201
|
Abstract
Type 1 diabetes (T1D) results from an autoimmune-mediated destruction of pancreatic β cells. The incidence of T1D is on the rise globally around 3% to 5% per year and rapidly increasing incidence in younger children is of the greatest concern. currently, there is no way to cure or prevent T1D; hence, a deeper understanding of the underlying molecular mechanisms of this disease is essential to the development of new effective therapies. The endoplasmic reticulum (ER) is an organelle with multiple functions that are essential for cellular homeostasis. Excessive demand on the ER, chronic inflammation, and environmental factors lead to ER stress and to re-establish cellular homeostasis, the adaptive unfolded protein response (UPR) is triggered. However, chronic ER stress leads to a switch from a prosurvival to a proapoptotic UPR, resulting in cell death. Accumulating data have implicated ER stress and defective UPR in the pathogenesis of inflammatory and autoimmune diseases, and ER stress has been implicated in β-cell failure in type 2 diabetes. However, the role of ER stress and the UPR in β-cell pathophysiology and in the initiation and propagation of the autoimmune responses in T1D remains undefined. This review will highlight the current understanding and recent in vivo data on the role of ER stress and adaptive responses in T1D pathogenesis and the potential therapeutic aspect of enhancing β-cell ER function and restoring UPR defects as novel clinical strategies against this disease.
Collapse
|
202
|
Liu M, Dudley SC. Role for the Unfolded Protein Response in Heart Disease and Cardiac Arrhythmias. Int J Mol Sci 2015; 17:ijms17010052. [PMID: 26729106 PMCID: PMC4730297 DOI: 10.3390/ijms17010052] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/23/2022] Open
Abstract
The unfolded protein response (UPR) has been extensively investigated in neurological diseases and diabetes, while its function in heart disease is less well understood. Activated UPR participates in multiple cardiac conditions and can either protect or impair heart function. Recently, the UPR has been found to play a role in arrhythmogenesis during human heart failure by affecting cardiac ion channels expression, and blocking UPR has an antiarrhythmic effect. This review will discuss the rationale for and challenges to targeting UPR in heart disease for treatment of arrhythmias.
Collapse
Affiliation(s)
- Man Liu
- The Warren Alpert Medical School of Brown University, Lifespan Cardiovascular Institute, the Providence VA Medical Center, 593 Eddy Street, APC814, Providence, RI 02903, USA.
| | - Samuel C Dudley
- The Warren Alpert Medical School of Brown University, Lifespan Cardiovascular Institute, the Providence VA Medical Center, 593 Eddy Street, APC814, Providence, RI 02903, USA.
| |
Collapse
|
203
|
Rashid HO, Yadav RK, Kim HR, Chae HJ. ER stress: Autophagy induction, inhibition and selection. Autophagy 2015; 11:1956-1977. [PMID: 26389781 DOI: 10.1080/15548627.2015.1091141] [Citation(s) in RCA: 596] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
An accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) leads to stress conditions. To mitigate such circumstances, stressed cells activate a homeostatic intracellular signaling network cumulatively called the unfolded protein response (UPR), which orchestrates the recuperation of ER function. Macroautophagy (hereafter autophagy), an intracellular lysosome-mediated bulk degradation pathway for recycling and eliminating wornout proteins, protein aggregates, and damaged organelles, has also emerged as an essential protective mechanism during ER stress. These 2 systems are dynamically interconnected, and recent investigations have revealed that ER stress can either stimulate or inhibit autophagy. However, the stress-associated molecular cues that control the changeover switch between induction and inhibition of autophagy are largely obscure. This review summarizes the crosstalk between ER stress and autophagy and their signaling networks mainly in mammalian-based systems. Additionally, we highlight current knowledge on selective autophagy and its connection to ER stress.
Collapse
Affiliation(s)
- Harun-Or Rashid
- a Department of Pharmacology ; Medical School; Chonbuk National University
| | - Raj Kumar Yadav
- a Department of Pharmacology ; Medical School; Chonbuk National University
| | - Hyung-Ryong Kim
- b Department of Dental Pharmacology ; College of Dentistry; Wonkwang University
| | - Han-Jung Chae
- a Department of Pharmacology ; Medical School; Chonbuk National University
| |
Collapse
|
204
|
Yamani L, Li B, Larose L. Nck1 deficiency improves pancreatic β cell survival to diabetes-relevant stresses by modulating PERK activation and signaling. Cell Signal 2015; 27:2555-67. [DOI: 10.1016/j.cellsig.2015.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 09/18/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022]
|
205
|
Abstract
The great preclinical promise of the pancreatic endoplasmic reticulum kinase (PERK) inhibitors in neurodegenerative disorders and cancers is marred by pancreatic injury and diabetic syndrome observed in PERK knockout mice and humans lacking PERK function and suffering from Wolcott-Rallison syndrome. PERK mediates many of the unfolded protein response (UPR)-induced events, including degradation of the type 1 interferon (IFN) receptor IFNAR1 in vitro. Here we report that whole-body or pancreas-specific Perk ablation in mice leads to an increase in IFNAR1 protein levels and signaling in pancreatic tissues. Concurrent IFNAR1 deletion attenuated the loss of PERK-deficient exocrine and endocrine pancreatic tissues and prevented the development of diabetes. Experiments using pancreas-specific Perk knockouts, bone marrow transplantation, and cultured pancreatic islets demonstrated that stabilization of IFNAR1 and the ensuing increased IFN signaling in pancreatic tissues represents a major driver of injury triggered by Perk loss. Neutralization of IFNAR1 prevented pancreatic toxicity of PERK inhibitor, indicating that blocking the IFN pathway can mitigate human genetic disorders associated with PERK deficiency and help the clinical use of PERK inhibitors.
Collapse
|
206
|
Collardeau-Frachon S, Vasiljevic A, Jouvet A, Bouvier R, Senée V, Nicolino M. Microscopic and ultrastructural features in Wolcott-Rallison syndrome, a permanent neonatal diabetes mellitus: about two autopsy cases. Pediatr Diabetes 2015; 16:510-20. [PMID: 25131821 DOI: 10.1111/pedi.12201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/25/2014] [Accepted: 07/03/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Wolcott-Rallison syndrome (WRS) is a rare autosomal recessive disorder characterized by the association of permanent neonatal or early-infancy insulin-dependent diabetes, multiple bone dysplasia, hepatic dysfunction, and growth retardation. All clinical manifestations result from gene mutations encoding pancreatic endoplasmic reticulum eIF2 α kinase (PERK), an endoplasmic reticulum transmembrane protein that plays a role in the unfolded protein response. Histological and ultrastructural lesions of bone and pancreas have been described in animal models and WRS patients. However, histological and ultrastructural findings of other organs, especially of the liver, are lacking. METHODS Autopsy specimens from two pediatric patients with WRS were analyzed. An immunohistochemical study was performed on the pancreas. An ultrastructural study was realized from samples of liver, pancreas, kidney, and myocardium. Our findings were compared with those of the literature and correlated with the molecular data. RESULTS Hepatocytes and pancreatic exocrine cells exhibited very peculiar features of necrosis suggestive of secondary changes because of endoplasmic reticulum overload. Steatosis occurred in renal tubular cells, hepatocytes, and myocardial fibers. Abnormal mitochondria were noted in renal and myocardial fibers. Pancreas islets were characterized by a marked reduction in the number of insulin-secreting β cells. CONCLUSIONS The histological and ultrastructural features that occur in WRS are directly or indirectly linked to endoplasmic reticulum (ER) dysfunction and can explain the peculiar phenotype of this syndrome.
Collapse
Affiliation(s)
- Sophie Collardeau-Frachon
- Department of Pathology, Children and Mother's Hospital, Groupement Hospitalier Est, CHU de Lyon-Bron, France
| | - Alexandre Vasiljevic
- Department of Pathology, Children and Mother's Hospital, Groupement Hospitalier Est, CHU de Lyon-Bron, France
| | - Anne Jouvet
- Department of Pathology, Children and Mother's Hospital, Groupement Hospitalier Est, CHU de Lyon-Bron, France
| | - Raymonde Bouvier
- Department of Pathology, Children and Mother's Hospital, Groupement Hospitalier Est, CHU de Lyon-Bron, France
| | - Valérie Senée
- Medical Faculty Paris 7, Inserm UMR-S958, Paris, France
| | - Marc Nicolino
- Department of Endocrinology, Children and Mother's Hospital, Groupement Hospitalier Est, CHU de Lyon-Bron, France
| |
Collapse
|
207
|
Kamimura D, Arima Y, Tsuruoka M, Jiang JJ, Bando H, Meng J, Sabharwal L, Stofkova A, Nishikawa N, Higuchi K, Ogura H, Atsumi T, Murakami M. Strong TCR-mediated signals suppress integrated stress responses induced by KDELR1 deficiency in naive T cells. Int Immunol 2015; 28:117-26. [PMID: 26489882 DOI: 10.1093/intimm/dxv059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/09/2015] [Indexed: 12/17/2022] Open
Abstract
KDEL receptor 1 (KDELR1) regulates integrated stress responses (ISR) to promote naive T-cell survival in vivo. In a mouse line having nonfunctional KDELR1, T-Red (naive T-cell reduced) mice, polyclonal naive T cells show excessive ISR and eventually undergo apoptosis. However, breeding T-Red mice with TCR-transgenic mice bearing relatively high TCR affinity rescued the T-Red phenotype, implying a link between ISR-induced apoptosis and TCR-mediated signaling. Here, we showed that strong TCR stimulation reduces ISR in naive T cells. In mice lacking functional KDELR1, surviving naive T cells expressed significantly higher levels of CD5, a surrogate marker of TCR self-reactivity. In addition, higher TCR affinity/avidity was confirmed using a tetramer dissociation assay on the surviving naive T cells, suggesting that among the naive T-cell repertoire, those that receive relatively stronger TCR-mediated signals via self-antigens survive enhanced ISR. Consistent with this observation, weak TCR stimulation with altered peptide ligands decreased the survival and proliferation of naive T cells, whereas stimulation with ligands having higher affinity had no such effect. These results suggest a novel role of TCR-mediated signals in the attenuation of ISR in vivo.
Collapse
Affiliation(s)
- Daisuke Kamimura
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasunobu Arima
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mineko Tsuruoka
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jing-Jing Jiang
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidenori Bando
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Jie Meng
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Lavannya Sabharwal
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Andrea Stofkova
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan
| | - Naoki Nishikawa
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan
| | - Kotaro Higuchi
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan
| | - Hideki Ogura
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Toru Atsumi
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaaki Murakami
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-Ku, Sapporo, Hokkaido 060-0815, Japan Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine and WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
208
|
Eletto D, Eletto D, Boyle S, Argon Y. PDIA6 regulates insulin secretion by selectively inhibiting the RIDD activity of IRE1. FASEB J 2015; 30:653-65. [PMID: 26487694 DOI: 10.1096/fj.15-275883] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
Abstract
Protein disulfide isomerase A6 (PDIA6) interacts with protein kinase RNA-like endoplasmic reticulum kinase (PERK) and inositol requiring enzyme (IRE)-1 and inhibits their unfolded protein response signaling. In this study, shRNA silencing of PDIA6 expression in insulin-producing mouse cells reduced insulin production (5-fold) and, consequently, glucose-stimulated insulin secretion (3-4-fold). This inhibition of insulin release was independent of the PDIA6-PERK interaction or PERK activity. Acute inhibition of PERK did not change the short-term response of β cells to glucose. Rather, PDIA6 affected insulin secretion by modulating one of the activities of IRE1. At 11 mM glucose and lower, the regulated IRE1-dependent decay (RIDD) of the mRNA activity of IRE1 was activated, but not its X-box binding protein (XBP)-1 splicing activity. In the absence of PDIA6, RIDD activity toward insulin transcripts was enhanced up to 4-fold, as shown by molecular assays in cultured cells and the use of a fluorescent reporter in intact islets. Such physiologic activation of IRE1 by glucose contrasted with IRE1 activation by chemical stress, when both IRE1 activities were induced. Thus, whereas the stimulus determines the quality of IRE1 signaling, PDIA6 attenuates multiple enzymatic activities of IRE1, maintaining its signaling within a physiologically tolerable range.
Collapse
Affiliation(s)
- Daniela Eletto
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Davide Eletto
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah Boyle
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yair Argon
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
209
|
Abstract
Proper tissue vascularization is vital for cellular function as it delivers oxygen, nutrients, hormones, and immune cells and helps to clear cellular debris and metabolic waste products. Tissue angiogenesis occurs to satisfy energy requirements and cellular sensors of metabolic imbalance coordinate vessel growth. In this regard, the classical pathways of the unfolded protein response activated under conditions of ER stress have recently been described to generate angiomodulatory or angiostatic signals. This review elaborates on the link between angiogenesis and ER stress and discusses the implications for diseases characterized by altered vascular homeostasis, such as cancer, retinopathies, and atherosclerosis.
Collapse
Affiliation(s)
- François Binet
- Departments of Ophthalmology, Biochemistry, & Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada
| | - Przemyslaw Sapieha
- Departments of Ophthalmology, Biochemistry, & Molecular Medicine, Maisonneuve-Rosemont Hospital Research Centre, University of Montreal, Montreal, QC H1T 2M4, Canada; Department of Neurology-Neurosurgery, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
210
|
Identification and proteomic analysis of osteoblast-derived exosomes. Biochem Biophys Res Commun 2015; 467:27-32. [PMID: 26420226 DOI: 10.1016/j.bbrc.2015.09.135] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 01/21/2023]
Abstract
Exosomes are nanometer-sized vesicles with the function of intercellular communication, and they are released by various cell types. To reveal the knowledge about the exosomes from osteoblast, and explore the potential functions of osteogenesis, we isolated microvesicles from supernatants of mouse Mc3t3 by ultracentrifugation, characterized exosomes by electron microscopy and immunoblotting and presented the protein profile by proteomic analysis. The result demonstrated that microvesicles were between 30 and 100 nm in diameter, round shape with cup-like concavity and expressed exosomal marker tumor susceptibility gene (TSG) 101 and flotillin (Flot) 1. We identified a total number of 1069 proteins among which 786 proteins overlap with ExoCarta database. Gene Oncology analysis indicated that exosomes mostly derived from plasma membrane and mainly involved in protein localization and intracellular signaling. The Ingenuity Pathway Analysis showed pathways are mostly involved in exosome biogenesis, formation, uptake and osteogenesis. Among the pathways, eukaryotic initiation factor 2 pathways played an important role in osteogenesis. Our study identified osteoblast-derived exosomes, unveiled the content of them, presented potential osteogenesis-related proteins and pathways and provided a rich proteomics data resource that will be valuable for further studies of the functions of individual proteins in bone diseases.
Collapse
|
211
|
Torres M, Matamala JM, Duran-Aniotz C, Cornejo VH, Foley A, Hetz C. ER stress signaling and neurodegeneration: At the intersection between Alzheimer's disease and Prion-related disorders. Virus Res 2015; 207:69-75. [DOI: 10.1016/j.virusres.2014.12.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/28/2014] [Accepted: 12/10/2014] [Indexed: 01/23/2023]
|
212
|
Abstract
The unfolded protein response (UPR) is a stress response of the endoplasmic reticulum (ER) to a disturbance in protein folding. The so-called ER stress sensors PERK, IRE1 and ATF6 play a central role in the initiation and regulation of the UPR. The accumulation of misfolded and aggregated proteins is a common characteristic of neurodegenerative diseases. With the discovery of the basic machinery of the UPR, the idea was born that the UPR or part of its machinery could be involved in neurodegenerative diseases like Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and prion disease. Over the last decade, the UPR has been addressed in an increasing number of studies on neurodegeneration. The involvement of the UPR has been investigated in human neuropathology across different neurological diseases, as well as in cell and mouse models for neurodegeneration. Studies using different disease models display discrepancies on the role and function of the UPR during neurodegeneration, which can often be attributed to differences in methodology. In this review, we will address the importance of investigation of human brain material for the interpretation of the role of the UPR in neurological diseases. We will discuss evidence for UPR activation in neurodegenerative diseases, and the methodology to study UPR activation and its connection to brain pathology will be addressed. More recently, the UPR is recognized as a target for drug therapy for treatment and prevention of neurodegeneration, by inhibiting the function of specific mediators of the UPR. Several preclinical studies have shown a proof-of-concept for this approach targeting the machinery of UPR, in particular the PERK pathway, in different models for neurodegeneration and have yielded paradoxical results. The promises held by these observations will need further support by clarification of the observed differences between disease models, as well as increased insight obtained from human neuropathology.
Collapse
|
213
|
Kernohan KD, Tétreault M, Liwak-Muir U, Geraghty MT, Qin W, Venkateswaran S, Davila J, Holcik M, Majewski J, Richer J, Boycott KM. Homozygous mutation in the eukaryotic translation initiation factor 2alpha phosphatase gene, PPP1R15B, is associated with severe microcephaly, short stature and intellectual disability. Hum Mol Genet 2015; 24:6293-300. [PMID: 26307080 PMCID: PMC4614701 DOI: 10.1093/hmg/ddv337] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/11/2015] [Indexed: 11/13/2022] Open
Abstract
Protein translation is an essential cellular process initiated by the association of a methionyl-tRNA with the translation initiation factor eIF2. The Met-tRNA/eIF2 complex then associates with the small ribosomal subunit, other translation factors and mRNA, which together comprise the translational initiation complex. This process is regulated by the phosphorylation status of the α subunit of eIF2 (eIF2α); phosphorylated eIF2α attenuates protein translation. Here, we report a consanguineous family with severe microcephaly, short stature, hypoplastic brainstem and cord, delayed myelination and intellectual disability in two siblings. Whole-exome sequencing identified a homozygous missense mutation, c.1972G>A; p.Arg658Cys, in protein phosphatase 1, regulatory subunit 15b (PPP1R15B), a protein which functions with the PPP1C phosphatase to maintain dephosphorylated eIF2α in unstressed cells. The p.R658C PPP1R15B mutation is located within the PPP1C binding site. We show that patient cells have greatly diminished levels of PPP1R15B-PPP1C interaction, which results in increased eIF2α phosphorylation and resistance to cellular stress. Finally, we find that patient cells have elevated levels of PPP1R15B mRNA and protein, suggesting activation of a compensatory program aimed at restoring cellular homeostasis which is ineffective due to PPP1R15B alteration. PPP1R15B now joins the expanding list of translation-associated proteins which when mutated cause rare genetic diseases.
Collapse
Affiliation(s)
| | - Martine Tétreault
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada H3A 1B1, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada H3A 0G1
| | | | - Michael T Geraghty
- Children's Hospital of Eastern Ontario Research Institute, Division of Metabolics and Newborn Screening, Department of Pediatrics
| | - Wen Qin
- Children's Hospital of Eastern Ontario Research Institute
| | - Sunita Venkateswaran
- Division of Neurology, Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada KIH 8L1
| | | | | | - Martin Holcik
- Children's Hospital of Eastern Ontario Research Institute
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada H3A 1B1, McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada H3A 0G1
| | - Julie Richer
- Department of Genetics, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, Canada K1H 8L1
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, Department of Genetics, Children's Hospital of Eastern Ontario, 401 Smyth Road, Ottawa, Ontario, Canada K1H 8L1
| |
Collapse
|
214
|
Novel roles of the unfolded protein response in the control of tumor development and aggressiveness. Semin Cancer Biol 2015; 33:67-73. [DOI: 10.1016/j.semcancer.2015.04.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 11/20/2022]
|
215
|
Clarke R, Cook KL. Unfolding the Role of Stress Response Signaling in Endocrine Resistant Breast Cancers. Front Oncol 2015; 5:140. [PMID: 26157705 PMCID: PMC4475795 DOI: 10.3389/fonc.2015.00140] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 06/03/2015] [Indexed: 11/24/2022] Open
Abstract
The unfolded protein response (UPR) is an ancient stress response that enables a cell to manage the energetic stress that accompanies protein folding. There has been a significant recent increase in our understanding of the UPR, how it integrates physiological processes within cells, and how this integration can affect cancer cells and cell fate decisions. Recent publications have highlighted the role of UPR signaling components on mediating various cell survival pathways, cellular metabolism and bioenergenics, and autophagy. We address the role of UPR on mediating endocrine therapy resistance and estrogen receptor-positive breast cancer cell survival.
Collapse
Affiliation(s)
- Robert Clarke
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center , Washington, DC , USA
| | - Katherine L Cook
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center , Washington, DC , USA
| |
Collapse
|
216
|
Kamimura D, Katsunuma K, Arima Y, Atsumi T, Jiang JJ, Bando H, Meng J, Sabharwal L, Stofkova A, Nishikawa N, Suzuki H, Ogura H, Ueda N, Tsuruoka M, Harada M, Kobayashi J, Hasegawa T, Yoshida H, Koseki H, Miura I, Wakana S, Nishida K, Kitamura H, Fukada T, Hirano T, Murakami M. KDEL receptor 1 regulates T-cell homeostasis via PP1 that is a key phosphatase for ISR. Nat Commun 2015; 6:7474. [PMID: 26081938 PMCID: PMC4557295 DOI: 10.1038/ncomms8474] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/13/2015] [Indexed: 01/06/2023] Open
Abstract
KDEL receptors are responsible for retrotransporting endoplasmic reticulum (ER) chaperones from the Golgi complex to the ER. Here we describe a role for KDEL receptor 1 (KDELR1) that involves the regulation of integrated stress responses (ISR) in T cells. Designing and using an N-ethyl-N-nitrosourea (ENU)-mutant mouse line, T-Red (naïve T-cell reduced), we show that a point mutation in KDELR1 is responsible for the reduction in the number of naïve T cells in this model owing to an increase in ISR. Mechanistic analysis shows that KDELR1 directly regulates protein phosphatase 1 (PP1), a key phosphatase for ISR in naïve T cells. T-Red KDELR1 does not associate with PP1, resulting in reduced phosphatase activity against eIF2α and subsequent expression of stress responsive genes including the proapoptotic factor Bim. These results demonstrate that KDELR1 regulates naïve T-cell homeostasis by controlling ISR. KDEL receptors are known to be involved in retrotransporting chaperones to the endoplasmic reticulum from the Golgi complex. Here the authors unravel a role of KDEL receptor 1 in regulating integrated stress responses in naïve T cells through its association with protein phosphatase 1.
Collapse
Affiliation(s)
- Daisuke Kamimura
- 1] Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan [2] Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and WPI Immunology Frontier Research Center, Osaka University, 2-2, Yamada-oka, Suita 565-0871, Japan
| | - Kokichi Katsunuma
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and WPI Immunology Frontier Research Center, Osaka University, 2-2, Yamada-oka, Suita 565-0871, Japan
| | - Yasunobu Arima
- 1] Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan [2] Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and WPI Immunology Frontier Research Center, Osaka University, 2-2, Yamada-oka, Suita 565-0871, Japan
| | - Toru Atsumi
- 1] Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan [2] Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and WPI Immunology Frontier Research Center, Osaka University, 2-2, Yamada-oka, Suita 565-0871, Japan
| | - Jing-jing Jiang
- 1] Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan [2] Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and WPI Immunology Frontier Research Center, Osaka University, 2-2, Yamada-oka, Suita 565-0871, Japan
| | - Hidenori Bando
- 1] Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan [2] Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and WPI Immunology Frontier Research Center, Osaka University, 2-2, Yamada-oka, Suita 565-0871, Japan
| | - Jie Meng
- 1] Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan [2] Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and WPI Immunology Frontier Research Center, Osaka University, 2-2, Yamada-oka, Suita 565-0871, Japan
| | - Lavannya Sabharwal
- 1] Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan [2] Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and WPI Immunology Frontier Research Center, Osaka University, 2-2, Yamada-oka, Suita 565-0871, Japan
| | - Andrea Stofkova
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Naoki Nishikawa
- Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan
| | - Hironao Suzuki
- 1] Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan [2] Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and WPI Immunology Frontier Research Center, Osaka University, 2-2, Yamada-oka, Suita 565-0871, Japan
| | - Hideki Ogura
- 1] Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan [2] Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and WPI Immunology Frontier Research Center, Osaka University, 2-2, Yamada-oka, Suita 565-0871, Japan
| | - Naoko Ueda
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and WPI Immunology Frontier Research Center, Osaka University, 2-2, Yamada-oka, Suita 565-0871, Japan
| | - Mineko Tsuruoka
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and WPI Immunology Frontier Research Center, Osaka University, 2-2, Yamada-oka, Suita 565-0871, Japan
| | - Masaya Harada
- Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and WPI Immunology Frontier Research Center, Osaka University, 2-2, Yamada-oka, Suita 565-0871, Japan
| | - Junya Kobayashi
- Radiation Biology Center, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takanori Hasegawa
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hisahiro Yoshida
- Laboratory for Immunogenetics, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Ikuo Miura
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN Bioresource Center, 3-1-1 Koyadai, Tsukuba 305-0074, Japan
| | - Shigeharu Wakana
- Technology and Development Team for Mouse Phenotype Analysis, RIKEN Bioresource Center, 3-1-1 Koyadai, Tsukuba 305-0074, Japan
| | - Keigo Nishida
- Laboratory for Cytokine Signaling, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hidemitsu Kitamura
- Laboratory for Cytokine Signaling, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Toshiyuki Fukada
- Laboratory for Cytokine Signaling, RIKEN Research Center for Allergy and Immunology, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Toshio Hirano
- Osaka University, 2-1, Yamada-oka, Suita 565-0871, Japan
| | - Masaaki Murakami
- 1] Division of Molecular Neuroimmunology, Institute for Genetic Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, Sapporo 060-0815, Japan [2] Laboratory of Developmental Immunology, Graduate School of Frontier Biosciences, Graduate School of Medicine, and WPI Immunology Frontier Research Center, Osaka University, 2-2, Yamada-oka, Suita 565-0871, Japan
| |
Collapse
|
217
|
Mahdi AA, Rizvi SHM, Parveen A. Role of Endoplasmic Reticulum Stress and Unfolded Protein Responses in Health and Diseases. Indian J Clin Biochem 2015; 31:127-37. [PMID: 27069320 DOI: 10.1007/s12291-015-0502-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/12/2015] [Indexed: 12/24/2022]
Abstract
Endoplasmic reticulum (ER) is the site of protein synthesis, protein folding, maintainance of calcium homeostasis, synthesis of lipids and sterols. Genetic or environmental insults can alter its function generating ER stress. ER senses stress mainly by three stress sensor pathways, namely protein kinase R-like endoplasmic reticulum kinase-eukaryotic translation-initiation factor 2α, inositol-requiring enzyme 1α-X-box-binding protein 1 and activating transcription factor 6-CREBH, which induce unfolded protein responses (UPR) after the recognition of stress. Recent studies have demonstrated that ER stress and UPR signaling are involved in cancer, metabolic disorders, inflammatory diseases, osteoporosis and neurodegenerative diseases. However, the precise knowledge regarding involvement of ER stress in different disease processes is still debatable. Here we discuss the possible role of ER stress in various disorders on the basis of existing literature. An attempt has also been made to highlight the present knowledge of this field which may help to elucidate and conjure basic mechanisms and novel insights into disease processes which could assist in devising better future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Abbas Ali Mahdi
- Department of Biochemistry, King George's Medical University, Lucknow, 226003 Uttar Pradesh India
| | | | - Arshiya Parveen
- Department of Biochemistry, King George's Medical University, Lucknow, 226003 Uttar Pradesh India
| |
Collapse
|
218
|
IRE1α-Dependent Decay of CReP/Ppp1r15b mRNA Increases Eukaryotic Initiation Factor 2α Phosphorylation and Suppresses Protein Synthesis. Mol Cell Biol 2015; 35:2761-70. [PMID: 26031337 DOI: 10.1128/mcb.00215-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/28/2015] [Indexed: 12/24/2022] Open
Abstract
The unfolded protein response (UPR) regulates endoplasmic reticulum (ER) homeostasis and protects cells from ER stress. IRE1α is a central regulator of the UPR that activates the transcription factor XBP1s through an unconventional splicing mechanism using its endoribonuclease activity. IRE1α also cleaves certain mRNAs containing XBP1-like secondary structures to promote the degradation of these mRNAs, a process known as regulated IRE1α-dependent decay (RIDD). We show here that the mRNA of CReP/Ppp1r15b, a regulatory subunit of eukaryotic translation initiation factor 2α (eIF2α) phosphatase, is a RIDD substrate. eIF2α plays a central role in the integrated stress response by mediating the translational attenuation to decrease the stress level in the cell. CReP expression was markedly suppressed in XBP1-deficient mice livers due to hyperactivated IRE1α. Decreased CReP expression caused the induction of eIF2α phosphorylation and the attenuation of protein synthesis in XBP1-deficient livers. ER stress also suppressed CReP expression in an IRE1α-dependent manner, which increased eIF2α phosphorylation and consequently attenuated protein synthesis. Taken together, the results of our study reveal a novel function of IRE1α in the regulation of eIF2α phosphorylation and the translational control.
Collapse
|
219
|
Pytel D, Majsterek I, Diehl JA. Tumor progression and the different faces of the PERK kinase. Oncogene 2015; 35:1207-15. [PMID: 26028033 PMCID: PMC4666839 DOI: 10.1038/onc.2015.178] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/07/2015] [Accepted: 04/13/2015] [Indexed: 12/25/2022]
Abstract
The serine/threonine endoplasmic reticulum (ER) kinase, protein kinase R (PKR)-like ER kinase (PERK), is a pro-adaptive protein kinase whose activity is regulated indirectly by protein misfolding within the ER. As the oxidative folding environment in the ER is sensitive to a variety of cellular stresses, many of which occur during neoplastic transformation and in the tumor microenvironment, there has been considerable interest in defining whether PERK positively contributes to tumor progression and whether it represents a significant therapeutic target. Herein, we review the current knowledge of PERK-dependent signaling pathways, the contribution of downstream substrates including recently characterized new PERK substrates transcription factors Forkhead box O protein and diacyglycerol a lipid signaling second messenger, and efforts to develop small molecule PERK inhibitors.
Collapse
Affiliation(s)
- D Pytel
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - I Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, Hallera 1, Lodz, Poland
| | - J A Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
220
|
Al-Sinani S, Al-Yaarubi S, Sharef SW, Al-Murshedi F, Al-Maamari W. Novel mutation in wolcott-rallison syndrome with variable expression in two omani siblings. Oman Med J 2015; 30:138-41. [PMID: 25960841 DOI: 10.5001/omj.2015.29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/14/2014] [Indexed: 11/03/2022] Open
Abstract
Wolcott-Rallison syndrome (WRS) is an autosomal recessive disease, characterized by neonatal or early-onset non-autoimmune insulin-dependent diabetes. WRS, although rare, is recognized to be the most frequent cause of neonatal-onset diabetes. The majority of reported patients are from consanguineous families. Several mutations with variable expression of the syndrome are reported. Here we describe a six-year-old boy with WRS who was evaluated at Sultan Qaboos University Hospital and was found to have a novel homozygous nonsense mutation in the EIF2AK3 gene. His younger sister also had WRS but with milder expression. The mutation exhibited different clinical characteristics in the siblings proving that WRS patients phenotypic variability correlates poorly to genotype. This is the first case report of two Omani children with WRS and a report of a novel mutation.
Collapse
Affiliation(s)
- Siham Al-Sinani
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | - Saif Al-Yaarubi
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | | | | | - Watfa Al-Maamari
- Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
221
|
Cunard R. Endoplasmic Reticulum Stress in the Diabetic Kidney, the Good, the Bad and the Ugly. J Clin Med 2015; 4:715-40. [PMID: 26239352 PMCID: PMC4470163 DOI: 10.3390/jcm4040715] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/31/2015] [Indexed: 02/06/2023] Open
Abstract
Diabetic kidney disease is the leading worldwide cause of end stage kidney disease and a growing public health challenge. The diabetic kidney is exposed to many environmental stressors and each cell type has developed intricate signaling systems designed to restore optimal cellular function. The unfolded protein response (UPR) is a homeostatic pathway that regulates endoplasmic reticulum (ER) membrane structure and secretory function. Studies suggest that the UPR is activated in the diabetic kidney to restore normal ER function and viability. However, when the cell is continuously stressed in an environment that lies outside of its normal physiological range, then the UPR is known as the ER stress response. The UPR reduces protein synthesis, augments the ER folding capacity and downregulates mRNA expression of genes by multiple pathways. Aberrant activation of ER stress can also induce inflammation and cellular apoptosis, and modify signaling of protective processes such as autophagy and mTORC activation. The following review will discuss our current understanding of ER stress in the diabetic kidney and explore novel means of modulating ER stress and its interacting signaling cascades with the overall goal of identifying therapeutic strategies that will improve outcomes in diabetic nephropathy.
Collapse
Affiliation(s)
- Robyn Cunard
- Research Service and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, CA 92161, USA.
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
222
|
Sun J, Cui J, He Q, Chen Z, Arvan P, Liu M. Proinsulin misfolding and endoplasmic reticulum stress during the development and progression of diabetes. Mol Aspects Med 2015; 42:105-18. [PMID: 25579745 PMCID: PMC4404191 DOI: 10.1016/j.mam.2015.01.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/31/2014] [Accepted: 01/02/2015] [Indexed: 02/06/2023]
Abstract
To maintain copious insulin granule stores in the face of ongoing metabolic demand, pancreatic beta cells must produce large quantities of proinsulin, the insulin precursor. Proinsulin biosynthesis can account for up to 30-50% of total cellular protein synthesis of beta cells. This puts pressure on the beta cell secretory pathway, especially the endoplasmic reticulum (ER), where proinsulin undergoes its initial folding, including the formation of three evolutionarily conserved disulfide bonds. In normal beta cells, up to 20% of newly synthesized proinsulin may fail to reach its native conformation, suggesting that proinsulin is a misfolding-prone protein. Misfolded proinsulin molecules can either be refolded to their native structure or degraded through ER associated degradation (ERAD) and autophagy. These degraded molecules decrease proinsulin yield but do not otherwise compromise beta cell function. However, under certain pathological conditions, proinsulin misfolding increases, exceeding the genetically determined threshold of beta cells to handle the misfolded protein load. This results in accumulation of misfolded proinsulin in the ER - a causal factor leading to beta cell failure and diabetes. In patients with Mutant INS-gene induced diabetes of Youth (MIDY), increased proinsulin misfolding due to insulin gene mutations is the primary defect operating as a "first hit" to beta cells. Additionally, increased proinsulin misfolding can be secondary to an unfavorable ER folding environment due to genetic and/or environmental factors. Under these conditions, increased wild-type proinsulin misfolding becomes a "second hit" to the ER and beta cells, aggravating beta cell failure and diabetes. In this article, we describe our current understanding of the normal proinsulin folding pathway in the ER, and then review existing links between proinsulin misfolding, ER dysfunction, and beta cell failure in the development and progression of type 2, type 1, and some monogenic forms of diabetes.
Collapse
Affiliation(s)
- Jinhong Sun
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA
| | - Jingqiu Cui
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Qing He
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zheng Chen
- School of Life Sciences, Northeast Normal University, Changchun, Jilin 130024, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA.
| | - Ming Liu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan, Ann Arbor, MI 48105, USA; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
223
|
Habeb AM, Deeb A, Johnson M, Abdullah M, Abdulrasoul M, Al-Awneh H, Al-Maghamsi MS, Al-Murshedi F, Al-Saif R, Al-Sinani S, Ramadan D, Tfayli H, Flanagan SE, Ellard S. Liver disease and other comorbidities in Wolcott-Rallison syndrome: different phenotype and variable associations in a large cohort. Horm Res Paediatr 2015; 83:190-7. [PMID: 25659842 PMCID: PMC4464042 DOI: 10.1159/000369804] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/10/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Wolcott-Rallison syndrome (WRS) is caused by recessive EIF2AK3 mutations and characterized by early-onset diabetes and skeletal dysplasia. Hepatic dysfunction has been reported in 60% of patients. AIMS To describe a cohort of WRS patients and discuss the pattern and management of their liver disease. METHODS Detailed phenotyping and direct sequencing of EIF2AK3 gene were conducted in all patients. RESULTS Twenty-eight genetically confirmed patients (67% male; mean age 4.6 years) were identified. 17 different EIF2AK3 mutations were detected, of which 2 were novel. The p.S991N mutation was associated with prolonged survival and p.I650T with delayed onset. All patients presented before 25 months with diabetes with variation in the frequency and severity of 10 other features. Liver disease, first manifested as non-autoimmune hepatitis, was the commonest extra-pancreatic feature identified in 85.7% (24/28). 22/24 had at least one episode of acute hepatic failure which was the cause of death in all deceased patients (13/28). One child was treated by liver transplantation and had no liver disease and better diabetes control for the following 6 years. CONCLUSIONS Liver disease in WRS is more frequent than previously described and carries high mortality. The first experience with liver transplantation in WRS is encouraging.
Collapse
Affiliation(s)
- Abdelhadi M. Habeb
- Paediatric Department, Prince Mohammed bin-Abdulaziz Hospital, Madinah, UK,Endocrine and Diabetes Unit, Maternity and Children Hospital, Madinah, UK,*Abdelhadi M. Habeb, Paediatric Department, Prince Mohammed bin-Abdulaziz Hospital, NGHA, PO Box 20873, Madinah (Saudi Arabia), E-Mail
| | - Asma Deeb
- Paediatric Endocrinology Department, Mafraq Hospital, AbuDhabi, United Arab Emirates, UK
| | - Matthew Johnson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | | | | | - Hussain Al-Awneh
- Paediatric Endocrinology Division, Queen Rania Al Abdullah Hospital for Children, KHMC, RMS, Amman, Jordan
| | | | | | - Ramlah Al-Saif
- Paediatric Department, Maternity and Children Hospital, Dammam, Saudi Arabia, UK
| | - Siham Al-Sinani
- Gastroenterology Unit, Department of Child Health, Sultan Qaboos University Hospital, Muscat, Oman
| | | | - Hala Tfayli
- Department of Pediatrics and Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Sarah E. Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| |
Collapse
|
224
|
Sanderson TH, Gallaway M, Kumar R. Unfolding the unfolded protein response: unique insights into brain ischemia. Int J Mol Sci 2015; 16:7133-42. [PMID: 25830481 PMCID: PMC4425008 DOI: 10.3390/ijms16047133] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/19/2015] [Accepted: 03/27/2015] [Indexed: 01/07/2023] Open
Abstract
The endoplasmic reticulum (ER) is responsible for processing of proteins that are destined to be secreted, enclosed in a vesicle, or incorporated in the plasma membrane. Nascent peptides that enter the ER undergo a series of highly regulated processing steps to reach maturation as they transit the ER. Alterations in the intracellular environment that induce ER stress are thought to interrupt these processing steps, and result in unfolding of proteins in the ER. Accumulation of unfolded proteins concurrently activates three transmembrane stress sensors, IRE1, ATF6 and PERK, and is referred to as the Unfolded Protein Response (UPR). Our understanding of the mechanisms of UPR induction has been assembled primarily from experiments inducing ER stress with chemical and genetic manipulations. However, physiological stress often induces activation of ER stress sensors in a distinct manner from the canonical UPR. The unique activation profiles in vivo have prompted us to examine the mechanism of UPR activation in neurons following cerebral ischemia.
Collapse
Affiliation(s)
- Thomas H Sanderson
- Cardiovascular Research Institute and Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Molly Gallaway
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Rita Kumar
- Cardiovascular Research Institute and Departments of Emergency Medicine and Physiology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
225
|
Kupsco A, Schlenk D. Oxidative stress, unfolded protein response, and apoptosis in developmental toxicity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 317:1-66. [PMID: 26008783 DOI: 10.1016/bs.ircmb.2015.02.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Physiological development requires precise spatiotemporal regulation of cellular and molecular processes. Disruption of these key events can generate developmental toxicity in the form of teratogenesis or mortality. The mechanism behind many developmental toxicants remains unknown. While recent work has focused on the unfolded protein response (UPR), oxidative stress, and apoptosis in the pathogenesis of disease, few studies have addressed their relationship in developmental toxicity. Redox regulation, UPR, and apoptosis are essential for physiological development and can be disturbed by a variety of endogenous and exogenous toxicants to generate lethality and diverse malformations. This review examines the current knowledge of the role of oxidative stress, UPR, and apoptosis in physiological development as well as in developmental toxicity, focusing on studies and advances in vertebrates model systems.
Collapse
Affiliation(s)
- Allison Kupsco
- Environmental Toxicology Program, University of California, Riverside, CA, USA
| | - Daniel Schlenk
- Environmental Toxicology Program, University of California, Riverside, CA, USA; Environmental Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
226
|
Xia B, Yang S, Liu T, Lou G. miR-211 suppresses epithelial ovarian cancer proliferation and cell-cycle progression by targeting Cyclin D1 and CDK6. Mol Cancer 2015; 14:57. [PMID: 25889927 PMCID: PMC4359570 DOI: 10.1186/s12943-015-0322-4] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 02/10/2015] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) is a significant cause of morbidity and mortality. MicroRNAs play important roles in cancer development and progression. The microRNA miR-211 is localized on intron 6 of the Trpm1 gene at 15q13-q14, a locus that is frequently lost in neoplasms. Its function and loss-of-function have been described in normal and cancer cells and tissues. miR-211 is known to be dysregulated in ovarian cancer: however, its function and the downstream effect of its loss-of-function in ovarian cancer have not been described before. METHODS We analyzed miR-211 expression in clinical samples of primary EOC tissues compared to normal epithelial ovarian tissues and in the EOC cell lines: OVCAR3, Caov3, OVCA429, SKOV3 and A2780 compared to human ovarian surface epithelial cells. We then investigated the effect of miR-211 on EOC cell proliferation and apoptosis by counting cell numbers, MTT, colony formation, cell cycle, and PI/Annexin V staining assays. A luciferase reporter system was developed to assess miR-211 regulation of the predicted targets. Expression level of discovered targets and correlation with miR-211 expression were analyzed in EOC tissues. Finally, OVCAR3 stably expressing miR-211 or control cells were injected subcutaneously into mice to determine in vivo effect of miR-211 on tumorigenesis. RESULTS We found that the expression of miR-211 is downregulated in EOC tissues and cell lines compared to normal epithelial ovarian tissue and human ovarian surface epithelial cells, respectively. miR-211 was found to arrest cells in the G0/G1-phase, inhibit proliferation and induce apoptosis. Cyclin D1 and CDK6 were found to be direct targets of miR-211, and when overexpressed in miR-211-expressing EOC cells, could restore proliferative ability. Finally, in vitro investigation confirmed that miR-211 is a tumor suppressor that controls Cyclin D1 and CDK6 expression. CONCLUSIONS Our results demonstrate that miR-211 is a tumor suppressor that controls expression of Cyclin D1 and CDK6, and that its downregulation results in overexpression of Cyclin D1 and CDK6 which increases proliferation ability of EOC cells to proliferate compared to normal cells.
Collapse
Affiliation(s)
- Bairong Xia
- Department of Gynecology, the Affiliated Tumor Hospital, Harbin Medical University, 150 Haping Rd, Nangang, Harbin, 150020, Heilongjiang, China.
| | - Shanshan Yang
- Department of Gynecology, the Affiliated Tumor Hospital, Harbin Medical University, 150 Haping Rd, Nangang, Harbin, 150020, Heilongjiang, China.
| | - Tianbo Liu
- Department of Gynecology, the Affiliated Tumor Hospital, Harbin Medical University, 150 Haping Rd, Nangang, Harbin, 150020, Heilongjiang, China.
| | - Ge Lou
- Department of Gynecology, the Affiliated Tumor Hospital, Harbin Medical University, 150 Haping Rd, Nangang, Harbin, 150020, Heilongjiang, China.
| |
Collapse
|
227
|
Shima K, Klinger M, Schütze S, Kaufhold I, Solbach W, Reiling N, Rupp J. The role of endoplasmic reticulum-related BiP/GRP78 in interferon gamma-induced persistent Chlamydia pneumoniae infection. Cell Microbiol 2015; 17:923-34. [PMID: 25588955 DOI: 10.1111/cmi.12416] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 12/12/2014] [Accepted: 01/01/2015] [Indexed: 12/26/2022]
Abstract
Direct interaction of Chlamydiae with the endoplasmic reticulum (ER) is essential in intracellular productive infection. However, little is known about the interplay between Chlamydiae and the ER under cellular stress conditions that are observed in interferon gamma (IFN-γ) induced chlamydial persistent infection. ER stress responses are centrally regulated by the unfolded protein response (UPR) under the control of the ER chaperone BiP/GRP78 to maintain cellular homeostasis. In this study, we could show that the ER directly contacted with productive and IFN-γ-induced persistent inclusions of Chlamydia pneumoniae (Cpn). BiP/GRP78 induction was observed in the early phase but not in the late phase of IFN-γ-induced persistent infection. Enhanced BiP/GRP78 expression in the early phase of IFN-γ-induced persistent Cpn infection was accompanied by phosphorylation of the eukaryotic initiation factor-2α (eIF2α) and down-regulation of the vesicle-associated membrane protein-associated protein B. Loss of BiP/GRP78 function resulted in enhanced phosphorylation of eIF2α and increased host cell apoptosis. In contrast, enhanced BiP/GRP78 expression in IFN-γ-induced persistent Cpn infection attenuated phosphorylation of eIF2α upon an exogenous ER stress inducer. In conclusion, ER-related BiP/GRP78 plays a key role to restore cells from stress conditions that are observed in the early phase of IFN-γ-induced persistent infection.
Collapse
Affiliation(s)
- Kensuke Shima
- Department of Molecular and Clinical Infectious Diseases, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | | | - Stefan Schütze
- Institute of Immunology, University of Kiel, Kiel, Germany
| | - Inga Kaufhold
- Department of Molecular and Clinical Infectious Diseases, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Werner Solbach
- Institute of Medical Microbiology and Hygiene, University of Lübeck, Lübeck, Germany
| | - Norbert Reiling
- Division of Microbial Interface Biology, Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Jan Rupp
- Department of Molecular and Clinical Infectious Diseases, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| |
Collapse
|
228
|
Kung LHW, Rajpar MH, Preziosi R, Briggs MD, Boot-Handford RP. Increased classical endoplasmic reticulum stress is sufficient to reduce chondrocyte proliferation rate in the growth plate and decrease bone growth. PLoS One 2015; 10:e0117016. [PMID: 25693198 PMCID: PMC4334961 DOI: 10.1371/journal.pone.0117016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 12/17/2014] [Indexed: 01/14/2023] Open
Abstract
Mutations in genes encoding cartilage oligomeric matrix protein and matrilin-3 cause a spectrum of chondrodysplasias called multiple epiphyseal dysplasia (MED) and pseudoachondroplasia (PSACH). The majority of these diseases feature classical endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) as a result of misfolding of the mutant protein. However, the importance and the pathological contribution of ER stress in the disease pathogenesis are unknown. The aim of this study was to investigate the generic role of ER stress and the UPR in the pathogenesis of these diseases. A transgenic mouse line (ColIITgcog) was generated using the collagen II promoter to drive expression of an ER stress-inducing protein (Tgcog) in chondrocytes. The skeletal and histological phenotypes of these ColIITgcog mice were characterised. The expression and intracellular retention of Tgcog induced ER stress and activated the UPR as characterised by increased BiP expression, phosphorylation of eIF2α and spliced Xbp1. ColIITgcog mice exhibited decreased long bone growth and decreased chondrocyte proliferation rate. However, there was no disruption of chondrocyte morphology or growth plate architecture and perturbations in apoptosis were not apparent. Our data demonstrate that the targeted induction of ER stress in chondrocytes was sufficient to reduce the rate of bone growth, a key clinical feature associated with MED and PSACH, in the absence of any growth plate dysplasia. This study establishes that classical ER stress is a pathogenic factor that contributes to the disease mechanism of MED and PSACH. However, not all the pathological features of MED and PSACH were recapitulated, suggesting that a combination of intra- and extra-cellular factors are likely to be responsible for the disease pathology as a whole.
Collapse
Affiliation(s)
- Louise H. W. Kung
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - M. Helen Rajpar
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Richard Preziosi
- Environment, Ecology and Evolution Research Group, Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Michael D. Briggs
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne, United Kingdom
| | - Raymond P. Boot-Handford
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
229
|
Schinzel R, Dillin A. Endocrine aspects of organelle stress—cell non-autonomous signaling of mitochondria and the ER. Curr Opin Cell Biol 2015; 33:102-10. [PMID: 25677685 DOI: 10.1016/j.ceb.2015.01.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 12/12/2022]
Abstract
Organisms have to cope with an unpredictable and dynamic environment. It is crucial for any living being to respond to these changes by buffering the effects on cellular homeostasis. Failure to appropriately respond to stress can have severe consequences for health and survival. Eukaryotic cells possess several organelle-specific stress responses to cope with this challenge. Besides their central role in stress resistance, these pathways have also been shown to be important in the regulation of proteome maintenance, development and longevity. Intriguingly, many of these effects seem to be controlled by only a subset of cells implying a systemic regulation in a cell non-autonomous manner. The understanding of the nature of this stress communication across tissues, its mechanisms and impact, will be paramount in understanding disease etiology and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Robert Schinzel
- Department of Molecular and Cell Biology, The University of California, Berkeley, Li Ka Shing Center for Biomedical and Health Sciences, USA
| | - Andrew Dillin
- Department of Molecular and Cell Biology, The University of California, Berkeley, Li Ka Shing Center for Biomedical and Health Sciences, USA; Howard Hughes Medical Institute, The University of California, Berkeley, USA.
| |
Collapse
|
230
|
Kong B, Wu W, Valkovska N, Jäger C, Hong X, Nitsche U, Friess H, Esposito I, Erkan M, Kleeff J, Michalski CW. A common genetic variation of melanoma inhibitory activity-2 labels a subtype of pancreatic adenocarcinoma with high endoplasmic reticulum stress levels. Sci Rep 2015; 5:8109. [PMID: 25657029 PMCID: PMC4319175 DOI: 10.1038/srep08109] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/07/2015] [Indexed: 12/20/2022] Open
Abstract
HNF1 homeobox A (HNF1A)-mediated gene expression constitutes an essential component of the secretory pathway in the exocrine pancreas. Melanoma inhibitory activity 2 (MIA2), a protein facilitating protein secretion, is an HNF1A target. Protein secretion is precisely coordinated by the endoplasmic reticulum (ER) stress/unfolded protein response (UPR) system. Here, we demonstrate that HNFA and MIA2 are expressed in a subset of human PDAC tissues and that HNF1A induced MIA2 in vitro. We identified a common germline variant of MIA2 (c.A617G: p.I141M) associated with a secretory defect of the MIA2 protein in PDAC cells. Patients carrying MIA2I141M survived longer after tumor resection but the survival benefit was restricted to those patients who received adjuvant chemotherapy. The MIA2I141M variant was associated with high expression of ER stress/UPR genes – in particular those of the ERN1/XBP arm – in human PDAC samples. Accordingly, PDAC cell lines expressing the MIA2I141M variant expressed high levels of ERN1 and were more sensitive to gemcitabine. These findings define an interaction between the common MIA2I141M variant and the ER stress/UPR system and specify a subgroup of PDAC patients who are more likely to benefit from adjuvant chemotherapy.
Collapse
Affiliation(s)
- Bo Kong
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Weiwei Wu
- Department of Surgery, Technische Universität München, Munich, Germany
| | | | - Carsten Jäger
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Xin Hong
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Ulrich Nitsche
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Technische Universität München, Munich, Germany
| | - Irene Esposito
- Institute of Pathology, Technische Universität München, Munich, Germany
| | - Mert Erkan
- Department of Surgery, Koc School of Medicine, Istanbul, Turkey
| | - Jörg Kleeff
- Department of Surgery, Technische Universität München, Munich, Germany
| | | |
Collapse
|
231
|
Li K, Zhang J, Yu J, Liu B, Guo Y, Deng J, Chen S, Wang C, Guo F. MicroRNA-214 suppresses gluconeogenesis by targeting activating transcriptional factor 4. J Biol Chem 2015; 290:8185-95. [PMID: 25657009 DOI: 10.1074/jbc.m114.633990] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although the gluconeogenesis pathway is already a target for the treatment of type 2 diabetes, the potential role of microRNAs (miRNAs) in gluconeogenesis remains unclear. Here, we investigated the physiological functions of miR-214 in gluconeogenesis. The expression of miR-214 was suppressed by glucagon via protein kinase A signaling in primary hepatocytes, and miR-214 was down-regulated in the livers of fasted, high fat diet-induced diabetic and leptin receptor-mutated (db/db) mice. The overexpression of miR-214 in primary hepatocytes suppressed glucose production, and silencing miR-214 reversed this effect. Gluconeogenesis was suppressed in the livers of mice injected with an adenovirus expressing miR-214 (Ad-miR-214). Additionally, Ad-miR-214 alleviated high fat diet-induced elevation of gluconeogenesis and hyperglycemia. Furthermore, we found that activating transcription factor 4 (ATF4), a reported target of miR-214, can reverse the suppressive effect of miR-214 on gluconeogenesis in primary hepatocytes, and this suppressive effect was blocked in liver-specific ATF4 knock-out mice. ATF4 regulated gluconeogenesis via affecting forkhead box protein O1 (FOXO1) transcriptional activity. Finally, liver-specific miR-214 transgenic mice exhibited suppressed gluconeogenesis and reduced expression of ATF4, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in liver. Taken together, our results suggest that the miR-214-ATF4 axis is a novel pathway for the regulation of hepatic gluconeogenesis.
Collapse
Affiliation(s)
- Kai Li
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031 and
| | - Jin Zhang
- the Key Laboratory of Molecular Medicine, Ministry of Education, Institute of Medical Sciences, Department of Biochemistry and Molecular Biology, Shanghai Medical College, Fudan University, 130 Dongan Road, Shanghai 200032, China
| | - Junjie Yu
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031 and
| | - Bin Liu
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031 and
| | - Yajie Guo
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031 and
| | - Jiali Deng
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031 and
| | - Shanghai Chen
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031 and
| | - Chunxia Wang
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031 and
| | - Feifan Guo
- From the Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031 and
| |
Collapse
|
232
|
Liu F, Cui Y, Ge P, Luan J, Zhou X, Han J. Tauroursodeoxycholic acid attenuates inorganic phosphate-induced osteoblastic differentiation and mineralization in NIH3T3 fibroblasts by inhibiting the ER stress response PERK-eIF2α-ATF4 pathway. Drug Discov Ther 2015; 9:38-44. [DOI: 10.5582/ddt.2015.01008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Fang Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science
- Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences
| | - Yazhou Cui
- Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences
| | - Pinglan Ge
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science
- Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences
| | - Jing Luan
- Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences
| | - Xiaoyan Zhou
- Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences
| | - Jinxiang Han
- Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences
| |
Collapse
|
233
|
Emerging functions of the unfolded protein response in immunity. Nat Immunol 2014; 15:910-9. [PMID: 25232821 DOI: 10.1038/ni.2991] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 08/18/2014] [Indexed: 12/14/2022]
Abstract
The unfolded protein response (UPR) has traditionally been viewed as an adaptive response triggered by the accumulation of unfolded proteins in the endoplasmic reticulum (ER) and aimed at restoring ER function. The UPR can also be an anticipatory response that is activated well before the disruption of protein homeostasis. UPR signaling intersects at many levels with the innate and adaptive immune responses. In some types of cells of the immune system, such as dendritic cells (DCs) and B cells, particular sensors that detect the UPR seem to be constitutively active in the absence of induction of the traditional UPR gene program and are necessary for antigen presentation and immunoglobulin synthesis. The UPR also influences signaling via Toll-like receptors (TLRs) and activation of the transcription factor NF-κB, and some pathogens subvert the UPR. This Review summarizes these emerging noncanonical functions of the UPR in immunity.
Collapse
|
234
|
Vandewynckel YP, Laukens D, Bogaerts E, Paridaens A, Van den Bussche A, Verhelst X, Van Steenkiste C, Descamps B, Vanhove C, Libbrecht L, De Rycke R, Lambrecht BN, Geerts A, Janssens S, Van Vlierberghe H. Modulation of the unfolded protein response impedes tumor cell adaptation to proteotoxic stress: a PERK for hepatocellular carcinoma therapy. Hepatol Int 2014; 9:93-104. [PMID: 25598862 PMCID: PMC4289530 DOI: 10.1007/s12072-014-9582-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/09/2014] [Indexed: 12/22/2022]
Abstract
Background Functional disturbances of the endoplasmic reticulum (ER) lead to activation of the unfolded protein response (UPR), which is involved in the consecutive steps of carcinogenesis. In human hepatocellular carcinoma (HCC), the UPR is shown to be activated; however, little is known about the UPR kinetics and effects of UPR modulation in HCC. Methods We sequentially monitored the UPR over time in an orthotopic mouse model for HCC and explored the effects of UPR modulation on cell viability and proliferation in vitro and in the mouse model. Results The expression of ER-resident chaperones peaked during tumor initiation and increased further during tumor progression, predominantly within the nodules. A peak in Ire1 signaling was observed during tumor initiation. The Perk pathway was activated during tumor progression, and the proapoptotic target Chop was upregulated from week 5 and continued to rise, especially in the tumors. The Atf6 pathway was modestly activated only after tumor initiation. Consistent with the UPR activation, electron microscopy demonstrated ER expansion and reorganization in HCC cells in vivo. Strikingly, under ER stress or hypoxia, the Perk inhibitor and not the Ire1 inhibitor reduced cell viability and proliferation via escalating proteotoxic stress in vitro. Notably, the Perk inhibitor significantly decreased tumor burden in the mouse model. Conclusion We provide the first evaluation of the UPR dynamics in a long-term cancer model and identified a small molecule inhibitor of Perk as a promising strategy for HCC therapy. Electronic supplementary material The online version of this article (doi:10.1007/s12072-014-9582-0) contains supplementary material, which is available to authorized users.
Collapse
MESH Headings
- Activating Transcription Factor 6/genetics
- Adaptation, Physiological/drug effects
- Animals
- Carcinoma, Hepatocellular/chemistry
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/ultrastructure
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cell Transformation, Neoplastic/metabolism
- Endoplasmic Reticulum
- Endoplasmic Reticulum Chaperone BiP
- HSP40 Heat-Shock Proteins/genetics
- Heat-Shock Proteins/genetics
- Hep G2 Cells
- Humans
- Liver Neoplasms, Experimental/chemistry
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/ultrastructure
- Male
- Membrane Glycoproteins/genetics
- Membrane Proteins/antagonists & inhibitors
- Membrane Proteins/genetics
- Mice
- Oxidative Stress
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- RNA, Messenger/analysis
- Signal Transduction
- Transcription Factor CHOP/analysis
- Transcription Factor CHOP/genetics
- Tunicamycin/pharmacology
- Unfolded Protein Response/drug effects
- eIF-2 Kinase/antagonists & inhibitors
- eIF-2 Kinase/metabolism
Collapse
Affiliation(s)
- Yves-Paul Vandewynckel
- />Department of Hepatology and Gastroenterology, Ghent University, De Pintelaan 185, 1K12 IE, 9000 Ghent, Belgium
| | - Debby Laukens
- />Department of Hepatology and Gastroenterology, Ghent University, De Pintelaan 185, 1K12 IE, 9000 Ghent, Belgium
| | - Eliene Bogaerts
- />Department of Hepatology and Gastroenterology, Ghent University, De Pintelaan 185, 1K12 IE, 9000 Ghent, Belgium
| | - Annelies Paridaens
- />Department of Hepatology and Gastroenterology, Ghent University, De Pintelaan 185, 1K12 IE, 9000 Ghent, Belgium
| | - Anja Van den Bussche
- />Department of Hepatology and Gastroenterology, Ghent University, De Pintelaan 185, 1K12 IE, 9000 Ghent, Belgium
| | - Xavier Verhelst
- />Department of Hepatology and Gastroenterology, Ghent University, De Pintelaan 185, 1K12 IE, 9000 Ghent, Belgium
| | - Christophe Van Steenkiste
- />Department of Hepatology and Gastroenterology, Ghent University, De Pintelaan 185, 1K12 IE, 9000 Ghent, Belgium
| | - Benedicte Descamps
- />Infinity Imaging Lab, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Chris Vanhove
- />Infinity Imaging Lab, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
- />GROUP-ID Consortium, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Louis Libbrecht
- />Department of Pathology, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Riet De Rycke
- />GROUP-ID Consortium, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
- />Unit Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Technologiepark 927, 9052 Ghent, Belgium
| | - Bart N. Lambrecht
- />GROUP-ID Consortium, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
- />Unit Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Technologiepark 927, 9052 Ghent, Belgium
- />Department of Respiratory Medicine, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Anja Geerts
- />Department of Hepatology and Gastroenterology, Ghent University, De Pintelaan 185, 1K12 IE, 9000 Ghent, Belgium
| | - Sophie Janssens
- />GROUP-ID Consortium, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
- />Unit Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Technologiepark 927, 9052 Ghent, Belgium
- />Department of Respiratory Medicine, Ghent University Hospital, Ghent University, De Pintelaan 185, 9000 Ghent, Belgium
| | - Hans Van Vlierberghe
- />Department of Hepatology and Gastroenterology, Ghent University, De Pintelaan 185, 1K12 IE, 9000 Ghent, Belgium
| |
Collapse
|
235
|
Dufey E, Sepúlveda D, Rojas-Rivera D, Hetz C. Cellular Mechanisms of Endoplasmic Reticulum Stress Signaling in Health and Disease. 1. An overview. Am J Physiol Cell Physiol 2014; 307:C582-94. [DOI: 10.1152/ajpcell.00258.2014] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Increased demand on the protein folding capacity of the endoplasmic reticulum (ER) engages an adaptive reaction known as the unfolded protein response (UPR). The UPR regulates protein translation and the expression of numerous target genes that contribute to restore ER homeostasis or induce apoptosis of irreversibly damaged cells. UPR signaling is highly regulated and dynamic and integrates information about the type, intensity, and duration of the stress stimuli, thereby determining cell fate. Recent advances highlight novel physiological outcomes of the UPR beyond specialized secretory cells, particularly in innate immunity, metabolism, and cell differentiation. Here we discuss studies on the fine-tuning of the UPR and its physiological role in diverse organs and diseases.
Collapse
Affiliation(s)
- Estefanie Dufey
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Denisse Sepúlveda
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Diego Rojas-Rivera
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Center for Molecular Studies of the Cell, University of Chile, Santiago, Chile
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts; and
- Neurounion Biomedical Foundation, CENPAR, Santiago, Chile
| |
Collapse
|
236
|
Maas NL, Diehl JA. Molecular pathways: the PERKs and pitfalls of targeting the unfolded protein response in cancer. Clin Cancer Res 2014; 21:675-9. [PMID: 25182515 DOI: 10.1158/1078-0432.ccr-13-3239] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The endoplasmic reticulum (ER) is a highly specialized organelle that provides an oxidizing, profolding environment for protein synthesis and maturation. The ER also hosts a dynamic signaling network that can sense and respond to physiologic changes that affect its environment, thereby influencing overall cell fate. Limitation of nutrients and oxygen have a direct effect on the efficiency of protein folding in the ER, and are classic inducers of the ER resident signaling pathway, the unfolded protein response (UPR). Not only does the UPR regulate ER homeostasis in normal cells experiencing such stress, but strong evidence also suggests that tumor cells can co-opt the cytoprotective aspects of this response to survive the hypoxic, nutrient-restricted conditions of the tumor microenvironment.
Collapse
Affiliation(s)
- Nancy L Maas
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - J Alan Diehl
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
237
|
Triantafyllou P, Vargiami E, Vagianou I, Badouraki M, Julier C, Zafeiriou DI. Early-onset diabetes mellitus and neurodevelopmental retardation: the first Greek case of Wolcott-Rallison syndrome. J Pediatr Endocrinol Metab 2014; 27:967-70. [PMID: 24859506 DOI: 10.1515/jpem-2013-0469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/07/2014] [Indexed: 11/15/2022]
Abstract
Wolcott-Rallison syndrome (WRS) is a very rare genetic disorder, which is transmitted by autosomal recessive inheritance and results from mutations in the gene encoding the eukaryotic initiation factor 2-α kinase-3 (EIF2AK3). The cardinal features of the syndrome include early-onset insulin-dependent diabetes mellitus, multiple epiphyseal dysplasia, and growth retardation. We present the case of a 13-year-old Greek boy with a known history of infancy-onset diabetes mellitus and was found to have WRS at the age of 4 years. He presented with acute liver and renal insufficiency in addition to skeletal dysplasia and neurodevelopmental retardation. The clinical suspicion of WRS was confirmed by molecular analysis of the EIF2AK3 gene. The patient was found to be a compound heterozygote with two different novel mutations (c.2776C>T, p.R902X and c.3038A>G, p.Y989C). The current patient is one of the longer survivors.
Collapse
Affiliation(s)
- Panagiota Triantafyllou
- First Department of Pediatrics, Aristotle University of Thessaloniki, Hippokratio General Hospital, Thessaloniki, Greece
| | - Euthymia Vargiami
- First Department of Pediatrics, Aristotle University of Thessaloniki, Hippokratio General Hospital, Thessaloniki, Greece
| | - Isidora Vagianou
- First Department of Pediatrics, Aristotle University of Thessaloniki, Hippokratio General Hospital, Thessaloniki, Greece
| | - Maria Badouraki
- Pediatric Radiology Unit, Hippokratio General Hospital, Thessaloniki, Greece
| | - Cecile Julier
- Inserm UMR-S 958, Faculte de Medecine Dennis-Diderot, Paris, France
| | - Dimitrios I. Zafeiriou
- Professor in Child Neurology and Developmental Pediatrics, First Department of Pediatrics, Aristotle University of Thessaloniki, Egnatia Street 106, 54622 Thessaloniki, Greece
| |
Collapse
|
238
|
Xu H, Tsang KS, Wang Y, Chan JC, Xu G, Gao WQ. Unfolded protein response is required for the definitive endodermal specification of mouse embryonic stem cells via Smad2 and β-catenin signaling. J Biol Chem 2014; 289:26290-26301. [PMID: 25092289 DOI: 10.1074/jbc.m114.572560] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tremendous efforts have been made to elucidate the molecular mechanisms that control the specification of definitive endoderm cell fate in gene knockout mouse models and ES cell (ESC) differentiation models. However, the impact of the unfolded protein response (UPR), because of the stress of the endoplasmic reticulum on endodermal specification, is not well addressed. We employed UPR-inducing agents, thapsigargin and tunicamycin, in vitro to induce endodermal differentiation of mouse ESCs. Apart from the endodermal specification of ESCs, Western blotting demonstrated the enhanced phosphorylation of Smad2 and nuclear translocation of β-catenin in ESC-derived cells. The inclusion of the endoplasmic reticulum stress inhibitor tauroursodeoxycholic acid to the induction cultures prevented the differentiation of ESCs into definitive endodermal cells even when Activin A was supplemented. Also, the addition of the TGF-β inhibitor SB431542 and the Wnt/β-catenin antagonist IWP-2 negated the endodermal differentiation of ESCs mediated by thapsigargin and tunicamycin. These data suggest that the activation of the UPR appears to orchestrate the induction of the definitive endodermal cell fate of ESCs via both the Smad2 and β-catenin signaling pathways. The prospective regulatory machinery may be helpful for directing ESCs to differentiate into definitive endodermal cells for cellular therapy in the future.
Collapse
Affiliation(s)
- Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and Shanghai Jiao Tong University, Shanghai 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200127, China and
| | - Kam Sze Tsang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Yonghui Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and Shanghai Jiao Tong University, Shanghai 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200127, China and
| | - Juliana Cn Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China; Li Ka Shing Institute of Health Sciences and The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China
| | - Gang Xu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China; Shenzhen Research Institute, The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China; Li Ka Shing Institute of Health Sciences and The Chinese University of Hong Kong, The Prince of Wales Hospital, Shatin, Hong Kong, China.
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-MedX Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine and Shanghai Jiao Tong University, Shanghai 200127, China; School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200127, China and.
| |
Collapse
|
239
|
Nagelkerke A, Bussink J, Sweep FCGJ, Span PN. The unfolded protein response as a target for cancer therapy. Biochim Biophys Acta Rev Cancer 2014; 1846:277-84. [PMID: 25069067 DOI: 10.1016/j.bbcan.2014.07.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 01/05/2023]
Abstract
Various physiological and pathological conditions generate an accumulation of misfolded proteins in the endoplasmic reticulum (ER). This results in ER stress followed by a cellular response to cope with this stress and restore homeostasis: the unfolded protein response (UPR). Overall, the UPR leads to general translational arrest and the induction of specific factors to ensure cell survival or to mediate cell death if the stress is too severe. In multiple cancers, components of the UPR are overexpressed, indicating increased dependence on the UPR. In addition, the UPR can confer resistance to anti-cancer treatment. Therefore, modification of the UPR should be explored for its anti-cancer properties. This review discusses factors associated with the UPR that represent potential therapeutic targets.
Collapse
Affiliation(s)
- Anika Nagelkerke
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Fred C G J Sweep
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul N Span
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
240
|
Ittner AA, Bertz J, Chan TYB, van Eersel J, Polly P, Ittner LM. The nucleotide exchange factor SIL1 is required for glucose-stimulated insulin secretion from mouse pancreatic beta cells in vivo. Diabetologia 2014; 57:1410-9. [PMID: 24733160 DOI: 10.1007/s00125-014-3230-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/13/2014] [Indexed: 01/06/2023]
Abstract
AIMS/HYPOTHESIS Regulation of insulin secretion along the secretory pathway is incompletely understood. We addressed the expression of SIL1, a nucleotide exchange factor for the endoplasmic reticulum (ER) chaperone glucose-regulated protein 78 kD (GRP78), in pancreatic beta cells and investigated whether or not SIL1 is involved in beta cell function. METHODS SIL1 expression was analysed by immunoblotting and immunofluorescence. Metabolic and islet variables, including glucose tolerance, beta cell mass, insulin secretion, islet ultrastructure, insulin content and levels of ER stress marker proteins, were addressed in Sil1 knockout (Sil1 (-/-)) mice. Insulin, proinsulin and C-peptide release was addressed in Sil1 (-/-) islets, and SIL1 overexpression or knockdown was explored in MIN6 cells in vitro. Models of type 1 diabetes and insulin resistance were induced in Sil1 (-/-) mice by administration of streptozotocin (STZ) and a high-fat diet (HFD), respectively. RESULTS We show that SIL1 is expressed in pancreatic beta cells and is required for islet insulin content, islet sizing, glucose tolerance and glucose-stimulated insulin secretion in vivo. Levels of pancreatic ER stress markers are increased in Sil1 (-/-) mice, and Sil1 (-/-) beta cell ER is ultrastructurally compromised. Isolated Sil1 (-/-) islets show lower proinsulin and insulin content and impaired glucose-stimulated insulin secretion. Modulation of SIL1 protein levels in MIN6 cells correlates with changes in insulin content and secreted insulin. Furthermore, Sil1 (-/-) mice are more susceptible to STZ-induced type 1 diabetes with increased apoptosis. Upon HFD feeding, Sil1 (-/-) mice show markedly lower insulin secretion and exacerbated glucose intolerance compared with control mice. Surprisingly, however, HFD-fed Sil1 (-/-) mice display pronounced islet hyperplasia with low amounts of insulin in total pancreas. CONCLUSIONS/INTERPRETATION These results reveal a novel role for the nucleotide exchange factor SIL1 in pancreatic beta cell function under physiological and disease conditions such as diabetes and the metabolic syndrome.
Collapse
Affiliation(s)
- Arne A Ittner
- School of Medical Sciences, University of New South Wales, Botany Street, Kensington, Sydney, 2052, NSW, Australia,
| | | | | | | | | | | |
Collapse
|
241
|
Engin F, Yermalovich A, Nguyen T, Ngyuen T, Hummasti S, Fu W, Eizirik DL, Mathis D, Hotamisligil GS. Restoration of the unfolded protein response in pancreatic β cells protects mice against type 1 diabetes. Sci Transl Med 2014; 5:211ra156. [PMID: 24225943 DOI: 10.1126/scitranslmed.3006534] [Citation(s) in RCA: 242] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Perturbations in endoplasmic reticulum (ER) homeostasis can evoke stress responses leading to aberrant glucose and lipid metabolism. ER dysfunction is linked to inflammatory disorders, but its role in the pathogenesis of autoimmune type 1 diabetes (T1D) remains unknown. We identified defects in the expression of unfolded protein response (UPR) mediators ATF6 (activating transcription factor 6) and XBP1 (X-box binding protein 1) in β cells from two different T1D mouse models and then demonstrated similar defects in pancreatic β cells from T1D patients. Administration of a chemical ER stress mitigator, tauroursodeoxycholic acid (TUDCA), at the prediabetic stage resulted in a marked reduction of diabetes incidence in the T1D mouse models. This reduction was accompanied by (i) a significant decrease in aggressive lymphocytic infiltration in the pancreas, (ii) improved survival and morphology of β cells, (iii) reduced β cell apoptosis, (iv) preserved insulin secretion, and (v) restored expression of UPR mediators. TUDCA's actions were dependent on ATF6 and were lost in mice with β cell-specific deletion of ATF6. These data indicate that proper maintenance of the UPR is essential for the preservation of β cells and that defects in this process can be chemically restored for preventive or therapeutic interventions in T1D.
Collapse
Affiliation(s)
- Feyza Engin
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Liu X, Kwak D, Lu Z, Xu X, Fassett J, Wang H, Wei Y, Cavener DR, Hu X, Hall J, Bache RJ, Chen Y. Endoplasmic reticulum stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) protects against pressure overload-induced heart failure and lung remodeling. Hypertension 2014; 64:738-44. [PMID: 24958502 DOI: 10.1161/hypertensionaha.114.03811] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Studies have reported that development of congestive heart failure is associated with increased endoplasmic reticulum stress. Double stranded RNA-activated protein kinase R-like endoplasmic reticulum kinase (PERK) is a major transducer of the endoplasmic reticulum stress response and directly phosphorylates eukaryotic initiation factor 2α, resulting in translational attenuation. However, the physiological effect of PERK on congestive heart failure development is unknown. To study the effect of PERK on ventricular structure and function, we generated inducible cardiac-specific PERK knockout mice. Under unstressed conditions, cardiac PERK knockout had no effect on left ventricular mass, or its ratio to body weight, cardiomyocyte size, fibrosis, or left ventricular function. However, in response to chronic transverse aortic constriction, PERK knockout mice exhibited decreased ejection fraction, increased left ventricular fibrosis, enhanced cardiomyocyte apoptosis, and exacerbated lung remodeling in comparison with wild-type mice. PERK knockout also dramatically attenuated cardiac sarcoplasmic reticulum Ca(2+)-ATPase expression in response to aortic constriction. Our findings suggest that PERK is required to protect the heart from pressure overload-induced congestive heart failure.
Collapse
Affiliation(s)
- Xiaoyu Liu
- From the Department of Chinese Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (X.L., Y.W.); Cardiovascular Division, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis (X.L., D.K., Z.L., X.X., J.F., H.W., J.H., R.J.B., Y.C.); College of Life Science, University of Chinese Academy of Science, Beijing, China (Z.L.); Department of Biology and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park (D.R.C.); and Institute of Molecular Medicine, Peking University, Beijing, China (X.H.)
| | - Dongmin Kwak
- From the Department of Chinese Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (X.L., Y.W.); Cardiovascular Division, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis (X.L., D.K., Z.L., X.X., J.F., H.W., J.H., R.J.B., Y.C.); College of Life Science, University of Chinese Academy of Science, Beijing, China (Z.L.); Department of Biology and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park (D.R.C.); and Institute of Molecular Medicine, Peking University, Beijing, China (X.H.)
| | - Zhongbing Lu
- From the Department of Chinese Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (X.L., Y.W.); Cardiovascular Division, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis (X.L., D.K., Z.L., X.X., J.F., H.W., J.H., R.J.B., Y.C.); College of Life Science, University of Chinese Academy of Science, Beijing, China (Z.L.); Department of Biology and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park (D.R.C.); and Institute of Molecular Medicine, Peking University, Beijing, China (X.H.)
| | - Xin Xu
- From the Department of Chinese Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (X.L., Y.W.); Cardiovascular Division, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis (X.L., D.K., Z.L., X.X., J.F., H.W., J.H., R.J.B., Y.C.); College of Life Science, University of Chinese Academy of Science, Beijing, China (Z.L.); Department of Biology and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park (D.R.C.); and Institute of Molecular Medicine, Peking University, Beijing, China (X.H.)
| | - John Fassett
- From the Department of Chinese Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (X.L., Y.W.); Cardiovascular Division, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis (X.L., D.K., Z.L., X.X., J.F., H.W., J.H., R.J.B., Y.C.); College of Life Science, University of Chinese Academy of Science, Beijing, China (Z.L.); Department of Biology and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park (D.R.C.); and Institute of Molecular Medicine, Peking University, Beijing, China (X.H.)
| | - Huan Wang
- From the Department of Chinese Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (X.L., Y.W.); Cardiovascular Division, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis (X.L., D.K., Z.L., X.X., J.F., H.W., J.H., R.J.B., Y.C.); College of Life Science, University of Chinese Academy of Science, Beijing, China (Z.L.); Department of Biology and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park (D.R.C.); and Institute of Molecular Medicine, Peking University, Beijing, China (X.H.)
| | - Yidong Wei
- From the Department of Chinese Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (X.L., Y.W.); Cardiovascular Division, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis (X.L., D.K., Z.L., X.X., J.F., H.W., J.H., R.J.B., Y.C.); College of Life Science, University of Chinese Academy of Science, Beijing, China (Z.L.); Department of Biology and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park (D.R.C.); and Institute of Molecular Medicine, Peking University, Beijing, China (X.H.)
| | - Douglas R Cavener
- From the Department of Chinese Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (X.L., Y.W.); Cardiovascular Division, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis (X.L., D.K., Z.L., X.X., J.F., H.W., J.H., R.J.B., Y.C.); College of Life Science, University of Chinese Academy of Science, Beijing, China (Z.L.); Department of Biology and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park (D.R.C.); and Institute of Molecular Medicine, Peking University, Beijing, China (X.H.)
| | - Xinli Hu
- From the Department of Chinese Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (X.L., Y.W.); Cardiovascular Division, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis (X.L., D.K., Z.L., X.X., J.F., H.W., J.H., R.J.B., Y.C.); College of Life Science, University of Chinese Academy of Science, Beijing, China (Z.L.); Department of Biology and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park (D.R.C.); and Institute of Molecular Medicine, Peking University, Beijing, China (X.H.)
| | - Jennifer Hall
- From the Department of Chinese Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (X.L., Y.W.); Cardiovascular Division, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis (X.L., D.K., Z.L., X.X., J.F., H.W., J.H., R.J.B., Y.C.); College of Life Science, University of Chinese Academy of Science, Beijing, China (Z.L.); Department of Biology and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park (D.R.C.); and Institute of Molecular Medicine, Peking University, Beijing, China (X.H.)
| | - Robert J Bache
- From the Department of Chinese Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (X.L., Y.W.); Cardiovascular Division, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis (X.L., D.K., Z.L., X.X., J.F., H.W., J.H., R.J.B., Y.C.); College of Life Science, University of Chinese Academy of Science, Beijing, China (Z.L.); Department of Biology and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park (D.R.C.); and Institute of Molecular Medicine, Peking University, Beijing, China (X.H.)
| | - Yingjie Chen
- From the Department of Chinese Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, China (X.L., Y.W.); Cardiovascular Division, Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis (X.L., D.K., Z.L., X.X., J.F., H.W., J.H., R.J.B., Y.C.); College of Life Science, University of Chinese Academy of Science, Beijing, China (Z.L.); Department of Biology and The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park (D.R.C.); and Institute of Molecular Medicine, Peking University, Beijing, China (X.H.).
| |
Collapse
|
243
|
Chen ZY, Liu SN, Li CN, Sun SJ, Liu Q, Lei L, Gao LH, Shen ZF. Atorvastatin helps preserve pancreatic β cell function in obese C57BL/6 J mice and the effect is related to increased pancreas proliferation and amelioration of endoplasmic-reticulum stress. Lipids Health Dis 2014; 13:98. [PMID: 24950764 PMCID: PMC4078942 DOI: 10.1186/1476-511x-13-98] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/17/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND 3-Hydroxy-3-methyl-glutaryl CoA (HMG-CoA) reductase inhibitors or statins are competitive inhibitors of the rate-limiting enzyme in cholesterol biosynthesis. Currently, statins are used as first-line therapy in the treatment of diabetic dyslipidemia. However, effects of statins on β cell function remains unclear. This study aims to examine effects of atorvastatin treatment on pancreatic β cell function in obese C57BL/6 J mice and the possible mechanisms. METHODS Diet-induced obesity (DIO) C57BL/6 J mice were treated with atorvastatin (30 mg/kg/day) for 58 days. β cell function was assessed by hyperglycemic clamp and the area of insulin-positive β cells was examined by immunofluorescence. Gene expression was assessed by RT-PCR, and endoplasmic reticulum (ER) stress related proteins were examined by Western blot. Additionally, cell viability and apoptosis of the cholesterol-loaded NIT-1 cells were investigated after atorvastatin treatment. RESULTS Hyperglycemic clamp study revealed that glucose infusion rate (GIR) and insulin stimulation ratio in atorvastatin-treated DIO mice were markedly higher than control mice (P < 0.05, P < 0.01 vs. con), indicating preserved β-cell sensitivity to glucose. Lipid profiles of plasma triglyceride (TG), pancreas TG and plasma cholesterol (CHO) were improved. Pancreas weight and weight index were improved significantly after atorvastatin treatment (P < 0.05 vs. con). Immunofluorescence results showed that atorvastatin-treated mice had significantly larger insulin-positive β cell area (P < 0.05 vs. con). Furthermore, RT-PCR and western blot showed that the mRNA and protein expression of pancreatic and duodenal homeobox 1 (Pdx1) in the pancreas were upregulated (P < 0.001, P < 0.01 vs. con). Moreover, the expression level of ER stress markers of activating transcription factor 4 (ATF4), CCAAT-enhancer-binding protein homologous protein (CHOP) and phosphorylated eukaryotic initiation factor 2α (eIF2α) were downregulated in the pancreas of atorvastatin-treated mice (P < 0.001, P < 0.01, P < 0.01 vs. con). Besides, atorvastatin protected the pancreatic β cell line of NIT-1 from cholesterol-induced apoptosis. Western blot showed increased expression of anti-apoptotic protein of B-cell lymphoma 2 (Bcl-2). CONCLUSION Pancreatic β cell function of obese C57BL/6 J mice was preserved after atorvastatin treatment, and this improvement may be attributed to enhanced pancreas proliferation and amelioration of pancreatic ER stress.
Collapse
Affiliation(s)
- Zhi-yu Chen
- Department of pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, 100050 Beijing, P. R. China
| | - Shuai-nan Liu
- Department of pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, 100050 Beijing, P. R. China
| | - Cai-na Li
- Department of pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, 100050 Beijing, P. R. China
| | - Su-juan Sun
- Department of pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, 100050 Beijing, P. R. China
| | - Quan Liu
- Department of pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, 100050 Beijing, P. R. China
| | - Lei Lei
- Department of pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, 100050 Beijing, P. R. China
| | - Li-hui Gao
- Department of pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, 100050 Beijing, P. R. China
| | - Zhu-fang Shen
- Department of pharmacology, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Xiannongtan Street, 100050 Beijing, P. R. China
| |
Collapse
|
244
|
Wang R, Munoz EE, Zhu S, McGrath BC, Cavener DR. Perk gene dosage regulates glucose homeostasis by modulating pancreatic β-cell functions. PLoS One 2014; 9:e99684. [PMID: 24915520 PMCID: PMC4051701 DOI: 10.1371/journal.pone.0099684] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/16/2014] [Indexed: 11/18/2022] Open
Abstract
Background Insulin synthesis and cell proliferation are under tight regulation in pancreatic β-cells to maintain glucose homeostasis. Dysfunction in either aspect leads to development of diabetes. PERK (EIF2AK3) loss of function mutations in humans and mice exhibit permanent neonatal diabetes that is characterized by insufficient β-cell mass and reduced proinsulin trafficking and insulin secretion. Unexpectedly, we found that Perk heterozygous mice displayed lower blood glucose levels. Methodology Longitudinal studies were conducted to assess serum glucose and insulin, intracellular insulin synthesis and storage, insulin secretion, and β-cell proliferation in Perk heterozygous mice. In addition, modulation of Perk dosage specifically in β-cells showed that the glucose homeostasis phenotype of Perk heterozygous mice is determined by reduced expression of PERK in the β-cells. Principal Findings We found that Perk heterozygous mice first exhibited enhanced insulin synthesis and secretion during neonatal and juvenile development followed by enhanced β-cell proliferation and a substantial increase in β-cell mass at the adult stage. These differences are not likely to entail the well-known function of PERK to regulate the ER stress response in cultured cells as several markers for ER stress were not differentially expressed in Perk heterozygous mice. Conclusions In addition to the essential functions of PERK in β-cells as revealed by severely diabetic phenotype in humans and mice completely deficient for PERK, reducing Perk gene expression by half showed that intermediate levels of PERK have a profound impact on β-cell functions and glucose homeostasis. These results suggest that an optimal level of PERK expression is necessary to balance several parameters of β-cell function and growth in order to achieve normoglycemia.
Collapse
Affiliation(s)
- Rong Wang
- The Pennsylvania State University, Department of Biology, Center of Cellular Dynamics, University Park, Pennsylvania, United States of America
| | - Elyse E. Munoz
- The Pennsylvania State University, Department of Biology, Center of Cellular Dynamics, University Park, Pennsylvania, United States of America
| | - Siying Zhu
- The Pennsylvania State University, Department of Biology, Center of Cellular Dynamics, University Park, Pennsylvania, United States of America
| | - Barbara C. McGrath
- The Pennsylvania State University, Department of Biology, Center of Cellular Dynamics, University Park, Pennsylvania, United States of America
| | - Douglas R. Cavener
- The Pennsylvania State University, Department of Biology, Center of Cellular Dynamics, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
245
|
Exogenous sphingosine-1-phosphate boosts acclimatization in rats exposed to acute hypobaric hypoxia: assessment of haematological and metabolic effects. PLoS One 2014; 9:e98025. [PMID: 24887065 PMCID: PMC4041657 DOI: 10.1371/journal.pone.0098025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 04/27/2014] [Indexed: 12/31/2022] Open
Abstract
Background The physiological challenges posed by hypobaric hypoxia warrant exploration of pharmacological entities to improve acclimatization to hypoxia. The present study investigates the preclinical efficacy of sphingosine-1-phosphate (S1P) to improve acclimatization to simulated hypobaric hypoxia. Experimental Approach Efficacy of intravenously administered S1P in improving haematological and metabolic acclimatization was evaluated in rats exposed to simulated acute hypobaric hypoxia (7620m for 6 hours) following S1P pre-treatment for three days. Major Findings Altitude exposure of the control rats caused systemic hypoxia, hypocapnia (plausible sign of hyperventilation) and respiratory alkalosis due to suboptimal renal compensation indicated by an overt alkaline pH of the mixed venous blood. This was associated with pronounced energy deficit in the hepatic tissue along with systemic oxidative stress and inflammation. S1P pre-treatment improved blood oxygen-carrying-capacity by increasing haemoglobin, haematocrit, and RBC count, probably as an outcome of hypoxia inducible factor-1α mediated erythropoiesis and renal S1P receptor 1 mediated haemoconcentation. The improved partial pressure of oxygen in the blood could further restore aerobic respiration and increase ATP content in the hepatic tissue of S1P treated animals. S1P could also protect the animals from hypoxia mediated oxidative stress and inflammation. Conclusion The study findings highlight S1P’s merits as a preconditioning agent for improving acclimatization to acute hypobaric hypoxia exposure. The results may have long term clinical application for improving physiological acclimatization of subjects venturing into high altitude for occupational or recreational purposes.
Collapse
|
246
|
Ma T, Klann E. PERK: a novel therapeutic target for neurodegenerative diseases? ALZHEIMERS RESEARCH & THERAPY 2014; 6:30. [PMID: 25031640 PMCID: PMC4075240 DOI: 10.1186/alzrt260] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Identification of therapeutic targets based on novel mechanistic studies is urgently needed for neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and prion disease. Multiple lines of evidence have emerged to suggest that inhibition of the stress-induced endoplasmic reticulum kinase PERK (protein kinase RNA-like endoplasmic reticulum kinase) is a potential therapeutic strategy for these diseases. A recently published study demonstrated that oral treatment with a newly characterized PERK inhibitor was able to rescue disease phenotypes displayed in prion disease model mice. Here, we discuss the background and rationale for targeting PERK as a viable therapeutic approach as well as implications of these findings for other neurodegenerative diseases. The promise and caveats of applying this strategy for disease therapy also are discussed.
Collapse
Affiliation(s)
- Tao Ma
- Center for Neural Science, New York University, 4 Washington Place, Room 809, New York, NY 10003, USA
| | - Eric Klann
- Center for Neural Science, New York University, 4 Washington Place, Room 809, New York, NY 10003, USA
| |
Collapse
|
247
|
Devi L, Ohno M. PERK mediates eIF2α phosphorylation responsible for BACE1 elevation, CREB dysfunction and neurodegeneration in a mouse model of Alzheimer's disease. Neurobiol Aging 2014; 35:2272-81. [PMID: 24889041 DOI: 10.1016/j.neurobiolaging.2014.04.031] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 03/28/2014] [Accepted: 04/27/2014] [Indexed: 01/06/2023]
Abstract
Emerging evidence suggests that aberrant phosphorylation of eukaryotic initiation factor-2α (eIF2α) may induce synaptic failure and neurodegeneration through persistent translational inhibition of global protein synthesis. However, elevated phospho-eIF2α also paradoxically causes translational activation of a subset of messenger RNAs such as the β-secretase enzyme, β-site APP-cleaving enzyme 1 (BACE1) and cAMP response element binding protein (CREB) repressor, activating transcription factor 4 (ATF4). Therefore, we tested whether genetic reduction of the eIF2α kinase PERK may prevent these deleterious events and mitigate Alzheimer's disease (AD)-like neuropathology and cognitive impairments in the 5XFAD mouse model. PERK haploinsufficiency blocked overactivation of the PERK-eIF2α pathway, as evidenced by significant reductions in phosphorylation of PERK and eIF2α, in 5XFAD mice. PERK haploinsufficiency was sufficient to rescue memory deficits and cholinergic neurodegeneration in this AD model. Notably, PERK haploinsufficiency also prevented BACE1 elevations, resulting in reduced levels of amyloid-β peptides and plaque burden in 5XFAD mice. Moreover, CREB dysfunction was restored in PERK(+/-)·5XFAD mice concomitant with reversal of ATF4 upregulation. Together, these findings suggest that PERK may be a disease-modifying therapeutic target to prevent multiple memory-disrupting mechanisms associated with AD.
Collapse
Affiliation(s)
- Latha Devi
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA
| | - Masuo Ohno
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
248
|
Trinh MA, Ma T, Kaphzan H, Bhattacharya A, Antion MD, Cavener DR, Hoeffer CA, Klann E. The eIF2α kinase PERK limits the expression of hippocampal metabotropic glutamate receptor-dependent long-term depression. Learn Mem 2014; 21:298-304. [PMID: 24741110 PMCID: PMC3994503 DOI: 10.1101/lm.032219.113] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The proper regulation of translation is required for the expression of long-lasting synaptic plasticity. A major site of translational control involves the phosphorylation of eukaryotic initiation factor 2 α (eIF2α) by PKR-like endoplasmic reticulum (ER) kinase (PERK). To determine the role of PERK in hippocampal synaptic plasticity, we used the Cre-lox expression system to selectively disrupt PERK expression in the adult mouse forebrain. Here, we demonstrate that in hippocampal area CA1, metabotropic glutamate receptor (mGluR)-dependent long-term depression (LTD) is associated with increased eIF2α phosphorylation, whereas stimulation of early- and late-phase long-term potentiation (E-LTP and L-LTP, respectively) is associated with decreased eIF2α phosphorylation. Interesting, although PERK-deficient mice exhibit exaggerated mGluR-LTD, both E-LTP and L-LTP remained intact. We also found that mGluR-LTD is associated with a PERK-dependent increase in eIF2α phosphorylation. Our findings are consistent with the notion that eIF2α phosphorylation is a key site for the bidirectional control of persistent forms of synaptic LTP and LTD and suggest a distinct role for PERK in mGluR-LTD.
Collapse
Affiliation(s)
- Mimi A Trinh
- Center for Neural Science, New York University, New York, New York 10003, USA
| | | | | | | | | | | | | | | |
Collapse
|
249
|
He H, Singh I, Wek SA, Dey S, Baird TD, Wek RC, Georgiadis MM. Crystal structures of GCN2 protein kinase C-terminal domains suggest regulatory differences in yeast and mammals. J Biol Chem 2014; 289:15023-34. [PMID: 24719324 DOI: 10.1074/jbc.m114.560789] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In response to amino acid starvation, GCN2 phosphorylation of eIF2 leads to repression of general translation and initiation of gene reprogramming that facilitates adaptation to nutrient stress. GCN2 is a multidomain protein with key regulatory domains that directly monitor uncharged tRNAs which accumulate during nutrient limitation, leading to activation of this eIF2 kinase and translational control. A critical feature of regulation of this stress response kinase is its C-terminal domain (CTD). Here, we present high resolution crystal structures of murine and yeast CTDs, which guide a functional analysis of the mammalian GCN2. Despite low sequence identity, both yeast and mammalian CTDs share a core subunit structure and an unusual interdigitated dimeric form, albeit with significant differences. Disruption of the dimeric form of murine CTD led to loss of translational control by GCN2, suggesting that dimerization is critical for function as is true for yeast GCN2. However, although both CTDs bind single- and double-stranded RNA, murine GCN2 does not appear to stably associate with the ribosome, whereas yeast GCN2 does. This finding suggests that there are key regulatory differences between yeast and mammalian CTDs, which is consistent with structural differences.
Collapse
Affiliation(s)
- Hongzhen He
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and
| | - Isha Singh
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and
| | - Sheree A Wek
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and
| | - Souvik Dey
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and
| | - Thomas D Baird
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and
| | - Ronald C Wek
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and
| | - Millie M Georgiadis
- From the Department of Biochemistry and Molecular Biology, Indiana University School of Medicine and Department of Chemistry and Chemical Biology, Indiana University-Purdue University at Indianapolis, Indianapolis, Indiana 46202
| |
Collapse
|
250
|
Feng YX, Sokol ES, Del Vecchio CA, Sanduja S, Claessen JHL, Proia TA, Jin DX, Reinhardt F, Ploegh HL, Wang Q, Gupta PB. Epithelial-to-mesenchymal transition activates PERK-eIF2α and sensitizes cells to endoplasmic reticulum stress. Cancer Discov 2014; 4:702-15. [PMID: 24705811 DOI: 10.1158/2159-8290.cd-13-0945] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Epithelial-to-mesenchymal transition (EMT) promotes both tumor progression and drug resistance, yet few vulnerabilities of this state have been identified. Using selective small molecules as cellular probes, we show that induction of EMT greatly sensitizes cells to agents that perturb endoplasmic reticulum (ER) function. This sensitivity to ER perturbations is caused by the synthesis and secretion of large quantities of extracellular matrix (ECM) proteins by EMT cells. Consistent with their increased secretory output, EMT cells display a branched ER morphology and constitutively activate the PERK-eIF2α axis of the unfolded protein response (UPR). Protein kinase RNA-like ER kinase (PERK) activation is also required for EMT cells to invade and metastasize. In human tumor tissues, EMT gene expression correlates strongly with both ECM and PERK-eIF2α genes, but not with other branches of the UPR. Taken together, our findings identify a novel vulnerability of EMT cells, and demonstrate that the PERK branch of the UPR is required for their malignancy. SIGNIFICANCE EMT drives tumor metastasis and drug resistance, highlighting the need for therapies that target this malignant subpopulation. Our findings identify a previously unrecognized vulnerability of cancer cells that have undergone an EMT: sensitivity to ER stress. We also find that PERK-eIF2α signaling, which is required to maintain ER homeostasis, is also indispensable for EMT cells to invade and metastasize.
Collapse
Affiliation(s)
- Yu-Xiong Feng
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ethan S Sokol
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North CarolinaAuthors' Affiliations:Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Catherine A Del Vecchio
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Sandhya Sanduja
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Jasper H L Claessen
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Theresa A Proia
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Dexter X Jin
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North CarolinaAuthors' Affiliations:Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Ferenc Reinhardt
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Hidde L Ploegh
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North CarolinaAuthors' Affiliations:Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Qiu Wang
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North Carolina
| | - Piyush B Gupta
- Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts; and Department of Chemistry, Duke University, Durham, North CarolinaAuthors' Affiliations:Whitehead Institute for Biomedical Research; Department of Biology, Massachusetts Institute of Technology; Koch Institute for Integrative Cancer Research; Harvard Stem Cell Institute; Broad Institute, Cambridge, Massachusetts
| |
Collapse
|