201
|
Wang H, Jiang Y. The Tap42-protein phosphatase type 2A catalytic subunit complex is required for cell cycle-dependent distribution of actin in yeast. Mol Cell Biol 2003; 23:3116-25. [PMID: 12697813 PMCID: PMC153200 DOI: 10.1128/mcb.23.9.3116-3125.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the Tor proteins mediate a wide spectrum of growth-related cellular processes in response to nutrients. The pleiotropic role of the Tor proteins is mediated, at least in part, by type 2A protein phosphatases (PP2A) and 2A-like protein phosphatases. Tor-mediated signaling activity promotes the interaction of phosphatase-interacting protein Tap42 with PP2A and 2A-like protein phosphatases. The distinct complexes formed between Tap42 and different phosphatases mediate various cellular events and modulate phosphorylation levels of many downstream factors in the Tor pathway in a Tor-dependent and rapamycin-sensitive manner. In this study, we demonstrate that the interaction between Tap42 and the catalytic subunits of PP2A (PP2Ac) is required for cell cycle-dependent distribution of actin. We show that mutations in PP2Ac and Tap42 that perturb the interaction cause random distribution of actin during the cell cycle and that overexpression of the Rho2 GTPase suppresses the actin defects associated with the mutants. Our findings suggest that the Tap42-PP2Ac complex regulates the actin cytoskeleton via a Rho GTPase-dependent mechanism. In addition, we provide evidence that PP2A activity plays a negative role in controlling the actin cytoskeleton and, possibly, in regulation of the G(2)/M transition of the cell cycle.
Collapse
Affiliation(s)
- Huamin Wang
- Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
202
|
Rumsby M, Afsari F, Stark M, Hughson E. Microfilament and microtubule organization and dynamics in process extension by central glia-4 oligodendrocytes: evidence for a microtubule organizing center. Glia 2003; 42:118-29. [PMID: 12655596 DOI: 10.1002/glia.10211] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Microfilaments in freshly adhering CG-4 cells and differentiated CG-4 oligodendrocytes are concentrated at the tips and edges of rapidly forming processes while microtubules are concentrated in new processes and extend from a concentrated spot of alpha-tubulin staining in the cell body to the cell periphery. In motile bipolar CG-4 cells, microfilaments are heavily concentrated at the flattened end of one process and along the rim of processes and the cell body: microtubules are concentrated along main processes and splay out into process tips and the cell body. In differentiated CG-4 oligodendrocytes, microfilaments are concentrated at the many process tips, in filopodia and in fine processes, but are not obvious in main processes where separate bundles of microtubules, which diverge at process branch points, are concentrated. gamma-tubulin, involved in microtubule nucleation, is concentrated at a small discrete area in the cell body, indicative of a microtubule organizing center. Polymerization of both actin and tubulin is required for initial process elaboration. Depolymerization of microtubules, but not of microfilaments, causes complete retraction of bipolar CG-4 cell processes. This process retraction does not occur if microfilaments are depolymerized first, indicating that process extension/retraction in motile bipolar CG-4 cells may occur by a balance of motor protein-driven forces as suggested for growth cone motility. Cytoskeleton organization in CG-4 cells is very similar to that reported for oligodendrocytes. CG-4 cells are thus a useful model for investigating the signals and mechanisms regulating oligodendrocyte process dynamics.
Collapse
Affiliation(s)
- Martin Rumsby
- Department of Biology, University of York, York, UK.
| | | | | | | |
Collapse
|
203
|
Affiliation(s)
- Jeffrey L Goldberg
- Department of Neurobiology, Stanford University School of Medicine, California 94305, USA.
| |
Collapse
|
204
|
Yang R, Yutzy WH, Viscidi RP, Roden RBS. Interaction of L2 with beta-actin directs intracellular transport of papillomavirus and infection. J Biol Chem 2003; 278:12546-53. [PMID: 12560332 DOI: 10.1074/jbc.m208691200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Viruses that replicate in the nucleus, including the primary causative agent of cervical cancer, human papillomavirus type 16 (HPV16), must first cross the cytoplasm. We compared the uptake of HPV16 virus-like particles (VLPs) either with or without the minor capsid protein L2. Whereas VLPs containing only the major capsid protein L1 were diffusely distributed within the cytoplasm even 6 h post-infection, VLPs comprising both L1 and L2 exhibited a radial distribution in the cytoplasm and accumulated in the perinuclear region of BPHE-1 cells within 2 h. L2 of HPV16 or bovine papillomavirus was shown to bind to a 43-kDa cellular protein that was subsequently identified as beta-actin by matrix-assisted laser desorption ionization time-of-flight analysis. A conserved domain comprising residues 25-45 of HPV16 L2 was sufficient for interaction with beta-actin. HPV16 L2 residues 25-45 fused to green fluorescent protein, but not green fluorescent protein alone, colocalized with actin and caused cell retraction and disruption of the microfilament network. Finally, wild-type L2, but not L2 with residues 25-45 deleted, facilitated HPV16 pseudovirion infection. Thus, binding of beta-actin by L2 residues 25-45 facilitates transport of HPV16 across the cytoplasm during infection, and blockade of this novel interaction may be useful for prophylaxis.
Collapse
Affiliation(s)
- Rongcun Yang
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
205
|
Moshkov IE, Novikova GV, Mur LAJ, Smith AR, Hall MA. Ethylene rapidly up-regulates the activities of both monomeric GTP-binding proteins and protein kinase(s) in epicotyls of pea. PLANT PHYSIOLOGY 2003; 131:1718-26. [PMID: 12692330 PMCID: PMC166927 DOI: 10.1104/pp.102.015057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2002] [Revised: 11/12/2002] [Accepted: 12/20/2002] [Indexed: 05/23/2023]
Abstract
It is demonstrated that, in etiolated pea (Pisum sativum) epicotyls, ethylene affects the activation of both monomeric GTP-binding proteins (monomeric G-proteins) and protein kinases. For monomeric G-proteins, the effect may be a rapid (2 min) and bimodal up-regulation, a transiently unimodal activation, or a transient down-regulation. Pretreatment with 1-methylcyclopropene abolishes the response to ethylene overall. Immunoprecipitation studies indicate that some of the monomeric G-proteins affected may be of the Rab class. Protein kinase activity is rapidly up-regulated by ethylene, the effect is inhibited by 1-methylcyclopropene, and the activation is bimodal. Immunoprecipitation indicates that the kinase(s) are of the MAP kinase ERK1 group. It is proposed that the data support the hypothesis that a transduction chain exists that is separate and antagonistic to that currently revealed by studies on Arabidopsis mutants.
Collapse
Affiliation(s)
- Igor E Moshkov
- Timiryazev Institute of Plant Physiology RAS, Botanicheskaya 35, Moscow 127276, Russia
| | | | | | | | | |
Collapse
|
206
|
Moshkov IE, Mur LAJ, Novikova GV, Smith AR, Hall MA. Ethylene regulates monomeric GTP-binding protein gene expression and activity in Arabidopsis. PLANT PHYSIOLOGY 2003; 131:1705-17. [PMID: 12692329 PMCID: PMC166926 DOI: 10.1104/pp.014035] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2002] [Revised: 10/22/2002] [Accepted: 11/30/2002] [Indexed: 05/19/2023]
Abstract
Ethylene rapidly and transiently up-regulates the activity of several monomeric GTP-binding proteins (monomeric G proteins) in leaves of Arabidopsis as determined by two-dimensional gel electrophoresis and autoradiographic analyses. The activation is suppressed by the receptor-directed inhibitor 1-methylcyclopropene. In the etr1-1 mutant, constitutive activity of all the monomeric G proteins activated by ethylene is down-regulated relative to wild type, and ethylene treatment has no effect on the levels of activity. Conversely, in the ctr1-1 mutant, several of the monomeric G proteins activated by ethylene are constitutively up-regulated. However, the activation profile of ctr1-1 does not exactly mimic that of ethylene-treated wild type. Biochemical and molecular evidence suggested that some of these monomeric G proteins are of the Rab class. Expression of the genes for a number of monomeric G proteins in response to ethylene was investigated by reverse transcriptase-PCR. Rab8 and Ara3 expression was increased within 10 min of ethylene treatment, although levels fell back significantly by 40 min. In the etr1-1 mutant, expression of Rab8 was lower than wild type and unaffected by ethylene; in ctr1-1, expression of Rab8 was much higher than wild type and comparable with that seen in ethylene treatments. Expression in ctr1-1 was also unaffected by ethylene. Thus, the data indicate a role for monomeric G proteins in ethylene signal transduction.
Collapse
Affiliation(s)
- Igor E Moshkov
- Timiryazev Institute of Plant Physiology Russian Academy of Sciences, Botanicheskaya 35, Moscow, Russia
| | | | | | | | | |
Collapse
|
207
|
Abstract
In this review we describe the potential roles of the actin cytoskeleton in receptor-mediated endocytosis in mammalian cells and summarize the efforts of recent years in establishing a relationship between these two cellular functions. With molecules such as dynamin, syndapin, HIP1R, Abp1, synaptojanin, N-WASP, intersectin, and cortactin a set of molecular links is now available and it is likely that their further characterization will reveal the basic principles of a functional interconnection between the membrane cytoskeleton and the vesicle-budding machinery. We will therefore discuss proteins involved in endocytic clathrin coat formation and accessory factors to control and regulate coated vesicle formation but we will also focus on actin cytoskeletal components such as the Arp2/3 complex, spectrin, profilin, and motor proteins involved in actin dynamics and organization. Additionally, we will discuss how phosphoinositides, such as PI(4,5)P2, small GTPases thought to control the actin cytoskeleton, such as Rho, Rac, and Cdc42, or membrane trafficking, such as Rab GTPases and ARF proteins, and different kinases may participate in the functional connection of actin and endocytosis. We will compare the concepts and different molecular mechanisms involved in mammalian cells with yeast as well as with specialized cells, such as epithelial cells and neurons, because different model organisms often offer complementary advantages for further studies in this thriving field of current cell biological research.
Collapse
Affiliation(s)
- Britta Qualmann
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | |
Collapse
|
208
|
Holm A, Tejle K, Gunnarsson T, Magnusson KE, Descoteaux A, Rasmusson B. Role of protein kinase C alpha for uptake of unopsonized prey and phagosomal maturation in macrophages. Biochem Biophys Res Commun 2003; 302:653-8. [PMID: 12646218 DOI: 10.1016/s0006-291x(03)00231-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein kinase C alpha (PKC alpha) participates in F-actin remodeling during phagocytosis and phagosomal maturation in macrophages. Leishmania donovani promastigotes, which inhibit phagosomal maturation, cause accumulation of periphagosomal F-actin instead of the disassembly observed around other prey [Cell. Microbiol. 7 (2001) 439]. This accumulation is induced by promastigote lipophosphoglycan (LPG), which has several effects on macrophages including inhibition of PKC alpha. To investigate a possible connection between PKC alpha and LPG's effects on actin dynamics, we utilized RAW264.7 macrophages overexpressing dominant-negative PCK alpha (DN PKC alpha). We found increased cortical F-actin and decreased phagocytic capacity, as well as defective periphagosomal F-actin breakdown and inhibited phagosomal maturation in the DN PKC alpha-overexpressing cells, effects similar to those seen in controls subjected to LPG-coated prey. The results indicate that PKC alpha is involved in F-actin turnover in macrophages and that PKC alpha-dependent breakdown of periphagosomal F-actin is required for phagosomal maturation, and endorse the hypothesis that intracellular survival of L. donovani involves inhibition of PKC alpha by LPG.
Collapse
Affiliation(s)
- A Holm
- Division of Medical Microbiology, Department of Molecular and Clinical Medicine, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden.
| | | | | | | | | | | |
Collapse
|
209
|
Scaife RM, Courtneidge SA, Langdon WY. The multi-adaptor proto-oncoprotein Cbl is a key regulator of Rac and actin assembly. J Cell Sci 2003; 116:463-73. [PMID: 12508108 DOI: 10.1242/jcs.00244] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The induction of protein tyrosine kinase signaling pathways is a principal mechanism for promoting cellular activation. Biochemical and genetic analyses have implicated the multi-adaptor proto-oncogene protein Cbl as a key negative regulator of activated protein tyrosine kinases. By inhibiting the function of Cbl as a multi-domain adaptor protein, through expression of a truncated form (480-Cbl), we demonstrate that Cbl is a potent negative regulator of actin assembly in response to receptor tyrosine kinase (RTK) activation. Expression of 480-Cbl dramatically enhances RTK-dependent induction of actin dorsal ruffles, which correlates with a pronounced increase in Rac activation. By contrast, mitogenic signaling by RTK targets, such as PI 3-kinase and MAP kinases, as well as RTK-mediated tyrosine phosphorylation do not appear to be affected by 480-Cbl expression. Further, we determined that Cbl undergoes a striking RTK-activation-dependent translocation to sites of active actin dorsal ruffle nucleation. Hence, the selective regulation of RTK signaling to the actin cytoskeleton appears to result from recruitment of signaling proteins on a Cbl template bound to the actin cytoskeleton.
Collapse
Affiliation(s)
- Robin M Scaife
- Department of Pathology, University of Western Australia, QE II Medical Centre, Crawley WA 6009, Australia.
| | | | | |
Collapse
|
210
|
One-trial in vitro conditioning regulates a cytoskeletal-related protein (CSP24) in the conditioned stimulus pathway of Hermissenda. J Neurosci 2003. [PMID: 12486141 DOI: 10.1523/jneurosci.22-24-10514.2002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hermissenda CSP24 (cytoskeletal-related protein 24) is a 24 kDa beta-thymosin-like protein that is associated with intermediate memory. We showed previously that one-trial conditioning resulted in a significant increase in the phosphorylation of CSP24 detected in lysates of the pathway supporting the conditioned stimulus (CS). Here we report the association of the protein with the actin cytoskeleton and the distribution of CSP24-immunoreactive neurons in two sensory structures and the circumesophageal nervous system. Identified photoreceptors, hair cells, and neurons in the cerebropleural and pedal ganglia were immunoreactive for CSP24. Immunoprecipitation experiments with 32PO4-labeled lysates of the circumesophageal nervous system identified a 44 kDa protein band (consistent with actin) that coprecipitates with CSP24. An analysis of immunoprecipitates on Western blots probed with anti-actin antibody also showed that actin coprecipitates with CSP24. Laser confocal microscopy of photoreceptors costained with fluorescently labeled anti-actin antibody and anti-CSP24 antibody, or fluorescent phalloidin and anti-CSP24 antibody showed that CSP24 is localized with actin in the cytosol of photoreceptor cell bodies and colocalized with presumed G-actin, but not F-actin, in regions adjacent to the plasma membrane. Although CSP24 is widely distributed in the Hermissenda nervous system, its regulation by one-trial conditioning was observed only in the CS pathway. Our findings suggest that CSP24 may interact with components of the actin cytoskeleton that contribute to structural changes underlying the formation and maintenance of enduring forms of memory.
Collapse
|
211
|
Dejmek J, Dib K, Jönsson M, Andersson T. Wnt-5a and G-protein signaling are required for collagen-induced DDR1 receptor activation and normal mammary cell adhesion. Int J Cancer 2003; 103:344-51. [PMID: 12471617 DOI: 10.1002/ijc.10752] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The collagen-induced phosphorylation of discoidin domain receptor 1 (DDR1) in Wnt-5a-expressing HB2 mammary cells was effectively inhibited by pertussis toxin, but not by cholera toxin or antibodies blocking beta(1) integrins. Moreover, pertussis toxin reduced adhesion of the cells to collagen by approximately 50%, and antibodies against beta(1) integrins had a similar effect that was in fact additive to that of pertussis toxin. Cholera toxin had accordingly no such effect on adhesion. By comparison, pertussis toxin did not influence adhesion of Wnt-5a-antisense HB2 cells or MCF-7 mammary tumor cells, neither of which express Wnt-5a or exhibit activation of DDR1. In accordance with these results, direct mastoparan-induced activation of G-proteins in Wnt-5a-deficient MCF-7 cells enabled collagen-induced phosphorylation of DDR1 and enhanced their adhesion. The inactive analogue mastoparan-17 had no such effects on MCF-7 cells nor did active mastoparan affect adhesion of Wnt-5a-expressing HB2 cells. A possible explanation for how DDR1, a receptor tyrosine kinase (RTK), potentiates mammary cell adhesion comes from our observations that pertussis toxin also inhibited the recruitment of the cytoskeletal regulator phosphatidylinositol 3-kinase (PI3K) to DDR1 as well as its phosphorylation/activation. In accordance with that, the PI3K inhibitor wortmannin significantly impaired adhesion of normal Wnt-5a-expressing HB2 cells but had little effect on adhesion of Wnt-5a-antisense HB2 cells. Thus, a G(i/o)-protein signaling pathway mediates the effect of Wnt-5a expression by enabling collagen-induced activation of DDR1, which, in parallel with beta(1) integrins, regulates adhesion of mammary cells.
Collapse
Affiliation(s)
- Janna Dejmek
- Experimental Pathology, Department of Laboratory Medicine, Lund University, Malmö University Hospital, Sweden
| | | | | | | |
Collapse
|
212
|
Liu J, Schwartz JH. The cytoplasmic polyadenylation element binding protein and polyadenylation of messenger RNA in Aplysia neurons. Brain Res 2003; 959:68-76. [PMID: 12480159 DOI: 10.1016/s0006-8993(02)03729-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Translation of some mRNAs in nerve terminals has been shown to be regulated by polyadenylation in an experience-dependent manner. The transcripts whose translation is controlled by regulated polyadenylation contain the cytoplasmic polyadenylation element (CPE), which binds to the highly conserved CPE-binding protein (CPEB). In Aplysia, neuron-specific actin mRNA, which has a CPE in its 3' UTR, is located both in cell bodies and at nerve endings (synaptosomes). We found that actin mRNA from pleural ganglion sensory neurons becomes polyadenylated during long-term facilitation produced by treatment with serotonin or 8-bromo cAMP. We cloned two isoforms of CPEB (ApCPEB77 and ApCEPB49) from Aplysia nervous tissue. The larger form, which is predominant in nervous tissue, is similar to p82, the clam binding protein, as well as to vertebrate CPEBs. Moreover, synaptosomal actin mRNAs are polyadenylated following the treatment with 5-HT. Since both CPEB and polyadenylated actin mRNA are present in synaptosomes and synaptosomal actin protein increases during long-term facilitation, we suggest that the translation of actin message in nerve endings is up-regulated by polyadenylation to grow new synapses.
Collapse
Affiliation(s)
- Jinming Liu
- Center for Neurobiology and Behavior, College of Physicians and Surgeons, Columbia University, 1051 Riverside Drive, New York, NY 10032, USA
| | | |
Collapse
|
213
|
Carballido-López R, Errington J. The bacterial cytoskeleton: in vivo dynamics of the actin-like protein Mbl of Bacillus subtilis. Dev Cell 2003; 4:19-28. [PMID: 12530960 DOI: 10.1016/s1534-5807(02)00403-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mbl is a bacterial actin homolog that controls cell morphogenesis in Bacillus subtilis. A functional GFP-Mbl fusion protein was used to examine the behavior of the helical cables formed by Mbl protein in live B. subtilis cells. The cables undergo dynamic changes during cell cycle progression. They are stable but not rigid while elongating in parallel with cell growth, and they require septum formation to divide/cleave. Fluorescence recovery after photobleaching (FRAP) analysis showed that the cables are continuously remodeled during cell elongation. Turnover occurs along the length of the helical Mbl filaments, with no obvious polarity and a recovery half-time of about 8 min. These findings have important implications for the nature of bacterial cell wall architecture and synthesis.
Collapse
Affiliation(s)
- Rut Carballido-López
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | | |
Collapse
|
214
|
Calonge TM, Arellano M, Coll PM, Perez P. Rga5p is a specific Rho1p GTPase-activating protein that regulates cell integrity in Schizosaccharomyces pombe. Mol Microbiol 2003; 47:507-18. [PMID: 12519200 DOI: 10.1046/j.1365-2958.2003.03312.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Schizosaccharomyces pombe Rho1p regulates (1,3)beta-d-glucan synthesis and is required for cell integrity maintenance and actin cytoskeleton organization, but nothing is known about the regulation of this protein. At least nine different S. pombe genes code for proteins predicted to act as Rho GTPase-activating proteins (GAPs). The results shown in this paper demonstrate that the protein encoded by the gene named rga5+ is a GAP specific for Rho1p. rga5+ overexpression is lethal and causes morphological alterations similar to those reported for Rho1p inactivation. rga5+ deletion is not lethal and causes a mild general increase in cell wall biosynthesis and morphological alterations when cells are grown at 37 degrees C. Upon mild overexpression, Rga5p localizes to growth areas and possesses both in vivo and in vitro GAP activity specific for Rho1p. Overexpression of rho1+ in rga5Delta cells is lethal, with a morphological phenotype resembling that of the overexpression of the constitutively active allele rho1G15V. In addition (1,3)beta-d-glucan synthase activity, regulated by Rho1p, is increased in rga5Delta cells and decreased in rga5-overexpressing cells. Moreover, the increase in (1,3)beta-d-glucan synthase activity caused by rho1+ overexpression is considerably higher in rga5Delta than in wild-type cells. Genetic interactions suggest that Rga5p is also important for the regulation of the other known Rho1p effectors, Pck1p and Pck2p.
Collapse
Affiliation(s)
- Teresa M Calonge
- Instituto de Microbiologia Bioquimica, Consejo Superior de Investigaciones Cientifical, Departamento de Microbiologia y Genética, Universidad de Salamanca, Edificio Departmental, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
215
|
Chew CS, Chen X, Parente JA, Tarrer S, Okamoto C, Qin HY. Lasp-1 binds to non-muscle F-actin in vitro and is localized within multiple sites of dynamic actin assembly in vivo. J Cell Sci 2002; 115:4787-99. [PMID: 12432067 DOI: 10.1242/jcs.00174] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Lasp-1 has been identified as a signaling molecule that is phosphorylated upon elevation of [cAMP]i in pancreas, intestine and gastric mucosa and is selectively expressed in cells within epithelial tissues. In the gastric parietal cell, cAMP-dependent phosphorylation induces the partial translocation of lasp-1 to the apically directed F-actin-rich canalicular membrane, which is the site of active HCl secretion. Lasp-1 is an unusual modular protein that contains an N-terminal LIM domain, a C-terminal SH3 domain and two internal nebulin repeats. Domain-based analyses have recently categorized this protein as an epithelial representative of the nebulin family, which also includes the actin binding, muscle-specific proteins, nebulin, nebulette and N-RAP. In this study, we show that lasp-1 binds to non-muscle filamentous (F) actin in vitro in a phosphorylation-dependent manner. In addition, we provide evidence that lasp-1 is concentrated within focal complexes as well as in the leading edges of lamellipodia and the tips of filopodia in non-transformed gastric fibroblasts. In actin pull-down assays, the apparent K(d) of bacterially expressed his-tagged lasp-1 binding to F-actin was 2 micro M with a saturation stoichiometry of approximately 1:7. Phosphorylation of recombinant lasp-1 with recombinant PKA increased the K(d) and decreased the B(max) for lasp-1 binding to F-actin. Microsequencing and site-directed mutagenesis localized the major in vivo and in vitro PKA-dependent phosphorylation sites in rabbit lasp-1 to S(99) and S(146). BLAST searches confirmed that both sites are conserved in human and chicken homologues. Transfection of lasp-1 cDNA encoding for alanine substitutions at S(99) and S(146), into parietal cells appeared to suppress the cAMP-dependent translocation of lasp-1 to the intracellular canalicular region. In gastric fibroblasts, exposure to the protein kinase C activator, PMA, was correlated with the translocation of lasp-1 into newly formed F-actin-rich lamellipodial extensions and nascent focal complexes. Since lasp-1 does not appear to be phosphorylated by PKC, these data suggest that other mechanisms in addition to cAMP-dependent phosphorylation can mediate the translocation of lasp-1 to regions of dynamic actin turnover. The localization of lasp-1 to these subcellular regions under a range of experimental conditions and the phosphorylation-dependent regulation of this protein in F-actin rich epithelial cells suggests an integral and possibly cell-specific role in modulating cytoskeletal/membrane-based cellular activities.
Collapse
Affiliation(s)
- Catherine S Chew
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912-3175, USA.
| | | | | | | | | | | |
Collapse
|
216
|
Abstract
Rho GTPases are molecular switches that control a wide variety of signal transduction pathways in all eukaryotic cells. They are known principally for their pivotal role in regulating the actin cytoskeleton, but their ability to influence cell polarity, microtubule dynamics, membrane transport pathways and transcription factor activity is probably just as significant. Underlying this biological complexity is a simple biochemical idea, namely that by switching on a single GTPase, several distinct signalling pathways can be coordinately activated. With spatial and temporal activation of multiple switches factored in, it is not surprising to find Rho GTPases having such a prominent role in eukaryotic cell biology.
Collapse
Affiliation(s)
- Sandrine Etienne-Manneville
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, Cancer Research UK Oncogene and Signal Transduction Group, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
217
|
Crespo JL, Hall MN. Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2002; 66:579-91, table of contents. [PMID: 12456783 PMCID: PMC134654 DOI: 10.1128/mmbr.66.4.579-591.2002] [Citation(s) in RCA: 267] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TOR (target of rapamycin) is a phosphatidylinositol kinase-related protein kinase that controls cell growth in response to nutrients. Rapamycin is an immunosuppressive and anticancer drug that acts by inhibiting TOR. The modes of action of TOR and rapamycin are remarkably conserved from S. cerevisiae to humans. The current understanding of TOR and rapamycin is derived largely from studies with S. cerevisiae. In this review, we discuss the contributions made by S. cerevisiae to understanding rapamycin action and TOR function.
Collapse
Affiliation(s)
- José L Crespo
- Division of Biochemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | |
Collapse
|
218
|
Sordat I, Decraene C, Silvestre T, Petermann O, Auffray C, Piétu G, Sordat B. Complementary DNA arrays identify CD63 tetraspanin and alpha3 integrin chain as differentially expressed in low and high metastatic human colon carcinoma cells. J Transl Med 2002; 82:1715-24. [PMID: 12480921 DOI: 10.1097/01.lab.0000044350.18215.0d] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
SUMMARY Malignant tumor cell invasion is determinant for metastasis to occur. E2 and C5 colon carcinoma cells that were derived from the parental Lovo line and that differ experimentally in spontaneous metastatic ability have been monitored for gene expression by cDNA arrays. Among genes found differentially expressed, the CD63 tetraspanin, not previously recognized in colon cancer progression, and the alpha3 integrin chain were both up-regulated in low metastatic E2 cells and were analyzed for their functional role using adhesion, migration, and invasion assays. Cell surface expression of CD63 and alpha3 integrin was about 2-fold higher in E2 than in C5 cells and confocal microscopy showed that CD63 and alpha3 integrin colocalized evenly on C5 cells whereas they concentrated at elongated tips of the low-metastatic more substrate-adhesive E2 cells. Antibody-interference experiments identified laminin-5 (LN-5) as a ligand interacting with the alpha3beta1/CD63 complex. Substrate-immobilized anti-CD63 antibodies enhanced tumor cell migration and invasion and induced prominent cell surface protrusions that were repressed by the PI3-kinase LY294002 inhibitor. Our results suggest that changes in the expression of surface CD63 and alpha3beta1 integrin interacting with LN-5 could affect migratory signals and the progression of the metastatic disease.
Collapse
Affiliation(s)
- Isabelle Sordat
- Experimental and Molecular Pathology Unit, Swiss Institute for Experimental Cancer Research, Epalinges, Switzerland
| | | | | | | | | | | | | |
Collapse
|
219
|
Abstract
The ability to sense and respond to shallow gradients of extracellular signals is remarkably similar in Dictyostelium discoideum amoebae and mammalian leukocytes. Chemoattractant receptors and G proteins are fairly evenly distributed along the cell surface. Receptor occupancy generates local excitatory and global inhibitory processes that balance to control the chemotactic response. Uniform stimuli transiently recruit PI3Ks to, and release PTEN from, the plasma membrane, while gradients of chemoattractant cause the two enzymes to bind to the membrane at the front and back of the cell, respectively. Interference with PI3Ks alters chemotaxis, and disruption of PTEN broadens PI localization and actin polymerization in parallel. Thus, counteracting signals from the upstream elements of the pathway converge to regulate the key enzymes of PI metabolism, localize these lipids, and direct pseudopod formation.
Collapse
Affiliation(s)
- Miho Iijima
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, USA
| | | | | |
Collapse
|
220
|
Desrivières S, Cooke FT, Morales-Johansson H, Parker PJ, Hall MN. Calmodulin controls organization of the actin cytoskeleton via regulation of phosphatidylinositol (4,5)-bisphosphate synthesis in Saccharomyces cerevisiae. Biochem J 2002; 366:945-51. [PMID: 12079494 PMCID: PMC1222839 DOI: 10.1042/bj20020429] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2002] [Revised: 06/17/2002] [Accepted: 06/21/2002] [Indexed: 11/17/2022]
Abstract
Phosphoinositides regulate a wide range of cellular processes, including proliferation, survival, cytoskeleton remodelling and membrane trafficking, yet the mechanisms controlling the kinases, phosphatases and lipases that modulate phosphoinositide levels are poorly understood. In the present study, we describe a mechanism controlling MSS4, the sole phosphatidylinositol (4)-phosphate 5-kinase in Saccharomyces cerevisiae. Mutations in MSS4 and CMD1, encoding the small Ca(2+)-binding protein calmodulin, confer similar phenotypes, including loss of viability and defects in endocytosis and in organization of the actin cytoskeleton. Overexpression of MSS4 suppresses the growth and actin defects of cmd1-226, a temperature-sensitive calmodulin mutant which is defective in the organization of the actin cytoskeleton. Finally, the cmd1-226 mutant exhibits reduced levels of phosphatidylinositol (4,5)-bisphosphate. These findings suggest that calmodulin positively controls MSS4 activity and thereby the actin cytoskeleton.
Collapse
Affiliation(s)
- Sylvane Desrivières
- Division of Biochemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, Switzerland
| | | | | | | | | |
Collapse
|
221
|
da Silva JS, Dotti CG. Breaking the neuronal sphere: regulation of the actin cytoskeleton in neuritogenesis. Nat Rev Neurosci 2002; 3:694-704. [PMID: 12209118 DOI: 10.1038/nrn918] [Citation(s) in RCA: 356] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The sprouting of neurites, which will later become axons and dendrites, is an important event in early neuronal differentiation. Studies in living neurons indicate that neuritogenesis begins immediately after neuronal commitment, with the activation of membrane receptors by extracellular cues. These receptors activate intracellular cascades that trigger changes in the actin cytoskeleton, which promote the initial breakdown of symmetry. Then, through the regulation of gene transcription, and of microtubule and membrane dynamics, the newly formed neurite becomes stabilized. A key challenge is to define the molecular machinery that regulates the actin cytoskeleton during initial neurite sprouting. We propose that analysing the molecules involved in actin-dependent mechanisms in non-neuronal systems, such as budding yeast and migrating fibroblasts, could help to uncover the secrets of neuritogenesis.
Collapse
Affiliation(s)
- Jorge Santos da Silva
- Cavalieri Ottolenghi Scientific Institute, Universita Degli Studi di Torino, A.O. San Luigi Gonzaga, Regione Gonzole 10, 10024 Orbassano, Torino, Italy
| | | |
Collapse
|
222
|
Schmidt A, Schmelzle T, Hall MN. The RHO1-GAPs SAC7, BEM2 and BAG7 control distinct RHO1 functions in Saccharomyces cerevisiae. Mol Microbiol 2002; 45:1433-41. [PMID: 12207708 DOI: 10.1046/j.1365-2958.2002.03110.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the small GTPase RHO1 plays an essential role in the control of cell wall synthesis and organization of the actin cytoskeleton. Several regulators for RHO1 are known, including the GTPase-activating proteins (GAPs) SAC7 and BEM2. Here we show that BAG7, identified as the closest homologue of SAC7, also acts as a GAP for RHO1 in vitro and in vivo. Furthermore, we find that BAG7, SAC7, and BEM2 are functionally different in vivo. Overexpression of BAG7 or SAC7,but not BEM2, suppresses the cold sensitivity of a sac7 mutation and the lethality of RHO1 hyperactivation in response to cell wall damage. In contrast, overexpression of BEM2 or SAC7, but not BAG7, downregulates the RHO1-controlled PKC1-MPK1 pathway, and disruption of BEM2 or SAC7, but not BAG7, results in increased MPK1 activation. We conclude that BEM2 and SAC7, but not BAG7, are involved in the control of the RHO1-mediated activation of MPK1, whereas BAG7 and SAC7, but not BEM2, are involved in the regulation of other RHO1 functions. This suggests that different RHO1GAPs control different RHO1 effector pathways, thus ensuring their individual regulation at the appropriate place and time.
Collapse
Affiliation(s)
- Anja Schmidt
- Department of Biochemistry, Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | |
Collapse
|
223
|
Sangwan V, Orvar BL, Beyerly J, Hirt H, Dhindsa RS. Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 31:629-38. [PMID: 12207652 DOI: 10.1046/j.1365-313x.2002.01384.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mitogen-activated protein kinases (MAPKs) appear to be ubiquitously involved in signal transduction during eukaryotic responses to extracellular stimuli. In plants, no heat shock-activated MAPK has so far been reported. Also, whereas cold activates specific plant MAPKs such as alfalfa SAMK, mechanisms of such activation are unknown. Here, we report a heat shock-activated MAPK (HAMK) immunologically related to ERK (Extracellular signal-Regulated Kinase) superfamily of protein kinases. Molecular mechanisms of heat-activation of HAMK and cold-activation of SAMK were investigated. We show that cold-activation of SAMK requires membrane rigidification, whereas heat-activation of HAMK occurs through membrane fluidization. The temperature stress- and membrane structure-dependent activation of both SAMK and HAMK is mimicked at 25 degrees C by destabilizers of microfilaments and microtubules, latrunculin B and oryzalin, respectively; but is blocked by jasplakinolide, a stabilizer of actin microfilaments. Activation of SAMK or HAMK by temperature, chemically modulated membrane fluidity, or by cytoskeleton destabilizers is inhibited by blocking the influx of extracellular calcium. Activation of SAMK or HAMK is also prevented by an antagonist of calcium-dependent protein kinases (CDPKs). In summary, our data indicate that cold and heat are sensed by structural changes in the plasma membrane that translates the signal via cytoskeleton, Ca2+ fluxes and CDPKs into the activation of distinct MAPK cascades.
Collapse
Affiliation(s)
- Veena Sangwan
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | | | | | | | | |
Collapse
|
224
|
Abstract
Plants lack the Rho and Rac/Cdc42 GTPases that are so important in diverse signal transduction processes in animals. A plant-specific group of Rho-like proteins - Rops - shows striking similarities to their animal relatives, but also exciting differences in their regulation and signal transduction.
Collapse
Affiliation(s)
- Jaideep Mathur
- University of Köln, Botanical Institute III, Gyrhofstr. 15, D-50931, Köln, Germany
| | | |
Collapse
|
225
|
Schweitzer JK, D'Souza-Schorey C. Localization and activation of the ARF6 GTPase during cleavage furrow ingression and cytokinesis. J Biol Chem 2002; 277:27210-6. [PMID: 12016212 DOI: 10.1074/jbc.m201569200] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ARF6 GTPase mediates cell shape changes in interphase cells through its effects on membrane cycling and actin remodeling. In this study, we focus our attention on the dynamics of cell division and present evidence supporting a novel role for ARF6 during cleavage furrow ingression and cytokinesis. We demonstrate that endogenous ARF6 redistributes during mitosis and concentrates near the cleavage furrow during telophase. Constitutively activated ARF6 localizes to the plasma membrane at the site of cleavage furrow ingression and midbody formation, and dominant negative ARF6 remains cytoplasmic. By using a novel pull-down assay for ARF6-GTP, we find an abrupt, but transient, increase in ARF6-GTP levels as cells progress through cytokinesis. Whereas high levels of expression of a GTPase-defective ARF6 mutant induce aberrant phenotypes in cells at cytokinesis, cells expressing low levels of ARF6 mutants do not display a significant mitotic delay or cytokinesis defect, presumably due to compensatory or redundant mechanisms that allow cytokinesis to proceed when the ARF6 GTPase cycle is disrupted. Finally, actin accumulation and phospholipid metabolism at the cleavage furrow are unchanged in cells expressing ARF6 mutants, suggesting that ARF6 may be involved in membrane remodeling during cytokinesis via effector pathways that are distinct from those operative in interphase cells.
Collapse
Affiliation(s)
- Jill Kuglin Schweitzer
- Department of Biological Sciences, Walther Cancer Institute, Galvin Life Sciences Building, University of Notre Dame, Notre Dame, IN 46556, USA
| | | |
Collapse
|
226
|
Arai A, Spencer JA, Olson EN. STARS, a striated muscle activator of Rho signaling and serum response factor-dependent transcription. J Biol Chem 2002; 277:24453-9. [PMID: 11983702 DOI: 10.1074/jbc.m202216200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Changes in actin dynamics influence diverse cellular processes and couple the actin-based cytoskeleton to changes in gene transcription. Members of the Rho GTPase family regulate cytoskeletal organization by stimulating actin polymerization and stress fiber formation when activated by extracellular signaling. The transcriptional activity of serum response factor (SRF) is stimulated in response to changes in actin dynamics and Rho signaling, but the proteins that mediate this phenomenon have not been fully identified. We describe a novel, evolutionarily conserved actin-binding protein, called STARS (striated muscle activator of Rho signaling), that is expressed specifically in cardiac and skeletal muscle cells. STARS binds to the I-band of the sarcomere and to actin filaments in transfected cells, where it activates Rho-signaling events. STARS stimulates the transcriptional activity of SRF through a mechanism that requires actin binding and involves Rho GTPase activation. STARS provides a potential mechanism for specifically enhancing Rho-dependent transcription in muscle cells and for linking changes in actin dynamics to gene transcription.
Collapse
Affiliation(s)
- Akiko Arai
- Department of Molecular Biology, University of Texas, Southwestern Medical Center at Dallas, Dallas, Texas 75390-9148, USA
| | | | | |
Collapse
|
227
|
Tebar F, Villalonga P, Sorkina T, Agell N, Sorkin A, Enrich C. Calmodulin regulates intracellular trafficking of epidermal growth factor receptor and the MAPK signaling pathway. Mol Biol Cell 2002; 13:2057-68. [PMID: 12058069 PMCID: PMC117624 DOI: 10.1091/mbc.01-12-0571] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) is a member of the tyrosine kinase receptor family involved in signal transduction and the regulation of cellular proliferation and differentiation. It is also a calmodulin-binding protein. To examine the role of calmodulin in the regulation of EGFR, the effect of calmodulin antagonist, W-13, on the intracellular trafficking of EGFR and the MAPK signaling pathway was analyzed. W-13 did not alter the internalization of EGFR but inhibited its recycling and degradation, thus causing the accumulation of EGF and EGFR in enlarged early endosomal structures. In addition, we demonstrated that W-13 stimulated the tyrosine phosphorylation of EGFR and consequent recruitment of Shc adaptor protein with EGFR, presumably through inhibition of the calmodulin-dependent protein kinase II (CaM kinase II). W-13-mediated EGFR phosphorylation was blocked by metalloprotease inhibitor, BB94, indicating a possible involvement of shedding in this process. However, MAPK activity was decreased by W-13; dissection of this signaling pathway showed that W-13 specifically interferes with Raf-1 activity. These data are consistent with the regulation of EGFR by calmodulin at several steps of the receptor signaling and trafficking pathways.
Collapse
Affiliation(s)
- Francesc Tebar
- Departament de Biologia Cel.lular, Facultat de Medicina, Institut d'Investigacions August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain 08036
| | | | | | | | | | | |
Collapse
|
228
|
Ballarin L, Scanferla M, Cima F, Sabbadin A. Phagocyte spreading and phagocytosis in the compound ascidian Botryllus schlosseri: evidence for an integrin-like, RGD-dependent recognition mechanism. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2002; 26:345-354. [PMID: 11888649 DOI: 10.1016/s0145-305x(01)00082-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The involvement of integrins in phagocyte spreading and phagocytosis was investigated in the compound ascidian Botryllus schlosseri. The number of spreading cells was significantly reduced when adhesion occurred in the presence of the tetrapeptide Arg--Gly--Asp--Ser (RGDS), but not of Arg--Gly--Glu--Ser (RGES) indicating the involvement of RGD-mediated adhesion mechanisms in phagocyte spreading. The significant decrease of the fraction of spreading cells in the presence of Botryllus blood plasma suggests the presence of RGD-containing molecules in the blood of our species. The increase in the same index when blood plasma-coated slides as well as fibrinogen- and fibronectin-coated coverslips were used, fits with the above hypothesis. Adhesion in the presence of RGDS leads to a consistent alteration of the actin cytoskeleton, in agreement with the known role of integrin adhesion in microfilament organization. Phagocytosis was greatly reduced by RGDS in the incubation medium, but not by RGES, and was significantly increased by coating yeast cells with fibronectin or blood plasma. Both spreading and phagocytic capability were severely inhibited by wortmannin, suggesting the importance of phosphatidylinositol-3-kinase in integrin-mediated signal transduction in ascidians.
Collapse
Affiliation(s)
- Loriano Ballarin
- Department of Biology, University of Padova, Via U. Bassi 58/B, 35131, Padova, Italy.
| | | | | | | |
Collapse
|
229
|
Katoh H, Harada A, Mori K, Negishi M. Socius is a novel Rnd GTPase-interacting protein involved in disassembly of actin stress fibers. Mol Cell Biol 2002; 22:2952-64. [PMID: 11940653 PMCID: PMC133765 DOI: 10.1128/mcb.22.9.2952-2964.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Rho family small GTPases are key regulators of the actin cytoskeleton in various cell types. The Rnd proteins, Rnd1, Rnd2, and Rnd3/RhoE, have been recently identified as new members of the Rho family of GTPases, and expression of Rnd1 or Rnd3 in fibroblasts causes the disassembly of actin stress fibers and the retraction of the cell body to produce extensively branching cellular processes. Here we have performed a yeast two-hybrid screening by using Rnd1 as bait and identified a novel protein that specifically binds to Rnd GTPases. We named this protein Socius. Socius directly binds to Rnd GTPases through its COOH-terminal region. When transfected into COS-7 cells, Socius is translocated to the cell periphery in response to Rnd1 and Rnd3 and colocalized with the GTPases. While expression of wild-type Socius in Swiss 3T3 fibroblasts has little effect on the actin cytoskeleton, the expression of a membrane-targeted form of Socius, containing a COOH-terminal farnesylation motif (Socius-CAAX), induces a dramatic loss of stress fibers. The inhibitory effect of Socius-CAAX on stress fiber formation is enhanced by truncation of its NH(2) terminus. On the other hand, the expression of Socius-CAAX or its NH(2) terminus-truncated form suppresses the Rnd-induced retraction of the cell body and the production of extensively branching cellular processes, although the disassembly of stress fibers is observed. We propose that Socius participates in the Rnd GTPase-induced signal transduction pathways, leading to reorganization of the actin cytoskeleton.
Collapse
Affiliation(s)
- Hironori Katoh
- Laboratory of Molecular Neurobiology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | | | | | | |
Collapse
|
230
|
Abstract
Net1 is a guanine nucleotide exchange factor specific for the small GTPase Rho. Oncogenic activation of Net1 occurs by truncation of the N-terminal part of the protein, which functions as a negative regulatory domain. Here, we have investigated the mechanism of Net1 regulation via its N terminus. We find that Net1 localizes to the nucleus, whereas oncogenic Net1 is found in the cytoplasm. Nuclear import of Net1 is mediated by two nuclear localization signals present in the N terminus of the protein, and forced cytoplasmic localization of Net1 is sufficient to activate Rho. In addition, the pleckstrin homology (PH) domain of Net1 acts as a nuclear export signal. Because an amino acid substitution in the PH domain that inhibits guanine nucleotide exchange factor activity does not inhibit nuclear export, we conclude that this PH domain has at least two functions. Together, our results suggest that Net1 can shuttle in and out of the nucleus, and that activation of Rho by Net1 is controlled by changes in its subcellular localization.
Collapse
Affiliation(s)
- Anja Schmidt
- Medical Research Council Laboratory for Molecular Cell Biology and Cancer Research Campaign Oncogene and Signal Transduction Group, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
231
|
Mechoulam R, Spatz M, Shohami E. Endocannabinoids and neuroprotection. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:re5. [PMID: 11972360 DOI: 10.1126/stke.2002.129.re5] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Traumatic brain injury (TBI) releases harmful mediators that lead to secondary damage. On the other hand, neuroprotective mediators are also released, and the balance between these classes of mediators determines the final outcome after injury. Recently, it was shown that the endogenous brain cannabinoids anandamide and 2-Arachidonoyl glycerol (2-AG) are also formed after TBI in rat and mouse respectively, and when administered after TBI, they reduce brain damage. In the case of 2-AG, better results are seen when it is administered together with related fatty acid glycerol esters. Significant reduction of brain edema, better clinical recovery, and reduced infarct volume and hippocampal cell death are noted. This new neuroprotective mechanism may involve inhibition of transmitter release and of inflammatory response. 2-AG is also a potent modulator of vascular tone, and counteracts the endothelin (ET-1)-induced vasoconstriction that aggravates brain damage; it may thus help to restore blood supply to the injured brain.
Collapse
Affiliation(s)
- R Mechoulam
- Department of Medicinal Chemistry and Natural Products, Hebrew University Medical Faculty, Jerusalem 91120, Israel.
| | | | | |
Collapse
|
232
|
Edlund S, Landström M, Heldin CH, Aspenström P. Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol Biol Cell 2002; 13:902-14. [PMID: 11907271 PMCID: PMC99608 DOI: 10.1091/mbc.01-08-0398] [Citation(s) in RCA: 337] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) is a potent regulator of cell growth and differentiation in many cell types. The Smad signaling pathway constitutes a main signal transduction route downstream of TGF-beta receptors. We studied TGF-beta-induced rearrangements of the actin filament system and found that TGF-beta 1 treatment of PC-3U human prostate carcinoma cells resulted in a rapid formation of lamellipodia. Interestingly, this response was shown to be independent of the Smad signaling pathway; instead, it required the activity of the Rho GTPases Cdc42 and RhoA, because ectopic expression of dominant negative mutant Cdc42 and RhoA abrogated the response. Long-term stimulation with TGF-beta 1 resulted in an assembly of stress fibers; this response required both signaling via Cdc42 and RhoA, and Smad proteins. A known downstream effector of Cdc42 is p38(MAPK); treatment of the cells with the p38(MAPK) inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(pyridyl)1H-imidazole (SB203580), as well as ectopic expression of a kinase-inactive p38(MAPK), abrogated the TGF-beta-induced actin reorganization. Moreover, treatment of cells with the inhibitors of the RhoA target-protein Rho-associated coiled-coil kinase (+)-R-trans-4-(aminoethyl)-N-(4-pyridyl) cyclohexanecarboxamide (Y-27632) and 1-5(-isoquinolinesulfonyl)homopiperazine (HA-1077), as well as ectopic expression of kinase-inactive Rho coiled-coil kinase-1, abrogated the TGF-beta 1-induced formation of stress fibers. Collectively, these data indicate that TGF-beta-induced membrane ruffles occur via Rho GTPase-dependent pathways, whereas long-term effects require cooperation between Smad and Rho GTPase signaling pathways.
Collapse
Affiliation(s)
- Sofia Edlund
- Ludwig Institute for Cancer Research, Biomedical Center, S-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
233
|
Schmelzle T, Helliwell SB, Hall MN. Yeast protein kinases and the RHO1 exchange factor TUS1 are novel components of the cell integrity pathway in yeast. Mol Cell Biol 2002; 22:1329-39. [PMID: 11839800 PMCID: PMC134704 DOI: 10.1128/mcb.22.5.1329-1339.2002] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The PKC1-associated mitogen-activated protein (MAP) kinase pathway of Saccharomyces cerevisiae regulates cell integrity by controlling the actin cytoskeleton and cell wall synthesis. Activation of PKC1 occurs via the GTPase RHO1 and the kinase pair PKH1 and PKH2. Here we report that YPK1 and YPK2, an essential pair of homologous kinases and proposed downstream effectors of PKH and sphingolipids, are also regulators of the PKC1-controlled MAP kinase cascade. ypk mutants display random distribution of the actin cytoskeleton and severely reduced activation of the MAP kinase MPK1. Upregulation of the RHO1 GTPase switch or the PKC1 effector MAP kinase pathway suppresses the growth and actin defects of ypk cells. ypk lethality is also suppressed by overexpression of an uncharacterized gene termed TUS1. TUS1 is a novel RHO1 exchange factor that contributes to cell wall integrity-mediated modulation of RHO1 activity. Thus, TUS1 and the YPKs add to the growing complexity of RHO1 and PKC1 regulation in the cell integrity signaling pathway. Furthermore, our findings suggest that the YPKs are a missing link between sphingolipid signaling and the cell integrity pathway.
Collapse
Affiliation(s)
- Tobias Schmelzle
- Department of Biochemistry, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | |
Collapse
|
234
|
Sharpless KE, Harris SD. Functional characterization and localization of the Aspergillus nidulans formin SEPA. Mol Biol Cell 2002; 13:469-79. [PMID: 11854405 PMCID: PMC65642 DOI: 10.1091/mbc.01-07-0356] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Formins are a family of multidomain scaffold proteins involved in actin-dependent morphogenetic events. In Aspergillus nidulans, the formin SEPA participates in two actin-mediated processes, septum formation and polarized growth. In this study, we use a new null mutant to demonstrate that SEPA is required for the formation of actin rings at septation sites. In addition, we find that a functional SEPA::GFP fusion protein localizes simultaneously to septation sites and hyphal tips, and that SEPA colocalizes with actin at each site. Using live imaging, we show that SEPA localization at septation sites and hyphal tips is dynamic. Notably, at septation sites, SEPA forms a ring that constricts as the septum is deposited. Moreover, we demonstrate that actin filaments are required to maintain the proper localization pattern of SEPA, and that the amino-terminal half of SEPA is sufficient for localization at septation sites and hyphal tips. In contrast, only localization at septation sites is affected by loss of the sepH gene product. We propose that specific morphological cues activate common molecular pathways to direct SEPA localization to the appropriate morphogenetic site.
Collapse
Affiliation(s)
- Kathryn E Sharpless
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030-3205, USA
| | | |
Collapse
|
235
|
She BR, Liou GG, Lin-Chao S. Association of the growth-arrest-specific protein Gas7 with F-actin induces reorganization of microfilaments and promotes membrane outgrowth. Exp Cell Res 2002; 273:34-44. [PMID: 11795944 DOI: 10.1006/excr.2001.5435] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The growth-arrest-specific gene, Gas7, is required for neurite outgrowth in cerebellar neurons. Here we report that Gas7 can induce the formation of extended cellular processes in NIH3T3 cells by interacting with actin and mediating reorganization of microfilaments. The Gas 7 protein, which increased markedly during growth arrest of NIH3T3 cells and persisted transiently at high levels upon reentry of cells into the cell cycle, localized near the plasma membrane and selectively colocalized with microfilaments in membrane ruffles. Process extensions induced by ectopic overexpression of Gas7 were blocked by the actin-depolymerizing agent cytochalasin D, suggesting that membrane extensions produced by Gas7 require actin polymerization. Association of endogenous Gas7 protein with microfilaments was verified by F-actin affinity chromatography; direct binding of purified His-Gas7 to actin also was demonstrated and shown to be mediated by the Gas7 C-terminal domain. Similarly, localization of Gas7 in membrane ruffles was mediated by the C-terminal domain, although neither this region nor the N-terminal domain was individually sufficient to induce process formation. Biochemical studies and electron microscopy showed that both full-length Gas7 protein and its C-terminal region can promote actin assembly as well as the crosslinking of actin filaments. We propose that Gas7 localized near the plasma membrane induces the assembly of actin and the membrane outgrowth.
Collapse
Affiliation(s)
- Bin-Ru She
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan
| | | | | |
Collapse
|
236
|
McIntyre M, Müller C, Dynesen J, Nielsen J. Metabolic engineering of the morphology of Aspergillus. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2002; 73:103-28. [PMID: 11816809 DOI: 10.1007/3-540-45300-8_6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The morphology of filamentous organisms in submerged cultivation is a subject of considerable interest, notably due to the influence of morphology on process productivity. The relationship between process parameters and morphology is complex: the interactions between process variables, productivity, rheology, and macro- and micro-morphology create difficulties in defining and separating cause and effect. Additionally, organism physiology contributes a further level of complexity which means that the desired morphology (for optimum process performance and productivity) is likely to be process specific. However, a number of studies with increasingly powerful image analysis systems have yielded valuable information on what these desirable morphologies are likely to be. In parallel, studies on a variety of morphological mutants means that information on the genes involved in morphology is beginning to emerge. Indeed, we are now beginning to understand how morphology may be controlled at the molecular level. Coupling this knowledge with the tools of molecular biology means that it is now possible to design and engineer the morphology of organisms for specific bioprocesses. Tailor making strains with defined morphologies represents a clear advantage in optimization of submerged bioprocesses with filamentous organisms.
Collapse
Affiliation(s)
- M McIntyre
- Center for Process Biotechnology, Department of Biotechnology, Building 223, Technical University of Denmark, 2800 Lyngby, Denmark
| | | | | | | |
Collapse
|
237
|
Takahashi H, Koshimizu U, Miyazaki JI, Nakamura T. Impaired spermatogenic ability of testicular germ cells in mice deficient in the LIM-kinase 2 gene. Dev Biol 2002; 241:259-72. [PMID: 11784110 DOI: 10.1006/dbio.2001.0512] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
LIM-Kinase (LIMK), including LIMK1 and LIMK2, is the only known catalytic protein among LIM-family molecules. It is well known that LIMK phosphorylates and inactivates cofilin, an actin-depolymerizing factor regulating actin reorganization, while in vivo functions have remained to be elucidated. In the present study, we generated Limk2 gene-deficient mice in which three LIMK2 isoforms were disrupted in a Cre-mediated fashion. Impaired cofilin phosphorylation was clearly observed in Limk2-/- fibroblasts stimulated with bradykinin or lysophosphatidic acid, thereby suggesting that Cdc42 or Rho-dependent LIMK activation did not occur. However, Limk2-/- mice did not exhibit embryonic lethality or any phenotypic abnormalities in postnatal growth and development, except for spermatogenesis in the testis. The testes of Limk2-/- mice were smaller in size and partial degeneration of spermatogenic cells in the seminiferous tubules was apparent in association with increased apoptosis. In addition, the viability of Limk2-/- spermatogenic cells, when cultured under stressed conditions, was diminished. Furthermore, the potential for germ cells to differentiate in a regenerative state was severely impaired in Limk2-/- testis. Experimental hyperthermia induced impairment of ADF/cofilin phosphorylation and the formation of intranuclear cofilin inclusions in mutant germ cells. Based on these findings, we propose that LIMK2, especially the testis-specific isoform tLIMK2, plays an important role in proper progression of spermatogenesis by regulation of cofilin activity and/or localization in germ cells.
Collapse
Affiliation(s)
- Hisaaki Takahashi
- Division of Molecular Regenerative Medicine, Course of Advanced Medicine B7, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | | | | | | |
Collapse
|
238
|
Cheng CY, Mruk DD. Cell Junction Dynamics in the Testis: Sertoli-Germ Cell Interactions and Male Contraceptive Development. Physiol Rev 2002; 82:825-74. [PMID: 12270945 DOI: 10.1152/physrev.00009.2002] [Citation(s) in RCA: 433] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Spermatogenesis is an intriguing but complicated biological process. However, many studies since the 1960s have focused either on the hormonal events of the hypothalamus-pituitary-testicular axis or morphological events that take place in the seminiferous epithelium. Recent advances in biochemistry, cell biology, and molecular biology have shifted attention to understanding some of the key events that regulate spermatogenesis, such as germ cell apoptosis, cell cycle regulation, Sertoli-germ cell communication, and junction dynamics. In this review, we discuss the physiology and biology of junction dynamics in the testis, in particular how these events affect interactions of Sertoli and germ cells in the seminiferous epithelium behind the blood-testis barrier. We also discuss how these events regulate the opening and closing of the blood-testis barrier to permit the timely passage of preleptotene and leptotene spermatocytes across the blood-testis barrier. This is physiologically important since developing germ cells must translocate across the blood-testis barrier as well as traverse the seminiferous epithelium during their development. We also discuss several available in vitro and in vivo models that can be used to study Sertoli-germ cell anchoring junctions and Sertoli-Sertoli tight junctions. An in-depth survey in this subject has also identified several potential targets to be tackled to perturb spermatogenesis, which will likely lead to the development of novel male contraceptives.
Collapse
Affiliation(s)
- C Yan Cheng
- Population Council, Center for Biomedical Research, New York, New York 10021, USA.
| | | |
Collapse
|
239
|
Wang J, Guan E, Roderiquez G, Calvert V, Alvarez R, Norcross MA. Role of tyrosine phosphorylation in ligand-independent sequestration of CXCR4 in human primary monocytes-macrophages. J Biol Chem 2001; 276:49236-43. [PMID: 11668182 DOI: 10.1074/jbc.m108523200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The chemokine stromal cell-derived factor (SDF)-1 and its receptor, CXCR4, play important roles in human immunodeficiency virus type 1 (HIV-1) pathophysiology, leukocyte trafficking, inflammation, hematopoiesis, embryogenesis, angiogenesis, and cancer metastasis. The effects of cytokines on the regulation of CXCR4 function were investigated in human primary monocytes-macrophages. The expression of functional CXCR4 on the cell surface was demonstrated by the detection of ligand-induced Ca(2+) mobilization, chemotaxis, and ligand-induced receptor endocytosis. Surface CXCR4 expression was down-regulated by cytokines interleukin-4 (IL-4), IL-13, and granulocyte-macrophage colony-stimulating factor (GM-CSF) and up-regulated by IL-10 and transforming growth factor-beta 1. Down-regulation was mediated post-translationally, in the absence of protein degradation, through an endocytotic mechanism. In contrast to SDF-1 alpha-induced CXCR4 endocytosis, cytokine-induced endocytosis of this receptor was independent of actin filament polymerization. GM-CSF increased the expression of G protein-coupled receptor kinase 3 (GRK3), beta-arrestin-1, Pyk2, and focal adhesion kinase (FAK). Cytokine treatment also increased the total and tyrosine-specific phosphorylation of CXCR4 as well as the phosphorylation of FAK on tyrosine 397. It also induced the formation of GRK3.CXCR4 or FAK.CXCR4 complexes. Infection of macrophages by primary R5X4 and X4 isolates of HIV-1 was inhibited by IL-4, IL-13, and GM-CSF, an effect that was associated with down-regulation of surface CXCR4 expression. These data indicate that ligand-dependent and ligand-independent endocytoses of CXCR4 are mediated by different mechanisms. Cytokine-induced endocytosis of chemokine receptors may be of therapeutic value in HIV-1 infection, inflammation, tumor metastasis, and defective hematopoiesis.
Collapse
Affiliation(s)
- J Wang
- Laboratory of Gene Regulation, Division of Therapeutic Proteins, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | |
Collapse
|
240
|
Karoui ME, Errington J. Isolation and characterization of topological specificity mutants of minD in Bacillus subtilis. Mol Microbiol 2001; 42:1211-21. [PMID: 11886553 DOI: 10.1046/j.1365-2958.2001.02710.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In rod-shaped bacteria such as Bacillus subtilis, division site selection is mediated by MinC and MinD, which together function as a division inhibitor. Topological specificity is imposed by DivIVA, which ensures that MinCD specifically inhibits division close to the cell poles, while allowing division at mid-cell. MinD plays a central role in this process, as it positions and activates MinC and is dependent on DivIVA for its own positioning at the poles. To investigate MinD activities further, we have constructed and analysed a collection of minD mutants. Mutations in the conserved ATPase motifs lead to an inactive protein, possibly unable to oligomerize, but which nevertheless retains some affinity for the cell membrane. Several mutations affecting the mid- to C-terminal parts of MinD led to a protein probably unable to interact with DivIVA, but that could still stimulate division inhibition by MinC. These findings suggest that the ATPase activity of MinD is necessary for all its functions (possibly in part by controlling the oligomerization state of the protein). The other mutations may identify a surface of MinD involved in its interactions with DivIVA and a possible mechanism for control of MinD by DivIVA.
Collapse
Affiliation(s)
- M E Karoui
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
241
|
Abstract
Atomic force microscopy has emerged as a powerful tool for characterizing single biological macromolecules, macromolecular assemblies, and whole cells in aqueous buffer, in real time, and at molecular-scale spatial and force resolution. Many of the central elements of intracellular transport are tens to hundreds of nanometers in size and highly dynamic. Thus, atomic force microscopy provides a valuable means of addressing questions of structure and mechanism in intracellular transport. We begin this review of recent efforts to apply atomic force microscopy to problems in intracellular transport by discussing the technical principles behind atomic force microscopy. We then turn to three specific areas in which atomic force microscopy has been applied to problems with direct implications for intracellular trafficking: cytoskeletal structure and dynamics, vesicular transport, and receptor-ligand interactions. In each case, we discuss studies which use both intact cellular elements and reconstituted models. While many technical challenges remain, these studies point to several areas where atomic force microscopy can be used to provide valuable insight into intracellular transport at exquisite spatial and energetic resolution.
Collapse
Affiliation(s)
- S Kumar
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
242
|
Dantán-González E, Rosenstein Y, Quinto C, Sánchez F. Actin monoubiquitylation is induced in plants in response to pathogens and symbionts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:1267-73. [PMID: 11763124 DOI: 10.1094/mpmi.2001.14.11.1267] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Most dramatic examples of actin reorganization have been described during host-microbe interactions. Plasticity of actin is, in part, due to posttranslational modifications such as phosphorylation or ubiquitylation. Here, we show for the first time that actins found in root nodules of Phaseolus vulgaris are modified transiently during nodule development by monoubiquitylation. This finding was extended to root nodules of other legumes and to other plants infected with mycorrhiza or plant pathogens such as members of the genera Pseudomonas and Phytophthora. However, neither viral infections nor diverse stressful conditions (heat shock, wounding, or osmotic stress) induced this response. Additionally, this phenomenon was mimicked by the addition of a yeast elicitor or H2O2 to Phaseolus vulgaris suspension culture cells. This modification seems to provide increased stability of the microfilaments to proteolytic degradation and seems to be found in fractions in which the actin cytoskeleton is associated with membranes. All together, these data suggest that actin monoubiquitylation may be considered an effector mechanism of a general plant response against microbes.
Collapse
Affiliation(s)
- E Dantán-González
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, UNAM, Cuernavaca Morelos, México
| | | | | | | |
Collapse
|
243
|
Johnson-Henry K, Wallace JL, Basappa NS, Soni R, Wu GK, Sherman PM. Inhibition of attaching and effacing lesion formation following enteropathogenic Escherichia coli and Shiga toxin-producing E. coli infection. Infect Immun 2001; 69:7152-8. [PMID: 11598092 PMCID: PMC100109 DOI: 10.1128/iai.69.11.7152-7158.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) and Shiga toxin-producing E. coli (STEC) induce cytoskeletal changes in infected epithelial cells. To further characterize host cytosolic responses to infection, a series of specific cell-signaling inhibitors were employed. Initial bacterial adhesion to HEp-2 epithelial cells was not reduced, whereas alpha-actinin accumulation in infected cells was blocked by a phosphoinositide-specific phospholipase C inhibitor (ET-18-OCH3), phosphoinositide 3-kinase inhibitors (wortmannin and LY294002), and a 5-lipoxygenase inhibitor, nordihydroguaretic acid. A cyclooxygenase-2 inhibitor (NS-398), however, did not block alpha-actinin reorganization in response to EPEC and STEC infections. Understanding signal transduction responses to enteric pathogens could provide the basis for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- K Johnson-Henry
- Research Institute, Hospital for Sick Children, Departments of Paediatrics and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
244
|
Richnau N, Aspenström P. Rich, a rho GTPase-activating protein domain-containing protein involved in signaling by Cdc42 and Rac1. J Biol Chem 2001; 276:35060-70. [PMID: 11431473 DOI: 10.1074/jbc.m103540200] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A previously unidentified Rho GTPase-activating protein (GAP) domain-containing protein was found in a yeast two-hybrid screen for cDNAs encoding proteins binding to the Src homology 3 domain of Cdc42-interacting protein 4 (CIP4). The protein was named RICH-1 (RhoGAP interacting with CIP4 homologues), and, in addition to the RhoGAP domain, it contained an N-terminal domain with endophilin homology and a C-terminal proline-rich domain. Transient transfections of RICH-1 indicated that it bound to CIP4 in vivo, as shown by co-immunoprecipitation experiments, as well as co-localization assays. In vitro assays demonstrated that the RhoGAP domain of RICH-1 catalyzed GTP hydrolysis on Cdc42 and Rac1, but not on RhoA. Ectopic expression of the RhoGAP domain as well as the full-length protein interfered with platelet-derived growth factor BB-induced membrane ruffling, but not with serum-induced stress fiber formation, further emphasizing the notion that, in vivo, RICH-1 is a GAP for Cdc42 and Rac1.
Collapse
Affiliation(s)
- N Richnau
- Ludwig Institute for Cancer Research, Biomedical Center, Box 595, S-751 24 Uppsala, Sweden
| | | |
Collapse
|
245
|
Abstract
It was thought until recently that bacteria lack the actin or tubulin filament networks that organize eukaryotic cytoplasm. However, we show here that the bacterial MreB protein assembles into filaments with a subunit repeat similar to that of F-actin-the physiological polymer of eukaryotic actin. By elucidating the MreB crystal structure we demonstrate that MreB and actin are very similar in three dimensions. Moreover, the crystals contain protofilaments, allowing visualization of actin-like strands at atomic resolution. The structure of the MreB protofilament is in remarkably good agreement with the model for F-actin, showing that the proteins assemble in identical orientations. The actin-like properties of MreB explain the finding that MreB forms large fibrous spirals under the cell membrane of rod-shaped cells, where they are involved in cell-shape determination. Thus, prokaryotes are now known to possess homologues both of tubulin, namely FtsZ, and of actin.
Collapse
|
246
|
Zeng C, Morrison AR. Disruption of the actin cytoskeleton regulates cytokine-induced iNOS expression. Am J Physiol Cell Physiol 2001; 281:C932-40. [PMID: 11502570 DOI: 10.1152/ajpcell.2001.281.3.c932] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin-1beta (IL-1beta) induces the inducible nitric oxide synthase (iNOS), resulting in the release of nitric oxide (NO) from glomerular mesangial cells. In this study, we demonstrated that disruption of F-actin formation by sequestration of G-actin with the toxin latrunculin B (LatB) dramatically potentiated IL-1beta-induced iNOS protein expression in a dose-dependent manner. LatB by itself had little or no effect on iNOS expression. Staining of F-actin with nitrobenzoxadiazole (NBD)-phallacidin demonstrated that LatB significantly impaired F-actin stress fiber formation. Jasplakinolide (Jasp), which binds to and stabilizes F-actin, suppressed iNOS expression enhanced by LatB. These data strongly suggest that actin cytoskeletal dynamics regulates IL-1beta-induced iNOS expression. We demonstrated that LatB decreases serum response factor (SRF) activity as determined by reporter gene assays, whereas Jasp increases SRF activity. The negative correlation between SRF activity and iNOS expression suggests a negative regulatory role for SRF in iNOS expression. Overexpression of a dominant negative mutant of SRF increases the IL-1beta-induced iNOS expression, providing direct evidence that SRF inhibits iNOS expression.
Collapse
Affiliation(s)
- C Zeng
- Department of Medicine, Molecular Biology, and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
247
|
Baluska F, Busti E, Dolfini S, Gavazzi G, Volkmann D. Lilliputian mutant of maize lacks cell elongation and shows defects in organization of actin cytoskeleton. Dev Biol 2001; 236:478-91. [PMID: 11476586 DOI: 10.1006/dbio.2001.0333] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The maize mutant lilliputian is characterized by miniature seedling stature, reduced cell elongation, and aberrant root anatomy. Here, we document that root cells of this mutant show several defects in the organization of actin filaments (AFs). Specifically, cells within the meristem lack dense perinuclear AF baskets and fail to redistribute AFs during mitosis. In contrast, mitotic cells of wild-type roots accumulate AFs at plasma membrane-associated domains that face the mitotic spindle poles. Both mitotic and early postmitotic mutant cells fail to assemble transverse arrays of cortical AFs, which are characteristic for wild-type root cells. In addition, early postmitotic cells show aberrant distribution of endoplasmic AF bundles that are normally organized through anchorage sites at cross-walls and nuclear surfaces. In wild-type root apices, these latter AF bundles are organized in the form of symmetrically arranged conical arrays and appear to be essential for the onset of rapid cell elongation. Exposure of wild-type and cv. Alarik maize root apices to the F-actin drugs cytochalasin D and latrunculin B mimics the phenotype of lilliputian root apices. In contrast to AFs, microtubules are more or less normally organized in root cells of lilliputian mutant. Collectively, these data suggest that the LILLIPUTIAN protein, the nature of which is still unknown, impinges on plant development via its action on the actin cytoskeleton.
Collapse
Affiliation(s)
- F Baluska
- Institute of Botany, Plant Cell Biology, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany.
| | | | | | | | | |
Collapse
|
248
|
Morley SC, Bierer BE. The actin cytoskeleton, membrane lipid microdomains, and T cell signal transduction. Adv Immunol 2001; 77:1-43. [PMID: 11293114 DOI: 10.1016/s0065-2776(01)77013-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Affiliation(s)
- S C Morley
- Laboratory of Lymphocyte Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
249
|
Sachdev P, Jiang YX, Li W, Miki T, Maruta H, Nur-E-Kamal MS, Wang LH. Differential requirement for Rho family GTPases in an oncogenic insulin-like growth factor-I receptor-induced cell transformation. J Biol Chem 2001; 276:26461-71. [PMID: 11346642 DOI: 10.1074/jbc.m010995200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Insulin-like growth factor I receptor (IGFR) plays an important role in cell growth and transformation. We dissected the downstream signaling pathways of an oncogenic variant of IGFR, Gag-IGFR, called NM1. Loss of function mutants of NM1, Phe-1136 and dS2, that retain kinase activity but are attenuated in their transforming ability were used to identify signaling pathways that are important for transformation of NIH 3T3 cells. MAPK, phospholipase C gamma, and Stat3 were activated to the same extent by NM1 and its two mutants, suggesting that activation of these pathways, individually or in combination, was not sufficient for NM1-induced cell transformation. The mutant dS2 has decreased IRS-1 phosphorylation levels and IRS-1-associated phosphatidylinositol 3'-kinase activity, suggesting that this impairment may be in part responsible for the defectiveness of dS2. We show that Rho family members, RhoA, Rac1, and Cdc42 are activated by NM1, and this activation, particularly RhoA and Cdc42, is attenuated in both mutants of NM1. Dominant negative mutants of Rho, Rac, and Cdc42 inhibited NM1-induced cell transformation, as measured by focus and colony forming ability. Dominant negative Rho most potently inhibited the focus forming activity, whereas Cdc42 was most effective in inhibiting the colony forming ability of NM1-expressing cells. Conversely, constitutively activated (ca) Rho is more effective than ca Rac or ca Cdc42 in rescuing the focus forming ability of the mutants. By contrast, ca Cdc42 is most effective in rescuing the colony forming ability of both mutants.
Collapse
Affiliation(s)
- P Sachdev
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | |
Collapse
|
250
|
Javaux EJ, Knoll AH, Walter MR. Morphological and ecological complexity in early eukaryotic ecosystems. Nature 2001; 412:66-9. [PMID: 11452306 DOI: 10.1038/35083562] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Molecular phylogeny and biogeochemistry indicate that eukaryotes differentiated early in Earth history. Sequence comparisons of small-subunit ribosomal RNA genes suggest a deep evolutionary divergence of Eukarya and Archaea; C27-C29 steranes (derived from sterols synthesized by eukaryotes) and strong depletion of 13C (a biogeochemical signature of methanogenic Archaea) in 2,700 Myr old kerogens independently place a minimum age on this split. Steranes, large spheroidal microfossils, and rare macrofossils of possible eukaryotic origin occur in Palaeoproterozoic rocks. Until now, however, evidence for morphological and taxonomic diversification within the domain has generally been restricted to very late Mesoproterozoic and Neoproterozoic successions. Here we show that the cytoskeletal and ecological prerequisites for eukaryotic diversification were already established in eukaryotic microorganisms fossilized nearly 1,500 Myr ago in shales of the early Mesoproterozoic Roper Group in northern Australia.
Collapse
Affiliation(s)
- E J Javaux
- Botanical Museum, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|