201
|
Eilers A, Whitfield J, Shah B, Spadoni C, Desmond H, Ham J. Direct inhibition of c-Jun N-terminal kinase in sympathetic neurones prevents c-jun promoter activation and NGF withdrawal-induced death. J Neurochem 2001; 76:1439-54. [PMID: 11238729 DOI: 10.1046/j.1471-4159.2001.00150.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
c-Jun N-terminal kinases (JNKs) regulate gene expression by phosphorylating transcription factors, such as c-Jun. Studies with JNK: knockout mice suggest that JNK activity may be required for excitotoxin-induced apoptosis in the adult hippocampus and for apoptosis in the developing embryonic neural tube. Here we investigate the role of JNKs in classical neurotrophin-regulated developmental neuronal death by using nerve growth factor (NGF)-dependent sympathetic neurones. In this system, NGF withdrawal leads to an increase in JNK activity, an increase in c-Jun protein levels and c-Jun N-terminal phosphorylation before the cell death commitment point, and c-Jun activity is required for cell death. To inhibit JNK activity in sympathetic neurones we have used two different JNK inhibitors that act by distinct mechanisms: the compound SB 203580 and the JNK binding domain (JBD) of JNK interacting protein 1 (JIP-1). We demonstrate that JNK activity is required for c-Jun phosphorylation, c-jun promoter activation and NGF withdrawal-induced apoptosis. We also show that ATF-2, a c-Jun dimerization partner that can regulate c-jun gene expression, is activated following NGF deprivation. Finally, by co-expressing the JBD and a regulatable c-Jun dominant negative mutant we demonstrate that JNK and AP-1 function in the same pro-apoptotic signalling pathway after NGF withdrawal.
Collapse
Affiliation(s)
- A Eilers
- Eisai London Research Laboratories, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
202
|
Ropert C, Almeida IC, Closel M, Travassos LR, Ferguson MA, Cohen P, Gazzinelli RT. Requirement of mitogen-activated protein kinases and I kappa B phosphorylation for induction of proinflammatory cytokines synthesis by macrophages indicates functional similarity of receptors triggered by glycosylphosphatidylinositol anchors from parasitic protozoa and bacterial lipopolysaccharide. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3423-31. [PMID: 11207300 DOI: 10.4049/jimmunol.166.5.3423] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the present study, we evaluated the ability of GPI-anchored mucin-like glycoproteins purified from Trypanosoma cruzi trypomastigotes (tGPI-mucin) to trigger phosphorylation of different mitogen-activated protein kinases (MAPKs) and related transcription factors in inflammatory macrophages. Kinetic experiments show that the peak of extracellular signal-related kinase (ERK)-1/ERK-2, stress-activated protein kinase (SAPK) kinase-1/mitogen-activated protein kinase (MAPK) kinase-4, and p38/SAPK-2, phosphorylation occurs between 15 and 30 min after macrophage stimulation with tGPI-mucin or GPI anchors highly purified from tGPI-mucins (tGPI). The use of the specific inhibitors of ERK-1/ERK-2 (PD 98059) and p38/SAPK-2 (SB 203580) phosphorylation also indicates the role of MAPKs, with possible involvement of cAMP response element binding protein, in triggering TNF-alpha and IL-12 synthesis by IFN-gamma-primed-macrophages exposed to tGPI or tGPI-mucin. In addition, tGPI-mucin and tGPI were able to induce phosphorylation of I kappa B, and the use of SN50 peptide, an inhibitor of NF-kappa B translocation, resulted in 70% of TNF-alpha synthesis by macrophages exposed to tGPI-mucin. Finally, the similarity of patterns of MAPK and I kappa B phosphorylation, the concentration of drugs required to inhibit cytokine synthesis, as well as cross-tolerization exhibited by macrophages exposed to tGPI, tGPI-mucin, or bacterial LPS, suggest that receptors with the same functional properties are triggered by these different microbial glycoconjugates.
Collapse
Affiliation(s)
- C Ropert
- René Rachou Research Center-Fundaçao Oswaldo Cruz, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | | | |
Collapse
|
203
|
Nishio H, Matsui K, Tsuji H, Tamura A, Suzuki K. Immunohistochemical study of the phosphorylated and activated form of c-Jun NH2-terminal kinase in human aorta. THE HISTOCHEMICAL JOURNAL 2001; 33:167-71. [PMID: 11508340 DOI: 10.1023/a:1017952310800] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
c-Jun NH2-terminal kinase is a key enzyme mediating the cellular response to a variety of extracellular stimuli. In the present study, we performed immunohistochemical studies of the expression of the phosphorylated form of the kinase in 51 human aortas of various ages. The phosphorylated kinase immunoreactivity was strongly detected in vascular smooth muscle cells of the medial vessel layer of atherosclerotic lesions from adults. Immunoreactivity was also strongly detected in similar cells of the intima. On the other hand, immunoreactive phosphorylated kinase was only weakly defected in the medial vascular smooth muscle cells of non-atherosclerotic lesions from adults. We also investigated the expression of the phosphorylated kinase in infant aortas. In contrast to its weak immunoreactivity in adult non-atherosclerotic lesions, the kinase immunoreactivity was detected in high amounts in vascular smooth muscle cells of non-atherosclerotic lesions from infants. Thus, the abundant expression of the phosphorylated kinase in these cells in atherosclerotic lesions of adults and non-atherosclerotic lesions of infants suggests that the activation of c-Jun NH2-terminal kinase may be an important element initiating the proliferation of vascular smooth muscle cells during atherogenesis and aortic development.
Collapse
Affiliation(s)
- H Nishio
- Department of Legal Medicine, Osaka Medical College, Takatsuki, Japan
| | | | | | | | | |
Collapse
|
204
|
Ye J, Zeidler P, Young SH, Martinez A, Robinson VA, Jones W, Baron P, Shi X, Castranova V. Activation of mitogen-activated protein kinase p38 and extracellular signal-regulated kinase is involved in glass fiber-induced tumor necrosis factor-alpha production in macrophages. J Biol Chem 2001; 276:5360-7. [PMID: 11087751 DOI: 10.1074/jbc.m008814200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a previous study, we demonstrated that the length of glass fibers was a critical determinant of fiber potency in induction of tumor necrosis factor (TNF)-alpha and that activation of NF-kappaB was an important factor in this response. In the present study, we analyzed the role of mitogen-activated protein (MAP) kinases in the induction of TNF-alpha by glass fibers. Glass fibers induced phosphorylation of MAP kinases, p38, and ERK in primary rat alveolar macrophages, and this phosphorylation was associated with TNF-alpha gene expression. Long fibers were more potent than short fibers in activation of MAP kinases. Results from mechanistic analysis support that MAP kinases activate transcription factor c-Jun. The activated c-Jun acts on the TNF-alpha gene promoter through two binding sites, the cyclic AMP response element and the activator protein 1-binding site. These results suggest that in addition to the NF-kappaB pathway for TNF-alpha production, glass fibers are able to activate c-Jun through MAP kinase pathways that lead to induction of TNF-alpha expression.
Collapse
Affiliation(s)
- J Ye
- National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Yamagishi S, Yamada M, Ishikawa Y, Matsumoto T, Ikeuchi T, Hatanaka H. p38 mitogen-activated protein kinase regulates low potassium-induced c-Jun phosphorylation and apoptosis in cultured cerebellar granule neurons. J Biol Chem 2001; 276:5129-33. [PMID: 11083864 DOI: 10.1074/jbc.m007258200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cultured rat cerebellar granule neurons are widely used as a model system for studying neuronal apoptosis. After maturation by culturing in medium containing 26 mm potassium (high K(+)), changing to medium containing 5 mm potassium (low K(+); LK) rapidly induces neuronal apoptosis. Then over 50% of granule cells die within 24 h. However, the molecular mechanisms by which the LK-induced apoptosis occurs in cultured cerebellar granule cells remain unclear. In the present study, we found that p38 MAP kinase (p38) was an important factor for LK-induced apoptosis. Three hours after changing to LK medium, p38 was markedly activated. In addition, SB203580, a specific inhibitor of p38, strongly inhibited the phosphorylation and expression of c-Jun in LK-induced apoptosis of cultured cerebellar granule cells. In vitro kinase assay using glutathione S-transferase-c-Jun as a substrate showed that p38 directly phosphorylated c-Jun. Furthermore, in the presence of SB203580, about 80% of neurons survived. These results indicate that p38 regulates LK-induced apoptosis of cerebellar granule neurons.
Collapse
Affiliation(s)
- S Yamagishi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
206
|
Vanhoutte P, Nissen JL, Brugg B, Gaspera BD, Besson MJ, Hipskind RA, Caboche J. Opposing roles of Elk-1 and its brain-specific isoform, short Elk-1, in nerve growth factor-induced PC12 differentiation. J Biol Chem 2001; 276:5189-96. [PMID: 11050086 DOI: 10.1074/jbc.m006678200] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ternary complex factor Elk-1, a major nuclear target of extracellular signal-regulated kinases, is a strong transactivator of serum-responsive element (SRE) driven gene expression. We report here that mature brain neurons and nerve growth factor (NGF)-differentiated PC12 cells also express a second, smaller isoform of Elk-1, short Elk-1 (sElk-1). sElk-1 arises from an internal translation start site in the Elk-1 sequence, which generates a protein lacking the first 54 amino acids of the DNA-binding domain. This deletion severely compromises the ability of sElk-1 to form complexes with serum response factor on the SRE in vitro and to activate SRE reporter genes in the presence of activated Ras. Instead, sElk, but not a mutant that cannot be phosphorylated, inhibits transactivation driven by Elk-1. More pertinent to the neuronal-specific expression of sElk-1, we show it plays an opposite role to Elk-1 in potentiating NGF-driven PC12 neuronal differentiation. Overexpression of sElk-1 but not Elk-1 increases neurite extension, an effect critically linked to its phosphorylation. Interestingly, in the presence of sElk-1, Elk-1 loses its strictly nuclear localization to resemble the nuclear/cytoplasm pattern observed in the mature brain. This is blocked by mutating a normally cryptic nuclear export signal in Elk-1. These data provide new insights into molecular events underlying neuronal differentiation of PC12 cells mediated by the NGF-ERK signaling cascade.
Collapse
Affiliation(s)
- P Vanhoutte
- Laboratoire de Neurochimie-Anatomie, Institut des Neurosciences, CNRS-UMR 7624, Université Pierre et Marie Curie, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|
207
|
Zawada WM, Meintzer MK, Rao P, Marotti J, Wang X, Esplen JE, Clarkson ED, Freed CR, Heidenreich KA. Inhibitors of p38 MAP kinase increase the survival of transplanted dopamine neurons. Brain Res 2001; 891:185-96. [PMID: 11164822 DOI: 10.1016/s0006-8993(00)02965-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fetal cell transplantation therapies are being developed for the treatment of a number of neurodegenerative disorders including Parkinson's disease [10-12,21,22,24,36,43]. Massive apoptotic cell death is a major limiting factor for the success of neurotransplantation. We have explored a novel protein kinase pathway for its role in apoptosis of dopamine neurons. We have discovered that inhibitors of p38 MAP kinase (the pyridinyl imidazole compounds: PD169316, SB203580, and SB202190) improve survival of rat dopamine neurons in vitro and after transplantation into hemiparkinsonian rats. In embryonic rat ventral mesencephalic cultures, serum withdrawal led to 80% loss of dopamine neurons due to increased apoptosis. Incubation of the cultures with p38 MAP kinase inhibitors at the time of serum withdrawal prevented dopaminergic cell death by inhibiting apoptosis. In the hemiparkinsonian rat, preincubation of ventral mesencephalic tissue with PD169316 prior to transplantation accelerated behavioral recovery and doubled the survival of transplanted dopamine neurons. We conclude that inhibitors of stress-activated protein kinases improve the outcome of cell transplantation by preventing apoptosis of neurons after grafting.
Collapse
Affiliation(s)
- W M Zawada
- Department of Medicine, Division of Clinical Pharmacology, University of Colorado School of Medicine, Denver, CO 80262, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Chen D, Fong HW, Davis JS. Induction of c-fos and c-jun messenger ribonucleic acid expression by prostaglandin F2alpha is mediated by a protein kinase C-dependent extracellular signal-regulated kinase mitogen-activated protein kinase pathway in bovine luteal cells. Endocrinology 2001; 142:887-95. [PMID: 11159862 DOI: 10.1210/endo.142.2.7938] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PGF2alpha triggers the demise of the corpus luteum whereby progesterone synthesis is inhibited, the luteal structure regresses, and the estrus cycle resumes. Upon binding to its heterotrimeric G-protein-coupled receptors, PGF2alpha initiates the phospholipase C/diacylglycerol and inositol-1,4,5-trisphosphate/Ca(2+)-protein kinase C (PKC) signaling pathway. More recently, we have demonstrated that PGF2alpha activates extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase signaling through a Raf-dependent mechanism in bovine luteal cells. However, the relationship between PKC and ERK activation in PGF2alpha signaling has not been clearly defined. Moreover, the signaling pathway that PGF2alpha uses to regulate gene expression is unknown. In this report, primary cultures of bovine luteal cells were used to address the role of PKC in ERK activation and the signaling pathway for induction of c-fos and c-jun messenger RNA (mRNA) expression in response to PGF2alpha. By using a PKC inhibitor and a PKC-deficient luteal cell model, we observed that phorbol ester-responsive isoforms of PKC were required for ERK phosphorylation and activation by PGF2alpha (1 microM) or phorbol 12-myristate 13-acetate (PMA) (20 nM). In PGF2alpha- and PMA-treated cells, active ERK MAP kinase was localized in the nucleus. PGF2alpha-induced ERK phosphorylation was dose-dependently inhibited by the MEK1 inhibitor PD098059 (1-50 microM). The expression of c-fos and c-jun mRNA in luteal cells was markedly increased by treatment with PGF2alpha (1 microM) or PMA (20 nM) for 30 min. We also observed that activation of ERK MAP kinase was required for the expression of c-fos and c-jun mRNA in response to PGF2alpha and PMA because it was abrogated by blocking the ERK pathway with PD098059. In addition, PGF2alpha and PMA-induced c-fos and c-jun mRNA expression was abolished in the PKC-deficient cells. Taken together, our data demonstrate that a PKC-dependent ERK MAP kinase pathway mediates the expression of c-fos and c-jun mRNA in PGF2alpha-treated bovine luteal cells.
Collapse
Affiliation(s)
- D Chen
- The Women's Research Institute, Department of Obstetrics and Gynecology, University of Kansas School of Medicine-Wichita, Kansas 67214, USA
| | | | | |
Collapse
|
209
|
Finch A, Davis W, Carter WG, Saklatvala J. Analysis of mitogen-activated protein kinase pathways used by interleukin 1 in tissues in vivo: activation of hepatic c-Jun N-terminal kinases 1 and 2, and mitogen-activated protein kinase kinases 4 and 7. Biochem J 2001; 353:275-81. [PMID: 11139391 PMCID: PMC1221569 DOI: 10.1042/0264-6021:3530275] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The effects of interleukin 1 (IL-1) are mediated by the activation of protein kinase signalling pathways, which have been well characterized in cultured cells. We have investigated the activation of these pathways in rabbit liver and other tissues after the systemic administration of IL-1alpha. In liver there was 30-40-fold activation of c-Jun N-terminal kinase (JNK) and 5-fold activation of both JNK kinases, mitogen-activated protein kinase (MAPK) kinase (MKK)4 and MKK7. IL-1alpha also caused 2-3-fold activation of p38 MAPK and degradation of the inhibitor of nuclear factor kappaB ('IkappaB'), although no activation of extracellular signal-regulated protein kinase (ERK) (p42/44 MAPK) was observed. The use of antibodies against specific JNK isoforms showed that, in liver, short (p46) JNK1 and long (p54) JNK2 are the predominant forms activated, with smaller amounts of long JNK1 and short JNK2. No active JNK3 was detected. A similar pattern of JNK activation was seen in lung, spleen, skeletal muscle and kidney. Significant JNK3 activity was detectable only in the brain, although little activation of the JNK pathway in response to IL-1alpha was observed in this tissue. This distribution of active JNK isoforms probably results from a different expression of JNKs within the tissues, rather than from a selective activation of isoforms. We conclude that IL-1alpha might activate a more restricted set of signalling pathways in tissues in vivo than it does in cultured cells, where ERK and JNK3 activation are often observed. Cultured cells might represent a 'repair' phenotype that undergoes a broader set of responses to the cytokine.
Collapse
Affiliation(s)
- A Finch
- Kennedy Institute of Rheumatology Division, Imperial College School of Medicine, 1 Aspenlea Road, Hammersmith, London W6 8LH, U.K
| | | | | | | |
Collapse
|
210
|
Tsuge T, Matsui M, Wei N. The subunit 1 of the COP9 signalosome suppresses gene expression through its N-terminal domain and incorporates into the complex through the PCI domain. J Mol Biol 2001; 305:1-9. [PMID: 11114242 DOI: 10.1006/jmbi.2000.4288] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The COP9 signalosome is a conserved protein complex composed of eight subunits. Individual subunits of the complex have been linked to various signal transduction pathways leading to gene expression and cell cycle control. However, it is not understood how each subunit executes these activities as part of a large protein complex. In this study, we dissected structure and function of the subunit 1 (CSN1 or GPS1) of the COP9 signalosome relative to the complex. We demonstrated that the C-terminal half of CSN1 encompassing the PCI domain is responsible for interaction with CSN2, CSN3, and CSN4 subunits and is required for incorporation of the subunit into the complex. The N-terminal fragment of CSN1 cannot stably associate with the complex but can translocate to the nucleus on its own. We further show that CSN1 or the N-terminal fragment of CSN1 (CSN1-N) can inhibit c-fos expression from either a transfected template or a chromosomal transgene ( fos-lacZ). Moreover, CSN1 as well as CSN1-N can potently suppress signal activation of a AP-1 promoter and moderately suppress serum activation of a SRE promoter, but is unable to inhibit PKA-induced CRE promoter activity. We conclude that the N-terminal half of CSN1 harbors the activity domain that confers most of the repression functions of CSN1 while the C-terminal half allows integration of the protein into the COP9 signalosome.
Collapse
Affiliation(s)
- T Tsuge
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06520-8104, USA
| | | | | |
Collapse
|
211
|
Withers DA, Hakomori SI. Human alpha (1,3)-fucosyltransferase IV (FUTIV) gene expression is regulated by elk-1 in the U937 cell line. J Biol Chem 2000; 275:40588-93. [PMID: 11006292 DOI: 10.1074/jbc.m007262200] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The alpha1,3-fucosyltransferase IV (FucTIV) encoded by its gene (FUTIV) is responsible for synthesis of Le(x) (Galbeta4[Fucalpha3]GlcNAcbeta3Galbeta1,R), which causes compaction in the morula stage of the preimplantation mouse embryo, as well as alpha1,3-fucosylation at multiple internal GlcNAc of unbranched poly-N-acetyllactosamine, termed "myeloglycan," the physiological epitope of E-selectin. Since myeloglycan-type structure is also expressed in various types of human cancer and may mediate E-selectin-dependent metastasis, expression of FUTIV is oncodevelopmentally regulated. The mechanisms controlling FUTIV expression remain to be clarified. In this report, we further characterize FUTIV gene structure and define a non-TATA box-dependent transcriptional start region just upstream from the translational start. FUTIV promoter/reporter fusion constructs defined a "full-length" promoter and highly active fragments in the macrophage-derived U937 and myeloid HL60 cell lines. One highly active fragment contains a consensus binding site for the Ets-1 transcription factor (Withers, D. A., and Hakomori, S. (1997) Glycoconj. J. 14, 764). Gel shift analysis shows specific binding to this site in nuclear extracts from U937 cells. Mutation of the Ets consensus site significantly reduces FUTIV promoter activity in both cell lines. Gel supershift and dominant negative cotransfection experiments identified the Ets family member Elk-1 as one component binding and regulating the FUTIV promoter in U937 cells. The significance of FUTIV regulation by Elk-1 is discussed.
Collapse
Affiliation(s)
- D A Withers
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA.
| | | |
Collapse
|
212
|
Chen G, Hitomi M, Han J, Stacey DW. The p38 pathway provides negative feedback for Ras proliferative signaling. J Biol Chem 2000; 275:38973-80. [PMID: 10978313 DOI: 10.1074/jbc.m002856200] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ras activates three mitogen-activated protein kinases (MAPKs) including ERK, JNK, and p38. Whereas the essential roles of ERK and JNK in Ras signaling has been established, the contribution of p38 remains unclear. Here we demonstrate that the p38 pathway functions as a negative regulator of Ras proliferative signaling via a feedback mechanism. Oncogenic Ras activated p38 and two p38-activated protein kinases, MAPK-activated protein kinase 2 (MK2) and p38-related/activated protein kinase (PRAK). MK2 and PRAK in turn suppressed Ras-induced gene expression and cell proliferation, whereas two mutant PRAKs, unresponsive to Ras, had little effect. Moreover, the constitutive p38 activator MKK6 also suppressed Ras activity in a p38-dependent manner whereas arsenite, a potent chemical inducer of p38, inhibited proliferation only in a tumor cell line that required Ras activity. MEK was required for Ras stimulation of the p38 pathway. The p38 pathway inhibited Ras activity by blocking activation of JNK, without effect upon ERK, as evidenced by the fact that PRAK-mediated suppression of Ras-induced cell proliferation was reversed by coexpression of JNKK2 or JNK1. These studies thus establish a negative feedback mechanism by which Ras proliferative activity is regulated via signaling integrations of MAPK pathways.
Collapse
Affiliation(s)
- G Chen
- Cleveland Clinic Foundation, Department of Molecular Biology, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|
213
|
Razandi M, Pedram A, Levin ER. Estrogen signals to the preservation of endothelial cell form and function. J Biol Chem 2000; 275:38540-6. [PMID: 10988297 DOI: 10.1074/jbc.m007555200] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Estrogen is important for the primary prevention of vascular disease in young women, but the mechanisms of protection at the vascular cell are still largely unknown. Although traditionally thought of as a nuclear transcription factor, the estrogen receptor has also been identified in the cell plasma membrane to signal but serve largely undefined roles. Here we show that estradiol (E2) rapidly activates p38beta mitogen-activated protein kinase in endothelial cells (EC), which activates the mitogen-activated protein kinase-activated protein kinase-2 and the phosphorylation of heat shock protein 27. The sex steroid preserves the EC stress fiber formation and actin and membrane integrity in the setting of metabolic insult. E2 also prevents hypoxia-induced apoptosis and induces both the migration of EC and the formation of primitive capillary tubes. These effects are reversed by the inhibition of p38beta, by the expression of a dominant-negative mitogen-activated protein kinase-activated protein kinase-2 protein, or by the expression of a phosphorylation site mutant heat shock protein 27. E2 signaling from the membrane helps preserve the EC structure and function, defining potentially important vascular-protective effects of this sex steroid.
Collapse
Affiliation(s)
- M Razandi
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, California 90822, USA
| | | | | |
Collapse
|
214
|
Cannons JL, Choi Y, Watts TH. Role of TNF receptor-associated factor 2 and p38 mitogen-activated protein kinase activation during 4-1BB-dependent immune response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6193-204. [PMID: 11086053 DOI: 10.4049/jimmunol.165.11.6193] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
4-1BB is a costimulatory member of the TNFR family, expressed on activated CD4(+) and CD8(+) T cells. Previous results showed that 4-1BB-mediated T cell costimulation is CD28-independent and involves recruitment of TNFR-associated factor 2 (TRAF2) and activation of the stress-activated protein kinase cascade. Here we describe a role for the p38 mitogen-activated protein kinase (MAPK) pathway in 4-1BB signaling. Aggregation of 4-1BB alone induces p38 activation in a T cell hybridoma, whereas, in normal T cells, p38 MAPK is activated synergistically by immobilized anti-CD3 plus immobilized 4-1BB ligand. 4-1BB-induced p38 MAPK activation is inhibited by the p38-specific inhibitor SB203580 in both a T cell hybridoma and in murine T cells. T cells from TRAF2 dominant-negative mice are impaired in 4-1BB-mediated p38 MAPK activation. A link between TRAF2 and the p38 cascade is provided by the MAPK kinase kinase, apoptosis-signal-regulating kinase 1. A T cell hybrid transfected with a kinase-dead apoptosis-signal-regulating kinase 1 fails to activate p38 MAPK in response to 4-1BB signaling. To assess the role of p38 activation in an immune response, T cells were stimulated in an MLR in the presence of SB203580. In a primary MLR, SB203580 blocked IL-2, IFN-gamma, and IL-4 secretion whether the costimulatory signal was delivered via 4-1BB or CD28. In contrast, following differentiation into Th1 or Th2 cells, p38 inhibition blocked IL-2 and IFN-gamma without affecting IL-4 secretion. Nevertheless, IL-4 secretion by Th2 cells remained costimulation-dependent. Thus, critical T cell signaling events diverge following Th1 vs Th2 differentiation.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Cell Differentiation/immunology
- Cytokines/biosynthesis
- Enzyme Activation/immunology
- Hybridomas
- Ligands
- Lymphocyte Activation
- Lymphocyte Culture Test, Mixed
- MAP Kinase Signaling System/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Mitogen-Activated Protein Kinases/metabolism
- Mitogen-Activated Protein Kinases/physiology
- Proteins/physiology
- Receptors, Nerve Growth Factor/immunology
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Nerve Growth Factor/physiology
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor/physiology
- TNF Receptor-Associated Factor 2
- Th1 Cells/cytology
- Th1 Cells/enzymology
- Th1 Cells/immunology
- Th2 Cells/cytology
- Th2 Cells/enzymology
- Th2 Cells/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9
- p38 Mitogen-Activated Protein Kinases
Collapse
Affiliation(s)
- J L Cannons
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada. Howard Hughes Medical Institute and Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
215
|
Kito H, Chen EL, Wang X, Ikeda M, Azuma N, Nakajima N, Gahtan V, Sumpio BE. Role of mitogen-activated protein kinases in pulmonary endothelial cells exposed to cyclic strain. J Appl Physiol (1985) 2000; 89:2391-400. [PMID: 11090594 DOI: 10.1152/jappl.2000.89.6.2391] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The aim of this study was to examine the role of mitogen-activated protein kinases (MAPKs) activation in bovine pulmonary arterial endothelial cells (EC) exposed to cyclic strain. EC were subjected to 10% average strain at 60 cycles/min. Cyclic strain induced activation of extracellular signal-regulated kinase (ERK; 1.5-fold), c-Jun NH(2)-terminal protein kinase (JNK; 1.9-fold), and p38 (1. 5-fold) with a peak at 30 min. To investigate the functional role of the activated MAPKs, we analyzed cells after treatment with PD-98059, a specific ERK kinase inhibitor, or SB-203580, a catalytic inhibitor for p38, and after transient transfection with JNK(K-R), and MEKK(K-M) the respective catalytically inactive mutants of JNK1 and MAPK kinase kinase-1. Cyclic strain increased activator protein-1 (AP-1) binding activity, which was blocked by PD-98059 and SB-203580. Activity of AP-1-dependent luciferase reporter driven by 12-O-tetradecanoyl-phorbol-13-acetate-responsive element (TRE) was induced by cyclic strain, and this was attenuated by PD-98059, MEKK(K-M), JNK(K-R), and SB-203580. PD-98059 and SB-203850 did not inhibit cell alignment and migration induced by cyclic strain. MEKK(K-M) and JNK(K-R) transfection did not block cyclic strain-induced cell alignment. In conclusion, cyclic strain activates ERK, JNK, and p38, and their activation plays a role in transcriptional activation of AP-1/TRE but not in cell alignment and migration changes in bovine pulmonary arterial EC.
Collapse
Affiliation(s)
- H Kito
- First Department of Surgery, Chiba University School of Medicine, Chiba 260, Japan
| | | | | | | | | | | | | | | |
Collapse
|
216
|
Ward RA, Nakamura M, McLeish KR. Priming of the neutrophil respiratory burst involves p38 mitogen-activated protein kinase-dependent exocytosis of flavocytochrome b558-containing granules. J Biol Chem 2000; 275:36713-9. [PMID: 10976103 DOI: 10.1074/jbc.m003017200] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The respiratory burst of human neutrophils is primed by a number of pro-inflammatory stimuli, including tumor necrosis factor-alpha (TNFalpha) and lipopolysaccharide (LPS); however, the mechanism of priming remains unknown. LPS has been shown previously to increase membrane expression of flavocytochrome b(558), a component of the NADPH oxidase. This study shows that TNFalpha also increases membrane expression of flavocytochrome b(558). Mitogen-activated protein kinase (MAPK) modules have been implicated in the action of priming agents. Pharmacologic inhibitors of MAPKs, SB203580 and PD098059, revealed that priming of the respiratory burst and up-regulation of flavocytochrome b(558) are dependent on p38 MAPK but not on extracellular-signal regulated kinase (ERK). TNFalpha and LPS primed respiratory burst activity and increased membrane expression of CD35 and CD66b, specific markers of secretory vesicles and specific granules that contain flavocytochrome b(558), with similar time courses and concentration dependences. These processes also required p38 MAPK but were independent of ERK. TNFalpha failed to prime respiratory burst activity or to increase membrane CD35 expression in enucleated neutrophil cytoplasts. These data suggest that one mechanism by which TNFalpha and LPS prime neutrophil respiratory burst activity is by increasing membrane expression of flavocytochrome b(558) through exocytosis of intracellular granules in a process regulated by p38 MAPK.
Collapse
Affiliation(s)
- R A Ward
- Molecular Signaling Group, Department of Medicine and the Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky 40202-1718, USA.
| | | | | |
Collapse
|
217
|
Chen J, Stinski MF. Activation of transcription of the human cytomegalovirus early UL4 promoter by the Ets transcription factor binding element. J Virol 2000; 74:9845-57. [PMID: 11024111 PMCID: PMC102021 DOI: 10.1128/jvi.74.21.9845-9857.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human cytomegalovirus (HCMV) early UL4 promoter has served as a useful model for studying the activation of early viral gene expression. Previous transient-transfection experiments detected cis-acting elements (the NF-Y site and site 2) upstream of the transcriptional start site (L. Huang and M. F. Stinski, J. Virol. 69:7612-7621, 1995). The roles of two of these sites, the NF-Y site and site 2, in the context of the viral genome were investigated further by comparing mRNA levels from the early UL4 promoter in human foreskin fibroblasts infected by recombinant viruses with either wild-type or mutant cis-acting elements. Steady-state mRNA levels from the UL4 promoter with a mutation in the NF-Y site were comparable to that of wild type. A mutation in an Elk-1 site plus putative IE86 protein binding sites decreased the steady-state mRNA levels compared to the wild type at early times after infection. Electrophoretic mobility shift assays and antibody supershifts detected the binding of cellular transcription factor Elk-1 to site 2 DNA with infected nuclear extracts but not with mock-infected nuclear extracts. The role of cellular transcription factors activated by the mitogen activated protein kinase/extracellular signal-regulated kinase pathway in activating transcription from early viral promoters is discussed.
Collapse
Affiliation(s)
- J Chen
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
218
|
Ahmed ST, Ivashkiv LB. Inhibition of IL-6 and IL-10 signaling and Stat activation by inflammatory and stress pathways. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:5227-37. [PMID: 11046056 DOI: 10.4049/jimmunol.165.9.5227] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The development and resolution of an inflammatory process are regulated by a complex interplay among cytokines that have pro- and anti-inflammatory effects. Effective and sustained action of a proinflammatory cytokine depends on synergy with other inflammatory cytokines and antagonism of opposing cytokines that are often highly expressed at inflammatory sites. We analyzed the effects of the inflammatory and stress agents, IL-1, TNF-alpha, LPS, sorbitol, and H(2)O(2), on signaling by IL-6 and IL-10, pleiotropic cytokines that activate the Jak-Stat signaling pathway and have both pro- and anti-inflammatory actions. IL-1, TNF-alpha, and LPS blocked the activation of Stat DNA binding and tyrosine phosphorylation by IL-6 and IL-10, but not by IFN-gamma, in primary macrophages. Inhibition of Stat activation correlated with inhibition of expression of IL-6-inducible genes. The inhibition was rapid and independent of de novo gene induction and occurred when the expression of suppressor of cytokine synthesis-3 was blocked. Inhibition of IL-6 signaling was mediated by the p38 subfamily of stress-activated protein kinases. Jak1 was inhibited at the level of tyrosine phosphorylation, indicating that inhibition occurred at least in part upstream of Stats in the Jak-Stat pathway. Experiments using Stat3 mutated at serine 727 and using truncated IL-6Rs suggested that the target of inhibition is contained within the membrane-proximal region of the cytoplasmic domain of the gp130 subunit of the IL-6 receptor and is different from the SH2 domain-containing protein-tyrosine phosphatase/suppressor of cytokine synthesis-3 docking site. These results identify a new level at which IL-1 and TNF-alpha modulate signaling by pleiotropic cytokines such as IL-6 and IL-10 and provide a molecular basis for the previously described antagonism of certain IL-6 actions by IL-1.
Collapse
Affiliation(s)
- S T Ahmed
- Graduate Program in Immunology, Weill Graduate School of Medical Sciences, and Department of Medicine, Hospital for Special Surgery, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
219
|
Tanaka T, Kanai H, Sekiguchi K, Aihara Y, Yokoyama T, Arai M, Kanda T, Nagai R, Kurabayashi M. Induction of VEGF gene transcription by IL-1 beta is mediated through stress-activated MAP kinases and Sp1 sites in cardiac myocytes. J Mol Cell Cardiol 2000; 32:1955-67. [PMID: 11040101 DOI: 10.1006/jmcc.2000.1228] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Interleukin-1 beta (IL-1 beta) is a multipotent cytokine participating in a variety of cardiovascular diseases. In this study, we examined the effects of IL-1 beta on the expression of vascular endothelial cell growth factor (VEGF) and pursued the molecular mechanisms underlying this effect. Treatment of cultured neonatal rat cardiac myocytes with IL-1 beta increased the levels of VEGF mRNA in a time- and a concentration-dependent manner. These effects were completely abolished by SB203580 and SB202190 (p38 MAPK inhibitors) but not by PD98059 (MEK1 inhibitor), calphostin C (protein kinase C inhibitor), or genistein (tyrosine kinase inhibitor). While IL-1 beta phosphorylated c-Jun N-terminus protein kinase (JNK) rapidly and transiently, the effect of IL-1 beta on p38 mitogen-activated protein kinase (MAPK) was gradual and persistent. Transient transfection assays showed that IL-1 beta increases the transcription from the VEGF promoter. A series of 5;-deletion and site-specific mutation analyses indicated that IL-1 beta as well as overexpression of p38 MAPK and JNK activate VEGF promoter activity through two G+C-rich sequences located at -73 and -62. Electrophoretic mobility shift and supershift assays showed Sp1 and Sp3 proteins specifically bind to the G+C-rich sequences. The half-life of VEGF mRNA was significantly increased in cells treated with IL-1 beta. Together, these results indicate that IL-1 beta induces VEGF gene expression at both transcriptional and post-transcriptional levels, and IL-1 beta evokes p38 MAPK and JNK signalings, which in turn stimulate the transcription of the VEGF gene through Sp1-binding sites. These findings suggest the role of IL-1 beta as a cytokine inducing VEGF in cardiac myocytes, and imply that activation of stress-activated MAP kinases regulate Sp1 sites-dependent transcription.
Collapse
Affiliation(s)
- T Tanaka
- Second Department of Internal Medicine, Gunma University School of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Affiliation(s)
- A Knebel
- Department of Biochemistry, University of Dundee, United Kingdom
| | | | | |
Collapse
|
221
|
Klotz LO, Briviba K, Sies H. Mitogen-activated protein kinase activation by singlet oxygen and ultraviolet A. Methods Enzymol 2000; 319:130-43. [PMID: 10907506 DOI: 10.1016/s0076-6879(00)19015-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- L O Klotz
- Institut für Physiologische Chemie I, Düsseldorf, Germany
| | | | | |
Collapse
|
222
|
Ducret C, Maira SM, Lutz Y, Wasylyk B. The ternary complex factor Net contains two distinct elements that mediate different responses to MAP kinase signalling cascades. Oncogene 2000; 19:5063-72. [PMID: 11042694 DOI: 10.1038/sj.onc.1203892] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ternary complex factors (TCFs), Elk-1, Sap-1a and Net, are key integrators of the transcriptional response to different signalling pathways. Classically, three MAP kinase pathways, involving ERK, JNK, and p38, transduce various extracellular stimuli to the nucleus. Net is a repressor that is converted into an activator by Ras/ERK signalling. Net is also exported from the nucleus in response to stress stimuli transduced through the JNK pathway, leading to relief from repression. Here we show that ERK and p38 bind to the D box and that binding is required for phosphorylation of the adjacent C-terminally located C-domain. The D box as well as the phosphorylation sites in the C-domain (the DC element) are required for transcription activation by Ras. On the other hand, JNK binds to the J box in the middle of the protein, and binding is required for phosphorylation of the adjacent EXport motif. Both the binding and phosphorylation sites (the JEX element) are important for Net export. In conclusion, specific targeting of Net by MAP kinase pathways involves two different docking sites and phosphorylation of two different domains. These two elements, DC and JEX, mediate two distinct functional responses.
Collapse
Affiliation(s)
- C Ducret
- Institute de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, 1 Rue Laurent Fries, BP 163, 67404 Illkirch Cedex, France
| | | | | | | |
Collapse
|
223
|
Induction of decay-accelerating factor by thrombin through a protease-activated receptor 1 and protein kinase C–dependent pathway protects vascular endothelial cells from complement-mediated injury. Blood 2000. [DOI: 10.1182/blood.v96.8.2784] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThere is increasing evidence for functional crosstalk between inflammatory and thrombotic pathways in inflammatory vascular diseases such as atherosclerosis and vasculitis. Thus, complement activation on the endothelial cell (EC) surface during inflammation may generate thrombin via the synthesis of tissue factor. We explored the hypothesis that thrombin induces EC expression of the complement-regulatory proteins decay-accelerating factor (DAF), membrane cofactor protein (MCP), and CD59 and that this maintains vascular integrity during coagulation associated with complement activation. Thrombin increased DAF expression on the surface of ECs by 4-fold in a dose- and time-dependent manner as measured by flow cytometry. DAF up-regulation was first detectable at 6 hours and maximal 24 hours poststimulation, whereas no up-regulation of CD59 or MCP was seen. Thrombin-induced expression required increased DAF messenger RNA and de novo protein synthesis. The response depended on activation of protease-activated receptor 1 (PAR1) and was inhibited by pharmacologic antagonists of protein kinase C (PKC), p38 and p42/44 mitogen-activated protein kinase, and nuclear factor-κB. The increased DAF expression was functionally relevant because it significantly reduced C3 deposition and complement-mediated EC lysis. Thus, thrombin—generated at inflammatory sites in response to complement activation—is a physiologic agonist for the PKC-dependent pathway of DAF regulation, thereby providing a negative feedback loop protecting against thrombosis in inflammation.
Collapse
|
224
|
Induction of decay-accelerating factor by thrombin through a protease-activated receptor 1 and protein kinase C–dependent pathway protects vascular endothelial cells from complement-mediated injury. Blood 2000. [DOI: 10.1182/blood.v96.8.2784.h8002784_2784_2792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is increasing evidence for functional crosstalk between inflammatory and thrombotic pathways in inflammatory vascular diseases such as atherosclerosis and vasculitis. Thus, complement activation on the endothelial cell (EC) surface during inflammation may generate thrombin via the synthesis of tissue factor. We explored the hypothesis that thrombin induces EC expression of the complement-regulatory proteins decay-accelerating factor (DAF), membrane cofactor protein (MCP), and CD59 and that this maintains vascular integrity during coagulation associated with complement activation. Thrombin increased DAF expression on the surface of ECs by 4-fold in a dose- and time-dependent manner as measured by flow cytometry. DAF up-regulation was first detectable at 6 hours and maximal 24 hours poststimulation, whereas no up-regulation of CD59 or MCP was seen. Thrombin-induced expression required increased DAF messenger RNA and de novo protein synthesis. The response depended on activation of protease-activated receptor 1 (PAR1) and was inhibited by pharmacologic antagonists of protein kinase C (PKC), p38 and p42/44 mitogen-activated protein kinase, and nuclear factor-κB. The increased DAF expression was functionally relevant because it significantly reduced C3 deposition and complement-mediated EC lysis. Thus, thrombin—generated at inflammatory sites in response to complement activation—is a physiologic agonist for the PKC-dependent pathway of DAF regulation, thereby providing a negative feedback loop protecting against thrombosis in inflammation.
Collapse
|
225
|
Brook M, Sully G, Clark AR, Saklatvala J. Regulation of tumour necrosis factor alpha mRNA stability by the mitogen-activated protein kinase p38 signalling cascade. FEBS Lett 2000; 483:57-61. [PMID: 11033356 DOI: 10.1016/s0014-5793(00)02084-6] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The translation of tumour necrosis factor alpha (TNFalpha) mRNA is regulated by the stress-activated protein kinase p38, which also controls the stability of several pro-inflammatory mRNAs. The regulation of TNFalpha gene expression in a mouse macrophage cell line RAW264.7 was re-examined using an inhibitor of stress-activated protein kinases. Stimulation of these cells with bacterial lipopolysaccharide resulted in stabilisation of TNFalpha mRNA, which was reversed by specific inhibition of p38. An adenosine/uridine-rich element from the TNFalpha 3' untranslated region conferred p38-sensitive decay in a tetracycline-regulated mRNA stability assay. Therefore the p38 pathway also controls TNFalpha mRNA turnover.
Collapse
Affiliation(s)
- M Brook
- Kennedy Institute of Rheumatology Division, Imperial College School of Medicine, 1 Aspenlea Road, Hammersmith, W6 8LH, London, UK
| | | | | | | |
Collapse
|
226
|
Barchowsky A, Frleta D, Vincenti MP. Integration of the NF-kappaB and mitogen-activated protein kinase/AP-1 pathways at the collagenase-1 promoter: divergence of IL-1 and TNF-dependent signal transduction in rabbit primary synovial fibroblasts. Cytokine 2000; 12:1469-79. [PMID: 11023661 DOI: 10.1006/cyto.2000.0743] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Collagenase-1 (MMP-1) is a protease that is expressed by stromal cells and that is involved in remodeling of the extracellular matrix. IL-1 and TNF-alpha enhance collagenase secretion by stromal cells, and chronic exposure of cells to these cytokines can contribute to connective tissue disease. In this study, we show that the NF-kappaB pathway is required for activation of collagenase-1 transcription in rabbit primary synovial fibroblasts (RSF). Although both IL-1 and TNF activate NF-kappaB in these cells, only IL-1 induces collagenase-1 transcription. We have reported previously that NF-kappaB and AP-1 cooperate to mediate IL-1-induced MMP-1 transcription. Here, we show that IL-1 is superior to TNF at inducing c-Jun synthesis, phosphorylation and binding activity in RSF. Similarly, IL-1 is more effective at activating the mitogen-activated protein kinases (MAPK), including the extracellular signal-regulated kinases (ERK), which are required for IL-1-induced MMP-1 transcription. Thus stimulation of the ERK and AP-1 pathways is an essential component of MMP-1 transcriptional activation, which is deficient in TNF-treated cells. These studies demonstrate cooperation between the MAPK and NF-kappaB signaling pathways for IL-1-dependent collagenase-1 transcription, and they define a dichotomy of IL-1- and TNF-elicited signaling that is relevant to cytokine-mediated connective tissue disease.
Collapse
Affiliation(s)
- A Barchowsky
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755, USA
| | | | | |
Collapse
|
227
|
Birkenkamp KU, Tuyt LML, Lummen C, Wierenga ATJ, Kruijer W, Vellenga E. The p38 MAP kinase inhibitor SB203580 enhances nuclear factor-kappa B transcriptional activity by a non-specific effect upon the ERK pathway. Br J Pharmacol 2000; 131:99-107. [PMID: 10960075 PMCID: PMC1572293 DOI: 10.1038/sj.bjp.0703534] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In the present study we investigated a possible role for the p38 mitogen-activated protein (MAP) kinase pathway in mediating nuclear factor-kappa B (NF-kappaB) transcriptional activity in the erythroleukaemic cell line TF-1. TF-1 cells stimulated with the phosphatase inhibitor okadaic acid (OA) demonstrated enhanced NF-kappaB and GAL4p65-regulated transcriptional activity which was associated with elevated p38 phosphorylation. However, pretreatment with the p38 MAPK specific inhibitor SB203580 (1 microM) or overexpression of kinase-deficient mutants of MKK3 or MKK6 did not affect OA-enhanced NF-kappaB transcriptional potency, as determined in transient transfection assays. In fact, 5 and 10 microM SB203580 enhanced rather than inhibited NF-kappaB-mediated promoter activity by 2 fold, which was independent of phosphorylation of the p65 subunit. The SB203580-mediated increase in NF-kappaB transcriptional activity was associated with enhanced phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK), but not p38 kinase. Overexpression of kinase-deficient mutants belonging to the ERK1/2, JNK, and p38 pathways showed that only dominant-negative Raf-1 abrogated SB203580-enhanced NF-kappaB activity. This would implicate the involvement of the ERK1/2 pathway in the enhancing effects of SB203580 on NF-kappaB-mediated gene transcription. This study demonstrates that the p38 MAP kinase pathway is not involved in the OA-induced activation of NF-kappaB. SB203580 at higher concentrations activates the ERK pathway, which subsequently enhances NF-kappaB transcriptional activity.
Collapse
Affiliation(s)
- Kim U Birkenkamp
- Division of Hematology, Department of Medicine, University of Groningen, PO Box 30 001, 9700 RB Groningen, The Netherlands
- Division of Developmental Genetics, Department of Biology, University of Groningen, PO Box 30 001, 9700 RB Groningen, The Netherlands
| | - Leonore M L Tuyt
- Division of Hematology, Department of Medicine, University of Groningen, PO Box 30 001, 9700 RB Groningen, The Netherlands
| | - Chantal Lummen
- Division of Hematology, Department of Medicine, University of Groningen, PO Box 30 001, 9700 RB Groningen, The Netherlands
| | - Albertus T J Wierenga
- Division of Hematology, Department of Medicine, University of Groningen, PO Box 30 001, 9700 RB Groningen, The Netherlands
| | - Wiebe Kruijer
- Division of Developmental Genetics, Department of Biology, University of Groningen, PO Box 30 001, 9700 RB Groningen, The Netherlands
| | - Edo Vellenga
- Division of Hematology, Department of Medicine, University of Groningen, PO Box 30 001, 9700 RB Groningen, The Netherlands
- Author for correspondence:
| |
Collapse
|
228
|
Adams A, Thorn JM, Yamabhai M, Kay BK, O'Bryan JP. Intersectin, an Adaptor Protein Involved in Clathrin-mediated Endocytosis, Activates Mitogenic Signaling Pathways. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61526-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
229
|
Weber U, Paricio N, Mlodzik M. Jun mediates Frizzled-induced R3/R4 cell fate distinction and planar polarity determination in the Drosophila eye. Development 2000; 127:3619-29. [PMID: 10903185 DOI: 10.1242/dev.127.16.3619] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Jun acts as a signal-regulated transcription factor in many cellular decisions, ranging from stress response to proliferation control and cell fate induction. Genetic interaction studies have suggested that Jun and JNK signaling are involved in Frizzled (Fz)-mediated planar polarity generation in the Drosophila eye. However, simple loss-of-function analysis of JNK signaling components did not show comparable planar polarity defects. To address the role of Jun and JNK in Fz signaling, we have used a combination of loss- and gain-of-function studies. Like Fz, Jun affects the bias between the R3/R4 photoreceptor pair that is critical for ommatidial polarity establishment. Detailed analysis of jun(−) clones reveals defects in R3 induction and planar polarity determination, whereas gain of Jun function induces the R3 fate and associated polarity phenotypes. We find also that affecting the levels of JNK signaling by either reduction or overexpression leads to planar polarity defects. Similarly, hypomorphic allelic combinations and overexpression of the negative JNK regulator Puckered causes planar polarity eye phenotypes, establishing that JNK acts in planar polarity signaling. The observation that Dl transcription in the early R3/R4 precursor cells is deregulated by Jun or Hep/JNKK activation, reminiscent of the effects seen with Fz overexpression, suggests that Jun is one of the transcription factors that mediates the effects of fz in planar polarity generation.
Collapse
Affiliation(s)
- U Weber
- European Molecular Biology Laboratory, Developmental Biology Programme, Meyerhofstrasse 1, Germany
| | | | | |
Collapse
|
230
|
Chuang SM, Liou GY, Yang JL. Activation of JNK, p38 and ERK mitogen-activated protein kinases by chromium(VI) is mediated through oxidative stress but does not affect cytotoxicity. Carcinogenesis 2000. [DOI: 10.1093/carcin/21.8.1491] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
231
|
Zhang S, Kaplan MH. The p38 mitogen-activated protein kinase is required for IL-12-induced IFN-gamma expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:1374-80. [PMID: 10903740 DOI: 10.4049/jimmunol.165.3.1374] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-12 is a central immunoregulatory cytokine that promotes cell-mediated immune responses and the differentiation of naive CD4+ cells into Th1 cells. We and others have demonstrated that the Stat4 is critical for IFN-gamma production by activated T cells and Th1 cells. However, several studies have suggested that other pathways may be involved in IL-12-stimulated IFN-gamma expression. In this report we demonstrate that IL-12 activates mitogen-activated protein kinase kinase 3/6 (MKK) and p38 mitogen-activated protein kinase (MAPK), but not p44/42 (ERK) or stress-activated protein kinase/c-Jun N-terminal kinase MAPK. The activation of p38 MAPK is required for normal induction of IFN-gamma mRNA and IFN-gamma secretion by IL-12 in activated T cells and Th1 cells. Importantly, IL-12-stimulated p38 MAPK effector functions occur through a Stat4-independent mechanism and correlate with increased serine phosphorylation of activating transcription factor-2. The requirement for p38 MAPK in IL-12 function suggests that this pathway may be an important in vivo target for the anti-inflammatory actions of p38 MAPK inhibitors.
Collapse
Affiliation(s)
- S Zhang
- Department of Microbiology and Immunology, Walther Oncology Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
232
|
Wang X, Rao J, Studzinski GP. Inhibition of p38 MAP kinase activity up-regulates multiple MAP kinase pathways and potentiates 1,25-dihydroxyvitamin D(3)-induced differentiation of human leukemia HL60 cells. Exp Cell Res 2000; 258:425-37. [PMID: 10896794 DOI: 10.1006/excr.2000.4939] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Differentiation therapy for neoplastic diseases has potential for supplementing existing treatment modalities but its implementation has been slow. One of the reasons is the lack of full understanding of the complexities of cellular pathways through which signals for differentiation lead to cell maturation. This was addressed in this study using HL60 cells, a well-established model of differentiation of neoplastic cells. SB 203580 and SB 202190, specific inhibitors of a signaling protein p38 MAP kinase, were found to markedly accelerate monocytic differentiation of HL60 cells induced by low concentrations of 1,25-dihydroxyvitamin D(3) (1,25D(3)). Surprisingly, inhibition of p38 activity resulted in sustained enhancement of p38 phosphorylation and of its in vitro activity in the absence of the inhibitor, indicating up-regulation of the upstream components of the p38 pathway. In addition, SB 203580 or SB 202190 treatment of HL60 cells resulted in a prolonged activation of the JNK and, to a lesser extent, the ERK pathways. The data are consistent with the hypothesis that in HL60 cells an interruption of a negative feedback loop from a p38 target activates a common regulator of multiple MAPK pathways. The possibility also exists that JNK and/or ERK pathways amplify a differentiation signal provided by 1,25D(3).
Collapse
Affiliation(s)
- X Wang
- Department of Pathology and Laboratory Medicine, UMD-New Jersey Medical School, 185 S. Orange Avenue, Newark, New Jersey 07103, USA
| | | | | |
Collapse
|
233
|
Chung KC, Kim SM, Rhang S, Lau LF, Gomes I, Ahn YS. Expression of immediate early gene pip92 during anisomycin-induced cell death is mediated by the JNK- and p38-dependent activation of Elk1. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:4676-84. [PMID: 10903500 DOI: 10.1046/j.1432-1327.2000.01517.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here that immediate early gene pip92 is expressed during anisomycin-induced cell death in fibroblast NIH3T3 cells. To determine the mechanism by which this occurs and to identify downstream signaling pathways, we investigated the induction of the pip92 promoter. The activation of pip92 by anisomycin is mediated by the activation of MAP kinases, such as JNK and p38 kinase, but not ERK. Deletion analysis of the pip92 promoter indicated that pip92 activation occurs primarily within the region containing a serum response element (SRE). Further analysis of the SRE using a heterologous thymidine kinase promoter showed that both an Ets and CArG-like site are required for anisomycin-induced pip92 expression. Elk1, which binds to the Ets site, was phosphorylated by the JNK- and p38-dependent pathways and the phosphorylation of Elk1-GAL4 fusion proteins by these pathways was sufficient for the transactivation. Overall, this study suggested that different MAPK pathways are involved in the expression of immediate early gene pip92 by growth factors and environmental stresses.
Collapse
Affiliation(s)
- K C Chung
- Department of Pharmacology and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| | | | | | | | | | | |
Collapse
|
234
|
Yokoi T, Ohmichi M, Tasaka K, Kimura A, Kanda Y, Hayakawa J, Tahara M, Hisamoto K, Kurachi H, Murata Y. Activation of the luteinizing hormone beta promoter by gonadotropin-releasing hormone requires c-Jun NH2-terminal protein kinase. J Biol Chem 2000; 275:21639-47. [PMID: 10787426 DOI: 10.1074/jbc.m910252199] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of the mitogen-activated protein kinase (MAPK) family by gonadotropin-releasing hormone (GnRH) in the gonadotrope cell line LbetaT2 was investigated. Treatment with gonadotropin-releasing hormone agonist (GnRHa) activates extracellular signal-regulated kinase (ERK) and c-Jun NH(2)-terminal kinase (JNK). Activation of ERK by GnRHa occurred within 5 min, and declined thereafter, whereas activation of JNK by GnRHa occurred with a different time frame, i.e. it was detectable at 5 min, reached a plateau at 30 min, and declined thereafter. GnRHa-induced ERK activation was dependent on protein kinase C or extracellular and intracellular Ca(2+), whereas GnRHa-induced JNK activation was not dependent on protein kinase C or on extracellular or intracellular Ca(2+). To determine whether a mitogen-activated protein kinase family cascade regulates rat luteinizing hormone beta (LHbeta) promoter activity, we transfected the rat LHbeta (-156 to +7)-luciferase construct into LbetaT2 cells. GnRH activated the rat LHbeta promoter activity in a time-dependent manner. Neither treatment with a mitogen-activated protein kinase/ERK kinase (MEK) inhibitor, PD98059, nor cotransfection with a catalytically inactive form of a mitogen-activated protein kinase construct inhibited the induction of the rat LHbeta promoter by GnRH. Furthermore, cotransfection with a dominant negative Ets had no effect on the response of the rat LHbeta promoter to GnRH. On the other hand, cotransfection with either dominant negative JNK or dominant negative c-Jun significantly inhibited the induction of the rat LHbeta promoter by GnRH. In addition, GnRH did not induce either the rat LHbeta promoter activity in LbetaT2 cells transfected stably with dominant negative c-Jun. These results suggest that GnRHa differentially activates ERK and JNK, and a JNK cascade is necessary to elicit the rat LHbeta promoter activity in a c-Jun-dependent mechanism in LbetaT2 cells.
Collapse
Affiliation(s)
- T Yokoi
- Department of Obstetrics and Gynecology, Osaka University Medical School, 2-2, Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
235
|
Gutkind JS. Regulation of mitogen-activated protein kinase signaling networks by G protein-coupled receptors. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2000; 2000:re1. [PMID: 11752597 DOI: 10.1126/stke.2000.40.re1] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The family of receptors that transmit signals through the activation of heterotrimeric GTP-binding proteins (G proteins) constitutes the largest group of cell surface proteins involved in signal transduction. These receptors participate in a broad range of important biological functions and are implicated in a number of disease states. More than half of all drugs currently available influence G protein-coupled receptors (GPCRs). These receptors affect the generation of small molecules that act as intracellular mediators or second messengers, and can regulate a highly interconnected network of biochemical routes controlling the activity of several members of the mitogen-activated protein kinase (MAPK) superfamily. They include extracellular signal-regulated kinase 1 (ERK1) and ERK2 (or p44(MAPK) and p42(MAPK)), c-Jun NH(2)-terminal kinases (JNKs), ERK5 (or BMK), and p38 MAPKs, including p38alpha (or CSBP-1), p38beta, p38gamma (or SAPK3 or ERK6), and p38delta?(or SAPK4). This review will focus on the molecular mechanisms by which GPCRs signal to the nucleus through this intricate network of second messenger-generating systems and MAPK signaling pathways, thereby affecting the expression of genes whose products influence many biological processes, including normal and aberrant cell growth.
Collapse
Affiliation(s)
- J S Gutkind
- Oral and Pharyngeal Cancer Branch, National Institute of Dental Research, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
236
|
Gutkind JS. Regulation of Mitogen-Activated Protein Kinase Signaling Networks by G Protein-Coupled Receptors. Sci Signal 2000. [DOI: 10.1126/scisignal.402000re1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
237
|
Chung KC, Shin SW, Yoo M, Lee MY, Lee HW, Choe BK, Ahn YS. A systemic administration of NMDA induces immediate early gene pip92 in the hippocampus. J Neurochem 2000; 75:9-17. [PMID: 10854241 DOI: 10.1046/j.1471-4159.2000.0750009.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the mammalian CNS, aspartate and glutamate are major excitatory amino acids, and their receptors are believed to mediate a wide range of physiological and pathological processes, including neurotransmission, plasticity, excitotoxicity, and various forms of neurodegeneration. The immediate early gene pip92 has been identified in serum-stimulated BALB/c 3T3 fibroblasts, activated T lymphocytes treated with cycloheximide, and fibroblast growth factor-stimulated hippocampal cells during neuronal differentiation. In this study we have demonstrated that pip92 is expressed in the mouse brain after a single intraperitoneal injection of NMDA. The distribution of pip92 mRNA levels in the NMDA-treated mouse brain was investigated using in situ RT-PCR. The region-specific activation of pip92 in the CNS was observed 3 h after NMDA injection, and high levels of pip92 mRNA were detected in the hippocampal dentate gyrus and piriform cortex regions. In addition, the activation of pip92 by NMDA was mediated by activation of mitogen-activated protein kinases (MAPKs), such as c-Jun N-terminal kinase (JNK) and p38 kinase, but not extracellular signal-regulated kinase (ERK) in the mouse hippocampus and immortalized rat hippocampal progenitor cells. This study suggests that pip92 is likely to play an important role in neuronal cell death induced by excitotoxic NMDA injury in the CNS.
Collapse
Affiliation(s)
- K C Chung
- Department of Pharmacology and Brain Research Institute, Yonsei University College of Medicine, Seoul, Korea.
| | | | | | | | | | | | | |
Collapse
|
238
|
Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. J Neurosci 2000. [PMID: 10844020 DOI: 10.1523/jneurosci.20-12-04506.2000] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We investigated the expression, activation, and distribution of c-Jun N-terminal kinases (JNKs), p38 mitogen-activated protein kinases (p38s) and extracellular signal-regulated kinases (ERKs) using Western blotting and immunohistochemistry in gerbil hippocampus after transient forebrain ischemia to clarify the role of these kinases in delayed neuronal death (DND) in the CA1 subfield. Immunoblot analysis demonstrated that activities of JNK, p38, and ERK in whole hippocampus were increased after 5 min of global ischemia. We used an immunohistochemical study to elucidate the temporal and spatial expression of these kinases after transient global ischemia. The immunohistochemical study showed that active JNK and p38 immunoreactivities were enhanced at 15 min of reperfusion and then gradually reduced and disappeared in the hippocampal CA1 region. On the other hand, in CA3 neurons, active JNK and p38 immunoreactivities were enhanced at 15 min of reperfusion and peaked at 6 hr of reperfusion and then gradually reduced but was continuously detected 72 hr after ischemia. Active ERK immunoreactivity was observed transiently in CA3 fibers and dentate gyrus. Pretreatment with SB203580, a p38 inhibitor, but not with PD98059, an ERK kinase 1/2 inhibitor, reduced ischemic cell death in the CA1 region after transient global ischemia by inhibiting the activity of p38. These findings indicate that the p38 pathway may play an important role in DND during brain ischemia in gerbil. Components of the pathway are important target molecules for clarifying the mechanism of neuronal death.
Collapse
|
239
|
Communal C, Colucci WS, Singh K. p38 mitogen-activated protein kinase pathway protects adult rat ventricular myocytes against beta -adrenergic receptor-stimulated apoptosis. Evidence for Gi-dependent activation. J Biol Chem 2000; 275:19395-400. [PMID: 10770956 DOI: 10.1074/jbc.m910471199] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that stimulation of beta-adrenergic receptors (beta-AR) by norepinephrine (NE) increases apoptosis in adult rat ventricular myocytes (ARVMs) via a cAMP-dependent mechanism that is antagonized by activation of G(i) protein. The family of mitogen-activated protein kinases (MAPKs) is involved in the regulation of cardiac myocyte growth and apoptosis. Here we show that beta-AR stimulation activates p38 kinase, c-jun N-terminal kinases (JNKs), and extracellular signal-regulated kinase (ERK1/2) in ARVMs. Inhibition of p38 kinase with SB-202190 (10 micrometer) potentiated beta-AR-stimulated apoptosis as measured by flow cytometry and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) staining. SB-202190 at this concentration specifically blocked beta-AR-stimulated activation of p38 kinase and its downstream substrate MAPK-activated protein kinase-2 (MAPKAPK2). Pertussis toxin, an inhibitor of G(i)/G(o) proteins, blocked the activation of p38 kinase and potentiated beta-AR-stimulated apoptosis. Activation of G(i) protein with the muscarinic receptor agonist carbachol protected against beta-AR-stimulated apoptosis. Carbachol also activated p38 kinase, and the protective effect of carbachol was abolished by SB-202190. PD-98059 (10 micrometer), an inhibitor of ERK1/2 pathway, blocked beta-AR-stimulated activation of ERK1/2 but had no effect on apoptosis. These data suggest that 1) beta-AR stimulation activates p38 kinase, JNKs, and ERK1/2; 2) activation of p38 kinase plays a protective role in beta-AR-stimulated apoptosis in cardiac myocytes; and 3) the protective effects of G(i) are mediated via the activation of p38 kinase.
Collapse
Affiliation(s)
- C Communal
- Myocardial Biology Unit and Cardiovascular Division, Boston University Medical Center, Boston Veterans Affairs Medical Center and Boston University School of Medicine, Massachusetts 02118, USA
| | | | | |
Collapse
|
240
|
Sugino T, Nozaki K, Takagi Y, Hattori I, Hashimoto N, Moriguchi T, Nishida E. Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. J Neurosci 2000; 20:4506-14. [PMID: 10844020 PMCID: PMC6772465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
We investigated the expression, activation, and distribution of c-Jun N-terminal kinases (JNKs), p38 mitogen-activated protein kinases (p38s) and extracellular signal-regulated kinases (ERKs) using Western blotting and immunohistochemistry in gerbil hippocampus after transient forebrain ischemia to clarify the role of these kinases in delayed neuronal death (DND) in the CA1 subfield. Immunoblot analysis demonstrated that activities of JNK, p38, and ERK in whole hippocampus were increased after 5 min of global ischemia. We used an immunohistochemical study to elucidate the temporal and spatial expression of these kinases after transient global ischemia. The immunohistochemical study showed that active JNK and p38 immunoreactivities were enhanced at 15 min of reperfusion and then gradually reduced and disappeared in the hippocampal CA1 region. On the other hand, in CA3 neurons, active JNK and p38 immunoreactivities were enhanced at 15 min of reperfusion and peaked at 6 hr of reperfusion and then gradually reduced but was continuously detected 72 hr after ischemia. Active ERK immunoreactivity was observed transiently in CA3 fibers and dentate gyrus. Pretreatment with SB203580, a p38 inhibitor, but not with PD98059, an ERK kinase 1/2 inhibitor, reduced ischemic cell death in the CA1 region after transient global ischemia by inhibiting the activity of p38. These findings indicate that the p38 pathway may play an important role in DND during brain ischemia in gerbil. Components of the pathway are important target molecules for clarifying the mechanism of neuronal death.
Collapse
Affiliation(s)
- T Sugino
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
241
|
Sanz V, Arozarena I, Crespo P. Distinct carboxy-termini confer divergent characteristics to the mitogen-activated protein kinase p38alpha and its splice isoform Mxi2. FEBS Lett 2000; 474:169-74. [PMID: 10838079 DOI: 10.1016/s0014-5793(00)01598-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The p38 family of mitogen-activated protein kinases is composed of several isoforms. Mxi2 is a splicing variant of p38alpha that harbors a unique carboxy-terminus. Here we show that this sole divergence results in remarkable differences between Mxi2 and p38alpha. Mxi2 is distinctively activated by stress stimuli and potently activated by mitogens. Mxi2 affinity for bona fide p38 substrates is remarkably diminished and Mxi2 activity is largely unaffected by the phosphatase CL100. Also, Mxi2 sensitivity to inhibition by SB203580 is greatly reduced. Interestingly, we show that the p38 C-terminus is involved in conferring sensitivity to this compound. Overall, our results point to the p38 carboxy-terminus as a key determinant of the biochemical properties of this family of kinases.
Collapse
Affiliation(s)
- V Sanz
- Unidad de Biología Molecular del Cáncer, Departamento de Biología Molecular, Universidad de Cantabria, Santander, Spain
| | | | | |
Collapse
|
242
|
Metzler B, Hu Y, Dietrich H, Xu Q. Increased expression and activation of stress-activated protein kinases/c-Jun NH(2)-terminal protein kinases in atherosclerotic lesions coincide with p53. THE AMERICAN JOURNAL OF PATHOLOGY 2000; 156:1875-86. [PMID: 10854211 PMCID: PMC1850074 DOI: 10.1016/s0002-9440(10)65061-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hyperlipidemia alters gene expression of arterial endothelial and smooth muscle cells (SMCs) and induces atherosclerotic lesions, in which cell proliferation and apoptosis co-exist. The signal transduction pathways that mediate these responses in the vessel wall in vivo have yet to be identified. Stress-activated protein kinases (SAPKs) or c-Jun NH(2)-terminal protein kinases (JNKs) are thought to be crucial in transmitting transmembrane signals required for cell differentiation and apoptosis in vitro. In the present study, we investigated the localization and activity of SAPK/JNK in atherosclerotic lesions of cholesterol-fed rabbits. Immunofluorescence analysis revealed abundant and heterogeneous distribution of pan-SAPK/JNK and phosphorylated SAPK/JNK, which were mainly localized in cell nuclei of the lesional cap and basal regions. Double staining of the lesions demonstrated that a portion of alpha-actin(+) SMCs and RAM11(+) macrophages contained abundant phosphorylated SAPK/JNK proteins. SAPK/JNK protein levels in protein extracts from atherosclerotic lesions were two- to threefold higher than the vessels of chow-fed rabbits. SAPK/JNK activities were elevated three- to fivefold higher than the normal vessels. Interestingly, increased SAPK/JNK in lesions was co-localized or coincided with high levels of transcription factor p53 as identified by double labeling and immunoprecipitation. Abundant pro-apoptotic protein BAX and BCL-X(S) were also observed. Furthermore, low-density lipoprotein (LDL) and oxidized LDL stimulated SAPK/JNK activation in cultured SMCs in a time- and dose-dependent manner. LDL also induced SAPK/JNK activation in vascular SMCs derived from LDL-receptor-deficient Watanabe rabbits, indicating a LDL-receptor-independent process. Thus, SAPK/JNK persistently hyperexpressed and activated in lesions may play a key role in mediating cell differentiation and apoptosis during the development of atherosclerosis via activation of transcription factor p53.
Collapse
Affiliation(s)
- B Metzler
- Department of Internal Medicine, and the Institute for General and Experimental Pathology, University of Innsbruck Medical School, Austrian Academy of Sciences, Innsbruck
| | | | | | | |
Collapse
|
243
|
Lasa M, Mahtani KR, Finch A, Brewer G, Saklatvala J, Clark AR. Regulation of cyclooxygenase 2 mRNA stability by the mitogen-activated protein kinase p38 signaling cascade. Mol Cell Biol 2000; 20:4265-74. [PMID: 10825190 PMCID: PMC85794 DOI: 10.1128/mcb.20.12.4265-4274.2000] [Citation(s) in RCA: 324] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A tetracycline-regulated reporter system was used to investigate the regulation of cyclooxygenase 2 (Cox-2) mRNA stability by the mitogen-activated protein kinase (MAPK) p38 signaling cascade. The stable beta-globin mRNA was rendered unstable by insertion of the 2, 500-nucleotide Cox-2 3' untranslated region (3' UTR). The chimeric transcript was stabilized by a constitutively active form of MAPK kinase 6, an activator of p38. This stabilization was blocked by SB203580, an inhibitor of p38, and by two different dominant negative forms of MAPK-activated protein kinase 2 (MAPKAPK-2), a kinase lying downstream of p38. Constitutively active MAPKAPK-2 was also able to stabilize chimeric beta-globin-Cox-2 transcripts. The MAPKAPK-2 substrate hsp27 may be involved in stabilization, as beta-globin-Cox-2 transcripts were partially stabilized by phosphomimetic mutant forms of hsp27. A short (123-nucleotide) fragment of the Cox-2 3' UTR was necessary and sufficient for the regulation of mRNA stability by the p38 cascade and interacted with a HeLa protein immunologically related to AU-rich element/poly(U) binding factor 1.
Collapse
Affiliation(s)
- M Lasa
- Kennedy Institute of Rheumatology, Imperial College School of Medicine, Hammersmith, London W6 8LH, United Kingdom
| | | | | | | | | | | |
Collapse
|
244
|
Lee DJ, Rosenfeldt H, Grinnell F. Activation of ERK and p38 MAP kinases in human fibroblasts during collagen matrix contraction. Exp Cell Res 2000; 257:190-7. [PMID: 10854067 DOI: 10.1006/excr.2000.4866] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Studies were carried out to characterize changes in MAP kinase activation during contraction of collagen matrices by fibroblasts under isometric tension. We found that both ERK and p38 MAP kinases were activated during contraction, as determined by immunoblotting and in vitro kinase assays. ERK activation was biphasic, with peaks at 10 min and 2 h; whereas p38 activation was monophasic, with a single peak at 10 min. Activation of ERK, but not p38, appeared to depend at least in part on the Gi class of heterotrimeric G proteins. The results show that ERK and p38 cooperate in contraction-stimulated activation of c-fos transcription.
Collapse
Affiliation(s)
- D J Lee
- Department of Cell Biology and Neuroscience, UT Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | |
Collapse
|
245
|
Rho proteins and the p38-MAPK pathway are important mediators for LPS-induced interleukin-8 expression in human endothelial cells. Blood 2000. [DOI: 10.1182/blood.v95.10.3044.010k21_3044_3051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial endotoxin (lipopolysaccharide, or LPS) has potent proinflammatory properties by acting on many cell types, including endothelial cells. Secretion of the CXC-chemokine interleukin-8 (IL-8) by LPS-activated endothelial cells contributes substantially to the inflammatory response. Using human umbilical vein endothelial cells (HUVECs), we analyzed the role of small GTP-binding Rho proteins and p38 mitogen-activated protein kinase (MAPK) for LPS-dependent IL-8 expression in endothelial cells. Specific inactivation of RhoA/Cdc42/Rac1 by Clostridium difficile toxin B-10463 (TcdB-10463) reduced LPS-induced tyrosine phosphorylation, nuclear factor (NF)-κB–dependent gene expression, IL-8 messenger RNA, and IL-8 protein accumulation but showed no effect on LPS-dependent p38 MAPK activation. Inhibition of p38 MAPK by SB 202190 also blocked LPS-induced NF-κB activation and IL-8 synthesis. Furthermore, selective activation of the p38 MAPK pathway by transient expression of a constitutively active form of MAPK kinase (MKK)6, the upstream activator of p38, was as effective as LPS with respect to IL-8 expression in HUVECs. In summary, our data suggest that LPS-induced NF-κB activation and IL-8 synthesis in HUVECs are regulated by both a Rho-dependent signaling pathway and the MKK6/p38 kinase cascade.
Collapse
|
246
|
Rho proteins and the p38-MAPK pathway are important mediators for LPS-induced interleukin-8 expression in human endothelial cells. Blood 2000. [DOI: 10.1182/blood.v95.10.3044] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Bacterial endotoxin (lipopolysaccharide, or LPS) has potent proinflammatory properties by acting on many cell types, including endothelial cells. Secretion of the CXC-chemokine interleukin-8 (IL-8) by LPS-activated endothelial cells contributes substantially to the inflammatory response. Using human umbilical vein endothelial cells (HUVECs), we analyzed the role of small GTP-binding Rho proteins and p38 mitogen-activated protein kinase (MAPK) for LPS-dependent IL-8 expression in endothelial cells. Specific inactivation of RhoA/Cdc42/Rac1 by Clostridium difficile toxin B-10463 (TcdB-10463) reduced LPS-induced tyrosine phosphorylation, nuclear factor (NF)-κB–dependent gene expression, IL-8 messenger RNA, and IL-8 protein accumulation but showed no effect on LPS-dependent p38 MAPK activation. Inhibition of p38 MAPK by SB 202190 also blocked LPS-induced NF-κB activation and IL-8 synthesis. Furthermore, selective activation of the p38 MAPK pathway by transient expression of a constitutively active form of MAPK kinase (MKK)6, the upstream activator of p38, was as effective as LPS with respect to IL-8 expression in HUVECs. In summary, our data suggest that LPS-induced NF-κB activation and IL-8 synthesis in HUVECs are regulated by both a Rho-dependent signaling pathway and the MKK6/p38 kinase cascade.
Collapse
|
247
|
Huang Y, Deng T, Winston BW. Characterization of hPRP4 kinase activation: potential role in signaling. Biochem Biophys Res Commun 2000; 271:456-63. [PMID: 10799319 DOI: 10.1006/bbrc.2000.2651] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) and cyclin-dependent kinases (CDKs) are important proline-directed Ser/Thr kinases that play distinct roles in cell differentiation and proliferation. hPRP4 (pre-mRNA processing gene), a human homologue of S. pombe Prp4, is a recently isolated CDK-like kinase with homology to MAPKs. Little is known about the mRNA processing function of hPRP4 or about the signaling pathways with which it is associated. hPRP4 is expressed in a variety of human tissues with the highest expression in the brain, lung and liver. In this paper, we characterize the activation of hPRP4 in COS-7 cells and show that hPRP4 also possesses a transcription factor activation function. hPRP4 is activated by epidermal growth factor (EGF) or forskolin treatment, but not tetradecanoyl phorbol acetate (TPA) nor ultraviolet (UV) irradiation. Activated hPRP4 phosphorylates residue Thr-417 on Elk-1 resulting in Elk-1 activation. This site of Elk-1 phosphorylation is distinct from that of other MAPKs. Coexpression of hPRP4 with an Elk-1 reporter construct causes trans activation of the reporter. These findings suggest that hPRP4, a CDK-like kinase related to MAPKs, may play a distinct role in signal transduction in addition to its role in mRNA processing.
Collapse
Affiliation(s)
- Y Huang
- Department of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | | | | |
Collapse
|
248
|
Garay M, Gaarde W, Monia BP, Nero P, Cioffi CL. Inhibition of hypoxia/reoxygenation-induced apoptosis by an antisense oligonucleotide targeted to JNK1 in human kidney cells. Biochem Pharmacol 2000; 59:1033-43. [PMID: 10704932 DOI: 10.1016/s0006-2952(99)00412-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
17-fold) increase in DNA fragmentation. Fluorescence microscopy, using DNA binding dyes, demonstrated that cell death following hypoxia/reoxygenation was due predominantly to apoptosis and not necrosis. Furthermore, reoxygenation, but not hypoxia alone, caused a time-dependent increase in the activation of JNK as monitored by western blot analysis using a phospho-specific JNK antibody. In contrast, p38 mitogen-activated protein kinase was activated following hypoxia, but this activation was not augmented during reoxygenation. Exposure of human kidney cells to a 2'-methoxyethyl mixed backbone antisense oligonucleotide directed against human JNK1 (JNK1 AS) resulted in a potent suppression of JNK mRNA and protein expression, whereas a 6-base mismatch control oligonucleotide was without effect. Moreover, a significant diminution of reoxygenation-induced apoptosis was observed in cells exposed to JNK1 AS but not to the mismatch control oligonucleotide. Taken together, these results strongly indicate that activation of the JNK signaling cascade is a major mechanism whereby hypoxia/reoxygenation induces apoptosis.
Collapse
Affiliation(s)
- M Garay
- Department of Metabolic and Cardiovascular Diseases, Novartis Institute for Biomedical Research, Summit, NJ 07901, USA
| | | | | | | | | |
Collapse
|
249
|
Rincón M, Flavell RA, Davis RA. The JNK and P38 MAP kinase signaling pathways in T cell-mediated immune responses. Free Radic Biol Med 2000; 28:1328-37. [PMID: 10924852 DOI: 10.1016/s0891-5849(00)00219-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The mitogen-activated protein (MAP) kinase family members, which include the extracellular response kinases (ERK), p38, and c-Jun amino terminal kinases (JNK), play a role in mediating signals triggered by cytokines, growth factors, and environmental stress. JNK and p38 MAP kinases have been involved in inflammatory processes induced by a variety of stimuli, such as oxidative stress. Here, we describe the role of the JNK and p38 MAP kinase signaling pathways in the development of T cells in the thymus, and activation and differentiation of T cells in the peripheral immune system.
Collapse
Affiliation(s)
- M Rincón
- Immunobiology Program, Department of Medicine, University of Vermont, Burlington, VT 05405, USA.
| | | | | |
Collapse
|
250
|
Bertolotto C, Ricci JE, Luciano F, Mari B, Chambard JC, Auberger P. Cleavage of the serum response factor during death receptor-induced apoptosis results in an inhibition of the c-FOS promoter transcriptional activity. J Biol Chem 2000; 275:12941-7. [PMID: 10777594 DOI: 10.1074/jbc.275.17.12941] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The c-FOS protooncogene is rapidly induced by a wide variety of extracellular stimuli including mitogenic signals. Regulation of c-FOS expression is tightly dependent on the serum response element localized within its promoter. Two transcription factors, the serum response factor (SRF) and the ternary complex factor, bind to the serum response element and play a key role in the regulation of the c-FOS promoter activity. In the present study, we show that two death effectors (CH11 and TRAIL) severely impaired the transcriptional activity of the c-FOS promoter in Jurkat T cells. This inhibition can be accounted for by the specific cleavage by caspase 3 of the SRF both in vitro and in vivo, since acetyl-DEVD-aldehyde prevented SRF cleavage and abolished the inhibitory effect of CH11 and TRAIL on the c-FOS promoter activity. Moreover, phorbol myristate acetate, a potent anti-apoptotic effector, was found to protect SRF completely from cleavage by caspase 3 and also to prevent the inhibition of the c-FOS promoter activity by death effectors. Survival factors play an essential function in the regulation of cell growth mainly by regulating the expression of immediate early gene such as c-FOS. In this line, cleavage of SRF at the onset of apoptosis could abrogate the ability of the cell to induce inappropriate survival pathways. All together, our results are consistent with a role of SRF at the interface between cell survival and death pathways.
Collapse
Affiliation(s)
- C Bertolotto
- INSERM U526, Activation des Cellules Hématopoïétiques, Physiopathologie de la Survie et de la Mort Cellulaires et Infections Virales, Faculté de Médecine, 28 Avenue de Valombrose, 06107 Nice Cedex 2, France
| | | | | | | | | | | |
Collapse
|