICR MS) characterization of dissolved organic matter. In oxidizing to weakly reducing environments, the nitrate-reduction and sulfate-reduction encoding genes (narGHI, sat) inhibited the dissolution of As-bearing iron minerals, leading to lower As levels in groundwater. In settings from weakly to moderately reducing, high abundances of sulfate-reduction and iron-transport encoding genes boosted iron mineral dissolution and consequent As release. As it evolved to strongly reducing stage, elevated abundance of methane cycle-related genes (fae, fwd, fmd) further enhanced As mobilization in part by triggering the formation of gaseous methylarsenic. During redox cycling of N, S, Fe, C and As in groundwater, As migration to groundwater and immobilization in mineral particles are geochemically constrained by basin-scale dynamics of microbial functionality and DOM molecular composition. The study constructs a theoretical model to summarize new perspectives on the biogeochemical network of As cycling.
Collapse
Affiliation(s)
- Xianjun Xie
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China.
| | - Lu Yan
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| | - Shige Sun
- Central Southern China Electric Power Design Institute Co, LTD. of China Power Engineering Consulting Group, Wuhan 430074, China
| | - Kunfu Pi
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| | - Jianbo Shi
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| | - Yanxin Wang
- State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Ministry of Ecology and Environment, Wuhan 430074, China; MOE Key Laboratory of Groundwater Quality and Health, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
240
|
Zhu C, Fryar AE, Apps J. Inorganic Hydrogeochemistry in the 21st Century. GROUND WATER 2024; 62:174-183. [PMID: 37482948 DOI: 10.1111/gwat.13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 06/30/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Chemical and isotopic processes occur in every segment of the hydrological cycle. Hydrogeochemistry-the subdiscipline that studies these processes-has seen a transformation from "witch's brew" to credible science since 2000. Going forward, hydrogeochemical research and applications are critical to meeting urgent societal needs of climate change mitigation and clean energy, such as (1) removing CO2 from the atmosphere and storing gigatons of CO2 in soils and aquifers to achieve net-zero emissions, (2) securing critical minerals in support of the transition from fossil fuels to renewable energies, and (3) protecting water resources by adapting to a warming climate. In the last two decades, we have seen extensive activity and progress in four research areas of hydrogeochemistry related to water-rock interactions: arsenic contamination of groundwater; the use of isotopic and chemical tracers to quantify groundwater recharge and submarine groundwater discharge; the kinetics of chemical reactions and the mineral-water interface's control of contaminant fate and transport; and the transformation of geochemical modeling from an expert-only exercise to a widely accessible tool. In the future, embracing technological advances in machine learning, cyberinfrastructure, and isotope analytical tools will allow breakthrough research and expand the role of hydrogeochemistry in meeting society's needs for climate change mitigation and the transition from fossil fuels to renewable energies.
Collapse
Affiliation(s)
| | - Alan E Fryar
- Department of Earth and Environmental Sciences, University of Kentucky, 101 Slone Bldg., Lexington, KY, 40506-0053, USA
| | - John Apps
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94705, USA
| |
Collapse
|
241
|
Cao R, Kang G, Zhang W, Zhou J, Xie W, Liu Z, Xu L, Hu F, Li Z, Li H. Biochar loaded with ferrihydrite and Bacillus pseudomycoides enhances remediation of co-existed Cd(II) and As(III) in solution. BIORESOURCE TECHNOLOGY 2024; 395:130323. [PMID: 38228221 DOI: 10.1016/j.biortech.2024.130323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/18/2024]
Abstract
Bioremediation is one of the effective ways for heavy metal remediation. Iron-modified biochar (F@BC) loaded with Bacillus pseudomycoides (BF@BC) was synthesized to remove the coexistence of cadmium (Cd) and arsenic (As) in solutions. The results showed that B. pseudomycoides significantly increased the removal rate of Cd(II) by enhancing the specific surface area and Si-containing functional groups of biochar (BC). The surface of F@BC was enriched with Fe-containing functional groups, significantly improving As(III) adsorption. The combination of ferrihydrite and strains on BF@BC enhanced the removal of Cd(II) and As(III). It also promoted the oxidation of As(III) by producing an abundance of hydroxyl radicals (·OH). The maximum saturated adsorption capacity of BF@BC for Cd(II) and As(III) increased by 52.47% and 2.99 folds compared with BC, respectively. This study suggests that biochar loaded with Fe and bacteria could be sustainable for the remediation of the coexistence of Cd(II) and As(III) in solutions.
Collapse
Affiliation(s)
- Rui Cao
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Guodong Kang
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, Jiangsu, 210042, China
| | - Weiwen Zhang
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jihai Zhou
- Provincial Collaborative Innovation Center for Restoration and Reconstruction of Degraded Ecosystems in Wanjiang Basin, College of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Wangliang Xie
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhenzhen Liu
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Li Xu
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan, 572000, China
| | - Feng Hu
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu, 210095, China
| | - Zhen Li
- State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, Chengdu, Sichuan, 610059, China.
| | - Huixin Li
- Laboratory of Soil Ecology, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
242
|
Wang ZW, Yang G, Chen J, Zhou Y, Núñez Delgado A, Cui HL, Duan GL, Rosen BP, Zhu YG. Fundamentals and application in phytoremediation of an efficient arsenate reducing bacterium Pseudomonas putida ARS1. J Environ Sci (China) 2024; 137:237-244. [PMID: 37980011 DOI: 10.1016/j.jes.2023.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 11/20/2023]
Abstract
Arsenic is a ubiquitous environmental pollutant. Microbe-mediated arsenic bio-transformations significantly influence arsenic mobility and toxicity. Arsenic transformations by soil and aquatic organisms have been well documented, while little is known regarding effects due to endophytic bacteria. An endophyte Pseudomonas putida ARS1 was isolated from rice grown in arsenic contaminated soil. P. putida ARS1 shows high tolerance to arsenite (As(III)) and arsenate (As(V)), and exhibits efficient As(V) reduction and As(III) efflux activities. When exposed to 0.6 mg/L As(V), As(V) in the medium was completely converted to As(III) by P. putida ARS1 within 4 hr. Genome sequencing showed that P. putida ARS1 has two chromosomal arsenic resistance gene clusters (arsRCBH) that contribute to efficient As(V) reduction and As(III) efflux, and result in high resistance to arsenicals. Wolffia globosa is a strong arsenic accumulator with high potential for arsenic phytoremediation, which takes up As(III) more efficiently than As(V). Co-culture of P. putida ARS1 and W. globosa enhanced arsenic accumulation in W. globosa by 69%, and resulted in 91% removal of arsenic (at initial concentration of 0.6 mg/L As(V)) from water within 3 days. This study provides a promising strategy for in situ arsenic phytoremediation through the cooperation of plant and endophytic bacterium.
Collapse
Affiliation(s)
- Ze-Wen Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guang Yang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jian Chen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China
| | - Avelino Núñez Delgado
- Department of Soil Science and Agricultura Chemistry, Engineering Polytechnic School, University of Santiago de Compostela, Campus Univ. s/n, 27002, Lugo, Spain
| | - Hui-Ling Cui
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gui-Lan Duan
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL, 33199, USA
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
243
|
Wang Q, Fang X, Sun B, Zhu K, Yao M, Wei S, Zhang A. Rosa roxburghii Tratt juice inhibits NF-κB and increases IL-2 to alleviates the Foxp3-mediated Tregs imbalance in the peripheral blood of arseniasis patients. Food Sci Biotechnol 2024; 33:935-944. [PMID: 38371687 PMCID: PMC10866849 DOI: 10.1007/s10068-023-01384-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/19/2023] [Accepted: 07/06/2023] [Indexed: 02/20/2024] Open
Abstract
Arsenic can cause immune inflammation, which is the basis of arsenic-induced damage to multiple organs and systems. Forkhead box P3 (Foxp3)-labelled CD4+CD25+ regulatory T cells (Tregs) play an essential role in maintaining immune homeostasis. Nuclear factor-κb (NF-κB) and Interleukin-2 (IL-2) are critical regulators of Foxp3. Rosa roxburghii Tratt (RRT) is an edible medicinal plant with anti-inflammation effects. In this study, a control group (n = 41) and an arseniasis group (n = 209) were recruited, and screened subjects from the arseniasis patients for RRTJ (n = 46) or placebo (n = 43) to explore the possible mechanism by which RRT alleviates immune inflammation. The results indicated that RRTJ can inhibits NF-κB and increases IL-2, and alleviates the Foxp3-mediated Tregs imbalance in the peripheral blood of arseniasis patients. In summary, these findings suggest a novel intervention or therapeutic target for immune inflammation in arseniasis patients and provide new evidence that RRTJ inhibits immune inflammation. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s10068-023-01384-0.
Collapse
Affiliation(s)
- Qi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou People’s Republic of China
| | - Xiaolin Fang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou People’s Republic of China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou People’s Republic of China
| | - Kai Zhu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou People’s Republic of China
| | - Maolin Yao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou People’s Republic of China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou People’s Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, 550025 Guizhou People’s Republic of China
| |
Collapse
|
244
|
Xu Y, Zeng Q, Zhang A. Assessing the mechanisms and adjunctive therapy for arsenic-induced liver injury in rats. ENVIRONMENTAL TOXICOLOGY 2024; 39:1197-1209. [PMID: 37902164 DOI: 10.1002/tox.24008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/03/2023] [Accepted: 10/09/2023] [Indexed: 10/31/2023]
Abstract
Environmental arsenic exposure is a significant global public health concern. Previous studies have demonstrated the association between arsenic-induced liver injury and oxidative stress as well as ferroptosis. However, the knowledge of the interactions among these mechanisms remains limited. Moreover, there is a lack of research on potential therapeutic interventions for liver injury resulting from arsenic exposure. To address these limitations, we established a rat model with liver injury caused by arsenic exposure and investigated the impact of the nuclear factor E2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPx4) signaling pathway and ferroptosis on arsenic-induced liver injury. Our findings revealed that arsenic increased Nrf2 expression and decreased GPx4 expression in the rat liver. This was accompanied by a substantial generation of reactive oxygen species and disruption of the antioxidant defense system, ultimately promoting liver injury through ferroptosis. Subsequently, we conducted intervention experiments using Rosa roxburghii Tratt (RRT) in rats exposed to arsenic. The results showed that the detrimental effects mentioned earlier were partially alleviated following RRT intervention. This study offers preliminary evidence that persistent activation of Nrf2 by arsenic triggers an adaptive antioxidant response, leading to liver injury through the promotion of ferroptosis. Additionally, we discovered that RRT inhibits Nrf2-mediated adaptive antioxidant responses by reducing hepatic ferroptosis, thereby mitigating liver injury caused by arsenic exposure in rats. Our study contributes to a deeper understanding of the molecular mechanisms underlying liver injury resulting from arsenic exposure. Furthermore, our findings may facilitate the identification of a potential edible and medicinal plant extracts that could be utilized to develop a more effective adjunctive treatment approach.
Collapse
Affiliation(s)
- Yuyan Xu
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, China
| | - Qibing Zeng
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, China
| | - Aihua Zhang
- The key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education & School of Public Health, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, China
| |
Collapse
|
245
|
Yang Y, Zhou M, Huang Y, Ye X, Mo Y, Huang Y, Wang S. LCP1-mediated cytoskeleton alterations involve in arsenite-triggered malignant phenotype of human immortalized prostate stromal cells. Food Chem Toxicol 2024; 186:114548. [PMID: 38417537 DOI: 10.1016/j.fct.2024.114548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/06/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
The connection between continuous arsenic exposure and prostate cancer is already established. However, the exact mechanisms of arsenic tumorigenesis are far from clear. Here, we employed human prostate stromal immortalized cells (WPMY-1) continuous exposure to 1 and 2 μM arsenite for 29 weeks to identify the malignant phenotype and explore the underlying molecular mechanism. As expected, continuous low-dose arsenite exposure led to the malignant phenotype of WPMY-1 cells. Quantitative proteomics identified 517 differentially expressed proteins (DEPs), of which the most remarkably changed proteins (such as LCP1 and DDX58, etc.) and the bioinformatic analysis were focused on the regulation of cytoskeleton, cell adhesion, and migration. Further, cell experiments showed that continuous arsenite exposure altered cytoskeleton structure, enhanced cell adhesive capability, and raised the levels of reactive oxygen species (ROS), ATM, p-ATM, p-ERK1/2, and LCP1 proteins. N-acetylcysteine (NAC) treatment antagonized the increase of LCP1 proteins, and LCP1 knockdown partially restored F-actin organization caused by arsenic. Overall, the results demonstrated that ROS-ATM-ERK1/2 signaling pathway was involved in the activation of LCP1, leading to cytoskeleton alterations. These alterations are believed to play a significant role in arsenite-triggered tumor microenvironment cell-acquired malignant phenotype, which could provide potential biomarkers with therapeutic implications for prostate cancer.
Collapse
Affiliation(s)
- Yiping Yang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Menghan Zhou
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Yurun Huang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Xiaotong Ye
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Yingxi Mo
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Yi Huang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China
| | - Shan Wang
- Department of Research, Guangxi Medical University Cancer Hospital, Nanning, 530021, China.
| |
Collapse
|
246
|
Sarkar S, Das K, Mukherjee A. Groundwater Salinity Across India: Predicting Occurrences and Controls by Field-Observations and Machine Learning Modeling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3953-3965. [PMID: 38359304 DOI: 10.1021/acs.est.3c06525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Elevated groundwater salinity is unsuitable for drinking and harmful to crop production. Thus, it is crucial to determine groundwater salinity distribution, especially where drinking and agricultural water requirements are largely supported by groundwater. This study used field observation (n = 20,994)-based machine learning models to determine the probabilistic distribution of elevated groundwater salinity (electrical conductivity as a proxy, >2000 μS/cm) at 1 km2 across parts of India for near groundwater-table conditions. The final predictions were made by using the best-performing random forest model. The validation performance also demonstrated the robustness of the model (with 77% accuracy). About 29% of the study area (including 25% of entire cropland areas) was estimated to have elevated salinity, dominantly in northwestern and peninsular India. Also, parts of the northwestern and southeastern coasts, adjoining the Arabian Sea and the Bay of Bengal, were assessed with elevated salinity. The climate was delineated as the dominant factor influencing groundwater salinity occurrence, followed by distance from the coast, geology (lithology), and depth of groundwater. Consequently, ∼330 million people, including ∼109 million coastal populations, were estimated to be potentially exposed to elevated groundwater salinity through groundwater-sourced drinking water, thus substantially limiting clean water access.
Collapse
Affiliation(s)
- Soumyajit Sarkar
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Kousik Das
- Department of Environmental Science and Engineering, SRM University-AP, Amravati, Andhra Pradesh 522502, India
- Centre for Geospatial Technology, SRM University-AP, Amravati, Andhra Pradesh 522502, India
| | - Abhijit Mukherjee
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
- Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| |
Collapse
|
247
|
Zheng X, Guo C, Lv Z, Li J, Jiang H, Li S, Yu L, Zhang Z. Novel findings from arsenic‑lead combined exposure in mouse testicular TM4 Sertoli cells based on transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169611. [PMID: 38157908 DOI: 10.1016/j.scitotenv.2023.169611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Arsenic (As) and lead (Pb) exist widespread in daily life, and they are common harmful substances in the environment. As and Pb pollute the environment more often in combination than in isolation. The TM4 Sertoli cell line is one of the most common normal mouse testicular Sertoli cell lines. In vitro, we found that the type of combined action of As and Pb on TM4 Sertoli cells was additive action by using the isobologram analysis. To further investigate the combined toxicity of As and Pb, we performed mRNA and miRNA sequencing on TM4 Sertoli cells exposed to As alone (4 μM NaAsO2) and AsPb combined (4 μM NaAsO2 and 150 μM PbAc), respectively. Compared with the control group, 1391 differentially expressed genes (DEGs) and 6 differentially expressed miRNAs (DEMs) were identified in the As group. Compared with the control group, 2384 DEGs and 44 DEMs were identified in the AsPb group. Compared with the As group, 387 DEGs and 4 DEMs were identified in the AsPb group. Through data analysis, we discovered for the first time that As caused the dysfunction of cholesterol synthesis and energy metabolism, and disrupted cyclic adenosine monophosphate signaling pathway and wingless/integrated (Wnt) signaling pathway in TM4 Sertoli cells. In addition to affecting cholesterol synthesis and energy metabolism, AsPb combined exposure also up-regulated the antioxidant reaction level of TM4 Sertoli cells. Meanwhile, the Wnt signaling pathway of TM4 Sertoli cells was relatively normal when exposed to AsPb. In conclusion, at the transcription level, the combined action of AsPb is not merely additive effect, but involves synergistic and antagonistic effects. The new discovery of the joint toxic mechanism of As and Pb breaks the stereotype of the combined action and provides a good theoretical basis and research clue for future study of the combined-exposure of harmful materials.
Collapse
Affiliation(s)
- Xiaoyan Zheng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Changming Guo
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Zhanjun Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jiayi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Huijie Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Siyu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Lu Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zhigang Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
248
|
Li X, Li G, Cui S, Hou Y, Li Z, Yan Z, Huang T, Zhao T, Su H, Zhou B, Zhang J, Ao R, Zhao H, Qiu Y, Liu Z, Xie J. Arsenic disturbs neural tube closure involving AMPK/PKB-mTORC1-mediated autophagy in mice. Food Chem Toxicol 2024; 186:114538. [PMID: 38387523 DOI: 10.1016/j.fct.2024.114538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/01/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Arsenic exposure is a significant risk factor for folate-resistant neural tube defects (NTDs), but the potential mechanism is unclear. In this study, a mouse model of arsenic-induced NTDs was established to investigate how arsenic affects early neurogenesis leading to malformations. The results showed that in utero exposure to arsenic caused a decline in the normal embryos, an elevated embryo resorption, and a higher incidence of malformed embryos. Cranial and spinal deformities were the main malformation phenotypes observed. Meanwhile, arsenic-induced NTDs were accompanied by an oxidant/antioxidant imbalance manifested by elevated levels of reactive oxygen species (ROS) and decreased antioxidant activities. In addition, changes in the expression of autophagy-related genes and proteins (ULK1, Atg5, LC3B, p62) as well as an increase in autophagosomes were observed in arsenic-induced aberrant brain vesicles. Also, the components of the upstream pathway regulating autophagy (AMPK, PKB, mTOR, Raptor) were altered accordingly after arsenic exposure. Collectively, our findings propose a mechanism for arsenic-induced NTDs involving AMPK/PKB-mTORC1-mediated autophagy. Blocking autophagic cell death due to excessive autophagy provides a novel strategy for the prevention of folate-resistant NTDs, especially for arsenic-exposed populations.
Collapse
Affiliation(s)
- Xiujuan Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Gexuan Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuo Cui
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Yue Hou
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Zelin Li
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Ziyi Yan
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China; School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Tingjuan Huang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Taoran Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Hongkai Su
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Bingrui Zhou
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Ruifang Ao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Hong Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China
| | - Yulan Qiu
- School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhizhen Liu
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
249
|
Aklilu T, Sahilu G, Ambelu A. Public health risks associated with drinking water consumption in the upper Awash River sub-basin, Ethiopia, sub-Saharan Africa. Heliyon 2024; 10:e24790. [PMID: 38314286 PMCID: PMC10837571 DOI: 10.1016/j.heliyon.2024.e24790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/24/2023] [Accepted: 01/15/2024] [Indexed: 02/06/2024] Open
Abstract
The Upper Awash sub-basin characterized by urban, industrial, agricultural and population growth, has impacted the quality of its water sources. This study focuses on the assessment of public health risks associated with drinking water sources in the sub-basin. In accordance with WHO guidelines, 120 water samples were collected from 60 water supply schemes in dry and wet seasons located in areas with low and high water pollution risk (WPR). Multi-meter, Photometer, Digital Arsenator, and Microbiological test kit measured the concentration of parameters. The assessment uses methods of hazard identification, exposure and dose-response analysis, and risk characterization, including Hazard Quotient (HQ), Cancer Risk (CR), Hazard Index (HI), and probability of infection. Monte Carlo simulation analyzes non-cancer risks from Nitrite, Nitrate, Chromium, Iron, Fluoride, and Arsenic, and CRs from Chromium and Arsenic, and infection risks from Escherichia coli (E.coli). As a result, the Hazard Quotient (HQ) of Nitrate was beyond unity (HQ > 1) in the dry season for all groups. HQ of Chromium was HQ > 1 for Women (1.1E+00) and Children (1.4E+00) in the wet season in the high WPR area. Chromium HQ > 1 for children (1.4E+00) in the wet season and Fluoride (HQ > 1) for Children (3.2E+00) in the dry season in the low WPR area. Arsenic CR was above 1 in 10,000 persons for children in the dry season, for all groups, and for women and children in the wet season in the high WPR areas. The CR of chromium ranged from 1 in 1000 persons, which is beyond the limit. Moreover, the Hazard Index (HI) was higher than the unity (HI > 1) for most cases. All E coli infection risks daily and annually exceeded the acceptable risks. Therefore, Public health concerns in the Sub-basin were quantified, and evidences were generated for risk management to undertake source protection through integrated watershed management and appropriate water treatment technologies.
Collapse
Affiliation(s)
- Tesfa Aklilu
- Ethiopian Institute of Water Resources, Addis Ababa University, Ethiopia
| | - Geremew Sahilu
- Civil and Environmental Engineering, School of Civil and Environmental Engineering, Addis Ababa Institute of Technology, Addis Ababa University, Ethiopia
| | - Argaw Ambelu
- Environmental Health, Division of Water and Health, Ethiopian Institute of Water Resources, Addis Ababa University, Ethiopia
| |
Collapse
|
250
|
Chi Z, Xie X, Wang Y. Understanding spatial heterogeneity of groundwater arsenic concentrations at a field scale: Taking the Datong Basin as an example to explore the significance of hydrogeological factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120112. [PMID: 38244408 DOI: 10.1016/j.jenvman.2024.120112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024]
Abstract
The spatial heterogeneity of arsenic (As) concentration exceeding the 10 μg/L WHO limit at the field scale poses significant challenges for groundwater utilization, but it remains poorly understood. To address this knowledge gap, the Daying site was selected as a representative case (As concentration ranged from 1.55 to 2237 μg/L within a 250 × 150 m field), and a total of 28 groundwater samples were collected and analyzed for hydrochemistry, As speciation, and stable hydrogen and oxygen isotope. Principal component analysis was employed to identify the primary factors controlling groundwater hydrochemistry. Results indicate that the spatial heterogeneity of groundwater As concentration is primarily attributed to vertical recharge and competitive adsorption. Low vertical recharge introduces reductive substances, such as dissolved organic matter, which enhances the reductive environment and facilitates microbial-induced reduction and mobilization of As. Conversely, areas with high vertical recharge introduce oxidizing agents like SO42- and DO, which act as preferred electron acceptors over Fe(III), thus inhibiting the reductive dissolution of Fe(III) oxides and the mobilization of As. PCA and hydrochemistry jointly indicate that spatial variability of P and its competitive adsorption with As are important factors leading to spatial heterogeneity of groundwater As concentration. However, the impacts of pH, Si, HCO3-, and F- on As adsorption are insignificant. Specifically, low vertical recharge can increase the proportion of As(III) and promote P release through organic matter mineralization. This process further leads to the desorption of As, indicating a synergistic effect between low vertical recharge and competitive adsorption. This field-scale spatial heterogeneity underscores the critical role of hydrogeological conditions. Sites with close hydraulic connections to surface water often exhibit low As concentrations in groundwater. Therefore, when establishing wells in areas with widespread high-As groundwater, selecting sites with open hydrogeological conditions can prove beneficial.
Collapse
Affiliation(s)
- Zeyong Chi
- Research Institute of Poyang Lake, Jiangxi Academy of Sciences, Nanchang, 330012, China; State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China.
| | - Xianjun Xie
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China.
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, 430074, Wuhan, China
| |
Collapse
|