201
|
Chen Q, Jia T, Wu X, Chen X, Wang J, Ba Y. Polygalae Radix Oligosaccharide Esters May Relieve Depressive-like Behavior in Rats with Chronic Unpredictable Mild Stress via Modulation of Gut Microbiota. Int J Mol Sci 2023; 24:13877. [PMID: 37762181 PMCID: PMC10530649 DOI: 10.3390/ijms241813877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Polygalae radix (PR) is a well-known traditional Chinese medicine that is used to treat depression, and polygalae radix oligosaccharide esters (PROEs) are the main active ingredient. Although gut microbiota are now believed to play key role in depression, the effects of PROEs on depression via modulation of gut microbiota remain unknown. In this article, we investigate the effect of PROEs on the gut microbiota of a depression rat and the possible mechanism responsible. The depression rat model was induced by solitary rearing combined with chronic unpredictable mild stress (CUMS). The depression-like behavior, the influence on the hypothalamic-pituitary-adrenal (HPA) axis, the contents of monoamine neurotransmitter in the hippocampus, and the quantity of short-chain fatty acids (SCFAs) in the feces were each assessed, and the serum levels of lipopolysaccharide (LPS) and interleukin-6 (IL-6) were measured by ELISA. Additionally, ultrastructural changes of the duodenal and colonic epithelium were observed under transmission electron microscope, and the gut microbiota were profiled by using 16S rRNA sequencing. The results show that PROEs alleviated the depression-like behavior of the depression model rats, increased the level of monoamine neurotransmitters in the brain, and reduced the hyperfunction of the HPA axis. Furthermore, PROEs regulated the imbalance of the gut microbiota in the rats, relieving intestinal mucosal damage by increasing the relative abundance of gut microbiota with intestinal barrier protective functions, and adjusting the level of SCFAs in the feces, as well as the serum levels of LPS and IL-6. Thus, we find that PROEs had an antidepressant effect through the restructuring of gut microbiota that restored the function of the intestinal barrier, reduced the release of intestinal endotoxin, and constrained the inflammatory response.
Collapse
Affiliation(s)
- Qijun Chen
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
- School of Pharmaceutical Sciences, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China
| | - Tanrong Jia
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
| | - Xia Wu
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
| | - Xiaoqing Chen
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
| | - Jiajia Wang
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
| | - Yinying Ba
- School of Traditional Chinese Medicine, Capital Medical University, No. 10, Xitoutiao, Youanmenwai Street, Beijing 100069, China; (Q.C.); (T.J.); (X.W.); (X.C.); (J.W.)
| |
Collapse
|
202
|
Liu T, Jia F, Differding MK, Zhao N, Doyon M, Bouchard L, Perron P, Guérin R, Massé E, Hivert MF, Mueller NT. Pre-pregnancy body mass index and gut microbiota of mothers and children 5 years postpartum. Int J Obes (Lond) 2023; 47:807-816. [PMID: 37173396 PMCID: PMC10911130 DOI: 10.1038/s41366-023-01322-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Maternal pre-pregnancy body mass index (BMI) has been linked to altered gut microbiota in women shortly after delivery and in their offspring in the first few years of life. But little is known about how long these differences persist. METHODS We followed 180 mothers and children from pregnancy until 5-year postpartum in the Gen3G cohort (Canada, enrolled 2010-2013). At 5 years postpartum we collected stool samples from mothers and children and estimated the gut microbiota by 16 S rRNA sequencing (V4 region) using Illumina MiSeq, and assigning amplicon sequence variants (ASV). We examined whether overall microbiota composition (as measured by microbiota β diversity) was more similar between mother-child pairs compared to between mothers or between children. We also assessed whether mother-child pair sharing of overall microbiota composition differed by the weight status of mothers before pregnancy and of children at 5-year. Furthermore, in mothers, we examined whether pre-pregnancy BMI, BMI 5-year postpartum, and change in BMI between time points was associated with maternal gut microbiota 5-year postpartum. In children, we further examined associations of maternal pre-pregnancy BMI and child 5-year BMI z-score with child 5-year gut microbiota. RESULTS Mother-child pairs had greater similarity in overall microbiome composition compared to between mothers and between children. In mothers, higher pre-pregnancy BMI and 5-year postpartum BMI were associated with lower microbiota observed ASV richness and Chao 1 index; in children's gut microbiota, higher maternal pre-pregnancy BMI was weakly associated with lower microbiota Shannon index, whereas child's 5-year BMI z-score was associated with higher observed ASV richness. Pre-pregnancy BMI was also linked to differential abundances of several microbial ASVs in the Ruminococcaceae and Lachnospiraceae families, but no specific ASV had overlapping associations with BMI measures in both mothers and children. CONCLUSIONS Pre-pregnancy BMI was associated with gut microbiota diversity and composition of mothers and children 5 years after birth, however, the nature and direction of most associations differed for mothers and children. Future studies are encouraged to confirm our findings and look into potential mechanisms or factors that may drive these associations.
Collapse
Affiliation(s)
- Tiange Liu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Fan Jia
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Moira K Differding
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ni Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Myriam Doyon
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
| | - Luigi Bouchard
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Medical Biology, CIUSSS-SLSJ, Saguenay, QC, Canada
| | - Patrice Perron
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Renée Guérin
- Department of Medical Biology, CIUSSS-SLSJ, Saguenay, QC, Canada
| | - Eric Massé
- Department of Biochemistry and Functional Genomics, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Marie-France Hivert
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, QC, Canada
- Department of Medicine, Université de Sherbrooke, Sherbrooke, QC, Canada
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA, USA
| | - Noel T Mueller
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Welch Center for Prevention, Epidemiology and Clinical Research, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
203
|
Jin Y, Chi J, LoMonaco K, Boon A, Gu H. Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome. Trends Analyt Chem 2023; 166:117155. [PMID: 37484879 PMCID: PMC10361410 DOI: 10.1016/j.trac.2023.117155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As it is well known, the gut is one of the primary sites in any host for xenobiotics, and the many microbial metabolites responsible for the interactions between the gut microbiome and the host. However, there is a growing concern about the negative impacts on human health induced by toxic xenobiotics. Metabolomics, broadly including lipidomics, is an emerging approach to studying thousands of metabolites in parallel. In this review, we summarized recent advancements in mass spectrometry (MS) technologies in metabolomics. In addition, we reviewed recent applications of MS-based metabolomics for the investigation of toxic effects of xenobiotics on microbial and host metabolism. It was demonstrated that metabolomics, gut microbiome profiling, and their combination have a high potential to identify metabolic and microbial markers of xenobiotic exposure and determine its mechanism. Further, there is increasing evidence supporting that reprogramming the gut microbiome could be a promising approach to the intervention of xenobiotic toxicity.
Collapse
Affiliation(s)
- Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Jinhua Chi
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Kaelene LoMonaco
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Alexandria Boon
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA
| |
Collapse
|
204
|
Yi X, Cai R, Shaoyong W, Wang G, Yan W, He Z, Li R, Chao M, Zhao T, Deng L, Yang G, Pang W. Melatonin promotes gut anti-oxidative status in perinatal rat by remodeling the gut microbiome. Redox Biol 2023; 65:102829. [PMID: 37527604 PMCID: PMC10407234 DOI: 10.1016/j.redox.2023.102829] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Gut health is important for nutrition absorption, reproduction, and lactation in perinatal and early weaned mammals. Although melatonin functions in maintaining circadian rhythms and preventing obesity, neurodegenerative diseases, and viral infections, its impact on the gut microbiome and its function in mediating gut health through gut microbiota remain largely unexplored. In the present study, the microbiome of rats was monitoring after fecal microbiota transplantation (FMT) and foster care (FC). The results showed that FMT and FC increased intestinal villus height/crypt depth in perinatal rats. Mechanistically, the melatonin-mediated remodeling of gut microbiota inhibited oxidative stress, which led to attenuation of autophagy and inflammation. In addition, FMT and FC encouraged the growth of more beneficial intestinal bacteria, such as Allobaculum, Bifidobacterium, and Faecalibaculum, which produce more short-chain fatty acids to strengthen intestinal anti-oxidation. These findings suggest that melatonin-treated gut microbiota increase the production of SCFAs, which improve gut health by reducing oxidative stress, autophagy and inflammation. The transfer of melatonin-treated gut microbiota may be a new and effective method by which to ameliorate gut health in perinatal and weaned mammals.
Collapse
Affiliation(s)
- Xudong Yi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Cai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weike Shaoyong
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guoyan Wang
- Innovative Research Team of Animal Nutrition & Healthy Feeding, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenyong Yan
- Innovative Research Team of Animal Nutrition & Healthy Feeding, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhaozhao He
- Innovative Research Team of Animal Nutrition & Healthy Feeding, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ri Li
- Innovative Research Team of Animal Nutrition & Healthy Feeding, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mingkun Chao
- Innovative Research Team of Animal Nutrition & Healthy Feeding, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tiantian Zhao
- Innovative Research Team of Animal Nutrition & Healthy Feeding, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lu Deng
- Innovative Research Team of Animal Nutrition & Healthy Feeding, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Weijun Pang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
205
|
Mondal A, Sharma R, Abiha U, Ahmad F, Karan A, Jayaraj RL, Sundar V. A Spectrum of Solutions: Unveiling Non-Pharmacological Approaches to Manage Autism Spectrum Disorder. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1584. [PMID: 37763703 PMCID: PMC10536417 DOI: 10.3390/medicina59091584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that causes difficulty while socializing and communicating and the performance of stereotyped behavior. ASD is thought to have a variety of causes when accompanied by genetic disorders and environmental variables together, resulting in abnormalities in the brain. A steep rise in ASD has been seen regardless of the numerous behavioral and pharmaceutical therapeutic techniques. Therefore, using complementary and alternative therapies to treat autism could be very significant. Thus, this review is completely focused on non-pharmacological therapeutic interventions which include different diets, supplements, antioxidants, hormones, vitamins and minerals to manage ASD. Additionally, we also focus on complementary and alternative medicine (CAM) therapies, herbal remedies, camel milk and cannabiodiol. Additionally, we concentrate on how palatable phytonutrients provide a fresh glimmer of hope in this situation. Moreover, in addition to phytochemicals/nutraceuticals, it also focuses on various microbiomes, i.e., gut, oral, and vaginal. Therefore, the current comprehensive review opens a new avenue for managing autistic patients through non-pharmacological intervention.
Collapse
Affiliation(s)
- Arunima Mondal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda 151401, India
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi 110042, India
| | - Umme Abiha
- IDRP, Indian Institute of Technology, Jodhpur 342030, India
- All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi 110062, India
| | | | - Richard L. Jayaraj
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
206
|
Hilakivi-Clarke L, de Oliveira Andrade F. Social Isolation and Breast Cancer. Endocrinology 2023; 164:bqad126. [PMID: 37586098 DOI: 10.1210/endocr/bqad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Although the role of life stressors in breast cancer remains unclear, social isolation is consistently associated with increased breast cancer risk and mortality. Social isolation can be defined as loneliness or an absence of perceived social connections. In female mice and rats, social isolation is mimicked by housing animals 1 per cage. Social isolation causes many biological changes, of which an increase in inflammatory markers and disruptions in mitochondrial and cellular metabolism are commonly reported. It is not clear how the 2 traditional stress-induced pathways, namely, the hypothalamic-pituitary-adrenocortical axis (HPA), resulting in a release of glucocorticoids from the adrenal cortex, and autonomic nervous system (ANS), resulting in a release of catecholamines from the adrenal medulla and postganglionic neurons, could explain the increased breast cancer risk in socially isolated individuals. For instance, glucocorticoid receptor activation in estrogen receptor positive breast cancer cells inhibits their proliferation, and activation of β-adrenergic receptor in immature immune cells promotes their differentiation toward antitumorigenic T cells. However, activation of HPA and ANS pathways may cause a disruption in the brain-gut-microbiome axis, resulting in gut dysbiosis. Gut dysbiosis, in turn, leads to an alteration in the production of bacterial metabolites, such as short chain fatty acids, causing a systemic low-grade inflammation and inducing dysfunction in mitochondrial and cellular metabolism. A possible causal link between social isolation-induced increased breast cancer risk and mortality and gut dysbiosis should be investigated, as it offers new tools to prevent breast cancer.
Collapse
Affiliation(s)
- Leena Hilakivi-Clarke
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Fabia de Oliveira Andrade
- Department of Food Science and Nutrition, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| |
Collapse
|
207
|
Li H, Li C. Causal relationship between gut microbiota and type 2 diabetes: a two-sample Mendelian randomization study. Front Microbiol 2023; 14:1184734. [PMID: 37692402 PMCID: PMC10483233 DOI: 10.3389/fmicb.2023.1184734] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/01/2023] [Indexed: 09/12/2023] Open
Abstract
Background Studies showed that development of gut microbial dysbiosis has a close association with type 2 diabetes (T2D). It is not yet clear if there is a causal relationship between gut microbiota and T2D. Methods The data collected from the published genome-wide association studies (GWASs) on gut microbiota and T2D were analyzed. Two-sample Mendelian randomization (MR) analyses were performed to identify causal relationship between bacterial taxa and T2D. Significant bacterial taxa were further analyzed. To confirm the findings' robustness, we performed sensitivity, heterogeneity, and pleiotropy analyses. A reverse MR analysis was also performed to check for potential reverse causation. Results By combining the findings of all the MR steps, we identified six causal bacterial taxa, namely, Lachnoclostridium, Oscillospira, Roseburia, Ruminococcaceae UCG003, Ruminococcaceae UCG010 and Streptococcus. The risk of T2D might be positively associated with a high relative abundance of Lachnoclostridium, Roseburia and Streptococcus but negatively associated with Oscillospira, Ruminococcaceae UCG003 and Ruminococcaceae UCG010. The results of MR analyses revealed that there were causal relationships between the six different genera and T2D. And the reverse MR analysis did not reveal any evidence of a reverse causality. Conclusion This study implied that Lachnoclostridium, Roseburia and Streptococcus might have anti-protective effect on T2D, whereas Oscillospira, Ruminococcaceae UCG003 and Ruminococcaceae UCG010 genera might have protective effect on T2D. Our study revealed that there was a causal relationship between specific gut microbiota genera and T2D.
Collapse
Affiliation(s)
- Hanjing Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Candong Li
- College of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
- Key Laboratory of Traditional Chinese Medicine Health Status Identification, Fuzhou, Fujian, China
| |
Collapse
|
208
|
Liang Y, Ju D, Liu W, Wu D, Zhao Y, Du Y, Li X, Zhao M. Natural Shikonin Potentially Alters Intestinal Flora to Alleviate Acute Inflammation. Microorganisms 2023; 11:2139. [PMID: 37763983 PMCID: PMC10534322 DOI: 10.3390/microorganisms11092139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/29/2023] Open
Abstract
Shikonin, derived from the herb Lithospermum erythrorhizon (Purple Cromwell), is extensively utilized in traditional Chinese medicine as an anti-inflammatory agent; however, its effect on the intestinal flora is not yet known. Herein, we demonstrate that, compared to a blank control group, the intragastric administration of shikonin suppressed the swelling rate of ears in a mouse model of acute inflammation in a dose-dependent manner via animal experiments; furthermore, the 20 mg/kg shikonin treatment exhibited the highest inhibitory effect. In formal animal experimentation, we discovered that the inhibitory effect of shikonin with 20 mg/kg on inflammation was closely linked to the intestinal flora, whereby the microbiota phylum was altered in feces through a 16S rDNA sequencing analysis, implying that shikonin improves gut microbiota structures and compositions to counteract inflammation. Notably, using a real-time quantitative polymerase chain reaction (RT-qPCR), a Western blotting assay, and an immunohistochemistry (IHC) assay, we found that inflammatory cytokines such as TNF-α, IL-6, and IL-1β reduced in both the shikonin-administration group and the positive control group than those in the blank control group, as expected. To the best of our knowledge, this is the first study to outline the underlying mechanism through which shikonin acts on gut microbes to alleviate acute inflammation, providing an alternative mechanism for shikonin to become a preventive agent in countering inflammation.
Collapse
Affiliation(s)
- Ying Liang
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China; (Y.L.); (W.L.); (D.W.); (Y.D.); (X.L.)
| | - Dongen Ju
- Department of Urology, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China;
| | - Wenna Liu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China; (Y.L.); (W.L.); (D.W.); (Y.D.); (X.L.)
| | - Dan Wu
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China; (Y.L.); (W.L.); (D.W.); (Y.D.); (X.L.)
| | - Yujia Zhao
- Department of Oncology, The First Affiliated Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an 710086, China;
| | - Yaya Du
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China; (Y.L.); (W.L.); (D.W.); (Y.D.); (X.L.)
| | - Xi Li
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China; (Y.L.); (W.L.); (D.W.); (Y.D.); (X.L.)
| | - Minggao Zhao
- Precision Pharmacy & Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi’an 710038, China; (Y.L.); (W.L.); (D.W.); (Y.D.); (X.L.)
| |
Collapse
|
209
|
Nawab S, Bao Q, Ji LH, Luo Q, Fu X, Fan S, Deng Z, Ma W. The Pathogenicity of Fusobacterium nucleatum Modulated by Dietary Fibers-A Possible Missing Link between the Dietary Composition and the Risk of Colorectal Cancer. Microorganisms 2023; 11:2004. [PMID: 37630564 PMCID: PMC10458976 DOI: 10.3390/microorganisms11082004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
The dietary composition has been approved to be strongly associated with the risk of colorectal cancer (CRC), one of the most serious malignancies worldwide, through regulating the gut microbiota structure, thereby influencing the homeostasis of colonic epithelial cells by producing carcinogens, i.e., ammonia or antitumor metabolites, like butyrate. Though butyrate-producing Fusobacterium nucleatum has been considered a potential tumor driver associated with chemotherapy resistance and poor prognosis in CRC, it was more frequently identified in the gut microbiota of healthy individuals rather than CRC tumor tissues. First, within the concentration range tested, the fermentation broth of F. nucleatum exhibited no significant effects on Caco-2 and NCM460 cells viability except for a notable up-regulation of the expression of TLR4 (30.70%, p < 0.0001) and Myc (47.67%, p = 0.021) and genes encoding proinflammatory cytokines including IL1B (197.57%, p < 0.0001), IL6 (1704.51%, p < 0.0001), and IL8 (897.05%, p < 0.0001) in Caco-2 cells exclusively. Although no marked effects of polydextrose or fibersol-2 on the growth of F. nucleatum, Caco-2 and NCM460 cells were observed, once culture media supplemented with polydextrose or fibersol-2, the corresponding fermentation broths of F. nucleatum significantly inhibited the growth of Caco-2 cells up to 48.90% (p = 0.0003, 72 h, 10%) and 52.96% (p = 0.0002, 72 h, 10%), respectively in a dose-dependent manner. These two kinds of fibers considerably promoted butyrate production of F. nucleatum up to 205.67% (p < 0.0001, 6% polydextrose at 24 h) and 153.46% (p = 0.0002, 6% fibersol-2 at 12 h), which explained why and how the fermentation broths of F. nucleatum cultured with fibers suppressing the growth of Caco-2 cells. Above findings indicated that dietary fiber determined F. nucleatum to be a carcinogenic or antitumor bacterium, and F. nucleatum played an important role in the association between the dietary composition, primarily the content of dietary fibers, and the risk of CRC.
Collapse
Affiliation(s)
- Sadia Nawab
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qelger Bao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Lin-Hua Ji
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 145 Middle Shandong Road, Shanghai 200001, China
| | - Qian Luo
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiang Fu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuxuan Fan
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wei Ma
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
210
|
Devi R, Sharma E, Thakur R, Lal P, Kumar A, Altaf MA, Singh B, Tiwari RK, Lal MK, Kumar R. Non-dairy prebiotics: Conceptual relevance with nutrigenomics and mechanistic understanding of the effects on human health. Food Res Int 2023; 170:112980. [PMID: 37316060 DOI: 10.1016/j.foodres.2023.112980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023]
Abstract
The increasing health awareness of consumers has made a shift towards vegan and non-dairy prebiotics counterparts. Non-dairy prebiotics when fortified with vegan products have interesting properties and widely found its applications in food industry. The chief vegan products that have prebiotics added include water-soluble plant-based extracts (fermented beverages, frozen desserts), cereals (bread, cookies), and fruits (juices & jelly, ready to eat fruits). The main prebiotic components utilized are inulin, oligofructose, polydextrose, fructooligosaccharides, and xylooligosaccharides. Prebiotics' formulations, type and food matrix affect food products, host health, and technological attributes. Prebiotics from non-dairy sources have a variety of physiological effects that help to prevent and treat chronic metabolic diseases. This review focuses on mechanistic insight on non-dairy prebiotics affecting human health, how nutrigenomics is related to prebiotics development, and role of gene-microbes' interactions. The review will provide industries and researchers with important information about prebiotics, mechanism of non-dairy prebiotics and microbe interaction as well as prebiotic based vegan products.
Collapse
Affiliation(s)
- Rajni Devi
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, India
| | - Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Richa Thakur
- Division of Silviculture and Forest Management, Himalayan Forest Research Institute, Conifer Campus, Shimla, India
| | - Priyanka Lal
- Department of Agricultural Economics and Extension, School of Agriculture, Lovely Professional University, Jalandhar GT Road (NH1), Phagwara, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | | | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla 171001, India
| | | | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla 171001, India.
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla 171001, India.
| |
Collapse
|
211
|
Ben-Yacov O, Godneva A, Rein M, Shilo S, Lotan-Pompan M, Weinberger A, Segal E. Gut microbiome modulates the effects of a personalised postprandial-targeting (PPT) diet on cardiometabolic markers: a diet intervention in pre-diabetes. Gut 2023; 72:1486-1496. [PMID: 37137684 PMCID: PMC10359530 DOI: 10.1136/gutjnl-2022-329201] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/17/2023] [Indexed: 05/05/2023]
Abstract
OBJECTIVE To explore the interplay between dietary modifications, microbiome composition and host metabolic responses in a dietary intervention setting of a personalised postprandial-targeting (PPT) diet versus a Mediterranean (MED) diet in pre-diabetes. DESIGN In a 6-month dietary intervention, adults with pre-diabetes were randomly assigned to follow an MED or PPT diet (based on a machine-learning algorithm for predicting postprandial glucose responses). Data collected at baseline and 6 months from 200 participants who completed the intervention included: dietary data from self-recorded logging using a smartphone application, gut microbiome data from shotgun metagenomics sequencing of faecal samples, and clinical data from continuous glucose monitoring, blood biomarkers and anthropometrics. RESULTS PPT diet induced more prominent changes to the gut microbiome composition, compared with MED diet, consistent with overall greater dietary modifications observed. Particularly, microbiome alpha-diversity increased significantly in PPT (p=0.007) but not in MED arm (p=0.18). Post hoc analysis of changes in multiple dietary features, including food-categories, nutrients and PPT-adherence score across the cohort, demonstrated significant associations between specific dietary changes and species-level changes in microbiome composition. Furthermore, using causal mediation analysis we detect nine microbial species that partially mediate the association between specific dietary changes and clinical outcomes, including three species (from Bacteroidales, Lachnospiraceae, Oscillospirales orders) that mediate the association between PPT-adherence score and clinical outcomes of hemoglobin A1c (HbA1c), high-density lipoprotein cholesterol (HDL-C) and triglycerides. Finally, using machine-learning models trained on dietary changes and baseline clinical data, we predict personalised metabolic responses to dietary modifications and assess features importance for clinical improvement in cardiometabolic markers of blood lipids, glycaemic control and body weight. CONCLUSIONS Our findings support the role of gut microbiome in modulating the effects of dietary modifications on cardiometabolic outcomes, and advance the concept of precision nutrition strategies for reducing comorbidities in pre-diabetes. TRIAL REGISTRATION NUMBER NCT03222791.
Collapse
Affiliation(s)
- Orly Ben-Yacov
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Michal Rein
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- School of Public Health, University of Haifa, Haifa, Israel
| | - Smadar Shilo
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, National Center for Childhood Diabetes, Schneider Children's Medical Center, Petah Tikva, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
212
|
Balderramo DC, Romagnoli PA, Granlund AVB, Catalan-Serra I. Fecal Fungal Microbiota (Mycobiome) Study as a Potential Tool for Precision Medicine in Inflammatory Bowel Disease. Gut Liver 2023; 17:505-515. [PMID: 37305948 PMCID: PMC10352062 DOI: 10.5009/gnl220537] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 06/13/2023] Open
Abstract
There is growing evidence of the role of fungal microbiota in the pathogenesis of inflammatory bowel disease (IBD). Fungi can exert direct pro-inflammatory effects or modify the bacterial composition via interkingdom interactions. Although several studies have demonstrated alterations in the fecal fungal microbiota composition in IBD, there is a wide variation in the mycobiome in different populations, with no definite pattern that can define the mycobiome in IBD having yet been identified. Recent work has suggested that characterizing the fecal fungal composition may influence therapeutic decisions and help to predict outcomes in a subset of IBD patients. In this study, we review the current literature on the emerging role of the fecal mycobiome as a potential tool for precision medicine in IBD.
Collapse
Affiliation(s)
- Domingo C. Balderramo
- Department of Gastroenterology, Private Hospital Medical Center of Cordoba S.A., Cordoba, Argentina
| | - Pablo Alberto Romagnoli
- Universitarian Institute for Biomedical Sciences of Cordoba (IUCBC), Translational Medicine Research Center "Severo R. Amuchastegui" (CIMETSA). G.V. Medical Research Institute "Mercedes and Martin Ferreyra" (INIMEC-CONICET-UNC), Cordoba, Argentina
| | - Atle van Beelen Granlund
- Department of Gastroenterology and Hepatology, Clinic of Medicine, St. Olav’s University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine (IKOM), NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Molecular Inflammation Research, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Ignacio Catalan-Serra
- Department of Clinical and Molecular Medicine (IKOM), NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Centre of Molecular Inflammation Research, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
- Department of Medicine, Gastroenterology, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| |
Collapse
|
213
|
Appiah-Twum F, Akorli J, Okyere L, Sagoe K, Osabutey D, Cappello M, Wilson MD. The effect of single dose albendazole (400 mg) treatment on the human gut microbiome of hookworm-infected Ghanaian individuals. Sci Rep 2023; 13:11302. [PMID: 37438457 PMCID: PMC10338455 DOI: 10.1038/s41598-023-38376-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 07/07/2023] [Indexed: 07/14/2023] Open
Abstract
Microbes play a key role in human gut homeostasis, metabolic, immunologic and physiopathology of the body. A longitudinal study conducted during 2018-2021 in the Kintampo North Municipality in Ghana demonstrated low hookworm infection cure rates following treatment with a single dose of 400 mg albendazole in some communities. To investigate associations between hookworm infection and the gut microbiome, we examined stool samples from consented participants who were either cured or remained infected after treatment. At each time point, stool was collected prior to and 10-14 days after albendazole treatment. We used 16S rRNA amplicon sequencing of DNA extracted from stool samples to investigate the composition and diversity of the gut microbiota and to identify potential microbial biomarkers associated with treatment outcomes. Hookworm infection was associated with increased species richness (p = 0.0093). Among treated individuals, there was also a significant variation in microbiota composition at 10-14 days following single-dose albendazole treatment. Individuals cured of hookworm infection after treatment showed a significant reduction in microbiota composition when compared to their pre-treatment state (ANOSIM; p = 0.02), whilst individuals who failed to clear the infection showed no change in microbiota composition (ANOSIM; p = 0.35). Uninfected individuals and those who were successfully treated were similar in their microbial composition and structure. We also found that the abundance of Clostridia spp. was increased in infected individuals pre- or post-treatment. Predictive functional profiling revealed the enrichment of two pyruvate ferredoxin oxidoreductase subunit pathways in individuals who remained infected after treatment (p < 0.05), alluding to an upturn of strictly anaerobic commensal bacteria such as Clostridia spp. This study suggests a relationship between human gut microbiome dysbiosis and albendazole therapy outcomes of hookworm infection. Future studies will further characterize specific biomarkers identified within this study to establish their potential for assessment of pharmacological responses to anthelminthic therapies, as well as explore the possibility of using probiotic supplementation as an adjunct treatment to increase albendazole effectiveness against hookworm.
Collapse
Affiliation(s)
- Francis Appiah-Twum
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG 581, Legon, Accra, Ghana
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG 581, Legon, Accra, Ghana
| | - Lydia Okyere
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG 581, Legon, Accra, Ghana
- Department of Pathobiology, University of Illinois, Urbana-Champaign, 2522 Vet Med Basic Sciences Bldg., 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Kate Sagoe
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG 581, Legon, Accra, Ghana
- Pan African University Institute for Basic Sciences, Technology, and Innovation (PAUSTI), P. O. Box 62000 00200, Nairobi, Kenya
| | - Dickson Osabutey
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG 581, Legon, Accra, Ghana
| | - Michael Cappello
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, 60 College St, New Haven, CT, 06520, USA
| | - Michael D Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, PO Box LG 581, Legon, Accra, Ghana.
| |
Collapse
|
214
|
Squillario M, Bonaretti C, La Valle A, Di Marco E, Piccolo G, Minuto N, Patti G, Napoli F, Bassi M, Maghnie M, d'Annunzio G, Biassoni R. Gut-microbiota in children and adolescents with obesity: inferred functional analysis and machine-learning algorithms to classify microorganisms. Sci Rep 2023; 13:11294. [PMID: 37438382 DOI: 10.1038/s41598-023-36533-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/05/2023] [Indexed: 07/14/2023] Open
Abstract
The fecal microbiome of 55 obese children and adolescents (BMI-SDS 3.2 ± 0.7) and of 25 normal-weight subjects, matched both for age and sex (BMI-SDS - 0.3 ± 1.1) was analysed. Streptococcus, Acidaminococcus, Sutterella, Prevotella, Sutterella wadsworthensis, Streptococcus thermophilus, and Prevotella copri positively correlated with obesity. The inferred pathways strongly associated with obesity concern the biosynthesis pathways of tyrosine, phenylalanine, tryptophan and methionine pathways. Furthermore, polyamine biosynthesis virulence factors and pro-inflammatory lipopolysaccharide biosynthesis pathway showed higher abundances in obese samples, while the butanediol biosynthesis showed low abundance in obese subjects. Different taxa strongly linked with obesity have been related to an increased risk of multiple diseases involving metabolic pathways related to inflammation (polyamine and lipopolysaccharide biosynthesis). Cholesterol, LDL, and CRP positively correlated with specific clusters of microbial in obese patients. The Firmicutes/Bacteroidetes-ratio was lower in obese samples than in controls and differently from the literature we state that this ratio could not be a biomarker for obesity.
Collapse
Affiliation(s)
| | - Carola Bonaretti
- Molecular Diagnostics, Analysis Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Alberto La Valle
- Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Eddi Di Marco
- Molecular Diagnostics, Analysis Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Piccolo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI), Università degli Studi di Genova, Genoa, Italy
- Neuro-Oncology Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Nicola Minuto
- Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Giuseppa Patti
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI), Università degli Studi di Genova, Genoa, Italy
- Department of Pediatrics, Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147, Genoa, Italy
| | - Flavia Napoli
- Department of Pediatrics, Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147, Genoa, Italy
| | - Marta Bassi
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI), Università degli Studi di Genova, Genoa, Italy
- Department of Pediatrics, Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147, Genoa, Italy
| | - Mohamad Maghnie
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, (DINOGMI), Università degli Studi di Genova, Genoa, Italy
- Department of Pediatrics, Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147, Genoa, Italy
| | - Giuseppe d'Annunzio
- Department of Pediatrics, Pediatric Clinic, Regional Center for Pediatric Diabetes, IRCCS Istituto Giannina Gaslini, Via Gaslini 5, 16147, Genoa, Italy.
| | - Roberto Biassoni
- Molecular Diagnostics, Analysis Laboratory, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
215
|
Toda M, Hellwig M, Hattori H, Henle T, Vieths S. Advanced glycation end products and allergy. ALLERGO JOURNAL INTERNATIONAL 2023; 32:296-301. [DOI: 10.1007/s40629-023-00259-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/31/2023] [Indexed: 01/03/2025]
|
216
|
Zhang F, Wang D. Potential of Akkermansia muciniphila and its outer membrane proteins as therapeutic targets for neuropsychological diseases. Front Microbiol 2023; 14:1191445. [PMID: 37440890 PMCID: PMC10333588 DOI: 10.3389/fmicb.2023.1191445] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023] Open
Abstract
The gut microbiota varies dramatically among individuals, and changes over time within the same individual, due to diversities in genetic backgrounds, diet, nutrient supplementations and use of antibiotics. Up until now, studies on dysbiosis of microbiota have expanded to a wider range of diseases, with Akkermansia muciniphila at the cross spot of many of these diseases. A. muciniphila is a Gram-negative bacterium that produces short-chain fatty acids (SCFAs), and Amuc_1100 is one of its most highly expressed outer membrane proteins. This review aims to summarize current knowledge on correlations between A. muciniphila and involved neuropsychological diseases published in the last decade, with a focus on the potential of this bacterium and its outer membrane proteins as therapeutic targets for these diseases, on the basis of evidence accumulated from animal and clinical studies, as well as mechanisms of action from peripheral to central nervous system (CNS).
Collapse
Affiliation(s)
- Fenghua Zhang
- Department of Laboratory Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Dali Wang
- Center for Clinical and Translational Medicine, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
217
|
Elie C, Perret M, Hage H, Sentausa E, Hesketh A, Louis K, Fritah-Lafont A, Leissner P, Vachon C, Rostaing H, Reynier F, Gervasi G, Saliou A. Comparison of DNA extraction methods for 16S rRNA gene sequencing in the analysis of the human gut microbiome. Sci Rep 2023; 13:10279. [PMID: 37355726 PMCID: PMC10290636 DOI: 10.1038/s41598-023-33959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 04/21/2023] [Indexed: 06/26/2023] Open
Abstract
The gut microbiome is widely analyzed using high-throughput sequencing, such as 16S rRNA gene amplicon sequencing and shotgun metagenomic sequencing (SMS). DNA extraction is known to have a large impact on the metagenomic analyses. The aim of this study was to compare DNA extraction protocols for 16S sequencing. In that context, four commonly used DNA extraction methods were compared for the analysis of the gut microbiota. Commercial versions were evaluated against modified protocols using a stool preprocessing device (SPD, bioMérieux) upstream DNA extraction. Stool samples from nine healthy volunteers and nine patients with a Clostridium difficile infection were extracted with all protocols and 16S sequenced. Protocols were ranked using wet- and dry-lab criteria, including quality controls of the extracted genomic DNA, alpha-diversity, accuracy using a mock community of known composition and repeatability across technical replicates. SPD improved overall efficiency of three of the four tested protocols compared with their commercial version, in terms of DNA extraction yield, sample alpha-diversity, and recovery of Gram-positive bacteria. The best overall performance was obtained for the S-DQ protocol, SPD combined with the DNeasy PowerLyser PowerSoil protocol from QIAGEN. Based on this evaluation, we strongly believe that the use of such stool preprocessing device improves both the standardization and the quality of the DNA extraction in the human gut microbiome studies.
Collapse
Affiliation(s)
- Céline Elie
- BIOASTER, Microbiology Research Institute, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Magali Perret
- BIOASTER, Microbiology Research Institute, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Hayat Hage
- BIOASTER, Microbiology Research Institute, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Erwin Sentausa
- BIOASTER, Microbiology Research Institute, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Amy Hesketh
- BIOASTER, Microbiology Research Institute, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Karen Louis
- BIOASTER, Microbiology Research Institute, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Asmaà Fritah-Lafont
- BIOASTER, Microbiology Research Institute, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Philippe Leissner
- BIOASTER, Microbiology Research Institute, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Carole Vachon
- bioMérieux, 5 Rue des Berges, 38000, Grenoble, France
| | | | - Frédéric Reynier
- BIOASTER, Microbiology Research Institute, 40 avenue Tony Garnier, 69007, Lyon, France
| | - Gaspard Gervasi
- bioMérieux, 376 Chemin de l'Orme, 69280, Marcy-l'Étoile, France
| | - Adrien Saliou
- BIOASTER, Microbiology Research Institute, 40 avenue Tony Garnier, 69007, Lyon, France.
| |
Collapse
|
218
|
Moraitis I, Guiu J, Rubert J. Gut microbiota controlling radiation-induced enteritis and intestinal regeneration. Trends Endocrinol Metab 2023:S1043-2760(23)00108-X. [PMID: 37336645 DOI: 10.1016/j.tem.2023.05.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/21/2023]
Abstract
Cancer remains the second leading cause of mortality, with nearly 10 million deaths worldwide in 2020. In many cases, radiotherapy is used for its anticancer effects. However, radiation causes healthy tissue toxicity as a side effect. In intra-abdominal and pelvic malignancies, the healthy bowel is inevitably included in the radiation field, causing radiation-induced enteritis and dramatically affecting the gut microbiome. This condition is associated with significant morbidity and mortality that impairs cancer patients' and survivors' quality of life. This Review provides a critical overview of the main drivers in modulating the gut microenvironment in homeostasis, disease, and injury, focusing on gut microbial metabolites and microorganisms that influence epithelial regeneration upon radiation injury.
Collapse
Affiliation(s)
- Ilias Moraitis
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain; Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain
| | - Jordi Guiu
- Cell Plasticity and Regeneration Group, Regenerative Medicine Program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Spain; Program for advancing the Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet de Llobregat, Spain.
| | - Josep Rubert
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, Wageningen, 6708, WE, Netherlands; Food Quality and Design, Wageningen University & Research, Bornse Weilanden 9, Wageningen, 6708, WG, Netherlands.
| |
Collapse
|
219
|
Li J, Yang G, Zhang Q, Liu Z, Jiang X, Xin Y. Function of Akkermansia muciniphila in type 2 diabetes and related diseases. Front Microbiol 2023; 14:1172400. [PMID: 37396381 PMCID: PMC10310354 DOI: 10.3389/fmicb.2023.1172400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
The prevalence of type 2 diabetes (T2D) is increasing worldwide, with many patients developing long-term complications that affect their cardiovascular, urinary, alimentary, and other systems. A growing body of literature has reported the crucial role of gut microbiota in metabolic diseases, one of which, Akkermansia muciniphila, is considered the "next-generation probiotic" for alleviating metabolic disorders and the inflammatory response. Although extensive research has been conducted on A. muciniphila, none has summarized its regulation in T2D. Hence, this review provides an overview of the effects and multifaceted mechanisms of A. muciniphila on T2D and related diseases, including improving metabolism, alleviating inflammation, enhancing intestinal barrier function, and maintaining microbiota homeostasis. Furthermore, this review summarizes dietary strategies for increasing intestinal A. muciniphila abundance and effective gastrointestinal delivery.
Collapse
Affiliation(s)
- Jinjie Li
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Ge Yang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Qihe Zhang
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Science, Jilin University, Changchun, China
| |
Collapse
|
220
|
Beckers KF, Gomes VCL, Crissman KR, Liu CC, Schulz CJ, Childers GW, Sones JL. Metagenetic Analysis of the Pregnant Microbiome in Horses. Animals (Basel) 2023; 13:1999. [PMID: 37370509 DOI: 10.3390/ani13121999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Placentitis is the leading cause of infectious abortion in the horse. Additionally, it can result in weak and/or growth restricted offspring. While the etiology of ascending placentitis is well described in mares, less is known regarding the pathogenesis of other types, such as nocardioform placentitis. This study aims to identify the microbial communities in different body sites of the pregnant mare in early gestation to establish a core microbiome that may be perturbed in pathologic pregnancies such as placentitis. We hypothesize that the equine placenta harbors a distinct resident microbiome in early pregnancy when characterized by metagenetics and that there will be a disparity in bacterial communities from the oral, vaginal, and fecal microbiome. Samples were collected from the oral cavity, vagina, anus, and the allantoic portion of the allantochorion ("placenta") from five pregnant mares between 96 and 120 days of gestation. The V4 region of the 16S rRNA gene was amplified for Illumina MiSeq sequencing to examine core bacterial communities present in the different body sites. Microbial community composition of the pregnant ponies by body site was significantly different (Bray-Curtis dissimilarity). The placenta was significantly different from the feces, oral cavity, and vagina. Alpha diversity measuring the Shannon diversity matrix was significant, with the body sites being a compounding variable, meaning there was a difference in richness and evenness in the different microbial communities. Feces had the greatest alpha diversity, while the oral cavity and placenta similarly had the least. In conclusion, metagenetics did reveal distinct community differences in the oral, fecal, vaginal, and placenta cavities of the horse. The equine placenta does show similarities in its microbial communities to the oral cavity. Further research needs to be completed to investigate how bacteria may be translocated to the placenta from these other body sites and how they contribute to the development of placentitis.
Collapse
Affiliation(s)
- Kalie F Beckers
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Viviane C L Gomes
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Kassandra R Crissman
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Chin-Chi Liu
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Christopher J Schulz
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, USA
| | - Gary W Childers
- Department of Biological Sciences, Southeastern Louisiana University, Hammond, LA 70402, USA
| | - Jenny L Sones
- Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
221
|
Yu L, Gao Y, Ye Z, Duan H, Zhao J, Zhang H, Narbad A, Tian F, Zhai Q, Chen W. Interaction of beta-glucans with gut microbiota: Dietary origins, structures, degradation, metabolism, and beneficial function. Crit Rev Food Sci Nutr 2023; 64:9884-9909. [PMID: 37272431 DOI: 10.1080/10408398.2023.2217727] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Beta-glucan (BG), a polysaccharide comprised of interfacing glucose monomers joined via beta-glycosidic linkages, can be defined as a type of dietary fiber with high specificity based on its interaction with the gut microbiota. It can induce similar interindividual microbiota responses, thereby having beneficial effects on the human body. In this paper, we review the four main sources of BG (cereals, fungi, algae, and bacteria) and their differences in structure and content. The interaction of BG with gut microbiota and the resulting health effects have been highlighted, including immune enhancement, regulation of serum cholesterol and insulin levels, alleviation of obesity and improvement of cognitive disorders. Finally, the application of BG in food products and its beneficial effects on the gut microbiota of consumers were discussed. Although some of the mechanisms of action remain unclear, revealing the beneficial functions of BG from the perspective of gut microbiota can help provide theoretical support for the development of diets that target the regulation of microbiota.
Collapse
Affiliation(s)
- Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuhang Gao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zi Ye
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| | - Arjan Narbad
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- Gut Health and Microbiome Institute Strategic Programme, Quadram Institute Bioscience, Norwich, UK
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
222
|
Wang N, Lan C, Mehmood MA, He M, Xiao X, Li L, Liao D, Xu K, Mo S, Zhang P, Zhou X, Gu B, Zhu H, Wu T. Effects of Pu-erh and Dian Hong tea polyphenols on the gut-liver axis in mice. AMB Express 2023; 13:53. [PMID: 37266757 DOI: 10.1186/s13568-023-01565-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/23/2023] [Indexed: 06/03/2023] Open
Abstract
Tea polyphenols (TP) are the most biologically active components in tea, with antioxidant, antiobesity, and antitumor properties, as well as the ability to modulate the composition and function of intestinal microbiota. This experimental study evaluated the chemical constituents of polyphenols in Pu-erh (PTP) and Dian Hong tea (DHTP). It also investigated the co-regulatory effects of PTP and DHTP on intestinal flora and liver tissues in mice using 16 S rRNA gene and transcriptome sequencing. The results revealed that DHT had higher concentrations of EGC (epigallocatechin), C (catechin), EC (epicatechin), and EGCG (epigallocatechin gallate). In contrast, PT had higher concentrations of GA (gallic acid), ECG (epicatechin-3-gallate), TF (theaflavin), and TB (theabrownin). PTP and DHTP consumption significantly reduced the rates of weight gain in mice. Microbial community diversity was significantly higher in PTP and DHTP-treated mice than in the control group. Notably, beneficial microbes such as Lactobacillus increased significantly in PTP-treated mice, whereas Lachnospiraceae increased significantly in DHTP-treated mice. Both PTP and DHTP improved the activity of the antioxidant enzymes (SOD) and total antioxidant capacity (T-AOC) in the liver. The transcriptome analysis revealed that the beneficial effects of PTP and DHTP were due to changes in various metabolic pathways, the majority of which were related to antioxidant and lipid metabolism. This study discovered that PTP and DHTP had beneficial effects in mice via the gut-liver axis.
Collapse
Affiliation(s)
- Ning Wang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, China
- Luzhou Laojiao Co. Ltd, Luzhou, China
- College of Horticulture, Hunan Agricultural University, Changsha, China
| | - Chaohua Lan
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Muhammad Aamer Mehmood
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, China
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Manli He
- Laboratory Animal Center, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiongjun Xiao
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Linman Li
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Dalong Liao
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Kewei Xu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Shan Mo
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Puyu Zhang
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Xiaoli Zhou
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Baoxiang Gu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Hui Zhu
- College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, China.
| | - Tao Wu
- School of Food and Biological Engineering, Xihua University, Chengdu, 610039, China.
| |
Collapse
|
223
|
Boyanova L, Markovska R, Yordanov D, Gergova R, Hadzhiyski P. Anaerobes in specific infectious and noninfectious diseases: new developments. Anaerobe 2023; 81:102714. [PMID: 37349047 DOI: 10.1016/j.anaerobe.2023.102714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/21/2023] [Accepted: 02/03/2023] [Indexed: 06/24/2023]
Abstract
With the buildup of new research data, newer associations between anaerobic bacteria and diseases/conditions were evaluated. The aim of the mini-review was to draw attention and to encourage further multidisciplinary studies of the associations. We considered microbiome-disease correlations such as a decrease of fecal Faecalibacterium prausnitzii abundance in inflammatory bowel disease (IBD) and IBD recurrence, suggesting that F. prausnitzii could be a good biomarker for IBD. A link of subgingival Porphyromonas gingivalis with cardiovascular diseases was reported. Decreased Roseburia abundance was observed in the gut of Alzheimer's and Parkinson's disease patients. Akkermansia muciniphila was found to improve adipose/glucose metabolism, however, its intestinal abundance was observed in neurodegenerative diseases as well. Severe Clostridioides difficile infections have been reported in neonates and young children. Carcinogenic potential of anaerobes has been suggested. Fusobacterium nucleatum was implicated in the development of oral and colorectal cancer, Porphyromonas gingivalis and Tannerella forsythia were linked to esophageal cancer and Cutibacterium acnes subsp. defendens was associated with prostate cancer. However, there are some controversies about the results. In a Swedish longitudinal study, neither P. gingivalis nor T. forsythia exhibited oncogenic potential. The present data can enrich knowledge of anaerobic bacteria and their multifaceted significance for health and disease and can draw future research directions. However, more studies on large numbers of patients over prolonged periods are needed, taking into account the possible changes in the microbiota over time.
Collapse
Affiliation(s)
- Lyudmila Boyanova
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria.
| | - Rumyana Markovska
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria
| | - Daniel Yordanov
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria
| | - Raina Gergova
- Department of Medical Microbiology, Medical University of Sofia, 2 Zdrave Str., 1431, Sofia, Bulgaria
| | - Petyo Hadzhiyski
- Specialized Hospital for Active Pediatric Treatment, Medical University of Sofia, "Acad. Ivan Evstatiev Geshov" Blvd, 1606, Sofia, Bulgaria
| |
Collapse
|
224
|
Prado C, Espinoza A, Martínez-Hernández JE, Petrosino J, Riquelme E, Martin AJM, Pacheco R. GPR43 stimulation on TCRαβ + intraepithelial colonic lymphocytes inhibits the recruitment of encephalitogenic T-cells into the central nervous system and attenuates the development of autoimmunity. J Neuroinflammation 2023; 20:135. [PMID: 37264394 PMCID: PMC10233874 DOI: 10.1186/s12974-023-02815-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
INTRODUCTION Gut microbiota plays a critical role in the regulation of immune homeostasis. Accordingly, several autoimmune disorders have been associated with dysbiosis in the gut microbiota. Notably, the dysbiosis associated with central nervous system (CNS) autoimmunity involves a substantial reduction of bacteria belonging to Clostridia clusters IV and XIVa, which constitute major producers of short-chain fatty acids (SCFAs). Here we addressed the role of the surface receptor-mediated effects of SCFAs on mucosal T-cells in the development of CNS autoimmunity. METHODS To induce CNS autoimmunity, we used the mouse model of experimental autoimmune encephalomyelitis (EAE) induced by immunization with the myelin oligodendrocyte glycoprotein (MOG)-derived peptide (MOG35-55 peptide). To address the effects of GPR43 stimulation on colonic TCRαβ+ T-cells upon CNS autoimmunity, mucosal lymphocytes were isolated and stimulated with a selective GPR43 agonist ex vivo and then transferred into congenic mice undergoing EAE. Several subsets of lymphocytes infiltrating the CNS or those present in the gut epithelium and gut lamina propria were analysed by flow cytometry. In vitro migration assays were conducted with mucosal T-cells using transwells. RESULTS Our results show a sharp and selective reduction of intestinal propionate at the peak of EAE development, accompanied by increased IFN-γ and decreased IL-22 in the colonic mucosa. Further analyses indicated that GPR43 was the primary SCFAs receptor expressed on T-cells, which was downregulated on colonic TCRαβ+ T-cells upon CNS autoimmunity. The pharmacologic stimulation of GPR43 increased the anti-inflammatory function and reduced the pro-inflammatory features in several TCRαβ+ T-cell subsets in the colonic mucosa upon EAE development. Furthermore, GPR43 stimulation induced the arrest of CNS-autoreactive T-cells in the colonic lamina propria, thus avoiding their infiltration into the CNS and dampening the disease development. Mechanistic analyses revealed that GPR43-stimulation on mucosal TCRαβ+ T-cells inhibits their CXCR3-mediated migration towards CXCL11, which is released from the CNS upon neuroinflammation. CONCLUSIONS These findings provide a novel mechanism involved in the gut-brain axis by which bacterial-derived products secreted in the gut mucosa might control the CNS tropism of autoreactive T-cells. Moreover, this study shows GPR43 expressed on T-cells as a promising therapeutic target for CNS autoimmunity.
Collapse
Affiliation(s)
- Carolina Prado
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510156, Providencia, Santiago, Chile.
| | - Alexandra Espinoza
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
| | - J Eduardo Martínez-Hernández
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Agriaquaculture Nutritional Genomic Center, Temuco, Chile
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Erick Riquelme
- Respiratory Diseases Department, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Alberto J M Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Escuela de Ingeniería, Facultad de Ingeniería Arquitectura y Diseño, Universidad San Sebastián, Providencia, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510156, Providencia, Santiago, Chile.
| |
Collapse
|
225
|
Corbin KD, Carnero EA, Dirks B, Igudesman D, Yi F, Marcus A, Davis TL, Pratley RE, Rittmann BE, Krajmalnik-Brown R, Smith SR. Host-diet-gut microbiome interactions influence human energy balance: a randomized clinical trial. Nat Commun 2023; 14:3161. [PMID: 37258525 PMCID: PMC10232526 DOI: 10.1038/s41467-023-38778-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
The gut microbiome is emerging as a key modulator of human energy balance. Prior studies in humans lacked the environmental and dietary controls and precision required to quantitatively evaluate the contributions of the gut microbiome. Using a Microbiome Enhancer Diet (MBD) designed to deliver more dietary substrates to the colon and therefore modulate the gut microbiome, we quantified microbial and host contributions to human energy balance in a controlled feeding study with a randomized crossover design in young, healthy, weight stable males and females (NCT02939703). In a metabolic ward where the environment was strictly controlled, we measured energy intake, energy expenditure, and energy output (fecal and urinary). The primary endpoint was the within-participant difference in host metabolizable energy between experimental conditions [Control, Western Diet (WD) vs. MBD]. The secondary endpoints were enteroendocrine hormones, hunger/satiety, and food intake. Here we show that, compared to the WD, the MBD leads to an additional 116 ± 56 kcals (P < 0.0001) lost in feces daily and thus, lower metabolizable energy for the host (89.5 ± 0.73%; range 84.2-96.1% on the MBD vs. 95.4 ± 0.21%; range 94.1-97.0% on the WD; P < 0.0001) without changes in energy expenditure, hunger/satiety or food intake (P > 0.05). Microbial 16S rRNA gene copy number (a surrogate of biomass) increases (P < 0.0001), beta-diversity changes (whole genome shotgun sequencing; P = 0.02), and fermentation products increase (P < 0.01) on an MBD as compared to a WD along with significant changes in the host enteroendocrine system (P < 0.0001). The substantial interindividual variability in metabolizable energy on the MBD is explained in part by fecal SCFAs and biomass. Our results reveal the complex host-diet-microbiome interplay that modulates energy balance.
Collapse
Affiliation(s)
- Karen D Corbin
- AdventHealth Translational Research Institute, Orlando, FL, USA
| | - Elvis A Carnero
- AdventHealth Translational Research Institute, Orlando, FL, USA
| | - Blake Dirks
- Biodesign Center for Health through Microbiomes, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | - Daria Igudesman
- AdventHealth Translational Research Institute, Orlando, FL, USA
| | - Fanchao Yi
- AdventHealth Translational Research Institute, Orlando, FL, USA
| | - Andrew Marcus
- Biodesign Center for Health through Microbiomes, Arizona State University, Tempe, AZ, USA
- Skyology Inc, San Francisco, CA, USA
| | - Taylor L Davis
- Biodesign Center for Health through Microbiomes, Arizona State University, Tempe, AZ, USA
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
| | | | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, USA
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health through Microbiomes, Arizona State University, Tempe, AZ, USA.
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, USA.
| | - Steven R Smith
- AdventHealth Translational Research Institute, Orlando, FL, USA.
| |
Collapse
|
226
|
Zhu X, Shen J, Feng S, Huang C, Wang H, Huo F, Liu H. Akkermansia muciniphila, which is enriched in the gut microbiota by metformin, improves cognitive function in aged mice by reducing the proinflammatory cytokine interleukin-6. MICROBIOME 2023; 11:120. [PMID: 37254162 DOI: 10.1186/s40168-023-01567-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 05/05/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND Metformin, a type 2 diabetes treatment, improves the cognitive function of aged mice; however, whether the protective effects of metformin on cognitive function in aged mice are associated with the gut microbiome is poorly understood. Although some studies suggest that the gut microbe composition influences cognitive function and that manipulating the gut microbiota might protect against age-related cognitive dysfunction, there is no direct evidence to validate that the gut microbiota mediates the effect of metformin on cognitive improvement. RESULTS In this study, we show that the gut microbiota is altered by metformin, which is necessary for protection against ageing-associated cognitive function declines in aged mice. Mice treated with antibiotics did not exhibit metformin-mediated cognitive function protection. Moreover, treatment with Akkermansia muciniphila, which is enriched by metformin, improved cognitive function in aged mice. Mechanistically, A. muciniphila decreased pro-inflammatory-associated pathways, particularly that of the pro-inflammatory cytokine interleukin (IL)-6, in both the peripheral blood and hippocampal profiles, which was correlated with cognitive function improvement. An IL-6 antibody protected cognitive function, and an IL-6 recombinant protein abolished the protective effect of A. muciniphila on cognitive function in aged mice. CONCLUSION This study reveals that A. muciniphila, which is mediated in the gut microbiota by metformin, modulates inflammation-related pathways in the host and improves cognitive function in aged mice by reducing the pro-inflammatory cytokine IL-6. Video Abstract.
Collapse
Affiliation(s)
- Xiaoqi Zhu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Junyan Shen
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Shengyu Feng
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Ce Huang
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Hao Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Fengjiao Huo
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Hailiang Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China.
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
- Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
227
|
Fernandez-Julia P, Black GW, Cheung W, Van Sinderen D, Munoz-Munoz J. Fungal β-glucan-facilitated cross-feeding activities between Bacteroides and Bifidobacterium species. Commun Biol 2023; 6:576. [PMID: 37253778 DOI: 10.1038/s42003-023-04970-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/23/2023] [Indexed: 06/01/2023] Open
Abstract
The human gut microbiota (HGM) is comprised of a very complex network of microorganisms, which interact with the host thereby impacting on host health and well-being. β-glucan has been established as a dietary polysaccharide supporting growth of particular gut-associated bacteria, including members of the genera Bacteroides and Bifidobacterium, the latter considered to represent beneficial or probiotic bacteria. However, the exact mechanism underpinning β-glucan metabolism by gut commensals is not fully understood. We show that mycoprotein represents an excellent source for β-glucan, which is consumed by certain Bacteroides species as primary degraders, such as Bacteroides cellulosilyticus WH2. The latter bacterium employs two extracellular, endo-acting enzymes, belonging to glycoside hydrolase families 30 and 157, to degrade mycoprotein-derived β-glucan, thereby releasing oligosaccharides into the growth medium. These released oligosaccharides can in turn be utilized by other gut microbes, such as Bifidobacterium and Lactiplantibacillus, which thus act as secondary degraders. We used a cross-feeding approach to track how both species are able to grow in co-culture.
Collapse
Affiliation(s)
- Pedro Fernandez-Julia
- Microbial Enzymology Lab, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, Tyne & Wear, England, UK
| | - Gary W Black
- Microbial Enzymology Lab, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, Tyne & Wear, England, UK
| | - William Cheung
- Microbial Enzymology Lab, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, Tyne & Wear, England, UK
| | - Douwe Van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Jose Munoz-Munoz
- Microbial Enzymology Lab, Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, NE1 8ST, Tyne & Wear, England, UK.
| |
Collapse
|
228
|
Nam NN, Do HDK, Loan Trinh KT, Lee NY. Metagenomics: An Effective Approach for Exploring Microbial Diversity and Functions. Foods 2023; 12:2140. [PMID: 37297385 PMCID: PMC10252221 DOI: 10.3390/foods12112140] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Various fields have been identified in the "omics" era, such as genomics, proteomics, transcriptomics, metabolomics, phenomics, and metagenomics. Among these, metagenomics has enabled a significant increase in discoveries related to the microbial world. Newly discovered microbiomes in different ecologies provide meaningful information on the diversity and functions of microorganisms on the Earth. Therefore, the results of metagenomic studies have enabled new microbe-based applications in human health, agriculture, and the food industry, among others. This review summarizes the fundamental procedures on recent advances in bioinformatic tools. It also explores up-to-date applications of metagenomics in human health, food study, plant research, environmental sciences, and other fields. Finally, metagenomics is a powerful tool for studying the microbial world, and it still has numerous applications that are currently hidden and awaiting discovery. Therefore, this review also discusses the future perspectives of metagenomics.
Collapse
Affiliation(s)
- Nguyen Nhat Nam
- Biotechnology Center, School of Agriculture and Aquaculture, Tra Vinh University, Tra Vinh City 87000, Vietnam
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 72820, Vietnam
| | - Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea;
| |
Collapse
|
229
|
Segota I, Watrous JD, Kantz ED, Nallamshetty S, Tiwari S, Cheng S, Jain M, Long T. Reconstructing the landscape of gut microbial species across 29,000 diverse individuals. Nucleic Acids Res 2023; 51:4178-4190. [PMID: 37070603 PMCID: PMC10201371 DOI: 10.1093/nar/gkad249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023] Open
Abstract
The human gut microbiome has been linked to health and disease. Investigation of the human microbiome has largely employed 16S amplicon sequencing, with limited ability to distinguish microbes at the species level. Herein, we describe the development of Reference-based Exact Mapping (RExMap) of microbial amplicon variants that enables mapping of microbial species from standard 16S sequencing data. RExMap analysis of 16S data captures ∼75% of microbial species identified by whole-genome shotgun sequencing, despite hundreds-fold less sequencing depth. RExMap re-analysis of existing 16S data from 29,349 individuals across 16 regions from around the world reveals a detailed landscape of gut microbial species across populations and geography. Moreover, RExMap identifies a core set of fifteen gut microbes shared by humans. Core microbes are established soon after birth and closely associate with BMI across multiple independent studies. RExMap and the human microbiome dataset are presented as resources with which to explore the role of the human microbiome.
Collapse
Affiliation(s)
- Igor Segota
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeramie D Watrous
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Edward D Kantz
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Saumya Tiwari
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Susan Cheng
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mohit Jain
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Tao Long
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
230
|
Tan Z, Zhang Q, Zhao R, Huang T, Tian Y, Lin Y. A Comparative Study on the Effects of Different Sources of Carboxymethyl Poria Polysaccharides on the Repair of DSS-Induced Colitis in Mice. Int J Mol Sci 2023; 24:ijms24109034. [PMID: 37240380 DOI: 10.3390/ijms24109034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Carboxymethyl poria polysaccharide plays important anti-tumor, antioxidant, and anti-inflammatory roles. Therefore, this study aimed to compare the healing impacts of two different sources of carboxymethyl poria polysaccharides [Carboxymethylat Poria Polysaccharides I (CMP I) and Carboxymethylat Poria Polysaccharides II (CMP II)] on ulcerative colitis in mice caused by dextran sulfate sodium (DSS). All the mice were arbitrarily split into five groups (n = 6): (a) control (CTRL), (b) DSS, (c) SAZ (sulfasalazine), (d) CMP I, and (e) CMP II. The experiment lasted for 21 days, and the body weight and final colon length were monitored. A histological analysis of the mouse colon tissue was carried out using H&E staining to assess the degree of inflammatory infiltration. The levels of inflammatory cytokines [interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-4 (IL-4)] and enzymes [superoxide dismutase (SOD) and myeloperoxidase (MPO)] in the serum were examined using ELISA. Additionally, 16S ribosomal RNA sequencing was used to analyze the microorganisms in the colon. The results indicated that both CMP I and CMP II alleviated weight loss, colonic shortening, and inflammatory factor infestation in colonic tissues caused by DSS (p < 0.05). Furthermore, the ELISA results revealed that both CMP I and CMP II reduced the expression of IL-1β, IL-6, TNF-α, and MPO, and elevated the expression of IL-4 and SOD in the sera of the mice (p < 0.05). Moreover, 16S rRNA sequencing showed that CMP I and CMP II increased the plenitude of microorganisms in the mouse colon relative to that in the DSS group. The results also indicated that the therapeutic effect of CMP I on DSS-induced colitis in the mice was superior to that of CMP II. This study demonstrated that carboxymethyl poria polysaccharide from Poria cocos had therapeutic effects on DSS-induced colitis in mice, with CMP I being more effective than CMP II.
Collapse
Affiliation(s)
- Zhijie Tan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qiaoyi Zhang
- Agricultural Bioengineering Institute, Changsha 410128, China
| | - Rou Zhao
- Agricultural Bioengineering Institute, Changsha 410128, China
| | - Ting Huang
- Agricultural Bioengineering Institute, Changsha 410128, China
| | - Yun Tian
- Agricultural Bioengineering Institute, Changsha 410128, China
| | - Yuanshan Lin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
231
|
Delaye M, Rousseau A, Mailly-Giacchetti L, Assoun S, Sokol H, Neuzillet C. Obesity, cancer, and response to immune checkpoint inhibitors: Could the gut microbiota be the mechanistic link? Pharmacol Ther 2023:108442. [PMID: 37210004 DOI: 10.1016/j.pharmthera.2023.108442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Immune checkpoint inhibitors (ICI) have deeply changed the therapeutic management of a broad spectrum of solid tumors. Recent observations showed that obese patients receiving ICIs might have better outcomes than those with normal weight, while obesity was historically associated with a worse prognosis in cancer patients. Of note, obesity is associated with alterations in the gut microbiome profile, which interacts with immune and inflammatory pathways, both at the systemic and intratumoral levels. As the influence of the gut microbiota on the response to ICI has been repeatedly reported, a specific gut microbiome profile in obese cancer patients may be involved in their better response to ICI. This review summarizes recent data on the interactions between obesity, gut microbiota, and ICIs. In addition, we highlight possible pathophysiological mechanisms supporting the hypothesis that gut microbiota could be one of the links between obesity and poor response to ICIs.
Collapse
Affiliation(s)
- Matthieu Delaye
- Curie Institute, Department of medical oncology, Versailles Saint-Quentin University, Saint-Cloud, France; GERCOR, 75011 Paris, France
| | - Adrien Rousseau
- Department of Medical Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Léah Mailly-Giacchetti
- Department of Medical Oncology, Saint-Louis Hospital, AP-HP.Nord - Université de Paris, Paris, France
| | - Sandra Assoun
- Department of Thoracic Oncology & CIC 1425/CLIP2 Paris-Nord, Bichat-Claude Bernard Hospital, APHP, Paris, France
| | - Harry Sokol
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France; Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France; INRAE, AgroParisTech, Micalis Institut, 78350, Jouy-en-Josas, France
| | - Cindy Neuzillet
- Curie Institute, Department of medical oncology, Versailles Saint-Quentin University, Saint-Cloud, France; GERCOR, 75011 Paris, France.
| |
Collapse
|
232
|
Sasso J, Ammar RM, Tenchov R, Lemmel S, Kelber O, Grieswelle M, Zhou QA. Gut Microbiome-Brain Alliance: A Landscape View into Mental and Gastrointestinal Health and Disorders. ACS Chem Neurosci 2023; 14:1717-1763. [PMID: 37156006 PMCID: PMC10197139 DOI: 10.1021/acschemneuro.3c00127] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023] Open
Abstract
Gut microbiota includes a vast collection of microorganisms residing within the gastrointestinal tract. It is broadly recognized that the gut and brain are in constant bidirectional communication, of which gut microbiota and its metabolic production are a major component, and form the so-called gut microbiome-brain axis. Disturbances of microbiota homeostasis caused by imbalance in their functional composition and metabolic activities, known as dysbiosis, cause dysregulation of these pathways and trigger changes in the blood-brain barrier permeability, thereby causing pathological malfunctions, including neurological and functional gastrointestinal disorders. In turn, the brain can affect the structure and function of gut microbiota through the autonomic nervous system by regulating gut motility, intestinal transit and secretion, and gut permeability. Here, we examine data from the CAS Content Collection, the largest collection of published scientific information, and analyze the publication landscape of recent research. We review the advances in knowledge related to the human gut microbiome, its complexity and functionality, its communication with the central nervous system, and the effect of the gut microbiome-brain axis on mental and gut health. We discuss correlations between gut microbiota composition and various diseases, specifically gastrointestinal and mental disorders. We also explore gut microbiota metabolites with regard to their impact on the brain and gut function and associated diseases. Finally, we assess clinical applications of gut-microbiota-related substances and metabolites with their development pipelines. We hope this review can serve as a useful resource in understanding the current knowledge on this emerging field in an effort to further solving of the remaining challenges and fulfilling its potential.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Ramy M. Ammar
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Rumiana Tenchov
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Steven Lemmel
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| | - Olaf Kelber
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Malte Grieswelle
- Bayer
Consumer Health, R&D Digestive
Health, Darmstadt 64295, Germany
| | - Qiongqiong Angela Zhou
- CAS, a division of the American Chemical Society, 2540 Olentangy River Rd, Columbus, Ohio 43202, United States
| |
Collapse
|
233
|
Traore SI, Lo CI, Mossaab M, Durand G, Lagier JC, Raoult D, Fournier PE, Fenollar F. Maliibacterium massiliense gen. nov. sp. nov., Isolated from Human Feces and Proposal of Maliibacteriaceae fam. nov. Curr Microbiol 2023; 80:211. [PMID: 37191823 DOI: 10.1007/s00284-023-03301-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/30/2021] [Indexed: 05/17/2023]
Abstract
Bacterial strain Marseille-P3954 was isolated from a stool sample of a 35-year-old male patient living in France. It was a gram-positive, rod-shaped anaerobic, non-motile, and non-spore-forming bacterium. C16:0 and C18:1n9 were the major fatty acid, while its genome measured 2,422,126 bp with 60.8 mol% of G+C content. Phylogenetic analysis based on the 16S rRNA gene sequence showed that strain Marseille-P3954 had 85.51% of similarity with Christensenella minuta, its closest related species with standing in nomenclature. As this value is very low compared to the recommended threshold, it suggested that the Marseille-P3954 strain belongs to a new bacterial genus, classified in a new family. On the basis of these genomic, phenotypic, and phylogenetic evidences, we propose that strain Marseille-P3954 should be classified as a new genus and species, Maliibacterium massiliense gen. nov., sp. nov. The type strain of M. massiliense sp. nov. is Marseille-P3954 (CSUR P3954 = CECT 9568).
Collapse
Affiliation(s)
- Sory Ibrahima Traore
- Aix Marseille University, IRD, AP-HM, MEPHII, Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Cheikh Ibrahima Lo
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Maaloum Mossaab
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- Laboratory of Biology and Health, Faculty of Sciences Ben M'sik, Hassan II University, Casablanca, Morocco
| | - Guillaume Durand
- Aix Marseille University, IRD, AP-HM, MEPHII, Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Jean Christophe Lagier
- Aix Marseille University, IRD, AP-HM, MEPHII, Marseille, France
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
| | - Didier Raoult
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Pierre-Edouard Fournier
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Florence Fenollar
- IHU-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille Cedex 05, France.
- Aix Marseille University, IRD, AP-HM, SSA, VITROME, Marseille, France.
| |
Collapse
|
234
|
Chen X, Mendes BG, Alves BS, Duan Y. Phage therapy in gut microbiome. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 201:93-118. [PMID: 37770177 DOI: 10.1016/bs.pmbts.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Phage therapy, the use of bacteriophage viruses for bacterial infection treatment, has been around for almost a century, but with the increase in antibiotic use, its importance has declined rapidly. There has been renewed interest in revisiting this practice due to the general decline in the effectiveness of antibiotics, combined with improved understanding of human microbiota and advances in sequencing technologies. Phage therapy has been proposed as a clinical alternative to restore the gut microbiota in the absence of an effective treatment. That is due to its immunomodulatory and bactericidal effects against its target bacteria. In the gastrointestinal diseases field, phage therapy has been studied mainly as a promising tool in infectious diseases treatment, such as cholera and diarrhea. However, many studies have been conducted in non-communicable diseases, such as the targeting of adherent invasive Escherichia coli in Crohn's disease, the treatment of Clostridioides difficile in ulcerative colitis, the eradication of Fusobacterium nucleatum in colorectal cancer, the targeting of alcohol-producing Klebsiella pneumoniae in non-alcoholic fatty liver disease, or Enterococcus faecalis in alcohol-associated hepatitis. This review will summarize the changes in the gut microbiota and the phageome in association with some gastrointestinal and liver diseases and highlight the recent scientific advances in phage therapy as a therapeutic tool for their treatment.
Collapse
Affiliation(s)
- Xingyao Chen
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Beatriz G Mendes
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, Brazil
| | - Bruno Secchi Alves
- Department of Clinical Analysis, Health Sciences Center, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, Brazil
| | - Yi Duan
- Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China; The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
235
|
Zhu Q, Qi N, Shen L, Lo CC, Xu M, Duan Q, Ollberding NJ, Wu Z, Hui DY, Tso P, Liu M. Sexual Dimorphism in Lipid Metabolism and Gut Microbiota in Mice Fed a High-Fat Diet. Nutrients 2023; 15:2175. [PMID: 37432375 PMCID: PMC10180580 DOI: 10.3390/nu15092175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 07/12/2023] Open
Abstract
The gut microbiome plays an essential role in regulating lipid metabolism. However, little is known about how gut microbiome modulates sex differences in lipid metabolism. The present study aims to determine whether gut microbiota modulates sexual dimorphism of lipid metabolism in mice fed a high-fat diet (HFD). Conventional and germ-free male and female mice were fed an HFD for four weeks, and lipid absorption, plasma lipid profiles, and apolipoprotein levels were then evaluated. The gut microbiota was analyzed by 16S rRNA gene sequencing. After 4-week HFD consumption, the females exhibited less body weight gain and body fat composition and significantly lower triglyceride levels in very-low-density lipoprotein (VLDL) and cholesterol levels in high-density lipoprotein (HDL) compared to male mice. The fecal microbiota analysis revealed that the male mice were associated with reduced gut microbial diversity. The female mice had considerably different microbiota composition compared to males, e.g., enriched growth of beneficial microbes (e.g., Akkermansia) and depleted growth of Adlercreutzia and Enterococcus. Correlation analyses suggested that the different compositions of the gut microbiota were associated with sexual dimorphism in body weight, fat mass, and lipid metabolism in mice fed an HFD. Our findings demonstrated significant sex differences in lipid metabolism and the microbiota composition at baseline (during LFD), along with sex-dependent responses to HFD. A comprehensive understanding of sexual dimorphism in lipid metabolism modulated by microbiota will help to develop more sex-specific effective treatment options for dyslipidemia and metabolic disorders in females.
Collapse
Affiliation(s)
- Qi Zhu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Nathan Qi
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; (N.Q.)
| | - Ling Shen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Chunmin C. Lo
- Department of Biomedical Sciences, Diabetes Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701, USA
| | - Meifeng Xu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Qing Duan
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Nicholas J. Ollberding
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA
| | - Zhe Wu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA; (N.Q.)
| | - David Y. Hui
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| | - Min Liu
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45237, USA; (Q.Z.)
| |
Collapse
|
236
|
Wang S, Xu C, Liu H, Wei W, Zhou X, Qian H, Zhou L, Zhang H, Wu L, Zhu C, Yang Y, He L, Li K. Connecting the Gut Microbiota and Neurodegenerative Diseases: the Role of Bile Acids. Mol Neurobiol 2023:10.1007/s12035-023-03340-9. [PMID: 37121952 DOI: 10.1007/s12035-023-03340-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
With the acceleration of global population aging, neurodegenerative diseases (NDs) will become the second leading cause of death in the world, which seriously threatens human life and health. Alzheimer's disease and Parkinson's disease are the most common and typical NDs. The exact mechanisms of the NDs occurrence and development remain unclear, which may be related to immune, oxidative stress, and abnormal aggregation of pathogenic proteins. Studies have suggested that gut microbiota (GM) influences brain function and plays an important role in regulating emotional and cognitive function. Recently, bile acids (BAs) have become the "star molecule" in the microbiota-gut-brain (MGB) axis research. BAs have been reported to exert anti-inflammatory, antioxidant, and neuroprotective activities in NDs. However, the role of BAs in the connection between GM and the central nervous system (CNS) is still unclear. In this review, we will review the possible mechanisms of BAs between GM and NDs and explore the function of BAs to provide ideas for the prevention and treatment of NDs in the future.
Collapse
Affiliation(s)
- Shixu Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Chongchong Xu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Hongyan Liu
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Wei
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xuemei Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Haipeng Qian
- Department of Nursing, AnHui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| | - Li Zhou
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Haiqing Zhang
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Li Wu
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Chen Zhu
- Department of Physical Education, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuting Yang
- Computer Science and Technology of Department of Science and Engineering, Shiyuan College of Nanninng Normal University, Nanning, Guangxi Province, China
| | - Lin He
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China.
| | - Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China.
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
237
|
Kedia S, Ahuja V. Human gut microbiome: A primer for the clinician. JGH Open 2023; 7:337-350. [PMID: 37265934 PMCID: PMC10230107 DOI: 10.1002/jgh3.12902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/14/2022] [Accepted: 04/01/2023] [Indexed: 06/03/2023]
Abstract
The human host gets tremendously influenced by a genetically and phenotypically distinct and heterogeneous constellation of microbial species-the human microbiome-the gut being one of the most densely populated and characterized site for these organisms. Microbiome science has advanced rapidly, technically with respect to the analytical methods and biologically with respect to its mechanistic influence in health and disease states. A clinician conducting a microbiome study should be aware of the nuances related to microbiome research, especially with respect to the technical and biological factors that can influence the interpretation of research outcomes. Hence, this review is an attempt to detail these aspects of the human gut microbiome, with emphasis on its determinants in a healthy state.
Collapse
Affiliation(s)
- Saurabh Kedia
- Department of GastroenterologyAll India Institute of Medical SciencesNew DelhiIndia
| | - Vineet Ahuja
- Department of GastroenterologyAll India Institute of Medical SciencesNew DelhiIndia
| |
Collapse
|
238
|
Pinto Y, Frishman S, Turjeman S, Eshel A, Nuriel-Ohayon M, Shrossel O, Ziv O, Walters W, Parsonnet J, Ley C, Johnson EL, Kumar K, Schweitzer R, Khatib S, Magzal F, Muller E, Tamir S, Tenenbaum-Gavish K, Rautava S, Salminen S, Isolauri E, Yariv O, Peled Y, Poran E, Pardo J, Chen R, Hod M, Borenstein E, Ley RE, Schwartz B, Louzoun Y, Hadar E, Koren O. Gestational diabetes is driven by microbiota-induced inflammation months before diagnosis. Gut 2023; 72:918-928. [PMID: 36627187 PMCID: PMC10086485 DOI: 10.1136/gutjnl-2022-328406] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/26/2022] [Indexed: 01/12/2023]
Abstract
OBJECTIVE Gestational diabetes mellitus (GDM) is a condition in which women without diabetes are diagnosed with glucose intolerance during pregnancy, typically in the second or third trimester. Early diagnosis, along with a better understanding of its pathophysiology during the first trimester of pregnancy, may be effective in reducing incidence and associated short-term and long-term morbidities. DESIGN We comprehensively profiled the gut microbiome, metabolome, inflammatory cytokines, nutrition and clinical records of 394 women during the first trimester of pregnancy, before GDM diagnosis. We then built a model that can predict GDM onset weeks before it is typically diagnosed. Further, we demonstrated the role of the microbiome in disease using faecal microbiota transplant (FMT) of first trimester samples from pregnant women across three unique cohorts. RESULTS We found elevated levels of proinflammatory cytokines in women who later developed GDM, decreased faecal short-chain fatty acids and altered microbiome. We next confirmed that differences in GDM-associated microbial composition during the first trimester drove inflammation and insulin resistance more than 10 weeks prior to GDM diagnosis using FMT experiments. Following these observations, we used a machine learning approach to predict GDM based on first trimester clinical, microbial and inflammatory markers with high accuracy. CONCLUSION GDM onset can be identified in the first trimester of pregnancy, earlier than currently accepted. Furthermore, the gut microbiome appears to play a role in inflammation-induced GDM pathogenesis, with interleukin-6 as a potential contributor to pathogenesis. Potential GDM markers, including microbiota, can serve as targets for early diagnostics and therapeutic intervention leading to prevention.
Collapse
Affiliation(s)
- Yishay Pinto
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Sigal Frishman
- Helen Schneider Hospital for Women, Rabin Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Biochemistry, School of Nutritional Sciences Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Adi Eshel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | | | - Oshrit Shrossel
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Oren Ziv
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - William Walters
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tubingen, Germany
| | - Julie Parsonnet
- Department of Medicine, Stanford University, Stanford, California, USA
- Department of Epidemiology and Population Health, Stanford University, Stanford, California, USA
| | - Catherine Ley
- Department of Medicine, Stanford University, Stanford, California, USA
| | | | - Krithika Kumar
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Ron Schweitzer
- Department of Natural Compounds and Analytical Chemistry, Migal-Galilee Research Institute, Kiryat Shmona, Israel
- Analytical Chemistry Laboratory, Tel-Hai College, Upper Galilee, Israel
| | - Soliman Khatib
- Department of Natural Compounds and Analytical Chemistry, Migal-Galilee Research Institute, Kiryat Shmona, Israel
- Analytical Chemistry Laboratory, Tel-Hai College, Upper Galilee, Israel
| | - Faiga Magzal
- Laboratory of Human Health and Nutrition Sciences, Migal-Galilee Technology Center, Kiryat Shmona, Israel
- Nutritional Science Department, Tel Hai College, Upper Galilee, Israel
| | - Efrat Muller
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Snait Tamir
- Laboratory of Human Health and Nutrition Sciences, Migal-Galilee Technology Center, Kiryat Shmona, Israel
- Nutritional Science Department, Tel Hai College, Upper Galilee, Israel
| | - Kinneret Tenenbaum-Gavish
- Helen Schneider Hospital for Women, Rabin Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Samuli Rautava
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
- University of Helsinki & Helsinki University Hospital, New Children's Hospital, Pediatric Research Center, Helsinki, Finland
| | - Seppo Salminen
- Functional Foods Forum, University of Turku, Turku, Finland
| | - Erika Isolauri
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Or Yariv
- Clalit Health Services, Tel Aviv, Israel
| | - Yoav Peled
- Helen Schneider Hospital for Women, Rabin Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Clalit Health Services, Tel Aviv, Israel
| | - Eran Poran
- Clalit Health Services, Tel Aviv, Israel
| | - Joseph Pardo
- Helen Schneider Hospital for Women, Rabin Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Clalit Health Services, Tel Aviv, Israel
| | - Rony Chen
- Helen Schneider Hospital for Women, Rabin Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Hod
- Helen Schneider Hospital for Women, Rabin Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elhanan Borenstein
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Tubingen, Germany
| | - Betty Schwartz
- Institute of Biochemistry, School of Nutritional Sciences Food Science and Nutrition, The School of Nutritional Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Eran Hadar
- Helen Schneider Hospital for Women, Rabin Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| |
Collapse
|
239
|
Medina-Rodriguez EM, Watson J, Reyes J, Trivedi M, Beurel E. Th17 cells sense microbiome to promote depressive-like behaviors. MICROBIOME 2023; 11:92. [PMID: 37106375 PMCID: PMC10142784 DOI: 10.1186/s40168-022-01428-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/16/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Microbiome alterations have been associated with depression, and fecal transfer of depressed patients' microbiomes is sufficient to enhance despair behaviors in rodents. Yet little is known about the potential mechanisms, whereby microbes modulate depressive-like behaviors. RESULTS In this study, we showed that certain bacteria known to induce Th17 cells are increased in depressed patients and mice exhibiting learned helplessness. Fecal transfers of human depressed patients' microbiomes into germ-free-like mice were sufficient to decrease sociability and increased susceptibility to the learned helplessness paradigm, confirming that the microbiome is sufficient to confer depressive-like behaviors. This microbial effect was dependent on the presence of Th17 cells in the recipient, as germ-free-like recipient mice deficient in Th17 cells were resistant to the behavioral changes induced by the microbiome of depressed patients. CONCLUSION Altogether, these findings suggest a crucial role of the microbiome/Th17 cell axis in regulating depressive-like behaviors. Video Abstract.
Collapse
Affiliation(s)
- Eva M Medina-Rodriguez
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jowan Watson
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Juliana Reyes
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Madhukar Trivedi
- Department of Psychiatry, Center for Depression Research and Clinical Care, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Eléonore Beurel
- Department of Psychiatry and Behavioral Sciences, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
240
|
Newton DP, Ho PY, Huang KC. Modulation of antibiotic effects on microbial communities by resource competition. Nat Commun 2023; 14:2398. [PMID: 37100773 PMCID: PMC10133249 DOI: 10.1038/s41467-023-37895-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
Antibiotic treatment significantly impacts the human gut microbiota, but quantitative understanding of how antibiotics affect community diversity is lacking. Here, we build on classical ecological models of resource competition to investigate community responses to species-specific death rates, as induced by antibiotic activity or other growth-inhibiting factors such as bacteriophages. Our analyses highlight the complex dependence of species coexistence that can arise from the interplay of resource competition and antibiotic activity, independent of other biological mechanisms. In particular, we identify resource competition structures that cause richness to depend on the order of sequential application of antibiotics (non-transitivity), and the emergence of synergistic and antagonistic effects under simultaneous application of multiple antibiotics (non-additivity). These complex behaviors can be prevalent, especially when generalist consumers are targeted. Communities can be prone to either synergism or antagonism, but typically not both, and antagonism is more common. Furthermore, we identify a striking overlap in competition structures that lead to non-transitivity during antibiotic sequences and those that lead to non-additivity during antibiotic combination. In sum, our results establish a broadly applicable framework for predicting microbial community dynamics under deleterious perturbations.
Collapse
Affiliation(s)
- Daniel P Newton
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Physics, Stanford University, Stanford, CA, USA
| | - Po-Yi Ho
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
241
|
Popa AD, Niță O, Gherasim A, Enache AI, Caba L, Mihalache L, Arhire LI. A Scoping Review of the Relationship between Intermittent Fasting and the Human Gut Microbiota: Current Knowledge and Future Directions. Nutrients 2023; 15:2095. [PMID: 37432222 PMCID: PMC10180719 DOI: 10.3390/nu15092095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 07/12/2023] Open
Abstract
Intermittent fasting (IF) has been promoted as an alternative to dietary caloric restriction for the treatment of obesity. IF restricts the amount of food consumed and improves the metabolic balance by synchronizing it with the circadian rhythm. Dietary changes have a rapid effect on the gut microbiota, modulating the interaction between meal timing and host circadian rhythms. Our paper aims to review the relationships between IF and human gut microbiota. In this study, the primary area of focus was the effect of IF on the diversity and composition of gut microbiota and its relationship with weight loss and metabolomic alterations, which are particularly significant for metabolic syndrome characteristics. We discussed each of these findings according to the type of IF involved, i.e., time-restricted feeding, Ramadan fasting, alternate-day fasting, and the 5:2 diet. Favorable metabolic effects regarding the reciprocity between IF and gut microbiota changes have also been highlighted. In conclusion, IF may enhance metabolic health by modifying the gut microbiota. However additional research is required to draw definitive conclusions about this outcome because of the limited number and diverse designs of existing studies.
Collapse
Affiliation(s)
| | - Otilia Niță
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (A.I.E.); (L.C.); (L.M.); (L.I.A.)
| | - Andreea Gherasim
- Faculty of Medicine, University of Medicine and Pharmacy “Grigore T Popa”, 700115 Iasi, Romania; (A.D.P.); (A.I.E.); (L.C.); (L.M.); (L.I.A.)
| | | | | | | | | |
Collapse
|
242
|
Zhao C, Hu X, Qiu M, Bao L, Wu K, Meng X, Zhao Y, Feng L, Duan S, He Y, Zhang N, Fu Y. Sialic acid exacerbates gut dysbiosis-associated mastitis through the microbiota-gut-mammary axis by fueling gut microbiota disruption. MICROBIOME 2023; 11:78. [PMID: 37069691 PMCID: PMC10107595 DOI: 10.1186/s40168-023-01528-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Mastitis is one of the most severe diseases in humans and animals, especially on dairy farms. Mounting evidence indicates that gastrointestinal dysbiosis caused by induction of subacute ruminal acidosis (SARA) by high-grain diet consumption and low in dietary fiber is associated with mastitis initiation and development, however, the underlying mechanism remains unknown. RESULTS In the present study, we found that cows with SARA-associated mastitis have altered metabolic profiles in the rumen, with increased sialic acids level in particular. Consumption of sialic acid (SA) in antibiotic-treated mice, but not healthy mice, induced marked mastitis. SA treatment of antibiotic-treated mice also induced mucosal and systemic inflammatory responses, as evidenced by increased colon and liver injuries and several inflammatory markers. In addition, gut dysbiosis caused by antibiotic impaired gut barrier integrity, which was aggravated by SA treatment. SA potentiated serum LPS level caused by antibiotic treatment, leading to increased activation of the TLR4-NF-κB/NLRP3 pathways in the mammary gland and colon. Moreover, SA facilitated gut dysbiosis caused by antibiotic, and especially enhanced Enterobacteriaceae and Akkermansiaceae, which correlated with mastitis parameters. Fecal microbiota transplantation from SA-antibiotic-treated mice mimicked mastitis in recipient mice. In vitro experiments showed that SA prompted Escherichia coli growth and virulence gene expression, leading to higher proinflammatory cytokine production in macrophages. Targeting the inhibition of Enterobacteriaceae by sodium tungstate or treating with the commensal Lactobacillus reuteri alleviated SA-facilitated mastitis. In addition, SARA cows had distinct ruminal microbial structure by the enrichment of SA-utilizing opportunistic pathogenic Moraxellaceae and the depletion of SA-utilizing commensal Prevotellaceae. Treating mice with the specific sialidase inhibitor zanamivir reduced SA production and Moraxellaceae abundance, and improved mastitis in mice caused by ruminal microbiota transplantation from cows with SARA-associated mastitis. CONCLUSIONS This study, for the first time, indicates that SA aggravates gut dysbiosis-induced mastitis by promoting gut microbiota disturbance and is regulated by commensal bacteria, indicating the important role of the microbiota-gut-mammary axis in mastitis pathogenesis and suggesting a potential strategy for mastitis intervention based on gut metabolism regulation. Video Abstract.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China.
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Xiangyue Meng
- Department of Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Shiyu Duan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China.
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China.
| |
Collapse
|
243
|
Koustas E, Trifylli EM, Sarantis P, Papadopoulos N, Papanikolopoulos K, Aloizos G, Damaskos C, Garmpis N, Garmpi A, Matthaios D, Karamouzis MV. An Insight into the Arising Role of MicroRNAs in Hepatocellular Carcinoma: Future Diagnostic and Therapeutic Approaches. Int J Mol Sci 2023; 24:7168. [PMID: 37108330 PMCID: PMC10138911 DOI: 10.3390/ijms24087168] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes a frequent highly malignant form of primary liver cancer and is the third cause of death attributable to malignancy. Despite the improvement in the therapeutic strategies with the exploration of novel pharmacological agents, the survival rate for HCC is still low. Shedding light on the multiplex genetic and epigenetic background of HCC, such as on the emerging role of microRNAs, is considered quite promising for the diagnosis and the prediction of this malignancy, as well as for combatting drug resistance. MicroRNAs (miRNAs) constitute small noncoding RNA sequences, which play a key role in the regulation of several signaling and metabolic pathways, as well as of pivotal cellular functions such as autophagy, apoptosis, and cell proliferation. It is also demonstrated that miRNAs are significantly implicated in carcinogenesis, either acting as tumor suppressors or oncomiRs, while aberrations in their expression levels are closely associated with tumor growth and progression, as well as with local invasion and metastatic dissemination. The arising role of miRNAs in HCC is in the spotlight of the current scientific research, aiming at the development of novel therapeutic perspectives. In this review, we will shed light on the emerging role of miRNAs in HCC.
Collapse
Affiliation(s)
- Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Eleni-Myrto Trifylli
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| | - Nikolaos Papadopoulos
- Second Department of Internal Medicine, 401 General Army Hospital of Athens, 11525 Athens, Greece
| | | | - Georgios Aloizos
- First Department of Internal Medicine, 417 Army Equity Fund Hospital, 11521 Athens, Greece
| | - Christos Damaskos
- ‘N.S. Christeas’ Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Renal Transplantation Unit, ‘Laiko’ General Hospital, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propaedeutic Surgery, ‘Laiko’ General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | | | - Michalis V. Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75, M. Asias Street, 11527 Athens, Greece
| |
Collapse
|
244
|
Esquivel-Hernández DA, Martínez-López YE, Sánchez-Castañeda JP, Neri-Rosario D, Padrón-Manrique C, Giron-Villalobos D, Mendoza-Ortíz C, Resendis-Antonio O. A network perspective on the ecology of gut microbiota and progression of type 2 diabetes: Linkages to keystone taxa in a Mexican cohort. Front Endocrinol (Lausanne) 2023; 14:1128767. [PMID: 37124757 PMCID: PMC10130651 DOI: 10.3389/fendo.2023.1128767] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/21/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The human gut microbiota (GM) is a dynamic system which ecological interactions among the community members affect the host metabolism. Understanding the principles that rule the bidirectional communication between GM and its host, is one of the most valuable enterprise for uncovering how bacterial ecology influences the clinical variables in the host. Methods Here, we used SparCC to infer association networks in 16S rRNA gene amplicon data from the GM of a cohort of Mexican patients with type 2 diabetes (T2D) in different stages: NG (normoglycemic), IFG (impaired fasting glucose), IGT (impaired glucose tolerance), IFG + IGT (impaired fasting glucose plus impaired glucose tolerance), T2D and T2D treated (T2D with a 5-year ongoing treatment). Results By exploring the network topology from the different stages of T2D, we observed that, as the disease progress, the networks lose the association between bacteria. It suggests that the microbial community becomes highly sensitive to perturbations in individuals with T2D. With the purpose to identify those genera that guide this transition, we computationally found keystone taxa (driver nodes) and core genera for a Mexican T2D cohort. Altogether, we suggest a set of genera driving the progress of the T2D in a Mexican cohort, among them Ruminococcaceae NK4A214 group, Ruminococcaceae UCG-010, Ruminococcaceae UCG-002, Ruminococcaceae UCG-005, Alistipes, Anaerostipes, and Terrisporobacter. Discussion Based on a network approach, this study suggests a set of genera that can serve as a potential biomarker to distinguish the distinct degree of advances in T2D for a Mexican cohort of patients. Beyond limiting our conclusion to one population, we present a computational pipeline to link ecological networks and clinical stages in T2D, and desirable aim to advance in the field of precision medicine.
Collapse
Affiliation(s)
| | - Yoscelina Estrella Martínez-López
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Médicas, Odontológicas y de la Salud, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Metabolic Research Laboratory, Department of Medicine and Nutrition, University of Guanajuato, León, Guanajuato, Mexico
| | - Jean Paul Sánchez-Castañeda
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Daniel Neri-Rosario
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Cristian Padrón-Manrique
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - David Giron-Villalobos
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Cristian Mendoza-Ortíz
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Programa de Maestría en Ciencias Bioquímicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Osbaldo Resendis-Antonio
- Human Systems Biology Laboratory, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
- Coordinación de la Investigación Científica – Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| |
Collapse
|
245
|
Cabello-Olmo M, Oneca M, Urtasun R, Pajares MJ, Goñi S, Riezu-Boj JI, Milagro FI, Ayo J, Encio IJ, Barajas M, Araña M. Pediococcus acidilactici pA1c ® Improves the Beneficial Effects of Metformin Treatment in Type 2 Diabetes by Controlling Glycaemia and Modulating Intestinal Microbiota. Pharmaceutics 2023; 15:pharmaceutics15041203. [PMID: 37111688 PMCID: PMC10143274 DOI: 10.3390/pharmaceutics15041203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Type 2 diabetes (T2D) is a complex metabolic disease, which involves maintained hyperglycemia, mainly due to the development of an insulin resistance process. Metformin administration is the most prescribed treatment for diabetic patients. In a previously published study, we demonstrated that Pediococcus acidilactici pA1c® (pA1c) protects from insulin resistance and body weight gain in HFD-induced diabetic mice. The present work aimed to evaluate the possible beneficial impact of a 16-week administration of pA1c, metformin, or the combination of pA1c and metformin in a T2D HFD-induced mice model. We found that the simultaneous administration of both products attenuated hyperglycemia, increased high-intensity insulin-positive areas in the pancreas and HOMA-β, decreased HOMA-IR and also provided more beneficial effects than metformin treatment (regarding HOMA-IR, serum C-peptide level, liver steatosis or hepatic Fasn expression), and pA1c treatment (regarding body weight or hepatic G6pase expression). The three treatments had a significant impact on fecal microbiota and led to differential composition of commensal bacterial populations. In conclusion, our findings suggest that P. acidilactici pA1c® administration improved metformin beneficial effects as a T2D treatment, and it would be a valuable therapeutic strategy to treat T2D.
Collapse
Affiliation(s)
- Miriam Cabello-Olmo
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - María Oneca
- Genbioma Aplicaciones S.L. Polígono Industrial Noain-Esquíroz, Calle S, Nave 4, 31191 Esquíroz, Spain
| | - Raquel Urtasun
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - María J Pajares
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
- IDISNA Navarra's Health Research Institute, 31008 Pamplona, Spain
| | - Saioa Goñi
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - José I Riezu-Boj
- IDISNA Navarra's Health Research Institute, 31008 Pamplona, Spain
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Spain
| | - Fermín I Milagro
- IDISNA Navarra's Health Research Institute, 31008 Pamplona, Spain
- Center for Nutrition Research, Department of Nutrition, Food Science and Physiology, University of Navarra, 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josune Ayo
- Genbioma Aplicaciones S.L. Polígono Industrial Noain-Esquíroz, Calle S, Nave 4, 31191 Esquíroz, Spain
| | - Ignacio J Encio
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Miguel Barajas
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| | - Miriam Araña
- Biochemistry Area, Department of Health Science, Public University of Navarre, 31008 Pamplona, Spain
| |
Collapse
|
246
|
Stupak A, Gęca T, Kwaśniewska A, Mlak R, Piwowarczyk P, Nawrot R, Goździcka-Józefiak A, Kwaśniewski W. Comparative Analysis of the Placental Microbiome in Pregnancies with Late Fetal Growth Restriction versus Physiological Pregnancies. Int J Mol Sci 2023; 24:ijms24086922. [PMID: 37108086 PMCID: PMC10139004 DOI: 10.3390/ijms24086922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
A comparative analysis of the placental microbiome in pregnancies with late fetal growth restriction (FGR) was performed with normal pregnancies to assess the impact of bacteria on placental development and function. The presence of microorganisms in the placenta, amniotic fluid, fetal membranes and umbilical cord blood throughout pregnancy disproves the theory of the "sterile uterus". FGR occurs when the fetus is unable to follow a biophysically determined growth path. Bacterial infections have been linked to maternal overproduction of pro-inflammatory cytokines, as well as various short- and long-term problems. Proteomics and bioinformatics studies of placental biomass allowed the development of new diagnostic options. In this study, the microbiome of normal and FGR placentas was analyzed by LC-ESI-MS/MS mass spectrometry, and the bacteria present in both placentas were identified by analysis of a set of bacterial proteins. Thirty-six pregnant Caucasian women participated in the study, including 18 women with normal pregnancy and eutrophic fetuses (EFW > 10th percentile) and 18 women with late FGR diagnosed after 32 weeks of gestation. Based on the analysis of the proteinogram, 166 bacterial proteins were detected in the material taken from the placentas in the study group. Of these, 21 proteins had an exponentially modified protein abundance index (emPAI) value of 0 and were not included in further analysis. Of the remaining 145 proteins, 52 were also present in the material from the control group. The remaining 93 proteins were present only in the material collected from the study group. Based on the proteinogram analysis, 732 bacterial proteins were detected in the material taken from the control group. Of these, 104 proteins had an emPAI value of 0 and were not included in further analysis. Of the remaining 628 proteins, 52 were also present in the material from the study group. The remaining 576 proteins were present only in the material taken from the control group. In both groups, we considered the result of ns prot ≥ 60 as the cut-off value for the agreement of the detected protein with its theoretical counterpart. Our study found significantly higher emPAI values of proteins representative of the following bacteria: Actinopolyspora erythraea, Listeria costaricensis, E. coli, Methylobacterium, Acidobacteria bacterium, Bacteroidetes bacterium, Paenisporsarcina sp., Thiodiazotropha endol oripes and Clostridiales bacterium. On the other hand, in the control group statistically more frequently, based on proteomic data, the following were found: Flavobacterial bacterium, Aureimonas sp. and Bacillus cereus. Our study showed that placental dysbiosis may be an important factor in the etiology of FGR. The presence of numerous bacterial proteins present in the control material may indicate their protective role, while the presence of bacterial proteins detected only in the material taken from the placentas of the study group may indicate their potentially pathogenic nature. This phenomenon is probably important in the development of the immune system in early life, and the placental microbiota and its metabolites may have great potential in the screening, prevention, diagnosis and treatment of FGR.
Collapse
Affiliation(s)
- Aleksandra Stupak
- Chair and Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-059 Lublin, Poland
| | - Tomasz Gęca
- Chair and Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-059 Lublin, Poland
| | - Anna Kwaśniewska
- Chair and Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-059 Lublin, Poland
| | - Radosław Mlak
- Body Composition Research Laboratory, Department of Preclinical Science, Medical University of Lublin, 20-059 Lublin, Poland
| | - Paweł Piwowarczyk
- 2nd Department of Anesthesiology and Intensive Care Unit, Medical University of Lublin, 20-059 Lublin, Poland
| | - Robert Nawrot
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University in Poznan, 61-712 Poznań, Poland
| | - Anna Goździcka-Józefiak
- Department of Molecular Virology, Institute of Experimental Biology, Adam Mickiewicz University in Poznan, 61-712 Poznań, Poland
| | - Wojciech Kwaśniewski
- Department of Gynecologic Oncology and Gynecology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
247
|
Meng JX, Wei XY, Guo H, Chen Y, Wang W, Geng HL, Yang X, Jiang J, Zhang XX. Metagenomic insights into the composition and function of the gut microbiota of mice infected with Toxoplasma gondii. Front Immunol 2023; 14:1156397. [PMID: 37090719 PMCID: PMC10118048 DOI: 10.3389/fimmu.2023.1156397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Despite Toxoplasma gondii infection leading to dysbiosis and enteritis, the function of gut microbiota in toxoplasmosis has not been explored. Methods Here, shotgun metagenomics was employed to characterize the composition and function of mouse microbial community during acute and chronic T. gondii infection, respectively. Results The results revealed that the diversity of gut bacteria was decreased immediately after T. gondii infection, and was increased with the duration of infection. In addition, T. gondii infection led to gut microbiota dysbiosis both in acute and chronic infection periods. Therein, several signatures, including depression of Firmicutes to Bacteroidetes ratio and infection-enriched Proteobacteria, were observed in the chronic period, which may contribute to aggravated gut inflammation and disease severity. Functional analysis showed that a large amount of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and carbohydrate-active enzymes (CAZy) family displayed distinct variation in abundance between infected and healthy mice. The lipopolysaccharide biosynthesis related pathways were activated in the chronic infection period, which might lead to immune system imbalance and involve in intestinal inflammation. Moreover, microbial and functional spectrums were more disordered in chronic than acute infection periods, thus implying gut microbiota was more likely to participate in disease process in the chronically infected mice, even exacerbated immunologic derangement and disease progression. Discussion Our data indicate that the gut microbiota plays a potentially important role in protecting mice from T. gondii infection, and contributes to better understand the association between gut microbiota and toxoplasmosis.
Collapse
Affiliation(s)
- Jin-Xin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xin-Yu Wei
- College of Life Science, Changchun Sci-Tech University, Changchun, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Huanping Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yu Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Wei Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Hong-Li Geng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xing Yang
- Department of Medical Microbiology and Immunology, School of Basic Medicine, Dali University, Dali, Yunnan, China
| | - Jiang Jiang
- College of Life Science, Changchun Sci-Tech University, Changchun, China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
248
|
Ahlin R, Nørskov NP, Nybacka S, Landberg R, Skokic V, Stranne J, Josefsson A, Steineck G, Hedelin M. Effects on Serum Hormone Concentrations after a Dietary Phytoestrogen Intervention in Patients with Prostate Cancer: A Randomized Controlled Trial. Nutrients 2023; 15:nu15071792. [PMID: 37049632 PMCID: PMC10097251 DOI: 10.3390/nu15071792] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023] Open
Abstract
Phytoestrogens have been suggested to have an anti-proliferative role in prostate cancer, potentially by acting through estrogen receptor beta (ERβ) and modulating several hormones. We primarily aimed to investigate the effect of a phytoestrogen intervention on hormone concentrations in blood depending on the ERβ genotype. Patients with low and intermediate-risk prostate cancer, scheduled for radical prostatectomy, were randomized to an intervention group provided with soybeans and flaxseeds (∼200 mg phytoestrogens/d) added to their diet until their surgery, or a control group that was not provided with any food items. Both groups received official dietary recommendations. Blood samples were collected at baseline and endpoint and blood concentrations of different hormones and phytoestrogens were analyzed. The phytoestrogen-rich diet did not affect serum concentrations of testosterone, insulin-like growth factor 1, or sex hormone-binding globulin (SHBG). However, we found a trend of decreased risk of increased serum concentration of estradiol in the intervention group compared to the control group but only in a specific genotype of ERβ (p = 0.058). In conclusion, a high daily intake of phytoestrogen-rich foods has no major effect on hormone concentrations but may lower the concentration of estradiol in patients with prostate cancer with a specific genetic upset of ERβ.
Collapse
Affiliation(s)
- Rebecca Ahlin
- Department of Oncology, Division of Clinical Cancer Epidemiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Natalja P. Nørskov
- Department of Animal and Veterinary Sciences, Aarhus University, AU-Foulum, 8830 Tjele, Denmark
| | - Sanna Nybacka
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
| | - Rikard Landberg
- Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Viktor Skokic
- Department of Oncology, Division of Clinical Cancer Epidemiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institute, 17176 Stockholm, Sweden
- Department of Pelvic Cancer, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Johan Stranne
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Region Västra Götaland, Department of Urology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Andreas Josefsson
- Sahlgrenska Cancer Center, Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden
- Wallenberg Center for Molecular Medicine, Umeå University, 90187 Umeå, Sweden
- Department of Urology and Andrology, Institute of Surgery and Perioperative Sciences, Umeå University, 90187 Umeå, Sweden
| | - Gunnar Steineck
- Department of Oncology, Division of Clinical Cancer Epidemiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Maria Hedelin
- Department of Oncology, Division of Clinical Cancer Epidemiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
- Regional Cancer Center West, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
| |
Collapse
|
249
|
Li Z, Zhang B, Wang N, Zuo Z, Wei H, Zhao F. A novel peptide protects against diet-induced obesity by suppressing appetite and modulating the gut microbiota. Gut 2023; 72:686-698. [PMID: 35803703 PMCID: PMC10086289 DOI: 10.1136/gutjnl-2022-328035] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/28/2022] [Indexed: 12/08/2022]
Abstract
OBJECTIVE The obesity epidemic and its metabolic complications continue to be a major global public health threat with limited effective treatments, especially drugs that can be taken orally. Peptides are a promising class of molecules that have gained increased interest for their applications in medicine and biotechnology. In this study, we focused on looking for peptides that can be administrated orally to treat obesity and exploring its mechanisms. DESIGN Here, a 9-amino-acid peptide named D3 was designed and administered orally to germ-free (GF) mice and wild-type (WT) mice, rats and macaques. The effects of D3 on body weight and other basal metabolic parameters were evaluated. The effects of D3 on gut microbiota were evaluated using 16S rRNA amplicon sequencing. To identify and confirm the mechanisms of D3, transcriptome analysis of ileum and molecular approaches on three animal models were performed. RESULTS A significant body weight reduction was observed both in WT (12%) and GF (9%) mice treated with D3. D3 ameliorated leptin resistance and upregulated the expression of uroguanylin (UGN), which suppresses appetite via the UGN-GUCY2C endocrine axis. Similar effects were also found in diet-induced obese rat and macaque models. Furthermore, the abundance of intestinal Akkermansia muciniphila increased about 100 times through the IFNγ-Irgm1 axis after D3 treatment, which may further inhibit fat absorption by downregulating Cd36. CONCLUSION Our results indicated that D3 is a novel drug candidate for counteracting diet-induced obesity as a non-toxic and bioactive peptide. Targeting the UGN-GUCY2C endocrine axis may represent a therapeutic strategy for the treatment of obesity.
Collapse
Affiliation(s)
- Zhanzhan Li
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ning Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhenqiang Zuo
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Hong Wei
- Laboratory Animal Department, College of Basic Medicine Army Medical University, Chongqing, China
| | - Fangqing Zhao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
250
|
Pang S, Chen X, Lu Z, Meng L, Huang Y, Yu X, Huang L, Ye P, Chen X, Liang J, Peng T, Luo W, Wang S. Longevity of centenarians is reflected by the gut microbiome with youth-associated signatures. NATURE AGING 2023; 3:436-449. [PMID: 37117794 DOI: 10.1038/s43587-023-00389-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/27/2023] [Indexed: 04/30/2023]
Abstract
Centenarians are an excellent model to study the relationship between the gut microbiome and longevity. To characterize the gut microbiome signatures of aging, we conducted a cross-sectional investigation of 1,575 individuals (20-117 years) from Guangxi province of China, including 297 centenarians (n = 45 with longitudinal sampling). Compared to their old adult counterparts, centenarians displayed youth-associated features in the gut microbiome characterized by an over-representation of a Bacteroides-dominated enterotype, increase in species evenness, enrichment of potentially beneficial Bacteroidetes and depletion of potential pathobionts. Health status stratification in older individuals did not alter the directional trends for these signature comparisons but revealed more apparent associations in less healthy individuals. Importantly, longitudinal analysis of centenarians across a 1.5-year period indicated that the youth-associated gut microbial signatures were enhanced with regard to increased evenness, reduction in interindividual variation and stability of Bacteroides, and that centenarians with low microbial evenness were prone to large microbiome instability during aging. These results together highlight a youth-related aging pattern of the gut microbiome for long-lived individuals.
Collapse
Affiliation(s)
- Shifu Pang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| | - Xiaodong Chen
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
- The Grand Health Industry Research Institute, Guangxi Academy of Sciences, Nanning, China
| | - Zhilong Lu
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China
| | - Lili Meng
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| | - Yu Huang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| | - Xiuqi Yu
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| | - Lianfei Huang
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Pengpeng Ye
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| | - Xiaochun Chen
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China
| | - Jian Liang
- Medical College, Guangxi University, Nanning, China
| | - Tao Peng
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Weifei Luo
- AIage Life Science Corporation Ltd., Guangxi Free Trade Zone Aisheng Biotechnology Corporation Ltd., Nanning, China.
- The Grand Health Industry Research Institute, Guangxi Academy of Sciences, Nanning, China.
- State Key Laboratory of Non-food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning, China.
| | - Shuai Wang
- The Grand Health Industry Research Institute, Guangxi Academy of Sciences, Nanning, China.
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|