201
|
Guo J, Yu Z, Sun D, Zou Y, Liu Y, Huang L. Two nanoformulations induce reactive oxygen species and immunogenetic cell death for synergistic chemo-immunotherapy eradicating colorectal cancer and hepatocellular carcinoma. Mol Cancer 2021; 20:10. [PMID: 33407548 PMCID: PMC7786897 DOI: 10.1186/s12943-020-01297-0] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/17/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND FOLFOX is a combinational regimen of folinic acid (FnA, FOL), fluorouracil (5-Fu, F) and oxaliplatin (OxP, OX), and has been long considered as the standard treatment of colorectal cancer (CRC) and hepatocellular carcinoma (HCC). Recent developments of nano delivery systems have provided profound promise for improving anticancer efficacy and alleviating side effects of FOLFOX. Previously, a nanoformulation (termed Nano-Folox) containing OxP derivative and FnA was developed in our laboratory using nanoprecipitation technique. Nano-Folox induced OxP-mediated immunogenic cell death (ICD)-associated antitumor immunity, which significantly suppressed tumor growth in the orthotopic CRC mouse model when administrated in combination with free 5-Fu. METHODS A nanoformulation (termed Nano-FdUMP) containing FdUMP (5-Fu active metabolite) was newly developed using nanoprecipitation technique and used in combination with Nano-Folox for CRC and HCC therapies. RESULTS Synergistic efficacy was achieved in orthotopic CRC and HCC mouse models. It resulted mainly from the fact that Nano-FdUMP mediated the formation of reactive oxygen species (ROS), which promoted the efficacy of ICD elicited by Nano-Folox. In addition, combination of Nano-Folox/Nano-FdUMP and anti-PD-L1 antibody significantly inhibited CRC liver metastasis, leading to long-term survival in mice. CONCLUSION This study provides proof of concept that combination of two nano delivery systems can result in successful FOLFOX-associated CRC and HCC therapies. Further optimization in terms of dosing and timing will enhance clinical potential of this combination strategy for patients.
Collapse
Affiliation(s)
- Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Zhuo Yu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Hepatopathy, Shuguang Hospital, Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Dandan Sun
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yun Liu
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
202
|
Song HY, Kim WS, Han JM, Seo HS, Lim ST, Byun EB. Galangin treatment during dendritic cell differentiation confers tolerogenic properties in response to lipopolysaccharide stimulation. J Nutr Biochem 2021; 87:108524. [PMID: 33039583 DOI: 10.1016/j.jnutbio.2020.108524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 09/15/2020] [Accepted: 09/30/2020] [Indexed: 12/28/2022]
Abstract
Tolerogenic dendritic cells (tolDCs) can induce the differentiation of immunosuppressive regulatory T cells and are therefore candidates for the prevention or treatment of various inflammatory diseases. Galangin, a major component of propolis and Alpinia officinarum, has well-established anti-inflammatory effects, but its ability to induce a tolerogenic state in DCs has not been demonstrated. In this study, we investigated the effects of galangin on DC differentiation and immune responses. In particular, we compared phenotypic and functional differences between DCs (Gal-DCs) generated by galangin treatment during DC differentiation and bone marrow-derived DCs. Gal-DCs were generated by adding culture medium containing various doses of galangin (1.8-18.5 µM) on 3 and 6 day. Upon lipopolysaccharide (100 ng/mL) stimulation for 24 h, Gal-DCs generated with 7.4 µM galangin treatment showed lower levels of CD86 and lower major histocompatibility complex class II antigen-presentation than those of bone marrow-derived DCs. Furthermore, Gal-DCs showed markedly increased programmed death ligand 1 expression and IL-10 production via the activation of mitogen-activated protein kinases. Interestingly, Gal-DCs co-cultured with allogeneic CD4 T cells exhibited the reduced cell proliferation and differentiation into Th1-, Th2-, and Th17-type cell; instead, Gal-DCs contributed to the induction of CD4+CD25+Foxp3+ Tregs. Taken together, our data suggest that exposure to galangin during DC differentiation confers tolerogenic properties, efficiently inducing Th cell differentiation to immunosuppressive Tregs. These findings provide new insights into the molecular mechanism underlying the anti-inflammatory effects of galangin on DCs.
Collapse
Affiliation(s)
- Ha-Yeon Song
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea; Department of Biotechnology, College of Life science and Biotechnology, Korea University, Seoul, Republic of Korea.
| | - Woo Sik Kim
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Jeong Moo Han
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea; Department of Biotechnology, College of Life science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Ho Seong Seo
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Seung-Taik Lim
- Department of Biotechnology, College of Life science and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Eui-Baek Byun
- Research Division for Radiation Science, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| |
Collapse
|
203
|
da Silva LT, Ortega MM, Tiyo BT, Viana IFT, de Lima TE, Tozetto-Mendoza TR, Oliveira LMDS, Teixeira FME, Lins RD, de Almeida A, Mendes-Correa MC, da Silva Duarte AJ, Oshiro TM. SARS-CoV-2 recombinant proteins stimulate distinct cellular and humoral immune response profiles in samples from COVID-19 convalescent patients. Clinics (Sao Paulo) 2021; 76:e3548. [PMID: 34878034 PMCID: PMC8610223 DOI: 10.6061/clinics/2021/e3548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/27/2021] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES In this preliminary study we investigated cellular and humoral immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens in blood samples from 14 recovered coronavirus disease 2019 (COVID-19) patients and compared them to those in samples from 12 uninfected/unvaccinated volunteers. METHODS Cellular immunity was assessed by intracellular detection of IFN-γ in CD3+ T lymphocytes after stimulation with SARS-CoV-2 spike (S1), nucleocapsid (NC), or receptor-binding domain (RBD) recombinant proteins or overlapping peptide pools covering the sequence of SARS-CoV-2 spike, membrane and nucleocapsid regions. The humoral response was examined by ELISAs and/or chemiluminescence assays for the presence of serum IgG antibodies directed to SARS-CoV-2 proteins. RESULTS We observed differences between humoral and cellular immune profiles in response to stimulation with the same proteins. Assays of IgG antibodies directed to SARS-CoV-2 NC, RBD and S1/S2 recombinant proteins were able to differentiate convalescent from uninfected/unvaccinated groups. Cellular immune responses to SARS-CoV-2 protein stimuli did not exhibit a specific response, as T cells from both individuals with no history of contact with SARS-CoV-2 and from recovered donors were able to produce IFN-γ. CONCLUSIONS Determination of the cellular immune response to stimulation with a pool of SARS-CoV-2 peptides but not with SARS-CoV-2 proteins is able to distinguish convalescent individuals from unexposed individuals. Regarding the humoral immune response, the screening for serum IgG antibodies directed to SARS-CoV-2 proteins has been shown to be specific for the response of recovered individuals.
Collapse
Affiliation(s)
- Laís Teodoro da Silva
- Laboratorio de Investigacao Medica em Dermatologia e Imunodeficiencias (LIM 56), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Corresponding author. E-mail:
| | - Marina Mazzilli Ortega
- Laboratorio de Investigacao Medica em Dermatologia e Imunodeficiencias (LIM 56), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Bruna Tiaki Tiyo
- Laboratorio de Investigacao Medica em Dermatologia e Imunodeficiencias (LIM 56), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | | - Tayná Evily de Lima
- Departamento de Virologia, Instituto Aggeu Magalhaes, Fundacao Oswaldo Cruz, Recife, PE, BR
| | - Tania Regina Tozetto-Mendoza
- Laboratorio de Virologia (LIM-52), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Luanda Mara da Silva Oliveira
- Laboratorio de Investigacao Medica em Dermatologia e Imunodeficiencias (LIM 56), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Franciane Mouradian Emidio Teixeira
- Laboratorio de Investigacao Medica em Dermatologia e Imunodeficiencias (LIM 56), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Roberto Dias Lins
- Departamento de Virologia, Instituto Aggeu Magalhaes, Fundacao Oswaldo Cruz, Recife, PE, BR
| | - Alexandre de Almeida
- Laboratorio de Investigacao Medica em Dermatologia e Imunodeficiencias (LIM 56), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Maria Cassia Mendes-Correa
- Laboratorio de Virologia (LIM-52), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Alberto Jose da Silva Duarte
- Laboratorio de Investigacao Medica em Dermatologia e Imunodeficiencias (LIM 56), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
- Divisao de Laboratorio Central, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | - Telma Miyuki Oshiro
- Laboratorio de Investigacao Medica em Dermatologia e Imunodeficiencias (LIM 56), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, BR
| |
Collapse
|
204
|
Wittmann J. Modeling Lymphocytes. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
205
|
Gomez-Perosanz M, Ras-Carmona A, Lafuente EM, Reche PA. Identification of CD8 + T cell epitopes through proteasome cleavage site predictions. BMC Bioinformatics 2020; 21:484. [PMID: 33308150 PMCID: PMC7733697 DOI: 10.1186/s12859-020-03782-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023] Open
Abstract
Background We previously introduced PCPS (Proteasome Cleavage Prediction Server), a web-based tool to predict proteasome cleavage sites using n-grams. Here, we evaluated the ability of PCPS immunoproteasome cleavage model to discriminate CD8+ T cell epitopes. Results We first assembled an epitope dataset consisting of 844 unique virus-specific CD8+ T cell epitopes and their source proteins. We then analyzed cleavage predictions by PCPS immunoproteasome cleavage model on this dataset and compared them with those provided by a related method implemented by NetChop web server. PCPS was clearly superior to NetChop in term of sensitivity (0.89 vs. 0.79) but somewhat inferior with regard to specificity (0.55 vs. 0.60). Judging by the Mathew’s Correlation Coefficient, PCPS predictions were overall superior to those provided by NetChop (0.46 vs. 0.39). We next analyzed the power of C-terminal cleavage predictions provided by the same PCPS model to discriminate CD8+ T cell epitopes, finding that they could be discriminated from random peptides with an accuracy of 0.74. Following these results, we tuned the PCPS web server to predict CD8+ T cell epitopes and predicted the entire SARS-CoV-2 epitope space. Conclusions We report an improved version of PCPS named iPCPS for predicting proteasome cleavage sites and peptides with CD8+ T cell epitope features. iPCPS is available for free public use at https://imed.med.ucm.es/Tools/pcps/.
Collapse
Affiliation(s)
- Marta Gomez-Perosanz
- Laboratory of Immunomedicine, Department of Immunology, Faculty of Medicine, Complutense University of Madrid, Pza Ramon y Cajal, s/n, 28040, Madrid, Spain
| | - Alvaro Ras-Carmona
- Laboratory of Immunomedicine, Department of Immunology, Faculty of Medicine, Complutense University of Madrid, Pza Ramon y Cajal, s/n, 28040, Madrid, Spain
| | - Esther M Lafuente
- Laboratory of Immunomedicine, Department of Immunology, Faculty of Medicine, Complutense University of Madrid, Pza Ramon y Cajal, s/n, 28040, Madrid, Spain
| | - Pedro A Reche
- Laboratory of Immunomedicine, Department of Immunology, Faculty of Medicine, Complutense University of Madrid, Pza Ramon y Cajal, s/n, 28040, Madrid, Spain.
| |
Collapse
|
206
|
Garg SK, Welsh EA, Fang B, Hernandez YI, Rose T, Gray J, Koomen JM, Berglund A, Mulé JJ, Markowitz J. Multi-Omics and Informatics Analysis of FFPE Tissues Derived from Melanoma Patients with Long/Short Responses to Anti-PD1 Therapy Reveals Pathways of Response. Cancers (Basel) 2020; 12:cancers12123515. [PMID: 33255891 PMCID: PMC7768436 DOI: 10.3390/cancers12123515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 11/21/2020] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Immune based therapies have benefited many melanoma patients, but many patients still do not respond. This study analyzes biospecimens obtained from patients undergoing a type of immune based therapy called anti-PD-1 to understand mechanisms of response and resistance to this treatment. The operational definition of good response utilized in this investigation permitted us to examine the biochemical pathways that are facilitating anti-PD-1 responses independent of prior therapies received by patients. Currently, there are no clinically available tests to reliably test for the outcome of patients treated with anti-PD-1 therapy. The purpose of this study was to facilitate the development of prospective biomarker-directed trials to guide therapy, as even though the side effect profile is favorable for anti-PD-1 therapy, some patients do not respond to therapy with significant toxicity. Each patient may require testing for the pathways upregulated in the tumor to predict optimal benefit to anti-PD-1 treatment. Abstract Anti-PD-1 based immune therapies are thought to be dependent on antigen processing and presentation mechanisms. To characterize the immune-dependent mechanisms that predispose stage III/IV melanoma patients to respond to anti-PD-1 therapies, we performed a multi-omics study consisting of expression proteomics and targeted immune-oncology-based mRNA sequencing. Formalin-fixed paraffin-embedded tissue samples were obtained from stage III/IV patients with melanoma prior to anti-PD-1 therapy. The patients were first stratified into poor and good responders based on whether their tumors had or had not progressed while on anti-PD-1 therapy for 1 year. We identified 263 protein/gene candidates that displayed differential expression, of which 223 were identified via proteomics and 40 via targeted-mRNA analyses. The downstream analyses of expression profiles using MetaCore software demonstrated an enrichment of immune system pathways involved in antigen processing/presentation and cytokine production/signaling. Pathway analyses showed interferon (IFN)-γ-mediated signaling via NF-κB and JAK/STAT pathways to affect immune processes in a cell-specific manner and to interact with the inducible nitric oxide synthase. We review these findings within the context of available literature on the efficacy of anti-PD-1 therapy. The comparison of good and poor responders, using efficacy of PD-1-based therapy at 1 year, elucidated the role of antigen presentation in mediating response or resistance to anti-PD-1 blockade.
Collapse
Affiliation(s)
- Saurabh K. Garg
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (S.K.G.); (Y.I.H.)
| | - Eric A. Welsh
- Biostatistics and Bioinformatics Shared Resource, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
| | - Bin Fang
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (B.F.); (J.M.K.)
| | - Yuliana I. Hernandez
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (S.K.G.); (Y.I.H.)
| | - Trevor Rose
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA;
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
| | - Jhanelle Gray
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M. Koomen
- Proteomics & Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (B.F.); (J.M.K.)
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
| | - Anders Berglund
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - James J. Mulé
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Joseph Markowitz
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (S.K.G.); (Y.I.H.)
- Department of Oncologic Sciences, University of South Florida Health Morsani College of Medicine, Tampa, FL 33620, USA; (J.G.); (A.B.); (J.J.M.)
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-745-8581
| |
Collapse
|
207
|
Dai Q, Wu W, Amei A, Yan X, Lu L, Wang Z. Regulation and characterization of tumor-infiltrating immune cells in breast cancer. Int Immunopharmacol 2020; 90:107167. [PMID: 33223469 DOI: 10.1016/j.intimp.2020.107167] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/10/2020] [Accepted: 10/29/2020] [Indexed: 11/16/2022]
Abstract
The effect of immunosuppression blockade therapies depends on the infiltration of effector T cells and other immune cells in tumor. However, it is unclear how molecular pathways regulate the infiltration of immune cells, as well as how interactions between tumor-infiltrating immune cells and T cell activation affect breast cancer patient survival. CIBERSORT was used to estimate the relative abundance of 22 immune cell types. The association between mRNAs and immune cell abundance were assessed by Spearman correlation analysis. Enriched pathways were identified using MetaCore pathway analysis. The interactions between the T cell activation status and the abundance of tumor-infiltrating immune cells were evaluated using Kaplan-Meier survival and multivariate Cox regression models in a publicly available dataset of 1081 breast cancer patients. The role of tumor-infiltrating B cells in antitumor immunity, immune response of T cell subsets, and breakdown of CD4+ T cell peripheral tolerance were positively associated with M1 macrophage and CD8+ T cell but negatively associated with M2 macrophage. Abundant plasma cell was associated with prolonged survival (HR = 0.46, 95% CI: 0.32-0.67), and abundant M2 macrophage was associated with shortened survival (HR = 1.78, 95% CI: 1.23-2.60). There exists a significant interaction between the T cell activation status and the resting DC abundance level (p = 0.025). Molecular pathways associated with tumor-infiltrating immune cells provide future directions for developing cancer immunotherapies to control immune cell infiltration, and further influence T cell activation and patient survival in breast cancer.
Collapse
Affiliation(s)
- Qile Dai
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Weimiao Wu
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Amei Amei
- Department of Mathematical Sciences, University of Nevada, Las Vegas, NV, USA
| | - Xiting Yan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA; Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA.
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
208
|
Leboux RJT, Benne N, van Os WL, Bussmann J, Kros A, Jiskoot W, Slütter B. High-affinity antigen association to cationic liposomes via coiled coil-forming peptides induces a strong antigen-specific CD4 + T-cell response. Eur J Pharm Biopharm 2020; 158:96-105. [PMID: 33188929 DOI: 10.1016/j.ejpb.2020.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 11/05/2020] [Accepted: 11/08/2020] [Indexed: 10/23/2022]
Abstract
Liposomes are widely investigated as vaccine delivery systems, but antigen loading efficiency can be low. Moreover, adsorbed antigen may rapidly desorb under physiological conditions. Encapsulation of antigens overcomes the latter problem but results in significant antigen loss during preparation and purification of the liposomes. Here, we propose an alternative attachment method, based on a complementary heterodimeric coiled coil peptide pair pepK and pepE. PepK was conjugated to cholesterol (yielding CPK) and pepE was covalently linked to model antigen OVA323 (yielding pepE-OVA323). CPK was incorporated in the lipid bilayer of cationic liposomes (180 nm in size). Antigen was associated more efficiently to functionalized liposomes (Kd 166 nM) than to cationic liposomes (Kd not detectable). In vivo co-localization of antigen and liposomes was strongly increased upon CPK-functionalization (35% -> 80%). CPK-functionalized liposomes induced 5-fold stronger CD4+ T-cell proliferation than non-functionalized liposomes in vitro. Both formulations were able to induce strong CD4+ T-cell expansion in mice, but more IFN-y and IL-10 production was observed after immunization with functionalized liposomes. In conclusion, antigen association via coiled coil peptide pair increased co-localization of antigen and liposomes, increased CD4+ T-cell proliferation in vitro and induced a stronger CD4+ T-cell response in vivo.
Collapse
Affiliation(s)
- R J T Leboux
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - N Benne
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - W L van Os
- Div. of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - J Bussmann
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - A Kros
- Div. of Supramolecular & Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - W Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - B Slütter
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research, Leiden University, Leiden, the Netherlands.
| |
Collapse
|
209
|
Mohammadian Haftcheshmeh S, Zamani P, Mashreghi M, Nikpoor AR, Tavakkol-Afshari J, Jaafari MR. Immunoliposomes bearing lymphocyte activation gene 3 fusion protein and P5 peptide: A novel vaccine for breast cancer. Biotechnol Prog 2020; 37:e3095. [PMID: 33118322 DOI: 10.1002/btpr.3095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 01/31/2023]
Abstract
LAG3-Ig as an immune adjuvant has elicited potent anti-tumor immune responses in several preclinical and clinical studies, but the full potential immunostimulatory of LAG3-Ig has yet to be achieved. We hypothesized that by anchoring LAG3-Ig to the surface of liposomes, the adjuvant activity of LAG3-Ig could be improved. We also investigated the immunotherapy by co-delivery of liposome-coupled LAG3-Ig and P5 tumor antigen in mice model of TUBO breast cancer. We prepared and characterized novel PEGylated liposomes bearing surface conjugated LAG3-Ig and P5. Consistent with our hypothesis, liposomes-conjugated LAG3-Ig via multivalent binding to MHC class II molecules exerted immunostimulatory of LAG3-Ig and markedly induced maturation of dendritic cells more efficiently than free LAG3-Ig. LAG3-Ig-P5-immunoliposomes effectively elicited protective anti-tumor responses more than locally injected soluble LAG3-Ig + P5. The higher percentage of CD4+ and CD8+ T cells in the spleen and more rapid and pronounced infiltration of these effector cells into the site of the tumor were seen following immunoliposome therapy. Finally, anti-tumor immunity induced by LAG3-Ig-P5-immunoliposomes translated into the more tumor regression and prolonged survival of treated mice, compared to soluble immunotherapy. Taken together, our findings suggest that LAG3-Ig-P5-immunoliposomes can be considered as a valuable candidate for developing a liposome-based therapeutic cancer vaccine in treating HER2/ neu+ breast cancer patients.
Collapse
Affiliation(s)
- Saeed Mohammadian Haftcheshmeh
- Department of Medical Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Mashreghi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Reza Nikpoor
- Department of Immunology, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | | | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
210
|
Montes-Casado M, Sanvicente A, Casarrubios L, Feito MJ, Rojo JM, Vallet-Regí M, Arcos D, Portolés P, Portolés MT. An Immunological Approach to the Biocompatibility of Mesoporous SiO 2-CaO Nanospheres. Int J Mol Sci 2020; 21:ijms21218291. [PMID: 33167415 PMCID: PMC7663838 DOI: 10.3390/ijms21218291] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/21/2022] Open
Abstract
Mesoporous bioactive glass nanospheres (NanoMBGs) have high potential for clinical applications. However, the impact of these nanoparticles on the immune system needs to be addressed. In this study, the biocompatibility of SiO2-CaO NanoMBGs was evaluated on different mouse immune cells, including spleen cells subsets, bone marrow-derived dendritic cells (BMDCs), or cell lines like SR.D10 Th2 CD4+ lymphocytes and DC2.4 dendritic cells. Flow cytometry and confocal microscopy show that the nanoparticles were rapidly and efficiently taken up in vitro by T and B lymphocytes or by specialized antigen-presenting cells (APCs) like dendritic cells (DCs). Nanoparticles were not cytotoxic and had no effect on cell viability or proliferation under T-cell (anti-CD3) or B cell (LPS) stimuli. Besides, NanoMBGs did not affect the balance of spleen cell subsets, or the production of intracellular or secreted pro- and anti-inflammatory cytokines (TNF-α, IFN-γ, IL-2, IL-6, IL-10) by activated T, B, and dendritic cells (DC), as determined by flow cytometry and ELISA. T cell activation surface markers (CD25, CD69 and Induced Costimulator, ICOS) were not altered by NanoMBGs. Maturation of BMDCs or DC2.4 cells in vitro was not altered by NanoMBGs, as shown by expression of Major Histocompatibility Complex (MHC) and costimulatory molecules (CD40, CD80, CD86), or IL-6 secretion. The effect of wortmannin and chlorpromazine indicate a role for phosphoinositide 3-kinase (PI3K), actin and clathrin-dependent pathways in NanoMBG internalization. We thus demonstrate that these NanoMBGs are both non-toxic and non-inflammagenic for murine lymphoid cells and myeloid DCs despite their efficient intake by the cells.
Collapse
Affiliation(s)
- María Montes-Casado
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Adrian Sanvicente
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.); (L.C.); (M.J.F.)
| | - Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.); (L.C.); (M.J.F.)
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.); (L.C.); (M.J.F.)
| | - José M. Rojo
- Departamento de Medicina Celular y Molecular, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain;
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.V.-R.); (D.A.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (M.V.-R.); (D.A.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - Pilar Portolés
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
- Presidencia, Consejo Superior de Investigaciones Científicas, 28006 Madrid, Spain
- Correspondence: (P.P.); (M.T.P.)
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid. Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (A.S.); (L.C.); (M.J.F.)
- Correspondence: (P.P.); (M.T.P.)
| |
Collapse
|
211
|
In vitro production of synthetic viral RNAs and their delivery into mammalian cells and the application of viral RNAs in the study of innate interferon responses. Methods 2020; 183:21-29. [PMID: 31682923 DOI: 10.1016/j.ymeth.2019.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/25/2019] [Accepted: 10/30/2019] [Indexed: 12/24/2022] Open
Abstract
Mammalian cells express different types of RNA molecules that can be classified as protein coding RNAs (mRNA) and non-coding RNAs (ncRNAs) the latter of which have housekeeping and regulatory functions in cells. Cellular RNAs are not recognized by cellular pattern recognition receptors (PRRs) and innate immunity is not activated. RNA viruses encode and express RNA molecules that usually differ from cell-specific RNAs and they include for instance 5'capped and 5'mono- and triphosphorylated RNAs, small viral RNAs and viral RNA-protein complexes called vRNPs. These molecules are recognized by certain members of Toll-like receptor (TLR) and RIG-I-like receptor (RLR) families leading to activation of innate immune responses and the production of antiviral cytokines, such as type I and type III interferons (IFNs). Virus-specific ssRNA and dsRNA molecules that mimic the viral genomic RNAs or their replication intermediates can efficiently be produced by bacteriophage T7 DNA-dependent RNA polymerase and bacteriophage phi6 RNA-dependent RNA polymerase, respectively. These molecules can then be delivered into mammalian cells and the mechanisms of activation of innate immune responses can be studied. In addition, synthetic viral dsRNAs can be processed to small interfering RNAs (siRNAs) by a Dicer enzyme to produce a swarm of antiviral siRNAs. Here we describe the biology of RNAs, their in vitro production and delivery into mammalian cells as well as how these molecules can be used to inhibit virus replication and to study the mechanisms of activation of the innate immune system.
Collapse
|
212
|
Boscardin SB, Dudziak D, Münz C, Rosa DS. Editorial: Harnessing the Participation of Dendritic Cells in Immunity and Tolerance. Front Immunol 2020; 11:595841. [PMID: 33117409 PMCID: PMC7575758 DOI: 10.3389/fimmu.2020.595841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Silvia Beatriz Boscardin
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany.,Medical Immunology Campus Erlangen, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Erlangen, Germany
| | - Christian Münz
- Viral Immunobiology, Institute of Experimental Immunology, University of Zürich, Zurich, Switzerland
| | - Daniela Santoro Rosa
- Department of Microbiology, Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
213
|
Fan J, Han J, Li J, Gu A, Yin D, Song F, Wang L, Yi Y. The expression and function of immunoglobulin-like transcript 4 in dendritic cells from patients with hepatocellular carcinoma. Hum Immunol 2020; 81:714-725. [PMID: 33228921 DOI: 10.1016/j.humimm.2020.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/23/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
Due to their easy availability and expansion in vitro, monocyte-derived dendritic cells (moDCs) are most frequently used for tumor vaccination. Immunoglobulin-like transcript 4 (ILT4), as inhibitory receptor, has been reported to be related to DC tolerance. However, the influence of ILT4 for DC tolerance in hepatocellular carcinoma (HCC) patients has not been illustrated. In this research, we explored the expression of ILT4 on moDCs from HCC patients and its effect on moDC function. We demonstrated that the expression of ILT4 on mature DCs (mDCs) was higher in the peripheral blood from HCC patients than in that from healthy donors. The levels of cytokines IL-1β and IL-6 secreted by mDCs from both HCC patients and healthy controls, stimulated by anti-ILT4 agonistic mAb, were decreased. In contrast, the levels of IL-10 and IL-23 were upregulated. In addition, ILT4, triggered by anti-ILT4 agonistic mAb, could reduce allogeneic T cell proliferation stimulated by the mDCs. Moreover, ILT4 triggered by anti-ILT4 agonistic mAb could also reduce the ability of the mDCs to stimulate tumor cell antigen-specific autologous CD4+ T cells (production of IFN-γ) and CD8+ T cells (production of IFN-γ and IL-2). Furthermore, ILT4 expression impaired the cytotoxicity of autologous T cells induced by the mDCs against the HCC tumor cell line SMMC-7721. Our data revealed that the high expression of ILT4 promoted the immune tolerance of DCs, resulting in an inefficiency of the T cell response, a process that is exacerbated in HCC patients.
Collapse
Affiliation(s)
- Jing Fan
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China
| | - Jianbo Han
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China
| | - Jiayan Li
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China
| | - Aidong Gu
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China
| | - Fangnan Song
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China
| | - Lili Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China.
| | - Yongxiang Yi
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China; Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine. Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003, PR China.
| |
Collapse
|
214
|
Que W, Guo WZ, Li XK. Manipulation of Regulatory Dendritic Cells for Induction Transplantation Tolerance. Front Immunol 2020; 11:582658. [PMID: 33162996 PMCID: PMC7591396 DOI: 10.3389/fimmu.2020.582658] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Current organ transplantation therapy is life-saving but accompanied by well-recognized side effects due to post-transplantation systematic immunosuppressive treatment. Dendritic cells (DCs) are central instigators and regulators of transplantation immunity and are responsible for balancing allograft rejection and tolerance. They are derived from monocyte-macrophage DC progenitors originating in the bone marrow and are classified into different subsets based on their developmental, phenotypical, and functional criteria. Functionally, DCs instigate allograft immunity by presenting donor antigens to alloreactive T cells via direct, indirect, and semidirect recognition pathways and provide essential signaling for alloreactive T cell activation via costimulatory molecules and pro-inflammatory cytokines. Regulatory DCs (DCregs) are characterized by a relatively low expression of major histocompatibility complex, costimulatory molecules, and altered cytokine production and exert their regulatory function through T cell anergy, T cell deletion, and regulatory T cell induction. In rodent transplantation studies, DCreg-based therapy, by in situ targeting or infusion of ex vivo generated DCregs, exhibits promising potential as a natural, well-tolerated, organ-specific therapeutic strategy for promoting lasting organ-specific transplantation tolerance. Recent early-phase studies of DCregs have begun to examine the safety and efficacy of DCreg-induced allograft tolerance in living-donor renal or liver transplantations. The present review summarizes the basic characteristics, function, and translation of DCregs in transplantation tolerance induction.
Collapse
Affiliation(s)
- Weitao Que
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Kang Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
215
|
Kam TI, Hinkle JT, Dawson TM, Dawson VL. Microglia and astrocyte dysfunction in parkinson's disease. Neurobiol Dis 2020; 144:105028. [PMID: 32736085 PMCID: PMC7484088 DOI: 10.1016/j.nbd.2020.105028] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
While glia are essential for regulating the homeostasis in the normal brain, their dysfunction contributes to neurodegeneration in many brain diseases, including Parkinson's disease (PD). Recent studies have identified that PD-associated genes are expressed in glial cells as well as neurons and have crucial roles in microglia and astrocytes. Here, we discuss the role of microglia and astrocytes dysfunction in relation to PD-linked mutations and their implications in PD pathogenesis. A better understanding of microglia and astrocyte functions in PD may provide insights into neurodegeneration and novel therapeutic approaches for PD.
Collapse
Affiliation(s)
- Tae-In Kam
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jared T Hinkle
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
216
|
Lohrer MF, Liu Y, Hanna DM, Wang KH, Liu FT, Laurence TA, Liu GY. Determination of the Maturation Status of Dendritic Cells by Applying Pattern Recognition to High-Resolution Images. J Phys Chem B 2020; 124:8540-8548. [DOI: 10.1021/acs.jpcb.0c06437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Michael F. Lohrer
- Department of Electrical and Computer Engineering, Oakland University, Rochester, Michigan 48309, United States
| | - Yang Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Darrin M. Hanna
- Department of Electrical and Computer Engineering, Oakland University, Rochester, Michigan 48309, United States
| | - Kang-Hsin Wang
- Department of Chemistry, University of California, Davis, California 95616, United States
- Department of Dermatology, University of California, Davis Medical Center, Sacramento, California 95817, United States
| | - Fu-Tong Liu
- Department of Dermatology, University of California, Davis Medical Center, Sacramento, California 95817, United States
| | - Ted A. Laurence
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
217
|
Qin T, Ma S, Miao X, Tang Y, Huangfu D, Wang J, Jiang J, Xu N, Yin Y, Chen S, Liu X, Yin Y, Peng D, Gao L. Mucosal Vaccination for Influenza Protection Enhanced by Catalytic Immune-Adjuvant. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000771. [PMID: 32999833 PMCID: PMC7509716 DOI: 10.1002/advs.202000771] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/04/2020] [Indexed: 05/04/2023]
Abstract
Influenza poses a severe threat to global health. Despite the whole inactivated virus (WIV)-based nasal vaccine being a promising strategy for influenza protection, the mucosal barrier is still a bottleneck of the nasal vaccine. Here, a catalytic mucosal adjuvant strategy for an influenza WIV nasal vaccine based on chitosan (CS) functionalized iron oxide nanozyme (IONzyme) is developed. The results reveal that CS-IONzyme increases antigen adhesion to nasal mucosa by 30-fold compared to H1N1 WIV alone. Next, CS-IONzyme facilitates H1N1 WIV to enhance CCL20-driven submucosal dendritic cell (DC) recruitment and transepithelial dendrite(TED) formation for viral uptake via the toll-like receptor(TLR) 2/4-dependent pathway. Moreover, IONzyme with enhanced peroxidase (POD)-like activity by CS modification catalyzes a reactive oxygen species (ROS)-dependent DC maturation, which further enhances the migration of H1N1 WIV-loaded DCs into the draining lymph nodes for antigen presentation. Finally, CS-IONzyme-based nasal vaccine triggers an 8.9-fold increase of IgA-mucosal adaptive immunity in mice, which provides a 100% protection against influenza, while only a 30% protection by H1N1 WIV alone. This work provides an antiviral alternative for designing nasal vaccines based on IONzyme to combat influenza infection.
Collapse
Affiliation(s)
- Tao Qin
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhouJiangsu225009P. R. China
- Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural‐ProductsYangzhouJiangsu225009P. R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry DiseaseYangzhou225009P. R. China
| | - Shang Ma
- Institute for Translational Medicine, School of MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Xinyu Miao
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Yan Tang
- Institute for Translational Medicine, School of MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Dandan Huangfu
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Jinyuan Wang
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Jing Jiang
- Institute for Translational Medicine, School of MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Nuo Xu
- Institute for Translational Medicine, School of MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Yuncong Yin
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Sujuan Chen
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhouJiangsu225009P. R. China
- Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural‐ProductsYangzhouJiangsu225009P. R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry DiseaseYangzhou225009P. R. China
| | - Xiufan Liu
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhouJiangsu225009P. R. China
- Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural‐ProductsYangzhouJiangsu225009P. R. China
| | - Yinyan Yin
- Institute for Translational Medicine, School of MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhouJiangsu225009P. R. China
| | - Daxin Peng
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhouJiangsu225009P. R. China
- Joint Laboratory Safety of International Cooperation of Agriculture & Agricultural‐ProductsYangzhouJiangsu225009P. R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry DiseaseYangzhou225009P. R. China
| | - Lizeng Gao
- Institute for Translational Medicine, School of MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- CAS Engineering Laboratory for NanozymeInstitute of Biophysics Chinese Academy of SciencesBeijing100101P. R. China
- Jiangsu Co‐Innovation Center for the Prevention and Control of Important Animal Infectious Disease and ZoonosesYangzhouJiangsu225009P. R. China
| |
Collapse
|
218
|
Preparation, Supramolecular Aggregation and Immunological Activity of the Bona Fide Vaccine Adjuvant Sulfavant S. Mar Drugs 2020; 18:md18090451. [PMID: 32872423 PMCID: PMC7551793 DOI: 10.3390/md18090451] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 12/22/2022] Open
Abstract
In aqueous conditions, amphiphilic bioactive molecules are able to form self-assembled colloidal structures modifying their biological activity. This behavior is generally neglected in preclinical studies, despite its impact on pharmacological development. In this regard, a significative example is represented by a new class of amphiphilic marine-inspired vaccine adjuvants, collectively named Sulfavants, based on the β-sulfoquinovosyl-diacylglyceride skeleton. The family includes the lead product Sulfavant A (1) and two epimers, Sulfavant R (2) and Sulfavant S (3), differing only for the stereochemistry at C-2 of glycerol. The three compounds showed a significant difference in immunological potency, presumably correlated with change of the aggregates in water. Here, a new synthesis of diastereopure 3 was achieved, and the study of the immunomodulatory behavior of mixtures of 2/3 proved that the bizarre in vitro response to 1–3 effectively depends on the supramolecular aggregation states, likely affecting the bioavailability of agonists that can effectively interact with the cellular targets. The evidence obtained with the mixture of pure Sulfavant R (2) and Sulfavant S (3) proves, for the first time, that supramolecular organization of a mixture of active epimers in aqueous solution can bias evaluation of their biological and pharmacological potential.
Collapse
|
219
|
Frank K, Paust S. Dynamic Natural Killer Cell and T Cell Responses to Influenza Infection. Front Cell Infect Microbiol 2020; 10:425. [PMID: 32974217 PMCID: PMC7461885 DOI: 10.3389/fcimb.2020.00425] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza viruses have perplexed scientists for over a hundred years. Yearly vaccines limit their spread, but they do not prevent all infections. Therapeutic treatments for those experiencing severe infection are limited; further advances are held back by insufficient understanding of the fundamental immune mechanisms responsible for immunopathology. NK cells and T cells are essential in host responses to influenza infection. They produce immunomodulatory cytokines and mediate the cytotoxic response to infection. An imbalance in NK and T cell responses can lead to two outcomes: excessive inflammation and tissue damage or insufficient anti-viral functions and uncontrolled infection. The main cause of death in influenza patients is the former, mediated by hyperinflammatory responses termed “cytokine storm.” NK cells and T cells contribute to cytokine storm, but they are also required for viral clearance. Many studies have attempted to distinguish protective and pathogenic components of the NK cell and T cell influenza response, but it has become clear that they are dynamic and integrated processes. This review will analyze how NK cell and T cell effector functions during influenza infection affect the host response and correlate with morbidity and mortality outcomes.
Collapse
Affiliation(s)
- Kayla Frank
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| | - Silke Paust
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, United States.,The Skaggs Graduate Program in Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
220
|
Gori S, Soczewski E, Fernández L, Grasso E, Gallino L, Merech F, Colado A, Borge M, Pérez Leirós C, Salamone G, Ramhorst R. Decidualization Process Induces Maternal Monocytes to Tolerogenic IL-10-Producing Dendritic Cells (DC-10). Front Immunol 2020; 11:1571. [PMID: 32973738 PMCID: PMC7461786 DOI: 10.3389/fimmu.2020.01571] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/15/2020] [Indexed: 01/11/2023] Open
Abstract
Decidualization is a process that involves phenotypic and functional changes of endometrial stromal cells to sustain endometrial receptivity and the participation of immunoregulatory factors to maintain immune homeostasis. In this context, tolerogenic dendritic cells (DCs) can induce regulatory T cells, which are essential to manage the pro- to anti-inflammatory transition during embryo implantation. Recently, Myeloid Regulatory Cells (MRCs) were proposed as immunosuppressants and tolerance-inducer cells, including the DC-10 subset. This novel and distinctive subset has the ability to produce IL-10 and to induce type 1 regulatory T cells (Tr1) through an HLA-G pathway. Here we focus on the impact of the decidualization process in conditioning peripheral monocytes to MRCs and the DC-10 subset, and their ability to induce regulatory T cells. An in vitro model of decidualization with the human endometrial stromal cell line (HESC), decidualized by medroxyprogesterone and dibutyryl-cAMP was used. Monocytes isolated from peripheral blood mononuclear cells from healthy women were cultured with rhGM-CSF + rhIL-4 and then, the effect of conditioned media from decidualized (Dec-CM) and non-decidualized cells (Non-dec-CM) was tested on monocyte cultures. We found that Dec-CM inhibited the differentiation to the CD1a+CD14– immature DC profile in a concentration-dependent manner. Dec-CM also significantly increased the frequency of CD83+CD86low and HLA-DR+ cells in the monocyte-derived culture. These markers, associated with the increased production of IL-10, are consistent with a MRCs tolerogenic profile. Interestingly, Dec-CM treatment displayed a higher expression of the characteristic markers of the tolerogenic DC-10 subset, HLA-G and ILT2/CD85j; while this modulation was not observed in cultures treated with Non-dec-CM. Moreover, when monocyte cultures with Dec-CM were challenged with LPS, they sustained a higher IL-10 production and prevented the increase of CD83, CD86, IL-12p70, and TNF-α expression. Finally, the DC-10 subset was able to induce a CD4+HLA-G+ regulatory T cells subset. These results suggest that the decidualization process might induce different subsets of MRCs, like DC-10, able to induce regulatory T cells as a novel CD4+HLA-G+ subset which might play an immunoregulatory role in embryo implantation.
Collapse
Affiliation(s)
- Soledad Gori
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Elizabeth Soczewski
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Laura Fernández
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Esteban Grasso
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Lucila Gallino
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Fatima Merech
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Ana Colado
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Mercedes Borge
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Gabriela Salamone
- Instituto de Medicina Experimental (IMEX)-CONICET, Academia Nacional de Medicina, Buenos Aires, Argentina
| | - Rosanna Ramhorst
- CONICET, Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
221
|
Deng C, Liu L, Liu L, Wang Q, Guo X, Lee W, Li S, Zhang Y. A secreted pore‐forming protein modulates cellular endolysosomes to augment antigen presentation. FASEB J 2020; 34:13609-13625. [DOI: 10.1096/fj.202001176r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 01/04/2023]
Affiliation(s)
- Cheng‐Jie Deng
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Long Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Ling‐Zhen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Qi‐Quan Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Kunming College of Life Science University of Chinese Academy of Sciences Kunming China
| | - Xiao‐Long Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
| | - Wen‐Hui Lee
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
| | - Sheng‐An Li
- Department of Pathogen Biology and Immunology Faculty of Basic Medical Science Kunming Medical University Kunming China
| | - Yun Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences/Key Laboratory of Bioactive Peptides of Yunnan Province Kunming Institute of Zoology The Chinese Academy of Sciences Kunming China
- Center for Excellence in Animal Evolution and Genetics Chinese Academy of Sciences Kunming China
| |
Collapse
|
222
|
Tritz ZP, Orozco RC, Malo CS, Ayasoufi K, Fain CE, Khadka RH, Goddery EN, Yokanovich LT, Settell ML, Hansen MJ, Jin F, Pavelko KD, Pease LR, Johnson AJ. Conditional Silencing of H-2D b Class I Molecule Expression Modulates the Protective and Pathogenic Kinetics of Virus-Antigen-Specific CD8 T Cell Responses during Theiler's Virus Infection. THE JOURNAL OF IMMUNOLOGY 2020; 205:1228-1238. [PMID: 32737149 DOI: 10.4049/jimmunol.2000340] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/01/2020] [Indexed: 12/15/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infection of the CNS is cleared in C57BL/6 mice by a CD8 T cell response restricted by the MHC class I molecule H-2Db The identity and function of the APC(s) involved in the priming of this T cell response is (are) poorly defined. To address this gap in knowledge, we developed an H-2Db LoxP-transgenic mouse system using otherwise MHC class I-deficient C57BL/6 mice, thereby conditionally ablating MHC class I-restricted Ag presentation in targeted APC subpopulations. We observed that CD11c+ APCs are critical for early priming of CD8 T cells against the immunodominant TMEV peptide VP2121-130 Loss of H-2Db on CD11c+ APCs mitigates the CD8 T cell response, preventing early viral clearance and immunopathology associated with CD8 T cell activity in the CNS. In contrast, animals with H-2Db-deficient LysM+ APCs retained early priming of Db:VP2121-130 epitope-specific CD8 T cells, although a modest reduction in immune cell entry into the CNS was observed. This work establishes a model enabling the critical dissection of H-2Db-restricted Ag presentation to CD8 T cells, revealing cell-specific and temporal features involved in the generation of CD8 T cell responses. Employing this novel system, we establish CD11c+ cells as pivotal to the establishment of acute antiviral CD8 T cell responses against the TMEV immunodominant epitope VP2121-130, with functional implications both for T cell-mediated viral control and immunopathology.
Collapse
Affiliation(s)
- Zachariah P Tritz
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905.,Mayo Clinic Department of Immunology, Rochester, MN 55905
| | - Robin C Orozco
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905.,Mayo Clinic Department of Immunology, Rochester, MN 55905
| | - Courtney S Malo
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905.,Mayo Clinic Department of Immunology, Rochester, MN 55905
| | | | - Cori E Fain
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905.,Mayo Clinic Department of Immunology, Rochester, MN 55905
| | - Roman H Khadka
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905.,Mayo Clinic Department of Immunology, Rochester, MN 55905
| | - Emma N Goddery
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905.,Mayo Clinic Department of Immunology, Rochester, MN 55905
| | - Lila T Yokanovich
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905.,Mayo Clinic Department of Immunology, Rochester, MN 55905
| | - Megan L Settell
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905
| | | | - Fang Jin
- Mayo Clinic Department of Immunology, Rochester, MN 55905
| | | | - Larry R Pease
- Mayo Clinic Department of Immunology, Rochester, MN 55905.,Mayo Clinic Department of Biochemistry, Rochester, MN 55905
| | - Aaron J Johnson
- Mayo Clinic Department of Immunology, Rochester, MN 55905; .,Mayo Clinic Department of Molecular Medicine, Rochester, MN 55905; and.,Mayo Clinic Department of Neurology, Rochester, MN 55905
| |
Collapse
|
223
|
Abdel-Latif M, Youness RA. Why natural killer cells in triple negative breast cancer? World J Clin Oncol 2020; 11:464-476. [PMID: 32821652 PMCID: PMC7407924 DOI: 10.5306/wjco.v11.i7.464] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/28/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
The triple-negative subtype of breast cancer (TNBC) has the bleakest prognosis, owing to its lack of either hormone receptor as well as human epidermal growth factor receptor 2. Henceforth, immunotherapy has emerged as the front-runner for TNBC treatment, which avoids potentially damaging chemotherapeutics. However, despite its documented association with aggressive side effects and developed resistance, immune checkpoint blockade continues to dominate the TNBC immunotherapy scene. These immune checkpoint blockade drawbacks necessitate the exploration of other immunotherapeutic methods that would expand options for TNBC patients. One such method is the exploitation and recruitment of natural killer cells, which by harnessing the innate rather than adaptive immune system could potentially circumvent the downsides of immune checkpoint blockade. In this review, the authors will elucidate the advantageousness of natural killer cell-based immuno-oncology in TNBC as well as demonstrate the need to more extensively research such therapies in the future.
Collapse
Affiliation(s)
- Mustafa Abdel-Latif
- Biotechnology Program, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Rana Ahmed Youness
- Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| |
Collapse
|
224
|
Qin X, Denton WD, Huiting LN, Smith KS, Feng H. Unraveling the regulatory role of endoplasmic-reticulum-associated degradation in tumor immunity. Crit Rev Biochem Mol Biol 2020; 55:322-353. [PMID: 32633575 DOI: 10.1080/10409238.2020.1784085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During malignant transformation and cancer progression, tumor cells face both intrinsic and extrinsic stress, endoplasmic reticulum (ER) stress in particular. To survive and proliferate, tumor cells use multiple stress response pathways to mitigate ER stress, promoting disease aggression and treatment resistance. Among the stress response pathways is ER-associated degradation (ERAD), which consists of multiple components and steps working together to ensure protein quality and quantity. In addition to its established role in stress responses and tumor cell survival, ERAD has recently been shown to regulate tumor immunity. Here we summarize current knowledge on how ERAD promotes protein degradation, regulates immune cell development and function, participates in antigen presentation, exerts paradoxical roles on tumorigenesis and immunity, and thus impacts current cancer therapy. Collectively, ERAD is a critical protein homeostasis pathway intertwined with cancer development and tumor immunity. Of particular importance is the need to further unveil ERAD's enigmatic roles in tumor immunity to develop effective targeted and combination therapy for successful treatment of cancer.
Collapse
Affiliation(s)
- Xiaodan Qin
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - William D Denton
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Leah N Huiting
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Kaylee S Smith
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| | - Hui Feng
- Departments of Pharmacology and Medicine, Section of Hematology and Medical Oncology, Center for Cancer Research, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
225
|
Pham TV, Boichard A, Goodman A, Riviere P, Yeerna H, Tamayo P, Kurzrock R. Role of ultraviolet mutational signature versus tumor mutation burden in predicting response to immunotherapy. Mol Oncol 2020; 14:1680-1694. [PMID: 32530570 PMCID: PMC7400787 DOI: 10.1002/1878-0261.12748] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/27/2020] [Accepted: 06/05/2020] [Indexed: 01/19/2023] Open
Abstract
Hydrophobic neoantigens are more immunogenic because they are better presented by the major histocompatibility complex and better recognized by T cells. Tumor cells can evade the immune response by expressing checkpoints such as programmed death ligand 1. Checkpoint blockade reactivates immune recognition and can be effective in diseases such as melanoma, which harbors a high tumor mutational burden (TMB). Cancers presenting low or intermediate TMB can also respond to checkpoint blockade, albeit less frequently, suggesting the need for biological markers predicting response. We calculated the hydrophobicity of neopeptides produced by probabilistic in silico simulation of the genomic UV exposure mutational signature. We also computed the hydrophobicity of potential neopeptides and extent of UV exposure based on the UV mutational signature enrichment (UVMSE) score in The Cancer Genome Atlas (TCGA; N = 3543 tumors), and in our cohort of 151 immunotherapy‐treated patients. In silico simulation showed that UV exposure significantly increased hydrophobicity of neopeptides, especially over multiple mutagenic cycles. There was also a strong correlation (R2 = 0.953) between weighted UVMSE and hydrophobicity of neopeptides in TCGA melanoma patients. Importantly, UVMSE was able to predict better response (P = 0.0026), progression‐free survival (P = 0.036), and overall survival (P = 0.052) after immunotherapy in patients with low/intermediate TMB, but not in patients with high TMB. We show that higher UVMSE scores could be a useful predictor of better immunotherapy outcome, especially in patients with low/intermediate TMB, likely due to increased hydrophobicity (and hence immunogenicity) of neopeptides.
Collapse
Affiliation(s)
- Timothy V Pham
- Center for Personalized Cancer Therapy, Moores Cancer Center, UCSD, San Diego, CA, USA
| | - Amélie Boichard
- Center for Personalized Cancer Therapy, Moores Cancer Center, UCSD, San Diego, CA, USA
| | - Aaron Goodman
- Center for Personalized Cancer Therapy, Moores Cancer Center, UCSD, San Diego, CA, USA.,Division of Blood and Marrow Transplantation, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Paul Riviere
- Center for Personalized Cancer Therapy, Moores Cancer Center, UCSD, San Diego, CA, USA
| | - Huwate Yeerna
- Center for Personalized Cancer Therapy, Moores Cancer Center, UCSD, San Diego, CA, USA
| | - Pablo Tamayo
- Center for Personalized Cancer Therapy, Moores Cancer Center, UCSD, San Diego, CA, USA.,Division of Medical Genetics, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, Moores Cancer Center, UCSD, San Diego, CA, USA.,Division of Hematology/Oncology, Department of Medicine, Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
226
|
Zamame Ramirez JA, Romagnoli GG, Falasco BF, Gorgulho CM, Sanzochi Fogolin C, Dos Santos DC, Junior JPA, Lotze MT, Ureshino RP, Kaneno R. Blocking drug-induced autophagy with chloroquine in HCT-116 colon cancer cells enhances DC maturation and T cell responses induced by tumor cell lysate. Int Immunopharmacol 2020; 84:106495. [PMID: 32298965 PMCID: PMC7152898 DOI: 10.1016/j.intimp.2020.106495] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/03/2020] [Accepted: 04/06/2020] [Indexed: 01/24/2023]
Abstract
Autophagy is an important mechanism for tumor escape, allowing tumor cells to recover from the damage induced by chemotherapy, radiation therapy, and immunotherapy and contributing to the development of resistance. The pharmacological inhibition of autophagy contributes to increase the efficacy of antineoplastic agents. Exposing tumor cells to low concentrations of select autophagy-inducing antineoplastic agents increases their immunogenicity and enhances their ability to stimulate dendritic cell (DC) maturation. We tested whether the application of an autophagy-inhibiting agent, chloroquine (CQ), in combination with low concentrations of 5-fluorouracil (5-FU) increases the ability of tumor cells to induce DC maturation. DCs sensitized with the lysate of HCT-116 cells previously exposed to such a combination enhanced the DC maturation/activation ability. These matured DCs also increased the allogeneic responsiveness of both CD4+ and CD8+ T cells, which showed a greater proliferative response than those from DCs sensitized with control lysates. The T cells expanded in such cocultures were CD69+ and PD-1- and produced higher levels of IFN-γ and lower levels of IL-10, consistent with the preferential activation of Th1 cells. Cocultures of autologous DCs and lymphocytes improved the generation of cytotoxic T lymphocytes, as assessed by the expression of CD107a, perforin, and granzyme B. The drug combination increased the expression of genes related to the CEACAM family (BECN1, ATGs, MAPLC3B, ULK1, SQSTM1) and tumor suppressors (PCBP1). Furthermore, the decreased expression of genes related to metastasis and tumor progression (BNIP3, BNIP3L, FOSL2, HES1, LAMB3, LOXL2, NDRG1, P4HA1, PIK3R2) was noted. The combination of 5-FU and CQ increases the ability of tumor cells to drive DC maturation and enhances the ability of DCs to stimulate T cell responses.
Collapse
Affiliation(s)
- Jofer Andree Zamame Ramirez
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil; São Paulo State University - UNESP, Department of Pathology, School of Medicine of Botucatu, Botucatu, SP, Brazil
| | - Graziela Gorete Romagnoli
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil; São Paulo State University - UNESP, Department of Pathology, School of Medicine of Botucatu, Botucatu, SP, Brazil
| | - Bianca Francisco Falasco
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil
| | - Carolina Mendonça Gorgulho
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil; São Paulo State University - UNESP, Department of Pathology, School of Medicine of Botucatu, Botucatu, SP, Brazil
| | - Carla Sanzochi Fogolin
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil
| | - Daniela Carvalho Dos Santos
- São Paulo State University - UNESP, Center for Electron Microscopy, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil
| | - João Pessoa Araújo Junior
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil
| | - Michael Thomas Lotze
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Ramon Kaneno
- São Paulo State University - UNESP, Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, Botucatu, SP, Brazil.
| |
Collapse
|
227
|
Chinn AM, Insel PA. Cyclic AMP in dendritic cells: A novel potential target for disease-modifying agents in asthma and other allergic disorders. Br J Pharmacol 2020; 177:3363-3377. [PMID: 32372523 DOI: 10.1111/bph.15095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/27/2020] [Accepted: 04/03/2020] [Indexed: 12/14/2022] Open
Abstract
Allergic diseases are immune disorders that are a global health problem, affecting a large portion of the world's population. Allergic asthma is a heterogeneous disease that alters the biology of the airway. A substantial portion of patients with asthma do not respond to conventional therapies; thus, new and effective therapeutics are needed. Dendritic cells (DCs), antigen presenting cells that regulate helper T cell differentiation, are key drivers of allergic inflammation but are not the target of current therapies. Here we review the role of dendritic cells in allergic conditions and propose a disease-modifying strategy for treating allergic asthma: cAMP-mediated inhibition of dendritic cells to blunt allergic inflammation. This approach contrasts with current treatments that focus on treating clinical manifestations of airway inflammation. Disease-modifying agents that target cAMP and its signalling pathway in dendritic cells may provide a novel means to treat asthma and other allergic diseases.
Collapse
Affiliation(s)
- Amy M Chinn
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA
| | - Paul A Insel
- Department of Pharmacology, University of California, San Diego, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
228
|
|
229
|
Grandclaudon M, Perrot-Dockès M, Trichot C, Karpf L, Abouzid O, Chauvin C, Sirven P, Abou-Jaoudé W, Berger F, Hupé P, Thieffry D, Sansonnet L, Chiquet J, Lévy-Leduc C, Soumelis V. A Quantitative Multivariate Model of Human Dendritic Cell-T Helper Cell Communication. Cell 2020; 179:432-447.e21. [PMID: 31585082 DOI: 10.1016/j.cell.2019.09.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/20/2019] [Accepted: 09/09/2019] [Indexed: 12/24/2022]
Abstract
Cell-cell communication involves a large number of molecular signals that function as words of a complex language whose grammar remains mostly unknown. Here, we describe an integrative approach involving (1) protein-level measurement of multiple communication signals coupled to output responses in receiving cells and (2) mathematical modeling to uncover input-output relationships and interactions between signals. Using human dendritic cell (DC)-T helper (Th) cell communication as a model, we measured 36 DC-derived signals and 17 Th cytokines broadly covering Th diversity in 428 observations. We developed a data-driven, computationally validated model capturing 56 already described and 290 potentially novel mechanisms of Th cell specification. By predicting context-dependent behaviors, we demonstrate a new function for IL-12p70 as an inducer of Th17 in an IL-1 signaling context. This work provides a unique resource to decipher the complex combinatorial rules governing DC-Th cell communication and guide their manipulation for vaccine design and immunotherapies.
Collapse
Affiliation(s)
- Maximilien Grandclaudon
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Marie Perrot-Dockès
- UMR MIA-Paris, AgroParisTech, INRA-Université Paris-Saclay, 75005 Paris, France
| | - Coline Trichot
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Léa Karpf
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Omar Abouzid
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Camille Chauvin
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Philémon Sirven
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; INSERM U932, Immunity and Cancer, 75005 Paris, France
| | - Wassim Abou-Jaoudé
- Computational Systems Biology Team, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique UMR8197, INSERM U1024, École Normale Supérieure, PSL Université, 75005 Paris, France
| | - Frédérique Berger
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; Institut Curie, PSL Research University, Unit of Biostatistics, 75005 Paris, France; Institut Curie, PSL Research University, INSERM U900, 75005 Paris, France
| | - Philippe Hupé
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; Institut Curie, PSL Research University, INSERM U900, 75005 Paris, France; Mines Paris Tech, 77305 Cedex Fontainebleau, France
| | - Denis Thieffry
- Computational Systems Biology Team, Institut de Biologie de l'École Normale Supérieure, Centre National de la Recherche Scientifique UMR8197, INSERM U1024, École Normale Supérieure, PSL Université, 75005 Paris, France
| | - Laure Sansonnet
- UMR MIA-Paris, AgroParisTech, INRA-Université Paris-Saclay, 75005 Paris, France
| | - Julien Chiquet
- UMR MIA-Paris, AgroParisTech, INRA-Université Paris-Saclay, 75005 Paris, France
| | - Céline Lévy-Leduc
- UMR MIA-Paris, AgroParisTech, INRA-Université Paris-Saclay, 75005 Paris, France
| | - Vassili Soumelis
- Institut Curie, Centre de Recherche, PSL Research University, 75005 Paris, France; INSERM U932, Immunity and Cancer, 75005 Paris, France.
| |
Collapse
|
230
|
Georges HM, Knapek KJ, Bielefeldt-Ohmann H, Van Campen H, Hansen TR. Attenuated lymphocyte activation leads to the development of immunotolerance in bovine fetuses persistently infected with bovine viral diarrhea virus†. Biol Reprod 2020; 103:560-571. [PMID: 32483591 DOI: 10.1093/biolre/ioaa088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/17/2020] [Accepted: 05/28/2020] [Indexed: 11/14/2022] Open
Abstract
Bovine viral diarrhea virus continues to cost the cattle industry millions of dollars each year despite control measures. The primary reservoirs for bovine viral diarrhea virus are persistently infected animals, which are infected in utero and shed the virus throughout their lifetime. The difficulty in controlling the virus stems from a limited understanding of transplacental transmission and fetal development of immunotolerance. In this study, pregnant bovine viral diarrhea virus naïve heifers were inoculated with bovine viral diarrhea virus on day 75 of gestation and fetal spleens were collected on gestational days 82, 97, 190, and 245. Microarray analysis on splenic RNA from days 82 and 97 revealed an increase in signaling for the innate immune system and antigen presentation to T cells in day 97 persistently infected fetuses compared to controls. Reverse transcription quantitative polymerase chain reaction on select targets validated the microarray revealing a downregulation of type I interferons and lymphocyte markers in day 190 persistently infected fetuses compared to controls. Protein was visualized using western blot and tissue sections were analyzed with hematoxylin and eosin staining and immunohistochemistry. Data collected indicate that fetal immunotolerance to bovine viral diarrhea virus developed between days 97 and 190, with mass attenuation of the immune system on day 190 of gestation. Furthermore, lymphocyte transcripts were initially unchanged then downregulated, suggesting that immunotolerance to the virus stems from a blockage in lymphocyte activation and hence an inability to clear the virus. The identification of lymphocyte derived immunotolerance will aid in the development of preventative and viral control measures to implement before or during pregnancy.
Collapse
Affiliation(s)
- Hanah M Georges
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Katie J Knapek
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Helle Bielefeldt-Ohmann
- School of Veterinary Science, The University of Queensland - Gatton Campus, Gatton, QLD, Australia.,Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Hana Van Campen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Thomas R Hansen
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
231
|
Pandey VK, Shankar BS. Radiation-induced augmentation in dendritic cell function is mediated by apoptotic bodies/STAT5/Zbtb46 signaling. Int J Radiat Biol 2020; 96:988-998. [PMID: 32396024 DOI: 10.1080/09553002.2020.1767818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Purpose: To evaluate the effect of ionizing radiation (IR) exposure on differentiation and maturation of dendritic cells (DC).Materials and methods: Bone marrow progenitor cells irradiated in vitro or isolated from mice exposed to whole body or localized tumor irradiation were differentiated into DC. Phenotypic maturation of DC was characterized by labeling with specific antibodies and flow cytometry analysis. Cytokines were estimated by ELISA.Results: Splenic and bone marrow-derived DC (BMDC) from tumor-bearing mice exposed to localized irradiation showed abrogation of tumor-induced immunosuppression. This was not due to the effect of radiation on tumor cells as DC derived from normal mice exposed to whole-body irradiation (WBI) also showed increase in immune-activating potential of DC. This was observed in terms of increased phenotypic and functional activation of DCs. This phenomenon was also recapitulated if DC were differentiated from in vitro irradiated progenitor cells and was found to be due to STAT5/Zbtb46 signaling mediated by the irradiation-induced apoptotic bodies (ABs). When these ABs were depleted using annexin-beads, these effects were reversed confirming the involvement of this pathway. The role of ABs was further validated in DC derived from mice exposed to WBI in adaptive response experiments with 0.1 Gy priming dose prior to 2 Gy challenge dose. A corresponding reduction in DC maturation markers was observed with decrease in apoptosis in vivo. Further, these DCs derived from irradiated progenitors (IP) could resist the suppressive effects of tumor conditioned medium (TCM) and had increased immune-activating potential as seen in the tumor-bearing mice.Conclusions: Though radiation is the most commonly used therapeutic modality for cancer, its effects on dendritic cell differentiation is not completely understood. We demonstrate here for the first time that exposure to select doses of IR can increase immune-activating potential of DC through ABs. This can have implications in selection of appropriate doses of IR during radiotherapy of cancer patients.
Collapse
Affiliation(s)
- Vipul K Pandey
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India
| | - Bhavani S Shankar
- Immunology Section, Radiation Biology & Health Sciences Division, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
232
|
Expanding the Spectrum of Adenoviral Vectors for Cancer Therapy. Cancers (Basel) 2020; 12:cancers12051139. [PMID: 32370135 PMCID: PMC7281331 DOI: 10.3390/cancers12051139] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Adenoviral vectors (AdVs) have attracted much attention in the fields of vaccine development and treatment for diseases such as genetic disorders and cancer. In this review, we discuss the utility of AdVs in cancer therapies. In recent years, AdVs were modified as oncolytic AdVs (OAs) that possess the characteristics of cancer cell-specific replication and killing. Different carriers such as diverse cells and extracellular vesicles are being explored for delivering OAs into cancer sites after systemic administration. In addition, there are also various strategies to improve cancer-specific replication of OAs, mainly through modifying the early region 1 (E1) of the virus genome. It has been documented that oncolytic viruses (OVs) function through stimulating the immune system, resulting in the inhibition of cancer progression and, in combination with classical immune modulators, the anti-cancer effect of OAs can be even further enforced. To enhance the cancer treatment efficacy, OAs are also combined with other standard treatments, including surgery, chemotherapy and radiotherapy. Adenovirus type 5 (Ad5) has mainly been explored to develop vectors for cancer treatment with different modulations. Only a limited number of the more than 100 identified AdV types were converted into OAs and, therefore, the construction of an adenovirus library for the screening of potential novel OA candidates is essential. Here, we provide a state-of-the-art overview of currently performed and completed clinic trials with OAs and an adenovirus library, providing novel possibilities for developing innovative adenoviral vectors for cancer treatment.
Collapse
|
233
|
Bouzid R, Peppelenbosch M, Buschow SI. Opportunities for Conventional and in Situ Cancer Vaccine Strategies and Combination with Immunotherapy for Gastrointestinal Cancers, A Review. Cancers (Basel) 2020; 12:cancers12051121. [PMID: 32365838 PMCID: PMC7281593 DOI: 10.3390/cancers12051121] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/17/2022] Open
Abstract
Survival of gastrointestinal cancer remains dismal, especially for metastasized disease. For various cancers, especially melanoma and lung cancer, immunotherapy has been proven to confer survival benefits, but results for gastrointestinal cancer have been disappointing. Hence, there is substantial interest in exploring the usefulness of adaptive immune system education with respect to anti-cancer responses though vaccination. Encouragingly, even fairly non-specific approaches to vaccination and immune system stimulation, involving for instance influenza vaccines, have shown promising results, eliciting hopes that selection of specific antigens for vaccination may prove useful for at least a subset of gastrointestinal cancers. It is widely recognized that immune recognition and initiation of responses are hampered by a lack of T cell help, or by suppressive cancer-associated factors. In this review we will discuss the hurdles that limit efficacy of conventional cancer therapeutic vaccination methods (e.g., peptide vaccines, dendritic cell vaccination). In addition, we will outline other forms of treatment (e.g., radiotherapy, chemotherapy, oncolytic viruses) that also cause the release of antigens through immunogenic tumor cell death and can thus be considered unconventional vaccination methods (i.e., in situ vaccination). Finally, we focus on the potential additive value that vaccination strategies may have for improving the effect immunotherapy. Overall, a picture will emerge that although the field has made substantial progress, successful immunotherapy through the combination with cancer antigen vaccination, including that for gastrointestinal cancers, is still in its infancy, prompting further intensification of the research effort in this respect.
Collapse
|
234
|
Relationship between T cells and microbiota in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:95-129. [PMID: 32475529 DOI: 10.1016/bs.pmbts.2020.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decades, the fields of microbiology and immunology have largely advanced by using germ-free animals and next-generation sequencing. Many studies revealed the relationship among gut microbiota, activation of immune system, and various diseases. Especially, some gut commensals can generate their antigen-specific T cells. It is becoming clear that commensal bacteria have important roles in various autoimmune and inflammatory diseases, such as autism, rheumatoid arthritis (RA), and inflammatory bowel diseases (IBD). Recently, it was reported that commensals contribute to the cancer immune therapy. However, how commensal-specific T cells contribute to the disease development and cancer treatment are not fully understood yet. In this chapter, we will summarize the decade history of the studies associated with commensal-induced T cells and commensal-causing diseases.
Collapse
|
235
|
Kudo M. Scientific Rationale for Combined Immunotherapy with PD-1/PD-L1 Antibodies and VEGF Inhibitors in Advanced Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:E1089. [PMID: 32349374 PMCID: PMC7281246 DOI: 10.3390/cancers12051089] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
A successful phase III trial for the combination of atezolizumab and bevacizumab (the IMbrave150 trial) in advanced hepatocellular carcinoma has recently been reported. This is groundbreaking because nivolumab and pembrolizumab, both programmed cell death-1 (PD-1) antibodies, have failed to show efficacy as first- and second-line therapeutics, respectively, in phase III clinical trials. Immunotherapy with a combination of atezolizumab and bevacizumab resulted in better survival than treatment with sorafenib for the first time since sorafenib was approved in 2007. The high efficacy of the combination of PD-1/programmed death ligand 1 (PD-L1) and vascular endothelial growth factor (VEGF) antibodies is not only due to their additive effects on tumor growth, but also to their reprogramming of the immunosuppressive microenvironment into an immunostimulatory microenvironment. These results were confirmed in a phase Ib trial that showed significantly longer progression-free survival in the atezolizumab plus bevacizumab group than in patients that received atezolizumab alone. These results demonstrate that immunotherapy with a combination of PD-1/PD-L1 and VEGF inhibitors is effective and may result in a reprogramming of the tumor microenvironment. The results of an ongoing phase III trial of a PD-1 antibody in combination with the VEGF receptor tyrosine kinase inhibitor (TKI) are highly anticipated.
Collapse
Affiliation(s)
- Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama 589-8511, Japan
| |
Collapse
|
236
|
Hou G, Bishu S. Th17 Cells in Inflammatory Bowel Disease: An Update for the Clinician. Inflamm Bowel Dis 2020; 26:653-661. [PMID: 31970388 PMCID: PMC11491631 DOI: 10.1093/ibd/izz316] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Indexed: 12/11/2022]
Abstract
Studies in humans strongly implicate Th17 cells in the pathogenesis of inflammatory bowel disease. Thus, Th17 cells are major targets of approved and emerging biologics. Herein, we review the role of Th17 in IBD with a clinical focus.
Collapse
Affiliation(s)
- Guoqing Hou
- Division of Gastroenterology, Department of Medicine, University of Michigan, MI, USA
| | - Shrinivas Bishu
- Crohn's and Colitis Center, Division of Gastroenterology, Department of Medicine, University of Michigan, MI, USA
| |
Collapse
|
237
|
Kudo M. A New Era in Systemic Therapy for Hepatocellular Carcinoma: Atezolizumab plus Bevacizumab Combination Therapy. Liver Cancer 2020; 9:119-137. [PMID: 32399427 PMCID: PMC7206602 DOI: 10.1159/000505189] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 02/04/2023] Open
Affiliation(s)
- Masatoshi Kudo
- *Masatoshi Kudo, Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, 337-2 Ohno-Higashi, Osaka-Sayama 589-8511 (Japan),
| |
Collapse
|
238
|
Zhao Q, Li Y, Li Y, Ji X, Li H, Wu D, Wei W, Xinchun W. Silencing EPB41 Gene Expression Leads to Cell Cycle Arrest, Migration Inhibition, and Upregulation of Cell Surface Antigen in DC2.4 Cells. Med Sci Monit 2020; 26:e920594. [PMID: 32157074 PMCID: PMC7085237 DOI: 10.12659/msm.920594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Protein 4.1R (EPB41) is the main cytoskeleton component of the erythrocyte membrane and may be involved in cell migration and adhesion. Previous research discovered overexpression of 4.1R in the thymus of patients with myasthenia gravis (MG). The protein 4.1R on dendritic cells may play a pivotal role in MG pathogenesis. This research investigated the effects of small interfering RNA 4.1R-siRNA on cell migration, cell cycle, and surface antigen expression of DC2.4 mouse dendritic cells, thus providing a new direction for the study of MG pathogenesis. MATERIAL AND METHODS Three 4.1R-specific siRNAs were designed, and the expression of 4.1R was detected by real-time PCR at the mRNA level and Western blot analysis at the protein level to select out the most efficient siRNAs. Changes in cell morphology were observed and cell migration ability was analyzed by Transwell assay. Cell cycle and surface antigen were both analyzed by flow cytometry. RESULTS The cell bodies of DC2.4 diminished, the synapses were increased, and protuberance became more obvious after being transfected with 4.1R-siRNA. After knockdown of 4.1R, cell migration ability decreased and the proportion of cells in S phase significantly increased (both P<0.05). The expression levels of MHCII, CD80, and CD86 were all increased in DC2.4 cells (all <0.05). CONCLUSIONS Silencing the expression of 4.1R in dendritic cells resulted in inhibition of migration ability, cell cycle arrest, and increase in surface antigens, which suggest that 4.1R participates in MG autoimmunity.
Collapse
Affiliation(s)
- Qing Zhao
- Department of Rheumatism, Huaihe Hosptial of Henan University, Kaifeng, Henan, China (mainland)
| | - Yongqiang Li
- Biochemisty and Molecular Teaching and Research Office, School of Basic Medical Science, Henan University, Kaifeng, Henan, China (mainland)
| | - Yanhong Li
- Department of General Medicine, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China (mainland)
| | - Xinying Ji
- Department of Medical Microbiology, School of Basic Medical Science, Henan University, Kaifeng, Henan, China (mainland)
| | - Huimin Li
- Human Anatomy Teaching and Research Room, School of Basic Medical Science, Henan University, Kaifeng, Henan, China (mainland)
| | - Dongdong Wu
- Department of Physiology, School of Basic Medical Science, Henan University, Kaifeng, Henan, China (mainland)
| | - Wenqiang Wei
- Department of Medical Microbiology, School of Basic Medical Science, Henan University, Kaifeng, Henan, China (mainland)
| | - Wang Xinchun
- Molecular Biology Laboratory, The First Affiliated Hospital of Henan University, Kaifeng, Henan, China (mainland)
| |
Collapse
|
239
|
Baldin AV, Savvateeva LV, Bazhin AV, Zamyatnin AA. Dendritic Cells in Anticancer Vaccination: Rationale for Ex Vivo Loading or In Vivo Targeting. Cancers (Basel) 2020; 12:cancers12030590. [PMID: 32150821 PMCID: PMC7139354 DOI: 10.3390/cancers12030590] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Dendritic cells (DCs) have shown great potential as a component or target in the landscape of cancer immunotherapy. Different in vivo and ex vivo strategies of DC vaccine generation with different outcomes have been proposed. Numerous clinical trials have demonstrated their efficacy and safety in cancer patients. However, there is no consensus regarding which DC-based vaccine generation method is preferable. A problem of result comparison between trials in which different DC-loading or -targeting approaches have been applied remains. The employment of different DC generation and maturation methods, antigens and administration routes from trial to trial also limits the objective comparison of DC vaccines. In the present review, we discuss different methods of DC vaccine generation. We conclude that standardized trial designs, treatment settings and outcome assessment criteria will help to determine which DC vaccine generation approach should be applied in certain cancer cases. This will result in a reduction in alternatives in the selection of preferable DC-based vaccine tactics in patient. Moreover, it has become clear that the application of a DC vaccine alone is not sufficient and combination immunotherapy with recent advances, such as immune checkpoint inhibitors, should be employed to achieve a better clinical response and outcome.
Collapse
Affiliation(s)
- Alexey V. Baldin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Lyudmila V. Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
| | - Alexandr V. Bazhin
- Department of General, Visceral and Transplant Surgery, Ludwig-Maximilians University of Munich, 81377 Munich, Germany;
- German Cancer Consortium (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (A.V.B.); (L.V.S.)
- Belozersky Institute of Physico-Chemical Biology, Department of Cell Signaling, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +74-956-229-843
| |
Collapse
|
240
|
Shirley JL, Keeler GD, Sherman A, Zolotukhin I, Markusic DM, Hoffman BE, Morel LM, Wallet MA, Terhorst C, Herzog RW. Type I IFN Sensing by cDCs and CD4 + T Cell Help Are Both Requisite for Cross-Priming of AAV Capsid-Specific CD8 + T Cells. Mol Ther 2020; 28:758-770. [PMID: 31780366 PMCID: PMC7054715 DOI: 10.1016/j.ymthe.2019.11.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022] Open
Abstract
Adeno-associated virus (AAV) vectors are widely used in clinical gene therapy to correct genetic disease by in vivo gene transfer. Although the vectors are useful, in part because of their limited immunogenicity, immune responses directed at vector components have complicated applications in humans. These include, for instance, innate immune sensing of vector components by plasmacytoid dendritic cells (pDCs), which sense the vector DNA genome via Toll-like receptor 9. Adaptive immune responses employ antigen presentation by conventional dendritic cells (cDCs), which leads to cross-priming of capsid-specific CD8+ T cells. In this study, we sought to determine the mechanisms that promote licensing of cDCs, which is requisite for CD8+ T cell activation. Blockage of type 1 interferon (T1 IFN) signaling by monoclonal antibody therapy prevented cross-priming. Furthermore, experiments in cell-type-restricted knockout mice showed a specific requirement for the receptor for T1 IFN (IFNaR) in cDCs. In contrast, natural killer (NK) cells are not needed, indicating a direct rather than indirect effect of T1 IFN on cDCs. In addition, co-stimulation by CD4+ T cells via CD40-CD40L was required for cross-priming, and blockage of co-stimulation but not of T1 IFN additionally reduced antibody formation against capsid. These mechanistic insights inform the development of targeted immune interventions.
Collapse
Affiliation(s)
- Jamie L Shirley
- Department Pediatrics, University of Florida, Gainesville, FL, USA
| | | | | | - Irene Zolotukhin
- Department Pediatrics, University of Florida, Gainesville, FL, USA
| | - David M Markusic
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Brad E Hoffman
- Department Pediatrics, University of Florida, Gainesville, FL, USA
| | - Laurence M Morel
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Mark A Wallet
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Roland W Herzog
- Department Pediatrics, University of Florida, Gainesville, FL, USA; Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
241
|
Effective Activation of Human Antigen-Presenting Cells and Cytotoxic CD8 + T Cells by a Calcium Phosphate-Based Nanoparticle Vaccine Delivery System. Vaccines (Basel) 2020; 8:vaccines8010110. [PMID: 32121590 PMCID: PMC7157756 DOI: 10.3390/vaccines8010110] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022] Open
Abstract
The ability of vaccines to induce T cell responses is crucial for preventing diseases caused by viruses. Nanoparticles (NPs) are considered to be efficient tools for the initiation of potent immune responses. Calcium phosphate (CaP) NPs are a class of biodegradable nanocarriers that are able to deliver immune activating molecules across physiological barriers. Therefore, the aim of this study was to assess whether Toll-like receptor (TLR) ligand and viral antigen functionalized CaP NPs are capable of inducing efficient maturation of human antigen presenting cells (APC). To achieve this, we generated primary human dendritic cells (DCs) and stimulated them with CpG or poly(I:C) functionalized CaP NPs. DCs were profoundly stronger when activated upon NP stimulation compared to treatment with soluble TLR ligands. This is indicated by increased levels of costimulatory molecules and the secretion of proinflammatory cytokines. Consequently, coculture of NP-stimulated APCs with CD8+ T cells resulted in a significant expansion of virus-specific T cells. In summary, our data suggest that functionalized CaP NPs are a suitable tool for activating human virus-specific CD8+ T cells and may represent an excellent vaccine delivery system.
Collapse
|
242
|
Lopez MJ, Seyed-Razavi Y, Yamaguchi T, Ortiz G, Sendra VG, Harris DL, Jamali A, Hamrah P. Multiphoton Intravital Microscopy of Mandibular Draining Lymph Nodes: A Mouse Model to Study Corneal Immune Responses. Front Immunol 2020; 11:39. [PMID: 32153558 PMCID: PMC7050419 DOI: 10.3389/fimmu.2020.00039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/08/2020] [Indexed: 12/20/2022] Open
Abstract
Multiphoton intravital microscopy (MP-IVM) is a powerful tool to image cells in vivo. Its application in immunology research has opened new horizons, allowing intravital imaging of leukocytes at the single-cell level. A transparent cornea is vital to retain vision. As an immune privileged site, a rapid innate response to foreign antigens is crucial in clearing opportunistic bacterial and viral pathogens, and minimizing collateral structural damage to the cornea. Furthermore, dissecting the mechanisms and preventing the immunological rejection process after corneal transplantation is imperative to retain sight. Therefore, understanding the underlying mechanisms behind corneal immunity, specifically the process of antigen presentation and adaptive immunity in the mandibular draining lymph nodes (dLNs) in vivo, is crucial. Attempts of intravital imaging of mandibular dLNs have yielded little success to date, due to breathing artifacts and the location that is difficult to access. Herein, we present the first MP-IVM mouse model of the mandibular dLNs, utilizing transgenic mice in which CD11c+ cells are fluorescently labeled. Furthermore, we demonstrate that CD11c-YFP+ cells are localized mainly in the parafollicular cortex (T cell zone) and subcapsular area and are sparsely distributed in the follicular region (B cell zone) of mandibular dLNs during steady state. A significant increase in host CD11c-YFP+ cell density is noted at 14 and 21 days following allogeneic corneal transplantation, compared to steady state (p < 0.05). Moreover, allogeneic corneal transplantation results in increased host-derived CD11c-YFP+ cell mean speed and displacement in mandibular dLNs, compared to steady state (p < 0.001). The meandering index, an index for directionality, is significantly increased after allogeneic corneal transplantation at both 14 and 21 days, compared to steady state (p < 0.001). Taken together, our study demonstrates the necessary methodology required for intravital multiphoton imaging of the mandibular dLNs, allowing visualization of spatiotemporal kinetics of immune cells in vivo, and provides a window into the corneal immune reflex arc. This technique will be a powerful tool to investigate the pathogenesis of ocular immune and inflammatory diseases.
Collapse
Affiliation(s)
- Maria J Lopez
- Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Yashar Seyed-Razavi
- Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Takefumi Yamaguchi
- Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Gustavo Ortiz
- Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States
| | - Victor G Sendra
- Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Deshea L Harris
- Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Arsia Jamali
- Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Pedram Hamrah
- Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Department of Ophthalmology, Harvard Medical School, Schepens Eye Research Institute/Massachusetts Eye and Ear Infirmary, Boston, MA, United States.,Program in Immunology, School of Graduate Biomedical Sciences, Tufts University, Boston, MA, United States.,Cornea Service, Department of Ophthalmology, Tufts New England Eye Center, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, United States.,Cornea Service, Department of Ophthalmology, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
243
|
Mutual Regulation of RNA Silencing and the IFN Response as an Antiviral Defense System in Mammalian Cells. Int J Mol Sci 2020; 21:ijms21041348. [PMID: 32079277 PMCID: PMC7072894 DOI: 10.3390/ijms21041348] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/14/2020] [Accepted: 02/15/2020] [Indexed: 12/20/2022] Open
Abstract
RNA silencing is a posttranscriptional gene silencing mechanism directed by endogenous small non-coding RNAs called microRNAs (miRNAs). By contrast, the type-I interferon (IFN) response is an innate immune response induced by exogenous RNAs, such as viral RNAs. Endogenous and exogenous RNAs have typical structural features and are recognized accurately by specific RNA-binding proteins in each pathway. In mammalian cells, both RNA silencing and the IFN response are induced by double-stranded RNAs (dsRNAs) in the cytoplasm, but have long been considered two independent pathways. However, recent reports have shed light on crosstalk between the two pathways, which are mutually regulated by protein–protein interactions triggered by viral infection. This review provides brief overviews of RNA silencing and the IFN response and an outline of the molecular mechanism of their crosstalk and its biological implications. Crosstalk between RNA silencing and the IFN response may reveal a novel antiviral defense system that is regulated by miRNAs in mammalian cells.
Collapse
|
244
|
Prokhnevska N, Emerson DA, Kissick HT, Redmond WL. Immunological Complexity of the Prostate Cancer Microenvironment Influences the Response to Immunotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1210:121-147. [PMID: 31900908 DOI: 10.1007/978-3-030-32656-2_7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer is one of the most common cancers in men and a leading cause of cancer-related death. Recent advances in the treatment of advanced prostate cancer, including the use of more potent and selective inhibitors of the androgen signaling pathway, have provided significant clinical benefit for men with metastatic castration-resistant prostate cancer (mCRPC). However, most patients develop progressive lethal disease, highlighting the need for more effective treatments. One such approach is immunotherapy, which harness the power of the patient's immune system to identify and destroy cancer cells through the activation of cytotoxic CD8 T cells specific for tumor antigens. Although immunotherapy, particularly checkpoint blockade, can induce significant clinical responses in patients with solid tumors or hematological malignancies, minimal efficacy has been observed in men with mCRPC. In the current review, we discuss our current understanding of the immunological complexity of the immunosuppressive prostate cancer microenvironment, preclinical models of prostate cancer, and recent advances in immunotherapy clinical trials to improve outcomes for men with mCRPC.
Collapse
Affiliation(s)
| | - Dana A Emerson
- Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, USA.,Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | | | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA.
| |
Collapse
|
245
|
Jung HS, Cho KJ, Ryu SJ, Takagi Y, Roche PA, Neuman KC. Biocompatible Fluorescent Nanodiamonds as Multifunctional Optical Probes for Latent Fingerprint Detection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6641-6650. [PMID: 31939655 PMCID: PMC8370203 DOI: 10.1021/acsami.9b19245] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
There is an immense literature on detection of latent fingerprints (LFPs) with fluorescent nanomaterials because fluorescence is one of the most sensitive detection methods. Although many fluorescent probes have been developed for latent fingerprint detection, many challenges remain, including the low selectivity, complicated processing, high background, and toxicity of nanoparticles used to visualize LFPs. In this study, we demonstrate biocompatible, efficient, and low background LFP detection with poly(vinylpyrrolidone) (PVP) coated fluorescent nanodiamonds (FNDs). PVP-coated FND (FND@PVP) is biocompatible at the cellular level. They neither inhibit cellar proliferation nor induce cell death via apoptosis or other cell killing pathways. Moreover, they do not elicit an immune response in cells. PVP coating enhances the physical adhesion of FND to diverse substrates and in particular results in efficient binding of FND@PVP to fingerprint ridges due to the intrinsic amphiphilicity of PVP. Clear, well-defined ridge structures with first, second, and third-level of LFP details are revealed within minutes by FND@PVP. The combination of this binding specificity and the remarkable optical properties of FND@PVP permits the detection of LPFs with high contrast, efficiency, selectivity, sensitivity, and reduced background interference. Our results demonstrate that background-free imaging via multicolor emission and dual-modal imaging of FND@PVP nanoparticles have great potential for high-resolution imaging of LFPs.
Collapse
Affiliation(s)
- Hak-Sung Jung
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kyung-Jin Cho
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Seung-Jin Ryu
- Forensic Science Research Center, Korean National Police University, 100-50 Hwang-san-gil, Sinchang-myeon, Asan-si, Chuncheongnan-do, 31539, South Korea
| | - Yasuharu Takagi
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Paul A. Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Keir C. Neuman
- Laboratory of Single Molecule Biophysics, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
246
|
Kimura TFE, Romera LMD, de Almeida SR. Fonsecaea pedrosoi Conidia Induces Activation of Dendritic Cells and Increases CD11c + Cells in Regional Lymph Nodes During Experimental Chromoblastomycosis. Mycopathologia 2020; 185:245-256. [PMID: 32008205 DOI: 10.1007/s11046-020-00429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/21/2020] [Indexed: 10/20/2022]
Abstract
The chromoblastomycosis is a subcutaneous mycosis with a high morbidity rate, Fonsecaea pedrosoi being the largest etiologic agent of this mycosis, usually confined to the skin and subcutaneous tissues. Rarely people get the cure, because the therapies shown to be deficient and few studies report the host-parasite relationship. Dendritic cells (DCs) are specialized in presenting antigens to naïve T lymphocytes inducing primary immune responses. Therefore, we propose to study the migratory capacity of DCs after infection with conidia of F. pedrosoi. The phenotype of DCs was evaluated using cells obtained from footpad and lymph nodes of BALB/c mice after 12, 24 and 72 h of infection. After 24 and 72 h of infection, we found a significant decrease in DCs in footpad and a significant increase in the lymph nodes after 72 h. The expression of surface markers and co-stimulatory molecules were reduced in cells obtained from footpad. To better assess the migratory capacity of DCs migration from footpad, CFSE-stained conidia were injected subcutaneously. We found that after 12 and 72 h, CD11c+ cells were increased in regional lymph nodes, leading us to believe that DCs (CD11c+) were able to phagocytic conidia present in footpad and migrated to regional lymph nodes.
Collapse
Affiliation(s)
- Telma Fátima Emidio Kimura
- Laboratory of Mycology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Scienses, Universidade de Sao Paulo, São Paulo, Brazil
| | - Lavínia Maria Dal'Mas Romera
- Laboratory of Mycology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Scienses, Universidade de Sao Paulo, São Paulo, Brazil.
| | - Sandro Rogério de Almeida
- Laboratory of Mycology, Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Scienses, Universidade de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
247
|
Cho KJ, Ishido S, Eisenlohr LC, Roche PA. Activation of Dendritic Cells Alters the Mechanism of MHC Class II Antigen Presentation to CD4 T Cells. THE JOURNAL OF IMMUNOLOGY 2020; 204:1621-1629. [PMID: 31996461 DOI: 10.4049/jimmunol.1901234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 12/31/2019] [Indexed: 11/19/2022]
Abstract
Both immature and mature dendritic cells (DCs) can process and present foreign Ags to CD4 T cells; however, the mechanism by which MHC class II (MHC-II) in mature DCs acquires antigenic peptides remains unknown. To address this, we have studied Ag processing and presentation of two distinct CD4 T cell epitopes of the influenza virus hemagglutinin coat protein by both immature and mature mouse DCs. We find that immature DCs almost exclusively use newly synthesized MHC-II targeted to DM+ late endosomes for presentation to influenza virus-specific CD4 T cells. By contrast, mature DCs exclusively use recycling MHC-II that traffics to both early and late endosomes for antigenic peptide binding. Rab11a knockdown partially inhibits recycling of MHC-II in mature DCs and selectively inhibits presentation of an influenza virus hemagglutinin CD4 T cell epitope generated in early endosomes. These studies highlight a "division of labor" in MHC-II peptide binding, in which immature DCs preferentially present Ags acquired in Rab11a- DM+ late endosomes, whereas mature DCs use recycling MHC-II to present antigenic peptides acquired in both Rab11a+ early endosomes and Rab11a- endosomes for CD4 T cell activation.
Collapse
Affiliation(s)
- Kyung-Jin Cho
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Satoshi Ishido
- Department of Microbiology, Hyogo College of Medicine, Nishinomiya, 663-8501 Japan
| | - Laurence C Eisenlohr
- The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104; and.,Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104
| | - Paul A Roche
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
248
|
Maerz JK, Trostel C, Lange A, Parusel R, Michaelis L, Schäfer A, Yao H, Löw HC, Frick JS. Bacterial Immunogenicity Is Critical for the Induction of Regulatory B Cells in Suppressing Inflammatory Immune Responses. Front Immunol 2020; 10:3093. [PMID: 32038631 PMCID: PMC6993086 DOI: 10.3389/fimmu.2019.03093] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/18/2019] [Indexed: 01/18/2023] Open
Abstract
B cells fulfill multifaceted functions that influence immune responses during health and disease. In autoimmune diseases, such as inflammatory bowel disease, multiple sclerosis and rheumatoid arthritis, depletion of functional B cells results in an aggravation of disease in humans and respective mouse models. This could be due to a lack of a pivotal B cell subpopulation: regulatory B cells (Bregs). Although Bregs represent only a small proportion of all immune cells, they exhibit critical properties in regulating immune responses, thus contributing to the maintenance of immune homeostasis in healthy individuals. In this study, we report that the induction of Bregs is differentially triggered by the immunogenicity of the host microbiota. In comparative experiments with low immunogenic Bacteroides vulgatus and strong immunogenic Escherichia coli, we found that the induction and longevity of Bregs depend on strong Toll-like receptor activation mediated by antigens of strong immunogenic commensals. The potent B cell stimulation via E. coli led to a pronounced expression of suppressive molecules on the B cell surface and an increased production of anti-inflammatory cytokines like interleukin-10. These bacteria-primed Bregs were capable of efficiently inhibiting the maturation and function of dendritic cells (DCs), preventing the proliferation and polarization of T helper (Th)1 and Th17 cells while simultaneously promoting Th2 cell differentiation in vitro. In addition, Bregs facilitated the development of regulatory T cells (Tregs) resulting in a possible feedback cooperation to establish immune homeostasis. Moreover, the colonization of germfree wild type mice with E. coli but not B. vulgatus significantly reduced intestinal inflammatory processes in dextran sulfate sodium (DSS)-induced colitis associated with an increase induction of immune suppressive Bregs. The quantity of Bregs directly correlated with the severity of inflammation. These findings may provide new insights and therapeutic approaches for B cell-controlled treatments of microbiota-driven autoimmune disease.
Collapse
Affiliation(s)
- Jan Kevin Maerz
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Constanze Trostel
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Anna Lange
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Raphael Parusel
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Lena Michaelis
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Andrea Schäfer
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Hans Yao
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Hanna-Christine Löw
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Julia-Stefanie Frick
- Department for Medical Microbiology and Hygiene, Interfacultary Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
249
|
Lämmermann T, Kastenmüller W. Concepts of GPCR-controlled navigation in the immune system. Immunol Rev 2020; 289:205-231. [PMID: 30977203 PMCID: PMC6487968 DOI: 10.1111/imr.12752] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
G‐protein–coupled receptor (GPCR) signaling is essential for the spatiotemporal control of leukocyte dynamics during immune responses. For efficient navigation through mammalian tissues, most leukocyte types express more than one GPCR on their surface and sense a wide range of chemokines and chemoattractants, leading to basic forms of leukocyte movement (chemokinesis, haptokinesis, chemotaxis, haptotaxis, and chemorepulsion). How leukocytes integrate multiple GPCR signals and make directional decisions in lymphoid and inflamed tissues is still subject of intense research. Many of our concepts on GPCR‐controlled leukocyte navigation in the presence of multiple GPCR signals derive from in vitro chemotaxis studies and lower vertebrates. In this review, we refer to these concepts and critically contemplate their relevance for the directional movement of several leukocyte subsets (neutrophils, T cells, and dendritic cells) in the complexity of mouse tissues. We discuss how leukocyte navigation can be regulated at the level of only a single GPCR (surface expression, competitive antagonism, oligomerization, homologous desensitization, and receptor internalization) or multiple GPCRs (synergy, hierarchical and non‐hierarchical competition, sequential signaling, heterologous desensitization, and agonist scavenging). In particular, we will highlight recent advances in understanding GPCR‐controlled leukocyte navigation by intravital microscopy of immune cells in mice.
Collapse
Affiliation(s)
- Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
250
|
Zhang TG, Zhang YL, Zhou QQ, Wang XH, Zhan LS. Impairment of mitochondrial dynamics involved in iron oxide nanoparticle-induced dysfunction of dendritic cells was alleviated by autophagy inhibitor 3-methyladenine. J Appl Toxicol 2020; 40:631-642. [PMID: 31922269 DOI: 10.1002/jat.3933] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Iron oxide nanoparticles are nanomaterials that are used extensively in the biomedical field, but they are associated with adverse effects, including mitochondrial toxicity. Mitochondrial homeostasis is achieved through dynamic stability based on two sets of antagonistic balanced processes: mitochondrial biogenesis and degradation as well as mitochondrial fission and fusion. In this study, we showed that PEG-COOH-coated Fe3 O4 (PEG-Fe3 O4 ) nanoparticles induced mitochondrial instability in dendritic cells (DCs) by impairing mitochondrial dynamics due to promotion of mitochondrial biogenesis through activation of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC1α) pathway, inhibiting mitochondrial degradation via decreased autophagy, and facilitating mitochondrial fragmentation involving increased levels of DRP1 and MFN2. The resulting reduced levels of dextran uptake, CD80, CD86 and chemokine receptor 7 (CCR7) suggested that PEG-Fe3 O4 nanoparticles impaired the functionally immature state of DCs. Autophagy inhibitor 3-methyladenine (3-MA) alleviated PEG-Fe3 O4 nanoparticle-induced mitochondrial instability and impairment of the functionally immature state of DCs due to unexpected enhancement of PGC1α/MFN2-mediated coordination of mitochondrial biogenesis and fusion.
Collapse
Affiliation(s)
- Tian-Guang Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Science of the Chinese People's Liberation Army, Taiping Road 27, Haidian District, Beijing, 100850, People's Republic of China
| | - Yu-Long Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Science of the Chinese People's Liberation Army, Taiping Road 27, Haidian District, Beijing, 100850, People's Republic of China
| | - Qian-Qian Zhou
- Institute of Health Service and Transfusion Medicine, Academy of Military Science of the Chinese People's Liberation Army, Taiping Road 27, Haidian District, Beijing, 100850, People's Republic of China
| | - Xiao-Hui Wang
- Institute of Health Service and Transfusion Medicine, Academy of Military Science of the Chinese People's Liberation Army, Taiping Road 27, Haidian District, Beijing, 100850, People's Republic of China
| | - Lin-Sheng Zhan
- Institute of Health Service and Transfusion Medicine, Academy of Military Science of the Chinese People's Liberation Army, Taiping Road 27, Haidian District, Beijing, 100850, People's Republic of China
| |
Collapse
|